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Abstract—The key to offering personalised services in smart
spaces is knowing where a particular person is with a high
degree of accuracy. Visual tracking is one such solution, but
concerns arise around the potential leakage of raw video
information and many people are not comfortable accepting
cameras in their homes or workplaces. We propose a human
tracking and identification system (mID) based on millimeter
wave radar which has a high tracking accuracy, without being
visually compromising. Unlike competing techniques based on
WiFi Channel State Information (CSI), it is capable of tracking
and identifying multiple people simultaneously. Using a low-
cost, commercial, off-the-shelf radar, we first obtain sparse
point clouds and form temporally associated trajectories. With
the aid of a deep recurrent network, we identify individual
users. We evaluate and demonstrate our system across a variety
of scenarios, showing median position errors of 0.16 m and
identification accuracy of 89% for 12 people.
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I. INTRODUCTION

Knowing ‘who is where’ is a key requirement for emerg-
ing applications and services in smart spaces, such as person-
alized heating and cooling, security management, efficiency
monitoring, natural light adjustment, background music se-
lection, etc [1]. For these and other pervasive services to
be truly seamless, tracking and identification need to be
performed with high accuracy and without active human
effort.

Currently, most identification methods in smart spaces
are device-based. Via the carried token, such as ID/swipe
cards, active badge, smartphone, smartwatch, these methods
identify users by the unique identifier of their personal
devices. However, an implicit assumption made with these
techniques is that the user and their identifying device are
inseparable, which is not always the case.

In order to cope with more general scenarios, device-
free methods have been proposed and are increasingly being
adopted for human identification. Vision based techniques
(e.g., cameras) are widely used methods in this category and
have good performance when given a clear, frontal view of
the face. However, cameras are intrusive and have a low
user acceptance in domestic and commercial settings [2]. In
contrast, radio frequency based methods are less intrusive
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and have also been utilized for device-free identification. For
instance, it has been found that the variations in ambient
WiFi signals can be used to recognize people while they
walk [3], [4]. Unfortunately, such methods require a separate
transmitter and receiver, and are limited to cases when users
walk between the transmitter and receiver. The mmWave
radar is a transceiver, so only requires a single device for
tracking and identification. More importantly, existing WiFi
CSI techniques are incapable of simultaneously tracking and
identifying multiple people in the same scene. Point cloud
based sensors, such as LiDAR and depth cameras are also
able to identify and track people [5]. However, LiDAR is
too expensive for home use while depth cameras only have
a limited tracking range and accuracy. As an optics based
sensor, they have similar user acceptance concerns as with
conventional cameras.

In this paper, we introduce mID, a system that identi-
fies people by their unique characteristics as sensed by a
millimeter-wave (mmWave) radar. MMWave radar provides
highly precise ranging by analyzing the reflection from
obstacles in the environment, such as humans. It has a
number of interesting properties. For example, a mmWave
radar can be concealed behind furniture, as it is able to
penetrate thin layers of different kinds of material [6], unlike
optics based sensors. This property makes mmWave radar
significantly more unobtrusive by concealing itself inside
furniture or walls. The unobtrusive nature of mmWave radar
means domestic users are more likely to accept it, list like
how Amazon Echo has been more widely accepted by users
than web camera [7].

Exploiting these characteristics, we developed our gait
recognition pipeline based on a commercial-off-the-shelf
mmWave Radar. Our device is based on a single chip
solution and operates in the 77− 81 GHz band. To the best
of our knowledge, this is the first work to use the point cloud
generated by a mmWave radar to track and identify people
while they are walking.

The contributions of this work are as follows:
• We designed and implemented a human tracking and

identification system using mmWave radar, which is
capable of providing highly accurate tracking and iden-
tification in multi-person scenarios.

• We are the first to identify people from mmWave radar
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Figure 1: System Overview

point clouds, using deep recurrent neural networks.
• We evaluated the tracking and identification ability of

our system, demonstrating median tracking accuracy
of 0.16m and identification accuracy of 89% for 12
people.

The roadmap of this paper is: the basic principles behind
mmWave radar are introduced in Section 2; Section 3
describes mID, which is our proposed mmWave gait iden-
tification system; Section 4 introduces the implementation
details of mID and the setup of our testbed; Section 5
evaluates the system and Section 6 discusses the limitations
of mID. Related work is given in Section 7 and Section 8
concludes the paper.

II. INTRODUCTION TO MMWAVE RADAR BACKGROUND

MMWave radar is based on the principle of frequency
modulated continuous wave (FMCW) radar. FMCW radar
has the ability to simultaneously measure the range and
relative radial speed of the target. Detailed principles of
FMCW radar are briefly introduced below1.

A. Range Fourier Transform (range-FFT)

FMCW radar uses a linear ‘chirp’ or swept frequency
transmission. The chirp is characterized by a start frequency
fc, bandwidth B and duration Tc. When receiving the
reflected signal, the radar front-end computes the frequency
difference between the transmitter and the receiver with
a mixer, which produces an Intermediate Frequency (IF)
signal, from which the distance between the object and the
radar can be calculated as:

d =
fIF c

2S
(1)

where c represents the light speed 3 × 108m/s, fIF is the
frequency of the IF signal, and S is the frequency slope of
the chirp, which is calculated by B/Tc. To detect objects at
different ranges, we perform an FFT on the IF signal, and
each peak represents an obstacle at a corresponding distance.
This is called ‘range-FFT’.

1Please refer to https://training.ti.com/mmwave-training-series for
more information.

B. Doppler Fourier Transform (Doppler-FFT)

A small change in the distance of the object leads to
a large shift in the IF signal phase, so we can obtain
the relative velocity of the detected object by transmitting
two chirps with an interval of Tc and measuring the phase
difference ω

v =
λω

4πTc
(2)

where λ is the wave length.
Using this technique, objects moving a different velocities

at the same distance can be distinguished from one another.

C. Angle Estimation

Transmitters emit chirps with the same initial phase. With
simultaneous sampling from multiple receiver antennas, we
can estimate the Angle of Arrival (AoA), due to slight dif-
ferences in phase of the received signals. For two antennas,
the AoA can be calculated with

θ = sin−1(
λω

2πd
) (3)

The final AoA can be calculated with the average result
from different receiver pairs. The estimation is most accurate
at θ = 0 and decreases with |θ|.

III. SYSTEM DESIGN

mID is a tracking and identification system that exploits
the unique properties of millimeter wave radar. It operates
by transmitting an RF signal and recording its reflections
off objects. By analyzing the point cloud generated, it then
infers the people’s trajectories and identifies them from a
database of known users. The mID system consists of four
modules that operate in a pipelined fashion, as shown in
Fig. 1:

1) Point Cloud Generation. In this module, a FMCW
radar transmits millimeter waves and records the re-
flections from the scene. It then computes sparse point
clouds and removes those points corresponding to
static objects (i.e., points that appeared in the previous
frame).

https://training.ti.com/mmwave-training-series
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Figure 2: 2D Projections of a 3D Point Cloud (see
Sec. III-A). Purple points corresponding to a human object
are compact in the horizontal x-y plane but dispersed in the
vertical z-axis.

2) Point Cloud Clustering. In this module, potential hu-
man objects are detected by merging individual points
into clusters.

3) Tracking. In this module, mID associates the same hu-
man object in consecutive frames and uses a multiple
object tracking algorithm to maintain trajectories of
different people.

4) Identification. In this module, a recurrent neural net-
work is used to recognize user identities from the
sequential data of each user.

We refer the reader to a video based demonstration of mID
for simultaneously tracking and identifying two people2.

In the following subsections, we describe each of these
components in detail.

A. Point Cloud Clustering

The generated sparse point clouds are dispersed and not
informative enough to detect distinct objects. Moreover,
although static objects are discarded through clutter removal,
the remaining points are not necessarily all reflected by
moving people. As shown in Fig. 1, this noise can be
significant and lead to confusion with points from nearby
people. To determine which points in the scene are caused
by reflections from people, mID first merges points into
clusters using DBScan, a density-aware clustering method
that separates cloud points based on the distance in the
3D space. A major advantage is that it does not require
the number of clusters to be specified a priori, as in our
case people walk in and fade out of the monitored scene
at random. Additionally, DBScan can automatically mark
outliers to cope with noise.

However, in a real-world measurement study, we observed
that points of the same person are coherent in the horizontal
(x-y) plane, but more scattered and difficult to merge along
the vertical (z) axis. Fig. 2 illustrates an example. We hence
modify the Euclidean distance to place less weight on the
contribution from the vertical z-axis in clustering:

D(pi, pj) = (pix − pjx)2 + (piy − pjy)2 + α ∗ (piz − pjz)2 (4)

2https://www.youtube.com/watch?v=3m84xZo6E A
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Figure 3: Workflow of moving object tracking in Sec. III-B.

where pi and pj are two different points and the parameter
α regulates the contribution of vertical distance.

B. Moving Object Tracking

To capture continuous individual point clouds to track
and identify a person, we require an effective temporal
association of detections as well as correction and prediction
of sensor noise. Fig. 3 illustrates the flow of our multi-
object tracker. We essentially create and maintain tracks for
object detections from each frame. A new track is created
for each object detection which is either from the first
incoming frame or one which cannot be associated with an
existing track. Inter-frame object association is based on the
Hungarian Algorithm. If a track object is undetected for D
continuous frames, we mark the track as inactive and exclude
it from successive associations. Finally, we apply a Kalman
Filter to predict and correct tracks. These two components
are discussed in more detail below.

1) Detection and Association: We use the Hungarian
Algorithm which is an effective combinatorial optimization
algorithm. Our objective is to create an association between
each object detection and maintained track objects so that
the combined distance loss is minimized. Here we are facing
a many-to-many assignment problem where the cost matrix
can be non-square because the number of active tracks K1

and the number of object detections at the current timestamp
K2 can be different. Given K as the greater of K1 and K2,
we essentially augment the true cost matrix with dummy
entries to construct a K×K matrix M where Mi,j represents
the distance of centers between track object i and object
detection j in current frame. If Mi,j exceeds step size
threshold θ we set the cost to be a large number L to
avoid association given the intuition that j should be a
joining person. If a detection is mapped to an augmented
dimension, or if it is mapped to a correspondence with cost
L, we ignore such mappings and create a new track for
this detection. Similarly, if a track object is mapped to an
augmented dimension or a correspondence with cost L, we
treat the track object as undetected. This method enables us
to successfully maintain tracks of detections.

2) Track prediction and correction : We use a Kalman
Filter to correct for sensor noise and to offer predictive
guidance in scenarios where tracked objects are undetected

https://www.youtube.com/watch?v=3m84xZo6E_A
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Figure 4: Classification Network Structure (see Sec. III-C). T
represents the number of data frames used for identification
and K represents the number of people to distinguish.
Numbers in bracket represent layer sizes.

due to occlusion or temporary loss from the sensing region.
For each track we maintain a state which consists of location
and velocity along the x and y axes. For each track the initial
state consists of the first detection location and velocity.
At each successive time step, the Kalman Filter updates
the current state variables with transition matrix along with
corresponding uncertainties. Based on the current position
and velocity, it estimates a new position/velocity as well
as new covariance. The Kalman Filter produces estimates
that tend to be more accurate than those based on a single
sensor measurement, especially in our case with occasional
undetected track objects.

C. User Identification

After the points corresponding to human objects are
determined, we can use tracklets to recognize their identities.
Specifically, from each frame in the trajectory, we use a
fixed-size bounding box to enclose the points of potential
human objects, and voxelize it to form an occupancy grid.
Note that the occupancy grids inherently encapsulate body
shape information. For instance, tall people tend to have
higher center of mass. By feeding the sequential occupancy
grids to a classifier, the ID of a tracklet is recognized based
on both movement characteristics, i.e., gait, and body shape
information. The tracklet used in mID is segmented with
a sliding window method. A window contains consecutive
occupancy grids for 2 seconds, with a 75% overlapping
ratio with the previous window. Extracting useful features
directly from the occupancy grids is difficult, as most feature
engineering methods are not effective for point cloud clas-
sification tasks [8]. The Long-short Term Memory (LSTM)
network is an established recurrent neural network architec-
ture suited for sequential data classification which is able
to learn the features automatically through network training.
We therefore propose using it as the identity classifier in
mID. The 3-D data is first flattened and then each frame is
converted into a feature vector. This is then passed into a bi-
directional LSTM network followed by a dense layer. Lastly,
a softmax layer is used to output the final classification result
(see Fig. 4).
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Figure 5: Experiment Settings. Vicon system is a high-
precision tracking system used for acquiring ground truth
trajectories.

IV. IMPLEMENTATION
A. Testbed Setup

mID is developed on top of a commercial, off-the-shelf
millimeter wave radar, IWR1443boost3. The system was
tested in a room with a Vicon optical tracking system which
is able to provide ground-truth position of each marker
with an error within 1cm. Ground truth identities of the
training and testing samples are manually labeled. The
system consists of two parts, the radar and the backend.
The radar senses data and generate 3D point cloud, which
is transferred to the backend computer for further processing,
as shown in Fig. 5. We implemented the deep neural network
classifier with the Keras library and a Tensorflow backend.

B. mID Configuration

1) Sensor Setup: The IWR1443Boost sensor was config-
ured to use all three transmitter antennas and all four receiver
antennas in order to generate 3D point cloud data. Start
fc and end frequencies were set to 77GHz and 81GHz
respectively, so the bandwidth B was 4GHz. The Chirp
Cycle Time Tc was set to 162.14µs and the Frequency Slope
S was set to be 70GHz/ms. With such a configuration, mID
has a range resolution of 4.4cm and maximum unambiguous
range of 5m. In terms of velocity, it can measure a maximum
radial velocity of 2m/s, with the resolution of 0.26m/s.
The sensor was set to transmit 128 chirps per frame and the
number of frames per second was 33.

2) Classifier Training: Through multiple trials we
worked out a set of parameters that have the best perfor-
mance. Each frame of the input data was first flattened to a
vector of dimension 16000. A bi-directional LSTM with size
256 and 128 hidden units was used. We set the dropout ratio
to 0.5 and used the Adam optimizer. We used a balanced
dataset where training/test sample ratio was set to 11:1. To
decrease overfitting, we further augmented the training data
to 8 times the original size, by shifting the data in X and
Y axis respectively for 1 voxel, and rotating each frame by
90◦, 180◦ and 270◦. The model was trained for 30 epochs.

3http://www.ti.com/tool/IWR1443BOOST

http://www.ti.com/tool/IWR1443BOOST
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Figure 6: Impact of different materials on point cloud density
of mmWave radar. The differences in point cloud density are
all below 1% for all cases.

3) Parameters of DBScan Algorithm: DBScan has two
parameters, namely Eps which indicates the maximum dis-
tance of two points in the same cluster and MinPts which
indicates the minimum point number in a cluster to cope
with noise points. In practice, we choose 0.05 as Eps and
20 as MinPts. α was set to 0.25 in the customized distance
function.

V. EVALUATION

A. Sensitivity Analysis

1) Non-Line-of-Sight Conditions: In the first experiment,
we study the robustness of mmWave radar under occluded
conditions. This property is important because optical imag-
ing based tracking and identification methods, such as RGB
and depth cameras, cannot cope with obstructions. We
evaluate the robustness of millimeter wave radar with four
types of obstructions: foam, plastic wood and aluminium.
We used a sheet of each material in turn with a thickness of
approximately 3mm and a size of 105 mm2. The obstacles
are placed 1cm away from the sensor so that the signals can-
not be transmitted in a line-of-sight condition. We let a user
walk back and forth in front of the millimeter wave radar
while collecting sensor readings. mID uses the generated 3D
point cloud for tracking and identification, so we compare
the percentage of change in point cloud density for mID.
As can be seen in Fig. 6, mmWave is very robust against
non-line-of-sight interference, with less than 1% change in
point-cloud density. Robustness to thin obstructions could
enable mID to work under furniture or concealed within a
picture frame, etc., making it less intrusive.

2) Impact of weighting the vertical axis in DBScan:
As introduced in Section 3, it is important to define the
weighting parameter to make the DBScan algorithm work
better. Therefore, we need to find a suitable value of α to
obtain a good clustering result. In practice, we found that
α = 0.25 results in good clustering performance, as shown
in Fig. 7. In contrast, when α = 0, (points are effectively
projected onto the x−y plane), outliers are merged into the
cluster. When α = 1, (standard Euclidean distance) points
corresponding to a person are split into two clusters.

X
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Z
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Z

α=0 α=0.25 α=1

Figure 7: Clustering results with different α. A small α leads
to loose clusters containing many noisy points. A large α
splits a human object into two clusters. Setting α = 0.25
gives the best empirical performance, as shown in the middle
one.
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Figure 8: Comparison of tracking performance between
mmWave radar and Kinect v2. (a) Kinect v2 can only track
people within 4.5m. (b) Inferred trajectory. (GT: Ground
Truth by Vicon)

B. User Tracking

To evaluate the tracking accuracy of mmWave radar, we
compared it to a Kinect v2, an RGB-D camera which is
widely used in homes for gaming. We installed the mmWave
radar and Kinect v2 co-located in a room. The Vicon system
was set to track a marker placed on the top of a hat
worn by the participant. Time was synchronized through a
NTP server and the coordinate transformation matrices of
the systems were calibrated. A state-of-the-art open source
tracking algorithm4 is used for Kinect v2 people tracking.
The tracking error and a comparison of the trajectories is
shown in Fig. 8, which shows the median tracking error
of mID is ∼ 0.16m whereas the Kinect is 0.9m. Besides
a significantly smaller error compared to Kinect v2, the
tracking range of mID is also larger than Kinect v2. mID
can track people at a distance of more than 5.5m, whereas
Kinect has a tracking limitation of 4.5m. This could be
further extended, at the cost of a reduction in identification
accuracy. This shows that the radar based technique is able
to achieve highly accurate tracking over a larger tracking
area, making it suitable for increasing levels of automation.

4based on https://github.com/mcgi5sr2/kinect2 tracker

https://github.com/mcgi5sr2/kinect2_tracker
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Figure 9: Confusion Matrix of 12 Users.

C. Identification Evaluation

We now examine mID with an identification task of 12
participants 5. The ages of the participants range from 22 to
35, and 3 of the participants are female. The heights of the
participants range from 155cm to 188cm, and the weights of
the participants range from 55kg to 80kg. The body shape of
each participant varies which mimics domestic settings. To
mimic real-world complexity, we asked participants to walk
on a random trajectory in our testbed for 10 minutes. Note
that a number of WiFi CSI identification papers require the
user to walk along a predefined trajectory [9].

The point cloud generated by mmWave radar makes it
impossible to analyse people’s gait with traditional vision
based gait recognition methods [10], [11], because it is too
sparse to recognize different body parts of the subject. Deep
Neural Networks have the ability to automatically extract
relevant features of the data while training the model, but it is
not straightforward to tell which neural network architecture
best suits the problem. We evaluated the performances of
neural networks of different architectures and sizes on our
dataset by performing an ablation study, which will be
discussed in turn below.

1) Identification Performance: Overall, mID is able to
reach an accuracy of 89% for 12 people. The confusion
matrix is shown in Fig. 9. Note that this performance is
non-trivial considering that the original point clouds are very
sparse, and demonstrates the utility of using deep-networks
for feature extraction.

2) Impact of number of people: In this experiment, we
further explore identification accuracy with varying group
sizes. Intuitively, a smaller group size should make the
problem easier. Fig. 10 shows the performance trend of mID
when varying the number of participants from 4 to 12 with
a step of 2. As we can see, mID is able to cope with various
scenarios and works extremely well in the cases with ≤ 6

5The study has received ethical approval SSD/CUREC1A
CS C1A 18 024
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Figure 10: Impact of number of people. mID works reliably
with different numbers of participants and performs best
when the group size is less than 6, e.g., in home scenarios.

people with 95% accuracy. In contrast, WiWho [9], based
on WiFi CSI, achieves an identification accuracy of 80%
with 6 people. Note that, the number of people in domestic
settings is generally less than 6, and we envision that mID
could greatly benefit many applications in smart homes of
the future.

3) Neural Network Architecture Comparison: To explore
the best artificial neural network architecture for the identi-
fication problem, we compare 3 different architectures that
are based on LSTM. We use variants of LSTM as it has
been shown to be performant for end-to-end learning of
time sequence data. Each model is trained under the same
settings: 30 epochs and 0.5 dropout ratio. The LSTM layer
used in all the 3 models has the same size of 256 and 128
hidden units. The CNN used in the CNN+LSTM model has
two convolution layers, with a max pooling layer after each
convolution layer. The CNN is time distributed, which means
the data of each frame is first sent into a two-layer 3D CNN
for feature extraction, then the sequence data was sent into
LSTM for classification.

The accumulative identification accuracy of the different
architectures is shown in Fig. 11b. The accuracy differences
between architectures become negligible after 3 guesses.
However, Bi-directional LSTM converges more quickly and
significantly outperforms the other two architectures within
fewer guesses. This is presumably because Bi-directional
LSTM is able to model the rich temporal correlations in
a long sequence of frames from both ends. In contrast, a
standard LSTM is essentially a feed-forward network that
is difficult to encode the information from the beginning of
a long sequence [12]. Such information loss degrades the
identity inference performance.

4) Impact of Network Size: Beyond architecture, it is also
important to consider the impact of the network size. If the
network is too small, it may lack the representation ability,
while networks that are too large can suffer from over-fitting
problems. We evaluated the Bi-directional LSTM network
with 3 different sizes and the comparison of the classification
performance is shown in Fig. 11a.

The Bi-directional LSTM with size of 256 and 128
hidden units significantly outperforms the same network
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architecture with a larger or smaller size, especially in the
first two guesses. This suggests that a Bi-directional LSTM
with size of 256 and 128 hidden units is a good fit for this
classification problem.

VI. DISCUSSION AND LIMITATIONS

Despite the fact that this novel system works well for
tracking and identification. We elaborate the limitations.

1) Large Number of Users. We have demonstrated the
reliable performance of mID when working with a
relatively small group of users (12). However, tracking
and identifying a large number of people remains an
open problem for two reasons. First, the point cloud
generated by mmWave is sparse and sometimes the
sparsity could significantly disturb human detection
and tracking. Secondly, body shape and human gaits
used in this work are weak biometrics, and could
become ambiguous with the increasing number of
users.

2) Monitoring Range. In our experiment setting, we set
the maximum unambiguous range of mID to 5m,
which is roughly 3/4 the size of monitored room (see
Sec. IV). In principle, the range of the mmWave radar
can be as large as 30 m, but this increased range
comes at the cost of reduced spatial precision and
worse signal-to-noise ratio. If the subject is too far
away from the sensor, it is very hard to detect and
distinguish them from background noise.

3) Flat and Planar Surfaces. As we found in the evalua-
tion, the reflection profile of mmWave can be affected
by flat and planar surfaces, such as windows. As a re-
sult, noisy ‘mirror’ human objects appear occasionally
when encountering these surfaces. Our experimental
site is mainly with walls, which are typically not
strong reflectors due to their dielectric properties.
However, it is worthwhile to consider the impact of
disturbing surfaces in real world deployment.

VII. RELATED WORK

A. Device-Free Gait Recognition

There has been a lot of works on device-free gait recog-
nition. Middleton et al. built a floor sensor based gait

recognition system and achieved 80% accuracy over 15
people [13], at high deployment cost. Vision-based methods
are one of the most established techniques. Some use silhou-
ette analysis approaches like [11], others use model-based
methods like in [14]. Besides monocular vision, multiple
cameras, stereo cameras and depth cameras are also utilized
in gait recognition tasks [15]. However, as long as video
data is used, there will be a risk that users’ privacy would
be compromised if data leakage occurs.

It has been shown that the Channel State Information
(CSI) of WiFi signals, for both 2.4GHz and 5GHz bands,
captures human gait information to a certain extent [4],
[9]. These gait recognition systems are easy to deploy as
WiFi devices are common in daily lives. However, such
methods are generally scene-dependent and cannot handle
environmental dynamics very well. Furthermore, these meth-
ods struggles to cope with identifying multiple people in the
same scene.

A full comparison of different device-free identification
methods are provided in Table. I.

B. Other RF-based Human-centric Applications

RF sensing has been widely used in human-centric ap-
plications, such as fall detection [16], occupancy counting
[17], breathing monitoring [18] etc. Google has recently pub-
lished a touchless gesture interface based on mmWave radar,
which recognizes hand gesture in high fidelity [19]. Zhao
et al. have recently proposed a human pose reconstruction
approach with a customized RF radar. By using the pose
extracted from the collocated cameras as supervision signals,
their reconstruction network could learn to estimate human
skeleton, in both 2D and 3D scenes [20], [21].

VIII. CONCLUSION

In this paper, we propose mID, a highly accurate tracking
and identification system for smart spaces based on mil-
limeter wave radar. With the aid of a commercial-off-the-
shelf millimeter wave FMCW radar, we first obtain sparse
point clouds. Then, we extract the point clouds representing
human objects and associate them to their historical trajec-
tories. Based on the tracklets, a recurrent neural network is
used to recognize their identities. Extensive experimental re-
sults show that mID achieves an overall recognition accuracy
of 89%, and with 12 people in identification with approx-
imately 0.16m positioning error. We also demonstrate the
ability to simultaneously track and identify multiple people.
We envision mID as a promising step towards smart home
human identification and tracking, for the sparse point clouds
adopted in mID are not themselves as privacy sensitive as
vision based techniques, and mID can be concealed inside
furniture or walls, which can be highly unobtrusive and gain
acceptance by smart home users.



Table I: Comparison of different identification methods and their relative merits.

Identification Accuracy Multiple People Tracking Environment Independent Privacy Concerns Ease of Deployment
Floor Sensor Moderate Yes Yes No None Very Difficult
RGB Camera Very high Yes Yes Yes High Easy
Depth Camera High Yes Yes Yes Medium Easy

WiFi CSI Moderate No Yes No Low Difficult
mID Moderate Yes Yes Yes Low Moderate
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