
Chaining Secure Channels

Christopher Dilloway
Oxford University Computing Laboratory

May 29, 2008

Abstract

Security architectures often make use of secure transport protocols
to protect network messages: the transport protocols provide secure
channels between hosts. In this report we examine the possibilities for
chaining secure channels. We present a surprising theorem that shows
that, in some cases, two channels can be chained through a proxy to
produce a stronger channel. We also show that the channel established
through a proxy is at least as strong as the greatest lower bound of the
channels established to and from the proxy.

1 Background

A popular technique for designing a security architecture is to rely on a se-
cure transport layer to protect messages on the network, and provide secure
channels between different hosts; see e.g. [OAS05, Vis06, WSF+03]. In such
circumstances it is important to understand what is required of the secure
transport protocol, and, conversely, what services are provided by different
protocols.

In [DL08] we describe a framework for specifying the sorts of security
guarantees that might be provided by secure channels. We capture secu-
rity properties using CSP-style trace specifications, building on the work
of Broadfoot and Lowe [BL03]. Our formalism allows us to compare the
strengths of different secure channels: if an architecture is correct when it
uses a particular secure channel, it will still be correct when it uses a stronger
channel.

In [DL08] we exclusively describe channels that secure point-to-point
connections; in this report we examine the possibilities for chaining secure
channels. We consider chaining channels in two different ways: first through
a set of dedicated intermediaries (simple proxies), and then through a (much
smaller) set of trustworthy (multiplexing) proxies. We present a surprising
theorem that shows how, under some circumstances, two channels can be
chained to produce a stronger channel. We also show that the channel
established through a proxy is always simulated by (i.e. is at least as strong

1

as) the greatest lower bound of the channels established to and from the
proxy.

The results presented in this report are particularly relevant to real-
world use of secure channels. Many organisations arrange their computers
in a trusted intranet, and only allow external access through a proxy. For
example: grid architectures may only allow communication to the servers
that the grid is comprised of through a gatekeeper, and network firewalls may
scan all traffic that passes through them, and automatically block messages
that contain viruses. In order to perform these roles, the gatekeeper and
firewall must act as proxies for the trusted servers.

It is not obvious that a secure connection is established between two
agents by establishing two secure connections through a trusted proxy. It
is also not obvious which security properties, if any, are provided by estab-
lishing secure channels through a proxy. The aim of this paper, therefore, is
to investigate these sorts of chains of channels in order to determine which
security properties the overall channel can provide.

In Sections 2 and 3 we describe the model of secure channel specifications
from [DL08]. We define a set of valid system traces; secure channel specifica-
tions are then given as predicates over this set. In Section 4 we describe the
simulation relation from [DL08] which captures a partial order over channel
specifications; we use this relation to define an equivalence relation.

In Section 5 we describe the first chaining theorem; in this section the
proxies are dedicated intermediaries. For every pair of agents there is a
unique simple proxy whose only job is to forward messages from the first
agent to the second. Every agent knows, and can reliably verify, the identity
of their own proxies, and also of the proxies who send messages to them on
other agents’ behalf. This public knowledge of the job of each simple proxy
restricts the intruder’s behaviour, and so, in some cases, two channels can
be chained to produce a stronger channel.

In Section 6 we describe the second chaining theorem; in this section the
proxies are more general. Each proxy accepts messages from any agent, and
is willing to forward them to any other agent. The agents and the proxies add
extra information to the application-layer messages that they send in order
to identify the third party involved in the message (the original sender, or the
intended recipient). This extra information limits the intruder’s behaviour,
and so, as before, two channels can be chained to produce a stronger channel.

Finally, in Section 7 we discuss related work, and in Section 8 we con-
clude, we highlight the utility of the results presented in this report, and we
discuss future work.

2

2 Secure channels

In [DL08] we define an abstract network in terms of honest agents, who
send and receive messages, and an intruder, who has several events he can
use to manipulate the messages being passed on the network, and who can
also send and receive messages. The model reflects the traditional internet
protocol stack, but we add a new layer between the transport layer and the
application layer: the secure transport layer. We abstract all of the layers
beneath the secure transport layer into a network layer.

In the application layer the agents play roles, establish channels, and
send and receive messages over these channels. The agents refer to the
channels by local connection identifiers; these can be thought of as handles
to the communication channels. The secure transport layer contains protocol
agents, which translate the higher level events into lower level events (e.g. by
encrypting or signing messages), and vice versa (e.g. by decrypting messages
or verifying signatures).

A channel is described by an ordered pair of roles; for example, the
channel (Ri, Rj) (which we often write as Ri → Rj) is the channel in which
agents playing role Ri send messages to agents playing role Rj .

We treat encryption formally. All messages are drawn from the mes-
sage space, Message, which is partitioned into two sets: application-layer
messages (MessageApp) and transport-layer messages (MessageTL). We as-
sume a relation ` defined over this type: for X ⊆ Message, and m : Message,
X ` m means that m can be deduced from the set X. We assume that the
relation ` is monotonic and transitive. Often in our examples we use the
deduction rules from [RSG+01] which model Dolev-Yao style symbolic en-
cryption [DY83]: the intruder can only read messages he has the decryption
keys for, and can only create encrypted (or signed) messages when he knows
the requisite keys. We assume that the intruder has some initial knowledge
IIK ⊆ Message.

We use the following events, where m ranges over the set MessageApp of
application-layer messages.

send.(A, Ri).cA.(B, Rj).m: the agent (A, Ri) sends message m, intended
for agent (B, Rj), in a connection identified by A as cA.

receive.(B, Rj).cB.(A, Ri).m: the agent (B, Rj) receives message m, ap-
parently from agent (A, Ri), in a connection identified by B as cB.

fake.(A, Ri).(B, Rj).cB.m: the intruder fakes a send of message m to
agent (B, Rj) in connection cB with the identity of honest agent (A, Ri).

hijack.(A, Ri)→ (A′, Ri).(B, Rj)→ (B′, Rj).cB′ .m: the intruder mod-
ifies a previously sent message m and changes the sender from (A, Ri) to
(A′, Ri), and the receiver from (B, Rj) to (B′, Rj) so that B′ accepts it in
connection cB′ .

By changing both, just one, or neither of the identities associated with
a message, the intruder can use the hijack event in four different ways: to

3

replay a previously-sent message, to re-ascribe1 a message, to redirect a
message, or to re-ascribe and redirect a message.

For example, if application layer message m from A to B is encoded as
the transport layer message A, {m}PK(B), where PK(B) is B’s public key,
then a dishonest agent may re-ascribe this message, replacing the identity A
with an arbitrary other identity. On the other hand, if m is encoded as
{{m}PK(B)}SK(A), where SK(A) is A’s secret key, then the intruder can
only re-ascribe it by replacing the signature with his own: he can only do so
with a dishonest identity. Recall that the intruder can only fake messages
that he knows, so in both the above cases, the intruder could not have used
a fake event, except if he happened to know m.

Likewise, if m is encoded as B, {m}SK(A), then a dishonest agent may
redirect this message, replacing the identity B with an arbitrary other iden-
tity. On the other hand, if m is encoded as {{m}SK(A)}PK(B), then the
intruder can redirect it only if he possesses SK(B): he can only redirect
messages sent to him. Note that the intruder could not have used a fake
event, because he cannot choose the value of m.

In [DL08] we specify four rules that define the application-layer be-
haviour accepted by our networks. These rules are not intended to capture
channel properties; rather, they define some sanity conditions in order to
remove artificial and irrelevant behaviour from our networks.

N1 The intruder never sends or fakes messages to himself, never fakes mes-
sages with a dishonest identity, and never redirects a message sent to
himself and re-ascribes it with his own identity;

N2 The intruder can only hijack messages that were previously sent;

N3 The intruder can only send or fake messages that he knows; after any
trace, the intruder’s knowledge (with initial knowledge IIK) is de-
scribed by the function IntruderKnowsIIK(tr);

N4 No agent may receive a message that was not previously sent, faked or
hijacked to them.

We also specify two rules that define the relationship between the
application-layer events and the transport-layer events performed by the
honest agents:

A1 the transport-layer messages sent by an honest agent’s protocol agent
are a prefix of (a suitable decoding2 of) the application-layer messages
sent by the agent;

1To ascribe means to attribute a text to a particular person; hence we use “re-ascribe”
to describe the intruder’s activity when he changes the identity of the sender of a message.

2We assume the existence of a partial, symbolic decoding function that transforms
traces of transport-layer send and receive events on a single connection into traces of
application-layer send and receive events on that connection.

4

A2 the application-layer messages received by an honest agent are a prefix
of (a suitable decoding of) the transport-layer messages received by
their protocol agent.

The intruder has additional capabilities: as well as sending and receiv-
ing application-layer messages, he can add transport layer messages to the
network (putTL) or remove them from it (getTL). In general, we expect that
a hijack event will usually be preceded by a getTL event and followed by
a putTL event; similarly, we expect a fake event to be followed by a putTL

event.
We specify channels by giving trace specifications. The set of valid sys-

tem traces is the (prefix-closed) set of traces that satisfy properties N1–N4

and A1–A2; the set is dependent upon the intruder’s initial knowledge: the
greater this set, the more traces are valid (as the intruder knows, and so can
send, more messages).

A channel specification is a predicate over traces, and has a natural
interpretation: the set of valid system traces that it accepts, assuming some
value of the intruder’s initial knowledge.

3 Confidential and authenticated channels

A confidential channel should protect the confidentiality of any message sent
on it from all but the intended recipient. For example, a confidential channel
to B can be implemented by encoding the application layer message m as
the transport layer message {m}PK(B). We identify confidential channels
by tagging them with the label C (e.g. writing C(Ri → Rj)).

The intruder’s knowledge is then restricted so that the intruder only
learns messages that are sent on non-confidential channels, or that are sent
to him. We specify confidential channels by requiring that this definition
does indeed capture what the intruder would know after the trace tr. The
messages the intruder knows after observing a trace are those that can be
deduced from his initial knowledge and the messages sent on the network,
so we require that the intruder’s knowledge gained from observing all the
messages sent on the transport layer is the same as that gained from ob-
serving all the application messages, apart from those sent on confidential
channels.

We specify authenticated channels by describing the relationship between
the receive and send events performed by the agents at either end of the
channel. In particular, we specify under what circumstances an agent may
perform a particular receive event. The bottom of our hierarchy is the
standard Dolev-Yao network model, captured by N1–N4.

There are two dishonest events the intruder can perform: faking and
hijacking. With some transport protocols the latter can only be performed

5

using dishonest identities. We specify our channels by placing restrictions
on when he can perform these events.

Definition 3.1 (No faking). If NF(Ri → Rj) then the intruder cannot fake
messages on the channel:

NF(Ri → Rj)(tr) =̂ tr ↓ {| fake.R̂i.R̂j |} = 〈〉 .

Definition 3.2 (No-re-ascribing). If NRA(Ri → Rj) then the intruder can-
not change the sender’s identity when he hijacks messages:

NRA(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·A 6= A′ |} = 〈〉 .

Definition 3.3 (No-honest-re-ascribing). If NRA−(Ri → Rj) then the in-
truder can only change the sender’s identity to a dishonest identity when he
hijacks messages:

NRA−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition 3.4 (No-redirecting). If NR(Ri → Rj) then the intruder cannot
redirect messages:

NR(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·B 6= B′ |} = 〈〉 .

Definition 3.5 (No-honest-redirecting). If NR−(Ri → Rj) then the in-
truder cannot redirect messages that were sent to honest agents:

NR−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·B 6= B′ ∧Honest(B) |} = 〈〉 .

These properties are not independent, since no-re-ascribing implies no-
honest-re-ascribing, and likewise for no-redirecting. Further, not all com-
binations are fundamentally different; certain pairs of combinations allow
essentially the same intruder behaviours: each simulates the other . We
therefore collapse such combinations; for full details of the collapsing cases,
see [DL08].

After taking the collapsing cases into consideration we arrive at a hi-
erarchy of four non-confidential and seven confidential channels, shown in
Figure 1.

Without taking the collapsing cases into account, there are thirty-six
different combinations of the primitives described above; these form a lattice.
We describe a point in this lattice by listing each of its components in the
order (C, NF, NRA, NR); e.g. the point (C,⊥, NRA, NR−) is the channel
C ∧NRA ∧NR−.

6

C ∧ NF ∧ NRA ∧ NR−

�
�
�
�
�
�Q
Q
Q
Q
Q
Q�
�
�
�
�
�Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q�
�
�
�
�
�Q
Q
Q
Q
Q
Q�
�
�
�
�
�

�
�
�
�
�
�Q
Q
Q
Q
Q
Q

NF ∧ NRA− ∧ NR−C ∧ NRA− ∧ NR−

NF ∧ NRA−C ∧ NR−

C ∧ NF ∧ NRA− ∧ NR−

C ∧ NF ∧ NRA ∧ NR

⊥

C ∧ NRA ∧ NR− NF ∧ NRA− ∧ NR

C ∧ NF ∧ NRA− ∧ NR

Q
Q
Q
Q
Q
Q�
�
�
�
�
�

Figure 1: The hierarchy of secure channels.

Definition 3.6. Points in the full lattice are compared component-wise:

(c1, nf1, nra1, nr1) 6 (c2, nf2, nra2, nr2)⇔
c1 6 c2 ∧ nf1 6 nf2 ∧ nra1 6 nra2 ∧ nr1 6 nr2 .

The collapsing cases, which are described in detail in [DL08], can also
be described by five collapsing rules:

C1 =̂ (⊥, ⊥ , x , y) ↓ (⊥, ⊥ , ⊥ , ⊥) ,
C2 =̂ (x, NF, ⊥ , y) ↓ (x, ⊥ , ⊥ , y) ,
C3 =̂ (⊥, NF, NRA, x) ↓ (⊥, NF, NRA−, x) ,
C4 =̂ (C, x , y , ⊥) ↓ (⊥, x , y , ⊥) ,
C5 =̂ (C, ⊥ , x , NR) ↓ (C, ⊥ , x , NR−) .

For example, rule C4 matches any confidential point that allows redirecting;
any channels that match this pattern are collapsed to a non-confidential
point with the other components remaining unchanged.

Definition 3.7. For any point (c, nf, nra, nr) in the full lattice, we define
↓ (c, nf, nra, nr) to be the collapsed form of the point. This is the point we
reach by continually applying the collapsing rules until we reach a point that
cannot be collapsed further.

Proposition 3.8. The collapsed form of every point in the full lattice is
unique and well-defined.

Proof. With the exception of C2 and C4, the patterns for the five rules above
are disjoint. The point (C, NF,⊥,⊥) matches the patterns of both C2 and
C4, so we examine what happens when we apply C2 first, and when we apply
C4 first:

(C, NF,⊥,⊥) ↓C2 (C,⊥,⊥,⊥) ↓C4 (⊥,⊥,⊥,⊥) ,
(C, NF,⊥,⊥) ↓C4 (⊥, NF,⊥,⊥) ↓C2 (⊥,⊥,⊥,⊥) .

7

The order in which C2 and C4 are applied makes no difference to the resultant
collapsed form; in every other case there is at most one rule that can be
applied (since the patterns for the rules are disjoint). Therefore the sequence
of collapsing rules that can be applied to any given point is unique and well-
defined, hence ↓ (c, nf, nra, nr) is unique and well-defined for any point in
the lattice.

We note that ↓ is monotonic with respect to the order on the lattice (6).

4 Simulation and alternative specifications

In order to compare the relative strengths of different channels, we need to
compare the effect they have on the intruder’s capabilities. In particular,
we want to check that when the intruder can perform a dishonest activity in
two different ways the resulting channels are equivalent. In [DL08] we define
a simulation relation that compares channel specifications by comparing the
honest agents’ views of them. We use this relation to establish an equivalence
relation (simulation in both directions) on channel specifications.

The honest agents’ view of the traces of a channel specification is the
restriction of those traces to the application-layer send and receive events
performed by the honest agents. The channel specification ChannelSpec1

simulates ChannelSpec2 if, for all possible values of the intruder’s initial
knowledge, every trace of the second specification corresponds to a trace of
the first specification that appears the same to the honest agents:

∀IIK ⊆ Message ·HonestTracesIIK(ChannelSpec2) ⊆
HonestTracesIIK(ChannelSpec1) .

We write ChannelSpec1 4 ChannelSpec2.
We define our equivalence relation as simulation in both directions; we

write ChannelSpec1
∼= ChannelSpec2. The intruder has exactly the same

capabilities in any two equivalent systems: he can perform the same attacks
in both, and there is no fact that he can learn in one but not in the other.

Our channels are specified by blocking the dishonest events that the
intruder can perform. In [DL08] we give alternative formulations for our
channel specifications; these alternatives state exactly which events can oc-
cur before an honest agent can receive a message, and require that one of
them must occur. We use these forms of the specifications to prove the
results in Sections 5 and 6.

We can safely block the intruder’s activity when it simulates other ac-
tivity (that we do not block). For example, we can block the intruder from
hijacking his own messages (because he can fake or send to the correct agent
in the first place), and from re-ascribing messages to his own identity when
they were originally sent to him (because he can learn the message and send
it himself).

8

5 Simple proxies

In this section we present the chaining theorem for simple proxies.

Definition 5.1. A simple proxy is an agent who is dedicated to forwarding
messages from one agent to another. For every pair of roles (Ri, Rj) there
is a simple proxy role Proxy(Ri,Rj). For every pair of agents (A : R̂i, B : R̂j)
such that A 6= B there is a unique simple proxy P(A,B) : Pr̂oxy(Ri,Rj) who
forwards messages from A to B. When two roles communicate through a
simple proxy, the following trace specification is satisfied:

SimpleProxies(Ri → Rj)(tr) =̂
tr ↓ {| send.R̂i.Connection.R̂j |} = 〈〉 ∧
tr ↓ {| receive.R̂j .Connection.R̂i |} = 〈〉 ∧
∀A : R̂i; B : R̂j · ∃P(A,B) : Pr̂oxy(Ri,Rj) · SimpleProxy(P(A,B))(tr) ∧
∀A, A′ : R̂i; B : R̂j ; P(A′,B) : Pr̂oxy(Ri,Rj); cA : Connection; m : MessageApp ·

send.A.cA.P(A′,B).m in tr ∧Honest(A)⇒ A′ = A ∧
∀A : R̂i; B, B′ : R̂j ; P(A,B′) : Pr̂oxy(Ri,Rj); cB : Connection; m : MessageApp ·

receive.B.cB.P(A,B′).m in tr ∧Honest(B)⇒ B′ = B ,

where each simple proxy satisfies the following specification:

SimpleProxy(P(A,B))(tr) =̂
∀cP : Connection; m : Message ·
∀A′ : Agent · receive.P(A,B).cP .A′.m in tr ⇒ A′ = A ∧
∀B′ : Agent · send.P(A,B).cP .B′.m in tr ⇒ B′ = B ∧
∃c′P : Connection · send.P(A,B).cP .B 6 receive.P(A,B).c

′
P .A .

The simple proxy P(A,B) only establishes connections with A and B, and
each connection it establishes is either dedicated to sending messages to B
or to receiving messages from A. Further, the simple proxy forwards every
message that it receives from A to B.

Because the proxy P(A,B) acts on A’s behalf, the proxy is honest if and
only if A is honest. We think of the family of proxies {P(A,B) | B : Agent}
as A’s proxies (because they all send on her behalf); see Figure 2.

Each simple proxy has a particular job: if P(A,B) receives a message that
appears to be from A, he forwards it to B; P(A,B) does not receive messages
that appear to have been sent by any other agent. P(A,B) only ever sends
messages to B, and never to any other agent. We assume that every agent
knows all of its proxies, and also knows which proxies send messages to it,3

and so if an honest agent who is not B is sent a message from P(A,B) he
discards it. We assume that honest agents never attempt to send a message
to any simple proxies other than their own.

3This could be implemented in the same way as – or even integrated with – a Public
Key Infrastructure.

9

I

A
A

JJ

A
A

PPPPPP��
��
��

Network

P(I,A)

P(I,B)

P(A,B)

P(A,I)

BA
P(B,A)

P(B,I)

Figure 2: Simple proxies.

5.1 Secure channels through simple proxies

In order to discover which security properties the channel through a simple
proxy satisfies we consider each of the components of the hierarchy indi-
vidually. In the discussion below we refer to the channel to the proxy as
(Ri → Proxy(Ri,Rj)), and the channel from the proxy as (Proxy(Ri,Rj) → Rj).

Confidentiality It is clear that if either of the channels to or from a simple
proxy is not confidential, the channel through the proxy is not confi-
dential; i.e. the channel through the proxy is confidential only if the
channels to and from the proxy are both confidential.

No faking It is also clear that if either of the channels to or from a simple
proxy is fakeable, then the channel through the proxy is fakeable. In
order to fake a message from A to B, the intruder must either fake
sending the message to A’s proxy P(A,B), or fake sending the message
from A’s proxy to B.

No re-ascribing The intruder can either re-ascribe a message on the chan-
nel to the proxy or on the channel from the proxy:

1. In order to re-ascribe a message on the channel to the proxy it is
not enough for the intruder just to change the sender’s identity:

tr =̂ 〈send.A.cA.P(A,B).m, hijack.A→A′.P(A,B).cP .m〉 .

A’s proxy will not accept a message that appears to have been
sent by another agent (A′). In order to re-ascribe a message on
the channel to the proxy, the intruder must also be able to redirect
the message to the correct one of the new sender’s proxies.

10

2. On the other hand, re-ascribing a message on the channel from
the proxy is straightforward:4

tr =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).cP .A.m,

send.P(A,B).c
′
P .B.m, hijack.P(A,B)→P(A′,B).B.cB.m,

receive.B.cB.P(A′,B).m〉 .

The intruder only needs to change the sender’s identity to that
of another agent’s proxy.

No redirecting The intruder can either redirect a message on the channel
to the proxy or on the channel from the proxy:

1. In order to redirect a message on the channel to the proxy the
intruder simply redirects the message to a different proxy:

tr =̂ 〈send.A.cA.P(A,B).m, hijack.A.P(A,B)→P(A,B′).cP .m,

receive.P(A,B′).cP .A.m, send.P(A,B′).c
′
P .B′.m,

receive.B′.cB′ .P(A,B′).m〉 .

2. On the other hand, in order to redirect a message on the channel
from the proxy the intruder cannot just change the recipient’s
identity:

tr =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).cP .A.m

send.P(A,B).c
′
P .B.m, hijack.P(A,B).B→B′.cB′ .m〉 .

B′ will not accept a message from the proxy P(A,B) because B′

knows which proxies send messages to him; in order to redirect
a message on this channel the intruder must also be able to re-
ascribe the message to one of the proxies that B′ accepts messages
from.

The SimpleProxies property on the roles Ri and Rj prevents agents play-
ing role Ri from communicating directly with agents playing role Rj : it
insists that they only communicate through proxies. This means that the
standard definitions of our secure channels (which restrict the intruder’s be-
haviour when hijacking or faking messages) are vacuously satisfied: there
are no messages sent by agents playing role Ri to agents playing role Rj to
hijack, and no agent playing role Rj will accept a message that appears to
be from an agent playing role Ri.

We have seen that in order to fake a message, the intruder can fake it
on the channel to the proxy, or on the channel from the proxy. We have
also seen that the intruder can hijack messages on either the channel to the
proxy, or on the channel from the proxy. In order to block these activities,
we must do so on both channels; we state the definitions of our building
blocks on the channel through a simple proxy below.

4Note that the proxies P(A,B) and P(A′,B) are different agents.

11

Definition 5.2 (No faking).

NF(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| fake.R̂i.Pr̂oxy(Ri,Rj), fake.Pr̂oxy(Ri,Rj).R̂j |} = 〈〉 .

Definition 5.3 (No-re-ascribing).

NRA(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ |} = 〈〉 .

Definition 5.4 (No-honest-re-ascribing).

NRA−(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition 5.5 (No-redirecting).

NR(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ |} = 〈〉 .

Definition 5.6 (No-honest-redirecting).

NR−(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ ∧Honest(B) |} = 〈〉 .

In the proof of the simple chaining theorem, below, we show that the
alternative specifications for each of the channels in the hierarchy through a
simple proxy are satisfied. These forms of the alternative specifications take
account of the fact that messages can be faked or hijacked on the channel to
the proxy or on the channel from the proxy; the specifications are shown in
Appendix A.1. We present one example below; the alternative form of the
channel specification (C ∧NRA− ∧NR−)(Proxy(Ri,Rj)) is:

12

Alt(C ∧NRA− ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

5.2 Simple chaining theorem

We make the following observations of the overall channel through a simple
proxy.

Observation 5.7. If the intruder cannot redirect messages that were sent
to honest agents on the channel to the proxy, then he cannot re-ascribe
messages on the channel to the proxy. In order to re-ascribe a message
the intruder must be able to redirect the message to one of the new sender’s
proxies. Further, since all honest agents’ proxies are honest, no honest agent
ever sends a message to a dishonest agent on the channel to the proxy.
Subject to the collapsing cases described earlier, if the channel to the proxy
satisfies NR− it also satisfies NRA ∧NR.

Observation 5.8. If the intruder cannot re-ascribe messages to honest
agents on the channel from the proxy, then he cannot redirect messages
on the channel from the proxy. In order to redirect a message the intruder
must be able to re-ascribe it to one of the proxies who sends messages to
the new recipient. Subject to the collapsing cases described earlier, if the
channel from the proxy satisfies NRA− it also satisfies NRA− ∧NR.

Theorem 5.9 (Simple chaining theorem). If roles Ri and Rj communicate
through simple proxies (i.e. SimpleProxies(Ri → Rj)) on secure channels
such that:

ChannelSpec1(Ri → Proxy(Ri,Rj)) ,

ChannelSpec2(Proxy(Ri,Rj) → Rj) ,

where ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification:

ChannelSpec =↓ (↖s ChannelSpec1 u ↗s ChannelSpec2) ;

13

where:
↖s (c, nf, nra, nr) =

(c, nf, 2, 2) if nr > 1 ,
(c, nf, nra, nr) otherwise ;

↗s (c, nf, nra, nr) =
(c, nf, nra, 2) if nra > 1 ,
(c, nf, nra, nr) otherwise ;

and u is the greatest lower bound operator in the full lattice.

The proof of the simple chaining theorem is in Section 5.3.

Corollary 5.10. If roles Ri and Rj communicate through simple proxies
(i.e. SimpleProxies(Ri → Rj)) on secure channels such that:

ChannelSpec(Ri → Proxy(Ri,Rj)) ,

ChannelSpec(Proxy(Ri,Rj) → Rj) ,

where ChannelSpec is a channel in the hierarchy, then the overall channel
(through the proxy) satisfies a channel specification ChannelSpec′ such that:

ChannelSpec 4 ChannelSpec′ .

In particular, ChannelSpec(Proxy(Ri,Rj)) holds.

Example 5.11. The channel to the proxy satisfies C ∧NRA ∧NR−, and
the channel from the proxy satisfies NF ∧NRA− ∧NR.

↖s (C ∧NRA ∧NR−) = C ∧NRA ∧NR ,
↗s (NF ∧NRA− ∧NR) = NF ∧NRA− ∧NR .

The greatest lower bound of these two points is NRA− ∧NR, which collapses
to ⊥.

The channel to the proxy is fakeable and the channel from the proxy is
non-confidential; because of collapsing case C1, the overall channel simulates
the bottom channel.

Example 5.12. The channel to the proxy satisfies NF ∧NRA− ∧NR−, and
the channel from the proxy satisfies NF ∧NRA−.

↖s (NF ∧NRA− ∧NR−) = NF ∧NRA ∧NR ,
↗s (NF ∧NRA−) = NF ∧NRA− ∧NR .

The greatest lower bound of these two points is NF ∧NRA− ∧NR, which
does not collapse. This channel is stronger than both of the individual
channels.

The intruder cannot fake messages on this channel, nor can he redirect
messages (because he can’t redirect messages using the channel to the proxy,
and he can’t re-ascribe messages using the channel from the proxy). The
intruder can only re-ascribe messages with his own identity because this is
the greatest capability he has on each channel individually.

14

Example 5.13. The channel to the proxy satisfies C ∧NR−, and the chan-
nel from the proxy satisfies C ∧NRA− ∧NR−.

↖s (C ∧NR−) = C ∧NRA ∧NR ,
↗s (C ∧NRA− ∧NR−) = C ∧NRA− ∧NR .

The greatest lower bound of these two points is C ∧NRA− ∧NR, which
collapses to C ∧NRA− ∧NR− by C5. This channel is stronger than the
greatest lower bound of the two individual channels.

Although the channel to the proxy is re-ascribable, it only allows the
intruder to redirect messages that were sent to him, so the overall channel
only allows the intruder to re-ascribe messages to his own identity (on the
channel from the proxy).

The resultant channels for all instances of the chaining theorem are
shown in Figure 4 (in Appendix B.1).

5.3 An automated proof of the simple chaining theorem

Each instance of Theorem 5.9 is relatively simple to prove. One simply
starts with a receive event, and calculates which events are allowed (by the
channel specifications to and from the proxy, and by the network rules) to
precede it in a valid system trace. Each receive event can be traced back to
a set of send, fake, or hijack events; it is then straightforward to determine
the strongest channel whose alternative specification is satisfied.

Before we describe the automated proof of the theorem, we show an
example proof of one instance.

Lemma 5.14. If roles Ri and Rj communicate through simple proxies
(i.e. SimpleProxies(Ri → Rj)) on secure channels such that:

(C ∧NR−)(Ri → Proxy(Ri,Rj)) ,

(C ∧NRA− ∧NR−)(Proxy(Ri,Rj) → Rj) ,

then (C ∧NRA− ∧NR−)(Proxy(Ri,Rj)).

Proof. We use the SimpleProxies property and the alternative specifications
of the channels to and from the proxy to show that the alternative form of

15

(C ∧NRA− ∧NR−)(Proxy(Ri,Rj)) holds; i.e.

C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .
(†)

holds for all valid system traces tr such that for all prefixes tr′ 6 tr:

SimpleProxies(Ri → Rj)(tr′) ,
(C ∧NR−)(Ri → Proxy(Ri,Rj))(tr

′) ,

(C ∧NRA− ∧NR−)(Proxy(Ri,Rj) → Rj)(tr′) .

It is clear that C(Ri → Proxy(Ri,Rj))(tr) and C(Proxy(Ri,Rj) → Rj)(tr) both
hold, so we must show that the second half of (†) holds.

Let A and B be agents playing roles Ri and Rj , P(A,B) be A’s proxy to
B, cB a connection and m an application-layer message. Suppose that the
event receive.B.cB.P(A,B).m occurs in tr; the network rule N4 implies the
existence of one of several events earlier in the trace. The set of possible
events is limited by C ∧NRA− ∧NR−, which holds on the channel from the
proxy:

1. ∃cP : Connection · send.P(A,B).cP .B.m in tr ;

2. fake.P(A,B).B.cB.m in tr ;

3. ∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∧
((P(A′,B′) = P(A,B)) ∨Dishonest(P(A,B))) ∧
((B′ = B) ∨Dishonest(B′)) .

We consider each of these possibilities independently because each one
leads to a different trace.

1. Suppose that send.P(A,B).cP .B.m precedes the receive event in the
trace tr, for some connection identifier cP . SimpleProxies(Ri → Rj)
implies SimpleProxy(P(A,B))(tr), and so receive.P(A,B).c

′
P .A.m occurs

earlier in the trace, for some connection c′P .

We use network rule N4 again; this implies the existence of one of
several events earlier in the trace, and, as before, these possibilities
are limited by C ∧NR−, which holds on the channel to the proxy:

16

(a) ∃cA : Connection · send.A.cA.P(A,B).m in tr ;

(b) fake.A.P(A,B).c
′
P .m in tr ;

(c) ∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.A′→A.P(A′,B′)→P(A,B).c

′
P .m in tr ∧

((P(A′,B′) = P(A,B)) ∨Dishonest(P(A′,B′))) .

The first two of these disjuncts match two of the disjuncts in (†), so
we do not (and cannot) trace these back further.

In the third disjunct, if A′ 6= A then P(A′,B′) 6= P(A,B), so P(A′,B′) is
dishonest, and hence A′ is dishonest. A must be honest (because the
intruder does not re-ascribe his own messages to himself), so this trace
simulates one in which the intruder fakes the message with A’s identity.

If B′ 6= B then the same argument shows that A′ is dishonest; again,
if A′ 6= A then this trace simulates one in which the intruder fakes the
message; if A′ = A then the intruder has redirected his own message:
this simulates a trace in which the intruder sends the message to the
correct agent in the first place.

Once we discount the simulating traces, we conclude that A′ = A and
B′ = B. This disjunct is now more restrictive than the corresponding
disjunct in (†).

2. The second possibility is that the intruder faked the message with the
proxy’s identity; this disjunct is already in the correct form for (†).

3. The final possibility is that the intruder hijacked a message sent by
the simple proxy P(A′,B′) to the agent B′. If P(A′,B′) = P(A,B), then
necessarily A′ = A; if P(A,B) is dishonest, A is also dishonest. Since
we already know that either B′ = B, or B′ is dishonest, this disjunct
matches that in (†).

We have shown that if an agent B receives a message from A’s
proxy P(A,B), then the set of events that may precede this receive event
is a subset of those allowed by the alternative form of the proxy chan-
nel specification C ∧NRA− ∧NR− on the channel Ri → Rj . Therefore,
(C ∧NRA− ∧NR−)(Proxy(Ri,Rj)) holds.

While each instance of the theorem can be proved simply, there are 121
instances5 that must be proved. In order to ease this process we have de-
veloped a Haskell6 script that performs the proofs automatically; the script
listing is shown in Appendix C. In the rest of this section we describe the
script, and relate its various stages to the proof example shown above.

5There are 11 possibilities for the channel to the proxy, and 11 for the channel from
the proxy.

6See http://www.haskell.org/

17

Deriving the full set of trace patterns We first calculate the distinct
trace patterns that result in an honest agent receiving a message, via
a proxy, from another honest agent or the intruder. A trace pattern
is a subtrace consisting of the events leading up to a receive event
in which all identities, connection identifiers and message values are
representative. For example, a trace pattern may show that an honest
agent sends a message to their proxy, the proxy receives it and then
sends it on, the intruder then redirects the message to another honest
agent, and then the new recipient receives the message; e.g.

s =̂ 〈send.A.cA.P(A,B), receive.P(A,B).cP .A.m, send.P(A,B).c
′
P .B.m,

hijack.P(A,B)→P(A,B′).B→B′.cB′ .m, receive.B′.cB′ .P(A,B′).m〉 .

Applying the channel properties We apply the properties of the chan-
nels to and from the proxy to eliminate those trace patterns in which
the intruder must perform an event that the channel does not allow
him to. For example, if the intruder cannot fake on the channel to the
proxy, we eliminate those trace patterns in which he fakes a message
on this channel.

Determining the resultant channel specification We examine the re-
maining trace patterns to determine which capabilities the intruder
still has. For example, if one of the remaining trace patterns shows
that an honest agent A sent a message to an honest agent B, but then
B receives that message from the dishonest agent I, then this pattern
demonstrates that the intruder can re-ascribe messages with his own
identity. When we examine each of the trace patterns we discover
which events the intruder can perform; we then find the point in the
lattice that corresponds to these remaining events, and collapse this
point to a channel in the hierarchy.

We describe each of these three stages in more detail below.

5.3.1 Deriving the full set of trace patterns

To derive the full set of trace patterns, we do not assume that either the
channel to the proxy or the channel from the proxy satisfy any secure channel
specifications. Suppose that tr is a valid system trace such that for all
prefixes tr′ 6 tr, SimpleProxies(Ri → Rj)(tr′) holds.

Let A and B be agents playing roles R̂i and R̂j , P(A,B) be A’s proxy
to B, cB a connection and m an application-layer message. Suppose that
the event receive.B.cB.P(A,B).m occurs in tr; the network rule N4 implies
the existence of one of several events earlier in the trace.

1. send.P(A,B).cP .B.m in tr for some connection cP ;

18

2. fake.P(A,B).B.cB.m in tr ;

3. ∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

There are three different possibilities: either the proxy sent the message
to B, the intruder faked the message to B (with the proxy’s identity), or
the intruder hijacked a message sent by a different proxy (P(A′,B′)). Each
of these events leads to different trace patterns, so we investigate them
independently.

1. The event send.P(A,B).cP .B.m occurs in the trace for some connec-
tion cP . Since B accepts this message, SimpleProxies(Ri → Rj) im-
plies that SimpleProxy(P(A,B)) holds for tr, and so P(A,B) must pre-
viously have received this message. The event receive.P(A,B).c

′
P .A.m

occurs earlier in the trace, for some connection c′P .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A.cA.P(A,B) in tr for some connection cA; the trace has the
following pattern:

tr1 =̂ 〈send.A.cA.P(A,B).m, receive.P(A,B).c
′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

(b) fake.A.P(A,B).c
′
P .m in tr ; the trace has the following pattern:

tr2 =̂ 〈fake.A.P(A,B).c
′
P .m, receive.P(A,B).c

′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

The intruder does not fake messages with his own identity, so in
this trace pattern we assume that A is honest.

(c) ∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj) ·
hijack.A′→A.P(A′,B′)→P(A,B).c

′
P .m in tr .

The intruder can only hijack messages that were previously
sent (N2), so A′ must have sent the message to her proxy ear-
lier in the trace (from some connection cA′). The trace has the
following pattern:

tr3 =̂ 〈send.A′.c′A.P(A′,B′).m,

hijack.A′→A.P(A′,B′)→P(A,B).c
′
P .m, receive.P(A,B).c

′
P .A.m,

send.P(A,B).cP .B.m, receive.B.cB.P(A,B).m〉 .

We can safely block the intruder from hijacking his own messages,
so in this trace pattern we assume that A′ is honest. If A′ = A

19

and B′ = B, then this trace pattern just shows a replay on the
channel to the proxy; because none of our channels prevent re-
plays, we are not interested in whether or not the intruder has
this capability. We assume that either A′ 6= A or B′ 6= B.

2. The event fake.P(A,B).B.cB occurs in the trace. Since the intruder
does not fake with dishonest identities, and since the proxy P(A,B) is
honest if and only if A is honest, we assume that A is honest. The
trace has the following pattern:

tr4 =̂ 〈fake.P(A,B).B.cB.m, receive.B.cB.P(A,B).m〉 .

3. The event hijack.P(A′,B′)→P(A,B).B
′→B.cB.m occurs in the trace.

We apply N2 again: the proxy P(A′,B′) must have sent the message
to B′ earlier in the trace (in some connection cP ′). So far, the trace
has this pattern:

s =̂ 〈send.P(A′,B′).cP ′ .B′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m, receive.B.cB.P(A,B).m〉 .

As before, we assume that P(A′,B′) is honest (and hence A′ is hon-
est). Now SimpleProxies(Ri → Rj) applies again and implies that
SimpleProxy(P(A′,B′)) holds for tr, and so P(A′,B′) must previously
have received this message from A′ (in some connection c′P ′). The
trace now has the following pattern:

s =̂ 〈receive.P(A′,B′).c
′
P ′ .A′, send.P(A′,B′).cP ′ .B′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m, receive.B.cB.P(A,B).m〉 .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A′.cA′ .P(A′,B′).m in tr for some connection cA′ ; the trace has
the following pattern:

tr5 =̂ 〈send.A′.cA′ .P(A′,B′).m,

receive.P(A′,B′).c
′
P ′ .A′, send.P(A′,B′).cP ′ .B′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m, receive.B.cB.P(A,B).m〉 .

As before, we assume that A′ is honest and that either A′ 6= A
or B′ 6= B.

(b) fake.A′.P(A′,B′).c
′
P ′ .m in tr. If the intruder can fake with

A′’s identity, he can also fake with A’s identity; this means that
the hijack event on the channel from the proxy is unnecessary.
We ignore this trace pattern.

20

(c) ∃A′′ : R̂i; B′′ : R̂j ; P(A′′,B′′) : Pr̂oxy(Ri,Rj) ·
hijack.A′′→A′.P(A′′,B′′)→P(A′,B′).c

′
P ′ .m in tr .

We apply N2 again: the agent A′′ must have sent the message to
her proxy in order for the intruder to hijack it. The trace now
has the following pattern:

tr6 =̂ 〈send.A′′.cA′′ .P(A′′,B′′).m,

hijack.A′′→A′.P(A′′,B′′)→P(A′,B′).c
′
P ′ .m,

receive.P(A′,B′).c
′
P ′ .A′, send.P(A′,B′).cP ′ .B′.m,

hijack.P(A′,B′)→P(A,B).B
′→B.cB.m,

receive.B.cB.P(A,B).m〉 .

If A′′ 6= A′ and A′ 6= A then the intruder has re-ascribed the mes-
sage to A′ on the channel to the proxy; he then re-ascribes it to A
on the channel from the proxy. This is unnecessary activity, and
this trace pattern simulates one in which he doesn’t hijack on the
channel to the proxy. We therefore assume that either A′′ = A′

or A′ = A; similarly we assume that either B′′ = B′ or B′ = B.
We ignore the trace patterns in which A′′ = A′ and B′′ = B′,
or A′ = A and B′ = B); we assume that A′′ is honest.

5.3.2 Applying the channel properties

The Haskell script automatically generates all of the trace patterns described
in the previous section. It then takes each of the 121 combinations of chan-
nels to and from the proxy and uses the channel specifications to eliminate
those traces that are not allowed. The traces are calculated in two stages:
the set of activity on the channel from the proxy is calculated first, and then
the channel specification on the channel from the proxy is applied; then the
activity on the channel to the proxy is calculated, and finally the channel
specification on the channel to the proxy is applied. The result is a set of
trace patterns {tr1, tr2, . . . , trn} that are allowed on the resultant channel.

5.3.3 Determining the resultant channel specification

In order to determine which channel property the resultant channel satisfies
we examine each of the co-ordinate points in the lattice individually. The
resultant channel is confidential (the first co-ordinate point) if and only if
the channels to and from the proxy are confidential; we call this value c. We
determine the remaining three co-ordinate points (no-faking, no-re-ascribing
and no-redirecting) by looking at each of the allowed trace patterns.

Each of these trace patterns demonstrates that the intruder can perform
a particular event. We present below a summary of these patterns; each
case shows the initial and final events in the pattern and then describes

21

which activity this demonstrates. This mapping allows us to assign a tu-
ple (nf, nra, nr) to each trace pattern.

When the final event is receive.B.cB.P(A,B).m (agent B receives a mes-
sage from the honest agent A’s proxy):

send.A.cA.P(A,B).m this does not demonstrate any activity: (1, 2, 2);

send.A.cA.P(A,I).m the intruder redirected a message that was sent to a
dishonest agent: (1, 2, 1);

send.A.cA.P(A,B′).m the intruder redirected a message that was sent to an
honest agent: (1, 2, 0);

send.A′.cA′ .P(A′,B).m the intruder re-ascribed a message to an honest
agent: (1, 0, 2);

send.A′.cA′ .P(A′,I).m the intruder re-ascribed a message to an honest agent,
and redirected a message sent to a dishonest agent: (1, 0, 1);

send.A′.cA′ .P(A′,B′).m the intruder re-ascribed a message to an hon-
est agent, and redirected a message that was sent to an honest
agent: (1, 0, 0);

send.I.cI .P(I,B).m the intruder hijacked his own message to simulate a
fake: (0, 2, 2);

fake.A.P(A,B).cP .m the intruder faked a message to the proxy: (0, 2, 2);

fake.P(A,B).B.cB.m the intruder faked a message from the proxy: (0, 2, 2).

When the final event is receive.B.cB.P(I,B).m (agent B receives a message
from the dishonest agent I’s proxy):

send.I.cI .P(I,B).m this does not demonstrate any activity: (1, 2, 2);

send.A.cA.P(A,B).m the intruder re-ascribed a message to a dishonest
agent: (1, 1, 2);

send.A.cA.P(A,I).m this does not demonstrate any activity (the intruder
sent a message that was sent to him): (1, 2, 2);

send.A.cA.P(A,B′).m the intruder re-ascribed a message to a dishonest
agent, and redirected a message sent to an honest agent; however,
this is only possible on a non-confidential channel, so this simulates a
learn and send: (1, 2, 2).

The result of applying the mapping to each of the trace patterns is a
set of tuples of the form (nfi, nrai, nri) for i = 1 . . . n. We take the value of

22

the confidential co-ordinate and calculate the lattice point of the resultant
channel in the following way:

(c, nf, nra, nr) = (c, minn
i=1(nfi), minn

i=1(nrai), minn
i=1(nri)) .

Finally we collapse this point to a point in the channel hierarchy. Thus
the resultant channel satisfies the channel specification:

(c, nf, nra, nr) =↓ (c, minn
i=1(nfi), minn

i=1(nrai), minn
i=1(nri)) .

By eliminating trace patterns and calculating the resultant point in the
hierarchy in this manner we prove that the alternative specification of the
resultant channel holds on all valid system traces in which the channel spec-
ifications to and from the proxy hold.

6 Multiplexing proxies

In this section we consider the more general (multiplexing) proxy case. The
study of simple proxies shows that by chaining two secure channels through a
trusted third party one can sometimes produce a stronger channel. However,
in the simple case, we thought of the proxies as ‘belonging’ to one of the
agents communicating; it is highly likely that A trusts her proxies, but
should she trust other agents’ proxies who send messages to her? In this
section we consider more general multiplexing proxies. A multiplexing proxy
is a trusted third party who is willing to forward messages from any agent
to any other agent.

We assume that all multiplexing proxies are honest. There is nothing to
stop the intruder from setting up proxies of his own; however, any message
sent through a dishonest proxy cannot remain confidential, and any message
received from a dishonest proxy cannot be authenticated.

When agent A intends to send a message to another agent (B) through
a simple proxy she just needs to pick the correct simple proxy to send the
message to. The proxy knows whom to forward the message to because
it is dedicated to that job. If A is to use a multiplexing proxy, she must
communicate her intent (to talk to B) to the proxy. Similarly, when B
receives a message from A’s proxy, he knows who originally sent the message;
when B receives a message from a multiplexing proxy, there must be some
communication from the proxy to B to say whom the message is from.

One way to solve this problem would be to build a special transport-layer
protocol in which the message sender’s protocol agent tells the proxy whom
to establish a connection with. The agent may then just send messages to
the proxy (just as they would if they were sending the messages directly to
the recipient). Similarly, the proxy tells the recipient’s protocol agent whom
the messages are from. However, this solution is unsuitable for our model
for two reasons:

23

• The whole point of the model is to make the details of the transport-
layer protocol abstract; once we start to impose conditions on the
transport-layer protocol, we lose the generality of the abstract model;

• When we discussed simple proxies we argued the case for considering
the proxies as application-layer entities; we make the same argument
here as we wish all details of the discussion to be at the application-
layer.

The solution we adopt, therefore, is to annotate the application-layer
messages with information about whom they are intended for, and whom
they were originally sent by. In order to send a message m to B (via the
multiplexing proxy P), agent A concatenates B’s identity to the message:

send.A.cA.P.〈m, B〉 .

When P receives this message he concatenates it to A’s identity, and sends
it on to B:

send.P.cP .B.〈A, m〉 .

This only works if the channel is either confidential or non-fakeable; however,
all of our channels satisfy at least one of these two properties, so this method
can be used on all of our channels.

We assume that none of the application-layer protocols call for agents to
send messages with the same type as the messages described above. If we
do not make this assumption, it might be possible for messages created by
honest agents for use in the application-layer protocols to be mistaken for
messages sent to or from a multiplexing proxy.

Definition 6.1. A multiplexing proxy is an honest agent who is dedicated
to forwarding messages; there is a single proxy role Proxy. When two roles
communicate through a multiplexing proxy, the following trace specification
is satisfied:

Proxies(Ri → Rj)(tr) =̂
tr ↓ {| send.R̂i.Connection.R̂j |} = 〈〉 ∧
tr ↓ {| receive.R̂j .Connection.R̂i |} = 〈〉 ∧
∀A, B, P : Agent; cA : Connection; m : Message ·

send.A.cA.P.〈m, B〉 in tr ⇒ Proxy(P)(tr) ∧
∀A, B, P : Agent; cB : Connection; m : Message ·

receive.B.cB.P.〈A, m〉 in tr ⇒ Proxy(P)(tr) ,

24

where each multiplexing proxy satisfies the following specification:

Proxy(P)(tr) =̂
Honest(P) ∧
∀cP : Connection; A, B,B′ : Agent; m, m′ : Message ·

receive.P.cP .A.〈m, B〉 in tr ∧ receive.P.cP .A.〈m′, B′〉 in tr ⇒ B = B′ ∧
∀cP : Connection; A, A′, B : Agent; m, m′ : Message ·

send.P.cP .B.〈A, m〉 in tr ∧ send.P.cP .B.〈A′, m′〉 in tr ⇒ A = A′ ∧
∀cP : Connection; A : Agent · ∃c′P : Connection; B : Agent ·

send.P.cP .〈A, m〉 6 receive.P.c′P .〈m, B〉 .

Each connection that the multiplexing proxies establish is either ded-
icated to receiving messages from one agent, or sending messages to one
agent. Although two individual messages from one agent to another could
be sent through different proxies, we assume that all the messages in one
connection are sent to (or received from) the same proxy.

We assume that the honest agents only send messages of the form 〈m, B〉
to proxies, and that they will only receive messages of the form 〈A, m〉 from
proxies.

Each multiplexing proxy can be used by several agents. One can imagine
a scenario in which each organisation has a pool of multiplexing proxies:
every agent in that organisation communicates with external agents through
the proxies, but communicates directly with internal agents (see Figure 3).

Whenever a multiplexing proxy receives a message from A for B, he
forwards it to B, and tells B that it is from A. In each connection, the
proxies only exchange messages with one other agent; they also only allow
one third party to be involved in each connection; this is so that, later, we
can show that the session properties are invariant under chaining.

6.1 Secure channels through multiplexing proxies

The public knowledge of the role of each simple proxy was what lead to
the rather surprising result that the chained form of two channels can be
stronger than both channels individually. With the multiplexing proxies we
no longer have this public knowledge; B only knows whom the message was
originally sent by by examining it and seeing whose identity is attached to
it. As we did last time, we consider each of the components of the hierarchy
individually in order to discover which properties the channel through a
proxy satisfies. In the discussion below we refer to the channel to the proxy
as (Ri → Proxy) and the channel from the proxy as (Proxy→ Rj).

Confidentiality If either of the channels to or from a proxy is not confi-
dential, then the channel through the proxy is not confidential. Since
all multiplexing proxies are honest, the channel through the proxy

25

CB

A

��
�A′

B′ C ′

D′

@
@
@

@
@
@

Network

P ′
��

PP
P

lll

P��
�

""
"

bb
b aa

aa

D

Figure 3: Multiplexing proxies.

26

is confidential if and only if the channels to and from the proxy are
confidential.

No faking It is also clear that if either of the channels to or from a proxy
is fakeable, then the channel through the proxy is fakeable. In order
to fake a message from A to B, the intruder must either fake sending
the message to the proxy, or from the proxy.

No re-ascribing Unlike the simple proxies, the intruder cannot choose
which channel to re-ascribe a message on: he must do so on the channel
to the proxy. This is straightforward:

tr =̂ 〈send.A.cA.P.〈m, B〉, hijack.A→A′.P.cP .〈m, B〉〉 .

The only identity that the intruder can change by re-ascribing on the
channel from the proxy is that of the message sender (the proxy):

tr =̂ 〈send.A.cA.P.〈m, B〉, receive.P.cP .A.〈m, B〉,
send.P.c′P .B.〈A, m〉, hijack.P→P ′.B.cB.〈A, m〉 .

Because honest agents only accept messages of the form 〈A, m〉 from
proxies, the intruder can only re-ascribe the message to a different
proxy: he cannot change the identity of the original sender of the
message by re-ascribing the message on the channel from the proxy.

No redirecting The intruder can only redirect a message using the channel
from the proxy; this is straightforward:

tr =̂ 〈send.A.cA.P.〈m, B〉, receive.P.cP .A.〈m, B〉,
send.P.c′P .B.〈A, m〉, hijack.P.B→B′.cB′ .〈A, m〉〉 .

The only identity that the intruder can change by redirecting the mes-
sage on the channel to the proxy is that of the message recipient: in
this case, the proxy;

tr =̂ 〈send.A.cA.P.〈m, B〉, hijack.A.P→P ′.cP ′ .〈m, B〉〉 .

Because the only honest agents who receive messages of the form
〈m, B〉 are proxies, the intruder can only redirect the message to a
different proxy.

The Proxies property on the roles Ri and Rj prevents agents playing
role Ri from communicating directly with agents playing role Rj . As be-
fore, we must reframe the definitions of the authenticated channel building
blocks for the channel through a multiplexing proxy because the standard
definitions are vacuously satisfied.

27

Definition 6.2 (No faking).

NF(Proxy(Ri → Rj))(tr) =̂
tr � {| fake.A.P.cA.〈m, B〉, fake.P.cP .B.〈A, m〉 |

A ∈ R̂i ∧ P ∈ Pr̂oxy ∧B ∈ R̂j ∧
cA, cP ∈ Connection ∧m ∈ MessageApp |} = 〈〉 .

Definition 6.3 (No-re-ascribing).

NRA(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m, B〉 |

A, A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ |} = 〈〉 .

Definition 6.4 (No-honest-re-ascribing).

NRA−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m, B〉 |

A, A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition 6.5 (No-redirecting).

NR(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A, m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B, B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ |} = 〈〉 .

Definition 6.6 (No-honest-redirecting).

NR−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A, m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B, B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ ∧Honest(B) |} = 〈〉 .

As in the proof of the simple chaining theorem, in the proof of the
chaining theorem, below, we show that the alternative specifications for
each of the channels in the hierarchy through a proxy are satisfied. These
forms of the alternative specifications take account of the fact that mes-
sages can be faked or hijacked on the channel to the proxy or on the chan-
nel from the proxy; the specifications are shown in Appendix B.2. We
present one example below; the alternative form of the channel specification
(C ∧NRA− ∧NR−)(Proxy(Ri → Rj)) is:

28

Alt(C ∧NRA− ∧NR−)(Proxy(Ri → Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m, B〉 in tr ∨
fake.P.B.cB.〈A, m〉 in tr ∨
∃P ′ : Pr̂oxy; B′ : R̂j ; cB : Connection ·

hijack.P ′→P.B′→B.cB.〈A, m〉 in tr ∧
((P ′ = P) ∨Dishonest(P)) ∧ ((B′ = B) ∨Dishonest(B′)) ∨
∃A′ : R̂i; P ′ : Pr̂oxy; cP : Connection ·

hijack.A′→A.P ′→P.cP .〈m, B〉 in tr ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P) ∨Dishonest(P ′)) .

In Appendix B.2 we always assume that P ′ = P , since honest agents only
accept messages from honest proxies, and only send messages to honest
proxies, so Dishonest(P) and Dishonest(P ′) never hold.

6.2 Chaining theorem

We make the following observations of the overall channel through a multi-
plexing proxy.

Observation 6.7. The intruder cannot redirect messages using the channel
to the proxy. Subject to the collapsing cases described earlier, the channel
to the proxy satisfies NR.

Observation 6.8. The intruder cannot re-ascribe messages using the chan-
nel from the proxy. Subject to the collapsing cases described earlier, the
channel from the proxy satisfies NRA.

Theorem 6.9 (Chaining theorem). If roles Ri and Rj communicate through
multiplexing proxies (i.e. Proxies(Ri → Rj)) on secure channels such that:

ChannelSpec1(Ri → Proxy) ,
ChannelSpec2(Proxy→ Rj) ,

where ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification:

ChannelSpec =↓ (↖m ChannelSpec1 u ↗m ChannelSpec2) ;

where:
↖m (c, nf, nra, nr) = (c, nf, nra, 2) ,
↗m (c, nf, nra, nr) = (c, nf, 2, nr) ,

and u is the greatest lower bound operator in the full lattice.

29

The proof of the chaining theorem is in Section 6.3.

Corollary 6.10. If roles Ri and Rj communicate through multiplexing prox-
ies (i.e. Proxies(Ri → Rj)) on secure channels such that:

ChannelSpec(Ri → Proxy) ,
ChannelSpec(Proxy→ Rj) ,

where ChannelSpec is a channel in the hierarchy, then the overall channel
(through the proxy) satisfies a channel specification ChannelSpec′ which is
such that:

ChannelSpec 4 ChannelSpec′ .

In particular, ChannelSpec(Proxy(Ri → Rj)) holds.
A simple case analysis in the case of the multiplexing proxies shows that:

ChannelSpec′ = ChannelSpec .

Example 6.11. The channel to the proxy satisfies C ∧NF ∧NRA− ∧NR−,
and the channel from the proxy satisfies C ∧NRA− ∧NR−.

↖m (C ∧NF ∧NRA− ∧NR−) = C ∧NF ∧NRA− ∧NR ,
↗m (C ∧NRA ∧NR−) = C ∧NRA ∧NR− .

The greatest lower bound of these two points is C ∧NRA− ∧NR−; this is
the greatest lower bound of the two channels. This is the same result as the
simple proxies.

The intruder cannot re-ascribe messages to honest agents because the
channel from the proxy is only re-ascribable with dishonest identities; even
though the channel from the proxy is fakeable, both channels are confi-
dential, so the intruder cannot learn the message and fake it to effect a
re-ascribe. The intruder can redirect messages that are sent to him.

Example 6.12. The channel to the proxy satisfies NF ∧NRA−, and the
channel from the proxy satisfies NF ∧NRA− ∧NR−.

↖m (NF ∧NRA−) = NF ∧NRA− ∧NR ,
↗m (NF ∧NRA− ∧NR−) = NF ∧NRA ∧NR− .

The greatest lower bound of these two points is NF ∧NRA− ∧NR−; this
channel is stronger than the greatest lower bound of the two channels. This
result is different to the simple proxy result (which is just NF ∧NRA−).

Neither channel is confidential, so the overall channel is not confidential.
However, because neither channel is fakeable, the intruder cannot overhear
messages and fake them to re-ascribe or redirect messages. He cannot there-
fore redirect messages using the channel to the proxy, and cannot re-ascribe
messages using the channel from the proxy.

30

Example 6.13. The channel to the proxy satisfies C ∧NF ∧NRA ∧NR−,
and the channel from the proxy satisfies C ∧NF ∧NRA− ∧NR.

↖m (C ∧NF ∧NRA− ∧NR) = C ∧NF ∧NRA ∧NR ,
↗m (C ∧NF ∧NRA ∧NR−) = C ∧NF ∧NRA ∧NR .

The greatest lower bound of these two points is the top channel; this is
stronger than both channels.

The intruder cannot redirect messages, nor can he re-ascribe messages on
the overall channel because these activities are blocked on the only channel
that allows them.

The list of resultant channels for every instance of the chaining theorem
is shown in Figure 5 (in Appendix B.2).

6.3 An automated proof of the chaining theorem

As before, each instance of Theorem 6.9 is relatively simple to prove; the
proof mechanism is identical to that for the simple proxies, only the details of
the proof are different. As in the previous section, we first prove an example
instance of the theorem, then we describe the changes to the automated
proof.

Lemma 6.14. If roles Ri and Rj communicate through multiplexing proxies
(i.e. Proxies(Ri → Rj)) on secure channels such that:

(NF ∧NRA−)(Ri → Proxy) ,
(NF ∧NRA− ∧NR−)(Proxy→ Rj) ,

then (NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)).

Proof. We use the Proxies property and the alternative specifications of
the channels to and from the proxy to show that the alternative form of
(NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)) holds; i.e.

∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·
receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃P ′ : Pr̂oxy; B′ : R̂j ; cB : Connection ·

hijack.P ′→P.B′→B.cB.〈A, m〉 in tr ∧
((P ′ = P) ∨Dishonest(P)) ∧ ((B′ = B) ∨Dishonest(B′)) ∨

∃A′ : R̂i; P ′ : Pr̂oxy; cP : Connection ·
hijack.A′→A.P ′→P.cP .〈m, B〉 in tr ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P) ∨Dishonest(P ′)) ,

(†)

for all valid system traces tr such that for all prefixes tr′ 6 tr:

Proxies(Ri → Rj)(tr′) ,
(NF ∧NRA−)(Ri → Proxy)(tr′) ,
(NF ∧NRA− ∧NR−)(Proxy→ Rj)(tr′) .

31

Let A and B be agents playing roles Ri and Rj , P be a multiplexing
proxy, cB a connection and m an application-layer message. Suppose that
the event receive.B.cB.P.〈m, A〉 occurs in tr; the network rule N4 implies
the existence of one of several events earlier in the trace. The set of possible
events is limited by NF ∧NRA− ∧NR−, which holds on the channel from
the proxy:

1. ∃cP : Connection · send.P.cP .B.〈A, m〉 in tr ;

2. ∃P ′ : Pr̂oxy; B′ : R̂j · hijack.P ′→P.B′→B.cB.〈A, m〉 in tr ∧
((P ′ = P) ∨Dishonest(P)) ∧ ((B′ = B) ∨Dishonest(B′)) .

The second of these disjuncts is already in the correct form for (†), so
we only need to investigate the first.

Suppose that the event send.P.cP .B.〈A, m〉 precedes the receive event in
the trace tr, for some connection identifier cP . Proxies(Ri → Rj) implies
Proxy(P), and so receive.P.c′P .A.〈m, B〉 occurs earlier in the trace, for some
connection c′P .

We use network rule N4 again; this implies the existence of one of several
events earlier in the trace, and, as before, these possibilities are limited
by NF ∧NRA−, which holds on the channel to the proxy.

1. ∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ;

2. ∃A′ : R̂i; P ′ : Pr̂oxy · hijack.A′→A.P ′→P.cP .〈m, B〉 ∧
((A′ = A) ∨Dishonest(A)) ∧ ((P ′ = P) ∨Dishonest(P ′)) .

These disjuncts match those in (†).
We have shown that if an agent B receives a message from agent A

via a multiplexing proxy, then the set of events that may precede this re-
ceive event is equal to those allowed by the alternative form of the proxy
channel specification NF ∧NRA− ∧NR− on the channel Ri → Rj . There-
fore (NF ∧NRA− ∧NR−)(Proxy(Ri → Rj)) holds.

There are, again, 121 instances of this theorem to prove. In order to
prove these instances we adapt the automated proof of the simple chain-
ing theorem; we describe these changes below, and the script is shown in
Appendix C.

6.3.1 Deriving the full set of trace patterns

We derive the full set of trace patterns in the same way as before: we do not
assume that either the channel to the proxy or the channel from the proxy
satisfy any secure channel specifications. Suppose that tr is a valid system
trace such that for all prefixes tr′ 6 tr, Proxies(Ri → Rj)(tr′) holds.

32

Let A and B be agents playing roles R̂i and R̂j , P be a multiplex-
ing proxy, cB a connection and m an application-layer message. Suppose
that receive.B.cB.P.〈A, m〉 occurs in tr; the network rule N4 implies the
existence of one of several events earlier in the trace.

1. send.P.cP .B.〈A, m〉 in tr for some connection cP ;

2. fake.P.B.cB.〈A, m〉 in tr ;

3. ∃P ′ : Pr̂oxy; B′ : R̂j · hijack.P ′→P.B′→B.cB.〈A, m〉 in tr .

There are three different possibilities: either the proxy sent the message
to B, the intruder faked the message to B (with the proxy’s identity), or
the intruder hijacked a message sent by a different proxy to agent B′. Each
of these events leads to different trace patterns, so we investigate them
independently.

1. The event send.P.cP .B.〈A, m〉 occurs in the trace for some connec-
tion cP . Since B accepts this message, Proxies(Ri → Rj) implies
that Proxy(P) holds for tr, and so P must previously have received a
message of the form 〈m, B〉. The event receive.P.c′P .A.〈m, B〉 occurs
earlier in the trace, for some connection c′P .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A.cA.P.〈m, B〉 in tr for some connection cA; the trace has
the following pattern:

tr1 =̂ 〈send.A.cA.P.〈m, B〉, receive.P.c′P .A.〈m, B〉,
send.P.cP .B.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

(b) fake.A.P.c′P .〈m, B〉 in tr ; the trace has the following pattern:

tr2 =̂ 〈fake.A.P.c′P .〈m, B〉, receive.P.c′P .A.〈m, B〉,
send.P.cP .B.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

The intruder does not fake messages with his own identity, so in
this trace pattern we assume that A is honest.

(c) ∃A′ : R̂i; P ′ : Pr̂oxy · hijack.A′→A.P ′→P.c′P .〈m, B〉 in tr . The
intruder can only hijack messages that were previously sent (N2),
so A′ must have sent the message to P ′ earlier in the trace (in
some connection cA′). The trace has the following pattern:

tr3 =̂ 〈send.A′.cA′ .P ′.〈m, B〉,
hijack.A′→A.P ′→P.c′P .〈m, B〉, receive.P.c′P .A.〈m, B〉,
send.P.cP .B.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

33

We can safely block the intruder from hijacking his own mes-
sages, so in this trace pattern we assume that A′ is honest. The
intruder does not gain anything by redirecting the message to a
different proxy (since all proxies are honest, and all proxies be-
have in the same way), so we assume that P ′ = P . If A′ = A
then this trace pattern just shows a replay on the channel to the
proxy; because none of our channels prevent replays, we are not
interested in whether or not the intruder has this capability; we
assume that A′ 6= A.

2. The event fake.P.B.cB.〈A, m〉 occurs in the trace; the trace has the
following pattern:

tr4 =̂ 〈fake.P.B.cB.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

In this trace pattern, we assume that A is honest.

3. The event hijack.P ′→P.B′→B.cB.〈A, m〉 occurs in the trace. Since
all proxies are honest, and all behave in the same way, the intruder
does not gain anything by changing the identity of the sender of the
message; we assume that P ′ = P . We apply N2 again: the proxy P
must have sent the message to B′ earlier in the trace (in some connec-
tion cP). So far, the trace has the pattern:

s =̂ 〈send.P.cP .B′.〈A, m〉,
hijack.P.B′→B.cB.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

P is a multiplexing proxy, so Proxies(Ri → Rj) applies again, and
implies that Proxy(P) holds for tr, and so P must previously have
received a message of the form 〈m, B′〉 from A (in some connection c′P).
The trace now has the following pattern:

s =̂ 〈receive.P.c′P .A.〈m, B′〉, send.P.cP .B′.〈A, m〉,
hijack.P.B′→B.cB.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

We apply network rule N4 again; this implies the existence of one of
several events earlier in the trace.

(a) send.A.cA.P.〈m, B′〉 in tr for some connection cA; the trace has
the following pattern:

tr5 =̂ 〈send.A.cA.P.〈m, B′〉,
receive.P.c′P .A.〈m, B′〉, send.P.cP .B′.〈A, m〉,
hijack.P.B′→B.cB.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

As before, we assume that A is honest and that B′ 6= B.

34

(b) fake.A.P.c′P .〈m, B′〉 in tr. If the intruder can fake the mes-
sage 〈m, B′〉, he can also fake the message 〈m, B〉; this means
that the hijack event on the channel from the proxy is unneces-
sary. We ignore this trace pattern.

(c) ∃A′ : R̂i; P ′ : Pr̂oxy · hijack.A′→A.P ′→P.c′P .〈m, B′〉 in tr . As
before, we assume that P ′ = P . We apply N2 again: the agent A′

must have sent the message to P (in some connection cA′) in
order for the intruder to hijack it. The trace now has the
following pattern:

tr5 =̂ 〈send.A′.cA′ .P.〈m, B′〉, hijack.A′→A.P.c′P .〈m, B′〉,
receive.P.c′P .A.〈m, B′〉, send.P.cP .B′.〈A, m〉,
hijack.P.B′→B.cB.〈A, m〉, receive.B.cB.P.〈A, m〉〉 .

We assume that A′ is honest and that A′ 6= A and B′ 6= B.

6.3.2 Applying the channel properties

The properties on the channels to and from the proxy are applied in exactly
the same way as for the simple proxies. The result of this stage of the
automated proof is a set of trace patterns {tr1, tr2, . . . , trn} that are allowed
on the resultant channel.

6.3.3 Determining the resultant channel specification

We determine the channel property that the resultant channel satisfies in
the same way as we do in the automated proof of the simple chaining the-
orem. The resultant channel is confidential if and only if the channels to
and from the proxy are confidential; we call this value c. We determine the
remaining three co-ordinate points in the lattice by looking at the allowed
trace patterns.

Each of these trace patterns demonstrates that the intruder can perform
a particular event. We present below a summary of these patterns; each
case shows the initial and final events in the pattern, and then describes
which activity this demonstrates. This mapping allows us to assign a tu-
ple (nf, nra, nr) to each trace pattern.

When the final event is receive.B.cB.P.〈A, m〉 (agent B receives a mes-
sage from the proxy that appears to have been sent on the honest agent A’s
behalf):

send.A.cA.P.〈m, B〉 this does not demonstrate any activity: (1, 2, 2);

send.A.cA.P.〈m, I〉 the intruder redirected a message that was intended for
a dishonest agent: (1, 2, 1);

35

send.A.cA.P.〈m, B′〉 the intruder redirected a message that was intended
for an honest agent: (1, 2, 0);

send.A′.cA′ .P.〈m, B〉 the intruder re-ascribed a message to an honest
agent: (1, 0, 2);

send.A′.cA′ .P.〈m, I〉 the intruder re-ascribed a message to an honest
agent, and redirected a message that was intended for a dishonest
agent: (1, 0, 1);

send.A′.cA′ .P.〈m, B′〉 the intruder re-ascribed a message to an honest
agent, and redirected a message that was intended for an honest
agent: (1, 0, 0);

send.I.cI .P.〈m, B〉 the intruder hijacked his own message to simulate a
fake: (0, 2, 2);

fake.A.P.cP .〈m, B〉 the intruder faked a message to the proxy: (0, 2, 2);

fake.P.B.cB.〈A, m〉 the intruder faked a message from the proxy: (0, 2, 2).

When the final event is receive.B.cB.P.〈I, m〉 (agent B receives a message
from the proxy that appears to have been sent on the dishonest agent I’s
behalf):

send.I.cI .P.〈m, B〉 this does not demonstrate any activity: (1, 2, 2);

send.A.cA.P.〈m, B〉 the intruder re-ascribed a message to a dishonest
agent: (1, 1, 2);

send.A.cA.P.〈m, I〉 this does not demonstrate any activity (the intruder
sent a message that was sent to him): (1, 2, 2);

send.A.cA.P.〈m, B′〉 the intruder re-ascribed a message to a dishonest
agent, and redirected a message that was intended for an honest agent;
however, this is only possible on a non-confidential channel, so this
simulates a learn and send: (1, 2, 2).

The result of applying the mapping to each of the trace patterns is a set
of tuples of the form (nfi, nrai, nri) for i = 1 . . . n. We take the value of the
confidential co-ordinate and calculate the resultant channel specification in
the following way:

(c, nf, nra, nr) =↓ (c, minn
i=1(nfi), minn

i=1(nrai), minn
i=1(nri)) .

By eliminating trace patterns and calculating the resultant point in the
hierarchy in this manner, we prove that the alternative specification of the
resultant channel holds on all valid system traces in which the channel spec-
ifications to and from the proxy hold.

36

7 Related work

The discussion of proxies presented in this paper is based on the work of
Dilloway and Lowe in [DL08]. Other authors have specified secure channels
in different ways, and to different ends, and in some cases have demonstrated
similar chaining results.

In [MS94], the authors describe a calculus for secure channel estab-
lishment. They define channels that offer confidentiality (→•), authen-
tication of the message sender (•→), or both (•→•). The authors show
that if user B trusts a third party T , and there are channels from another
agent A such that A •→ T •→ B, then the agents A and B can establish a
new channel A •→ B. The authors also show that confidential channels can
be chained, provided that the message sender trusts the third party. These
two results agree with our chaining theorems; though our results go further
as we show that many more channels can be chained. However, we cannot
reason about channels when only one agent trusts the third party, as the
authors of [MS94] can.

In [Boy93], Boyd defines two different types of channel: Confidentiality,
where only the intended user (or set of users) can read the message; and
Authentication, where only the expected user (or set of users) can write
the message. In Boyd’s setup channels are established by utilising existing
channels, or by propagating new channels between the two users wishing
to communicate, often via a trusted third party (a proxy in our notation).
Boyd shows that if a user A has an authenticated channel to a third party T ,
and T has an authenticated channel to a user B (and if B trusts T), then an
authenticated channel from A to B can be established. This agrees with our
(multiplexing) result that authenticated channels can be chained; as before
though, our results go further as they show that many more channels can
be chained.

Some authors have tried to solve the chaining problem by modifying the
secure transport layer protocol. In [SBL06] the authors propose a variant
of SSL/TLS in which three connections are established: a direct connection
between client and server, and two direct connections between the client and
a proxy, and between the proxy and the server. The direct connection can
be used for highly confidential data, while the proxy channel can be used for
data that doesn’t have to remain secret. In [KCC01] the authors propose
adding end-to-end encryption to chains of WTLS and TLS connections so
that data sent via a proxy remains confidential. However, in both these
cases, data can be passed through the proxy without the proxy being able
to read it; the proxy can then no longer perform any application-layer jobs
it might have (such as virus scanning).

37

8 Conclusions and future work

We have presented two chaining theorems for secure channels. The theorems
are useful because they describe ways in which secure channels might be
used, and they allow users of our secure channel specifications to calculate
the properties of the overall channel through a proxy very simply. One can
easily tell whether or not the chained form of two channels still provides a
particular property. In particular, we have shown that the channels defined
in [DL08] are invariant under chaining through a proxy, provided that the
proxy is trustworthy.

In [DL08] we also present a session property; a session channel guar-
antees that all the messages received in a connection were sent in a single
connection. We also specify a stream property which guarantees the ses-
sion property, and that the messages were sent in the same order as that
in which they were received. We propose to investigate whether the session
and stream properties are invariant under chaining. It seems likely that this
is the case (assuming that whenever the proxy receives several messages in
a single session he forwards them in a single session, in the same order).

We also intend to investigate the effect of multiple chaining of secure
channels. When agents playing role Ri send messages to agents playing
role Rj through a multiplexing proxy, the elevation function is different on
the channels to and from the proxy. If the chaining is set up as

Ri → Proxy→ Proxy ′ → Rj ,

it is not clear what properties the channel through the two different proxies
satisfies.

Using the theorems in this paper we could calculate the properties of the
overall channel in two different ways: by calculating the resultant channel
over the first two connections, then using this result to calculate the result
of the overall chain, or by calculating the result of the last two connections
first.7

↓ (↖m Chain(Ri → Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) , or
↓ (↖m (Ri → Proxy) u ↗m Chain(Proxy→ Proxy ′ → Rj)) ,

where:

Chain(Ri → Proxy→ Proxy ′) =
↓ (↖m (Ri → Proxy) u ↗m (Proxy→ Proxy ′)) , and

Chain(Proxy→ Proxy ′ → Rj) =
↓ (↖m (Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) .

7In these examples, when we write a channel such as Ri → Rj , we are of course referring
to the channel properties satisfied by this channel, rather than the channel itself.

38

Because the elevation functions (↖m and↗m) are not the same, in most
cases these calculations will give different results. For this reason we believe
that the overall channel is likely to satisfy the following specification:

↓ (↖m (Ri → Proxy)u (Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) .

The specifications of the channels to the first proxy and from the last proxy
are elevated in the usual way, but there is no elevation on the intermediate
channel. It is easy to see how to generalise this result to longer chains.

Acknowledgements

I would like to thank Gavin Lowe for many useful discussions. This work is
funded by the US Office of Naval Research.

References

[BL03] P. Broadfoot and G. Lowe. On distributed security transactions
that use secure transport protocols. In Proceedings of the 16th
IEEE Computer Security Foundations Workshop, pages 141–151,
2003.

[Boy93] C. Boyd. Security architectures using formal methods. IEEE
Journal on Selected Areas in Communications, 11(5):694–701,
1993.

[DL08] C. Dilloway and G. Lowe. Specifying secure channels. In Pro-
ceedings of the 21st IEEE Computer Security Foundations Sym-
posium, 2008.

[DY83] D. Dolev and A.C. Yao. On security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–208, 1983.

[KCC01] E. Kwon, Y. Cho, and K. Chae. Integrated transport layer secu-
rity: End-to-end security model between WTLS and TLS. Pro-
ceedings of the The 15th International Conference on Informa-
tion Networking, 2001.

[MS94] Ueli Maurer and Pierre Schmid. A calculus for secure channel
establishment in open networks. In Computer Security — ES-
ORICS 94, volume 875 of Lecture Notes in Computer Science,
pages 175–192. Springer-Verlag, November 1994.

[OAS05] OASIS Security Services Technical Committee. Assertions
and Protocols for the Security Assertion Markup Language
(SAML) V2.0, 2005. Available from http://www.oasis-
open.org/committees/security/.

39

[RSG+01] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A.W.
Roscoe. The Modelling and Analysis of Security Protocols.
Addison-Wesley, 2001.

[SBL06] Y. Song, K. Beznosov, and V. Leung. Multiple-channel security
architecture and its implementation over SSL. EURASIP Jour-
nal on Wireless Communications and Networking, 2006(2):78–
78, 2006.

[Vis06] Visa International Service Association. Verified by Visa Sys-
tem Overview External Version 1.0.2, 2006. Available from
https://partnernetwork.visa.com/vpn/global/category.do.

[WSF+03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski,
J. Gawor, C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke.
Security for grid services. In Proceedings of the 12th IEEE In-
ternational Symposium on High Performance Distributed Com-
puting, pages 48–57, 2003.

40

A Alternative specifications for proxy channels

A.1 Simple proxies

Definition A.1 (Alt(⊥)).

Alt(⊥)(Proxy(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.2 (Alt(NF∧NRA−)).

Alt(NF ∧NRA−)(Proxy(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

Definition A.3 (Alt(NF ∧NRA− ∧NR−)).

Alt(NF ∧NRA− ∧NR−)(Proxy(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

41

Definition A.4 (Alt(NF ∧NRA− ∧NR)).

Alt(NF ∧NRA− ∧NR)(Proxy(Ri,Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i; P(A′,B) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B)→P(A,B).cP .m in tr ∨
hijack.P(A′,B)→P(A,B).B.cB.m in tr .

Definition A.5 (Alt(C∧NR−)).

Alt(C ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.6 (Alt(C ∧NRA− ∧NR−)).

Alt(C ∧NRA− ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

42

Definition A.7 (Alt(C ∧NRA ∧NR−)).

Alt(C ∧NRA ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃cP : Connection · fake.A.P(A,B).cP .m in tr ∨
fake.P(A,B).B.cB.m in tr ∨
∃B′ : R̂j ; P(A,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A.P(A,B′)→P(A,B).cP .m in tr ∨
hijack.P(A,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

Definition A.8 (Alt(C ∧NF ∧NRA− ∧NR−)).

Alt(C ∧NF ∧NRA− ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂i; B′ : R̂j ; P(A′,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P(A′,B′)→P(A,B).cP .m in tr ∨
hijack.P(A′,B′)→P(A,B).B

′→B.cB.m in tr ∨ .

Definition A.9 (Alt(C ∧NF ∧NRA− ∧NR)).

Alt(C ∧NF ∧NRA− ∧NR)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃A′ : R̂iP(A′,B) : Pr̂oxy(Ri,Rj); cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P(A′,B)→P(A,B).cP .m in tr ∨
hijack.P(A′,B)→P(A,B).B.cB.m in tr .

43

Definition A.10 (Alt(C ∧NF ∧NRA ∧NR−)).

Alt(C ∧NF ∧NRA ∧NR−)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr ∨
∃B′ : R̂j ; P(A,B′) : Pr̂oxy(Ri,Rj); cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A.P(A,B′)→P(A,B).cP .m in tr ∨
hijack.P(A,B′)→P(A,B).B

′→B.cB.m in tr .

Definition A.11 (Alt(C ∧NF ∧NRA ∧NR)).

Alt(C ∧NF ∧NRA ∧NR)(Proxy(Ri,Rj))(tr) =̂
C(Ri → Proxy(Ri,Rj)) ∧ C(Proxy(Ri,Rj) → Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P(A,B) : Pr̂oxy(Ri,Rj); m : MessageApp ·

receive.B.cB.P(A,B).m in tr ⇒
∃cA : Connection · send.A.cA.P(A,B).m in tr .

A.2 Multiplexing proxies

Definition A.12 (Alt(⊥)).

Alt(⊥)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m, B〉 in tr ∨
fake.P.B.cB.〈A, m〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

Definition A.13 (Alt(NF∧NRA−)).

Alt(NF ∧NRA−)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

44

Definition A.14 (Alt(NF ∧NRA− ∧NR−)).

Alt(NF ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

Definition A.15 (Alt(NF ∧NRA− ∧NR)).

Alt(NF ∧NRA− ∧NR)(Proxy(Ri, Rj))(tr) =̂
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃A′ : R̂i; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr .

Definition A.16 (Alt(C∧NR−)).

Alt(C ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m, B〉 in tr ∨
fake.P.B.cB.〈A, m〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

Definition A.17 (Alt(C ∧NRA− ∧NR−)).

Alt(C ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m, B〉 in tr ∨
fake.P.B.cB.〈A, m〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

45

Definition A.18 (Alt(C ∧NRA ∧NR−)).

Alt(C ∧NRA ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃cP : Connection · fake.A.P.cP .〈m, B〉 in tr ∨
fake.P.B.cB.〈A, m〉 in tr ∨
∃B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.P.B′→B.cB.〈A, m〉 in tr .

Definition A.19 (Alt(C ∧NF ∧NRA− ∧NR−)).

Alt(C ∧NF ∧NRA− ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃A′ : R̂i; B′ : R̂j ; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧ ((B′ = B) ∨Dishonest(B′)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr ∨
hijack.P.B′→B.cB.〈A, m〉 in tr .

Definition A.20 (Alt(C ∧NF ∧NRA− ∧NR)).

Alt(C ∧NF ∧NRA− ∧NR)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃A′ : R̂i; cP : Connection ·

((A′ = A) ∨Dishonest(A)) ∧
hijack.A′→A.P.cP .〈m, B〉 in tr .

Definition A.21 (Alt(C ∧NF ∧NRA ∧NR−)).

Alt(C ∧NF ∧NRA ∧NR−)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr ∨
∃B′ : R̂j ; cP : Connection ·

((B′ = B) ∨Dishonest(B′)) ∧
hijack.P.B′→B.cB.〈A, m〉 in tr .

46

Definition A.22 (Alt(C ∧NF ∧NRA ∧NR)).

Alt(C ∧NF ∧NRA ∧NR)(Proxy(Ri, Rj))(tr) =̂
C(Ri → Proxy) ∧ C(Proxy→ Rj) ∧
∀B : R̂j ; cB : Connection; A : R̂i; P : Pr̂oxy; m : MessageApp ·

receive.B.cB.P.〈A, m〉 in tr ⇒
∃cA : Connection · send.A.cA.P.〈m, B〉 in tr .

B Chaining theorem result tables

B.1 Simple proxies

See Figure 4.

B.2 Multiplexing proxies

See Figure 5.

47

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

⊥
⊥

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R

A
−

N
R
−

C
N

R
−

C
N

R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

N
F

N
R

A
−

N
R

⊥
C

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R
−

C
N

R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

⊥
C

N
R
−

⊥
⊥

N
F

N
R

A
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

⊥
⊥

⊥
C

N
F

N
R

A
N

R
⊥

⊥
C

N
F

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

⊥
⊥

N
F

N
R

A
−

⊥
⊥

⊥
⊥

F
ig

ur
e

4:
T

he
ta

bl
e

of
re

su
lt

an
t

ch
an

ne
ls

th
ro

ug
h

a
si

m
pl

e
pr

ox
y.

48

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R

⊥
⊥

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

R
A

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R

A
−

N
R
−

C
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

N
R

⊥
C

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R
−

C
N

R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

⊥
C

N
R
−

⊥
⊥

N
F

N
R

A
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

C
N

R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

⊥
⊥

⊥
C

N
F

N
R

A
N

R
⊥

⊥
C

N
F

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

⊥
⊥

N
F

N
R

A
−

⊥
⊥

⊥
⊥

F
ig

ur
e

5:
T

he
ta

bl
e

of
re

su
lt

an
t

ch
an

ne
ls

th
ro

ug
h

a
m

ul
ti

pl
ex

in
g

pr
ox

y.

49

C Chaining theorem Haskell scripts

C.1 Subsidiary (shared) channel functions

channels.lhs

>module Channels (

> Channel, ChannelComp (Less, Greater, Equal, Incomparable),

> channelCompare, hierarchy, collapse, channelShow, glb)

>where

A channel is represented by its co-ordinates in the full lattice:

(C, NF, NRA, NR)

>type Channel = (Integer, Integer, Integer, Integer)

>data ChannelComp = Less | Equal | Greater | Incomparable

> deriving (Eq, Show)

Channels are compared pointwise:

>channelCompare :: Channel -> Channel -> ChannelComp

>channelCompare (c1, nf1, nra1, nr1) (c2, nf2, nra2, nr2)

> | c1 == c2 && nf1 == nf2 && nra1 == nra2 && nr1 == nr2 = Equal

> | c1 <= c2 && nf1 <= nf2 && nra1 <= nra2 && nr1 <= nr2 = Less

> | c1 >= c2 && nf1 >= nf2 && nra1 >= nra2 && nr1 >= nr2 = Greater

> | otherwise = Incomparable

The hierarchy is represented as follows:

(1, 1, 2, 2)

C NF NRA NR

/ \

/ \

(1, 1, 2, 1) (1, 1, 1, 2)

C NF NRA NR- C NF NRA- NR

/ \ / \

/ \/ \

(1, 0, 2, 1) (1, 1, 1, 1) (0, 1, 1, 2)

C NRA NR- C NF NRA- NR- NF NRA- NR

\ /\ /

\ / \ /

(1, 0, 1, 1) (0, 1, 1, 1)

C NRA- NR- NH NRA- NR-

| |

| |

(1, 0, 0, 1) (0, 1, 1, 0)

C NR- NF NRA

\ /

\ /

(0, 0, 0, 0)

|

>hierarchy :: [Channel]

50

>hierarchy = [(1, 1, 2, 2),

>(1, 1, 2, 1), (1, 1, 1, 2),

>(1, 0, 2, 1), (1, 1, 1, 1), (0, 1, 1, 2),

>(1, 0, 1, 1), (0, 1, 1, 1),

>(1, 0, 0, 1), (0, 1, 1, 0),

>(0, 0, 0, 0)]

Collapse a point in the lattice by applying the collapsing rules until we

reach a fixpoint

>collapse :: Channel -> Channel

>collapse c = if (c == c’) then c else collapse c’

> where c’ = collapse’ c

>collapse’ :: Channel -> Channel

>collapse’ (0,0,x,y) = (0,0,0,0)

>collapse’ (x,1,0,y) = (x,0,0,y)

>collapse’ (0,1,2,x) = (0,1,1,x)

>collapse’ (1,x,y,0) = (0,x,y,0)

>collapse’ (1,0,x,2) = (1,0,x,1)

>collapse’ c = c

Show a channel as a string

>channelShow :: Channel -> String

>channelShow (0,0,0,0) = "_|_"

>channelShow (c, nf, nra, nr) = cStr ++ nfStr ++ nraStr ++ nrStr

> where cStr = if c > 0 then "C" ++

> (if nf + nra + nr > 0 then " ^ " else "") else ""

> nfStr = if nf > 0 then "NF" ++

> (if nra + nr > 0 then " ^ " else "") else ""

> nraStr = if nra > 0 then dashNRA ++

> (if nr > 0 then " ^ " else "") else ""

> nrStr = if nr > 0 then dashNR else ""

> dashNRA = if nra == 1 then "NRA-" else "NRA"

> dashNR = if nr == 1 then "NR-" else "NR"

The greatest lower bound (in the hierarchy) of two channels

>glb :: Channel -> Channel -> Channel

>glb (c1, nf1, nra1, nr1) (c2, nf2, nra2, nr2) =

> (min c1 c2, min nf1 nf2, min nra1 nra2, min nr1 nr2)

C.2 Simple proxy proof script

>import Channels

We calculate the channel combinations where the expected result (calculated

using the elevation rules) and the actual result (calculated using the trace

patterns) differ.

>difference :: IO()

>difference = (putStr . concat) [

> "Actual: " ++ (actual c1 c2) ++

51

> "Expected: " ++ (expected c1 c2) ++ "\n" |

> c1 <- hierarchy, c2 <- hierarchy,

> (actual c1 c2) /= (expected c1 c2)]

The expected result (calculated using the elevation rules).

>expected :: Channel -> Channel -> String

>expected c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow resultant) ++ "\n"

> where resultant = collapse (glb (raiseToProxy c1) (raiseFromProxy c2))

>raiseToProxy :: Channel -> Channel

>raiseToProxy (c, nf, nra, nr) = (c, nf, nra’, nr’)

> where nra’ = if (nr > 0) then 2 else nra

> nr’ = if (nr > 0) then 2 else 0

>raiseFromProxy :: Channel -> Channel

>raiseFromProxy (c, nf, nra, nr) = (c, nf, nra, nr’)

> where nr’ = if (nra > 0) then 2 else nr

The actual result (calculated using trace patterns).

>actual :: Channel -> Channel -> String

>actual c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow (match (resultant A) (resultant I) c1 c2)) ++ "\n"

> where resultant a = (map head . toSender a . toProxy) (finalEvent a)

> toSender a = applyChannel c1 . concat . map

> (initial (Sender a) (Receiver B))

> toProxy = map preProxy . applyChannel c2 . pre

> finalEvent a = (Receive (Proxy (Sender a, Receiver B), Receiver B))

We use representative identities: A, A’, B, B’ are honest; I is dishonest.

>data Identity = A | A’ | B | B’ | I

> deriving (Eq, Show)

An agent is either a proxy between two agents, a sender, or a receiver.

>data Agent = Proxy (Agent, Agent) | Sender Identity | Receiver Identity

> deriving (Eq, Show)

Proxies are honest if the agent they send on behalf of is honest.

>honest :: Agent -> Bool

>honest (Proxy (a,b)) = honest a

>honest (Sender a) = a /= I

>honest (Receiver a) = a /= I

It’s convenient to list the senders, receivers and proxies.

52

>senders :: [Agent]

>senders = [Sender A, Sender A’, Sender I]

>receivers :: [Agent]

>receivers = [Receiver B, Receiver B’, Receiver I]

>proxies :: [Agent]

>proxies = [Proxy (a, b) | a <- senders, b <- receivers]

And to pick out the sender or receiver from a proxy.

>sender :: Agent -> Agent

>sender (Proxy (a, b)) = a

>receiver :: Agent -> Agent

>receiver (Proxy (a, b)) = b

Each event is either a send, receive, fake or hijack. We list the sender’s

identity first, the recipient’s second.

>data Event = Send (Agent, Agent) |

> Receive (Agent, Agent) |

> Fake (Agent, Agent) |

> Hijack (Agent, Agent, Agent, Agent)

> deriving (Eq,Show)

The function pre calculates which events could have occurred immediately

before the final receive event. However, we don’t let the intruder fake

with his own (e.g. a dishonest) identity.

>pre :: Event -> [[Event]]

>pre (Receive (p,b)) = sends:fakes:hijacks

> where sends = [Send (p,b), Receive (p,b)]

> fakes = if (honest (p)) then [Fake (p,b), Receive (p,b)]

> else []

> hijacks = [[Send (p’, receiver (p’)),

> Hijack (p’, p, receiver (p’), b),

> Receive (p,b)] | p’ <- proxies]

If the proxy p sent a message to b, then who sent the message to p?

>preProxy :: [Event] -> [Event]

>preProxy (Send (p,b):xs) = Receive (sender p, p):Send (p,b):xs

>preProxy xs = xs

Once we know who the proxy received the message from we can work out all

possible traces that would result in our original event. However:

We don’t let the intruder send messages to the wrong recipient;

We don’t let the intruder fake with his own identity, with the wrong

sender’s identity, or to the wrong recipient.

>initial :: Agent -> Agent -> [Event] -> [[Event]]

>initial a1 b1 (Receive (a,p):xs) = sends:fakes:hijacks

> where sends = if (honest (a) || receiver (p) == b1) then

> Send (a,p):Receive (a,p):xs else []

> fakes = if (honest (a) && a == a1 && receiver(p) == b1) then

> Fake (a,p):Receive (a,p):xs else []

53

> hijacks = [[Send ((sender (p’)), p’),

> Hijack (sender (p’),a,p’,p),

> Receive (a,p)] ++ xs | p’ <- proxies]

>initial _ _ xs = [xs]

We can apply a channel to the events each side of the proxy (apply only

looks at the first two events in each trace).

>applyChannel :: Channel -> [[Event]] -> [[Event]]

>applyChannel _ [] = []

>applyChannel cs ([]:xss) = applyChannel cs xss

>applyChannel (c,nf,nra,nr) ((x:y:xs):xss) =

> if (nfs nf (x,y) && nras nra (x,y) && nrs nr (x,y)) then

> (x:y:xs):(applyChannel (c,nf,nra,nr) xss) else

> (applyChannel (c,nf,nra,nr) xss)

> where nfs 0 _ = True

> nfs 1 ((Fake (a,b)),y) = False

> nfs 1 _ = True

> nras 0 _ = True

> nras 1 (x,(Hijack (a,a’,b,b’))) = (a == a’) || (not $ honest(a’))

> nras 1 _ = True

> nras 2 (x,(Hijack (a,a’,b,b’))) = (a == a’)

> nras 2 _ = True

> nrs 0 _ = True

> nrs 1 (x,(Hijack (a,a’,b,b’))) = (b == b’) || (not $ honest(b))

> nrs 1 _ = True

> nrs 2 (x,(Hijack (a,a’,b,b’))) = (b == b’)

> nrs 2 _ = True

The function match takes a list of initial honest and initial dishonest

events and discovers which channel they correspond to.

>match :: [Event] -> [Event] -> Channel -> Channel -> Channel

>match hs ds (c1,nf1,nra1,nr1) (c2,nf2,nra2,nr2) = collapse (c,nf,nra,nr)

> where c = if (c1 == 1 && c2 == 1) then 1 else 0

> nf = if (nf1 == 1 && nf2 == 1) then 1 else 0

> nra = minimum (map trd (map hEvents hs ++ map dEvents ds))

> nr = minimum (map fth (map hEvents hs ++ map dEvents ds))

The functions hEvents and dEvents tell which channel properties a certain

event implies.

>hEvents :: Event -> Channel

>hEvents (Send (Sender A,Proxy (Sender A,Receiver B))) = (1,1,2,2)

>hEvents (Send (Sender A,Proxy (Sender A,Receiver I))) = (1,1,2,1)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver B))) = (1,1,0,2)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver I))) = (1,1,0,1)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver B))) = (1,0,2,2)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver I))) = (1,0,2,2)

>hEvents (Send (Sender A,Proxy (Sender A,Receiver B’))) = (1,1,2,0)

>hEvents (Send (Sender A’,Proxy (Sender A’,Receiver B’))) = (1,1,0,0)

>hEvents (Send (Sender I,Proxy (Sender I,Receiver B’))) = (1,0,2,2)

>hEvents (Fake (Sender A,Proxy (Sender A,Receiver B))) = (1,0,2,2)

>hEvents (Fake (Proxy (Sender A,Receiver B),Receiver B)) = (1,0,2,2)

54

>dEvents :: Event -> Channel

>dEvents (Send (Sender I,Proxy (Sender I,Receiver B))) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver B))) = (1,1,1,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver B))) = (1,1,1,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy (Sender I,Receiver I))) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy (Sender A,Receiver B’))) = (0,1,2,2)

>dEvents (Send (Sender A’,Proxy (Sender A’,Receiver B’))) = (0,1,2,2)

>dEvents (Send (Sender I,Proxy (Sender I,Receiver B’))) = (1,1,2,2)

>trd (_,_,x,_) = x

>fth (_,_,_,x) = x

C.3 Multiplexing proxy proof script

>import Channels

We calculate the channel combinations where the expected result (calculated

using the elevation rules) and the actual result (calculated using the trace

patterns) differ.

>difference :: IO()

>difference = (putStr . concat) [

> "Actual: " ++ (actual c1 c2) ++

> "Expected: " ++ (expected c1 c2) ++ "\n" |

> c1 <- hierarchy, c2 <- hierarchy,

> (actual c1 c2) /= (expected c1 c2)]

The expected result (calculated using the elevation rules).

>expected :: Channel -> Channel -> String

>expected c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow resultant) ++ "\n"

> where resultant = collapse (glb (raiseToProxy c1) (raiseFromProxy c2))

>raiseToProxy :: Channel -> Channel

>raiseToProxy (c, nf, nra, nr) = (c, nf, nra, 2)

>raiseFromProxy :: Channel -> Channel

>raiseFromProxy (c, nf, nra, nr) = (c, nf, 2, nr)

The actual result (calculated using trace patterns).

>actual :: Channel -> Channel -> String

>actual c1 c2 = "A --[" ++

> (channelShow c1) ++ "]--> Proxy --[" ++

> (channelShow c2) ++ "]--> B = " ++

> (channelShow (match (resultant A) (resultant I) c1 c2)) ++ "\n"

> where resultant a = (map head . toSender a . toProxy) (finalEvent a)

> toSender a = applyChannel c1 . concat . map

55

> (initial (Sender a) (Receiver B))

> toProxy = map preProxy . applyChannel c2 . pre

> finalEvent a = (Receive (Proxy, Receiver B, Sender a))

We use representative identities: A, A’, B, B’ are honest; I is dishonest.

>data Identity = A | A’ | B | B’ | I

> deriving (Eq, Show)

An agent is either a proxy, a sender, or a receiver.

>data Agent = Proxy | Sender Identity | Receiver Identity

> deriving (Eq, Show)

All proxies are honest (so we never question it).

>honest :: Agent -> Bool

>honest (Sender a) = a /= I

>honest (Receiver a) = a /= I

It’s convenient to list the senders and receivers.

>senders :: [Agent]

>senders = [Sender A, Sender A’, Sender I]

>receivers :: [Agent]

>receivers = [Receiver B, Receiver B’, Receiver I]

Each event is either a send, receive, fake or hijack. We list the sender’s

idenitity first, the receiver’s second and the third party’s (the original

sender or the final recipient) third.

>data Event = Send (Agent, Agent, Agent) |

> Receive (Agent, Agent, Agent) |

> Fake (Agent, Agent, Agent) |

> Hijack (Agent, Agent, Agent, Agent)

> deriving (Eq,Show)

The function pre calculates which events could have occurred immediately

before the final receive event. However, we don’t let the intruder fake

with his own (e.g. a dishonest) identity.

>pre :: Event -> [[Event]]

>pre (Receive (Proxy,b,a)) = sends:fakes:hijacks

> where sends = [Send (Proxy,b,a), Receive (Proxy,b,a)]

> fakes = if (honest (a)) then

> [Fake (Proxy,b,a), Receive (Proxy,b,a)] else []

> hijacks = [[Send (Proxy,b’,a),

> Hijack (Proxy,b’,b,a),

> Receive (Proxy,b,a)] | b’ <- receivers]

If the proxy p sent a message to b, then who sent the message to p?

>preProxy :: [Event] -> [Event]

56

>preProxy (Send (Proxy,b,a):xs) = Receive (a,Proxy,b):Send (Proxy,b,a):xs

>preProxy xs = xs

Once we know who the proxy received the message from we can work out all

possible traces that would result in our original event. However:

We don’t let the intruder send messages to the wrong recipient;

We don’t let the intruder fake with his own identity, with the wrong

sender’s identity, or to the wrong recipient.

>initial :: Agent -> Agent -> [Event] -> [[Event]]

>initial a1 b1 (Receive (a,Proxy,b):xs) = sends:fakes:hijacks

> where sends = if (honest(a) || b == b1) then

> (Send (a,Proxy,b)):(Receive (a,Proxy,b)):xs else []

> fakes = if (honest(a) && a == a1 && b == b1) then

> (Fake (a,Proxy,b)):(Receive (a,Proxy,b)):xs else []

> hijacks = [[Send (a’,Proxy,b),

> Hijack (a’,a,Proxy,b),

> Receive (a,Proxy,b)] ++ xs | a’ <- senders]

>initial _ _ xs = [xs]

We can apply a channel to the events each side of the proxy (apply only

looks at the first two events in each trace).

>applyChannel :: Channel -> [[Event]] -> [[Event]]

>applyChannel _ [] = []

>applyChannel cs ([]:xss) = applyChannel cs xss

>applyChannel (c,nf,nra,nr) ((x:y:xs):xss) =

> if (nfs nf (x,y) && nras nra (x,y) && nrs nr (x,y)) then

> (x:y:xs):(applyChannel (c,nf,nra,nr) xss) else

> (applyChannel (c,nf,nra,nr) xss)

> where nfs 0 _ = True

> nfs 1 ((Fake (a,Proxy,b)),y) = False

> nfs 1 ((Fake (Proxy,b,a)),y) = False

> nfs 1 _ = True

> nras 0 _ = True

> nras 1 (x,(Hijack (a,a’,Proxy,b))) = (a == a’) || (not $ honest(a’))

> nras 1 (x,(Hijack (Proxy,b,b’,a))) = True

> nras 1 _ = True

> nras 2 (x,(Hijack (a,a’,Proxy,b))) = (a == a’)

> nras 2 (x,(Hijack (Proxy,b,b’,a))) = True

> nras 2 _ = True

> nrs 0 _ = True

> nrs 1 (x,(Hijack (a,a’,Proxy,b))) = True

> nrs 1 (x,(Hijack (Proxy,b,b’,a))) = (b == b’) || (not $ honest(b))

> nrs 1 _ = True

> nrs 2 (x,(Hijack (a,a’,Proxy,b))) = True

> nrs 2 (x,(Hijack (Proxy,b,b’,a))) = (b == b’)

> nrs 2 _ = True

The function match takes a list of initial honest and initial dishonest

events and discovers which channel they correspond to.

>match :: [Event] -> [Event] -> Channel -> Channel -> Channel

>match hs ds (c1,nf1,nra1,nr1) (c2,nf2,nra2,nr2) = collapse (c,nf,nra,nr)

57

> where c = if (c1 == 1 && c2 == 1) then 1 else 0

> nf = if (nf1 == 1 && nf2 == 1) then 1 else 0

> nra = minimum (map trd (map hEvents hs ++ map dEvents ds))

> nr = minimum (map fth (map hEvents hs ++ map dEvents ds))

The functions hEvents and dEvents tell which channel properties a certain

event implies.

>hEvents :: Event -> Channel

>hEvents (Send (Sender A,Proxy,Receiver B)) = (1,1,2,2)

>hEvents (Send (Sender A,Proxy,Receiver I)) = (1,1,2,1)

>hEvents (Send (Sender A,Proxy,Receiver B’)) = (1,1,2,0)

>hEvents (Fake (Sender A,Proxy,Receiver B)) = (1,0,2,2)

>hEvents (Fake (Proxy,Receiver B,Sender A)) = (1,0,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver B)) = (1,1,0,2)

>hEvents (Send (Sender I,Proxy,Receiver B)) = (1,0,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver I)) = (1,1,0,1)

>hEvents (Send (Sender I,Proxy,Receiver I)) = (1,1,2,2)

>hEvents (Send (Sender A’,Proxy,Receiver B’)) = (1,1,0,0)

>hEvents (Send (Sender I,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents :: Event -> Channel

>dEvents (Send (Sender I,Proxy,Receiver B)) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender I,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy,Receiver B)) = (1,1,1,2)

>dEvents (Send (Sender A’,Proxy,Receiver B)) = (1,1,1,2)

>dEvents (Send (Sender A,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy,Receiver I)) = (1,1,2,2)

>dEvents (Send (Sender A,Proxy,Receiver B’)) = (1,1,2,2)

>dEvents (Send (Sender A’,Proxy,Receiver B’))= (1,1,2,2)

>trd (_,_,x,_) = x

>fth (_,_,_,x) = x

58

