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MY EARLY INSPIRATIONS

» Turing machines, studied since 1962

» A compiler for ALGOL 60, written in 1962-65

There were many unclear semantic points!

But what was a semantics???

» The IFIP Working Conference on Formal Language Descrip-
tion Languages for Computer Programming 1964, including

» “Towards a formal semantics” by Christopher Strachey

» Denotational semantics, e.g., from Joe Stoy’s 1977 book

Denotational Semantics: The Scott-Strachey Approach to
Programming Language Semantics
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ALAN TURING STARTED THE BALL ROLLING (IN 1936)

1. A convincing analysis of the nature of computation
2. A very early model of computation (MOC)

3. The first programmers’ manual

4. Undecidability of the halting problem

5. The Universal Turing machine (a self-interpreter)
6

. Contributor to the “Confluence of ideas’”: that

all sensible models of computation are equivalent, e.g.,

» Turing machine
» Lambda calculus
» Recursive function definitions

» String rewrite systems



75 YEARS OF MODELS OF COMPUTATION (just a few)

Lambda calculus Church 1936
Turing machine 1936
von Neumann architecture 1945
Finite automata Rabin and Scott
Counter machine Lambek and Minsky
Random access machine (RAM) Cook and Reckhow

Random access stored program (RASP) Elgot and Robinson
Cellular automaton, LIFE,.. von Neumann, Conway, Wolfram
Abstract state machine Gurevich et al

Text register machine Moss
Blob model 2010



SOME DIMENSIONS OF OF MOCS

» “Reasonable” machines (van Emde Boas, Ugo dal Lago)

PTIME is the same on Turing machine and \-calculus
» General problem-solving
» Programmability
» Binding times, finiteness and uniformity
» Turing completeness

» Universal machine / self-interpreter

The Blob MOC:
» Originally motivated by biological computing, which has

» enormous potential (price, concurrency, automation, ...)

» A different set of MOC dimensions; may give some insight.
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A VISIT TO STANFORD RESEARCH INSTITUTE IN 2008

SRI is doing quality work to model biological systems using
Maude, a term rewriting system implementation. But...my
reaction after a 2 month visit: where are the programs?

» Many, at the simulation level, i.e., Maude programs
to simulate biological phenomena.

» But | could see [no programs at the biological level|.

In biomolecular computation models it’s hard to see anything
like a program that realises or directs a computational process.

» Many examples: given a problem, researchers cleverly devise
a biomolecular system that can solve this particular problem

» The algorithm being implemented is hidden in the details of
the system’s construction, hard to see.
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EXISTING CONNECTIONS BETWEEN BIOLOGY AND
COMPUTATION

Turing completeness results for biomolecular computation:

» Cardelli, Chapman, Danos, Reif, Shapiro, Wolfram,. ..

» Net effect: any computable function can be computed, in
some sense, by various biological mechanisms.

» Not completely compelling from a programming perspective.
(Godel numbers, 2-counter machine simulation, ...)
» Our aim: a computation model where

e “program’ is clearly visible and natural, and

e Turing completeness is not artificial or accidental or horri-
bly inefficient, but belongs naturally to biomolecular com-
putation



TWO DIFFERENT MEANINGS OF THE WORD “MODEL”

1. Natural sciences are analytic: a “model” describes an already-
existing reality.

A good model describes the real world well, e.g., is usable
to predict the outcome of not-yet-performed experiments.

2. Computer science and engineering are synthetic: Given a
problem specification, a goal is build a computer program or
a hardware device to solve it. (cf. “model checking”)

A good model satisfies the problem specification.

A small insight:

» The “confluence of ideas” had analytic overtones, suggesting
that computability is a natural phenomenon.

» Turing’s work (machine design, programming) was synthetic.
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A DIFFERENCE IN PERSPECTIVE

» Natural science is analytic: how does nature really work?

» Computer science is synthetic: build programmable systems.
Therefore, this research project:
design a biology-like computing model with programs.

The blob model aims to fill a gap,
» to establish a biologically feasible framework in which

» programs are first-class citizens.



THE BIOLOGICAL WORLD IS NOT HARDWARE!

Need to re-examine programming language assumptions.
Computers have programmer-friendly conveniences, e.g.,

» A large address space of randomly accessible data

» Pointers to data, perhaps at a great “distance” from the
current program or data

» address arithmetic, index registers,. ..

» Unbounded fan-in: many pointers to the same data item

None of these is biologically plausible!

Workarounds are needed
if we want to do biological programming.



FOR BIOCHEMICAL PLAUSIBILITY

There 1s no action at a distance| all effects achieved via

chains of local interactions. Biological analog: signaling.

There are no pointers to data

(addresses, links, list point-

ers): To be acted on, a data value must be physically adja-
cent to an actuator. Biological analog: chemical bond

between program and data.

A “yes”| d available resources to tap, i.e., energy to change
the program control point, or to add data bonds.

Biological analogs: ATP, oxygen, Brownian movement.



THE BLOB MODEL

Simplified view of a molecule and chemical interactions
(like Cardelli, Danos, Laneve,...)

Blobs are in a biological “soup” and are connected by symmet-

rical bonds linking their bond sites.

Picture of a blob: (Bond sites 0,2 and 3 are bound, and 1 is

unbound)
0
1 2
3

A blob has 4 bond sites and 8 cargo bits (boolean values).

Here: Bond sites 0,2 and 3 are bound, and 1 is unbound.
(Cargo bits not shown)



KEEPING THE FOCUS

How to structure a biologically feasible model of computation?

» ldea: keep current program cursor and data cursor always

close to a focus point where all actions occur.

» How? Continually shift both program and data, to keep the
active bits near the focus.

Running program p: computing [[p](d)

Program p Data d
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WHAT HAPPENS AT THE PROGRAM-TO-DATA BOND ?

— each with its cursor

Focus point for control and data
(connects the PC and the DC)

X = program-to-data bond

An instruction at pc can ...

» Move the data cursor along a bond

» Branch: is a data cursor’s bond empty or not ?

» Branch: is a data cargo bit 1 or 0 ?

» Insert a new blob at a bond

» Swap: interchange some bonds

» Fan-in: merge control from two predecessor instructions



A MOVIE IS WORTH DURATION X FRAMERATE x1000
WORDS

(Circle.avi)



AIMS OF THE BLOB MODEL

A model of computation that is

» biochemically plausible: semantics by chemical-like reaction
rules;

» programmable (a bit like low-level computer machine code);
» uniform: new “hardware” not needed to solve new problems;

» stored-program: programs = data;

programs are executable and compilable and interpretable
» universal: all computable functions can be computed

» Turing complete in a strong sense: d a universal algorithm

(able to execute any program, asymptotically efficient)



OTHER COMPUTATIONAL FRAMEWORKS

Circuits, BDDs, finite automata: Nonuniform, Turing incomplete!

Turing machine:

» Pro Visible program; complete; universal machine exists
» Con Asymptotically slow: universal machine takes time
O(n?) to simulate a program running in time O(n)
Other program-based models: Post, Minsky, LISP, RAM, RASP. ..

Complex, biologically implausible
Cellular automata: von Neumann, LIFE, Wolfram,. ..

» Pro: Can simulate a Turing machine
» Con: Complex, biologically implausible (synchronisation!)
» Program = start cell pattern? global transition function?

» There seems to be no natural universal cellular automaton.



PROGRAM BLOBS AND DATA BLOBS

» A program p is (by definition) a connected assembly of blobs.

» The data space d is (also) a connected assembly of blobs.

At any moment during execution, i.e., computation of [[p](d):

» The program cursor (PC) is in p.
» The data cursor (DC) is in d.

» There is a bond * (“the bug”) between the PC and the DC,
at bond sites 0.
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EXAMPLE INSTRUCTION: SCG 1 5
(SET CARGO BIT 5 TO 1)

7 0
a % 5
= ) pc (*) oc
pc pc ()

Program Data Program Data

» “The bug” _*_ has moved:

e before execution, it connected PC with DC.
e After: it connects successor PC’ with DC.

» Control: activation bits 0, 1 have been swapped.

Instruction syntax: the 8-bit string 11001101 is grouped as

a SCG v C

1 100 1 101



ANOTHER ANIMATION: APPEND

(Append.avi)



MORE ABOUT INSTRUCTIONS: (one per blob)

Instruction form: (8 control bits and 4 bonds)

opcode parameters (bond0, bondl, bond2, bond3)

Why exactly 4 bonds?

» Predecessor (1 bond); true and false successors (2 bonds);

» 1 bond to link the program cursor and the data cursor.

It’s almost a von Neumann machine code, but. ..

» A bond is a two-way link between two adjacent blobs.
» A bond is not an address.

» There is no address space as in conventional computer (and
hence: no address decoding hardware).

» Also: no registers (though cargo bits can be used).



TURING COMPLETENESS as by Cardelli, Zavattaro,...

Language M is as powerful as L (write L < M) if
L _ M
Vp € L—programs 3qg € M —programs ( [p]”~ = [q]™ )

L and M are languages (biological, programming, whatever).
Aim: show that an interesting M is Turing complete.

Usual way: reduce an already Turing complete language, e.g.,

» from: L = two-counter machines 2CM. very, very slow!
» to: M = a biomolecular system of the sort being studied.
» The technical trick: show how to construct

e from any 2CM program,

e a biomolecular M-system that simulates the given 2CM.



TURING’S WAY: INTERPRETATION

Turing completeness is usually shown by simulation, e.,g.,
» for any 2CM program you can build a biomolecular system

But the biomolecular system is usually built by hand.
The effect: hand computation of the 3 quantifier in

vp 3q ([p]* = [a]™)

In contrast, Turing’s original “Universal machine” (UM) works
by interpretation, where 3 is realised by machine.

» The UM can execute any TM program, if coded on the UM’s
tape along with its input data.

» Our research follows Turing’s line, in a biological context:

It does simulation by general interpretation, and not by one-
problem-at-a-time constructions.



PROGRAM EXECUTION BY INTERPRETATION

interpreter|/(program, data;,,) = |[program|/(data;
p prog in prog n

» Now program is a passive data object: both program and
data;, are data for the interpreter.

» program is now executed by running the interpreter program.
» This self-interpretation is useful in practice.
» Turing’s original “Universal machine” was a self-interpreter.

A “blob universal machine”

We have programmed a self-interpreter for the blob formalism
— analogous to Turing’s original universal machine.

This gives: Turing-completeness in a new biological framework.



SELF-INTERPRETATION IN THE BLOB WORLD

Interpreter and its data

JC

Program p Data d

Picture of the computation: [[interpreter](p, d)



BIRDS-EYE VIEW OF A SELF-INTERPRETER

(Not shown: Each ’finger’ along the periphery has a connection to the main control in the center)



A “BLOB UNIVERSAL MACHINE”

We have developed a self-interpreter for the blob formalism —
analogous to Turing’s original universal machine.

This gives: Turing-completeness in a new biological framework.
Blob programs do not have to be encoded!

Self-interpretation without asymptotic slowdown.
» the blob model has higher connectivity that the TM;

» faster self-interpretation than original universal machine.

Why is asymptotic slowdown avoided?

The time to interpret one blob instruction
iIs bounded by a constant c
(that may depend on the program being interpreted)



SOME DESIRABLE PROPERTIES OF A MOC

» Existence of programs; and general problem solving: a nat-
ural path from an informal algorithm to an MOC program.

» Turing completeness.

» Uniformity and strong finiteness: one set of hardware is
enough for all problems.

» Physical realizability, e.g., execution possible without action
at a distance, e.g., data pointers.

» Programs as data objects: Readability for universal machine.
Writeability for program generation, e.g., a compiler.

» Plausible program running times, e.g., polynomially related
to programming languages, e.g., A-calculus.

__ 97



WHAT SEEMS JUST AROUND THE CORNER

» Programs are currently similar to classical machine code; this
requires (too much) programmer skill. Possible solutions:

e Devise an intermediate-level blob programming language

(Christopher Strachey, we need you!)

e Describe/constrain program behavior, data structures by
static program analysis; or a type system.

e Program activation should be possible: once a program

iIs generated, start executing it. Needs “stored program”
model (as in von Neumann architecture or RASP).

» Needed: bounds on time or energy to perform a single pro-
gram step. A cost model, including code motion.

» Concurrency (programs perhaps generated dynamically by
one master program, analogous to biological reproduction.)



WHAT HAS NOT YET BEEN DONE

» Promise of tighter analogy between universality and
self-reproduction.

» A usable higher-level programming language

» Find a true, biological (not just “plausible”) implementation
of the fixed set of reduction rules in vitro.

» Computational complexity, e.g., limitations imposed by a 3-
dimensional blob-space.



CONTRIBUTIONS OF THIS WORK

» Programmable bio-level computation where programs = data.
» Blob semantics by abstract biochemical reaction rules.
» All computable functions are blob-computable:

e This can be done with one fixed instruction set
(i.e., a “machine language”)

e We don’t need new rule sets (biochemical architectures)
to solve new problems; it’s enough to write new programs.

» (Uniform) Turing-completeness

» Interpreters and compilers seem to make sense at biological
level, may give useful operational and utilitarian tools.
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THANK YOU!

Questions?



