
Specifying Secure Transport Layers

Christopher Dilloway
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

christopher.dilloway@comlab.ox.ac.uk

Gavin Lowe
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

gavin.lowe@comlab.ox.ac.uk

Abstract

Security architectures often make use of secure transport
protocols to protect network messages: the transport proto-
cols provide secure channels between hosts. In this paper
we present a hierarchy of specifications for secure chan-
nels. We give trace specifications capturing a number of
different confidentiality and authentication properties that
secure channels might satisfy, and compare their strengths.
We give examples of transport layer protocols that we be-
lieve satisfy the channel specifications.

A popular technique for designing a security architecture
is to rely on a secure transport layer to protect messages on
the network, and provide secure channels between different
hosts; see e.g. [9, 12, 13]. This can simplify the design
of the security architecture: the designer can use an off-
the-shelf secure transport protocol, such as TLS, to provide
secrecy and authentication guarantees; the architecture can
then provide additional security guarantees in a higher layer,
which we refer to as the application layer.

In such circumstances it is important to understand what
is required of the secure transport protocol, and, conversely,
what services are provided by different protocols. TLS
provides strong guarantees; however, it is computationally-
expensive, and so in some circumstances a simpler protocol
might suffice.

This layered approach can also simplify the analysis of
the architecture. Rather than modelling explicitly the de-
sign of the secure transport layer protocol, one can simply
model the services it provides, treating it as an abstract se-
cure channel. This results in a simpler model that concen-
trates on the application layer. This is the standard approach
to analysing layered architectures in other settings. The al-
ternative, of explicitly modelling the functionality of both
layers, would lead to unnecessary added complexity.

The aim of this paper, therefore, is to improve our under-
standing of security guarantees that might be provided by
secure channels. We capture security properties using CSP-

style trace specifications, building on the work of Broadfoot
and Lowe [3]. Our formalism will allow us to compare the
strengths of different secure channels: if an architecture is
correct when it uses a particular secure channel, it will still
be correct when it uses a stronger channel.

In Section 1 we formalise an abstract model of a layered
network, and relate it to a concrete network. We describe
the sets of valid traces that our network accepts, and we
provide a framework for specifying secure channels.

In Section 2 we describe how we flag confidential chan-
nels in a system, and define the properties of a confiden-
tial channel in terms of the relation between the intruder’s
knowledge in our abstract model and the intruder’s knowl-
edge in the concrete model.

In Section 3 we define the building blocks we use to cre-
ate our hierarchy. These building blocks progressively dis-
allow different aspects of the intruder’s behaviour, and can
be combined to create different channels. Not all combi-
nations are distinct: in many cases, several different com-
positions of the building blocks will allow essentially the
same behaviour (they simulate one another); we collapse
such cases, and reach a hierarchy of eleven secure channels.
In Section 4 we consider several of the secure channels from
the hierarchy in more detail, and relate them to real-world
secure transport protocols.

In Section 5 we consider channel specifications that tie
different messages into a single connection. We specify a
sessionproperty that binds messages into a single session,
and a strongerstreamproperty that not only ensures that
messages are not moved from one session to another, but
also guarantees that the order messages are received in is
the same as that in which they were sent.

In Section 6 we define a simulation relation on systems
of secure channels, based on the traces of specifications as
they are viewed by the honest agents. SpecificationSpec1

simulates specificationSpec2 if Spec1 allows at least as
many traces as viewed by honest agents. We use the sim-
ulation relation to define an equivalence relation. In Sec-
tion 7 we use the equivalence relation to prove the equiva-

lence of an alternative form for each of our channel speci-
fications. Each alternative form describes the necessary be-
haviour that must precede a receive event, rather than block-
ing the intruder’s behaviour.

Finally, in Section 8 we conclude, and discuss alterna-
tive approaches to specifying secure channels, and several
pieces of related work.

1. Channels, formally

In this section we formalize our model of an abstract net-
work and its relation to a concrete network. We use CSP-
style trace notation: see Appendix A. The abstract network
is defined in terms of honest agents, who send and receive
messages, and an intruder, who has several events he can
use to manipulate the messages being passed on the net-
work, and who can also send and receive messages.

Our model reflects the traditional internet protocol stack,
but we add a new layer between the transport layer and the
application layer: the secure transport layer. We abstract all
of the layers beneath the secure transport layer into a net-
work layer. Our model uses entities at two interfaces: be-
tween the application layer and the secure transport layer,
and between the secure transport layer and the underlying
network. The application layer is the layer in which agents
establish channels, and send and receive messages. The se-
cure transport layer containsprotocol agents, which trans-
late the higher level events into lower level events (e.g. by
encrypting or signing messages), and vice versa (e.g. by de-
crypting messages or verifying signatures). See Figure 1.

Most of the events are at the interface between the ap-
plication layer and the secure transport layer, and describe
the application layer data: these events are enough to cap-
ture authentication guarantees. The model also uses events
at the interface between the secure transport layer and the
underlying network, which describe the network messages:
these events are necessary to capture confidentiality proper-
ties formally.

Describing a channel We assume a setIdentityof agent
identities. Each identity is either consideredHonest(i.e. the
agent follows the application-layer protocols) orDishonest
(i.e. the agent is under the intruder’s control).

We also assume a setRole of roles in the application-
layer protocols, ranged over byRi, Rj , etc. Each role in
an application protocol will exchange a series of messages
with some of the other roles in the protocol. We assume that
the roles used by different protocols are distinct.

An Agentis an identity taking a role:Agent=̂ Identity×
Role. We useA, A′, B, B′, etc., to range over eitherIdentity
or Agent, as convenient; we useI as a dishonest identity (or
agent). We abuse notation by sometimes writingHonestfor
Honest× Role, and similarly forDishonest. We write R̂i

for Identity×Ri.

receiveTL

Network

Intruder

receive send receivereceivesend

Agent Agent

sendTL

receiveTLsendTL

fake
send

receiveTL

hijack

Agent
ProtocolProtocol

Agent

sendTL

putTL getTL

Figure 1. The concrete and abstract levels of
a system.

A secure channel connects two agents, each playing
a particular role: a channel is an ordered pair of roles
(Ri, Rj) ∈ Role× Role. We writeRi→Rj for the chan-
nel (Ri, Rj) as this emphasises the difference between the
sending and the receiving roles.

We treat encryption formally. All messages are drawn
from the message space,Message. This is a set of sym-
bols built from basic types (such as identities, nonces and
timestamps) by operations such as concatenation and en-
cryption. We assume a relatioǹdefined over this type: for
X ⊆ Message, andm : Message, X ` m means thatm can
be deduced from the setX. We assume that the relatioǹ
is monotonic and transitive; i.e.

X ⊆ X ′ ⇒ {m | X ` m} ⊆ {m | X ′ ` m} ,
X ` m ∧X ∪ {m} ` m′ ⇒ X ` m′ .

Often in our examples we use the deduction rules from
[11] which model Dolev-Yao style symbolic encryption: the
intruder can only read messages he has the decryption keys
for, and can only create encrypted (or signed) messages
when he knows the requisite keys. However, these rules can
be modified, corresponding to other models of encryption,
as required; the results in this paper hold for any deduction
relation that satisfies the two properties above.

We assume that the intruder has some initial knowledge
IIK ⊆ Message. He may use this knowledge and messages
he overhears on the network to generate new messages and
facts. We restrict the intruder’s behaviour so that he can
only send messages that can be deduced from his initial
knowledge and what he has overheard.

The message space is partitioned into two sets: applica-
tion-layer messages (MessageApp) and transport-layer mes-
sages (MessageTL). We assume that there are no interac-

tions between the messages of the two layers; in particular,
when we give example transport-layer protocols we assume
that the messages we describe could not be confused for
application-layer messages. We conjecture that a property
similar to the disjoint encryption property of [5] is sufficient
to ensure this.

The agents, including those under the intruder’s control,
communicate in sessions, distinguished locally by connec-
tion identifiers. A connection identifier can be thought of
as ahandleto the communication channel: when the pro-
tocol agent creates a new channel, a connection identifier
will be returned, which the agent will use for all commu-
nication over that channel. We usecA, etc., to range over
Connection.

We use the following events, wherem ranges over the
setMessageApp of application-layer messages.

send.(A,Ri).cA.(B,Rj).m: the agent(A,Ri) sends
messagem, intended for agent(B,Rj), in a connection
identified byA ascA.

receive.(B,Rj).cB .(A,Ri).m: the agent(B,Rj) re-
ceives messagem, apparently from agent(A,Ri), in a con-
nection identified byB ascB .

fake.(A,Ri).(B,Rj).cB .m: the intruder fakes asend
of messagem to agent(B,Rj) in connectioncB ; the in-
truder fakes the message with the identity of honest agent
(A,Ri); he may be injecting the message into a pre-existing
connnection, or causingB to start a new one. In order to
fake a message, the intruder must be able to choose the mes-
sage from those he knows.

hijack.(A,Ri).(A′, Ri).(B,Rj).(B′, Rj).cB′ .m: the
intruder modifies a previously sent messagem and changes
the sender from(A,Ri) to (A′, Ri), and the receiver from
(B,Rj) to (B′, Rj) so thatB′ accepts it in connectioncB′ ;
we write this event ashijack.(A,Ri)→(A′, Ri).(B,Rj)→
(B′, Rj).cB′ .m to highlight its intent.

Thehijack event can be used by the intruder in four dif-
ferent ways:

• To replay a previously-sent message, the intruder ei-
ther chooses an existing connection or initialises a
new one, and causes the recipient to receive the mes-
sage in that connection; we abbreviate the event and
write hijack.(A,Ri).(B,Rj).cB .m;

• To re-ascribe1 a message, the intruder changes the
sender’s identity and chooses a connection for the re-
cipient to receive it in; we abbreviate the event and
write hijack.(A,Ri)→(A′, Ri).(B,Rj).cB .m;

• To redirecta message, the intruder changes the identity
of the recipient and chooses a connection for the new

1To ascribe means to attribute a text to a particular person; hence we
use “re-ascribe” to describe the intruder’s activity when he changes the
identity of the sender of a message.

recipient to receive it in; we abbreviate the event and
write hijack.(A,Ri).(B,Rj)→(B′, Rj).cB′ .m;

• To re-ascribe and redirecta message the intruder
changes both identities and chooses a connection for
the new recipient to receive the message in.

For example, if application layer messagem fromA toB
is encoded as the transport layer messageA, {m}PK(B),
wherePK(B) is B’s public key, then a dishonest agent may
re-ascribe this message, replacing the identityA with an ar-
bitrary other identity. On the other hand, ifm is encoded as
{{m}PK(B)}SK(A), whereSK(A) is A’s secret key, then
the intruder can only re-ascribe it by replacing the signa-
ture with his own: he can only do so with a dishonest iden-
tity. Recall that the intruder can only fake messages that he
knows, so in both the above cases, the intruder could not
have used afakeevent, except if he happened to knowm.

Likewise, if m is encoded asB, {m}SK(A), then a dis-
honest agent may redirect this message, replacing the iden-
tity B with an arbitrary other identity. On the other hand, if
m is encoded as{{m}SK(A)}PK(B), then the intruder can
redirect it only if he possessesSK(B): he can only redirect
messages sent to him. Note that the intruder could not have
used afakeevent, because he cannot choose the value ofm.

An abstract network We now specify four rules that
define the application-layer behaviour accepted by our net-
works. We are not yet trying to capture channel properties;
rather, we are defining some sanity conditions in order to re-
move artificial and irrelevant behaviour from our networks.

The intruder never sends or fakes messages to himself,
never fakes messages with a dishonest identity (as he can
perform a send), and never redirects a message sent to him-
self and re-ascribes it with his own identity (as he can per-
form a receive and a send).

N1(tr) =̂ tr ↓ {| send.Dishonest.Connection.Dishonest,
hijack.Agent→Dishonest.Dishonest→Agent,
fake.Agent.Dishonest, fake.Dishonest|} = 〈〉 .

The intruder can only hijack messages that were previ-
ously sent (not faked).

N2(tr) =̂ ∀A,A′, B,B′, cB′ ,m ·
hijack.A→A′.B→B′.cB′ .m in tr ⇒
∃cA · send.A.cA.B.m in tr .

In order to define the intruder’s capabilities, we require
a means to describe exactly what the intruder knows. In the
next section we define a function:

IntruderKnowsIIK : Trace→ P(MessageApp)

such thatIntruderKnowsIIK(tr) gives the set of messages
that the intruder knows (and so can send) aftertr, assum-
ing that his initial knowledge isIIK . We limit the intruder’s

actions in the application layer: he can only send or fake
messages that he knows.

N3,IIK(tr) =̂
∀I : Dishonest, cI , B, tr′,m ·

tr′_〈send.I.cI .B.m〉 6 tr ⇒
m ∈ IntruderKnowsIIK(tr′) ∧

∀A,B, cB , tr′,m · tr′_〈fake.A.B.cB .m〉 6 tr ⇒
m ∈ IntruderKnowsIIK(tr′) .

No agent may receive a message that was not previously
sent, faked or hijacked to them.

N4(tr) =̂ ∀B, cB , A, m ·
receive.B.cB .A.m in tr ⇒ ∃A′, B′, cA ·

send.A.cA.B.m in tr ∨ fake.A.B.cB .m in tr ∨
hijack.A′→A.B′→B.cB .m in tr .

Relating the abstraction to a concrete network
When an agent sends a message in the application layer

(i.e. performs asendevent), their protocol agent creates a
correspondingsendTL event in the transport layer. The net-
work then generates areceiveTL event for the recipient (un-
less the intruder hijacks the message first), which causes the
recipient’s protocol agent to perform areceiveevent in the
application layer.

We assume the existence of a partial, symbolic decoding
functionD : (Agent×Agent)×Connection×Trace 7→ Trace
that transforms traces of transport-layer send and receive
events on a single connection into traces of application-
layer send and receive events on that connection. There
is not necessarily a 1-1 relationship between application-
layer and transport-layer messages: some channels may
have an initial key-establishment phase, or may send several
transport-layer messages for each application-layer mes-
sage, or aggregate several application-layer messages into
a single transport-layer message. This decoding function
gives the trace of application-layer events that would re-
sult from undoing encryption, validating signatures and per-
forming other functions necessary for the implementation
of the secure channel in use.

The decoding function is clearly dependent upon the im-
plementation of the secure channel fromA to B, and also
upon the security parameters (e.g. keys) established for any
particular connection. Its result, for a given connection,
depends only on the transport layer messages sent and re-
ceived on that connection, and satisfies an obvious prefix
property:

∀A : R̂i, B : R̂j , cA, tr, tr′·
tr′ ↓ {sendTL.A.cA.B, receiveTL.A.cA.B} 6

tr ↓ {sendTL.A.cA.B, receiveTL.A.cA.B} ⇒
D(A→B)(cA)(tr′) 6 D(A→B)(cA)(tr) .

The protocol agents faithfully translate the transport-
layer events into application-layer events, possibly with

some buffering, so the decoding of the transport-layer mes-
sages gives a prefix of the corresponding application-layer
sends, and a postfix of the corresponding application-layer
receives.

A1(tr) =̂ ∀A : (Honest, Ri), cA, B : R̂j ·
(D(A→B)(cA)(tr)) ↓ send.A.cA.B 6

tr ↓ send.A.cA.B ,

A2(tr) =̂ ∀B : (Honest, Rj), cB , A : R̂i ·
tr ↓ receive.B.cB .A 6

(D(A→B)(cB)(tr)) ↓ receive.B.cB .A .

The intruder has additional capabilities: as well as per-
forming sendTL or receiveTL events he can add transport
layer messages to the network (putTL) or remove them from
it (getTL). The events the intruder performs in the applica-
tion layer (send, receive, fake, andhijack) define his high-
level strategy; the transport-layer events define the imple-
mentation of that strategy. For example, in order to hijack a
message, the intruder willget the transport layer message,
modify it, and thenput it back.

We do not directly specify a formal relationship between
the intruder’s application-layer and transport-layer events,
since the intruder is not forced to follow the protocol. In
general however, we expect that ahijack event will usu-
ally be preceded by agetTL event and followed by aputTL

event; similarly, we expect afakeevent to be followed by a
putTL event.

Specifying channels We specify channels by giving trace
specifications. In order to prove that a particular transport
layer protocol really does satisfy a channel specification one
would have to define a protocol agent, translating between
application-layer and transport-layer messages, and prove
that all traces of the resulting system satisfy the trace spec-
ification.

The set of valid system traces is the (prefix-closed) set of
traces that satisfy propertiesN1–N4 andA1–A2.

ValidSystemTracesIIK =̂ {tr ∈ {|sendTL, receiveTL,
putTL, getTL, send, receive, fake, hijack|}∗ |
∀tr′ 6 tr·
N1(tr′) ∧N2(tr′) ∧N3,IIK(tr′) ∧N4(tr′) ∧
A1(tr′) ∧ A2(tr′)} .

A channel specification is a predicate over traces:

ChannelSpec: ValidSystemTracesIIK → B .

A channel specification has a natural interpretation: the set
of valid system traces that it accepts, assuming some value
of the intruder’s initial knowledge:

tracesIIK(ChannelSpec) =
{tr ∈ ValidSystemTracesIIK |
∀tr′ 6 tr · ChannelSpec(tr′)} .

Note that if we have two channel specificationsP and
Q such thatP ⇒ Q, then a channel that satisfiesP can be
used anywhere a channel that satisfiesQ can be used and, in
this case,traces(P) ⊆ traces(Q). In Section 3 we will see
some pairs of channels that are not equivalent as predicates,
but which can simulate one another; we collapse such pairs.

2. Confidential channels

A confidential channel should protect the confidentiality
of any message sent on it from all but the intended recipi-
ent. For example, a confidential channel toB can be imple-
mented by encoding the application layer messagem as the
transport layer message{m}PK(B). We identify confiden-
tial channels by tagging them with the labelC (e.g. writing
C(Ri→Rj)).

The IntruderKnows function is then defined so that
the intruder only learns messages that are sent on non-
confidential channels, or that are sent to him:

IntruderKnowsIIK(tr) =̂ {m | (SentToIntruder(tr) ∪
SentOnNonConfidential(tr) ∪ IIK) ` m} .

SentToIntrudergives the set of messages sent by hon-
est agents to dishonest agents, andSentOnNonConfiden-
tial gives the set of messages sent between agents on non-
confidential channels.

The traces of a confidential channel specification depend
on the intruder’s initial knowledge. When we claim that a
secure transport layer is confidential, we make that claim
subject to a restriction on the intruder’s initial knowledge
(usually that the intruder’s initial knowledge does not con-
tain the honest agents’ secret keys).

We specify confidential channels by requiring that the
IntruderKnows(tr) function does indeed capture what the
intruder would know after the tracetr. The messages the
intruder knows after observing a trace are those that can be
deduced from his initial knowledge and the messages sent
on the network:

IntruderKnowsTL,IIK(tr) =̂
{m | {m′ | ∃A,B, cA · sendTL.A.cA.B.m′ in tr} ∪

IIK ` m} ;

so we require that:

∀tr ∈ tracesIIK(ChannelSpec) · IntruderKnowsIIK(tr) =
IntruderKnowsTL,IIK(tr) ∩MessageApp .

3. Authenticated channels

We specify authenticated channels by describing the re-
lationship between thereceiveandsendevents performed
by the agents at either end of the channel. In particular, we

specify under what circumstances an agent may perform a
particularreceiveevent. The bottom of our hierarchy is the
standard Dolev-Yao network model, captured byN1–N4.

There are two dishonest events the intruder can perform:
faking and hijacking. As the examples in Section 1 show,
with some transport protocols the latter can only be per-
formed using dishonest identities. We specify our channels
by placing restrictions on when he can perform these events.
The restrictions below are the building blocks that we use to
construct more interesting properties.

Definition 3.1 (No faking). If NF(Ri→Rj) then the in-
truder cannot fake messages on the channel:

NF(Ri→Rj)(tr) =̂ tr ↓ {| fake.R̂i.R̂j |} = 〈〉 .

Definition 3.2 (No-re-ascribing). If NRA(Ri→Rj) then
the intruder cannot change the sender’s identity when he
hijacks messages:

NRA(Ri→Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A,A′ : R̂i;B,B′ : R̂j ·A 6= A′ |} = 〈〉 .

Definition 3.3 (No-honest-re-ascribing). If NRA−(Ri →
Rj) then the intruder can only change the sender’s identity
to a dishonest identity when he hijacks messages:

NRA−(Ri→Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A,A′ : R̂i;B,B′ : R̂j ·A 6= A′ ∧ Honest(A′) |} = 〈〉 .

Definition 3.4 (No-redirecting). If NR(Ri→Rj) then the
intruder cannot redirect messages:

NR(Ri→Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A,A′ : R̂i;B,B′ : R̂j ·B 6= B′ |} = 〈〉 .

Definition 3.5 (No-honest-redirecting). If NR−(Ri→Rj)
then the intruder cannot redirect messages that were sent to
honest agents:

NR−(Ri→Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A,A′ : R̂i;B,B′ : R̂j ·B 6= B′ ∧ Honest(B) |} = 〈〉 .

All of the above specifications work by blocking events;
when we specify this we do not mean that the intruder can-
not generate the application-layer fake and hijack events on
the channels. What we intend is that when the intruder gen-
erates such events, he will either be unable to modify the
transport-layer messages in order to generate the necessary
putTL events, or the honest protocol agents will reject the
messages. Any behaviour of the system where the events
are generated but then rejected can be simulated by a be-
haviour where the events are not created. The simplest way
to specify these properties is to ban the events.

The intruder can use a hijack event to force an honest
agent to receive a message in a particular connection with-
out changing either of the identities associated with the mes-
sage. This activity is not blocked by any of the properties
above. In particular, the intruder can force an agent to re-
ceive a message more times than it is sent, i.e. to replay a
message. We do not specify a no-replaying property in the
building blocks because we do not wish to consider it inde-
pendently. In Section 5 we give session properties that in-
directly prevent replaying, and also properties that provide
stronger guarantees.

Combining the building blocks We now consider how
the building blocks can be combined. They are not indepen-
dent, since no-re-ascribing implies no-honest-re-ascribing,
and likewise for no-redirecting. Further, not all combina-
tions are essentially different; certain pairs of combinations
allow essentially the same intruder behaviours: each simu-
lates the other (see Section 6). We therefore collapse such
combinations.

C1 Non-confidential channels that allow faking but which
satisfy one of the forms of no-re-ascribing or no-
redirecting can simulate the bottom channel; the in-
truder can learn messages and fake them to effect a
message re-ascribe or redirect.

C2 Any re-ascribable channel that prevents faking can
simulate a re-ascribable channel that allows faking: the
intruder can send messages with his own identity and
then re-ascribe them; this activity simulates a fake.

C3 Non-confidential channels that satisfyNF∧ NRAcan
simulate non-confidential channels that satisfyNF ∧
NRA−; the intruder can always learn messages and
then send them with his own identity to simulate a dis-
honest re-ascribe.

C4 Confidential channels that do not satisfyNR− or NR
can simulate non-confidential channels because the in-
truder can redirect messages sent on them to himself,
and so learn the messages.

C5 Confidential, fakeable channels that satisfyNR can
simulate confidential, fakeable channels that satisfy
NR−; the intruder learns messages that are sent to him,
and so can fake them.

After taking these collapsing cases into consideration we
arrive at a hierarchy of four non-confidential and seven con-
fidential channels, shown in Figure 2 (where several cases
collapse to one, the figure gives the weakest specification in
each case). We also give simple example transport proto-
cols that we believe satisfy each of the properties; we ex-
plain the names in the right-hand column when we discuss
these combinations in the next section.

C ∧ NF∧ NRA∧ NR−

�
�

�
�

�
�Q

Q
Q

Q
Q

Q�
�

�
�

�
�Q

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Q�

�
�

�
�

�Q
Q

Q
Q

Q
Q�

�
�

�
�

�

�
�

�
�

�
�Q

Q
Q

Q
Q

Q

NF∧ NRA− ∧ NR−C ∧ NRA− ∧ NR−

NF∧ NRA−C ∧ NR−

C ∧ NF∧ NRA− ∧ NR−

C ∧ NF∧ NRA∧ NR

⊥

C ∧ NRA∧ NR− NF∧ NRA− ∧ NR

C ∧ NF∧ NRA− ∧ NR

Q
Q

Q
Q

Q
Q�

�
�

�
�

�

Specification Example Name
⊥ m,A, B Dolev-Yao

NF NRA− {m}SK(A), B Sender authentication
NF NRA− NR− {h(m,nA)}SK(A), {nA}PK(B),m Responsibility
NF NRA− NR {m,B}SK(A) Strong authentication

C NR− {m}PK(B), A Confidentiality and intent
C NRA− NR− {m, k}PK(B), {m⊕ k}SK(A)

C NRA NR− {m,A}PK(B), A Credit
C NF NRA− NR− {h(m,nA)}SK(A), {m,nA}PK(B) Responsibility
C NF NRA− NR {{m}PK(B)}SK(A)

C NF NRA NR− {{m}SK(A)}PK(B), A

C NF NRA NR
{{m,A}PK(B)}SK(A) or
{{m,B}SK(A)}PK(B)

Strong authentication

Figure 2. The hierarchy of secure channels
with example implementations.

4. Some interesting authenticated channels

In this section we examine some of the channels in
the hierarchy in more detail, and describe which of these
properties we believe are satisfied by some standard secure
transport layers.

Sender authentication When an agentB receives a mes-
sage, purportedly fromA, he might ask whether he can be
sure thatA really sent the message. In other words: at some
point in the past, didA send that message to someone, not
necessarilyB?

Definition 4.1. The channelRi→Rj providessender au-
thenticationif NF(Ri→Rj) ∧ NRA(Ri→Rj).

An obvious way to implement this property is for
agents to sign messages they send with their secret key:
{m}SK(A). The signature does not contain the intended
recipient’s identity, so a channel implemented in this way
is redirectable. The intruder cannot fake messages on this
channel, nor re-ascribe messages sent by other agents so
that they appear to have been sent byA, because he does
not knowA’s secret key.

With unilateral TLS (i.e. the standard web model), the
channel from the server to the client provides authentication
of the server’s identity, but not of the client’s. This chan-
nel is redirectable because the messages may be received

by someone other than the agent the server intended them
for, and so does not satisfy confidentiality. We believe this
channel satisfiesStrongStream∧ NF∧ NRA.2

Intent When agents sign messages with their secret key,
their intent might not be preserved — the intruder can redi-
rect their messages to whomever he likes.

Definition 4.2. The channelRi→Rj provides a guarantee
of intent if NR(Ri→Rj).

In other words, the recipient of a message knows that the
sender intended him to receive it.

The easiest way to design a channel that provides a guar-
antee of intent is to encrypt messages with the intended re-
cipient’s public key. We have already used this method as
the most obvious implementation of a confidential channel.

Recall that non-confidential, non-redirectable, fakeable
channels can simulate message redirection by learning mes-
sages and faking them (collapsing caseC1). We therefore al-
ways combine intent with confidentiality or non-fakeability.
Further, fakeable, confidential channels that satisfyNRcan
simulate fakeable, confidential channels that satisfyNR−,
because the intruder learns messages that are sent to him,
and so can fake them to ‘redirect’ them to another agent
(collapsing caseC5).

With unilateral TLS, the channel from the client to the
server provides a guarantee of the sender’s (the client’s)
intent, as the client must have verified the server’s iden-
tity; however it does not provide authentication of the
client’s identity. We believe this channel satisfiesC ∧
StrongStream∧ NR.

Strong authentication We can combine the previous two
properties so that wheneverB receives a message fromA,
A previously sent that message toB.

Definition 4.3. The channelRi→Rj providesstrong au-
thenticationif it provides sender authentication and intent
NF(Ri→Rj) ∧ NRA(Ri→Rj) ∧ NR(Ri→Rj).

We can achieve strong authentication by encodingm as
{B,m}SK(A). The intruder cannot change the recipient’s
identity whilst maintainingA’s signature, so this channel
is unredirectable; he cannot fake messages on this channel
because he does not knowA’s secret key; and he cannot
re-ascribe messages so that they appear to have been sent
by an honest agent. (As with sender authentication, he can
learn the message and sign it himself; again this is not a
re-ascribe.)

We believe that bilateral TLS establishes an authenti-
cated stream in each direction, and so both channels satisfy
C ∧ StrongStream∧ NF ∧ NRA∧ NR. Such a channel is
equivalent to the authenticated channels of Broadfoot and
Lowe [3].

2StrongStreamis a session property and is defined in Section 5.

Credit and responsibility In [1], Abadi highlighted two
different facets of authentication. When an agentB receives
a messagem from an authenticated agentA, he could inter-
pret it in two different ways. He might attributecredit for
the messagem to A; for example, ifB is running a compe-
tition, andm is an entry to the competition, he would give
credit for that entry toA. Alternatively, he might believe
that the message is supported byA’s authority, and so as-
signresponsibilityfor it to A; for example, ifm is a request
to delete a file, then his decision will depend on whether or
notA has the authority to delete the file.

Abadi argued that these interpretations of authentication
are not the same, and that protocol designers tend not to
state which form of authentication their protocols provide:
in many cases protocols will offer one, but not the other.

Definition 4.4. The channelRi→Rj can be used to give
credit if C(Ri→Rj) ∧ NRA(Ri→Rj) ∧ NR−(Ri→Rj).

The intruder can fake messages on these channels, but in
doing so he only gives another agent credit for his messages.

Abadi gives the following example of a protocol suit-
able for assigning credit:{A, k}PK(B), {m}k. WhenB
receives this message he knows that he can give credit for
m to the person who encrypted the keyk; however he can-
not be sure that it was reallyA who did this. So while the
intruder can fake messages on this channel, he will only be
giving credit to someone else, rather than claiming it for
himself.

Definition 4.5. The channelRi→Rj can be used to as-
sign responsibilityif NF(Ri→Rj) ∧ NRA−(Ri→Rj) ∧
NR−(Ri→Rj).

The only attack the intruder could perform on such a
channel would be to overhear a message, or to claim it as his
own. In the latter case, he will either not have the authority
required for the message (as in the example of a fileserver
and a delete message), or he will be accepting the blame for
something. The example given for a strongly authenticated
channel would be a suitable implementation of this channel.

In some circumstances, one might wish to strengthen
such a channel so that it also provides intent (i.e.NF ∧
NRA− ∧ NR), to ensure that the correct agent assigns the
responsibility.

Guaranteed knowledge Both of the previous channels
(credit and responsibility) provide a further property: they
guarantee that the apparent sender of a message knew the
content of the message. This is important for these chan-
nels as an agent should not be able to claim credit for a
message that he doesn’t know, and no agent should claim
responsibility for a message that he does not know.

Fakeable channels cannot provide this property: if the
intruder can fake messages with another agent’s identity, he
can send messages that they have no chance of knowing.

Further, if the intruder can re-ascribe a message to an honest
agent then the channel cannot provide guaranteed knowl-
edge. If the intruder can re-ascribe a message to himself
(i.e. to a dishonest agent) then the channel can only provide
guaranteed knowledge if it is non-confidential.

Definition 4.6. The channelRi→Rj provides a guaran-
tee that the apparent sender of a message knew the mes-
sage ifNF(Ri→Rj)∧NRA−(Ri→Rj)∧(C(Ri→Rj) ⇒
NRA(Ri→Rj)).

5. Session and stream channels

The properties described so far allow us to specify chan-
nels that provide guarantees for individual messages. In
practice it is often necessary to group together different
messages that were sent in the same connection into a sin-
gle session. In this section we consider six properties relat-
ing different messages in the same connection; they can be
combined with the properties of Figure 2.

Given a tracetr we might ask whether it is feasible
that the eventsend.A.cA.B.m is responsible for the event
receive.B′.cB′ .A′.m, in the sense that if the first event had
not happened, the second might not have. If eitherA 6= A′

or B 6= B′ there must be a hijack event between the two
events in order for the first to be responsible for the second.

Feasibletr(send.A.cA.B.m, receive.B′.cB′ .A′.m) =̂
∃tr′, tr′′ : Trace· tr′_〈send.A.cA.B.m〉_tr′′_

〈receive.B′.cB′ .A′.m〉 6 tr ∧
(A = A′ ∧B = B′) ∨
(hijack.A→A′.B→B′.cB′ .m in tr′′) .

The hijack event is only defined when the roles played
by the new sender and receiver are the same as those played
by the old. In order for it to be feasible that a particular
send event is responsible for a receive event we assume,
implicitly, that the roles of the new and the old sender are
the same, and likewise for the receivers.

Any system tracetr induces a relationRtr (receives-
from) over the set of connection identifiers in that system:
cBRtrcA if all of the messages received in the connec-
tion cB could feasibly have been sent in the connectioncA.

We need to be careful about the way we deal with con-
nections that receive faked messages. Thefakeevent is an
abstraction of the activity that the intruder performs when
he fakes messages: he creates a new protocol agent with a
false identity, and then uses that protocol agent to establish
connections to other agents. He then uses these connections
to fake messages. We partitionConnectioninto honest and
intruder connection identifiers. An honest agent’s connec-
tion that receives faked messages is related to every intruder
connection.

cBRtrcA =̂ ∀A′, B : Agent·
∃A,B′ · ∀m · receive.B.cB .A′.m in tr ⇒

Feasibletr(send.A.cA.B′.m, receive.B.cB .A′.m) ∨
cA ∈ IntruderConnection∧ ∀m, tr′ ·

tr′_〈receive.B.cB .A′.m〉 6 tr ⇒
fake.A′.B.cB .m in tr′ .

The connectioncB is related to every connection that could
feasibly have sent (or faked) all of the messages that are
received incB .

It is not hard to formulate valid system traces that induce
non-functional relations, for example, if two agents send
sequences of messages that share a common subsequence
that is received by another agent.

For such traces there are different ways of interpret-
ing the events and of resolving the non-determinism in
the relation. Each of these interpretations is represented
by a maximal functional refinementof Rtr, i.e., any rela-
tion R′ that: is a subset ofRtr; has the same left-image
asRtr; and is functional (whereRtr might not be). We
write R′ � Rtr whenR′ is a maximal functional refine-
ment ofRtr. Note that� is not necessarily reflexive, but
if Rtr � Rtr thenRtr is functional so has no proper re-
finements.

In order to specify session and stream properties we
place conditions on the maximal functional refinements of
theR relation. We will also restrict attention to a pair of
roles: we defineRtr � (Ri→Rj) = Rtr�Σ(Ri →Rj), and
Rtr � {Ri, Rj} =̂ Rtr�Σ(Ri →Rj)∪Σ(Rj →Ri), where:

Σ(Ri→Rj) = {| send.R̂i.Connection.R̂j , fake.R̂i.R̂j ,

receive.R̂j .Connection.R̂i, hijack.R̂i→R̂i.R̂j→R̂j |} .

Session channels Consider the example implementation
of a secure channel that satisfiesC ∧ NR− given in Figure 2:
{m}PK(B), A. There is nothing in the transport layer mes-
sage to distinguish this message from one sent byA to B in
a different connection. It is clear that ifA does send two
messages toB in different connections, the system will ac-
cept traces in whichB receives them in a single connection.
Further, since the intruder can fake messages on this chan-
nel, it is possible thatB receives a mix of messages fromA
and from the intruder in the same session.

If A’s protocol agent included a fresh nonce with the first
message thatA sent toB, and then sent that nonce with each
subsequent message then as long as that nonce remains se-
cret, neither of the attacks above are possible. The messages
thatA sends are bound together by the nonce, soB’s proto-
col agent knows that each message it receives fromA was
sent in a single connection, and so will ensure thatB re-
ceives them in a single connection. It is impossible for the
intruder to inject messages into the connection as he does

not know the nonce. In order to fake messages the intruder
must bind them together with a single nonce; in this case
they can be thought of as coming from a single dishonest
connection.

This modification allows us to use this transport layer
protocol to establish sessions: all of the messages sent in a
single connection will be received in a single connection,
and the intruder cannot inject messages into the session.
The intruder can still remove and re-order messages within
the session.

Definition 5.1 (Session). A channelRi→Rj is a session
channel if the relationRtr � (Ri→Rj) is left-total:

Session(Ri→Rj)(tr) =̂
∀cB · ∃cA · (cB , cA) ∈ Rtr � (Ri→Rj) .

The transport layer protocol described above has the un-
fortunate property that the intruder can replay messages
from old sessions, and causeB to believe thatA wishes
to start a new session with him. This is an attack against
the injectivity of the transport protocol. Similar attacks are
possible against other transport protocols in which, for ex-
ample, one session is played to two different agents. The
next property prevents this sort of attack.

Definition 5.2 (Injective Session). A channelRi→Rj is
an injective session channel if it is a session channel and
there exists an injective maximal functional refinementR′

of thereceives-fromrelationRtr � (Ri→Rj):

InjectiveSession(Ri→Rj)(tr) =̂
Session(Ri→Rj)(tr) ∧
∃R′ � Rtr � (Ri→Rj) · R′ is injective.

The security parameters of a TLS connection are used
to protect the integrity of every record layer message. This
integrity check, and the secrecy of the security parameters
ensures that TLS is a session channel. The agents calculate
the security parameters together in the handshake, so they
both know they have contributed to the values of the secu-
rity parameters, and so they are communicating in a new
session. In order to replay a TLS session the intruder would
have to be able to choose the security parameters to match
those of the old session. TLS therefore establishes injective
sessions.

The TLS handshake protocol ensures that the connec-
tions held by the client and server are bound together in a
single session. However, it is not the case that every in-
jective session channel achieves this. It is possible for the
intruder to interleave connections in such a way that a mes-
sageA receives in a connectioncA may not be in response
to the messages she sent incA.

Definition 5.3 (Strong Session). A channelRi→Rj is
a strong session channel if the channelsRi→Rj and

Rj →Ri are session channels and there exists a symmet-
ric maximal functional refinementR′ of the receives-from
relationRtr � {Ri, Rj}:

StrongSession(Ri→Rj)(tr) =̂
Session(Ri→Rj)(tr) ∧ Session(Rj →Ri)(tr) ∧
∃R′�Rtr � {Ri, Rj} · ∀cA, cB · cBR′cA ⇒ cAR′cB .

The strong session property ensures that the sort of session
interleaving and de-coupling described above cannot hap-
pen. A strong session channel also ensures injectivity.

Stream channels The record layer of TLS includes a
further integrity protection mechanism: sequence numbers.
The sequence number is authenticated by the usual TLS in-
tegrity protection, so the recipient of a TLS stream can be
sure that he has not missed any messages, nor received mes-
sages in any order other than that intended by the sender.

TLS therefore provides a stronger guarantee than the
strong session property: the stream of messages an agent
receives is a prefix of the stream of messages sent by the
other agent in the session. This property prevents the in-
truder from permuting the order in which messages are re-
ceived, or inserting or removing messages from a session.
However, the intruder can terminate a stream at any point.

We define stream channels by altering the definition of
the receives-fromrelationRtr to form thestream-receives-
from relation:Str. cBStrcA if the stream of messages re-
ceived incB is a prefix of the stream of messages sent incA.
Stream, injective streamandstrong streamchannels are de-
fined in the same way as the session channels usingStr in
place ofRtr.

cBStrcA =̂ ∀A′, B ·
∃A,B′ · tr ↓ receive.B.cB .A′ 6 tr ↓ send.A.cA.B′ ∧
∀m · receive.B.cB .A′.m in tr ⇒

Feasibletr(send.A.cA.B′.m, receive.B.cB .A′.m)∨
cA ∈ IntruderConnection∧

tr ↓ receive.B.cB .A′ 6 tr ↓ fake.A′.B.cB .

We believe that TLS (in unilateral and bilateral mode)
establishes strong stream channels [7].

It is clear thatcBStrcA ⇒ cBRtrcA; hence each of the
stream channels is simulated by the equivalent session chan-
nel. These six properties give rise to the hierarchy shown in
Figure 3.

We believe that each of the channels in Figure 2 except
the bottom one can be strengthened to give a session prop-
erty by including a session identifier in the transport-layer
message. However, this must be done with care; for exam-
ple, the channel that sends messages as{{m}SK(A)}PK(B)

cannot be strengthened to a session channel by includ-
ing a session identifier outside the sender’s signature,
{{m}SK(A), cA}PK(B), as this would allow the intruder
to take messages from two different sessions betweenA

Strong Stream

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

Stream

Injective Session

⊥

Session

Injective Stream

Strong Session

Figure 3. The session and stream channel hi-
erarchy.

and himself, and combine them into a new session be-
tweenA and some other honest agent. Instead, the session
identifier must be bound to the application-layer message:
{{m, cA}SK(A)}PK(B).

Some of the channels can be further strengthened to give
a strong session property. We also believe that any session
channel can be strengthened to give a stream property, and
any injective or strong session channel can be strengthened
to give an injective or strong stream property by binding au-
thenticated sequence numbers to every message, as in TLS.

6. Simulation

In order to compare the relative strengths of different
channels, we need to compare the effect they have on the
intruder’s capabilities. In particular, we want to check that
when the intruder can perform a dishonest activity in two
different ways the resulting channels are equivalent. In this
section we present a simulation relation that compares chan-
nel specifications by comparing the honest agents’ views
of them. We justify this definition, and use it to establish
an equivalence relation (simulation in both directions) on
channel specifications.

Process simulation is usually defined in terms of a sim-
ulation relation between the states of processes. However,
we use the term simulation to mean something different: we
want to capture the notion that one channel allows the same
attacks as another. If specificationP simulates specifica-
tion Q, thenP allows every attack thatQ allows; in other
words,P is no more secure thanQ.

Subset inclusion of the traces of our channel specifica-
tions would capture too much information for the simula-
tion relation discussed above. For example, a channel in
which the intruder cannot perform the fake event, but can hi-
jack and re-ascribe his own messages should certainly simu-

late a nearly identical channel in which the intruder can fake
messages. However, there are traces that the latter specifi-
cation accepts that the former does not (e.g. any trace that
contains a fake event). In order to draw the correct conclu-
sion about these two specifications we need to look at the
result of the intruder’s behaviour, and not the way in which
he performs it. Rather than directly comparing the traces
of two specifications we must compare the honest agents’
views of the traces.

The honest agents’ view of the traces of a channel spec-
ification is the restriction of those traces to the application-
layer send and receive events performed by the honest
agents:

HonestTracesIIK(ChannelSpec) =̂
{tr � {| send.Honest, receive.Honest|} |

tr ∈ tracesIIK(ChannelSpec)} .

Definition 6.1 (Simulation). The channel specification
ChannelSpec1 simulatesChannelSpec2 if, for all possible
values of the intruder’s initial knowledge, every trace of the
second specification corresponds to a trace of the first spec-
ification that appears the same to the honest agents:

∀IIK ⊆ Message· HonestTracesIIK(ChannelSpec2) ⊆
HonestTracesIIK(ChannelSpec1) .

We writeChannelSpec1 4 ChannelSpec2.

If Spec1 4 Spec2 we claim that the intruder can perform
any attack on the first specification that he can on the sec-
ond (i.e. the first specification is no more secure than the
second). This is clearly true for those attacks that can be
detected by looking at the honest traces. The result is not
so clear for attacks that cannot immediately be detected by
looking at the honest traces; in particular, in order to de-
tect attacks against confidentiality we must examine the in-
truder’s knowledge after traces of the specifications. We
can show that if there is a factf that the intruder can learn
under a specification (either by performing a legitimate pro-
tocol run with another agent, or by learning a secret), then
he should be able to learn that fact under any specification
that simulates the first.

Proposition 6.2. If ChannelSpec1 4 ChannelSpec2 then:

∀IIK2 ⊆ IIK1 ⊆ Message·
∀tr2 ∈ tracesIIK2(ChannelSpec2) ·
∃tr1 ∈ tracesIIK1(ChannelSpec1) ·

HonestTrace(tr2) = HonestTrace(tr1) ∧
IntruderKnows(tr2) ⊆ IntruderKnows(tr1) .

We define our equivalence relation as simulation in both
directions.

Definition 6.3 (Equivalence). Two channel specifications
ChannelSpec1 andChannelSpec2 are equivalent if they sim-
ulate each other. We writeChannelSpec1 ∼= ChannelSpec2.

The intruder has exactly the same capabilities in any two
equivalent systems: he can perform the same attacks in
both, and there is no fact that he can learn in one but not
in the other.

7. Alternative channel specifications

We have specified our channels by blocking the dishon-
est events that the intruder can perform. Specifying the
channels in this way gives a simple set of definitions; once
the intruder’s initial powers are understood, it is easy to see
the restrictions that are created by blocking, or limiting, his
use of one of the dishonest events. However, the specifica-
tions are not particularly useful for proving properties about
systems. In this section we give alternative formulations for
our channel specifications; these alternatives state exactly
which events must have occurred before an honest agent
can receive a message, and are more conducive to proving
properties about our networks.

Network rule (N4) states the necessary events that must
have happened before an honest agent can receive a mes-
sage: when an honest agentB receives messagem, appar-
ently from agentA, then eitherA really sent that message
to B, the intruder faked the message, or the intruder has hi-
jacked a message and causedB to receive it fromA. None
of our basic authentication channels prevent messages from
being replayed, but the strongest channel (NF∧NRA∧NR)
prevents all other hijack events, so this channel satisfies a
stronger form ofN4 in which the only possibility is thatA
really did send the message toB:

StrongAuth(Ri→Rj)(tr) =̂ ∀B : R̂i, cB , A : R̂i,m ·
Honest(B) ∧ receive.B.cB .A.m in tr ⇒
∃cA · send.A.cA.B.m in tr .

In this case, it was obvious how to form the alternative
specification for the channel: none of the dishonest events is
allowed (except a replay), so none of them could have been
the cause of the receive event. We note that this alterna-
tive form of the specification does not prevent the intruder
from performing dishonest events on the channel (except re-
plays); however, any dishonest event that he does perform
cannot cause an honest agent to receive a message that they
would not otherwise have received (as there must also be a
send event).

The alternative specification for any combination of the
channel primitives is formed as below:

• The alternative form of no-faking (NF) is formed by
removing thefake.A.cA.B.m possibility fromN4;

• The alternative form of no-re-ascribing (NRA) must
not allow message re-ascribing: if the receive event
was caused byhijack.A′ → A.cA.B′→B.cB .m then
A = A′;

• The alternative form of no-honest-re-ascribing (NRA−)
must restrict the possibilities for message re-ascribing:
if the receive event was caused byhijack.A′→A.B′→
B.cB .m thenA = A′ or A must be dishonest;

• The alternative form of no-redirecting (NR) must not
allow message redirection: if the receive event was
caused byhijack.A′ →A.B′→B.cB .m thenB′ = B;

• The alternative form of no-honest-redirecting (NR−)
must restrict the possibilities for messages redirection:
if the receive event was caused byhijack.A′→A.B′→
B.cB .m thenB = B′ or B′ must be dishonest.

One can prove that each of the alternative forms is equiv-
alent to the corresponding original specification. For exam-
ple, let

SenderAuth(Ri→Rj)(tr) =̂ ∀B : R̂j , cB , A : R̂i,m ·
Honest(B) ∧ receive.B.cB .A.m in tr ⇒
∃cA : Connection· send.A.cA.B.m in tr ∨
∃A′ : R̂i, B

′ : R̂j · (Dishonest(A) ∨A = A′) ∧
hijack.A′→A.B′→B.cB .m in tr .

Theorem 7.1. The following specifications are equivalent:

ChannelSpec1 = ChannelSpec∧ SenderAuth(Ri→Rj) ,
ChannelSpec2 = ChannelSpec∧ (NF∧ NRA−)(Ri→Rj)

where ChannelSpec is any channel specification.

8. Conclusions and related work

In this paper we have examined a hierarchy of secure
channel specifications. We illustrated these channel speci-
fications via example protocols that might implement them,
but we have not proven that the implementations are cor-
rect. It is clear that the hierarchy presented in this document
is not complete: there are other properties (e.g. recentness,
non-repudiation) that channels can provide that we have not
accounted for in our specifications.

The channel specifications on their own serve as an in-
teresting exploration of the sort of protection that might be
afforded by a transport layer. However, we see their main
use as being to analyse layered security architectures. The
approach to analysing such protocols that other researchers
have taken is to model the transport layer protocol first, and
then to model the security protocol being run on top of that;
see e.g. [6]. We propose to analyse security protocols that
use secure transport layers usingCasper [8] and FDR [10];
to do so, we will build CSP models capturing the services
provided by secure channels. We expect to find suitable ex-
ample protocols in grid and web architectures, and in study-
ing delegation.

Delegation protocols provide an interesting area for fur-
ther extensions to the model. In many delegation protocols
security credentials are established in the application layer,
and then used in the transport layer. This crossing of lay-
ers is not something our current model can represent, as we
assume that application-layer and transport-layer messages
are disjoint. There may also be other classes of security
protocol in which data values established in one layer are
used in the other, so it would be useful if our model could
be extended to enable us to study these.

We also intend to investigate how secure channels can
be combined together, either chained together in series or
layered one on top of another: what properties are satisfied
by such combinations?

We discuss briefly how our approach to specifying se-
cure channels compares with that taken by other authors.

Broadfoot and Lowe In [3], Broadfoot and Lowe spec-
ify a form of secrecy that is equivalent to our network with
every channel being non-re-ascribable and confidential.

The difference between our definition of confidentiality
and that given in [3] is that we allow the intruder to change
the identity of the sender of a message. In the model in
which Broadfoot and Lowe’s results should be interpreted,
the intruder does not possess this capability, so their defini-
tion ought to be compared to, and is equivalent to, non-re-
ascribable confidential channels.

Broadfoot and Lowe also specify a single form of au-
thenticated channel, which is equivalent to an authenticated
stream channel.

Empirical channels Creese et al. have developed the no-
tion of empirical channels, and adapted the traditional at-
tacker model for analysing protocols in order to study secu-
rity protocols for pervasive computing [4]. They have a net-
work model comprising traditional, high-bandwidth digital
communications channels, and empirical, low-bandwidth
and human-oriented, channels. The empirical channels are
used for non-traditional forms of communication, which of-
ten seem necessary for applications in pervasive computing,
such as two humans comparing a code printed on each of
their laptop screens.

Over such channels, they specify any combination of
the following restrictions on the intruder: no spoofing,
no over-hearing and no blocking. No spoofing corre-
sponds to our definition of an unfakeable channel, although
Creese et al. allow two different models of this channel:
one that allows redirecting, and one that doesn’t. No over-
hearing corresponds to our definition of confidential chan-
nels. We do not have an equivalent to the no blocking chan-
nel, because on a traditional network, where the intruder is
assumed to be in control of all message flows, we do not see
how this anti-denial-of-service property could be realised.
With the empirical channels suggested in [4] it is easier to
see how this would be possible.

Security architectures using formal methods Boyd [2]
defines two different types of channel in a security archi-
tecture consisting of users and information about who trusts
whom. A channel is a relationship between two users; a
channel between two users is established when they share
knowledge of a public key or a shared secret (e.g. a symmet-
ric key). Thus channels are established by utilising existing
keys, or propagating new keys between the two users wish-
ing to communicate — often the propagation is over ex-
isting channels between trusted users. Boyd considers two
types of cryptographic keys:Confidentiality, where only the
intended user (or set of users) in possession of the secret key
can read the message; andAuthentication, where only that
user (or set of users) in possession of the secret key can
write the message.

Boyd’s channels can either be symmetric (in which case
each user is sure of the other’s identity) or not (in which
case one user may be unsure of the other’s identity). On
a non-symmetric confidentiality channel, the message re-
ceiver may be unaware of the sender’s identity: this is
equivalent to a confidential channel in our model. On a
symmetric confidentiality channel the message sender is au-
thenticated to the receiver: this corresponds to an authenti-
cated confidential channel. A non-symmetric authentica-
tion channel is redirectable, while a symmetric authentica-
tion channel is not. Boyd’s authentication is equivalent to a
channel with either sender authentication or authenticaion.

Boyd’s channels can be directly compared with some of
our channels, but his reasons for specifying the channels are
different to ours. Boyd specifies his channels to describe
security architectures in terms of the secure channels avail-
able; the model describes when new channels may be estab-
lished, and formalises some intuitively obvious results (for
example that no secure channels can be established between
users who possess no secrets); we specify channels in order
to enrich our abstract layered model for protocol analysis.

Acknowledgements.

We would like to thank Allaa Kamil for many useful dis-
cussions. This work is partially funded by the US Office of
Naval Research.

References

[1] M. Abadi. Two facets of authentication. InProceedings
of the 11th IEEE Computer Security Foundations Workshop,
pages 25–32, 1998.

[2] C. Boyd. Security architectures using formal methods.IEEE
Journal on Selected Areas in Communications, 11(5):694–
701, 1993.

[3] P. Broadfoot and G. Lowe. On distributed security trans-
actions that use secure transport protocols. InProceedings

of the 16th IEEE Computer Security Foundations Workshop,
pages 141–151, 2003.

[4] S. Creese, M. Goldsmith, R. Harrison, A. Roscoe, P. Whit-
taker, and I. Zakiuddin. Exploiting empirical engagement
in authentication protocol design.International Conference
on Security in Pervasive Computing, Lecture Notes in Com-
puter Science, 3450:119–133, 2005.

[5] J. Guttman and F. F̀abrega. Protocol independence through
disjoint encryption. InProceedings of the 13th IEEE Com-
puter Security Foundations Workshop, pages 24–34, 2000.

[6] S. Hansen, J. Skriver, and H. Nielson. Using static analysis
to validate the SAML Single Sign-On Protocol. InProceed-
ings of the Workshop on Issues in the Theory of Security,
2005.

[7] A. Kamil and G. Lowe. Analysing TLS in the strand spaces
model. In preparation, 2008.

[8] G. Lowe. Casper: A compiler for the analysis of secu-
rity protocols.Journal of Computer Security, 6(1–2):53–84,
1998.

[9] OASIS Security Services Technical Committee.Assertions
and Protocols for the Security Assertion Markup Language
(SAML) V2.0, 2005. Available from http://www.oasis-
open.org/committees/security/.

[10] A. Roscoe.The Theory and Practice of Concurrency. Pren-
tice Hall, 1998.

[11] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and
A. Roscoe. The Modelling and Analysis of Security Pro-
tocols. Addison-Wesley, 2001.

[12] Visa International Service Association.Verified by Visa Sys-
tem Overview External Version 1.0.2, 2006. Available from
https://partnernetwork.visa.com/vpn/global/category.do.

[13] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Cza-
jkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman,
and S. Tuecke. Security for grid services. InProceedings
of the 12th IEEE International Symposium on High Perfor-
mance Distributed Computing, pages 48–57, 2003.

A. Notation

An event is an atomic communication between pro-
cesses; an event may carry data (for examplec.1). A trace
is a sequence of events that a process might perform; for
example〈a1, a2, . . . , an〉 is the trace containinga1 to an in
that order;〈〉 is the empty trace. Iftr andtr′ are two finite
traces thentr_tr′ is their concatenation. We writetr 6 tr′

if tr is a prefix oftr′. We writea in tr if the eventa occurs
in the tracetr.

If c is a channel then{| c |} is the set of events overc.
tr ↓ c is the sequence of data communicated intr over the
channel (or set of channels)c; for example〈a.1, b.1, a.2,
b.2, a.3〉 ↓ a = 〈1, 2, 3〉. tr � c is the sequence of events
communicated intr restricted to the set of eventsc; for ex-
ample,〈a.1, b.1, a.2, b.2, a.3〉 � {| a |} = 〈a.1, a.2, a.3〉.

