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The problem: factorization. 
 

Given a natural number n, what are the prime factors of n? 
 
We wish to design a system (an algorithm, Turing machine, analogue computer, 
quantum computer, DNA computer, …) that solves this problem using only reasonable 
resource (time, space, energy, etc.). 
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Progress so far. 
 

Despite the attempts of countless mathematicians, computer scientists, etc., not much 
progress! 
 

• Classical, algorithmic solutions (Turing machines, random-access machines, etc.) 
have exponential run-time. 

• Quantum-computer solutions (notably Shor’s algorithm) are technologically 
impracticable for all but a handful of small n. 

 

So, is factorization difficult? 
 

Not necessarily: we have neither efficient solution nor proof that there is no efficient 
solution (e.g. proof that factorization is NP-hard). 
 
So, why not try other models of computation, such as analogue computers? 
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Geometric formulation. 
 

Descartes tells us that numerical problems can often be recast geometrically. 
 
So, don’t think about finding numbers x and y such that xy = n (i.e. y = n/x); 
think about the graph y = n/x. 



Analogue factorization system. 
 

We want to factorize n. So, we want to find 
integer points (x, y) on the curve y = n/x. 
Such x and y are factors of n. 
 
The curve is a hyperbola, and, hence, a 
conic section.  
 
So, we seek points that are both 

• on a cone and 

• on the integer grid. 
 
We implement this cone and grid. 
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Implementing the grid. 
 

We need only a finite subset of the grid: 
 

• Factors are ≥ 0 (in fact, ≥ 1), so x, y ≥ 0. 
 

• Factors are ≤ n, so x, y ≤ n. 
 

• (x, y) gives the same factors as (y, x), 
so we suppose that x ≤ y. 

 

• We assume that n is odd, and so need 
only consider points where x and y are 
odd; we implement points where x and 
y have the same parity. 

 
This is the part of the integer grid that we 
implement. 
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Implementing the grid. 
 

We use: 

• a source of waves of wavelength λ = 2/n, and 

• three mirrors (one parabolic, two plane). 
 
The points of maximal wave activity in the 
resultant interference pattern model the grid 
points. 
 
Since λ depends on the input value n, setting the 
wavelength forms part of the system’s input 
process. 
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Implementing the cone. 
 

We use: 

• a second source of waves—this is the 
vertex of the cone—, and 

• a sensor occupying a circular arc—the 
circle is a cross section of the cone. 

 
Radiation from the second source arriving 
at the sensor passes through the grid’s 
plane at a point on our hyperbola. 
 
If this point is also an integer point, then the 
radiation will appear diminished at the 
sensor. 
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Finding factors. 
 

• Input. Set parameters that depend on n: wavelength of first source, height of 
second source, height of sensor. 

 

• Processing. Waves propagate and produce interference pattern (esp. on sensor). 
 

• Output. Measure positions of ‘dark spots’ on sensor; convert these into positions 

of sought (grid/cone) points ⇒ factors of n. 
 

Time/space complexity. 
 

• Input. Given n, calculate values (e.g. λ = 2/n) of input parameters. 
 

• Output. Convert coordinates of dark spots, which encode factors of n, into factors. 
 
These steps take polynomial time and space (via Turing machine). 
 

Everything else is constant time/space! 
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Too good to be true? 
 

Factorization in polynomial time and space… 
 

What’s the catch? 
 
Time and space aren’t the only types of resource. The system uses an exponential 
amount of another resource, not considered in traditional complexity theory, namely… 
 

Precision. 
 

Precision complexity captures robustness against I/O imprecision. Our system’s 
precision complexity is exponential. 
 
That is, as n increases, the precision with which parameters must be manipulated and 
measured increases exponentially. 
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How should we measure non-Turing computers’ complexity? 
 

Simply by considering all relevant resources (not just the Turing-type ones). 
 
Given a computer, the key question is: 
 

what resources does the computation consume, 
and in what quantities? 

 
Obviously still consider algorithmic measures (time, space, etc.) but, 
 

especially if these seem too good to be true, 
 

consider whether anything else non-algorithmic (precision, energy, etc.) is being 
consumed. 



Types of resource. 
 

So Turing-type resources—time and space—aren’t the whole story. 
 
In the context of unconventional computing, there’s also: 
 

• Precision (e.g. in analogue, quantum, chemical and optical computers). 

• Thermodynamic cost (in irreversible computations, where entropy increases). 

• Energy (e.g. in mechanical/analogue and quantum-adiabatic computers). 

• Resolution (e.g. in optical computers). 

• Weight (e.g. in chemical computers). 

• Etc. 
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Interpretations of ‘resource’. 
 

• ‘Commodities’. Time, space, precision, energy, weight… 
 

• Manufacturing cost. Cluster states, evolution… 
 

• Features of the model. Non-determinism, oracles… 
 

• Features of physics. Entanglement, Newtonian dynamics… 
 

• Informatics. E.g. ‘2 cl-bit + e-bit ≥ qubit’… 
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Commodity resources. 
 

We’ve seen some specific examples. What can we say in generality? 
 
 

(Commodity) resources are functions that map a computer Φ and an input value x to 

the number (∈ �) of units of the resource used by Φ given x. 
 

 
So, if T stands for the resource of run-time, then TΦ(x) is the number of time steps 
required for Φ to finish its computation on input x. 
 
We can then define the complexity function corresponding to a given resource: 
 
 

TCΦ(n) := sup {TΦ(x) : |x| = n} . 
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Blum’s axioms. 
 

These are conditions that a resource may or may not satisfy. 
 
The axioms ensure: 
 

1. that a resource is defined precisely at inputs at which the computation being 
measured is defined, and 

 

2. that it is a [Turing-]decidable problem to determine whether a given value is 
indeed the measure of resource corresponding to a given input. 

 
In my work (where the resources are deterministic, even if the computers being 
measured aren’t), the axioms should hold. 
 

But they alone aren’t enough… 
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Dominance. 
 

Motivation: 

many resources ⇒ comparison difficulties. 
 
Comparing the time complexity of two Turing machines (to see which is more efficient) 
is easy: use the ‘big-O’ pre-ordering. 
 
Comparing the time, space, precision, energy… complexities of, say, an optical 
computer with those of a chemical computer is a mess: what do we O-compare with 
what? 
 
We’d like to be able to say that resource X is ‘relevant’ for the optical computer, and 
that Y is for the chemical computer; then we can O-compare X and Y. 
 

Dominance formalizes this idea of ‘relevance’. 
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Dominance. 
 

We define dominance relative to a set of resources and to a computer. 
 

• R is a set of resources. 

• Φ is a computer. 
 
 

Resource A ∈ R is R-dominant for Φ if, for all B ∈ R, 

ACΦ ∈ O(BCΦ)  ⇒  BCΦ ∈ O(ACΦ) . 

 

 
That is, 

R-dominant resources are those that O-exceed 

all resources with which they are O-comparable. 
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R-complexity. 
 

(As before, R is a set of resources and Φ is a computer.) 
 
 

The R-complexity of Φ, denoted BR, Φ, is the complexity function given by: 
 

BR, Φ(n)  :=  ΣA is R-dominant ACΦ(n) . 

 

 
We sum ‘relevant’ resources (and no others). 
 

This captures ‘overall complexity’. 



Why Blum’s axioms aren’t enough. 
 

Let 
 

• SΦ(x) be the number of tape-cells used, and 

• TΦ(x) the number of time steps elapsed, 
 

during a computation by Turing machine Φ with input value x. 
 
Now define resource S’ by S’(x) := 2S(x). 
 

• As far as Blum’s axioms are concerned, S and S’ are legitimate resources. 

• Each is an internally consistent measure of space usage. 

• S(x) � S’(x) is an isotone mapping: ordering inputs by their values of S has the 
same result as ordering by values of S’. 

 

So, we have two seemingly viable, isomorphic ways of quantifying space usage. 
 

But then there’s dominance… 
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Space vs. time. 
 

According to our notion of dominance, which resource is more relevant, space or time? 
 

Well, suppose that T(x) ∈ O(n2) and S(x) ∈ O(n) (whence S’(x) ∈ 2O(n)). Then: 
 

• S’ dominates T (i.e. S’ is {S’, T}-dominant but T is not), but 

• T dominates S (i.e. T is {S, T}-dominant but S is not). 
 
Space, depending on how we measure it, can be either more or less relevant than time! 
 
We can engineer which resource appears more important. By applying to the more 
slowly growing, non-dominant resource a sufficiently fast-growing, monotonic function 

(e.g. n � 2n), this resource becomes dominant. We don’t want this! 
 
So, let’s restrict resources (so that, e.g., S is valid but S’ is not) to stop this sort of thing. 
We do this with normalization. 
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Normalization—motivation. 
 

Recall resources S (the number of tape-cells) and S’ (= 2S). 
 
What values can these resources take? 
 

• We can write to any number of cells, then halt. So S maps surjectively to �. 
 

• Hence, S’ maps surjectively to {1, 2, 4, 8,…}. 
 

The former property—mapping onto �—seems the more natural (quite literally!), and 
we use it as our blueprint for normalization. 



Normalization—definition. 
 

 

Let C be a class of computers. For each Φ ∈ C, let XΦ be the set of input values for Φ. 

• Let A be a resource that can take as its subscript any computing system Φ ∈ C 

(AΦ: XΦ → �). Define the C-normalized form of A to be the resource AC given by 

ACΦ: XΦ → �, 

ACΦ(x) := |{ AΨ(y) : Ψ ∈ C and y ∈ XΨ and AΨ(y) < AΦ(x)}| . 

• Resource A is C-normal if A = AC (i.e. if AΦ(x) = ACΦ(x) for all Φ ∈ C and x ∈ XΦ). 
 

 
In words, ACΦ(x) is the number of distinct values less than AΦ(x) taken by A (as it 

ranges over all computers in C and all input values). 
 
This is a measure of ‘how much use A makes’ of the natural numbers less than AΦ(x). 
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Normalization—example. 
 

Revisiting our example of S (the number of tape-cells) and S’ (= 2S), we have that 
 

S’T = ST = S 
 

(and that TT = T), 
 
where T is the class of Turing machines. 
 
So, if we use only normal resources, we may validly compare S and T, but not S’ and T. 



Normalization—properties. 
 

• Normalization is strictly isotone: 
 

AΦ(x) < AΨ(y) if and only if ACΦ(x) < ACΨ(y) . 
 

• Normalization is idempotent: 
 

ACCΦ(x) = ACΦ(x) . 
 

• Characterization of normal resources: 
 

Resource A is normal if and only if its image set (over all computers and input values) 

{AΨ(y) : Ψ ∈ C and y ∈ XΨ} is an ‘initial segment’ {i ∈ � : i < n} for some n ∈ � ∪ {∞}. 
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Normalization—intuition. 
 

 

Non-normalized: cardinal. 
Normalized: ordinal. 

 

 

If we let resources be any functions that satisfy Blum’s axioms and have codomain �, 
then we are effectively dealing with cardinals: we are counting time steps, units of 
energy or similar—we have an intrinsic unit of measurement. 
 
This is resource-dependent and not conducive to resource-heterogeneous comparison 
(e.g., how many time steps should we deem of equivalent cost/value to one tape cell?). 
 
But if we allow only C-normal resources, then we have ordinals: 0 represents the least 
resource consumption, 1 the second-least, 2 the third-least, and so on; this is 
independent of resources and units. Comparison then seems fair and equal-footed. 
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Concluding comments. 
 

• With Turing machines, we know what resources to consider. 
 

• With unconventional computers, it’s not so obvious. 
 

• And even when we’ve identified our unconventional resources, there are comparison 
difficulties. Hence dominance. 

 

• But to make dominance work, we need to restrict our notion of resource (more than 
Blum’s axioms do). Hence normalization. 

 

• This restriction stops certain ‘deceptive’ complexity behaviour, e.g. ‘dominance 
engineering’ via application of quickly growing, isotone functions. 

 

• The restriction also renders resources ‘ordinal’, not ‘cardinal’, allowing seemingly 
fairer comparison. 



Questions? 
 
 
 
 
 
 

edward.blakey@queens.ox.ac.uk http://users.ox.ac.uk/~quee1871 

 
A paper, Beyond Blum: What is a Resource?, related to parts of this talk is to appear in the 
International Journal of Unconventional Computation. 
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Complexity and Decidability in Unconventional Computational Models. 


