
Chaining Secure Channels

Christopher Dilloway
Oxford University Computing Laboratory

Abstract

Security architectures often make use of secure transport protocols to
protect network messages: the transport protocols provide secure channels
between hosts. In this paper we examine the possibilities for chaining
secure channels. We present a surprising theorem that shows that, in
some cases, two channels can be chained through a proxy to produce a
stronger channel. We also show that the channel established through a
proxy is at least as strong as the greatest lower bound of the channels
established to and from the proxy.

Keywords Formal specification, security models, secure channels, prox-
ies, chaining.

1 Background

A popular technique for designing a security architecture is to rely on a secure
transport layer to protect messages on the network, and provide secure channels
between different hosts; see e.g. [8, 10, 11]. In [4] we describe a framework for
specifying the sorts of security guarantees that might be provided by secure
channels. We capture security properties using CSP-style trace specifications,
building on the work of Broadfoot and Lowe [2].

In [4] we exclusively describe channels that secure point-to-point connec-
tions. In this paper we examine two different ways in which secure channels
can be chained: first through a set of dedicated intermediaries (simple proxies),
and then through a set of trustworthy (multiplexing) proxies. We present a
surprising theorem that shows how, under some circumstances, two channels
can be chained to produce a stronger channel. We also show that the channel
established through a proxy is always at least as strong as the greatest lower
bound of the channels established to and from the proxy.

The results presented in this paper are particularly relevant to real-world
use of secure channels. Many organisations arrange their computers in a trusted
intranet, and only allow external access through a proxy. In order to perform
its role (e.g. virus scanning, or traffic management), a proxy must be able to
establish secure channels on behalf of the internal agents.

It is not obvious which security properties, if any, are provided by estab-
lishing secure channels through a proxy. The aim of this paper, therefore, is to
investigate these sorts of chains of channels in order to determine which security
properties the overall channel can provide.

In Section 2 we describe the model of secure channel specifications from [4].
In Section 3 we present the first chaining theorem; in this section the proxies

are dedicated intermediaries. Every agent knows, and can verify, the identity of
their own proxies, and also of the proxies who send messages to them on other
agents’ behalf. This public knowledge of the job of each simple proxy restricts
the intruder’s behaviour, and so, in some cases, two channels can be chained to
produce a stronger channel.

In Section 4 we describe the second chaining theorem; in this section the
proxies are more general. Each proxy accepts messages from any agent, and is
willing to forward them to any other agent. The agents and the proxies add
extra information to the application-layer messages that they send in order to
identify the third party involved in the message (the original sender, or the
intended recipient). This extra information limits the intruder’s behaviour, and
so, as before, two channels can be chained to produce a stronger channel. The
proofs of the two chaining theorems are omitted from this paper (for lack of
space), but can be found in [3].

Finally, in Section 5 we discuss related work, and in Section 6 we discuss
the utility of the results presented in this paper, and we present some ideas for
future work.

2 Secure channels

In [4] we define an abstract network in terms of honest agents, who send and
receive messages, and an intruder, who has several events he can use to manip-
ulate the messages being passed on the network, and who can also send and
receive messages.

Our model is split into two layers: in the application layer the agents play
roles, establish channels, and send and receive messages; in the secure transport
layer protocol agents translate the higher level events into lower level events
(e.g. by encrypting or signing messages), and vice versa (e.g. by decrypting
messages or verifying signatures). The agents and protocol agents refer to the
channels they establish by local connection identifiers.

A channel is described by an ordered pair of roles; for example, the chan-
nel (Ri, Rj) (which we often write as Ri → Rj) is the channel in which agents
playing role Ri send messages to agents playing role Rj .

We treat encryption formally. All messages are drawn from the message
space, Message, which is partitioned into two sets: application-layer messages
(MessageApp) and transport-layer messages (MessageTL). We assume a mono-
tonic and transitive relation ` defined over this type: for X ⊆ Message, and
m : Message, X ` m means that m can be deduced from the set X. We assume
that the intruder has some initial knowledge IIK ⊆ Message.

We use the following events, where m ranges over the set MessageApp of
application-layer messages.
send.(A, Ri).cA.(B, Rj).m: the agent (A, Ri)1 sends message m, intended for
agent (B, Rj), in a connection identified by A as cA.
receive.(B, Rj).cB .(A, Ri).m: the agent (B, Rj) receives message m, appar-
ently from agent (A, Ri), in a connection identified by B as cB .
fake.(A, Ri).(B, Rj).cB .m: the intruder fakes a send of message m to agent
(B, Rj) in connection cB with the identity of honest agent (A, Ri).

1The notation (A, Ri) refers to the agent with identity A playing role Ri

hijack.(A, Ri) → (A′, Ri).(B, Rj) → (B′, Rj).cB′ .m: the intruder modifies a
previously sent message m and changes the sender to (A′, Ri), and the receiver
to (B′, Rj) so that B′ accepts it in connection cB′ .

By changing both, just one, or neither of the identities associated with a
message, the intruder can use the hijack event in four different ways: to replay
a previously-sent message, to re-ascribe2 a message, to redirect a message, or to
re-ascribe and redirect a message. In some cases the intruder can only perform
these events with a dishonest identity.

In [4] we specify several rules that define the application-layer behaviour
accepted by our networks, and define the relationship between the application-
layer events and the transport-layer events performed by the honest agents.
These rules do not capture channel properties; rather, they define some san-
ity conditions in order to remove artificial and irrelevant behaviour from our
networks.

A channel specification is a predicate over the set of valid system traces: the
(prefix-closed) set of traces that satisfy the network rules referred to above; this
set is dependent upon the intruder’s initial knowledge. A channel specification
has a natural interpretation: the set of valid system traces that it accepts,
assuming some value of the intruder’s initial knowledge.

A confidential channel should protect the confidentiality of any message sent
on it from all but the intended recipient. For example, a confidential channel
can be implemented by encrypting application layer messages with the intended
recipient’s public key. We identify confidential channels by tagging them with
the label C (e.g. writing C(Ri → Rj)). The intruder’s knowledge is then re-
stricted so that he only learns from messages that are sent on non-confidential
channels, or that are sent to him. We note that this notion of confidentiality
is that of Dolev and Yao [5]: the intruder can only decrypt messages when he
possesses the decryption key; we do not attempt to capture any other definition
of confidentiality (such as indistinguishability).

We specify authenticated channels by describing the relationship between the
receive and send events performed by the agents at either end of the channel.
In particular, we specify under what circumstances an agent may perform a
particular receive event. The bottom of our hierarchy is the standard Dolev-
Yao network model, captured by the network rules in [4].

There are two dishonest events the intruder can perform: faking and hi-
jacking. With some transport protocols the latter can only be performed using
dishonest identities. We specify our channels by placing restrictions on when he
can perform these events.
No faking: NF(Ri → Rj): the intruder cannot fake messages on the channel.
No-re-ascribing: NRA(Ri → Rj): the intruder cannot change the sender’s
identity when he hijacks messages on the channel.
No-honest-re-ascribing: NRA−(Ri → Rj): the intruder can only change
the sender’s identity to a dishonest identity when he hijacks messages on the
channel.
No-redirecting: NR(Ri → Rj): the intruder cannot redirect messages on
the channel.

2To ascribe means to attribute a text to a particular person; hence we use “re-ascribe” to
describe the intruder’s activity when he changes the identity of the sender of a message.

C ∧ NF ∧ NRA ∧ NR−

�
�
�
�
�
�Q
Q
Q
Q
Q
Q�
�
�
�
�
�Q
Q
Q
Q
Q
Q

Q
Q
Q
Q
Q
Q�
�
�
�
�
�Q
Q
Q
Q
Q
Q�
�
�
�
�
�

�
�
�
�
�
�Q
Q
Q
Q
Q
Q

NF ∧ NRA− ∧ NR−C ∧ NRA− ∧ NR−

NF ∧ NRA−C ∧ NR−

C ∧ NF ∧ NRA− ∧ NR−

C ∧ NF ∧ NRA ∧ NR

⊥

C ∧ NRA ∧ NR− NF ∧ NRA− ∧ NR

C ∧ NF ∧ NRA− ∧ NR

Q
Q
Q
Q
Q
Q�
�
�
�
�
�

Figure 1: The hierarchy of secure channels.

No-honest-redirecting: NR−(Ri → Rj): the intruder cannot redirect mes-
sages that were sent to honest agents on the channel.

The formal specifications simply block the relevant events; for example:

NR−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·B 6= B′ ∧Honest(B) |} = 〈〉 .

The formal specifications for all of the properties are shown in Appendix A.1.
These properties are not independent, since no-re-ascribing implies no-

honest-re-ascribing, and likewise for no-redirecting. Further, not all combina-
tions are fundamentally different; certain pairs of combinations allow essentially
the same intruder behaviours: each simulates the other. We collapse such com-
binations; for full details of the collapsing cases see [4]. After taking the col-
lapsing cases into consideration we arrive at a hierarchy of four non-confidential
and seven confidential channels, shown in Figure 1.

Without taking the collapsing cases into account, there are thirty-six dif-
ferent combinations of the primitives described above; these form a lattice.
We describe a point in this lattice by listing each of its components in
the order (C, NF, NRA, NR); e.g. the point (C,⊥, NRA, NR−) is the channel
C ∧NRA ∧NR−. There is a partial order on the lattice: points are compared
component-wise.

The collapsing cases, which are described in detail in [4], can also be de-
scribed by five collapsing rules:

C1 =̂ (⊥, ⊥ , x , y) ↓ (⊥, ⊥ , ⊥ , ⊥) ,
C2 =̂ (x, NF, ⊥ , y) ↓ (x, ⊥ , ⊥ , y) ,
C3 =̂ (⊥, NF, NRA, x) ↓ (⊥, NF, NRA−, x) ,
C4 =̂ (C, x , y , ⊥) ↓ (⊥, x , y , ⊥) ,
C5 =̂ (C, ⊥ , x , NR) ↓ (C, ⊥ , x , NR−) .

Definition 2.1. For any point (c, nf, nra, nr) in the full lattice, we define
↓ (c, nf, nra, nr) to be the collapsed form of the point. This is the point we

reach by continually applying the collapsing rules until we reach a point that
cannot be collapsed further.

Proposition 2.2. The collapsed form of every point in the full lattice is unique
and well-defined.

The proof of this proposition is a simple case analysis; for details see [3]. We
note that ↓ is monotonic with respect to the order on the lattice.

In [4] we define a simulation relation that compares channel specifications
by comparing the honest agents’ views of them. The honest agents’ view of
the traces of a channel specification is the restriction of those traces to the
application-layer send and receive events performed by the honest agents.

The channel specification ChannelSpec1 simulates ChannelSpec2 if, for all
possible values of the intruder’s initial knowledge, every trace of the second
specification corresponds to a trace of the first specification that appears the
same to the honest agents. We write ChannelSpec1 4 ChannelSpec2.

3 Simple proxies

In this section we present the chaining theorem for simple proxies.

Definition 3.1. A simple proxy is an agent who is dedicated to forwarding
messages from one agent to another. For every pair of roles (Ri, Rj) there is a
simple proxy role Proxy(Ri,Rj). For every pair of agents (A : R̂i, B : R̂j)3 such
that A 6= B there is a unique simple proxy P(A,B) : Pr̂oxy(Ri,Rj) who forwards
messages from A to B. When two roles communicate through a simple proxy,
the following properties hold:

• Agents playing roles Ri and Rj do not communicate directly;

• For every pair of agents (A, B), the simple proxy P(A,B) only establishes
connections with A and B, and each connection it establishes is either
dedicated to sending messages to B or to receiving messages from A.
Further, the simple proxy forwards to B every message that it receives
from A;

• Honest agents only send messages to their own proxies, and they only
receive messages from proxies whom they know send messages to them.

Because the proxy P(A,B) acts on A’s behalf, the proxy is honest if and only
if A is honest. We think of the family of proxies {P(A,B) | B : Agent} as A’s
proxies (because they all send on her behalf).

3.1 Secure channels through simple proxies

In order to discover which security properties the channel through a simple proxy
satisfies we consider each of the components of the hierarchy individually. In the
discussion below we refer to the channel to the proxy as (Ri → Proxy(Ri,Rj)),
and the channel from the proxy as (Proxy(Ri,Rj) → Rj).

3The notation R̂i is shorthand for (Identity, Ri).

Confidentiality It is clear that if either of the channels to or from a simple
proxy is not confidential, the channel through the proxy is not confidential.
No faking In order to fake a message from A to B, the intruder must either
fake sending the message to A’s proxy P(A,B), or fake sending the message from
A’s proxy to B; the channel through the proxy is fakeable if either the channel
to the proxy or the channel from the proxy is fakeable.
No re-ascribing The intruder can either re-ascribe a message on the channel
to the proxy or on the channel from the proxy.

In order to re-ascribe a message on the channel to the proxy it is not enough
for the intruder just to change the sender’s identity (hijack.A→A′.P(A,B).cP .m)
because A’s proxy will not accept a message that appears to have been sent by
another agent (A′). In order to re-ascribe a message on the channel to the proxy,
the intruder must also be able to redirect the message to the correct one of the
new sender’s proxies.

On the other hand, re-ascribing a message on the channel from the proxy is
straightforward:4 hijack.P(A,B)→P(A′,B).B.cB .m. The intruder only needs to
change the sender’s identity to that of another agent’s proxy.
No redirecting The intruder can either redirect a message on the channel to
the proxy or on the channel from the proxy.

In order to redirect a message on the channel to the proxy the intruder
simply redirects to a different proxy: hijack.A.P(A,B)→P(A,B′).cP .m.

On the other hand, in order to redirect a message on the chan-
nel from the proxy the intruder cannot just change the recipient’s iden-
tity (hijack.P(A,B).B→B′.cB′ .m). B′ will not accept a message from the
proxy P(A,B) because B′ knows which proxies send messages to him; in order to
redirect a message on this channel the intruder must also be able to re-ascribe
the message to one of the proxies that B′ accepts messages from.

If roles Ri and Rj are communicating through simple proxies, then Defini-
tion 3.1 prevents agents playing role Ri from communicating directly with agents
playing role Rj : it insists that they only communicate through proxies. This
means that the standard definitions of our secure channels (which restrict the
intruder’s behaviour when hijacking or faking messages) are vacuously satisfied:
there are no messages sent by agents playing role Ri to agents playing role Rj

to hijack, and no agent playing role Rj will accept a message that appears to
be from an agent playing role Ri.

We have seen that in order to fake a message, the intruder can fake it on
the channel to the proxy, or on the channel from the proxy. We have also seen
that the intruder can hijack messages on either the channel to the proxy, or on
the channel from the proxy. In order to block these activities, we must do so on
both channels; for example:

NF(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| fake.R̂i.Pr̂oxy(Ri,Rj), fake.Pr̂oxy(Ri,Rj).R̂j |} = 〈〉 .

The definitions of all of our building blocks on the channel through a simple
proxy are shown in A.2.

4Note that the proxies P(A,B) and P(A′,B) are different agents.

3.2 Simple chaining theorem

We make two observations of the overall channel through a simple proxy.

Observation 3.2. If the intruder cannot redirect messages that were sent to
honest agents on the channel to the proxy, then he cannot re-ascribe messages on
the channel to the proxy. In order to re-ascribe a message the intruder must be
able to redirect the message to one of the new sender’s proxies. Further, since
all honest agents’ proxies are honest, no honest agent ever sends a message
to a dishonest agent on the channel to the proxy. Subject to the collapsing
cases described earlier, if the channel to the proxy satisfies NR− it also satisfies
NRA ∧NR.

Observation 3.3. If the intruder cannot re-ascribe messages to honest agents
on the channel from the proxy, then he cannot redirect messages on the channel
from the proxy. In order to redirect a message the intruder must be able to
re-ascribe it to one of the proxies who sends messages to the new recipient.
Subject to the collapsing cases described earlier, if the channel from the proxy
satisfies NRA− it also satisfies NRA− ∧NR.

Theorem 3.4 (Simple chaining theorem). If roles Ri and Rj

communicate through simple proxies on secure channels such that
ChannelSpec1(Ri → Proxy(Ri,Rj)), and ChannelSpec2(Proxy(Ri,Rj) → Rj),
where ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification
ChannelSpec =↓ (↖s ChannelSpec1 u ↗s ChannelSpec2), where:

↖s (c, nf, nra, nr) = ↗s (c, nf, nra, nr) =
(c, nf, 2, 2) if nr > 1 , (c, nf, nra, 2) if nra > 1 ,
(c, nf, nra, nr) otherwise ; (c, nf, nra, nr) otherwise ;

and u is the greatest lower bound operator in the full lattice.

Corollary 3.5. If roles Ri and Rj communicate through simple prox-
ies on secure channels such that: ChannelSpec(Ri → Proxy(Ri,Rj)), and
ChannelSpec(Proxy(Ri,Rj) → Rj), where ChannelSpec is a channel in the hi-
erarchy, then the overall channel (through the proxy) satisfies a channel spec-
ification ChannelSpec′ such that ChannelSpec 4 ChannelSpec′. In particular,
ChannelSpec(Proxy(Ri,Rj)) holds.

Example 3.6. The channel to the proxy satisfies C ∧NRA ∧NR−, and the
channel from the proxy satisfies NF ∧NRA− ∧NR.

↖s (C ∧NRA ∧NR−) = C ∧NRA ∧NR ,
↗s (NF ∧NRA− ∧NR) = NF ∧NRA− ∧NR .

The greatest lower bound is NRA− ∧NR, which collapses to ⊥. The channel
to the proxy is fakeable and the channel from the proxy is non-confidential; the
overall channel simulates the bottom channel.

Example 3.7. The channel to the proxy satisfies NF ∧NRA− ∧NR−, and the
channel from the proxy satisfies NF ∧NRA−.

↖s (NF ∧NRA− ∧NR−) = NF ∧NRA ∧NR ,
↗s (NF ∧NRA−) = NF ∧NRA− ∧NR .

The greatest lower bound is NF ∧NRA− ∧NR, which does not collapse. This
channel is stronger than both of the individual channels. The intruder can-
not fake messages on this channel, nor can he redirect messages (because he
can’t redirect messages using the channel to the proxy, and he can’t re-ascribe
messages using the channel from the proxy). The intruder can only re-ascribe
messages with his own identity because this is the greatest capability he has on
each channel individually.

3.3 An automated proof of the simple chaining theorem

Each instance of Theorem 3.4 is relatively simple to prove. One simply starts
with a receive event, and calculates which events are allowed (by the channel
specifications to and from the proxy, and by the network rules) to precede it in a
valid system trace. Each receive event can be traced back to a set of send, fake,
or hijack events; it is then straightforward to determine the strongest channel
whose alternative specification is satisfied.

However, while each instance of the theorem can be proved simply, there are
121 instances5 that must be proved. In order to ease this process we have de-
veloped a Haskell script that performs the proofs automatically; the full Haskell
script is listed in [3]. In the rest of this section we give a brief description of the
script; this automated proof technique is also used to prove the multiplexing
chaining theorem (described in the next section).
Deriving the full set of trace patterns We first calculate the distinct trace
patterns that result in an honest agent receiving a message, via a proxy, from
another honest agent or the intruder. A trace pattern is a subtrace consisting
of the events leading up to a receive event in which all identities, connection
identifiers and message values are representative. For example, a trace pattern
may show that an honest agent sends a message to their proxy, the proxy receives
it and then sends it on, the intruder then redirects the message to another honest
agent, and then the new recipient receives the message; e.g.

s =̂ 〈send.A.cA.P(A,B), receive.P(A,B).cP .A.m, send.P(A,B).c
′
P .B.m,

hijack.P(A,B)→P(A,B′).B→B′.cB′ .m, receive.B′.cB′ .P(A,B′).m〉 .

Applying the channel properties We apply the properties of the channels
to and from the proxy to eliminate those trace patterns in which the intruder
must perform an event that the channel does not allow him to. For example, if
the intruder cannot fake on the channel to the proxy, we eliminate those trace
patterns in which he fakes a message on this channel.
Determining the resultant channel specification We examine the remain-
ing trace patterns to determine which capabilities the intruder still has. For
example, if one of the remaining trace patterns shows that an honest agent A
sent a message to an honest agent B, but then B receives that message from
the dishonest agent I, then this pattern demonstrates that the intruder can
re-ascribe messages with his own identity. When we examine each of the trace
patterns we discover which events the intruder can perform; we then find the
point in the lattice that corresponds to these remaining events, and collapse this
point to a channel in the hierarchy.

5There are 11 possibilities for the channel to the proxy, and 11 for the channel from the
proxy.

By eliminating trace patterns and calculating the resultant point in this
manner we prove that the specification of the resultant channel holds on all
valid system traces in which the channel specifications to and from the proxy
hold. The list of resultant channels for every instance of the simple chaining
theorem is shown in Appendix B.1. For an example proof of an instance of the
theorem, and more details on the automated proof, see [3].

4 Multiplexing proxies

In this section we consider a more general proxy case. The study of simple
proxies shows that by chaining two secure channels through a trusted third party
one can sometimes produce a stronger channel. However, in the simple case,
we thought of the proxies as ‘belonging’ to one of the agents communicating.
In this section we consider more general multiplexing proxies. A multiplexing
proxy is a trusted third party who is willing to forward messages from any agent
to any other agent.

We assume that all multiplexing proxies are honest. There is nothing to
stop the intruder from setting up proxies of his own; however, any message sent
through a dishonest proxy cannot remain confidential, and any message received
from a dishonest proxy cannot be authenticated.

When agent A intends to send a message to another agent (B) through a
simple proxy she just needs to pick the correct simple proxy to send the message
to. The proxy knows whom to forward the message to because it is dedicated to
that job. If A is to use a multiplexing proxy, she must communicate her intent
(to talk to B) to the proxy. Similarly, when B receives a message from A’s
proxy, he knows who originally sent the message; when B receives a message
from a multiplexing proxy, there must be some communication from the proxy
to B to say whom the message is from.

One way to solve this problem would be to build a special transport-layer
protocol in which the message sender’s protocol agent tells the proxy whom to
establish a connection with, and the proxy tells the recipient’s protocol agent
whom the messages are from. However, this solution is unsuitable for our model:
the whole point of the model is to make the details of the transport-layer protocol
abstract. Once we start to impose conditions on the transport-layer protocol,
we lose the generality of the abstract model.

The solution we adopt, therefore, is to annotate the application-layer mes-
sages with information about whom they are intended for, and whom they were
originally sent by. In order to send a message m to B (via the multiplexing
proxy P), agent A concatenates B’s identity to m: send.A.cA.P.〈m, B〉. When
P receives this message he concatenates it to A’s identity, and sends it on to
B: send.P.cP .B.〈A, m〉. This only works if the channel is either confidential
or non-fakeable; however, all of our channels satisfy at least one of these two
properties, so this method can be used on all of our channels.

We assume that none of the application-layer protocols call for agents to
send messages with the same type as the messages described above. If we do
not make this assumption, it might be possible for messages created by honest
agents for use in the application-layer protocols to be mistaken for messages
sent to or from a multiplexing proxy.

Definition 4.1. A multiplexing proxy is an honest agent who is dedicated to

forwarding messages; there is a single proxy role Proxy. When two roles com-
municate through a multiplexing proxy, the following properties hold:

• Agents playing roles Ri and Rj do not communicate directly;

• Honest agents only send messages of the form 〈m, B〉 to proxies, and only
receive messages of the form 〈A, m〉 from proxies;

• Each connection that the multiplexing proxies establish is either dedicated
to receiving messages from one agent, or sending messages to one agent.
Further, the multiplexing proxies reliably forward every message that they
receive.

Although two individual messages from one agent to another could be sent
through different proxies, we assume that all the messages in one connection
are sent to (or received from) the same proxy. Each multiplexing proxy can be
used by several agents.

4.1 Secure channels through multiplexing proxies

The public knowledge of the role of each simple proxy was what lead to the
rather surprising result that the chained form of two channels can be stronger
than both channels individually. With the multiplexing proxies we no longer
have this public knowledge; B only knows whom the message was originally
sent by by examining it and seeing whose identity is attached to it. As we did
last time, we consider each of the components of the hierarchy individually in
order to discover which properties the channel through a proxy satisfies. In the
discussion below we refer to the channel to the proxy as (Ri → Proxy) and the
channel from the proxy as (Proxy→ Rj).
Confidentiality Since all multiplexing proxies are honest, the channel through
the proxy is confidential if and only if the channels to and from the proxy are
confidential.
No faking In order to fake a message from A to B, the intruder must either
fake sending the message to the proxy or from the proxy, so if either channel is
fakeable, the channel through the proxy is fakeable.
No re-ascribing Unlike the simple proxies, the intruder cannot choose which
channel to re-ascribe a message on: he must do so on the channel to the proxy;
this is straightforward: hijack.A→A′.P.cP .〈m, B〉.

The only identity that the intruder can change by re-ascribing on
the channel from the proxy is that of the message sender (the proxy):
hijack.P→P ′.B.cB .〈A, m〉. Because honest agents only accept messages of the
form 〈A, m〉 from proxies, the intruder can only re-ascribe the message to a dif-
ferent proxy: he cannot change the identity of the original sender of the message
by re-ascribing the message on the channel from the proxy.
No redirecting The intruder can only redirect a message using the chan-
nel from the proxy; this is straightforward: hijack.P.B→B′.cB′ .〈A, m〉. The
only identity that the intruder can change by redirecting the message on
the channel to the proxy is that of the message recipient (the proxy):
hijack.A.P→P ′.cP ′ .〈m, B〉. Because the only honest agents who receive mes-
sages of the form 〈m, B〉 are proxies, the intruder can only redirect the message
to a different proxy.

The Proxies property on the roles Ri and Rj prevents agents playing role Ri

from communicating directly with agents playing role Rj . As before, we must
reframe the definitions of the authenticated channel building blocks for the chan-
nel through a multiplexing proxy because the standard definitions are vacuously
satisfied; the definitions are shown in Appendix A.3.

4.2 Chaining theorem

We make two observations of the channel through a multiplexing proxy.

Observation 4.2. The intruder cannot redirect messages using the channel to
the proxy. Subject to the collapsing cases described earlier, the channel to the
proxy satisfies NR.

Observation 4.3. The intruder cannot re-ascribe messages using the channel
from the proxy. Subject to the collapsing cases described earlier, the channel
from the proxy satisfies NRA.

Theorem 4.4 (Chaining theorem). If roles Ri and Rj commu-
nicate through multiplexing proxies on secure channels such that
ChannelSpec1(Ri → Proxy), and ChannelSpec2(Proxy→ Rj), where
ChannelSpec1 and ChannelSpec2 are channels in the hierarchy, then
the overall channel (through the proxy) satisfies the channel specification
ChannelSpec =↓ (↖m ChannelSpec1 u ↗m ChannelSpec2), where:

↖m (c, nf, nra, nr) = (c, nf, nra, 2) , ↗m (c, nf, nra, nr) = (c, nf, 2, nr) ,

and u is the greatest lower bound operator in the full lattice.

Corollary 4.5. If roles Ri and Rj communicate through multiplex-
ing proxies on secure channels such that ChannelSpec(Ri → Proxy), and
ChannelSpec(Proxy→ Rj), where ChannelSpec is a channel in the hierarchy,
then the overall channel (through the proxy) satisfies ChannelSpec.

Example 4.6. The channel to the proxy satisfies C ∧NF ∧NRA− ∧NR−, and
the channel from the proxy satisfies C ∧NRA− ∧NR−.

↖m (C ∧NF ∧NRA− ∧NR−) = C ∧NF ∧NRA− ∧NR ,
↗m (C ∧NRA ∧NR−) = C ∧NRA ∧NR− .

The greatest lower bound is C ∧NRA− ∧NR−; this is the greatest lower bound
of the two channels. This is the same result as the simple proxies. The intruder
cannot re-ascribe messages to honest agents because the channel from the proxy
is only re-ascribable with dishonest identities; even though the channel from the
proxy is fakeable, both channels are confidential, so the intruder cannot learn
the message and fake it to effect a re-ascribe. The intruder can redirect messages
that are sent to him.

The list of resultant channels for every instance of the chaining theorem is
shown in Appendix B.2. In order to prove this theorem we adapt the automated
proof of the simple chaining theorem; for details, and for a proof of one instance
of the theorem, see [3].

5 Related work

The discussion of proxies presented in this paper is based on the work of Dilloway
and Lowe in [4]. Other authors have specified secure channels in different ways,
and to different ends, and in some cases have demonstrated similar chaining
results.

In [7], the authors describe a calculus for secure channel establishment. They
define channels that offer confidentiality (→•), authentication of the message
sender (•→), or both (•→•). The authors show that if user B trusts a third
party T , and there are channels from another agent A such that A •→ T •→ B,
then the agents A and B can establish a new channel A •→ B. The authors
also show that confidential channels can be chained, provided that the message
sender trusts the third party. These two results agree with our chaining theo-
rems; though our results go further as we show that many more channels can
be chained. However, we cannot reason about channels when only one agent
trusts the third party, as the authors of [7] can.

In [1], Boyd defines two different types of channel: Confidentiality, where
only the intended user (or set of users) can read the message; and Authentication,
where only the expected user (or set of users) can write the message. In Boyd’s
setup channels are established by utilising existing channels, or by propagating
new channels between the two users wishing to communicate, often via a trusted
third party (a proxy in our notation). Boyd shows that if a user A has an
authenticated channel to a third party T , and T has an authenticated channel
to a user B (and if B trusts T), then an authenticated channel from A to B can
be established. This agrees with our (multiplexing) result that authenticated
channels can be chained; as before though, our results go further as they show
that many more channels can be chained.

Some authors have tried to solve the chaining problem by modifying the
secure transport layer protocol. In [9] the authors propose a variant of SSL/TLS
in which three connections are established: a direct connection between client
and server, and two direct connections between the client and a proxy, and
between the proxy and the server. The direct connection can be used for highly
confidential data, while the proxy channel can be used for data that doesn’t
have to remain secret. In [6] the authors propose adding end-to-end encryption
to chains of WTLS and TLS connections so that data sent via a proxy remains
confidential. However, in both these cases, data can be passed through the
proxy without the proxy being able to read it; the proxy can then no longer
perform any application-layer jobs it might have (such as virus scanning).

6 Conclusions and future work

We have presented two chaining theorems for secure channels. The theorems are
useful because they describe ways in which secure channels might be used, and
they allow users of our secure channel specifications to calculate the properties
of the overall channel through a proxy very simply. In particular, we have shown
that the channels defined in [4] are invariant under chaining through a proxy,
provided that the proxy is trustworthy.

In [4] we also present a session property; a session channel guarantees that all
the messages received in a connection were sent in a single connection. We also

specify a stream property which guarantees the session property, and that the
messages were sent in the same order as that in which they were received. We
propose to investigate whether the session and stream properties are invariant
under chaining. It seems likely that this is the case (assuming that whenever
the proxy receives several messages in a single session he forwards them in a
single session, in the same order).

We also intend to investigate the effect of multiple chaining of secure chan-
nels. If the chaining is set up as Ri → Proxy→ Proxy ′ → Rj , it is not clear
what properties the channel through the two different proxies satisfies.

Using the theorems in this paper we could calculate the properties of the
overall channel in two different ways: by calculating the resultant channel over
the first two connections, then using this result to calculate the result of the
overall chain, or by calculating the result of the last two connections first. Be-
cause the elevation functions (↖m and ↗m) are not the same, in most cases
these calculations will give different results. For this reason we believe that the
overall channel is likely to satisfy the following specification:

↓ (↖m (Ri → Proxy)u (Proxy→ Proxy ′) u ↗m (Proxy ′ → Rj)) .

The specifications of the channels to the first proxy and from the last proxy are
elevated in the usual way, but there is no elevation on the intermediate channel.
It is easy to see how to generalise this result to longer chains.

Acknowledgements

I would like to thank Gavin Lowe for many useful discussions. This work is
funded by the US Office of Naval Research.

References

[1] C. Boyd. Security architectures using formal methods. IEEE Journal on
Selected Areas in Communications, 11(5):694–701, 1993.

[2] P. Broadfoot and G. Lowe. On distributed security transactions that use
secure transport protocols. In Proceedings of the 16th IEEE Computer
Security Foundations Workshop, pages 141–151, 2003.

[3] C. Dilloway. Chaining secure channels. Technical report, Ox-
ford University Computing Laboratory, 2008. Available from
http://web.comlab.ox.ac.uk/people/Christopher.Dilloway.html.

[4] C. Dilloway and G. Lowe. Specifying secure channels. In Proceedings of the
21st IEEE Computer Security Foundations Symposium, 2008.

[5] D. Dolev and A.C. Yao. On security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–208, 1983.

[6] E. Kwon, Y. Cho, and K. Chae. Integrated transport layer security: End-
to-end security model between WTLS and TLS. Proceedings of the The
15th International Conference on Information Networking, 2001.

[7] Ueli Maurer and Pierre Schmid. A calculus for secure channel establish-
ment in open networks. In Computer Security — ESORICS 94, volume
875 of Lecture Notes in Computer Science, pages 175–192. Springer-Verlag,
November 1994.

[8] OASIS Security Services Technical Committee. Assertions and Protocols
for the Security Assertion Markup Language (SAML) V2.0, 2005. Available
from http://www.oasis-open.org/committees/security/.

[9] Y. Song, K. Beznosov, and V. Leung. Multiple-channel security architec-
ture and its implementation over SSL. EURASIP Journal on Wireless
Communications and Networking, 2006(2):78–78, 2006.

[10] Visa International Service Association. Verified by Visa Sys-
tem Overview External Version 1.0.2, 2006. Available from
https://partnernetwork.visa.com/vpn/global/category.do.

[11] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for grid
services. In Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing, pages 48–57, 2003.

A Secure channel specifications

A.1 Standard specifications (no proxies)

Definition A.1 (No faking).

NF(Ri → Rj)(tr) =̂ tr ↓ {| fake.R̂i.R̂j |} = 〈〉 .

Definition A.2 (No-re-ascribing).

NRA(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·A 6= A′ |} = 〈〉 .

Definition A.3 (No-honest-re-ascribing).

NRA−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition A.4 (No-redirecting).

NR(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·B 6= B′ |} = 〈〉 .

Definition A.5 (No-honest-redirecting).

NR−(Ri → Rj)(tr) =̂ tr ↓ {| hijack.A→A′.B→B′ |
A, A′ : R̂i; B, B′ : R̂j ·B 6= B′ ∧Honest(B) |} = 〈〉 .

A.2 Channel specifications with simple proxies

Definition A.6 (No faking).

NF(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| fake.R̂i.Pr̂oxy(Ri,Rj), fake.Pr̂oxy(Ri,Rj).R̂j |} = 〈〉 .

Definition A.7 (No-re-ascribing).

NRA(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ |} = 〈〉 .

Definition A.8 (No-honest-re-ascribing).

NRA−(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition A.9 (No-redirecting).

NR(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ |} = 〈〉 .

Definition A.10 (No-honest-redirecting).

NR−(Proxy(Ri,Rj))(tr) =̂
tr ↓ {| hijack.A→A′.P(A,B)→P(A′,B′), hijack.P(A,B)→P(A′,B′).B→B′ |

A, A′ ∈ R̂i ∧B, B′ ∈ R̂j ∧ P(A,B), P(A′,B′) ∈ Pr̂oxy(Ri,Rj) ∧
B 6= B′ ∧Honest(B) |} = 〈〉 .

A.3 Channel specifications with multiplexing proxies

Definition A.11 (No faking).

NF(Proxy(Ri → Rj))(tr) =̂
tr � {| fake.A.P.cA.〈m, B〉, fake.P.cP .B.〈A, m〉 |

A ∈ R̂i ∧ P ∈ Pr̂oxy ∧B ∈ R̂j ∧
cA, cP ∈ Connection ∧m ∈ MessageApp |} = 〈〉 .

Definition A.12 (No-re-ascribing).

NRA(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m, B〉 |

A, A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ |} = 〈〉 .

Definition A.13 (No-honest-re-ascribing).

NRA−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.A→A′.P→P ′.cP ′ .〈m, B〉 |

A, A′ ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B ∈ R̂j ∧ cP ′ ∈ Connection ∧
m ∈ MessageApp ∧A 6= A′ ∧Honest(A′) |} = 〈〉 .

Definition A.14 (No-redirecting).

NR(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A, m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B, B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ |} = 〈〉 .

Definition A.15 (No-honest-redirecting).

NR−(Proxy(Ri → Rj))(tr) =̂
tr � {| hijack.P→P ′.B→B′.cB′ .〈A, m〉 |

A ∈ R̂i ∧ P, P ′ ∈ Pr̂oxy ∧B, B′ ∈ R̂j ∧ cB′ ∈ Connection ∧
m ∈ MessageApp ∧B 6= B′ ∧Honest(B) |} = 〈〉 .

B Chaining theorem result tables

B.1 Simple proxies

See Figure 2.

B.2 Multiplexing proxies

See Figure 3.

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

⊥
⊥

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R

A
−

N
R
−

C
N

R
−

C
N

R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

N
F

N
R

A
−

N
R

⊥
C

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R
−

C
N

R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

⊥
C

N
R
−

⊥
⊥

N
F

N
R

A
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

⊥
⊥

⊥
C

N
F

N
R

A
N

R
⊥

⊥
C

N
F

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

⊥
⊥

N
F

N
R

A
−

⊥
⊥

⊥
⊥

F
ig

ur
e

2:
T

he
ta

bl
e

of
re

su
lt

an
t

ch
an

ne
ls

th
ro

ug
h

a
si

m
pl

e
pr

ox
y.

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R

⊥
⊥

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

C
N

R
A

N
R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
A

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

N
R

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

C
N

R
−

⊥
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R

⊥
C

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R

A
−

N
R
−

C
N

R
−

C
N

R
A
−

N
R
−

C
N

R
A
−

N
R
−

N
F

N
R

A
−

⊥
C

N
R

A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A

N
R
−

⊥

C
ha

nn
el

to
pr

ox
y

C
ha

nn
el

fr
om

pr
ox

y
R

es
ul

ta
nt

ch
an

ne
l

N
F

N
R

A
−

N
R
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

C
N

R
−

⊥
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

C
N

F
N

R
A

N
R

C
N

R
−

C
N

R
−

C
N

F
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R

C
N

R
−

C
N

R
−

C
N

R
A

N
R
−

C
N

R
−

C
N

R
−

C
N

F
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

N
R

⊥
C

N
R
−

C
N

R
A
−

N
R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

N
R
−

⊥
C

N
R
−

C
N

R
−

C
N

R
−

C
N

R
−

N
F

N
R

A
−

⊥
C

N
R
−

⊥
⊥

N
F

N
R

A
−

C
N

F
N

R
A

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

F
N

R
A

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

C
N

F
N

R
A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

R
A

N
R
−

⊥
N

F
N

R
A
−

C
N

F
N

R
A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
F

N
R

A
−

N
R

N
F

N
R

A
−

N
R

N
F

N
R

A
−

C
N

R
A
−

N
R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

N
R
−

N
F

N
R

A
−

C
N

R
−

⊥
N

F
N

R
A
−

N
F

N
R

A
−

N
F

N
R

A
−

N
F

N
R

A
−

⊥
⊥

⊥
C

N
F

N
R

A
N

R
⊥

⊥
C

N
F

N
R

A
N

R
−

⊥
⊥

C
N

F
N

R
A
−

N
R

⊥
⊥

C
N

R
A

N
R
−

⊥
⊥

C
N

F
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R

⊥
⊥

C
N

R
A
−

N
R
−

⊥
⊥

N
F

N
R

A
−

N
R
−

⊥
⊥

C
N

R
−

⊥
⊥

N
F

N
R

A
−

⊥
⊥

⊥
⊥

F
ig

ur
e

3:
T

he
ta

bl
e

of
re

su
lt

an
t

ch
an

ne
ls

th
ro

ug
h

a
m

ul
ti

pl
ex

in
g

pr
ox

y.

