An Only Knowing Approach to Defeasible
Description Logics (extended abstract)

Espen H. Lian and Arild Waaler

Department of Informatics
University of Oslo, Norway,
{elian,arild}@ifi.uio.no

1 Introduction

We propose the only-knowing logic O®ALC, based on the description logic ALC.
Only-knowing logics were originally designed as modal logics over a classical con-
sequence relation for the representation of autoepistemic reasoning [17,18] and
default logic [15]. Only-knowing logics are worth considering for several reasons:
They are monotonic logics with a clear separation between object level and
meta level concepts, and they allow faithful and modular encodings of autoepis-
temic and default theories which do not increase the size of the representations.
The encodings thus provide autoepistemic and default logics with formal seman-
tics and conceptual clarity. Besides being completely axiomatized, propositional
only-knowing logics support encodings of propositional autoepistemic and de-
fault logics with nice computational properties.

— There is a simple rewrite procedure that determines extensions. Some of
the rewrite rules are preconditioned by SAT tests, and these are the only
reference to meta-logical concepts in the procedure.

— The extension problem for propositional only-knowing logics have the same
complexity as for propositional autoepistemic and default logics.

To our knowledge, no extension of only-knowing logics to description logics have
yet been given. In this paper we take the description logic ALC as the under-
lying logic instead of classical propositional logic and generalize the machinery
originally designed for propositional logics of only-knowing. The strength of the
proposed only-knowing logic is the simple rewrite procedure that it admits for
computing extensions, and the fact that reasoning is not harder than in ALC.
The logic OFALC proposed in this paper subsumes the propositional logic that
we proposed in [20] and extends that work in a non-trivial way.

The logic ALCK arr introduced by Donini, Nardi and Rosati [9] is closely
related to ORALC. It is constructed by combining MKNF with ALC. It is not
obvious how this should be done, and in our adaptation of only-knowing logic
to ALC, we have been guided by ALCK nrz. Unlike [9], we do not treat so-called
subjectively quantified expressions in this paper but the logic we present is strong
enough to represent, e.g., default theories for ALC.

In [9], a tableau procedure for ALCK arx is introduced. Although the proce-
dure has been simplified [13], the procedure does not seem to be well suited for



computation of extensions of default theories. In this case one will, it seems, have
to guess extensions and then use the proof procedure to check whether or not
the guess was correct. In contrast, the procedure that we propose determines all
extensions directly. Unlike the proof system for ALCK arr, we formalize inference
steps that are sufficient for determining extensions but not for characterizing the
whole semantics.

2 OFAcLC

The language of OFRALC is defined in two steps: first a concept language, then
a modal formula language.

Concept Language. The basis for the concept language is ALC [1,29]:
C,D—T|L|Cu|-C|CND|CUD|3R:;.C|VRu.C

where C; is an atomic concept and R,; an atomic role. We will call ALC concepts
objective concepts. The concept language for OFALC extends objective concepts
with modal concept formation operators! B (belief) and A (assumption):

C,D%CAgc|—IC|C|_|D|C|_ID‘BC|AC

where C 4¢ is an objective concept. A modal concept is of the form BC or AC;
if C is objective, the modal concept is prime. A concept is subjective if every
objective subconcept is within the scope of a modal concept formation operator.
An interpretation T = (A,-T) over A consists of a non-empty domain A
and an interpretation function -T mapping atomic concepts and roles to subsets
of A and A x A resp. Following [9] we assume that the domain contains all
individuals in the language, and that a’ = a for each individual a. Concept
descriptions are interpreted relative to a pair M = (U, V) and an interpretation
T; we require that U and V are interpretations over A and that V' C U, but we
do not require that 7 € U. ALC concepts evaluate relative to an 7 as usual, e.g.,
(=CYMT = A\ CMZ, while modal concepts are interpreted as follows:

MTI _ M, T MTI _ M,T
(BC) B ﬂJeUC (AC) N mJevc
An ABox A is a finite set of objective membership assertions, i.e. concept asser-
tions C(a) and role assertions R(a,b) for individuals a and b. O4 is the set of
individuals explicitly mentioned in A. A modal atom is an assertion of the form
M (a), where M is a modal concept; M(a) is prime if M is prime. M satisfies
C(a) in T if a € CM7T; M satisfies R(a,b) in T if (a,b) € RM7. As we will
see, modal atoms play an essential role in the rewrite system. A DBoz is a finite
set, of terminological azioms, i.e. inclusions C' C D for concepts C' and D, while

! In the literature, K is sometimes used instead of B, and =M= instead of A. For
intuition about the modalities, consult the literature about MKNF [9, 22,23] and
only-knowing [15, 20].



a TBoz is an objective DBox. M satisfies C C D in Z if CM7 C DM We
define a knowledge base (KB) as a tuple (T, A, D), where T is a TBox, A an
ABox, and D is a DBox. The DBox will typically (but not necessarily) contain
representation of default rules. We assume standard notions and notations for
default theories. Let «, 8y for 1 < k < n and v be ALC-concepts. Below is an
ALC-default and its representation (following Konolige [14]; note that [9] has a
B in front of «y) as an inclusion statement:
a:B1,....0n /7 ~ BalN-A-pfN---MN=A-8,Cy

3

Ba denotes that « is believed, while =A—f denotes that 8 is considered possible,
or that § is consistent with ones beliefs. B is stronger than A in the sense that
every M satisfies BC C AC in every interpretation Z.

Interpretation of an objective concept is independent of M, hence we may
write CZ for C™ and say that 7 satisfies C(a), written Z - C(a), if a € C7;
similarly for roles, role assertions and inclusion statements. Hence we may write
ZIF A and 7 IF T if every element in the respective ABox and TBox is satisfied
by Z. We also write Z I (T, A) if Z I+ T and Z IF A. For an objective assertion ¢,
we write T, A It ¢ if Z I ¢ for every Z such that Z I+ (T, .A). Similarly, 7, A IF A’
it Z I+ A" for every Z such that Z I+ (T, A).

Formula Language. Formulae are defined as follows. Concept and role assertions,
T and F are atomic formulae. —p, ¢ A1y and ¢ V4 are formulae if ¢ and ¢ are.
B, A, B and O are modal operators. B and A correspond to their concept
formation operator counterparts, O is an “only knowing”-operator [17, 33, 20],
while B is a “knowing at most”-operator, corresponding to C— of [20]. Ly is a
formula if L is a modal operator and ¢ is a formula without any occurrence of
[. B is a formula if ¢ is a subjective formula, i.e. every atomic formula that
occurs as a subformula in ¢ is either a subjective assertion or within the scope
of a modal operator. Note in particular that if C' is an objective concept, BC(a)
is a modal atom, and hence an atomic formula, while B(C'(a)) is not an atomic
formula. Abbreviations: ¢ = ¢ and ¢ < ¢ are defined as usual; &y is "E-y;
OFfy is Op A @-0¢. Let L be a modal operator. A formula is L-free if it does
not contain I (neither as a modal operator nor as a concept formation operator)
and L-basic if it is subjective and contains no other modality than L.

Relative to the universal set U of all interpretations over A that satisfy T,
a model is a pair (U,V) such that V C U C U. The @ modality quantifies
over models by means of a binary relation >. Let M = (U,V). M' > M if
M' = (U',U) for some U' D U; in which case we say that M’ is larger than
M. Truth conditions are given relative to an interpretation Z, which needs not
be in V. Atomic formulae and connectives are interpreted as one would expect,
e.g., M £z C(a) iff a € CMT, M =7z T and M #7 F. The modal operators
are interpreted as follows:

— Mz Byift M =7 ¢ for each J € U;

-~ Mz Apiff M |7 ¢ for each J € V;
- M E7zBypiff 7 €U for each J € U such that M =7 ¢;



— M 7 Opiff (M |7 ¢ if and only if 7 € U) for each J € U;?
- M 1 @yp iff M' =1 ¢ for every M' > M.

We write M = ¢ if M =7 ¢ for each T € U. Relative to a model M, |[|p||™
denotes the truth set of ¢ in M, i.e. {Z € U | M |=7 ¢}. Note that if ¢ is
objective, ||¢||™ is given independently of M, as it only depends on the points
in . For any objective ¢:

= U= ¢l iff (U V) |= Ogp; = UC ol iff (U V) |= By
-VC H‘PH iff (U,V) ‘: Agp. - UD ||<p|| iff (U, V) |: By;

Also note that in the clauses that define truth for the modal operators, the
interpretation Z plays no active role in the definition. When ¢ is subjective, it
is immediate that M |=7 ¢ iff M = ¢, i.e. we can safely skip the reference to
T. This is also the reason why the following observation holds.

Lemma 1. For any subjective concept M,
either M |= M(a) & T(a) or M = M(a) & L(a).

It is also the case that M = ¢ or M = —p, for any subjective formula . A
formula ¢ is strongly valid, written = ¢, it M |= ¢ for every model M. There
is also a weaker notion of validity, which is the notion of validity that we are
primarily interested in. It is defined relative to the set of weak models: (U, V) is
a weak model if U = V. ¢ is valid, written |= ¢, if M |= ¢ for every weak model
M. Clearly, strong validity implies validity, but not conversely.

Lemma 2. E By = Ay and E Ay = By.

Proof. Follows from the conditions V' C U (for arbitrary models) and V = U
(for weak models). O

We are interested in models M of OF¢p, thus we want M to satisfy O¢ but
not &0, i.e. no larger model than M should also satisfy O¢. The figure below
illustrates the truth conditions relative to My > M, where My = (U1, V1) for
an objective ¢ and an arbitrary Vi C Uy C |||, and My = (Us, V2) = (J|¢ll, Ur).
Examining M;, we see
that Uy C |||, thus
By does not hold in M,

hence neither does Ogp. Uz = [l llll
MQ, and since My > - U,

M1, &0y is true in M.
Examining Ms, we see
that Uz = [lpfl, thus Op A, |2 Op A -00yp M = =0p A 60y
is true. But as there is no

M > M, that makes Oy true, Q¢ is not true. Hence O holds in Ms.

’
|
|
,
|
Oy is, however, true in | |~~~ "~~~ }
|
|
|
L

2 We could have defined O in terms of B and B (syntactically), as M |z Ogp <
(By A Byp) but because of its special role in the rewrite system, this is not done.



The idea underlying the next lemma can be illustrated with the help of the
model M;: Any model of $O¢p must have the shape of M1, in which there must
be a point Z ¢ U; at which ¢ is true. Note that By and =By are both true
in M. Conversely, any model of By A =By must also have the shape of My,
satisfying ©O¢.

Lemma 3. = 60y < (B A —By) if ¢ is objective.

For formulae in the A-free fragment of the language, the two notions of validity
coincide. Tt is easy to see that in this case the weak models of OF¢ are exactly
the models (U, U) with the largest belief state U that satisfy Og.

Let [-] denote the function that replaces A with B, and (for the service of the
rewrite rules) puts the resulting formula on negation normal form, i.e. [Ap] =

Ble], [-A¢] = =By, [-=¢] = [¢], [(¢ A¥)] = [~¢] V [7¢], and so forth.

Lemma 4. = ¢p = [¢] if ¢ is A-basic.

Proof. Let M = (U,V). If M | ¢&p, then M’ | ¢ for some M' > M. By
definition, M’ = (W, U) for some W D U. Since ¢ is A-basic, it is interpreted
in M' only relative to U. But if we substitute B for all occurrences of A in ¢,
the resulting formula [¢] is B-basic and is hence interpreted in M relative to U
in exactly the same way as ¢ is interpreted in M’. Hence M = [¢]. O

We employ the convention that when a finite set of formulae X occurs in place
of a formula, this is to be read as the conjunction of its elements, i.e. AX; for
X = { this amounts to T. Hence we will refer to a conjunction of objective
assertions as an ABox. Next we show under which conditions OA, for some
ABox A, implies a prime modal atom or its negation. As we will see, this gives
us the side conditions for the collapse rules in the rewrite system.

Lemma 5. Let C and R be objective.

1. EOA=BC(a) if T, Al C(a);

2. EOA=—(BC(a)) if T, Al C(a).

Proof. Let M = (U,V) be a model such that M = OA. Then U = ||A]]. 1.
Assume that T, A IF C(a). Then Z It C(a) for every 7T s.t. T = T and T | A.
Hence U C ||C(a)]|. It follows that M = BC(a). 2. Assume that 7, A If C(a).
Then Z I+ —=C(a) for some 7 s.t. T = T and Z |= A, hence there is some
interpretation J € U N ||=C(a)||. Hence M = =(BC(a)). O

Corollary 1. Let C and R be objective.

1. EOA= AC(a) if T, AlF Cla);
2. = OA = —~(AC(a)) if T, A Cla)

Proof. By Lemmata 2 and 5. O
Lemma 6. Let A and A' be ABozes.

1. E0A=BA if T,A' IF A
2. E0A=-BA if T,Al} A"



3 The Rewrite System

Generalizing the rewrite system for the underlying propositional language in
[20], the system in Fig. 1 consists of two rewrite relations on formulae. The
rules of the — relation are based on strong equivalences, whereas the - relation
extends — with rules whose underlying equivalences are merely weak. We say
that ¢ reduces to ¢ if ¢ — 1), where — is the reflexive transitive closure of —.
Reduction can be performed on any subformula. A formula ¢ is on normal form
wrt. — if there is no formula 4 such that ¢ — 1. The same notation is used for
the 5 relation. Reduction is performed modulo commutativity and associativity
of A and V, and ¢ is identified with ¢ A T and ¢ V F; this implies that T and
F behave as empty conjunction and disjunction resp. We define — to be the set
of rules I - r in Fig. 1, while 5 is the union of — and the set of rules | 5 r.
Applying the - relation exhaustively before the - is applied guarantees a correct
rewrite process.

For formulae v and p, (v/u) is a substitution function: ¢(v/u) denotes the
result of substituting every occurrence of v in ¢ with u. Substitution is performed
strictly on the formula level for the reason that assertions do not consist of
subassertions in the sense that formulae consist of subformulae. A substitution
of a value for an assertion C'(a) will not apply to, e.g., the assertion C' Ll D(a)
but will apply to the equivalent formula C'(a) V D(a). The substitution function
(M (a)/V (a)) for a prime modal atom M (a) and V € {T, L} is a binding, which
binds M (a) to V(a).

The expand rule works by binding prime modal atoms in Oy, assuming no
subformula of ¢ is of the form B or At for an objective formula . A formula
with this property is objective if no prime modal atoms occur in it. Observe
that the prime modal atom BC(a) has this property, whereas B(C(a)) do not.
Bindings might break this property, e.g., B(BC(a))(BC(a)/T(a)) = B(T(a)).
For this reason we have the M, rules which regain the property, should it be lost
in the course of a binding operation, i.e. after the expand rule has been applied:
B(T(a)) » (BT)(a). When there are no prime modal atoms left in O¢, one may
apply the collapse rules to reduce (or collapse) Op A M (a) to either O¢p or F.

The last two rules of C; are strictly in 5. These do not preserve strong
equivalence and are hence not sound in all contexts. Applying the — relation
exhaustively to a formula OF ¢ results in formulae of a form which reflects that
the last two rules of Cy have not been applied. To characterize this we say that a
formula is semi-normal if it is of the form OAA & for an ABox A and a possibly
empty set @ of formulae of the form AC(a) and —=(AC(a)) with C' objective and
T, Alf =C(a).

Lemma 7. For each semi-normal OAN @,

1. OA N @ is on normal form wrt. —;
2. either OAND 5 OA or OAND 5 F.

The primary function of the system is to reduce formulae of the form Oy and
OF for a conjunction of assertions ¢, into a disjunction where each disjunct is



Rules for reducing O
The expand rule:

Oy = (0p(M(a)/T(a)) A M(a)) V (Op(M(a)/L(a)) A =(M(a)))

M
(M) for any prime modal atom M (a) occurring in ¢

The domination and distribution rules:

(Ms) (V) A= (e AY)V (AY)
The assertional rules:
~(C(a)) = (=C)(a)
(M) B(C(a)) - (BO)(a) C(a) A D(a) » (CM D)(a

For ¢p = BC(a) and ¢4 = AC(a):

OANA¢p - OA if T, AlF Cla) OAAN¢p = F if T, AI¥ Cla)
) OAAN—¢5 »F T, AIFCla) OAA-¢p - OA if T, Al Cla)
Y 0AANGA > OAif T, AlF Cla) OAANGs >F i T, Al Cla)

OAAN-¢s—»F T, AIFC@) OAA-¢s>OAif T, Al¥ Cla)

For an ABox A’:
OAABA - OA i T, A IF A OAABA - F T, AIFA

C

() OAA-BA' - F ifT,AFA OAAN-BA - OA if T, A} A'
Rules for reducing OF and @

(Ry) 0fp - 0p AE-0y

(R>) E=(p VYY) > Bop A~

(R3) -F->T

(Ra4) E-(0AA®) - -BAV BAV [~9)] for semi-normal OA A &

If @ in rule R4 is empty, we get
(R}) mE-0A - -BAVBA

Fig. 1: The rules. A is an ABox, C and D objective concepts, and R an objective
role. The rules in Cy are called collapse rules. Ry is not a proper rule, as the left
hand side is an abbreviation of the right. We include it for readability reasons.



of the form Oz for some objective ). When ¢ is the formula representation of
a knowledge base, each disjunct represents a Reiter extension of ¢ (when OF
is used) or an autoepistemic extension (when O is used). To achieve this, the
rewrite system needs rules for reducing formulae prefixed with O and @—, and
whatever they are reduced to.

Note that an objective formula may or may not be an assertion. C'(a) V
—=(C'(a) is, for instance, not an assertion, but can be transformed to an equivalent
assertion if we “push the a outward” and change V to L. Below we address the
reverse operation of “pushing the a inward.” We do this to get prime modal
atoms as subformulae, so that the expand rule may be applied. This operation,
[-], is defined as follows. For role assertions, [R(a,b)] = R(a,b), and for concept
assertions, [C(a)] = C(a) for C' € {T,_L} or atomic, and

LC(a) if C is objective

N for L € {=,B,A};
L[C(a)] otherwise o = !

[LC(a)] = {
C x D(a) if C x D is objective

[C(a)] * [D(a)] otherwise for x € {r, 1},

[C  D(@)] = {

where 1= A and (1 = v, and I, = L for L. € {-, B, A}. Inclusions are instanti-
ated and translated into formulae as follows: For an individual a, [C C D], =

[C(a)] = [D(a)]-

Ezample 1. Let us address the default C': T / C, which is represented as BC' C
C. Let ¢ = [BC C C], = BC(a) = C(a). To reduce Oy, we first apply the
expand rule and then rules from the C; group. The same reductions also apply
in a boxed context. As the formula is A-free, the 5 relation will not be needed.

O(-BC(a) V C(a)) - (OC(a) ABC(a)) V (OT(a) A=BC(a)) (M)

- 0OC(a)V OT(a) (Ch)
0-0(-BC(a) V C(a)) - @—-(0C(a) V OT(a))
- @-0C(a) A @-0T(a) (R2)

— (-BC(a) VBC(a)) A (-BT(a) VBT(a)) (Ry)
Having reduced Oy and @-0¢, we reduce O .

0%y - 0p AE-0y
— (0C(a) VOT(a)) A (-BC(a) VBC(a)) A (
- (0C(a) A (-BC(a) VBC(a)) A (=BT (a) VBT(a))) V
(OT(a) A (-BC(a) vV BC(a)) A (=BT (a) v ) (Ms)
Distributing conjunctions over disjunctions, using M3, we obtain a formula on

DNF, which reduces to OT (a). This corresponds to the unique Reiter extension.
O



4 The Modal Reduction Theorem

The Modal Reduction Theorem for ORALC states that whenever a formula OF ¢
encodes a knowledge base, it is logically equivalent to a disjunction, where each
disjunct is of the form OA for some ABox A. In fact, each of these disjuncts has
an essentially unique weak model. It is hence possible, within the logic itself, to
decompose a formula OFy into a form which directly exhibits its models.

We translate an entire knowledge base X = (7,4, D) into a formula as fol-
lows: [X]; = AA[D],, where [D]; = {[C CE D], |a€ J & C C D € D} for
some non-empty set of individuals J C A. Observe that the TBox T seemingly
disappears. It does, however, reappear in the side conditions of the collapse rules.

The Modal Reduction Theorem. For each ¥ = (T, A, D), there are ABoxes
A1, ..., An for somen >0, such that A C Ay, for 1 <k < n, and

E Of[Y]o, & (0A V---VOA,).
Proof. By completeness (Theorem 1) and soundness (Theorems 2 and 3). O

We define the extensions® of X to be exactly the ABoxes Ai,..., A, in The
Modal Reduction Theorem. Hence the notion of extension makes no appeal to
the formula language, only the concept language.

The rewrite system is just strong enough for establishing the Modal Re-
duction Theorem: Tt is sound and complete for reductions of Of-formulae into
disjunctions of the appropriate type. It is, however, not complete for the logic
of OF itself. From the point of view of computing default extensions this is
enough, because only a subset of the logic of OF is actually needed for the
Modal Reduction Theorem.

Ezample 2. The ALC-default Employee : ~Manager / Engineer LI Mathematician
(adapted from [9]) is represented as BEmployee M —AManager C (Engineer U
Mathematician). Let D consist of this inclusion, and let J = {Bob}:

O (AN[D],)
= O (A A [BEmployee M —AManager C Eng LI Mat] ,s)
= O (A A ([BEmployee M —~AManager(Bob)] = [Eng LI Mat(Bob)])
= OF(A A ([BEmployee(Bob)] A [~AManager(Bob)] = [Eng U Mat(Bob)])
= OF(A A (BEmployee(Bob) A ~AManager(Bob) = Eng LI Mat(Bob)))
This formula can be reduced to a simpler form, depending on the ABox A and
the TBox. Let 7 = {Manager C Employee}, and let ¢y = BEmployee(Bob),

¢2 = AManager(Bob) and v = Engineer LI Mathematician(Bob). For any A such
that A IF Employee(Bob), OAA ¢1 » OA and OAA —¢; —» F, hence

O(AN (1 A=¢2 = 7)) = (OANG1 Ad2) V(O(AAY) A1 A=) V

% Extensions are here taken in the sense of default logic, i.e. Reiter extensions; au-
toepistemic extensions (stable expansions) can be defined from the Modal Reduction
Theorem for O in the same way.



(OAN=p1 A gp2) V(OANA=p1 A )
— (OANA ¢2) V(O(AAY) A =g2).

For the ABox A; = {Employee(Bob)}, the reduct is on normal form wrt. - but
not, for the ABox A, = {Manager(Bob)}:

(0./41 A ¢2) \Y (O(.Al A ’}/) A —|¢)2) 5 O(.Al /\’)/)
(OA2 A d2) V (O(A2 Ay) A =ga) = OA

In the former case, Bob is an engineer or a mathematician, in the latter Bob is
only a manager. Reducing OF(A A [D] ;) produces the same extensions. O

4.1 Soundness and Completeness

Lemma 8. For each X = (T, A, D), there is a set [T = {O(ANA) APy }i<kgn
of semi-normal formulae for some n > 0 such that for some set Iy C I

(a) O[X]; — \/Ti and (b) OF[Z]; - \/ 1.

Theorem 1 (Completeness). For each ¥ = (T, A, D), for some n > 0, there
are ABoxes Ay, ..., A, such that for some set I' of semi-normal formulae,

O [X]o, = \/T > (O(AAA) V---VO(ANA Ay)).
Proof. By Lemmata 7 and 8. O

Lemma 9. If M =7 (v & p) and v does not occur within the scope of @ in ¢,
then M =1 (¢ & o(v/p)).

The previous result state the condition under which substitution of equivalents
is valid. For substitution within the context of @ we need the stronger notion of
validity. From the point of view of formula rewriting, the significance of strong
validity is that it is required for general substitution of equivalents.

Lemma 10. E (¢ & o(v/w) if E (v & u).
Theorem 2 (Soundness of —). If ¢ — ¢ then E p & .

Proof. By Lemma 10, it is sufficient to show that = [ < r for each rule [ - r, in
which case we say that the rule is strongly valid. Rule R; is trivial. Ry follows
from the fact that = (e A ¢) & (B¢ A 1Y) and De Morgan’s law, while R
follows from the fact that = @T. My and M3 are propositionally valid, M, is
left to the reader. C; follows from Lemma 5 and Corollary 1, while Cy follows
from Lemma 6. The two remaining cases are treated in detail.

R4 : We show that = B-(0p A &) & ((Bp A -By) = [~4]) for any semi-
normal Op A . By Lemma 3, = ¢0¢ < (By A =By), hence by Lemma 10,
we have to show that E @—(Op A &) & (60¢p = [-9]). (=) Assume that
M E 8(0¢ = =¢) and M |= ©0¢. Then M E &(Op A =P), thus M |= &,



hence M = [-®] by Lemma 4. (<) We show that M = (@-0¢ V [-9]) =
H-(0p A @) for every M. Now there are two cases. If M = @-O¢p, then
M= E-(0p A®). If M |= [~@], then M |= —[P], thus M |= @~P by Lemma
4, thus M |= @—-(0O¢p A D).

M; : We show that = Op & (Op(M(a)/T(a))AM(a))V (Op(M(a)/L(a))A
—(M(a))) for any prime modal atom M (a). Let M be an arbitrary model.
Then either M |= (M(a) & T(a)) or M = (M(a) & L(a)) by Lemma 1. By
Lemma 9, as ¢ is [-free, either M |= Op < Op(M(a)/T(a)) or M = Op &
Op(M (a)/L(a)), resp. In either case M satisfies either (M (a) < T(a))A(Op <
Op(M(a)/T(a))) or (M(a) & L(a)) A (Op & Op(M(a)/L(a))), from which
the equivalence follows. O

Theorem 3 (Soundness of ). For any disjunction ¢ of semi-normal formu-
lae, if @ = 1) then |= @ & .

Proof. As semi-normal formulae do not contain [, by Lemma 9, it is sufficient
to show that =1 < r for each rule | > r, in which case we say that the rule is
valid. That the rules of - are valid is obvious, given that they are strongly valid.
The remaining rules are in the C; group; validity follows from Corollary 1. O

4.2 Complexity

The extension problem is determining whether a KB has an extension. A re-
deeming feature of OFALC is that the extension problem is not harder than the
ALC problem of instance checking.

Theorem 4. The extension problem of OFALC is PSPACE-complete.

Proof (Sketch). The translation from X to [X]o, can be done in polynomial
time: |O4| x |D|. The corresponding extension problem when the underlying
logic is propositional is in X? = NPN as it can be solved nondeterministically
with a polynomial number of calls to a propositional SAT oracle [33]. The main
difference here is that instead of a SAT oracle, we need an oracle that can
do instance checks in ALC, which is PSPACE-complete [1]. Thus the extension
problem is in NPP5"A%" which is equal to PSPACE [25]. |

5 Future Work

The underlying concept language does not have to be ALC. Other concept lan-
guages with lower complexity like DL-Lite [4] might prove more useful in an
actual implementation.

An natural extension is to introduce a partial order (I, %), intuitively repre-
senting confidence levels, and for each index k € I, adding modal operators By,
Ay, By, Oy, and &, to the signature of the logic, in order to represent ordered
default theories. Another extension would be allowing subjectively quantified ex-
pressions, i.e. concepts of the form VXR.YC and IXR.YC for X,Y € {B, A},
like [9] does.
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