
An Only Knowing Approa
h to DefeasibleDes
ription Logi
s (extended abstra
t)Espen H. Lian and Arild WaalerDepartment of Informati
sUniversity of Oslo, Norway,{elian,arild}�ifi.uio.no1 Introdu
tionWe propose the only-knowing logi
 ORALC, based on the des
ription logi
 ALC.Only-knowing logi
s were originally designed as modal logi
s over a 
lassi
al 
on-sequen
e relation for the representation of autoepistemi
 reasoning [17, 18℄ anddefault logi
 [15℄. Only-knowing logi
s are worth 
onsidering for several reasons:They are monotoni
 logi
s with a 
lear separation between obje
t level andmeta level 
on
epts, and they allow faithful and modular en
odings of autoepis-temi
 and default theories whi
h do not in
rease the size of the representations.The en
odings thus provide autoepistemi
 and default logi
s with formal seman-ti
s and 
on
eptual 
larity. Besides being 
ompletely axiomatized, propositionalonly-knowing logi
s support en
odings of propositional autoepistemi
 and de-fault logi
s with ni
e 
omputational properties.{ There is a simple rewrite pro
edure that determines extensions. Some ofthe rewrite rules are pre
onditioned by SAT tests, and these are the onlyreferen
e to meta-logi
al 
on
epts in the pro
edure.{ The extension problem for propositional only-knowing logi
s have the same
omplexity as for propositional autoepistemi
 and default logi
s.To our knowledge, no extension of only-knowing logi
s to des
ription logi
s haveyet been given. In this paper we take the des
ription logi
 ALC as the under-lying logi
 instead of 
lassi
al propositional logi
 and generalize the ma
hineryoriginally designed for propositional logi
s of only-knowing. The strength of theproposed only-knowing logi
 is the simple rewrite pro
edure that it admits for
omputing extensions, and the fa
t that reasoning is not harder than in ALC.The logi
 ORALC proposed in this paper subsumes the propositional logi
 thatwe proposed in [20℄ and extends that work in a non-trivial way.The logi
 ALCKNF introdu
ed by Donini, Nardi and Rosati [9℄ is 
loselyrelated to ORALC. It is 
onstru
ted by 
ombining MKNF with ALC. It is notobvious how this should be done, and in our adaptation of only-knowing logi
to ALC, we have been guided by ALCKNF . Unlike [9℄, we do not treat so-
alledsubje
tively quanti�ed expressions in this paper but the logi
 we present is strongenough to represent, e.g., default theories for ALC.In [9℄, a tableau pro
edure for ALCKNF is introdu
ed. Although the pro
e-dure has been simpli�ed [13℄, the pro
edure does not seem to be well suited for




omputation of extensions of default theories. In this 
ase one will, it seems, haveto guess extensions and then use the proof pro
edure to 
he
k whether or notthe guess was 
orre
t. In 
ontrast, the pro
edure that we propose determines allextensions dire
tly. Unlike the proof system for ALCKNF , we formalize inferen
esteps that are suÆ
ient for determining extensions but not for 
hara
terizing thewhole semanti
s.2 ORALCThe language of ORALC is de�ned in two steps: �rst a 
on
ept language, thena modal formula language.Con
ept Language. The basis for the 
on
ept language is ALC [1, 29℄:C;D �! > j ? j Cat j :C j C uD j C tD j 9Rat:C j 8Rat:Cwhere Cat is an atomi
 
on
ept andRat an atomi
 role. We will 
allALC 
on
eptsobje
tive 
on
epts. The 
on
ept language for ORALC extends obje
tive 
on
eptswith modal 
on
ept formation operators1 B (belief) and A (assumption):C;D �! CALC j :C j C uD j C tD j BC j ACwhere CALC is an obje
tive 
on
ept. A modal 
on
ept is of the form BC or AC;if C is obje
tive, the modal 
on
ept is prime. A 
on
ept is subje
tive if everyobje
tive sub
on
ept is within the s
ope of a modal 
on
ept formation operator.An interpretation I = (�; �I) over � 
onsists of a non-empty domain �and an interpretation fun
tion �I mapping atomi
 
on
epts and roles to subsetsof � and � � � resp. Following [9℄ we assume that the domain 
ontains allindividuals in the language, and that aI = a for ea
h individual a. Con
eptdes
riptions are interpreted relative to a pairM = (U; V ) and an interpretationI; we require that U and V are interpretations over � and that V � U , but wedo not require that I 2 U . ALC 
on
epts evaluate relative to an I as usual, e.g.,(:C)M;I = � n CM;I , while modal 
on
epts are interpreted as follows:(BC)M;I =\J2UCM;J (AC)M;I =\J2V CM;JAn ABox A is a �nite set of obje
tive membership assertions, i.e. 
on
ept asser-tions C(a) and role assertions R(a; b) for individuals a and b. OA is the set ofindividuals expli
itly mentioned in A. A modal atom is an assertion of the formM(a), where M is a modal 
on
ept; M(a) is prime if M is prime. M satis�esC(a) in I if a 2 CM;I ; M satis�es R(a; b) in I if (a; b) 2 RM;I . As we willsee, modal atoms play an essential role in the rewrite system. A DBox is a �niteset of terminologi
al axioms, i.e. in
lusions C v D for 
on
epts C and D, while1 In the literature, K is sometimes used instead of B, and :M: instead of A. Forintuition about the modalities, 
onsult the literature about MKNF [9, 22, 23℄ andonly-knowing [15, 20℄.



a TBox is an obje
tive DBox. M satis�es C v D in I if CM;I � DM;I . Wede�ne a knowledge base (KB) as a tuple (T ;A;D), where T is a TBox, A anABox, and D is a DBox. The DBox will typi
ally (but not ne
essarily) 
ontainrepresentation of default rules. We assume standard notions and notations fordefault theories. Let �, �k for 1 6 k 6 n and 
 be ALC-
on
epts. Below is anALC-default and its representation (following Konolige [14℄; note that [9℄ has aB in front of 
) as an in
lusion statement:� : �1; : : : ; �n = 
 ; B� u :A:�1 u � � � u :A:�n v 
B� denotes that � is believed, while :A:� denotes that � is 
onsidered possible,or that � is 
onsistent with ones beliefs. B is stronger than A in the sense thatevery M satis�es BC v AC in every interpretation I.Interpretation of an obje
tive 
on
ept is independent of M, hen
e we maywrite CI for CM;I and say that I satis�es C(a), written I 
 C(a), if a 2 CI ;similarly for roles, role assertions and in
lusion statements. Hen
e we may writeI 
 A and I 
 T if every element in the respe
tive ABox and TBox is satis�edby I. We also write I 
 (T ;A) if I 
 T and I 
 A. For an obje
tive assertion �,we write T ;A 
 � if I 
 � for every I su
h that I 
 (T ;A). Similarly, T ;A 
 A0if I 
 A0 for every I su
h that I 
 (T ;A).Formula Language. Formulae are de�ned as follows. Con
ept and role assertions,T and F are atomi
 formulae. :', ' ^  and ' _  are formulae if ' and  are.B, A, �B and O are modal operators. B and A 
orrespond to their 
on
eptformation operator 
ounterparts, O is an \only knowing"-operator [17, 33, 20℄,while �B is a \knowing at most"-operator, 
orresponding to C: of [20℄. L' is aformula if L is a modal operator and ' is a formula without any o

urren
e of�. �' is a formula if ' is a subje
tive formula, i.e. every atomi
 formula thato

urs as a subformula in ' is either a subje
tive assertion or within the s
opeof a modal operator. Note in parti
ular that if C is an obje
tive 
on
ept, BC(a)is a modal atom, and hen
e an atomi
 formula, while B(C(a)) is not an atomi
formula. Abbreviations: ' )  and ' ,  are de�ned as usual; �3' is :�:';OR' is O' ^�:O'. Let L be a modal operator. A formula is L-free if it doesnot 
ontain L (neither as a modal operator nor as a 
on
ept formation operator)and L-basi
 if it is subje
tive and 
ontains no other modality than L.Relative to the universal set U of all interpretations over � that satisfy T ,a model is a pair (U; V ) su
h that V � U � U . The � modality quanti�esover models by means of a binary relation >. Let M = (U; V ). M0 > M ifM0 = (U 0; U) for some U 0 � U ; in whi
h 
ase we say that M0 is larger thanM. Truth 
onditions are given relative to an interpretation I, whi
h needs notbe in V . Atomi
 formulae and 
onne
tives are interpreted as one would expe
t,e.g., M j=I C(a) i� a 2 CM;I , M j=I T and M 6j=I F. The modal operatorsare interpreted as follows:{ M j=I B' i� M j=J ' for ea
h J 2 U ;{ M j=I A' i� M j=J ' for ea
h J 2 V ;{ M j=I �B' i� J 2 U for ea
h J 2 U su
h that M j=J ';



{ M j=I O' i� (M j=J ' if and only if J 2 U) for ea
h J 2 U ;2{ M j=I �' i� M0 j=I ' for every M0 >M.We write M j= ' if M j=I ' for ea
h I 2 U . Relative to a model M, k'kMdenotes the truth set of ' in M, i.e. fI 2 U j M j=I 'g. Note that if ' isobje
tive, k'kM is given independently of M, as it only depends on the pointsin U . For any obje
tive ':{ U = k'k i� (U; V ) j= O';{ V � k'k i� (U; V ) j= A'. { U � k'k i� (U; V ) j= B';{ U � k'k i� (U; V ) j= �B';Also note that in the 
lauses that de�ne truth for the modal operators, theinterpretation I plays no a
tive role in the de�nition. When ' is subje
tive, itis immediate that M j=I ' i� M j= ', i.e. we 
an safely skip the referen
e toI. This is also the reason why the following observation holds.Lemma 1. For any subje
tive 
on
ept M ,either M j= M(a), >(a) or M j= M(a), ?(a).It is also the 
ase that M j= ' or M j= :', for any subje
tive formula '. Aformula ' is strongly valid, written j� ', if M j= ' for every model M. Thereis also a weaker notion of validity, whi
h is the notion of validity that we areprimarily interested in. It is de�ned relative to the set of weak models : (U; V ) isa weak model if U = V . ' is valid, written j= ', ifM j= ' for every weak modelM. Clearly, strong validity implies validity, but not 
onversely.Lemma 2. j� B') A' and j= A') B'.Proof. Follows from the 
onditions V � U (for arbitrary models) and V = U(for weak models). utWe are interested in models M of OR', thus we want M to satisfy O' butnot �3O', i.e. no larger model than M should also satisfy O'. The �gure belowillustrates the truth 
onditions relative to M2 >M1, where M1 = (U1; V1) foran obje
tive ' and an arbitrary V1 � U1 � k'k, andM2 = (U2; V2) = (k'k; U1).
M2 j= O' ^ : �3O'V2U2 = k'k

M1 j= :O' ^ �3O'U1k'k�=Examining M1, we seethat U1 � k'k, thus�B' does not hold in M1,hen
e neither does O'.O' is, however, true inM2, and sin
e M2 >M1, �3O' is true in M1.Examining M2, we seethat U2 = k'k, thus O'is true. But as there is noM >M2 that makes O' true, �3O' is not true. Hen
e OR' holds in M2.2 We 
ould have de�ned O in terms of B and �B (synta
ti
ally), as M j=I O' ,(B' ^ �B') but be
ause of its spe
ial role in the rewrite system, this is not done.



The idea underlying the next lemma 
an be illustrated with the help of themodelM1: Any model of �3O' must have the shape ofM1, in whi
h there mustbe a point I 62 U1 at whi
h ' is true. Note that B' and : �B' are both truein M1. Conversely, any model of B' ^ : �B' must also have the shape of M1,satisfying �3O'.Lemma 3. j� �3O', (B' ^ : �B') if ' is obje
tive.For formulae in the A-free fragment of the language, the two notions of validity
oin
ide. It is easy to see that in this 
ase the weak models of OR' are exa
tlythe models (U;U) with the largest belief state U that satisfy O'.Let [�℄ denote the fun
tion that repla
esA with B, and (for the servi
e of therewrite rules) puts the resulting formula on negation normal form, i.e. [A'℄ =B['℄, [:A'℄ = :B['℄, [::'℄ = ['℄, [:(' ^  )℄ = [:'℄ _ [: ℄, and so forth.Lemma 4. j� �3') ['℄ if ' is A-basi
.Proof. Let M = (U; V ). If M j= �3', then M0 j= ' for some M0 > M. Byde�nition, M0 = (W;U) for some W � U . Sin
e ' is A-basi
, it is interpretedin M0 only relative to U . But if we substitute B for all o

urren
es of A in ',the resulting formula ['℄ is B-basi
 and is hen
e interpreted in M relative to Uin exa
tly the same way as ' is interpreted in M0. Hen
e M j= ['℄. utWe employ the 
onvention that when a �nite set of formulae X o

urs in pla
eof a formula, this is to be read as the 
onjun
tion of its elements, i.e. VX ; forX = ; this amounts to T. Hen
e we will refer to a 
onjun
tion of obje
tiveassertions as an ABox. Next we show under whi
h 
onditions OA, for someABox A, implies a prime modal atom or its negation. As we will see, this givesus the side 
onditions for the 
ollapse rules in the rewrite system.Lemma 5. Let C and R be obje
tive.1. j� OA ) BC(a) if T ;A 
 C(a);2. j� OA ) :(BC(a)) if T ;A 6
 C(a).Proof. Let M = (U; V ) be a model su
h that M j= OA. Then U = kAk. 1.Assume that T ;A 
 C(a). Then I 
 C(a) for every I s.t. I j= T and I j= A.Hen
e U � kC(a)k. It follows that M j= BC(a). 2. Assume that T ;A 6
 C(a).Then I 
 :C(a) for some I s.t. I j= T and I j= A, hen
e there is someinterpretation J 2 U \ k:C(a)k. Hen
e M j= :(BC(a)). utCorollary 1. Let C and R be obje
tive.1. j� OA ) AC(a) if T ;A 
 C(a);2. j= OA ) :(AC(a)) if T ;A 6
 C(a)Proof. By Lemmata 2 and 5. utLemma 6. Let A and A0 be ABoxes.1. j� OA ) �BA0 if T ;A0 
 A.2. j� OA ) :BA0 if T ;A 6
 A0.



3 The Rewrite SystemGeneralizing the rewrite system for the underlying propositional language in[20℄, the system in Fig. 1 
onsists of two rewrite relations on formulae. Therules of the � relation are based on strong equivalen
es, whereas the �̂ relationextends � with rules whose underlying equivalen
es are merely weak. We saythat ' redu
es to  if ' �  , where � is the re
exive transitive 
losure of �.Redu
tion 
an be performed on any subformula. A formula ' is on normal formwrt. � if there is no formula  su
h that ' �  . The same notation is used forthe �̂ relation. Redu
tion is performed modulo 
ommutativity and asso
iativityof ^ and _, and ' is identi�ed with ' ^ T and ' _ F; this implies that T andF behave as empty 
onjun
tion and disjun
tion resp. We de�ne � to be the setof rules l � r in Fig. 1, while �̂ is the union of � and the set of rules l �̂ r.Applying the � relation exhaustively before the �̂ is applied guarantees a 
orre
trewrite pro
ess.For formulae � and �, h�=�i is a substitution fun
tion: 'h�=�i denotes theresult of substituting every o

urren
e of � in ' with �. Substitution is performedstri
tly on the formula level for the reason that assertions do not 
onsist ofsubassertions in the sense that formulae 
onsist of subformulae. A substitutionof a value for an assertion C(a) will not apply to, e.g., the assertion C t D(a)but will apply to the equivalent formula C(a)_D(a). The substitution fun
tionhM(a)=V (a)i for a prime modal atom M(a) and V 2 f>;?g is a binding, whi
hbinds M(a) to V (a).The expand rule works by binding prime modal atoms in O', assuming nosubformula of ' is of the form B or A for an obje
tive formula  . A formulawith this property is obje
tive if no prime modal atoms o

ur in it. Observethat the prime modal atom BC(a) has this property, whereas B(C(a)) do not.Bindings might break this property, e.g., B(BC(a))hBC(a)=>(a)i = B(>(a)).For this reason we have theM4 rules whi
h regain the property, should it be lostin the 
ourse of a binding operation, i.e. after the expand rule has been applied:B(>(a)) � (B>)(a). When there are no prime modal atoms left in O', one mayapply the 
ollapse rules to redu
e (or 
ollapse) O' ^M(a) to either O' or F.The last two rules of C1 are stri
tly in �̂. These do not preserve strongequivalen
e and are hen
e not sound in all 
ontexts. Applying the � relationexhaustively to a formula OR' results in formulae of a form whi
h re
e
ts thatthe last two rules of C1 have not been applied. To 
hara
terize this we say that aformula is semi-normal if it is of the form OA^� for an ABox A and a possiblyempty set � of formulae of the form AC(a) and :(AC(a)) with C obje
tive andT ;A 6
 :C(a).Lemma 7. For ea
h semi-normal OA^ �,1. OA ^ � is on normal form wrt. �;2. either OA^ � �̂ OA or OA ^ � �̂ F.The primary fun
tion of the system is to redu
e formulae of the form O' andOR' for a 
onjun
tion of assertions ', into a disjun
tion where ea
h disjun
t is



Rules for redu
ing OThe expand rule:(M1) O' � (O'hM(a)=>(a)i ^M(a)) _ (O'hM(a)=?(a)i ^ :(M(a)))for any prime modal atom M(a) o

urring in 'The domination and distribution rules:' ^ F � F(M2) (' _ �) ^  � (' ^  ) _ (� ^  )(M3)The assertional rules:(M4) :(C(a)) � (:C)(a)B(C(a)) � (BC)(a)A(C(a)) � (AC)(a) C(a) ^D(a) � (C uD)(a)C(a) _D(a) � (C tD)(a)For �B = BC(a) and �A = AC(a):(C1) OA^ �B � OAOA^ :�B � FOA^ �A � OAOA^ :�A � F if T ;A 
 C(a)if T ;A 
 C(a)if T ;A 
 C(a)if T ;A 
 C(a) OA^ �B � FOA ^ :�B � OAOA^ �A �̂ FOA ^ :�A �̂ OA if T ;A 6
 C(a)if T ;A 6
 C(a)if T ;A 6
 C(a)if T ;A 6
 C(a)For an ABox A0:(C2) OA ^ �BA0 � OAOA^ :BA0 � F if T ;A0 
 Aif T ;A 
 A0 OA^ �BA0 � FOA ^ :BA0 � OA if T ;A0 6
 Aif T ;A 6
 A0Rules for redu
ing OR and �OR' � O' ^�:O'(R1) �:(' _  ) � �:' ^�: (R2) �:F � T(R3) �:(OA ^ �) � :BA _ �BA _ [:�℄ for semi-normal OA ^ �(R4)If � in rule R4 is empty, we get�:OA � :BA _ �BA(R04)Fig. 1: The rules. A is an ABox, C and D obje
tive 
on
epts, and R an obje
tiverole. The rules in Ck are 
alled 
ollapse rules. R1 is not a proper rule, as the lefthand side is an abbreviation of the right. We in
lude it for readability reasons.



of the form O for some obje
tive  . When ' is the formula representation ofa knowledge base, ea
h disjun
t represents a Reiter extension of ' (when ORis used) or an autoepistemi
 extension (when O is used). To a
hieve this, therewrite system needs rules for redu
ing formulae pre�xed with O and �:, andwhatever they are redu
ed to.Note that an obje
tive formula may or may not be an assertion. C(a) _:C(a) is, for instan
e, not an assertion, but 
an be transformed to an equivalentassertion if we \push the a outward" and 
hange _ to t. Below we address thereverse operation of \pushing the a inward." We do this to get prime modalatoms as subformulae, so that the expand rule may be applied. This operation,J�K, is de�ned as follows. For role assertions, JR(a; b)K = R(a; b), and for 
on
eptassertions, JC(a)K = C(a) for C 2 f>;?g or atomi
, andJLC(a)K = (LC(a) if C is obje
tiveL̂JC(a)K otherwise for L 2 f:;B;Ag;JC ? D(a)K = (C ? D(a) if C ? D is obje
tiveJC(a)K ?̂ JD(a)K otherwise for ? 2 fu;tg;where û = ^ and t̂ = _, and L̂ = L for L 2 f:;B;Ag. In
lusions are instanti-ated and translated into formulae as follows: For an individual a, JC v DKa =JC(a)K ) JD(a)K.Example 1. Let us address the default C : > = C, whi
h is represented as BC vC. Let ' = JBC v CKa = BC(a) ) C(a). To redu
e O', we �rst apply theexpand rule and then rules from the C1 group. The same redu
tions also applyin a boxed 
ontext. As the formula is A-free, the �̂ relation will not be needed.O(:BC(a) _ C(a)) � (OC(a) ^BC(a)) _ (O>(a) ^ :BC(a)) (M1)� OC(a) _O>(a) (C1)�:O(:BC(a) _ C(a))� �:(OC(a) _O>(a))� �:OC(a) ^�:O>(a) (R2)� (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a)) (R4)Having redu
ed O' and �:O', we redu
e OR'.OR' � O' ^�:O'� (OC(a) _O>(a)) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))� (OC(a) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))) _(O>(a) ^ (:BC(a) _ �BC(a)) ^ (:B>(a) _ �B>(a))) (M3)Distributing 
onjun
tions over disjun
tions, using M3, we obtain a formula onDNF, whi
h redu
es to O>(a). This 
orresponds to the unique Reiter extension.ut



4 The Modal Redu
tion TheoremThe Modal Redu
tion Theorem forORALC states that whenever a formulaOR'en
odes a knowledge base, it is logi
ally equivalent to a disjun
tion, where ea
hdisjun
t is of the form OA for some ABox A. In fa
t, ea
h of these disjun
ts hasan essentially unique weak model. It is hen
e possible, within the logi
 itself, tode
ompose a formula OR' into a form whi
h dire
tly exhibits its models.We translate an entire knowledge base � = (T ;A;D) into a formula as fol-lows: J�KJ = A ^ JDKJ , where JDKJ = fJC v DKa j a 2 J & C v D 2 Dg forsome non-empty set of individuals J � �. Observe that the TBox T seeminglydisappears. It does, however, reappear in the side 
onditions of the 
ollapse rules.The Modal Redu
tion Theorem. For ea
h � = (T ;A;D), there are ABoxesA1; : : : ;An for some n > 0, su
h that A � Ak for 1 6 k 6 n, andj= ORJ�KOA , (OA1 _ � � � _OAn):Proof. By 
ompleteness (Theorem 1) and soundness (Theorems 2 and 3). utWe de�ne the extensions3 of � to be exa
tly the ABoxes A1; : : : ;An in TheModal Redu
tion Theorem. Hen
e the notion of extension makes no appeal tothe formula language, only the 
on
ept language.The rewrite system is just strong enough for establishing the Modal Re-du
tion Theorem: It is sound and 
omplete for redu
tions of OR-formulae intodisjun
tions of the appropriate type. It is, however, not 
omplete for the logi
of OR itself. From the point of view of 
omputing default extensions this isenough, be
ause only a subset of the logi
 of OR is a
tually needed for theModal Redu
tion Theorem.Example 2. The ALC-default Employee : :Manager = Engineer tMathemati
ian(adapted from [9℄) is represented as BEmployee u :AManager v (Engineer tMathemati
ian). Let D 
onsist of this in
lusion, and let J = fBobg:OR(A ^ JDKJ )= OR(A ^ JBEmployee u :AManager v Eng tMatKBob)= OR(A ^ (JBEmployee u :AManager(Bob)K ) JEng tMat(Bob)K)= OR(A ^ (JBEmployee(Bob)K ^ J:AManager(Bob)K ) JEng tMat(Bob)K)= OR(A ^ (BEmployee(Bob) ^ :AManager(Bob)) Eng tMat(Bob)))This formula 
an be redu
ed to a simpler form, depending on the ABox A andthe TBox. Let T = fManager v Employeeg, and let �1 = BEmployee(Bob),�2 = AManager(Bob) and 
 = Engineer tMathemati
ian(Bob). For any A su
hthat A 
 Employee(Bob), OA ^ �1 � OA and OA^ :�1 � F, hen
eO(A ^ (�1 ^ :�2 ) 
))� (OA ^ �1 ^ �2) _ (O(A ^ 
) ^ �1 ^ :�2) _3 Extensions are here taken in the sense of default logi
, i.e. Reiter extensions; au-toepistemi
 extensions (stable expansions) 
an be de�ned from the Modal Redu
tionTheorem for O in the same way.



(OA ^ :�1 ^ �2) _ (OA^ :�1 ^ :�2)� (OA ^ �2) _ (O(A ^ 
) ^ :�2):For the ABox A1 = fEmployee(Bob)g, the redu
t is on normal form wrt. � butnot for the ABox A2 = fManager(Bob)g:(OA1 ^ �2) _ (O(A1 ^ 
) ^ :�2) �̂ O(A1 ^ 
)(OA2 ^ �2) _ (O(A2 ^ 
) ^ :�2)� OA2In the former 
ase, Bob is an engineer or a mathemati
ian, in the latter Bob isonly a manager. Redu
ing OR(A ^ JDKJ ) produ
es the same extensions. ut4.1 Soundness and CompletenessLemma 8. For ea
h � = (T ;A;D), there is a set �1 = fO(A^Ak)^�kg16k6nof semi-normal formulae for some n > 0 su
h that for some set �2 � �1(a) OJ�KJ �_�1 and (b) ORJ�KJ �_�2:Theorem 1 (Completeness). For ea
h � = (T ;A;D), for some n > 0, thereare ABoxes A1; : : : ;An su
h that for some set � of semi-normal formulae,ORJ�KOA �_� �̂ (O(A ^A1) _ � � � _O(A^ An)):Proof. By Lemmata 7 and 8. utLemma 9. If M j=I (� , �) and � does not o

ur within the s
ope of � in ',then M j=I (', 'h�=�i):The previous result state the 
ondition under whi
h substitution of equivalentsis valid. For substitution within the 
ontext of � we need the stronger notion ofvalidity. From the point of view of formula rewriting, the signi�
an
e of strongvalidity is that it is required for general substitution of equivalents.Lemma 10. j� (', 'h�=�i) if j� (� , �).Theorem 2 (Soundness of �). If '�  then j� ',  .Proof. By Lemma 10, it is suÆ
ient to show that j� l , r for ea
h rule l � r, inwhi
h 
ase we say that the rule is strongly valid. Rule R1 is trivial. R2 followsfrom the fa
t that j� �(' ^  ) , (�' ^ � ) and De Morgan's law, while R3follows from the fa
t that j� �T. M2 and M3 are propositionally valid, M4 isleft to the reader. C1 follows from Lemma 5 and Corollary 1, while C2 followsfrom Lemma 6. The two remaining 
ases are treated in detail.R4 : We show that j� �:(O' ^ �) , ((B' ^ : �B') ) [:�℄) for any semi-normal O' ^ �. By Lemma 3, j� �3O' , (B' ^ : �B'), hen
e by Lemma 10,we have to show that j� �:(O' ^ �) , ( �3O' ) [:�℄). ()) Assume thatM j= �(O') :�) andM j= �3O'. ThenM j= �3(O'^:�), thusM j= �3:�,



hen
e M j= [:�℄ by Lemma 4. (() We show that M j= (�:O' _ [:�℄) )�:(O' ^ �) for every M. Now there are two 
ases. If M j= �:O', thenM j= �:(O' ^ �). If M j= [:�℄, then M j= :[�℄, thus M j= �:� by Lemma4, thus M j= �:(O' ^ �).M1 : We show that j� O', (O'hM(a)=>(a)i^M(a))_(O'hM(a)=?(a)i^:(M(a))) for any prime modal atom M(a). Let M be an arbitrary model.Then either M j= (M(a) , >(a)) or M j= (M(a) , ?(a)) by Lemma 1. ByLemma 9, as ' is �-free, either M j= O' , O'hM(a)=>(a)i or M j= O' ,O'hM(a)=?(a)i, resp. In either 
aseM satis�es either (M(a), >(a))^(O',O'hM(a)=>(a)i) or (M(a) , ?(a)) ^ (O' , O'hM(a)=?(a)i); from whi
hthe equivalen
e follows. utTheorem 3 (Soundness of �̂). For any disjun
tion ' of semi-normal formu-lae, if ' �̂  then j= ',  .Proof. As semi-normal formulae do not 
ontain �, by Lemma 9, it is suÆ
ientto show that j= l , r for ea
h rule l �̂ r, in whi
h 
ase we say that the rule isvalid. That the rules of � are valid is obvious, given that they are strongly valid.The remaining rules are in the C1 group; validity follows from Corollary 1. ut4.2 ComplexityThe extension problem is determining whether a KB has an extension. A re-deeming feature of ORALC is that the extension problem is not harder than theALC problem of instan
e 
he
king.Theorem 4. The extension problem of ORALC is PSpa
e-
omplete.Proof (Sket
h). The translation from � to J�KOA 
an be done in polynomialtime: jOAj � jDj. The 
orresponding extension problem when the underlyinglogi
 is propositional is in �p2 = NPNP as it 
an be solved nondeterministi
allywith a polynomial number of 
alls to a propositional SAT ora
le [33℄. The maindi�eren
e here is that instead of a SAT ora
le, we need an ora
le that 
ando instan
e 
he
ks in ALC, whi
h is PSpa
e-
omplete [1℄. Thus the extensionproblem is in NPPSpa
e, whi
h is equal to PSpa
e [25℄. ut5 Future WorkThe underlying 
on
ept language does not have to be ALC. Other 
on
ept lan-guages with lower 
omplexity like DL-Lite [4℄ might prove more useful in ana
tual implementation.An natural extension is to introdu
e a partial order (I;4), intuitively repre-senting 
on�den
e levels, and for ea
h index k 2 I , adding modal operators Bk,Ak, �Bk, Ok, and �k to the signature of the logi
, in order to represent ordereddefault theories. Another extension would be allowing subje
tively quanti�ed ex-pressions, i.e. 
on
epts of the form 8XR:YC and 9XR:YC for X;Y 2 fB;Ag,like [9℄ does.
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