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Optical computing: motivations

Object detection
(via correlation)

Image processing
(convolution: e.g.
deblurring, edge
enhancement,
noise removal)

D. Casasent, Proc. IEEE 67, 813 (1979)

G. Häusler, Optica Acta 24, 965 (1977)
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Optical computing: motivations

Previously: relatively little theory
for optical computers compared
to implementations and designs

T. Naughton, et al., Opt. Eng. 38, 1170, 1999

Lenslet Enlight (2001)

Opposite to many other
models! Quantum,
DNA, membrane, ...
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Optical computing: motivations

Previously: relatively little theory
for optical computers compared
to implementations and designs

T. Naughton, et al., Opt. Eng. 38, 1170, 1999

Lenslet Enlight (2001)

Opposite to many other
models! Quantum,
DNA, membrane, ...

Our work: development of a general purpose optical model
Joint work with Thomas J. Naughton
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Motivations

Optical computers been around for some time

Speed: parallelism via 2D complex-valued functions

No inherent noise during transmission

Optical pathways can be placed arbitrarily close together

Photons do not need a conductor to be transmitted (free
space propagation)

High interconnection densities are possible

Optical pathways can be switched at arbitrary data rates

Energy efficient (no heat and no additional energy costs for
cooling down processors)
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Continuous space machine definition

Images are the basic data units

A (complex-valued) image is a function

f : [0, 1)× [0, 1)→ C

where [0, 1) is the half-open real unit interval
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Continuous space machine definition

An address is a pair (ξ, η) ∈ N+ × N+

continuous space machine

A CSM is a quintuple M = (E, L, I ,P,O), where

E : N→ N is the address encoding function

L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, b; a 6= b

I and O are finite sets of input and output addresses, respectively

P = {(ζ1, p1ξ
, p1η

), . . . , (ζr , prξ , prη )} are the r programming

symbols ζj and their addresses where ζj ∈ ({h, v , . . . , hlt} ∪ N ) ⊂ I

configuration

A configuration of M is a pair 〈c , e〉 where

c is an address called the control

e is a list of M’s images
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CSM operations

h : horizontal 1D Fourier transform on in a

v : vertical 1D Fourier transform on image in a

∗ : complex conjugate of image in a

· : pointwise multiplication of a and b

+ : pointwise complex addition of a and b

ρ zl zu : zl, zu ∈ I; filter a by amplitude using zl and zu

as lower and upper amplitude threshold images
st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the

rectangle of images whose bottom left-hand corner
address is (ξ1, η1) and whose top right-hand corner
address is (ξ2, η2)

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of
images whose bottom left-hand corner address is
(ξ1, η1) and whose top right-hand corner address
is (ξ2, η2)

br ξ η : ξ, η ∈ N; branch to the image at address (ξ, η)

hlt : halt
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CSM programming language

h(i1;i2) : replace image at i2 with horizontal 1D FT of i1
v(i1;i2) : replace image at i2 with vertical 1D FT of i1
∗(i1;i2) : replace image at i2 with complex conjugate of i1
···(i1,i2;i3) : pointwise multiplication of i1 and i2, result in i3
+(i1,i2;i3) : pointwise addition of i1 and i2, result at i3
ρ(i1,zl,zu;i2) : filter i1 by amplitude using zl, zu as lower & upper

amplitude threshold images

[ξ′
1, ξ

′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images with
• bottom-left address (ξ1, η1) & top-right address (ξ2, η2)
to the rectangle with
• bottom-left address (ξ′

1, η
′
1) top-right address (ξ′

2, η
′
2)

There are also if/else and while control flow instructions with
binary symbol image conditions.
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Example

Copying images

a

ξ1 ξ2

η1

η2

[ξ1, ξ2, η1, η2] ← a

a ← [ξ1, ξ2, η1, η2]
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CSM complexity measures

time

The number of configurations in the computation sequence of M,
beginning with the initial configuration and ending with the first
final configuration.

grid

The minimum number of images, arranged in a rectangular grid,
for M to compute correctly on all inputs.

Let S : I × (N× N)→ I, where S(f (x , y), (Φ,Ψ)) is a raster
image, with ΦΨ pixels arranged in Φ columns and Ψ rows, that
approximates f (x , y).

spatialRes

The minimum ΦΨ such that if each image f (x , y) in the
computation of M is replaced with S(f (x , y), (Φ,Ψ)) then M
computes correctly on all inputs.
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CSM complexity measures

Let f (x , y) = |f (x , y)|ei arg f (x ,y). Let A : I × N+ → I,

A(f (x , y), µ) =

⌊
|f (x , y)|µ+

1

2

⌋
1

µ
ei arg f (x ,y)

The value µ is the cardinality of the set of discrete nonzero
amplitude values that each complex value in A(f , µ) can take, per
half-open unit interval of amplitude.

amplRes

The minimum µ such that if each image f (x , y) in the
computation of M is replaced by A(f (x , y), µ) then M computes
correctly on all inputs.

random values amplRes 1 amplRes 3
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CSM complexity measures

Let P : I × N+ → I,

P(f (x , y), µ) = |f (x , y)|eibarg(f (x ,y)) µ
2π

+ 1
2c 2π

µ

The value µ is the cardinality of the set of discrete phase values
that each complex value in P(f , µ) can take.

phaseRes

The minimum µ such that if each image f (x , y) in the
computation of M is replaced by P(f (x , y), µ) then M computes
correctly on all inputs.

phaseRes 2 phaseRes 3 phaseRes 5
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CSM complexity measures

dyRange

The ceiling of the maximum of all the amplitude values stored in
all of M’s images during M’s computation.

freq

The minimum optical frequency such that M computes correctly
on all inputs.

space

The product of all of M’s complexity measures except time.

We have defined complexity of computations, we extend this to
complexity of configurations and images in a straightforward way.

An upper bound on “Energy complexity” is given by a product of
the above measures (except phaseRes)
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CSM complexity measures

dyRange

The ceiling of the maximum of all the amplitude values stored in
all of M’s images during M’s computation.

freq

The minimum optical frequency such that M computes correctly
on all inputs.

space

The product of all of M’s complexity measures except time.

We have defined complexity of computations, we extend this to
complexity of configurations and images in a straightforward way.

An upper bound on “Energy complexity” is given by a product of
the above measures (except phaseRes)
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Optical computing: resources

time: Number of steps

grid: # images

spatialRes: # pixels

dyRange: Max amplitude

amplRes: Amplitude levels

phaseRes: Phase of images

freq: Frequency

1,2,3,...

a

ξ1 ξ2

η1

η2

amplRes ∞ amplRes 1 amplRes 3

phaseRes 2 phaseRes 3 phaseRes 5
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Resource usage after one timestep

In sequential models of computation the increase in space-like
resources after a single step is quite obvious

Parallel models may exhibit large growth

Here we have many operations and measures; the growth in
space-like resources is not immediately obvious
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Resource usage after one timestep

grid spatialRes amplRes dyRange phaseRes freq

h GT ∞ ∞ ∞ ∞ ∞
v GT ∞ ∞ ∞ ∞ ∞
∗ GT Rs,T Ra,T Rd,T Rp,T νT

· GT Rs,T (Ra,T )2 (Rd,T )2 Rp,T νT

+ GT Rs,T ∞ 2Rd,T ∞ νT

ρ unbnd Rs,T Ra,T Rd,T Rp,T νT

st unbnd Rs,T Ra,T Rd,T Rp,T νT

ld unbnd unbnd Ra,T Rd,T Rp,T unbnd
br GT Rs,T Ra,T Rd,T Rp,T νT

hlt GT Rs,T Ra,T Rd,T Rp,T νT

Table: Worst case (lub) resource usage at time T + 1, in terms of
resource use at T : grid = GT , spatialRes = Rs,T , amplRes = Ra,T ,
dyRange = Rd,T , phaseRes = Rp,T , freq = νT .

CSM decides any language L ∈ 2{0,1}∗ .
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C2-CSM

Motivated by a desire to apply standard complexity theory tools to
the model, we define a restricted class of CSM.

C2-CSM
amplRes and phaseRes have constant value of 2

at time t each of grid, spatialRes, dyRange is O(2t)

replace FT with DFT

address encoding is computable in logspace
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2005: lower and upper bounds on C2-CSM power

The C2-CSM verifies the parallel computation thesis

⇔ C2-CSM time is (polynomially) equivalent to sequential space

⇔ C2-CSM–TIME(SO(1)(n)) = NSPACE(SO(1)(n))

For example, C2-CSM–TIME(nO(1)) = PSPACE
For example, C2-CSMs solve NP-complete problems polynomial
time, but use exponential space (of course!)

Poly space, polylog time C2-CSMs accept exactly NC
i.e. C2-CSM–SPACE,TIME(nO(1), logO(1) n) = NC

These characterisations are robust wrt variations in the C2-CSM
definition

Damien Woods Choosing Resources



2005: lower and upper bounds on C2-CSM power

The C2-CSM verifies the parallel computation thesis

⇔ C2-CSM time is (polynomially) equivalent to sequential space

⇔ C2-CSM–TIME(SO(1)(n)) = NSPACE(SO(1)(n))

For example, C2-CSM–TIME(nO(1)) = PSPACE
For example, C2-CSMs solve NP-complete problems polynomial
time, but use exponential space (of course!)

Poly space, polylog time C2-CSMs accept exactly NC
i.e. C2-CSM–SPACE,TIME(nO(1), logO(1) n) = NC

These characterisations are robust wrt variations in the C2-CSM
definition

Damien Woods Choosing Resources



Pixels, pixels, pixels,...

We already know that:

PSPACE = C2-CSM poly-time, exp-spatialRes

Result holds for constant O(1) usuage of the other resources:
dyRange, grid, amplRes, phaseRes

parallelism ≈? pixels

Backed up by existing intuition through many examples of
optical algorithms
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Parallelism without pixels?

What if we restrict (fix!) the number of pixels?

i.e. O(1) spatialRes

Our previous highly parallel algorithms don’t work

Have we crippled the system?
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Parallelism without pixels?

What if we restrict (fix!) the number of pixels?

i.e. O(1) spatialRes

Our previous highly parallel algorithms don’t work

Have we crippled the system?

No!
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Constant number of pixels

Theorem

PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and

generalised to use amplRes O(22T
), dyRange O(22T

).

Proof idea (upperbound). Extend previous upperbound,
swapping the roles of spatialRes and the other resources.

Proof idea (lowerbound). Via simulation of RAM(×,+,←).
Such RAMs are known to characterise PSPACE in polynomial
time.
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Constant number of pixels

Theorem

PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and

generalised to use amplRes O(22T
), dyRange O(22T

).

We can get “high parallelism” with a fixed number of pixels!

Intuition — there are at least two ways to compute quickly in
optics: use pixels or generate large numbers

However, not a realistic way to do optical computing: using
large amplRes and dyRange is more expensive and
unrealistic than large spatialRes and/or grid

From the proofs: we are using multiplication, rather than
pixels

So what happens if we dissallow (such unrealistic)
multiplication?
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What happens if we remove the multiplication operation?

Theorem

C2-CSMs without multiplication, that compute in polynomial
time, polynomial grid O(nk), and constant spatialRes O(1),
characterise P.

Theorem

C2-CSMs without multiplication, that compute in polynomial
time, constant grid O(1), polynomial spatialRes O(nk),
characterise P.

Significant reduction in power

These results are general in the sense that the other resources
are arbitrary (i.e. unrestricted grid, dyRange, phaseRes,
amplRes)

More evidence for parallelism ≈ pixels in optics?
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Conclusions

Two ways in which we get huge parallelism from optics:

Characterise PSPACE in poly time, but exp spatialRes

Char. PSPACE in poly time, but exp amplRes & dyRange

Remove multiplication ⇒ characterise P

Corollaries: characterisations of NC via optical machines that
run in polylog time & polynomial space

So we can take existing, fast parallel algorithms and compile
to fast parallel optical algorithms

log time searching algorithm & implementation design
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Conclusions

NC: problems solved in polylog time, and poly space

NC ⊆ P

Rather than focus on (presumed) hard problems, perhaps the
optical computing community can get more out of optical
computers by finding NC problems that are well-suited to
optical architectures
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Membrane Computing

Joint work with Niall Murphy

Complexity below P

Adleman’s choice matters!
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Uniformity: Introduction

Families of finite computing devices: Boolean circuits, DNA
computers, membrane systems, cellular automata, tile
assembly systems, etc.

Extremely powerful in the absence of an restrictions on the
structure of the family

Uniform: Family C is uniform if ∃M : n→ cn, where n ∈ N is
the length of the input w .

However, there are actually two distinct kinds of uniformity
conditions in above list!

Semi-uniform: Family C is semi-uniform if ∃M : w → cw .
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Uniformity

E.g. a graph problem: Hamiltonian path

“Uniform”: Input length n → Circuit cn

(works for all graphs of size n)

Adleman’s Hamiltonian path experiment:

“Semi-uniform”: Graph G → DNA-device mG

Many, many “nature inspired” algorithms (collections of devices)
are semi-uniform rather than uniform!

Open problem: Are these notions really the same or not?
[Paŭn, 2005]
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Membranes

b5c2

b,da,b

[ a ] → cccd

[ a ] → [ d ][ d ]

[ c ] → λ

[ a ] → [ ]c

[ ]d → [ a ]
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The world according to P-uniformity

...

NC0

AC0

NC1

AC1

L

NL

NC2

AC2

...

AC = NC

PP

NP

PSPACE
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The world according to sub-P-uniformity

...

NC0

AC0

PARITY
NC1

AC1

L

NL

NC2

AC2

...

AC = NC

P

NP

PSPACE

Damien Woods Choosing Resources



Semi-uniformity vs uniformity
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What did we do?

Usually: P uniformity

Using tighter uniformity conditions we explore the “Black
Hole”

Found a bunch of results that really clarify what is going on
with some of these models (exp. wasteful)

Uniform and Semi-Uniform families are different

Validates our original intuition, and solves Paŭn’s open
problem
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Conclusions

Nature-inspired computing resources come in a number of
guises

However, these are amenable to analysis using ideas from
older, more well-known, resources

Nevertheless, we can find new questions and new directions

One measure of success is what we can give back to older
computing models
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