
On the Specification of Secure Channels

Christopher Dilloway and Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{christopher.dilloway,gavin.lowe}@comlab.ox.ac.uk

Abstract. Security architectures often make use of secure transport
protocols to protect network messages: the transport protocols provide
secure channels between hosts. In this paper we present a hierarchy of
specifications for secure channels. We give trace specifications capturing
a number of different confidentiality and authentication properties that
secure channels might satisfy, and compare their strengths. We give ex-
amples of transport layer protocols that we believe satisfy the channel
specifications.

1 Introduction

A popular technique for designing a security architecture is to rely on a secure
transport layer to protect messages on the network, and provide a secure channel
between different hosts. This can simplify the design of the security architecture:
the designer can use an off-the-shelf secure transport protocol, such as TLS, to
provide secrecy and authentication guarantees; the architecture can then pro-
vide additional security guarantees in a higher layer, which we refer to as the
application layer.

In such circumstances it is important to understand what is required of the
secure transport protocol, and, conversely, what services are provided by differ-
ent protocols. TLS provides strong guarantees; however, it is computationally-
expensive, and so in some circumstances, a simpler protocol might suffice.

This layered approach can also simplify the analysis of the architecture.
Rather than modelling explicitly the design of the secure transport layer pro-
tocol, one can simply model the services it provides, treating it as an abstract
secure channel. This results in a simpler model, that concentrates on the appli-
cation layer. This is the standard approach to analysing layered architectures in
other settings. The alternative, of explicitly modelling the functionality of both
layers, would lead to unnecessary added complexity.

The aim of this paper, therefore, is to improve our understanding of security
guarantees that might be provided by a secure channel. We capture security
properties using CSP trace specifications, building on the work of Broadfoot
and Lowe [3]. Our formalism will allow us to compare the strengths of different
secure channels: if an architecture is correct when it uses a particular secure
channel, it will still be correct when it uses a stronger channel.

2 Christopher Dilloway, Gavin Lowe

In the next section we produce a model of a layered network, capturing the
events passed between the application layer and the secure transport layer, and
between the secure transport layer and the underlying network. In Section 3,
we produce a formal specification of confidential channels. Then in Section 4
we consider authentication properties. We start by describing a number of basic
building blocks. Not all combinations of the building blocks make sense, and not
all combinations are essentially different; we produce a hierarchy containing 7
confidential channels, and 4 non-confidential ones. We then extend this hierarchy
by considering session and stream properties, giving a total of 31 different chan-
nel properties. We describe a few interesting combinations, and give protocols
that we believe satisfy those properties. We summarise and discuss related work
in Section 5.

2 An abstract layered network

We formalise our secure channels with respect to an abstract model of the net-
work. Our model uses events at two levels. Most of the events are at the interface
between the secure transport layer and the application layer, and describe the
application-layer data: these events are enough to capture authentication guar-
antees. The model also uses events at the interface between the secure transport
layer and the underlying network, which describe the network messages: these
events are necessary to capture confidentiality properties formally.

The secure transport layer contains protocol agents, which translate the
higher level events into lower level events (e.g. by encrypting or signing mes-
sages), and vice versa (e.g. by decrypting messages or verifying signatures). See
Fig. 1.

CSP We will specify channels by giving trace specifications Our specifications
should be interpreted in the traces model of CSP; for full details see [11]. A
CSP process satisfies a trace predicate if all of its traces satisfy the predicate:
P sat R(tr) if ∀tr ∈ traces(P) · R(tr).

A trace is a sequence of events that a CSP process might perform; for exam-
ple, 〈a1, a2, . . . , an〉 is the trace containing a1 to an in that order; 〈〉 is the empty
trace. If tr and tr′ are two finite traces then tr⌢tr′ is their concatenation. We
write tr 6 tr′ if tr is a prefix of tr′. We write a in tr if the event a occurs in the
trace tr.

If c is a channel then {| c |} is the set of events over c. tr ↓ c is the sequence
of data communicated in tr over the channel (or set of channels) c; for example:
〈a.1, b.1, a.2, b.2, a.3〉 ↓ a = 〈1, 2, 3〉.

Describing a channel We consider a secure channel to connect two agents,
each playing a particular role.

We assume a set AgentID of agent identities; each agent is either Honest

(i.e., the agent follows the protocol) or Dishonest (i.e., the agent is under the
intruder’s control). We also assume a set Role of roles in the protocol, ranged
over by Ri, Rj, etc. We define Agent =̂ AgentID × Role, i.e., particular agents
in particular roles. We use A, B, etc., to range over either AgentID or Agent, as

On the Specification of Secure Channels 3

convenient. We abuse notation by sometimes writing Honest for Honest × Role,
and similarly for Dishonest.

Each type of channel will connect some role Ri to another Rj ; we will write
Ri → Rj for such a channel.

Agents and events The agents, including those under the intruder’s con-
trol, communicate in sessions, distinguished locally by connection identifiers. A
connection identifier can be thought of as a handle to the communication chan-
nel: when the protocol agent creates a new channel, a connection identifier will
be returned, which the agent will use for all future communication over that
channel.

There are three distinct ways in which the intruder can alter and insert
messages on the network dishonestly: he can create the messages himself and send
them with another agent’s identity (i.e. fake); he can take an existing message
(which was sent by an honest agent) and redirect it to a different honest agent;
and he can change the identity of the apparent sender of a message (i.e. hijack

it).1 We will use the following events to describe these activities, where m ranges
over the set MessageApp of application-layer messages.

send.(A, Ri).cA.(B, Rj).m: the agent (A, Ri) sends message m, intended for
agent (B, Rj), in a connection identified by A as cA.

receive.(B, Rj).cB.(A, Ri).m: the agent (B, Rj) receives message m, apparently
from agent (A, Ri), in a connection identified by B as cB.

fake.(A, Ri).(B, Rj).cB.m: the intruder fakes a send of message m, which he
knows, to agent (B, Rj), in connection cB; the intruder fakes the message
with the identity of honest agent (A, Ri); he may be injecting the message
into a pre-existing connection, or causing B to start a new one.

hijack.(A, Ri).(A
′, Ri).(B, Rj).cB .m: the intruder intercepts a previously sent

message m and changes the sender from (A, Ri) to (A′, Ri) in the message
envelope; we will write this event as hijack.(A, Ri)→(A′, Ri).(B, Rj).cB.m

to highlight its intent.
redirect.(A, Ri).(B, Rj).(B

′, Rj).cB′ .m: the intruder intercepts a previously
sent (or hijacked) message m and changes the receiver (and connec-
tion identifier) in the message envelope from (B, Rj) to (B′, Rj) so
that B′ accepts it in connection cB′ ; we will write this event as
redirect.(A, Ri).(B, Rj)→(B′, Rj).cB′ .m.

For example, if application-layer message m from A to B is encoded as the
transport-layer message2 A, {m}PK(B), where PK(B) is B’s public key, then a
dishonest agent may hijack this message, replacing the identity A with an arbi-
trary other identity. On the other hand, if m is encoded as {{m}PK(B)}SK(A),
where SK(A) is A’s secret key, then the intruder can hijack it by replacing the

1 We use the term hijack to refer to the intruder taking control of a message; if he
wishes to redirect it, this is a separate event.

2 When we give example transport layer protocols, we assume that there are no in-
teractions between the messages of the two layers; we conjecture that a property
similar to the disjoint encryption property of [6] is enough to ensure this.

4 Christopher Dilloway, Gavin Lowe

sendTL

Network

ProtAgentProtAgent

IntruderAgent Agent

send receive

send
fake

hijack
redirect

receive send receive

Application
Layer

Secure Transport
Layer

receiveTL

putTL getTL

sendTL

receiveTL

Fig. 1. The network model.

signature with his own: he can only hijack it with a dishonest identity. Note that
in both the above cases, the intruder could not have used a fake event, except
in the first case if he happened to know m.

Likewise, if m is encoded as B, {m}SK(A), then a dishonest agent may redirect
this message, replacing the identity B with an arbitrary other identity. On the
other hand, if m is encoded as {{m}SK(A)}PK(B), then the intruder can redirect
it only if he possesses SK(B): he can only redirect messages sent to him. Note
that in both the above cases, the intruder could not have used a fake.

The intruder may hijack a message and then redirect it in order to change
both the sender and the receiver. In order to simplify the specifications, we do
not allow a redirected message to be hijacked.

The network We now specify five rules that define our network. The in-
truder never sends or fakes messages to himself, and never fakes messages with
a dishonest identity (as he can perform a send).

tr ↓ {| send.Dishonest.Connection.Dishonest,

fake.Agent.Connection.Dishonest, fake.Dishonest |} = 〈〉 .
(1)

The intruder can only hijack messages that were previously sent (not faked).

∀A′, A, B : Agent; cB : Connection; m : MessageApp ·
hijack.A′→A.B.cB.m in tr ⇒
∃cA′ : Connection · send.A′.cA′ .B.m in tr .

(2)

On the Specification of Secure Channels 5

The intruder can only redirect messages that were previously sent or hijacked.

∀A, B′, B : Agent; cB : Connection; m : MessageApp ·
redirect.A.B′→B.cB.m in tr ⇒
∃cA : Connection · send.A.cA.B′.m in tr ∨
∃A′ : Agent; cB′ : Connection · hijack.A′→A.B′.cB′ .m in tr .

(3)

In order to define the intruder’s capabilities, we require a means to describe
exactly what the intruder knows. In the next section we will define a function
IntruderKnows : Trace → P(MessageApp) such that IntruderKnows(tr) gives
the set of messages that the intruder knows (and so can send) after tr. We limit
the intruder’s actions in the application layer: he can only send or fake messages
that he knows.

∀I : Dishonest; cI : Connection; B : Honest; tr′ : Trace; m : MessageApp ·
tr′⌢〈send.I.cI .B.m〉 6 tr ⇒ m ∈ IntruderKnows(tr′) ∧

∀A, B : Honest; cB : Connection; tr′ : Trace; m : MessageApp ·
tr′⌢〈fake.A.B.cB.m〉 6 tr ⇒ m ∈ IntruderKnows(tr′) .

(4)

No agent may receive a message that was not previously sent, faked, hijacked or
redirected to them.

∀B : Honest; cB : Connection; A : Agent; m : MessageApp ·
receive.B.cB .A.m in tr ⇒ ∃A′, B′ : Agent; cA : Session ·

send.A.cA.B.m in tr ∨ fake.A.B.cB .m in tr ∨
hijack.A′→A.B.cB.m in tr ∨ redirect.A.B′→B.cB .m in tr .

(5)

Relating the abstract network to a concrete network We specify our
channels as restrictions on the activity allowed in the application layer. In order
to relate our results to a concrete model, we must show how the application-layer
events correspond to transport-layer events. See Fig. 1.

When an agent sends a message in the application layer (i.e. performs a send

event), the protocol agent creates a corresponding sendTL event in the transport
layer. The network then generates a receiveTL event for the recipient (unless the
intruder interferes with the message first), which causes the recipient’s protocol
agent to create a receive event in the application layer.

The intruder does not perform sendTL or receiveTL events; he either adds
transport-layer messages to the network (put

TL
) or removes them from it (get

TL
).

The events the intruder performs in the application layer (send, receive, fake,
hijack and redirect) define the intruder’s high-level strategy; the transport-layer
events define the implementation of that strategy. For example, in order to hijack
or to redirect a message, the intruder will get the transport-layer message, modify
it, and then put it back.

Specifying channels For any of our authentication specifications, P , and a
channel Ri → Rj , when we write P (Ri → Rj), we mean that:3

System \{| sendTL, receiveTL, putTL, getTL |} sat P (Ri → Rj) ; (6)

3 P \ S is the process that behaves like P with all events from the set S hidden.

6 Christopher Dilloway, Gavin Lowe

in other words the specifications only refer to the high-level events.

In order to prove that a particular transport layer protocol really does satisfy
a channel specification, one would have to define a protocol agent, translating
between application-layer and transport-layer messages, and prove that all traces
of the resulting system satisfy the trace specification.

Note that if we have two channel specifications P and Q such that P ⇒ Q,
then a channel that satisfies P can be used anywhere a channel that satisfies Q

can be used. In Section 4 we will see some pairs of channels that are not equivalent
as predicates, but which can simulate one another; we collapse such pairs.

3 Confidential channels

A confidential channel should protect the confidentiality of any message sent
on it from all but the intended recipient. For example, a confidential channel
to B can be implemented by encoding the application-layer message m as the
transport-layer message {m}PK(B). We identify confidential channels by tagging
them with the label C (e.g. writing C(Ri → Rj)).

The IntruderKnows function is then defined so that the intruder only learns
messages that are sent on non-confidential channels, or that are sent to him:

IntruderKnows(tr) =̂ {m |

(
IIK ∪ SentToIntruder(tr) ∪
SentOnNonConfidential(tr)

)
⊢ m} . (7)

IIK ⊆ Message is the intruder’s initial knowledge: the set of messages he knows
initially. SentToIntruder gives the set of messages sent by honest agents to dis-
honest agents. SentOnNonConfidential gives the set of messages sent between
agents on non-confidential channels. ⊢ is the standard deduction relation, de-
scribing how the intruder can deduce new messages from messages he knows,
e.g. by decrypting with keys he knows; for details see e.g. [8].

We specify confidential channels by specifying that IntruderKnows(tr), as
above, does indeed capture what the intruder would know after trace tr. The
messages the intruder will know after observing a trace are those that can be
deduced from his initial knowledge and the messages sent on the network:

IntruderKnowsTL(tr) =̂
{m | IIK ∪ {m′ | sendTL.Agent.Connection.Agent.m′ in tr} ⊢ m} .

(8)

The confidential channels must protect the confidentiality of the messages sent on
them: in other words, although the intruder can see the transport-layer messages
that are sent on the network, he ought not to be able to deduce the application-
layer messages within them. We specify confidential channels as follows: for all
traces tr of the system:

IntruderKnowsTL(tr) ∩ MessageApp = IntruderKnows(tr) . (9)

On the Specification of Secure Channels 7

4 Authenticated channels

In this section we specify authenticated channels by specifying under what cir-
cumstances an agent may perform a particular receive event.

Building blocks for authenticated channels There are three dishonest
activities the intruder can perform: faking, hijacking and redirecting. As shown
by the examples in Section 2, with some transport protocols the latter two can
only be performed using his own identity. We specify our channels by placing
restrictions on when he can perform these events. These restrictions are the
building blocks that we use to construct more interesting properties. Below we
use R̂i as a shorthand for AgentID× {Ri}.

Definition 1 (No faking). If NF(Ri → Rj) then the intruder cannot fake

messages on the channel:

NF(Ri → Rj)(tr) =̂ tr ↓ {| fake.R̂i.R̂j |} = 〈〉 .

Definition 2 (No-honest-hijacking). If NH−(Ri → Rj) then the intruder

cannot hijack messages using an honest identity:

NH−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.R̂i→(Honest, Ri).R̂j |} = 〈〉 .

Definition 3 (No-hijacking). If NH(Ri → Rj) then the intruder cannot hi-

jack any messages:

NH(Ri → Rj)(tr) =̂ tr ↓ {| hijack.R̂i.R̂j |} = 〈〉 .

Definition 4 (No-honest-redirecting). If NR−(Ri → Rj) then the intruder

cannot redirect messages that were sent to honest agents:

NR−(Ri → Rj)(tr) =̂ tr ↓ {| redirect.R̂i.(Honest, Rj)→R̂j |} = 〈〉 .

Definition 5 (No-redirecting). If NR(Ri → Rj) then the intruder cannot

redirect any messages:

NR(Ri → Rj)(tr) =̂ tr ↓ {| redirect.R̂i.R̂j |} = 〈〉 .

All of the above specifications work by blocking events; when we specify this
we do not mean that the intruder cannot generate the application-layer fake,
hijack and redirect events on the channels. What we intend is that when the
intruder generates such events, he will either be unable to modify the transport-
layer messages in order to generate the necessary put

TL
events, or the honest

protocol agents will reject the messages. Any behaviour of the system where the
events are generated but then rejected can be simulated by a behaviour where
the events are not created. The simplest way to specify these properties is to
ban the events.

The hierarchy We now consider how the building blocks can be combined.
They are not independent, since no-hijacking implies no-honest-hijacking, and
likewise for no-redirecting.

Further, not all combinations are essentially different: certain pairs of com-
binations allow essentially the same intruder behaviours as one another: each
simulates the other. We therefore collapse such combinations.

8 Christopher Dilloway, Gavin Lowe

1. Non-confidential channels that allow faking but which satisfy one of the
forms of no-hijacking or no-redirecting can simulate the bottom channel;
the intruder can learn messages and fake them to effect a message hijack or
redirect. For example, the trace 〈send.A.cA.B.m, fake.A.B′.cB′ .m〉 simulates
a redirection of m from B to B′.

2. Any hijackable channel that prevents faking can simulate a hijack-
able channel that allows faking: the intruder can send messages with
his own identity, and then hijack them; this activity simulates a fake;
e.g. 〈send.I.cI .B.m, hijack.I→A.B.cB.m〉.

3. Non-confidential channels that satisfy NF∧NH can simulate non-confidential
channels that specify NF ∧ NH−; the intruder can always learn messages
and then send them with his own identity to simulate a dishonest hijack;
e.g. 〈send.A.B.cB .m, send.I.cI .B.m〉.

4. Confidential channels that do not satisfy NR− or NR can simulate non-
confidential channels because the intruder can redirect messages sent on
them to himself, and so learn the messages.

5. Confidential, fakeable channels that satisfy NR can simulate confidential,
fakeable channels that satisfy NR−; the intruder learns messages that are
sent to him, and so can fake them; e.g. 〈send.A.cA.I.m, fake.A.B.cB .m〉.

After taking into consideration the collapsing cases described above, we arrive
at a hierarchy of 4 non-confidential and 7 confidential channels, shown in Fig. 2
(where several cases collapse to one, the figure gives the weakest specification in
each case). We will explain the names in the right-hand column when we discuss
those combinations, below.

Stream and session channels We now consider two properties relating
different messages in the same connection. These can be combined with the
properties of Fig. 2.

In the record layer of the TLS protocol [5], the message m is sent as:
{m, hmac(wrtSecret, seqNo, m)}k. The write secret wrtSecret and encryption
key k established for any instantiation are almost certainly unique to the session
in question, so when an agent receives a message that has been authenticated
with a write secret that he recognizes, he can be sure which session it is part of.

Because the sequence number is included in each message he receives, and is
authenticated, each agent can be sure that he has not missed any messages, nor
received any messages in an order other than that intended by the sender.

This channel provides a strong guarantee to the agents using it: the stream
of messages an agent receives is a prefix of the stream of messages sent by the
other agent in the session. This property prevents the intruder from rearranging
the order in which messages are sent, or inserting or removing messages from a
session. The only exception to this is that the intruder can terminate a stream
at any point.

On the Specification of Secure Channels 9

C ∧ NF ∧ NH ∧ NR

⊥

NF ∧ NH− ∧ NR−C ∧NH− ∧ NR−

NF ∧ NH−C ∧ NR−

NF ∧ NH− ∧ NRC ∧ NF ∧NH− ∧ NR−C ∧ NH ∧ NR−

C ∧ NF ∧ NH ∧ NR− C ∧ NF ∧ NH− ∧NR

Specification Example Name

⊥ m,A, B Dolev-Yao

NF NH− {m}SK(A), B Sender authentication

NF NH− NR− {h(m, nA)}SK(A), {nA}PK(B), m Responsibility

NF NH− NR {m, B}SK(A) Strong authentication

C NR− {m}PK(B), A Confidentiality and intent

C NH− NR− {m, k}PK(B), {m ⊕ k}SK(A)

C NH NR− {m, A}PK(B), A Credit

C NF NH− NR− {h(m, nA)}SK(A), {m, nA}PK(B) Responsibility

C NF NH− NR {{m}PK(B)}SK(A)

C NF NH NR− {{m}SK(A)}PK(B), A

C NF NH NR
{{m, A}PK(B)}SK(A) or
{{m, B}SK(A)}PK(B)

Strong authentication

Fig. 2. The hierarchy of secure channels with example implementations.

Definition 6. A channel Ri → Rj is a stream channel if

St(Ri → Rj)(tr) =̂ ∀B : R̂j ; cB : Connection; A : R̂i ·

∃A : R̂i; cA′ : Connection; B′ : R̂j ·
tr ↓ receive.B.cB .A 6 tr ↓ send.A′.cA′ .B′ ∨

∃cA : Connection · tr ↓ receive.B.cB .A 6 tr ↓ fake.A.B.cB .

Consider now what happens if we remove the sequence numbers from the
TLS record layer messages. The channel now provides a weaker guarantee: the
recipient knows that all the messages were sent in the same session, but messages
may have been reordered, repeated or cut.

10 Christopher Dilloway, Gavin Lowe

Definition 7. A channel Ri → Rj is a session channel if

S(Ri → Rj)(tr) =̂ ∀B : R̂j ; cB : Connection; A : R̂i ·

∃A′ : R̂i; cA′ : Connection; B′ : R̂j · ∀m : MessageApp ·
receive.B.cB.A.m in tr ⇒ send.A′.cA′ .B′.m in tr ∨

∀m : MessageApp · receive.B.cB .A.m in tr ⇒ fake.A.B.cB.m in tr .

Each of the properties from Fig. 2 except the bottom one can be strengthened
to give a session property by including a session identifier in each message. These
can be strengthened further to give a stream property by including a message
number, as in TLS. This gives a total of 31 different channels.

Sender authentication The first question we might ask when an agent B

receives a message, purportedly from A, is: can he be sure that A really sent the
message? In other words: at some point in the past, did A send that message
to someone, not necessarily B. We certainly do not want this condition to be
met by a fake.A or a hijack.A′→A event: we want to guarantee the existence of
a send.A event for that message, sometime in the past. However, we shouldn’t
discount the possibility that A sent a message that the intruder redirected.

Definition 8 (Sender authentication). The channel Ri → Rj provides

sender authentication if NF(Ri → Rj) ∧ NH(Ri → Rj).

An obvious way to implement this property is for agents to sign messages
they send with their secret key, {m}SK(A). The signature does not contain the
intended recipient’s identity, so a channel implemented in this way is redirectable.
The intruder cannot fake messages on this channel, nor hijack messages sent by
other agents so that they appear to have been sent by A, because he does not
know A’s secret key. He can, however, learn the message, sign it himself and then
send it using his own identity (note that this is a send rather that a hijack); as
noted above (item 3), any non-confidential channel that satisfies NF ∧ NH can
simulate a non-confidential channel that satisfies NF ∧ NH− in this way.

With unilateral TLS (i.e. the standard web model), the client is not au-
thenticated to the server. The channel from the server to the client provides
authentication of the server’s identity. But as the client’s identity is not verified,
this channel is redirectable (in the sense that the messages may be received by
someone other than the agent the server intended them for) and does not satisfy
confidentiality. We believe this channel satisfies St ∧ NF ∧ NH.

Intent We have just seen that when agents sign messages with their secret key,
their intent might not be preserved — the intruder can redirect their messages
to whomever he likes. We now specify a channel that provides a guarantee of
(the original sender’s) intent: whenever B receives a message, he knows that the
agent who originally sent it intended him to receive it. On these channels we
forbid redirection (as this would allow the intruder to change the recipient so
that the sender’s intent is not preserved), but we allow faking and hijacking.

Definition 9 (Intent). The channel Ri → Rj provides a guarantee of intent if

NR(Ri → Rj).

On the Specification of Secure Channels 11

The easiest way to design a channel that provides a guarantee of intent is to
encrypt messages with the intended recipient’s public key. We have already used
this method as the most obvious implementation of a secret channel.

Recall that non-confidential, non-redirectable, fakeable channels can simulate
message redirection by learning messages and faking them (item 1). We therefore
always combine intent with confidentiality or non-fakeability. Further, fakeable,
confidential channels that satisfy NR can simulate fakeable, confidential channels
that satisfy NR−, because the intruder learns messages that are sent to him, and
so can fake them to ‘redirect’ them to another agent (item 5).

With unilateral TLS, the channel from the client to the server provides a
guarantee of the sender’s (the client’s) intent, as the client must have verified
the server’s identity; however it does not provide authentication of the client’s
identity. We believe this channel satisfies C ∧ St ∧ NR.

Strong authentication Strong authentication is the combination of the pre-
vious two properties: whenever B receives a message from A, A previously sent
that message to B; we note that the specification for strong authentication is
the conjunction of the previous two specifications.4

Definition 10 (Strong authentication). The channel Ri → Rj provides

strong authentication if NF(Ri → Rj) ∧ NH(Ri → Rj) ∧ NR(Ri → Rj).

We can achieve strong authentication by strengthening the protocol given for
sender authentication to {B, m}SK(A). The intruder cannot change the recipi-
ent’s identity whilst maintaining A’s signature, so this channel is unredirectable;
he cannot fake messages on this channel because he does not know A’s secret
key; and he cannot hijack messages so that they appear to have been sent by
an honest agent. (As with sender authentication, he can learn the message and
sign it himself; again this is not a hijack.) This channel guarantees that when B

receives a message apparently from A, then previously A sent it to B.
We believe that bilateral TLS establishes an authenticated stream in each

direction, and so satisfies C ∧ St ∧ NF ∧ NH ∧ NR. Such a channel is equivalent
to the authenticated channels defined by Broadfoot and Lowe [3].

We note that neither {{m}SK(A)}PK(B) nor {{m}PK(B)}SK(A) provides
strong authentication; the former can be redirected when B is dishonest,
and the latter hijacked with a dishonest identity; they satisfy, respectively,
C ∧ NF ∧ NH ∧NR− and C ∧NF ∧NH− ∧ NR.

Credit and responsibility In [1], Abadi highlighted two different facets of
authentication. When an agent B receives a message m from an authenticated
agent A, he could interpret it in two different ways: (1) he might attribute credit

for the message m to A; for example, if B is running a competition, and m is
an entry to the competition, he would give credit for that entry to A; (2) he
might believe that the message is supported by A’s authority, and so assign
responsibility for it to A; for example, if m is a request to delete a file, then his
decision will depend on whether or not A has the authority to delete the file.

4 By analogy with [9], we sometimes refer to sender authentication as weak authenti-
cation, and (strong) authentication as authentication.

12 Christopher Dilloway, Gavin Lowe

Abadi argued that these two interpretations of authentication are not the
same, and that protocol designers tend not to state which form of authentication
their protocols provide: in many cases protocols will offer one, but not the other.

A non-hijackable and non-redirectable confidential channel is suitable for
giving credit. The intruder can fake messages on these channels, but in doing so
he only gives another agent credit for his messages.

Definition 11 (Credit). The channel Ri → Rj can be used to give credit if

C(Ri → Rj) ∧ NH(Ri → Rj) ∧ NR−(Ri → Rj).

Abadi gives the following example of a protocol suitable for assigning credit:
{A, k}PK(B), {m}k. When B receives this message he knows that he can give
credit for m to the person who encrypted the key k; however he cannot be
sure that it was really A who sent the message. So while the intruder can fake
messages on this channel, he will only be giving credit to someone else, rather
than claiming it for himself.

A non-fakeable channel with no-honest-hijacking and no-redirecting from
honest agents is suitable for authentication protocols where responsibility is
claimed.

Definition 12 (Responsibility). The channel Ri → Rj can be used to assign

responsibility if NF(Ri → Rj) ∧ NH−(Ri → Rj) ∧ NR−(Ri → Rj).

In some circumstances, one might wish to strengthen such a channel so that
it also provides intent (i.e. NF ∧ NH− ∧ NR), to ensure that the correct agent
assigns the responsibility.

5 Conclusions and related work

In this paper we have examined a hierarchy of secure channel specifications.
We illustrated these channel specifications via example protocols that might
implement them, but we have not proven that the implementations are correct.
It is clear that the hierarchy presented in this document is not complete: there
are other properties (e.g. recentness, non-repudiation) that channels can provide
that we have not accounted for in our specifications.

The channel specifications on their own serve as an interesting exploration
of the sort of protection that might be afforded by a transport layer. However,
they really come into their own when they can be used to analyse security proto-
cols that use secure transport layers. The approach to analysing such protocols
that other researchers have taken is to model the transport layer protocol first,
and then to model the security protocol being run on top of that; see, e.g. [7].
We propose to analyse security protocols that use secure transport layers using
Casper [10] and FDR [11]; to do so, we will build CSP models capturing the ser-
vices provided by secure channels. This will make analysis of layered protocols
no more difficult than a standard Casper analysis. We expect to find suitable
example protocols in grid and web architectures, and in studying delegation.

On the Specification of Secure Channels 13

Delegation protocols provide an interesting area for further extensions to the
model. In many delegation protocols security credentials are established in the
application layer, and then used in the transport layer. This crossing of layers is
not something our current model can represent, as we assume that application
layer keys and transport layer keys are disjoint. There may also be other classes
of security protocol in which data values established in one layer are used in the
other, so it would be useful if our model could be extended to enable us to study
these.

We briefly discuss how our approach to specifying secure channels compares
with that taken by other authors.

In [3], Broadfoot and Lowe specify a form of secrecy that is equivalent to
our network with every channel being non-hijackable and confidential. The dif-
ference between our definition of confidentiality and that in [3] is that we allow
the intruder to change the identity of the sender of a message. In Broadfoot and
Lowe’s model, the intruder does not possess this capability (he must intercept
the message, learn the content, and then recreate it: he cannot merely change the
identity of the sender), so their definition ought to be compared to, and is equiv-
alent to, non-hijackable confidential channels. Broadfoot and Lowe also specify
a single form of authenticated channel which is equivalent to an authenticated
stream channel.

Creese et al. [4] have developed the notion of empirical channels, and adapted
the traditional attack model they use when analysing protocols in order to study
security protocols for pervasive computing. They have a network model compris-
ing traditional, high-bandwidth digital communications channels, and empirical,
low-bandwidth and human-oriented, channels. The empirical channels are used
for non-traditional forms of communication, which often seem necessary for ap-
plications in pervasive computing: for example, two humans comparing a code
printed on each of their laptop screens, or a human entering a code on a printer’s
keypad. Over such channels, they specify any combination of the following re-
strictions on the intruder: No spoofing: the attacker cannot spoof messages on
this channel: this corresponds to an unfakeable channel;5 No over-hearing: the
attacker cannot overhear messages sent on this channel: this is equivalent to a
confidential channel; No blocking: the attacker cannot block messages on this
channel. We do not have an equivalent to the no blocking channel, because on a
traditional network, where the intruder is assumed to be in control of all message
flows, we do not see how this anti-denial-of-service property could be realised;
on the empirical channels suggested in [4] (such as a human entering a number
into a keypad), it is easier to see how this would be possible.

Acknowledgements. We would like to thank Allaa Kamil for many useful
discussions. This work is partially funded by the US Office of Naval Research.

5 Creese et al. actually allow two different models of this channel: one that allows
redirecting, and one that doesn’t.

14 Christopher Dilloway, Gavin Lowe

References

1. M. Abadi. Two facets of authentication. In 11th IEEE Computer Security Founda-
tions Workshop, pages 27–32, 1998.

2. M. Bellare and P. Rogaway. Optimal asymmetric encryption — how to encrypt
with RSA. Eurocrypt, 94:92–111, 1995.

3. P. Broadfoot and G. Lowe. On distributed security transactions that use secure
transport protocols. In 16th IEEE Computer Security Foundations Workshop, 2003.

4. S. Creese, M. Goldsmith, R. Harrison, A. W. Roscoe, P. Whittaker, and I. Zakiuddin.
Exploiting empirical engagement in authentication protocol design. Lecture notes
in computer science, 3450:119–133, 2005.

5. T. Dierks and C. Allen. The TLS protocol version 1.0, 1999.
6. J. D. Guttman and F. J. Thayer Fábrega. Protocol independence through dis-

joint encryption. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, pages 24–34, 2000.

7. S. M. Hansen, J. Skriver, and H. R. Nielson. Using static analysis to validate the
SAML Single Sign-On Protocol. In WITS, 2005.

8. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147–166. Springer-Verlag, Berlin Germany, 1996.

9. G. Lowe. A hierarchy of authentication specifications. In 10th IEEE Computer
Security Foundations Workshop, 1997.

10. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6:53–84, 1998.

11. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

