
Using Data-Independence in the Analysis of

Intrusion Detection Systems

Gordon Thomas Rohrmair and Gavin Lowe

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
{gordon.rohrmair, gavin.lowe}@comlab.ox.ac.uk

Abstract. In a previous paper we showed how to use the process al-
gebra CSP to discover de-synchronisation attacks on intrusion detection
systems. However, our analysis was not complete: if we failed to find an
attack, it was not clear whether that was an artifact of the abstractions
used in the model, or whether there really was no attack. In this paper
we show how we can perform a more complete analysis, by building a
model with a slightly different focus, combined with results taken from
the area of data independence.

1 Introduction

In a previous paper [RL02], we showed how to use the process algebra Com-
municating Sequential Processes (CSP) [Ros97] to discover de-synchronisation
attacks on intrusion detection systems. Such attacks occur when the state of
the intrusion detection system (IDS) becomes de-synchronised from that of the
system it aims to protect, and fails to recognise the attack. In particular, de-
synchronisation attacks exist that evade detection by a signature-based network
intrusion detection system, even if the IDS recognises all signatures of attacks.
Such de-synchronisations are typically caused by interactions between the IDS
and the underlying network protocol.

In [RL02], we were able to reproduce the de-synchronisation attacks first
described in [Pax99,PN98]. We modelled the systems as CSP processes, and
used the model checker FDR to explore the state space looking for states where
the target fails, without the IDS raising an alert. We also adapted the models to
show how to prevent the de-synchronisation attacks. Furthermore, we identified
three de-synchronisation subclasses:

1. De-synchronisation where the IDS and target behave identically, but the
input streams are different; this is illustrated in the time-to-live model in
Section 2.1.

2. De-synchronisation where the input streams are the same, but the systems
behave differently under certain conditions; this is illustrated in the packet
reassembly model in Section 4.

3. De-synchronisation where both the input streams and the behaviours of the
systems are different.



However, in order to perform this analysis—for example, to keep the state
space finite—we had to perform various abstractions, particularly concerning
the set of network packets and the set of attack signatures in the model. It is
not clear that these abstractions were sound: our failure to find attacks on the
adapted models could have been caused by an over-abstraction that lost attacks.
To show that our abstractions are correct we have to show that any attack can
be reduced to one that would be found by our model. This is the question we
address in the current paper.

In the next section, we review the work of [RL02], describing, via an exam-
ple, how de-synchronisation attacks can be discovered automatically; we briefly
review the relevant results from data-independence [Laz97,Ros97]. In Section 3,
we adapt the models, so as to take a slightly different view, while still finding
de-synchronisation attacks; moreover, we use results from data-independence to
show that this analysis is complete, in the sense that it is independent of the
underlying types of network packets and attack signatures used in the model.
In Section 4 we show the generality of our approach, by applying it to a different
example, based upon the packet reassembly algorithm of the Internet Protocol.
We sum up in Section 5. A brief introduction to CSP is included as an appendix.

2 Background

An Intrusion Detection System (IDS) is used to detect abuses, misuses and
unauthorised uses in a network; more generally, they detect violations against
the security policy of a network. They identify intrusions by spotting known
patterns—called signatures—or by revealing anomalous behaviour of protected
resources (e.g., network traffic or main memory usage).

2.1 Detecting de-synchronisation attacks

In this section we review the work of [RL02], so as to demonstrate a simple
de-synchronisation attack, and how it can be found using CSP and its model
checker FDR [Ros97]. We believe that such attacks could equally be found using
other model checkers; an advantage of using CSP is that it has a well-established
body of theory, which we will draw upon below.

We consider a signature-based network intrusion detection system. The IDS
monitors packets on the network, looking for signatures—i.e. sequences of
packets—corresponding to known attacks. We assume the IDS is perfect, i.e.,
it knows all signatures of attacks that would cause the target to fail.

Packets in the Internet Protocol make use of a time-to-live (TTL) field, which
records the number of network hops that a packet can make; each router decre-
ments the TTL, and discards the packet if it reaches zero.

We modelled a small network as below.



Router 2Router 1Attacker

IDS

Target
a b c

We modelled packets that contain just a data field and a TTL field. The attacker,
nondeterministically chooses packets and injects them into the network:

Attacker = u
x:TTL,y:DATA

a.x.y → Attacker u STOP.

The routers simply receive the packets, decrement the TTL field, and forward
the packets if the TTL is not zero:

Router(in, out) =
in?x?y →
if y > 1 then out.x.y−1 → Router(in, out) else Router(in, out).

The IDS is parameterised by a set sigs of attack signatures (a signature is
just a sequence of data values); it is also parameterised by a set vulnerabilities,
each element of which will be a suffix of an attack signature for which the
corresponding prefix has been observed. The IDS monitors packets passing on
the network, and if it observes an attack signature in sigs, it performs the event
alert, representing an alarm:

IDS(sigs, alerts) =
b?x?y →
let alerts′ = {s | 〈x〉_s ∈ sigs ∪ alerts}
within if 〈x〉 ∈ alerts then alert → IDS(sigs, alerts′)

else IDS(sigs, alerts′).

Similarly, the target is parameterised by the same set sigs; if it receives a
sequence of packets from sigs, it performs the event fail, representing a successful
attack:

Target(sigs, vulnerabilities) =
c?x?y →
let vulnerabilities′ = {s | 〈x〉_s ∈ sigs ∪ vulnerabilities}
within if 〈x〉 ∈ vulnerabilities then fail → Target(sigs, vulnerabilities′)

else Target(sigs, vulnerabilities′).

In order to make analysis possible, we had to pick values for the type DATA of
data packets, and the set sigs of attack signatures; we took DATA = {A, B, C},
and sigs = {〈A, B〉}.

We combined these processes in parallel, as depicted above, and then hid
all events other than fail and alert (i.e. turned them into internal events). We
then used FDR to detect whether an undetected attack is possible, by testing
whether the system refines a specification that asserts that every fail event is
accompanied by a corresponding alert:

Spec = alert → fail → Spec u fail → alert → Spec u STOP.



There is some asynchrony in the system, so the fail and the alert could occur
in either order; we test for refinement in the stable failures model [Ros97], to
ensure that if a fail occurs first then an alert must occur.

FDR found several similar attacks; a typical one is depicted below.

A.4
A.3

C.2
C.1

B.4
B.3

C.1

IDS

A.3
A.2

B.2
B.3

Router 1 TargetAttacker Router 2

The attacker sends three packets with data fields A, C, B, respectively, but such
that the TTL field for the second packet is not enough for that packet to reach
the target. The target receives the sequence of packets 〈A, B〉, causing a fail

event. The IDS does not detect the attack, having seen the sequence of packets
〈A, C, B〉. (FDR also found several false attacks, where the IDS signalled an
alert without the target failing, because some of the packets of the attack had
a small TTL field so failed to reach the target.)

The cause of the attack is clear: the IDS does not take into account the
topology of the network. We adapted the model so that the IDS ignores packets
with a TTL that causes the packet to not reach the target. FDR then found that,
for this model, the IDS detects all attacks. However, it is not clear whether the
same would be true if we considered different instantiations of the sets DATA

and sigs, or whether we have over-abstracted; this is the question we consider
in Section 3.

2.2 Data-independence

Often the behaviour of a CSP process is dependent on various parameters, such
as the underlying types used in events, or the number of nodes in a network.
However, analysis using explicit model checking, for example with FDR, can
consider only a single value for each parameter at a time. We would like to be
able to verify a system for all values of the parameters via a small number of
explicit checks; this is often known as the Parameterised Verification Problem.

Data independence is a tool that can be used to address this problem.
The goal of this approach is so come up with a bound N such that if a re-
finement holds when a type parameter is instantiated with a type of size N ,
then the refinement also holds for all larger types.

A process P is said to be data-independent with respect to a type T if the
only operations it performs on values of T are to input them, store them, and
output them; in particular, P never performs any computation on values of T

that constrains what T might be.



A process satisfies the condition NoEqT if it performs no test of equality be-
tween members of T : such tests could be explicit, for example within ‘if-then-else’
constructs, or implicit via synchronisations between parallel components on sin-
gle elements of T . A process satisfies NormT if, essentially, it contains no nonde-
terminism the effects of which are not immediately apparent (see [Laz97,Ros97]
for a formal definition).

The following theorem is from [Laz97,Ros97]:

Theorem 1. Suppose that Spec and Impl are data-independent processes, that

both satisfy NoEqT , and that Spec satisfies NormT . If Spec v Impl when T is

taken to be of size 2, then Spec v Impl for all finite or infinite values of T of

size at least 1.

3 Towards a more complete analysis

We now change the focus of the model from Section 2.1, in order to move towards
a more complete analysis, independent of the set sigs of attack signatures. We
observe that the IDS is really doing two things: filtering out packets that will not
reach the target; and performing pattern matching on the remaining packets. It
is therefore possible to split the IDS into two different processes corresponding to
these functions. In related models, corresponding to different network protocols
(e.g. in Section 4, below), the target process similarly performs a combination of
filtering and pattern matching, and so it is possible to split the target into two
processes. This gives a topology as below.

Router 2Router 1Attacker

IDS filter

IDS pattern
matcher

Target filter Target pattern
matcher

a b c se
eT

ar
ge

t

seeIDS

We can then make the following observation:

Observation 1 If the stream of packets passed to the pattern matching com-

ponent of the IDS is the same as the stream of packets passed to the pattern

matching component of the target, then the IDS will detect all attacks.

The hypothesis of Observation 1—that the two components see the same
stream of packets—is an easy property to test. In fact it does not even require
us to model the two pattern matching components, simply the messages passed
to them on the channels seeIDS and seeTarget. The advantage of this change
of focus is that is allows us to remove the parameter sigs from the model, thus
leading towards a more general verification.



The two filtering processes (where the IDS takes the distance to the target
into account) can be modelled by:

IDS = b?x?y → if dist ≤ y then seeIDS.x → IDS else IDS,

Target = c?x?y → seeTarget.x → Target.

where dist is the distance from the IDS to the target. The rest of the network
is unchanged.

It is easy to capture the hypothesis of Observation 1 as a refinement assertion;
there is a certain amount of buffering in the system, and the specification has
to take this into account:

Spec = u
x:T

(seeIDS.x → Spec′(x) u seeTarget.x → seeIDS.x → Spec)

u
STOP,

Spec′(x) = seeTarget.x → Spec

u

u
y:T

seeIDS.y → seeTarget.x → Spec′(y).

The specification captures the property that the IDS and target see the same
stream of packets, except that the IDS might at any point have seen up to two
more packets than the target, or the target might have seen one more packet
that the IDS.

We can then use FDR to check that the system failures-refines Spec. The
refinement holds, and we can then use Observation 1 to deduce that the IDS
detects all attacks for all possible sets of attack signatures.

However, this appears to leave us only slightly better off than before: we can
verify the system for a fixed type DATA; but does this tell us anything about
systems with different values for DATA? It turns out that we can use Theorem 1
to show that this is indeed the case. The system and specification processes are
both data independent with respect to the type DATA (when the pattern match-
ing against attack signatures was included, the IDS and target were not data
independent); both satisfy NoEqDATA; and the specification satisfies NormDATA.
The theorem therefore tells us that we have only to check the refinement for a
type DATA of size 2, say DATA = {A, B}, to have verified it for all values
of DATA.

4 The packet reassembly model

In this section we consider another example, so as to demonstrate the general
nature of our technique.

Sometimes an Internet Protocol (IP) packet has to be routed through dif-
ferent networks. Not all networks have the same properties. Therefore, a packet
might have to be split up into fragments, tagged with their position in the orig-
inal packet (fragment offset); this process is termed fragmentation. The target



receives an increased supply of smaller fragments instead of one IP packet, and
therefore has to reconstruct the initial packet; this process is called reassembly.
The algorithm in [dR81] collects the fragments and puts them into the right
place of the reserved buffer, before passing the packet to the layer above.

Sometimes data is received at the same fragment offset as a previously re-
ceived fragment. In such a case, a decision has to be made whether to favour the
old or the new data. RFC 791 [dR81] leaves unspecified which should be pre-
ferred, but the recommendation is to prefer new data, so that if the algorithm
receives data from the same position twice, the new data will overwrite the old.
However, not all implementations follow this recommendation.

If the IDS favours old data, and the target favours new data—or vice versa—
then there is a de-synchronisation attack: the attacker can send a fragment with
the same offset as a previous fragment, which will be accepted by the target but
not by the IDS—or vice versa—leading to them reassembling different packets.

In [RL02] we showed how to detect this attack using CSP and FDR. We built
CSP models of the target and IDS, which accumulated packets in a buffer,
favouring old or new data according to their policies, and which when the buffer
was full, compared the packet with the attack signatures, performing a fail or
alert event if appropriate.

We also showed that if the IDS and target follow the same policy, then there
is no de-synchronisation attack, at least for the choice of DATA and sigs used
in that model.

We can adapt the techniques of the previous section to this setting. We can
model the reassembly algorithms, at both the target and IDS, as separate pro-
cesses. We can then ask whether the stream of packets passed to the pattern-
matching components are the same, using essentially the same specification as
for the time-to-live model; this generalises our analysis to all possible sets of at-
tack signatures. We can then use Theorem 1 to show that we need only perform
this analysis for a type DATA of size 2 to deduce that the same result holds for
all larger types.

5 Conclusion

In this paper we have described how to perform a more complete analysis of the
deployment of intrusion detection systems, so as to discover—or show the ab-
sence of—de-synchronisation attacks. We have changed the focus of our previous
models so as to ask whether the IDS and target, after appropriate filtering, see
the same stream of packets; this makes our analysis independent of the set of at-
tack signatures in question. We have then used a result from data independence
to show that the analysis is independent of the underlying type of data.

The converse of Observation 1 is not, in general, true: if the attacker can cause
the target and IDS to see different streams of packets, this does not necessarily
mean that a de-synchronisation attack is possible. However, we believe that the
converse of Observation 1 is true in all but contrived examples. Even if this is



not the case, the worst that will happen is that we detect a false attack, which
will give us a better understanding of the system.

There are other abstractions that we have made in our models, which we
briefly discuss now.

In the time-to-live model, the TTL field can, in principle, take arbitrarily
large values (in the Internet Protocol it is implemented as an 8-bit number).
However, for a network with diameter d (counted in TTL-decreasing hops), it is
clear that there is no point in considering packets with time-to-live field greater
than d+1, for such packets display identical behaviour to those with time-to-live
field equal to d + 1.

We now argue that in the reassembly model, it is sufficient to consider a
buffer of size three, in the sense that if there is an attack upon a system that
uses a larger buffer, then there is also an attack upon a system that uses a
buffer of size three. To see this, consider an attack upon the system that uses a
larger buffer, in which the IDS and target reassemble packets that first disagree
in position k. We map this onto an attack upon the system that uses a buffer
of size three by remapping fragment offsets as follows: all fragment offsets less
than k are mapped onto 0; fragment offsets of k are mapped onto 1; and all
fragment offsets greater than k are mapped onto 2. If is then clear that in the
system with buffer size three, this will correspond to an attack where the IDS
and target reassemble packets that disagree in position 1 (and maybe elsewhere).
(The above remapping works only for k > 0, but there is a simpler remapping
that works when k = 0.)

We have considered only a single network topology. This turns out to be
an important consideration. If there are two or more routes between the IDS
and the target, then it is possible for the IDS and target to see fragments in
a different order, which opens up the possibility of another de-synchronisation
attack. However, most local networks have only a single route from the gateway
to each host, which prevents such attacks. Under this condition, we believe that
our abstraction has not lost any attacks:

– It is safe to abstract away from the parts of the network before the IDS,
because the attacker can effectively choose what fragments are sent past the
IDS (channel b in the earlier models).

– It is also safe to abstract away those parts of the local network not on the
direct route from the IDS to the target, because they do not affect what the
target sees.

– The remaining issue is the number of routers between the IDS and the target;
there does not seem to be any intrinsic difference between one router reducing
the TTL field by one, and N routers reducing the TTL by N , because the
attacker is able to choose the TTL appropriately; however, the number of
routers does affect the buffering of the system and hence the appropriate
specification process; it is not clear how to formalise this argument.

Finally, we have, of course, abstracted away from many of the details of the
underlying network protocol. Our long-term aim is to remove these abstractions,
so as to model the whole of the Internet Protocol version 6.



References

[dR81] Marina del Rey. RFC 791 Internet Protocol: DARPA Internet program protocol

specification, 1981.
[Laz97] Ranko Lazić. A Semantic Study of Data-Independence with Applications to

the Mechanical Verification of Concurrent Systems. D.Phil., Oxford University,
1997.

[Pax99] Vern Paxton. BRO: A system for detecting network intruders in real-time.
Computer Networks, 31:2435–2463, 1999.

[PN98] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial
of service: Eluding network intrusion detection. Secure Networks, 1998.

[RL02] Gordon Rohrmair and Gavin Lowe. Using CSP to detect insertion and eva-
sion possibilities within the intrusion detection area. In Proceedings of BCS

Workshop on Formal Aspects of Security, 2002.
[Ros97] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.

A CSP notation

An event represents an atomic communication; this might either be between
two processes or between a process and the environment. Channels carry sets of
events; for example, c.5 is an event of channel c.

The process a → P can perform the event a, and then act like P . The process
c?x → Px inputs a value x from channel c and then acts like Px.

The process P u Q represents an internal or nondeterministic choice be-
tween P and Q; the process can act like either P or Q, with the choice being
made according to some criteria that we do not model. The process u

i:I
Pi

represents a replicated nondeterministic choices, indexed over set I.
A trace is a sequence of events that a process can perform. A failure of a

process is a pair (tr, X), representing that the process can perform the trace tr

to reach a stable state (i.e. where no internal activity is possible), where none of
the events from X can be performed. Process P is failures-refined by process Q

if all the failures of Q are also failures of P :

P v Q ⇔ failures(P ) ⊇ failures(Q).


