
Computer Science Group

THE USE OF MATRICES IN OBFUSCATION

Stephen Drape and Irina Voiculescu

CS-RR-08-12

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

Abstract

There are many programming situations where it would be convenient to conceal
the meaning of code, or the meaning of certain variables. This can be achieved
through program transformations which are grouped under the term obfuscation.
This paper presents obfuscation methods for the purpose of concealing the meaning
of matrices by changing the pattern of the elements.

We give two separate methods: one which, through splitting a matrix, changes
its size and shape, and one which, through a change of basis in a ring of polynomials,
changes the values of the matrix and any patterns formed by these. Furthermore,
the paper illustrates how matrices can be used in order to obfuscate a scalar value.

This paper considers obfuscations as data refinements. Thus we consider obfus-
cations at a more abstract level without worrying about implementation issues. For
our obfuscations, we can construct proofs of correctness easily. We show how the
refinement approach enables us to generalise and combine existing obfuscations.

1 Introduction

An obfuscation is a behaviour-preserving transformation whose aim is to make an
input program “harder to understand”. The landmark paper by Collberg et al. [4]
gives a range of transformations which can be used as obfuscating transformations. Its
purpose is to decrease the opportunities for a user to reverse engineer a commercially
supplied program [1, 4]. In this paper, we interpret “harder to understand” as keeping
some information secret for as long as possible from some set of adversaries.

After the proof of Barak et al. [1], there seems little hope of designing a perfectly-
secure software black-box, for any broad class of programs. To date, no one has
devised an alternative to Barak’s model, in which we would be able to derive proofs
of security for systems of practical interest. These theoretical difficulties do not lessen
practical interest in obfuscation, nor should it prevent us from placing appropriate
levels of reliance on obfuscated systems in cases where the alternative of a hardware
black-box is infeasible or uneconomic.

The view of obfuscation from Collberg et al. [4] concentrates on concrete data
structures such as variables and arrays. However, the thesis of Drape [7] viewed ob-
fuscations at a more abstract level by considering an abstract data-type and defining
operations for this data-type — thus we should obfuscate the data-type according
to these operations. This work had lead to the development of the specification of
obfuscations for imperative programs [9] and for creating obfuscations which impede
the effectiveness of program slicing [17].

The focus of the paper consists of a data-type for finite matrices having four op-
erations: scalar multiplication, addition, transposition and multiplication, specified
mathematically. We use data refinement [6] to provide a way of proving the correct-
ness of our obfuscated operations. Thus we are guaranteed that our obfuscations are
behaviour-preserving. We will demonstrate a number of different obfuscation tech-
nique using matrices. Since we consider our operations at a more abstract level than
program code, we will be able to discuss how we can generalise our obfuscations.

When creating obfuscations we should make reference to an attack model. In the
work of Majumdar et al. [17], the obfuscations were created with the intention of
trying to protect against an attacker armed with a program slicer. In this paper,
we adopt the attack model of Drape [7] in which when defining data-types we also

1

y fO(y)

x f(x)
f

af

fO

af

Figure 1: A commuting diagram for data obfuscation

specify a set of assertions which are true for the operations of that data-type. The
aim of the obfuscations is to make the proofs of these assertions harder.

2 Preliminaries

In this section we will discuss how we can prove the correctness of our obfuscations
and we will define a data-type for matrices.

2.1 Obfuscation as data refinement

In Drape’s thesis [7], data obfuscation was considered as a data refinement [6]. Sup-
pose that a data-type D is obfuscated using an obfuscation O to produce a data-type
E. Under the refinement approach, an abstraction function af :: E → D and a
data-type invariant dti are needed such that, for x :: D and y :: E:

x y ⇐⇒ (x = af(y)) ∧ dti(y) (1)

The term x y is read as “x is obfuscated by y”.
For a function f :: D → D, an obfuscated function fO is correct with respect to

f if it satisfies:
(∀x :: D; y :: E) x y ⇒ f(x) fO(y)

Using Equation (1) we can rewrite this as

f · af = af · fO (2)

This equation is illustrated in Figure 1. The abstraction function af is surjective and
so we have a function cf :: D → E, called the conversion function, which satisfies
af · cf = id. Thus we can rewrite Equation (2) to obtain:

f = af · fO · cf (3)

and we can use this equation to prove the correctness of fO.
If we also have that cf · af = id then we can rewrite Equation (2) to obtain:

fO = cf · f · af (4)

Thus when af is bijective then we can use Equation (4) to give us a way of deriving
an obfuscated operation fO from the original operation f .

2

2.2 Non-homogeneous operations

Suppose that we have a operation

f :: B → C

where B and C are the state spaces of two data-types. Let afB and afC be abstraction
functions for some obfuscations of B and C. How do we define a correct obfuscation
fO of f? Suppose x :: B and x y and consider:

f(x) fO(y)

≡ {Equation (1) using afC}

f(x) = afC(fO(y))

≡ {Equation (1) using afB}

f(afB(y)) = afC(fO(y))

Thus
f · afB = afC · fO (5)

Some operations, have type:

f :: D × D → D

for some data-type D. If af is an abstraction function for D then the corresponding
abstraction for D × D is

cross(af, af)

where cross is an operation with type

cross :: (α → γ, β → δ) → (α, β) → (γ, δ)

which satisfies
cross (f, g) (a, b) = (f a, g b) (6)

Thus if fO is an obfuscation of f then using Equation (5) we have that

f · cross(af, af) = af · fO (7)

We will be able to use this equation to prove the correctness of binary matrix oper-
ations such as addition and multiplication.

2.3 Matrices

A matrix is an array of numbers which are arranged in a meaningful tabular form.
It is usually two-dimensional and can have any width and height. It is also possible
to use multi-dimensional matrices and, even though these are harder to write down,
it is fairly easy to manipulate them in a computer program.

Matrices are used for a wide variety of applications such as solving systems of
equations, wavelets, graph theory and graphics. There are applications when it is
desirable to hide the meaning of a matrix. Perhaps one such case which is easy
to grasp is when, in expressing a rigid body transformation by way of a matrix,

3

the matrix has a particular structure. For example, the translation of an object by
displacements (dx, dy, dz) is usually written if the form

1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1

Should somebody wish to hide the fact that a particular matrix is a translation
matrix, they would need to design an obfuscation method which changes not only
the values, but also the visible pattern of these values.

The matrix M which has r rows and c columns (for natural numbers r and c)
will be denoted by Mr×c. The element of M that is located at row i and column j

will be written as M(i, j), and, for simplicity, assumed to be rational. The operation
dim (M) returns the dimensions of M.

There are well-defined algebraic operations on matrices, and the set of square
matrices with elements from a ring form a ring under matrix addition and multipli-
cation.

In Figure 2 we define a data-type for matrices — for the rest of the paper we will
suppose that Matrix α is Qr×c which denotes matrices with r rows and c columns
with rational number elements. So, from our data-type, we would like to obfuscate
matrices with the following matrix operations: scalar multiplication, addition, trans-
position and multiplication. In the lower part of Figure 2 we have a possible set of
assertions. As we stated in Section 1 we should aim to obfuscate our operations with
the intention that they make the proofs of correctness for assertions harder. In this
paper, we do not show such proofs but example proofs for other data-types can be
found in [7] and [9].

Note that for addition the two matrices must have the same size and for mul-
tiplication we need the matrices to be conformable, i.e. the number of columns of
the first is equal to the number of rows in the second. We can define the operations
element-wise as follows:

(scale s M)(i, j) = s × M(i, j)
(add (M,N))(i, j) = M(i, j) + N(i, j)
(transpose M)(i, j) = M(j, i)
(mult (M,P))(i, k) =

∑c

j=1 M(i, j) × P(j, k)

for matrices Mr×c, Nr×c and Pc×d with i : [0..r), j : [0..c) and k : [0..d).
We assume that basic arithmetic operations take constant time and so the com-

putational complexities of add M N, scale s M and transpose M are all r×c and the
complexity of mult M P is r×c×d.

3 Splitting method

Now that we have defined our data-type for matrices and given equations for proving
the correctness of matrix obfuscations we are ready to discuss our first obfuscation
technique. Collberg et al. [4] discuss an obfuscation called an array split. This
obfuscation was generalised in Drape [8] and so we can apply the concept of splitting
to other data-types such as matrices.

4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Matrix (α)

scale :: α → Matrix α → Matrix α

add :: Matrix α × Matrix α → Matrix α

transpose :: Matrix α → Matrix α

mult :: Matrix α × Matrix α → Matrix α

transpose · transpose = id

transpose · add = add · cross (transpose, transpose)
transpose · (scale s) = (scale s) · transpose

transpose (mult (M,N)) = mult (transpose N, transpose M)
add (M,N) = add (N,M)

Figure 2: data-type for Matrices

3.1 Defining a matrix split

Suppose that we want to split a matrix Mr×c into n matrices, called the split com-
ponents,

M 〈M0, . . . ,Mn−1〉sp

where Mi has size ri×ci for i : [0..n).
In that data representation, M is represented by n matrices using a split, called

sp, which consists of a choice function:

ch :: [0..r) × [0..c) → [0..n)

and a family F of injective functions where F = {ft}t:[0..n) such that for each t:

ft :: ch−1{t} [0..rt) × [0..ct)

We define the relationship between M and the split components element-wise by
using the choice function and the appropriate function from F to decide where an
element is mapped to:

Mt(ft(i, j)) = M(i, j) where t = ch(i, j) (8)

The requirement that we have a family of injective functions ensures that we can
recover a matrix (and thus its properties) from the split components.

Equation (8) can be considered to be a conversion function and so for a matrix
split

cf(M(i, j)) = Mt(ft(i, j)) where t = ch(i, j) (9)

5

The corresponding abstraction function for some split component Mt is

af(Mt(i, j)) = M(ft
−1(i, j)) (10)

where ft
−1 · ft = id (which is valid as ft is injective). Using these definitions we can

check that af · cf = id.
As an example, consider how we could define a split in which a matrix Mr×2c is

split vertically into two matrices Mr×c
0 and Mr×c

1 . The choice function is defined to
be

ch(i, j) = j div c

and the family of functions is:

F = {ft = (λ (i, j) . (i, j mod c)) | t = 0 ∨ t = 1}

The process of splitting a matrix is analogous to the concept of a partitioned (or
block) matrix [14] in which a matrix can be represented by a sequence of smaller
submatrices.

3.2 Splitting in squares

A simple matrix split is one which splits a square matrix into four matrices — two of
which are square. Using this split we can give definitions of our four operations for
split matrices. Suppose that we have a square matrix Mr×r and choose a positive
integer k such that k < n. The choice function ch(i, j) is defined as

ch(i, j) =

0 (0 ≤ i < k) ∧ (0 ≤ j < k)
1 (0 ≤ i < k) ∧ (k ≤ j < r)
2 (k ≤ i < n) ∧ (0 ≤ j < k)
3 (k ≤ i < n) ∧ (k ≤ j < r)

which can be written as a single formula

ch(i, j) = 2 sgn (i div k) + sgn (j div k)

where sgn is the signum function. The family of functions F is defined to be the set

F =

f0 = (λ (i, j) . (i, j))
f1 = (λ (i, j) . (i, j − k))
f2 = (λ (i, j) . (i − k, j))
f3 = (λ (i, j) . (i − k, j − k))

Again, we can write this in a single formula:

F = {fp = (λ (i, j) . (i − k (p div 2), j − k (p mod 2))) | p ∈ [0..3]}

We call this split the (k×k)-square split since the first component of the split is a
k×k square matrix.

So if
M(i, j) = Mt(ft(i, j)) where t = ch(i, j)

then we can write

Mn×n
 〈Mk×k

0 ,M
k×(n−k)
1 ,M

(n−k)×k
2 ,M

(n−k)×(n−k)
3 〉sk

6

where the subscript sk denotes the (k×k)-square split. Pictorially, we can see the
(k×k)-square split as follows:

a(0,0) . . . a(0,k−1) a(0,k) . . . a(0,n−1)

...
. . .

...
...

. . .
...

a(k−1,0) . . . a(k−1,k−1) a(k−1,k) . . . a(k−1,n−1)

a(k,0) . . . a(k,k−1) a(k,k) . . . a(k,n−1)

...
. . .

...
...

. . .
...

a(n−1,0) . . . a(n−1,k−1) a(n−1,k) . . . a(n−1,n−1)

〈
M0, M1,

M2, M3

〉

sk

Using this split, how can we define our matrix operations given in Figure 4?
The operations for scale and add are fairly straightforward. If

M 〈M0, . . . ,M3〉sk
and N 〈N0, . . . ,N3〉sk

then

scale s M 〈scale s M0, . . . , scale s M3〉sk

add (M,N) 〈add (M0,N0), . . . , add (M3,N3)〉sk

The proofs for these definitions can be found in [7].
How can we define MT ? We propose that

MT
 〈M0

T ,M2
T ,M1

T ,M3
T 〉sk

which corresponds to the following property for partitioned matrices:

(
M0 M1

M2 M3

)T

=

(
M0

T M2
T

M1
T M3

T

)

Since we defined af , cf and transposition (in Section 2.3) element-wise then we
have to proof the correctness of our obfuscation element-wise too. Let denote f denote
the element-wise transposition function, then we can use Equation (3) to prove

f(M(i, j)) = af(fO(cf(M(i, j))))

where cf and af were given in Equations (9) and (10). We have four cases — one
for each value of ch. So, suppose that ch(i, j) = 1 and then using Equation (3):

af(fO(cf(M(i, j))))

= {cf with ch(i, j) = 1}

af(fO(M1(f1(i, j))))

= {f1 = λ (i, j).(i, j − k)}

af(fO(M1(i, j − k)))

= {assume that fO(M1(i, j)) = M2
T (i, j)}

af(M2
T (i, j − k))

= {definition of transpose}

af(M2(j − k, i))

7

= {definition of af}

M(f2
−1(j − k, i))

= {f2
−1(a, b) = (a + k, b)}

M(j, i)

= {definition of transpose}

f(M(i, j))

The proofs for the other three components are similar and so we have that

MT
 〈M0

T ,M2
T ,M1

T ,M3
T 〉sk

The obfuscated operation has complexity n×n.
Finally let us consider how we can multiply split matrices. Let

Mn×n
 〈M0, M1, M2, M2〉sk

Nn×n
 〈N0, N1, N2, N3 〉sk

By considering the partitioned matrix product

(
M0 M1

M2 M3

)

×

(
N0 N1

N2 N3

)

we obtain the following result:

M × N 〈(M0 × N0) + (M1 × N2), (M0 × N1) + (M1 × N3),

(M2 × N0) + (M3 × N2), (M2 × N1) + (M3 × N3)〉sk

The computation of M×N using normal matrix multiplication requires n3 ele-
ment multiplications. If we multiply the split matrices, does this calculation require
more multiplications? From the definition of split matrices, the number of multipli-
cations required to compute each component is:

〈k3 + k2(n − k), k2(n − k) + k(n − k)2,
k2(n − k) + k(n − k)2, k(n − k)2 + (n − k)3 〉

Adding these up gives

k3 + 3k2(n − k) + 3k(n − k)2 + (n − k)3

= (k + (n − k))3

= n3

which is exactly the same number of multiplications as the unsplit version.
To reduce the number of multiplications, we could use Strassen’s algorithm [5]

which performs matrix multiplication by using seven multiplications instead of eight.
However the algorithm requires starting with a 2n×2n matrix and splitting it into
four n×n matrices and so would not be directly applicable for a general matrix.

8

3.3 Review of matrix splitting

Using our matrix split, we have seen that we can easily define obfuscated operations
for our matrix data-type. All of the obfuscated operations have a similar complexity
to the original versions. We can also define more complicated splits such as splitting
into rectangles rather than squares or by using more split components — see Sec-
tion 6.1 for more details. Since the matrix split is a generalisation of an array split
then we could use matrix splits as obfuscation for arrays. We could do this by folding
an array into a matrix, splitting the matrix and then flattening the components back
into arrays.

For our matrix data-type (defined in Figure 2) we considered four matrix oper-
ations. Could we define obfuscations for other matrix operations? We may wish
to compute the inverse of a square matrix — i.e., given a matrix M we would like
a matrix N such that M×N = I = N×M. We can derive an inverse for matrices
which have been split by the (k×k)-square split by using the equation for multiplying
two split matrices. This then leads to solving four simultaneous equations. In fact, if

M =

(
M0 M1

M2 M3

)

then M−1 is
(

(M0 − (M1 M3
−1 M2))−1 ((M2 M0

−1 M1) − M3)−1 M0
−1 M1

M3
−1 M2(M1 M3

−1 M2 − M0)−1 (M3 − M2 M0
−1 M1)−1

)

(using the expression for inverting partitioned matrices [14]).
If we wish to extend the data-type of matrices to support the determinant op-

eration then splitting this data-type proves to very difficult for dense matrices as
the computation of a determinant usually requires knowledge of the entire matrix.
We can however change a matrix into Jordan form (which preserves the value of
the determinant) in which case the determinant is just the product of the diagonal
values. However, this method is likely to be more computationally expensive. Since
our splitting method is analogous to the concept of partitioned matrices [14] then
we can use properties of determinant for partitioned matrices to help use define an
obfuscation for det. Consider the following partitioned matrix M:

M =

(
A B

C D

)

If B or C is the zero matrix 0 then we can easily work out the determinant of M:

det

(
A 0

C D

)

= det

(
A B

0 D

)

= det(A) det(D)

Then using the identity:

(
A B

C D

)

=

(
A 0

C I

)

×

(
I A−1B

0 D − CA−1B

)

we have that:
det(M) = det(A) × det(D − CA−1B)

However this formula is only valid if A is invertible.

9

4 Using the Bernstein basis

We have seen that we can obfuscate a matrix by splitting it into many matrices. We
can easily define obfuscations for simple operations but it was harder to define obfus-
cations for calculating inverses and determinants. We will now define an obfuscation
that is based on the fact that the elements of a matrix can be used to define the
coefficients of a bivariate polynomial.

We denote by P [x, y] the set of polynomials of variables x and y, with rational
coefficients. For a given n ∈ N, there are several ways to define bases for the ring
of degree-n polynomials (see, for example, Lorentz [16]). One is the power basis,
denoted by

(
1 x . . . xn

)

and another is the Bernstein basis
(
Bn

0 (x) Bn
1 (x) . . . Bn

n(x)
)

where

Bn
k (x) =

(
n

k

)

xk(1 − x)n−k, ∀x ∈ [0, 1], k = 0, 1, . . . , n (11)

4.1 Power-form and Bernstein-form polynomials

Now we consider the Bernstein basis for univariate, bivariate and multivariate poly-
nomials.

4.1.1 Univariate

A power-form polynomial p ∈ P [X] of degree n ∈ N is given by:

p(x) =

n∑

k=0

akxk, (12)

where ak ∈ Q. For a given n ∈ N there are n+1 univariate degree-n Bernstein
polynomials, as defined above.

Any univariate power-form polynomial can be represented on the interval
[0, 1] using its equivalent Bernstein form as follows:

p(x) =

n∑

k=0

akx
k

︸ ︷︷ ︸

power form

=

n∑

k=0

mn
kBn

k (x)

︸ ︷︷ ︸

Bernstein form

where mn
k are the Bernstein coefficients corresponding to the degree-n base.

The two univariate representations p(x) and pB(x) are equivalent and con-
version between them is fairly straightforward. On the unit interval [0, 1] for
example, the univariate Bernstein coefficients are easily computed in terms of
the power coefficients (also shown by Farouki and Rajan [10]):

mn
k =

k∑

j=0

(
k
j

)

(
n
j

)aj (13)

10

4.1.2 Univariate polynomials written in matrix form

Consider the same polynomial as the one in Equation (12). The calculation in
Equation (13) can also be written as a matrix multiplication. The following
formulae determine the Bernstein coefficients matrix M in terms of the power-
form coefficients matrix A.

Two other ways of writing the polynomial p(x) are:

p(x) =
n∑

k=0

akx
k =

(
1 x . . . xn

)

a0

a1
...

an

= XA

p(x) =

n∑

k=0

mn
kBn

k (x) =
(
Bn

0 (x) Bn
1 (x) . . . Bn

n(x)
)

m0

m1
...

mn

= BX M.

Rewriting the vector BX of Bernstein polynomials in terms of matrix mul-
tiplication gives:

BX =
(
Bn

0 (x) Bn
1 (x) . . . Bn

n(x)
)

=
((

n
0

)
(1 − x)n . . .

(
n
n

)
xn

)

=
((

n
0

) (
1 +

(
n
1

)
(−x) + . . . +

(
n
n

)
(−x)n

)
. . .

(
n
n

)
xn

)

=
(
1 x . . . xn

)

︸ ︷︷ ︸

X

1 O
(
n
0

)(
n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0

...
. . .

(
n
0

)(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 . . .

(
n
n

)(
n−n

0

)
(−1)0

︸ ︷︷ ︸

UX

= X UX , ∀x ∈ [0, 1].

So

BX = X UX (14)

and p(x) = BX M = X UX M (15)

Now compute the Bernstein coefficients matrix M.

X A = X UXM

M = (UX)−1A

where (UX)−1 is the inverse matrix of UX .

11

4.1.3 The bivariate case in matrix form

The implicit expression of a bivariate polynomial in the power basis can also
be rewritten in terms of matrix multiplication:

p(x, y) = a00 + a10x + a01y + a11xy + . . . + amnxmyn = XA Y,

where

X =
(

1 x . . . xm
)

Y =

1
y
...

yn

A =

a00 . . . a0n

...
...

am0 . . . amn

By analogy with the univariate case,

p(x, y) = X A Y = BX M BY

where BX and BY are Bernstein vectors in the variables x ∈ [0, 1] and y ∈
[0, 1]. These vectors can be decomposed as shown in Section 4.1.2.

In the case of the Bernstein vector corresponding to the variable Y and
the factor U in Equation (14) will appear in reverse order. This happens
because BY is a column vector (as opposed to BX which is a row vector).

Hence

X A Y = X UX M UY Y

M = (UX)−1 A (UY)−1 ∀x, y ∈ [0, 1]

4.1.4 Multivariate

The generalisation of Bernstein bases to multivariate polynomials is not im-
mediate.

The power form of a polynomial in d variables is written in terms of
x1, . . . , xd like this:

p(x1, . . . , xd) =
∑

0≤k1+···+kd≤n

a(k1,...,kd)x
k1
1 · · · xkd

d

where the coefficients a(k1,...,kd) ∈ Q. By convention, the degree of each term
is k1+· · ·+kd, and the degree of the polynomial is the maximum of all degrees
of its terms.

The multivariate Bernstein form is defined recursively as a polynomial
whose main variable is xd and whose coefficients are multivariate Bernstein-
form polynomials in x1, . . . , xd−1.

Formula (13) can be generalised to more variables. Conversion between
the power form and the Bernstein representation is possible regardless of the
number of variables (see Geisow [12] and Garloff [11, 19]). Voiculescu’s the-
sis [18] and the book [13] give formulae and algorithms for the computation
of the Bernstein form of bivariate and trivariate polynomials.

12

4.2 Bernstein coefficients and obfuscation of matrices

The correspondence shown in Section 4.1.3 between the matrix of a polyno-
mial’s power-form coefficients and that of the Bernstein-form coefficients of
the same polynomial is unique, because they represent the same element in
the ring of polynomials. We have also shown that the transformation between
the matrix representations is well-defined.

(∀M ∈ Qa×b) (∃! p ∈ P[x, y] of degree a in x and b in y) p = X M Y

Furthermore (∃! S ∈ Qa×b) p = pB = X Ua S Vb Y

Thus S is the matrix of coefficients of the Bernstein-form polynomial pB.
We will call the operation that transforms M into S the Bernstein Obfuscation
of M, thus M S. The abstraction function af for this obfuscation is:

af(A) = Ua AVb where (a, b) = dim(A) (16)

We can also define a conversion function cf as follows:

cf(A) = Ua
−1 A Vb

−1 where (a, b) = dim(A) (17)

These functions are bijections

af(cf(A))

= {definition of cf with (a, b) = dim(A)}

af(Ua
−1 A Vb

−1)

= {definition of af with (a, b) = dim(Ua
−1 A Vb

−1)}

Ua(Ua
−1 A Vb

−1)Vb

= {associativity of matrix multiplication}

(UaUa
−1)A (Vb

−1 Vb)

= {matrix inverses}

A

Thus af · cf = id. Similarly we can prove that cf · af = id.
Since the abstraction and conversion functions for the Bernstein matrix

obfuscation are bijective, we can use Equation (3) to prove the correctness
of an obfuscated operation. Additionally, we can use Equation (4) to derive
obfuscated operations. If op denotes a matrix operation then opB will denote
the Bernstein obfuscated operation.

4.3 Bernstein example

Using the formulae in Section 4.1.3, it is possible to work out the Bernstein
form of a polynomial given in power form. Let us take the power form of the

13

unit circle p = x2 + y2 − 1. Preserving the notation from Section 4.1.3, its
coefficient matrix is

A =

−1 0 1
0 0 0
1 0 0

The corresponding Bernstein-form matrix is

M = U−1
3 AV −1

3 =

−1 −1 0
−1 −1 0
0 0 1

and so the equivalent Bernstein-form polynomial is

pB = X3MY3

=
(
−(1 − x)2 − 2x(1 − x)

)
(1 − y)2

+ 2
(
−(1 − x)2 − 2x(1 − x)

)
y(1 − y)

+ x2y2

Ignoring the actual meaning of the polynomials, matrix M can therefore
be used as an obfuscation of matrix A.

4.4 Unary operations

The operation scale performs scalar multiplication and so scale λ M represents
λM for matrix M and constant λ. Let us use Equation (4) to derive the
Bernstein obfuscated scalar multiplication for some obfuscated matrix S with
(a, b) = dim(S) and f = scale λ

cf(f(af(S)))

= {definition of af}

cf(f(Ua S Vb))

= {definition of f}

cf(λ(Ua S Vb))

= {commutativity of scalar multiplication: µB C = B µC}

cf(Ua (λS)Vb)

= {definition of cf with (a, b) = dim(Ua (λS)Vb)}

Ua
−1(Ua (λS)Vb)Vb

−1

= {associativity of matrix multiplication and inverses}

λS

Thus scaleB = scale and so the operation is unchanged by the obfuscation.

14

Now let us consider transpose. As a shorthand, we will use the usual T

notation. For a matrix S we propose that if f = T then

fB(S) = Ub
−1 Vb

T ST Ua
T Va

−1 where (a, b) = dim(S)

We prove the correctness of this using Equation (3) for some unobfuscated
matrix M:

af(fO(cf(M)))

= {definition of cf}

af(fO(Ua
−1 M Vb

−1))

= {definition of fO with (a, b) = dim(Ua
−1 M Vb

−1)}

af(Ub
−1 Vb

T (Ua
−1 M Vb

−1)
T

Ua
T Va

−1)

= {(B C)T = CT BT }

af(Ub
−1 Vb

T Vb
−1T

MT Ua
−1T

Ua
T Va

−1)

= {CT (C−1)T = (C−1 C)
T

= IT = I}

af(Ub
−1 MT Va

−1)

= {definition of af with (b, a) = dim(Ub
−1 MT Va

−1)}

Ub(Ub
−1 MT Va

−1)Va

= {associativity of matrix multiplication and inverses}

MT

= {definition of f}

f(M)

When performing matrix splits, it was hard to write an obfuscation for
matrix inversion. However using the Bernstein obfuscation we are able to
write such an obfuscation. Suppose that f = −1 then using Equation 4 for
some square obfuscated matrix S:

cf(f(af(S)))

= {definition of af with (a, a) = dim(S)}

cf(f(Ua S Va))

= {definition of f}

cf((Ua S Va)
−1)

= {(B C)−1 = C−1 B−1}

cf(Va
−1 S−1 Ua

−1)

= {definition of cf with (a, a) = dim(Va
−1 S−1 Ua

−1)}

Ua
−1 Va

−1 S−1 Ua
−1 Va

−1

15

= {obfuscation}

fB(S)

In Section 3.3 we discussed how it is very difficult to define an obfuscation
for the determinants of dense, split matrices. We can, however, define deter-
minants under the Bernstein obfuscation. The determinant operation det is
different to the operation considered so far as the output from this operation
is a number rather than another matrix. Thus to derive a determinant oper-
ation for Bernstein obfuscated matrices we consider det · af (since numbers
are not obfuscated there is no conversion function)

detB(S)

= {deriving equation}

det(af(S))

= {definition of af with (a, b) = dim(S)}

det(Ua S Vb)

= {det(B C) = det(B) × detC}

det(Ua) × det(S) × det(Vb)

4.5 Binary operations

For a binary matrix operation ⊗, we use the non-homogeneous equations de-
fined in Section 2.2. If cross(af, af) is the abstraction function for Matrix α×
Matrix α then the corresponding conversion function is cross(cf, cf) (this
follows from the definition of cross). So, for example, to obfuscate an opera-
tion ⊗ we use Equation (7) and multiply by cf to get cf · (⊗) · cross(af, af).

Now we will use this equation to derive a definition for multiplication.
Suppose that we have two matrices S and T with (a, b) = dim(S) and (b, c) =
dim(T) (thus the matrices are conformable). Then, writing mult as the prefix
matrix multiplication operator in the equation above (but using normal matrix
multiplication elsewhere), we can use this equation to derive an obfuscation:

cf(mult(cross(af, af) (S,T)))

= {definition of cross}

cf(mult(af(S), af(T)))

= {definition of af with appropriate dimensions}

cf(mult(Ua S Vb,Ub T Vc))

= {definition of mult}

cf(Ua S Vb Ub T Vc)

16

= {definition of cf with (a, c) = dim(Ua S Vb Ub T Vc)}

Ua
−1 (Ua S Vb Ub T Vc)Vc

−1

= {associativity of matrix multiplication and inverses}

SVb Ub T

Thus, multB(S,T) = SVb Ub T where (a, b) = dim(A).
As with scalar multiplication, addition is unchanged by the Bernstein ob-

fuscation. To show this, we will write addB to denote the Bernstein obfuscated
definition of addition. So, for two matrices M and N with dimensions (a, b),
we have that:

af(addB(cross(cf, cf)(M,N)))

= {definition of cross}

af(addB(cf(M), cf(N)))

= {definition of cf with dim(M) = (a, b) = dim(N)}

af(addB(Ua
−1 M Vb

−1,Ua
−1 N Vb

−1))

= {definition of addB}

af(Ua
−1 M Vb

−1 + Ua
−1 N Vb

−1)

= {distributivity of matrix multiplication over addition}

af(Ua
−1 (M + N)Vb

−1)

= {definition of af with (a, b) = dim(Ua
−1 (M + N)Vb

−1)}

Ua (Ua
−1 (M + N)Vb

−1)Vb

= {associativity of matrix multiplication and inverses}

M + N

= {definition}

add(M,N)

4.6 Review of the Bernstein obfuscation

In Figure 3 we summarise the definitions for the matrix operations using the
Bernstein obfuscation.

We proved in Section 4.4 that determinants and inverses of matrices can be
computed when matrices have been obfuscated using the Bernstein method.
The immediate advantage of the Bernstein method over the matrix splitting
method is that the former always allows for determinants to be calculated,
whereas the latter only allows determinant calculations if the top left corner
matrix is invertible. Computing the determinant of a matrix obfuscated with
the Bernstein method is also simpler, as it merely requires the computation
(and multiplication) of three determinants.

17

scaleB λ S = λS

addB(S,T) = S + T

transposeB(S) = Ub
−1 Vb

T ST Ua
T Va

−1

multB(S,T) = SVb Ub T

detB(S) = det(Ua) × det(S) × det(Vb)

invB(S) = Ua
−1 Va

−1 S−1 Ua
−1 Va

−1

Note that (a, b) = dim(S)

Figure 3: Bernstein obfuscated operations

One drawback of obfuscating matrices with the Bernstein method is, as
shown in Section 4.5, that when scaling and adding matrices, the operations
themselves are not obfuscated.

This slight disadvantage is clearly outweighed by the method’s major ad-
vantage, namely that the obfuscated matrices have an entirely different struc-
ture from the original entities. Any symmetry or other patterns are shuffled
in the transformation, thus making it difficult for a perpetrator to guess their
original meaning.

Furthermore, the Bernstein method can be generalised to matrices of any
number of dimensions. This is due to the correlation with multivariate Bern-
stein polynomials and to the easy conversion between the power-form and
the Bernstein-form polynomial representations. The conversion is possible
regardless of the number of variables, as mentioned in Section 4.1.4.

The important advantages of this method are obtained at the cost of its
complexity. For each obfuscated matrix there are several matrices to compute,
invert and multiply together. One way in which these computations can be
kept low is by way of storing (rather than calculating) a table of the

(
n
k

)

combinations (such as in the form of Pascal’s triangle). If the matrices to
be obfuscated are of similar sizes, then it should be possible to store, for
significant values of a, the matrices Ua and U−1

a .

5 Using matrices to obfuscate a number

Up to now we have discussed creating obfuscation for a matrix data-type but
we can use matrices to obfuscate other data-types. As an example, let us see
how we could use matrices to obfuscate rational numbers with three rational
operations: +, × and −1. So, for a number n we want a matrix A such that
n A for some abstraction function af . We need matrix operations plus,

18

times and recip such that, if n A and p C then

n + p plus(A,C) n × p times(A,C) n−1
 recip(A)

5.1 Using determinants

We can define the abstraction function to be the determinant of the matrix.
So, for example,

af

(
a b

c d

)

= det

(
a b

c d

)

= a × d − b × c

We now need to define a suitable conversion function — remember that we
are free to choose any conversion function cf such that af ·cf = id. We could
choose the conversion function to be:

cf(n) =

(
n 0
0 1

)

We can immediately see that af(cf(n)) = n (but it is not the case that
cf · af = id). We can define plus to be

plus(

(
m 0
0 1

)

,

(
n 0
0 1

)

) =

(
m + n 0

0 1

)

However we can only use this definition of plus for matrices that are in a very
specific form — it is fairly easy to understand what the function is doing and
so the number is not very well obfuscated. Instead we would like a function
that can be applied to a more general matrices and so we need a different
conversion function.

Let us suppose that to obfuscate a number n we pick a matrix A that has
n as an eigenvalue. If A is a 2× 2 matrix then A has two eigenvalues (which
may be the same). So that we can recover n from A then we could fix the
other eigenvalue of A and we will suppose that A had two eigenvalues namely
1 and n.

Here are some properties of eigenvalues that will be useful. Let suppose
that M is a n × n matrix and let λ1, . . . , λn be the eigenvalues of M.

Sum trace(M) =
∑

i λi (the trace of a matrix is the sum of the elements on
the leading diagonal)

Product det(M) =
∏

i λi

19

Using these properties, we can define

cf(n) =

(
a b

c d

)

where ad − bc = n ∧ a + d = n + 1

and so the eigenvalues of

(
a b

c d

)

are 1 and n. This conversion function

allows some freedom in choosing the elements of the matrix that represents
n. Let us suppose that we choose values of a and non-zero b . Using the
definition of the conversion function we have that d = n + 1 − a and

c =
ad − n

b

=
ad − (a + d − 1)

b

=
(a − 1)(d − 1)

b

=
(a − 1)(n − a)

b

So now we can write our conversion function as follows:

cf(n) =

(
a b

(a−1)(n−a)
b

n + 1 − a

)

where b 6= 0 (18)

We can check that trace(cf(n)) = n + 1 and det(cf(n)) = af(cf(n)) = n.
Thus, we can define

n

(
a b

c d

)

⇐⇒ n = af(

(
a b

c d

)

) ∧ a + c = n − 1

Note that it is not necessarily the case that cf · af = id and so we cannot
use Equation (4) to derive obfuscated functions but we can use Equation (3)
to check the correctness of our operations.

5.2 Arithmetic operations

Now let us define our arithmetic operations using our obfuscation. We suppose

that n

(
a b

c d

)

and p

(
e f

g h

)

using our conversion function. We

need to find definitions for plus, times and recip.
First we want an operation that adds together n and p. We need to find a

matrix that satisfies
(

j k

l m

)

= plus(

(
a b

c d

)

,

(
e f

g h

)

)

Under our obfuscation we know that a + d = n + 1 and e + h = p + 1 and so
the resulting matrix must obfuscate n + p = a + d + e + h− 2. Thus we need

20

j + m = a + d + e + h− 1 so let us take j = a + e− 1 and m = d + h. We are
free to choose any non-zero value for k so we take k = b × f . Finally, from
the definition of cf we need

l =
(j − 1)(n + p − j)

k

=
((a + e − 1) − 1)((a + d + e + h − 2) − (a + e − 1))

bf

=
(a + e − 2)(d + h − 1)

bf

Thus,

plus(

(
a b

c d

)

,

(
e f

g h

)

) =

a + e − 1 bf

(a+e−2)(d+h−1)
bf

d + h

Note that this operation is commutative (as with +) but, as we free to choose
any non-zero value of k, we could easily make this operation non-commutative.

Next, we need to a find a matrix that satisfies

(
j k

l m

)

= times(

(
a b

c d

)

,

(
e f

g h

)

)

We know that n = a + d − 1 and p = e + h − 1 and so we need our resulting
matrix to obfuscate n× p = (a+ d− 1)(e+ h− 1). Expanding this expression
we obtain:

n × p = (a + d)(e + h) − (e + h) − (a + d) + 1

So we take j = (a + d)(e + h) + 1 and m = 1 − (a + d) − (e + h). We can
choose any non-zero value for k so (as before) let us take k = b × f . Using
the definition of cf , we have that

l =
(j − 1)(n × p − j)

k

=
(((a + d)(e + h) + 1) − 1)((a + d − 1)(e + h − 1) − ((a + d)(e + h) + 1))

bf

=
−(a + d)(e + h)(a + d + e + h)

bf

Thus

times(

(
a b

c d

)

,

(
e f

g h

)

) =

(a + d)(e + h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf

1 − a − d − e − h

21

Finally, we would like to find a matrix that satisfies

(
j k

l m

)

= recip(

(
a b

c d

)

)

Under our obfuscation, we know that n = a + d− 1 and so we need the result
of the operation to obfuscate 1

n
= 1

a+d−1 . We need the trace of the result

matrix to be 1 + 1
n

and so:

j + m = 1 +
1

n
= 1 +

1

a + d − 1
=

a + d

a + d − 1

So let us take j = d
a+d−1 and m = a

a+d−1 . Again, we have a free choice for
non-zero k so let’s take k = b. From the definition of cf we need

l =
(j − 1)(1

n
− j)

k

=

(
1

b

)(
d

a + d − 1
− 1

) (
1

a + d − 1
−

d

a + d − 1

)

=

(
1

b

)(
1 − a

a + d − 1

)(
1 − d

a + d − 1

)

=
(1 − a)(1 − d)

b(a + d − 1)2

Hence,

recip(

(
a b

c d

)

) =

d
a+d−1 b

(a−1)(d−1)

b(a+d−1)2
a

a+d−1

Note that this operation is undefined if a + d − 1 = 0 i.e. if n = 0.

5.3 Review of number obfuscation

We summarise the definitions of our obfuscations of the three arithmetic op-
erations in Figure 4. We can easily prove that the operations defined in
Figure 4 are correct by using Equations (2) or (7) as appropriate. The proofs
of correctness are fairly straightforward (as we used our conversion function
to define our matrices); they essentially check that the determinants of the
matrices are correct.

Under this obfuscation, several arithmetic operations (on four numbers)
are required, hence the complexity of each operation is increased. Thus this
obfuscation should not be used where an increase of complexity is a concern.

We could use this obfuscation to obfuscate certain constants in a pro-
gram or to obfuscate a variable (in a similar way to a variable split that was

22

plus(

(
a b

c d

)

,

(
e f

g h

)

) =

a + e − 1 bf

(a+e−2)(d+h−1)
bf

d + h

times(

(
a b

c d

)

,

(
e f

g h

)

) =

(a + d)(e + h) + 1 bf

−(a+d)(e+h)(a+d+e+h)
bf

1 − a − d − e − h

recip(

(
a b

c d

)

) =

d
a+d−1 b

(a−1)(d−1)

b(a+d−1)2
a

a+d−1

Figure 4: Obfuscations of arithmetic operations

discussed in Collberg et al. [4]). If we choose to this matrix obfuscation to
obfuscate a rational variable then we risk adversely affecting the efficiency of
a program. If the variable that we choose is used extensively then the obfus-
cation will add many arithmetic operations whenever the variable is used.

5.4 An example

Let us now consider some simple examples. Suppose

3

(
5 8
−1 −1

)

and 7

(
4 3
3 4

)

plus(

(
5 8
−1 −1

)

,

(
4 3
3 4

)

) =

5 + 4 − 1 8 × 3

(5+4−2)(−1+4−1)
8×3 4 − 1

=

(
8 24
7
12 3

)

We can check that det(

(
8 24
7
12 3

)

) = 10 as required. Now,

times(

(
5 8
−1 −1

)

,

(
4 3
3 4

)

) =

(5 − 1)(4 + 4) + 1 8 × 3

−(5−1)(4+4)(5−1+4+4)
8×3 1 − 4 − 8

=

(
33 24
−16 −11

)

23

and det(

(
33 24
−16 −11

)

) = −363 + 384 = 21 as required. Finally,

recip(

(
5 8
−1 −1

)

) =

(
−1

3 8
4×−2
8×9

5
3

)

=

(
−1

3 8
−1

9
5
3

)

with det(

(
−1

3 8
−1

9
5
3

)

) = −5
9 + 8

9 = 1
3 .

6 Extensions of the obfuscation techniques

In the previous sections we have given various examples to show how matrix
properties can be used to help create obfuscations. In this section we will
briefly discuss some extensions of our obfuscation methods.

6.1 Other Splits

In Section 3.1 we discussed how we can define a matrix split and in Section 3.2
we gave an example of a matrix split in which we split up a square matrix
into four pieces.

Let us now consider splitting non-square matrices. We can define a (k, l)
split which will produce four split components so that the first split component
is a matrix of size (k, l). The choice function for this split is

ch(i, j) = 2 sgn (i div k) + sgn (j div l)

and the family of functions is

F = {fp = (λ (i, j) . (i − k (p div 2), j − l (p mod 2))) | p ∈ [0..3]}

The representation

mss 〈as, bs, cd, ds〉s(k,l)

with dim mss = (r, c) satisfies the invariant

dim as = (k, l) ∧ dim bs = (k, c − l) ∧
dim cs = (r − k, l) ∧ dim ds = (r − k, c − l)

(19)

for some k : (0..r) and l : (0..c).
We will now consider a more general split than the (k × k) split. Suppose

that we have a matrix Mk×k which we want to split into n2 blocks. We want
to ensure that the blocks down the main diagonal are square. We will call
this the n-square matrix split, denoted by nsq. For this, we will need a set of
numbers S0, S1, . . . , Sm such that

0 = S0 < S1 < S2 < . . . < Sn−1 < Sn = k − 1

24

We require strict inequality so that we have exactly n2 blocks with both
dimensions of each block at least 1.

The n-square matrix split is defined as follows: nsq = (ch,F) such that

ch :: [0..k) × [0..k) → [0..n)

ch(i, j) = p n + q where Sp ≤ i < Sp+1 ∧ Sq ≤ j < Sq+1

and if fr ∈ F then

fr :: [0..k) × [0..k) → [0..Sp − Sp−1) × [0..Sq − Sq−1)

fr(i, j) = (i − Sp, j − Sq) where r = ch(i, j) = pn + q

An alternative form for the choice function is

ch(i, j) =

n∑

t=1

(

n × sgn(i div St) + (j div St)
)

Note that if ch(i, j) = pn + q then ch(j, i) = qn + p.
The matrices M and Mr are related by the formula

Mr(fr(i, j)) = M(i, j) where r = ch(i, j)

6.2 Further Arithmetic Operations

In Section 5.1 we saw that we can obfuscate a number by representing the
number as the determinant of a matrix and in Section 5.2 we defined obfus-
cations for three arithmetic operations. Using our matrix functions we can
define obfuscations for other arithmetic operations, for example,

sub(A,C) = plus(A, times(cf(−1),C)) and div(A,C) = times(A, recip(C))

There are many other possible definitions for the three arithmetic opera-
tions that are correct for our conversion and abstraction functions. This is
due to the fact that we have flexibility in defining some of the matrix elements
— we just have to ensure that the trace equals n + 1 and the determinant is
n. In fact, if we wished, we could have a number of different definitions for
each operation. For example, if

n A ∧ p C ∧ r E

then
n + p + r plus1(A, plus2(C,E))

where plus1 and plus2 are different obfuscations of +.
This obfuscation used 2 × 2 matrices and, of course, we could represent

a number by a much larger matrix. However this will lead to a major im-
pact of the efficiency of the operations as we would be require to calculate
determinants of these larger matrices.

25

6.3 Combining obfuscations

In Section 3.3 we discussed that we have problems defining operations for
inversion and determinants of split matrices. Also, in Sections 4.4 and 4.5
we saw that scalar multiplication and addition were not obfuscated using the
Bernstein method. However, since we followed the data refinement approach
to obfuscation (as given in Drape’s thesis [7]), we have abstraction functions
and conversion functions for each of our obfuscations and we can easily com-
pose our obfuscations. Thus to create, for example, a determinant function
for split matrices we can obfuscate using Bernstein, find the determinant and
re-obfuscate back to split matrices. So

detsp = cfsp · afB · detB · cfB · afsp

where sp and B denote the split and Bernstein obfuscations respectively. In
a similar way we can combine our number obfuscation (from Section 5.1)
with our other matrix obfuscations so that we can build a more complicated
obfuscation for numbers.

7 Conclusions

An obfuscation should make a program (or a method within a program) harder
to understand. When obfuscating matrices one ideally aims to change the
structure or the elements within the matrix. Our splitting obfuscation (Sec-
tion 3.2) changes the size and shape of the matrix (but not the individual
elements), whereas the Bernstein obfuscation (Section 4.2) does not alter the
size and shape of the matrix, but changes its elements (thus changing their
pattern). An advantage of considering obfuscations as data refinements is
that obfuscations can then be written as functions, which gives us the ability
to compose different obfuscations together. Thus, as we discussed in Sec-
tion 6.3, we can create an obfuscation that changes both the structure and
the elements. Obviously, if efficiency is a concern that we have to restrict how
complicated we make our obfuscations — there is usually a trade-off between
how complicated the obfuscations are and efficiency.

As we mentioned in the Introduction, when creating obfuscations we should
make reference to an attack model. Following the assertion attack model
of Drape [7], when defining the matrix data-type in Figure 2 we stated a
number of assertions that we expect our operations to satisfy. In most cases
(except for the Bernstein obfuscations of add and scale), the proofs of the
assertions (which we omit) are more complicated. One way of at least checking
the assertions of the obfuscated operations hold is to generate a large set of
random examples. In the case of functional languages (e.g. Haskell), such a
checking exists in the form of QuickCheck [3], which is based precisely on sets
of otherwise difficult to prove assertions.

26

Unsurprisingly, it is often the case that effective obfuscations affect the ef-
ficiency of the program being obfuscated. One way to alleviate the slow-down
of a program is, as discussed in Section 4.6, is to pre-compute and store some
of the data used frequently. The trade-off between space and time complexity
will depend on the individual applications for which the obfuscation method
is used.

Evidently, these operations rely on exact arithmetic being available for
rational numbers. This is not a major inconvenience, though, since multi-
precision rational operations nowadays are either supported by programming
languages (e.g. Java) or through integrated packages (see, for example, MP [2]
or LiDIA [15]).

In Section 6 we saw that our approach to obfuscation gave us flexibility to
extend our obfuscations. To create other matrix splits, matrix forms such as
triangular matrices (so that at least one of the components is a zero matrix)
or Jordan matrices could be used to create splits. Instead of using the Bern-
stein basis, other change of basis formulae could be used to produce matrix
obfuscations.

References

[1] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscat-
ing programs. In Proceedings of the 21st Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 1–18. Springer-Verlag,
2001.

[2] Richard P. Brent. A fortran multiple–precision arithmetic package. ACM
Transactions on Mathematical Software, 4(1):57–70, 1978.

[3] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In ACM SIGPLAN Notices, 2000.

[4] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical Report 148, Department of
Computer Science, University of Auckland, July 1997.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (Second Edition). The MIT Press, 2001.

[6] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1998.

[7] Stephen Drape. Obfuscation of Abstract Data-Types. DPhil thesis, Oxford
University Computing Laboratory, 2004.

[8] Stephen Drape. Generalising the array split obfuscation. Information
Sciences, 177(1):202–219, January 2007.

27

[9] Stephen Drape, Clark Thomborson, and Anirban Majumdar. Specifying
imperative data obfuscations. In Proceedings of the 10th Information Se-
curity Conference (ISC ’07), volume 4779 of Lecture Notes in Computer
Science, pages 299–314. Springer, October 2007.

[10] R. T. Farouki and Rajan V. T. Algorithms for polynomials in Bernstein
form. Computer Aided Geometric Design, 5:1–26, 1988.

[11] J. Garloff. Convergent bounds for the range of multivariate polynomials.
Interval Mathematics 1985, Lecture Notes in Computer Science, 212:37–
56, 1985.

[12] Adrian Geisow. Surface Interrogations. PhD thesis, University of East
Anglia, 1983.

[13] Abel Gomes, Irina Voiculescu, Joaquim Jorge, Bryan Wyvill, and Callum
Galbraith. Implicit Curves and Surfaces: Mathematics, Data Structures
and Algori thms. Springer Verlag, to appear 2009.

[14] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 1985.

[15] LiDIA Group, Darmstadt University of Technology.
www.cdc.informatik.tu-darmstadt.de/TI/LiDIA.

[16] George G. Lorentz. Bernstein Polynomials. Chelsea Publishing Company,
New York, 1986.

[17] Anirban Majumdar, Stephen J. Drape, and Clark D. Thomborson. Slic-
ing obfuscations: design, correctness, and evaluation. In DRM ’07: Pro-
ceedings of the 2007 ACM workshop on Digital Rights Management, pages
70–81, New York, NY, USA, 2007. ACM.

[18] Irina Voiculescu. Implicit function algebra in set-theoretic geometric mod-
elling. PhD thesis, University of Bath, 2001.

[19] M. Zettler and J. Garloff. Robustness analysis of polynomials with poly-
nomial parameter dependency using Bernstein expansion. IEEE Trans-
actions on Automatic Control, 43(3):425–431, 1998.

28

	Introduction
	Preliminaries
	Obfuscation as data refinement
	Non-homogeneous operations
	Matrices

	Splitting method
	Defining a matrix split
	Splitting in squares
	Review of matrix splitting

	Using the Bernstein basis
	Power-form and Bernstein-form polynomials
	Univariate
	Univariate polynomials written in matrix form
	The bivariate case in matrix form
	Multivariate

	Bernstein coefficients and obfuscation of matrices
	Bernstein example
	Unary operations
	Binary operations
	Review of the Bernstein obfuscation

	Using matrices to obfuscate a number
	Using determinants
	Arithmetic operations
	Review of number obfuscation
	An example

	Extensions of the obfuscation techniques
	Other Splits
	Further Arithmetic Operations
	Combining obfuscations

	Conclusions
	Bibliography
	References

