
Communicating Process Architectures 2009
Peter Welch, Herman Roebbers and Tobe Announced (Eds.)
IOS Press, 2009
c© 2009 The authors and IOS Press. All rights reserved.

1

1

Extending CSP with tests for availability

Gavin Lowe

Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, OX1 3QD, UK;

e-mailgavin.lowe@comlab.ox.ac.uk

Abstract. We consider the language of CSP extended with a construct that allows
processes to test whether a particular event is available (without actually performing
the event). We present an operational semantics for this language, together with two
congruent denotational semantic models. We also show how this extended language
can be simulated using standard CSP, so as to be able to analyse systems using the
model checker FDR.

Keywords. CSP, tests for availability, semantic models.

1. Introduction

Many languages for message-passing concurrency allow programs to test whether a chan-
nel is ready for communication, without actually performing that communication. For ex-
ample, in JCSP [WBM+07,WB09], the input and output ends of channels have a method
pending(), to test whether there is data ready to be read, or whether there is a reader ready to
receive data, respectively. JavaInputStreams have a methodavailable() that returns the
number of bytes that are available to be read. Andrews [And00] gives a number of examples
using such a construct.

In this paper, we study the effect of adding such tests to the process algebra CSP [Ros97].
In particular, we add a single new construct to the language:the process

if ready a then P else Q (1)

tests whether the eventa is ready for communication, and then acts like eitherP or Q, ap-
propriately. More precisely, the process tests whether allother processes that havea in their
alphabet (and so who must synchronise ona) are ready to performa.

We assume that within constructs of the form of (1), the test for the readiness ofa is
carried out only once: if the event becomes available or unavailable after the test is performed,
that does not affect the branch that is selected. We allow processes to test for the readiness of
events outside their own alphabet.

In this paper we investigate the effect of adding the construct (1) to semantic models
for CSP. In the next section, we give a brief overview of the syntax and standard semantics
of CSP. In Section 3 we give some examples using the new construct, both to illustrate its
potential usefulness, and to highlight some implications for the semantic models. In Sec-
tion 4 we give an operational semantics to the language; thenin Section 5 we give congruent
denotational models, analogous to the traces and stable failures models of CSP [Ros97]. In
Section 6 we show how this extended language can be simulatedusing standard CSP, so as
to be able to analyse systems using a model checker such as FDR[Ros94,For97]. We sum
up in Section 7.

2 Gavin Lowe / Extending CSP with tests for availability

2. A brief overview of CSP

In this section we give a brief overview of the syntax of CSP; for simplicity and brevity, we
consider a fragment of the language in this paper. We also give a brief overview of the traces
and stable failures models of CSP. For more details, see [Hoa85,Ros97].

CSP is a process algebra for describing programs orprocessesthat interact with their
environment by communication. Processes communicate via atomic events, from some setΣ.
Events are often passed on channels; for example, the eventc.3 represents the value3 being
passed on channelc. The notation{|c|} represents the set of events over channelc.

The simplest process isSTOP, which represents a deadlocked process that cannot com-
municate with its environment. The processdiv represents a divergent process that can only
perform internal events.

The processa→ P offers its environment the eventa; if the event is performed, it then
acts likeP. The processc?x→ P is initially willing to input a valuex on channelc, i.e. it is
willing to perform any event of the formc.x; it then acts likeP (which may usex).

A standard conditional is written asif b then P else Q, whereb is a boolean condition
on variables within the process (such as variables that holdvalues previously input)1. The
processb & P is equivalent toif b then P else STOP: P is enabled only if the boolean guardb
is true. For convenience, we extend this notation to readiness tests and define:

ready a & P as shorthand forif ready a then P else STOP,
notReady a & P as shorthand forif ready a then STOPelse P.

The tests now act as guards uponP, so thatP can be performed only ifa is available or not
available, respectively.

The processP 2 Q can act like eitherP or Q, the choice being made by the environment:
the environment is offered the choice between the initial events ofP andQ. By contrast,
P ⊓ Q may act like eitherP or Q, with the choice being made internally, and not under the
control of the environment. The processP ⊲ Q represents a sliding choice or timeout: the
process initially acts likeP, but if no event is performed then it can internally change state to
act likeQ.

The processP A‖B Q runs P and Q in parallel; P is restricted to performing events
from A; Q is restricted to performing events fromB; the two processes synchronise on events
from A∩B. In this paper we will take the alphabetsA andB to comprise just standard events,
as opposed to actions corresponding to readiness tests. As noted above, we allow processes
to test for the readiness of events outside their alphabets,e.g.

(ready b & a→ STOP) {a}‖{b} (b→ STOP⊓ STOP).

In examples, we will tend to omit the alphabets when they are clear from the context.
The processP‖

A
Q runsP andQ in parallel, synchronising on events fromA. The process

P ||| Q interleavesP andQ, i.e. runs them in parallel with no synchronisation.
The processP \ A acts likeP, except the events fromA are hidden, i.e. turned into

internal, invisible events, denotedτ , which do not need to synchronise with the environment.
The processP[[R]] representsP where events are renamed according to the relationR,

i.e., P[[R]] can perform an eventb wheneverP can perform an eventa such thata R b. The
relationR is often presented as a substitution; for exampleP[[b/a, c/a]] representsP, with the
eventa renamed to bothb andc, and all other events unchanged.

1We use the same syntax for both standard conditionals and readiness tests, but they are semantically different
constructs.

Gavin Lowe / Extending CSP with tests for availability 3

Recursive processes may be defined equationally, or using the notationµ X • P, which
represents a process that acts likeP, where each occurrence ofX represents a recursive in-
stantiation ofµ X • P.

Prefixing (→) and guarding (&) bind tighter than each of the binary choice operators,
which in turn bind tighter than the parallel operators.

CSP can be given both an operational and denotational semantics. The denotational
semantics can either be extracted from the operational semantics, or defined directly over the
syntax of the language; see [Ros97]. It is more common to use the denotational semantics
when specifying or describing the behaviours of processes,although most tools act on the
operational semantics.

A trace of a process is a sequence of (visible) events that a process can perform. We
write traces(P) for the traces ofP. If tr is a trace, thentr |̀ A represents the restriction oftr to
the events inA, whereastr \ A representstr with the events fromA removed; concatenation
is written “̂ ”; A∗ represents the set of traces with events fromA.

A stable failureof a processP is a pair(tr, X), which represents thatP can perform the
tracetr to reach a stable state (i.e. where no internal events are possible) whereX can be
refused, i.e., where none of the events ofX is available. We writefailures(P) for the stable
failures ofP.

3. Examples

In this section we consider a few examples, firstly to illustrate the usefulness of the new
construct, and then to highlight some aspects of the semantics.

Being able to detect readiness on channels can be useful in a number of circumstances.
For example, the construct:

a→ P
2 notReady a & b→ Q

gives priority toa overb: the eventb can be performed only if the environment is not willing
to performa (at the point at which the test is made). Note, though, that ifthe environment
withdraws its willingness to communicatea after thenotReady a test is performed, then the
above construct will be blocked, even ifb is available: the construct makes the assumption
about the environment thata is not withdrawn in this way.

As a slightly larger example, consider the classic readers and writers problem [CHP71].
Here collections of readers and writers share a database. Inorder to maintain consistency,
readers may not use the database at the same time as writers, and at most one writer may
use the database at a time. The following guard process supports this: readers (resp. writers)
gain entry to the database by performing the eventstartRead(resp.startWrite) and perform
endRead(resp.endWrite) when they are finished. The parametersr andw record the num-
ber of readers and writers currently using the database, andsatisfy the invariantw ≤ 1 ∧
(r > 0⇒ w = 0).

Guard(r, w) =
w = 0 & startRead→ Guard(r + 1, w)
2 endRead→ Guard(r − 1, w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r, w + 1)
2 endWrite→ Guard(r, w− 1).

The problem with the above design is that writers may be permanently locked out of the
database if there is always at least one reader using the database (even if no individual reader
uses the database indefinitely). The following version gives priority to writers, by not allow-
ing a new reader to start using the database if there is a writer waiting:

4 Gavin Lowe / Extending CSP with tests for availability

Guard(r, w) =
w = 0 & notReady startWrite& startRead→ Guard(r + 1, w)
2 endRead→ Guard(r − 1, w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r, w + 1)
2 endWrite→ Guard(r, w− 1).

This idea can be extended further, to achieve fairness to both types of process; the parameter
priReadrecords whether priority should be given to readers.2

Guard(r, w, priRead) =
w = 0 ∧ priRead& startRead→ Guard(r + 1, w, false)
2 w = 0 & notReady startWrite& startRead→ Guard(r + 1, w, false)
2 endRead→ Guard(r − 1, w, false)
2 r = 0 ∧ w = 0 ∧ ¬priRead& startWrite→ Guard(r, w + 1, true)
2 r = 0 ∧ w = 0 & notReady startRead& startWrite→ Guard(r, w + 1, true)
2 endWrite→ Guard(r, w− 1, true).

We now consider a few examples in order to better understand aspects of the semantics
of processes with readiness tests: it turns out that some standard algebraic laws no longer
hold. Throughout these examples, we omit alphabets from theparallel composition operator
where they are obvious from the context.

Example 1 ConsiderP ‖ Q whereP = a→ STOPandQ = if ready a then b→ STOPelse
error→ STOP. Clearly, it is possible forQ to detect thata is ready and so performb. Could
Q detect thata is not ready, and so performerror? If P makesa available immediately then
clearly the answer is no. However, if it takesP some time to makea available, thenQ could
test for the availability ofa beforeP has made it available.

We believe that any implementation of prefixing will take some time to makea available:
for example, in a multi-threaded implementation, scheduling decisions will influence when
thea becomes available; further, the code for makinga available will itself take some time to
run. This is the intuition we follow in the rest of the paper. This decision has a considerable
impact on the semantics: it will mean thatall processes will take some time to make events
available (essentially since all the CSP operators maintain this property).

Returning to Example 1, in the combinationP ‖ Q, Q can detect thata is not available
initially and so performerror.

Example 2 (if ready a then P else Q) \ {a} = P \ {a}: the hiding ofa means that theready a
test succeeds, since there is nothing to preventa from happening.

Example 3 External choice is not idempotent. ConsiderP = a→ STOP⊓ b→ STOPand
Q = ready a & ready b & error → STOP. ThenP ‖ Q cannot performerror, butP 2 P ‖ Q
can, if the two nondeterministic choices are resolved differently.

We do not allow external choices to be resolved byready or notReady tests: we consider
these tests to be analogous to evaluation of standard boolean conditions inif statements, or
boolean guards, which are evaluated internally.

Example 4 The processR = ready a & P 2 notReady a & Q is not the same asif ready a then
Pelse Q, essentially since the former checks for the readiness ofa twice, but the latter checks

2In principle one could merge the first two branches, by using aguard w = 0 ∧ (priRead ∨
notReady startWrite); however, allowing complex guards that mix booleans with readiness testing would com-
plicate the semantic definitions.

Gavin Lowe / Extending CSP with tests for availability 5

only once. When in the presence of the processa→ STOP, R can evolve to the stateP 2 Q
(if the ready a test is made after thea becomes available, and thenotReady a test is made
before thea becomes available) or toSTOP2 STOP= STOP(if the ready a test is made
before thea becomes available, and thenotReady a test is made after theabecomes available);
neither of these is, in general, a state ofif ready a then P else Q.

Example 5 ready a & ready b & P is not the same asready b & ready a & P. ConsiderP =
error → STOPandQ = a → STOP⊲ b → STOP. Thenready a & ready b & P ‖ Q can
performerror, but ready b & ready a & P ‖ Q cannot. Similar results hold fornotReady, and
for a mix of ready andnotReady guards.

The above example shows why we do not allow more complex guards, such asready a ∧
ready b& P: any natural implementation of this process would have to test for the availability
of a andb in some order, but the order in which those are tested can makea difference.

4. Operational semantics

In this section we give operational semantics to the language of CSP extended with tests for
the readiness or non-readiness of events. For simplicity, we omit interleaving, the‖

A
form of

parallel composition, and renaming from the language we consider.
As normal, we writeP a

−→ P′, for a ∈ Σ ∪ {τ} (whereΣ is the set of visible events,
andτ represents an internal event), to indicate thatP performs the eventa to becomeP′. In
addition, we include transitions to indicate successful readiness or non-readiness tests:

• We writeP
ready a
−−→ P′ to indicate thatP detects that the eventa is ready, and evolves

into P′;
• We write P

notReady a
−−→ P′ to indicate thatP detects that the eventa is not ready, and

evolves intoP′.

Note the different fonts betweenready andnotReady, which are part of the syntax, andready
andnotReady, which are part of the semantics.

Define, forA⊆ Σ:

ready A= {ready a| a ∈ A},

A† = A∪ ready A∪ notReady A,

notReady A= {notReady a| a ∈ A},

A†τ = A† ∪ {τ}.

Transitions, then, will be labelled by elements ofΣ†τ . We think of the
ready a
−−→ and

notReady a
−−→

transitions as being internal in the sense that they cannot be directly observed by any parallel
peer. We refer to elements ofΣ†τ asactions, and restrict the wordeventsto elements ofΣτ .

Below we use standard conventions, writing, e.g.,P a
−→ for ∃P′

• P a
−→ P′, andP 6 a

−→
for ¬(∃P′

• P a
−→ P′).

Recall our intuition that a process such asa→ P may not make thea available imme-
diately. We model this by aτ transition to a state where thea is indeed available. It turns
out that this latter state is not expressible within the syntax of the language (this follows from
Lemma 11, below). Within the operational semantic definitions, we will write this state as
ǎ→ P. We therefore define the semantics of prefixing by the following two rules.

a→ P τ
−→ ǎ→ P, ǎ→ P a

−→ P.

We stress, though, that theǎ→ . . . notation is only for the purpose of defining the operational
semantics, and is not part of the language.

6 Gavin Lowe / Extending CSP with tests for availability

The following rules for normal events are completely standard. For brevity, we omit the
symmetrically equivalent rules for external choice (2) and parallel composition (A‖B). The
identifiera ranges overvisibleevents.

P a
−→ P′

P 2 Q a
−→ P′

P τ
−→ P′

P 2 Q τ
−→ P′

2 Q

P a
−→ P′

P ⊲ Q a
−→ P′

P τ
−→ P′

P ⊲ Q τ
−→ P′ ⊲ Q

P ⊲ Q τ
−→ Q P⊓ Q τ

−→ P P⊓ Q τ
−→ Q

P α
−→ P′

α ∈ A− B∪ {τ}
PA‖BQ α

−→ P′
A‖BQ

P a
−→ P′

Q a
−→ Q′

a ∈ A∩ B
PA‖BQ a

−→ P′
A‖BQ′

P α
−→ P′

α ∈ Σ− A∪ {τ}
P \ A α

−→ P′ \ A

P a
−→ P′

a ∈ A
P \ A τ

−→ P′ \ A

div
τ
−→ div µ X • P τ

−→ P[µ X • P/X]

The following rules show how the tests for readiness operate.

if ready a then P else Q
ready a
−−→ P, if ready a then P else Q

notReady a
−−→ Q.

The remaining rules show how the readiness tests are promoted by various operators.
We omit symmetrically equivalent rules for brevity. The rules for the choice operators are
straightforward.

P
ready a
−−→ P′

P 2 Q
ready a
−−→ P′

2 Q

P
notReady a
−−→ P′

P 2 Q
notReady a
−−→ P′

2 Q

P
ready a
−−→ P′

P ⊲ Q
ready a
−−→ P′ ⊲ Q

P
notReady a
−−→ P′

P ⊲ Q
notReady a
−−→ P′ ⊲ Q

The rules for parallel composition are a little more involved. A ready aaction can occur
only if all processes witha in their alphabet are able to performa.

P
ready b
−−→ P′

Q b
−→

b ∈ B
P A‖B Q

ready b
−−→ P′

A‖B Q

P
ready a
−−→ P′

a /∈ B
P A‖B Q

ready a
−−→ P′

A‖B Q

A notReady aaction requires at least one parallel peer witha in its alphabet to be unable
to performa. In this case, the action is converted into aτ .

P
notReady b
−−→ P′

Q 6 b
−→

b ∈ B
P A‖B Q τ

−→ P′
A‖B Q

P
notReady b
−−→ P′

Q b
−→

b ∈ B
P A‖B Q

notReady b
−−→ P′

A‖B Q

Gavin Lowe / Extending CSP with tests for availability 7

P
notReady a
−−→ P′

a /∈ B
P A‖B Q

notReady a
−−→ P′

A‖B Q

Note that in the second rule, thenotReady bmay yet be blocked by some other parallel peer.
If a ready aaction can be performed in a context wherea is then hidden, then all relevant

parallel peers are able to performa; hence the transition can occur; the action is converted
into aτ .

P
ready a
−−→ P′

a ∈ A
P \ A τ

−→ P′ \ A

P α
−→ P′

α ∈ ready(Σ− A) ∪ notReady(Σ− A)
P \ A α

−→ P′ \ A

Note that there is no corresponding rule fornotReady a: in the contextP \ A, if P can per-
form notReady a(with a ∈ A) then all parallel peers witha in their alphabet are able to
performa, and so thea is available; hence thenotReady aaction is blocked forP \ A.

The following two lemmas can be proved using straightforward structural inductions.
First, ready aandnotReady aactions are available as alternatives to one another.

Lemma 6 For every processP:

(∃Q • P
ready a
−−→ Q)⇔ (∃Q′

• P
notReady a
−−→ Q′).

Informally, the two transitions correspond to taking the two branches of a construct of the
form if ready a then Relse R′. Theif construct may be only part of the processP above, and so
R andR′ may be only part ofQ andQ′ above.

Initially, each process can perform no standard events. This is a consequence of our
assumption that a process of the forma→ P cannot perform thea from its initial state.

Lemma 7 For every processP expressible using the syntax of the language (so excluding
theǎ→ . . . construct), and for every standard eventa ∈ Σ, P 6 a

−→.

Of course,P might have aτ transition to a state where visible events are available.

5. Denotational semantics

We now consider how to build a compositional denotational semantic model for our language.
We want the model to record at least the traces of visible events performed by processes: any
coarser model is likely to be trivial.

In order to consider what other information is needed in the model, it is useful to consider
(informally) a form of testing: we will say that testT distinguishes processesP andQ if
P ‖ T andQ ‖ T have different traces of visible events. In this case, the denotational model
should also distinguishP andQ.

We want to record within traces thereadyandnotReadyactions that are performed. For
example, the processesb → STOPand ready a & b → STOPare distinguished by the test
STOP(with alphabet{a}); we will distinguish them denotationally by including theready a
action in the latter’s trace.

Further, we want to record the events that were available as alternatives to those events
that were actually performed. For example, the processesa → STOP2 b → STOPand

8 Gavin Lowe / Extending CSP with tests for availability

a → STOP⊓ b → STOPcan be distinguished by the testready a & b → STOP; we will
distinguish them denotationally by recording that the former offersa as an alternative tob.

We therefore add actionsoffer a andnotOffer ato represent that a process is offering
or not offeringa, respectively. These actions will synchronise withready aandnotReady a
actions. We write

offer A= {offer a | a ∈ A},

A‡ = A† ∪ offer A∪ notOffer A,

notOffer A= {notOffer a| a ∈ A},

A‡τ = A‡ ∪ {τ}.

A trace of a process will, then, be a sequence of actions fromΣ‡. We can calculate the traces
of a process in two ways: by extracting then from the operational semantics, and by giving
compositional rules. We begin with the former.

We augment the operational semantics with extra transitions as follows:

• We addoffer a loops on every stateP such thatP a
−→;

• We addnotOffer aloops on every stateP such thatP 6 a
−→.

Formally, we define a new transition relation−−⊲ by:

P
α
−−⊲ Q ⇔ P α

−→ Q, for α ∈ Σ†τ ,

P
offer a
−−−⊲ P ⇔ P a

−→ ,

P
notOffer a
−−−⊲ P ⇔ P 6 a

−→ .

Appendix A gives rules for the−−⊲ that can be derived from the rules for the−→ relation
and the above definition.

We can then extract the traces (ofΣ‡ actions) from the operational semantics (following
[Ros97, Chapter 7]):

Definition 8 We write P tr
7−→ Q, for tr = 〈α1, . . . , αn〉 ∈ (Σ‡τ)∗, if there existP0 = P,

P1, . . . , Pn = Q such thatPi

αi+1

−−⊲ Pi+1 for i = 0, . . . , n−1. We writeP tr
=⇒ Q, for tr ∈ (Σ‡)∗,

if there is sometr ′ such thatP tr ′
7−→ Q andtr = tr ′ \ τ .

The traces of processP can then be defined to be the set of alltr such thatP tr
=⇒. The

following lemma states some healthiness conditions concerning this set.

Lemma 9 For all processesP expressible using the syntax of the language (so excluding the
ǎ→ . . . construct), the setT = {tr | P tr

=⇒} satisfies the following conditions:

1. T is non-empty and prefix-closed.
2. T includes(notOfferΣ)∗, i.e., the process starts in a state where no standard events

are available.
3. offer andnotOfferactions can always be remove from or duplicated within a trace:

tr̂〈α〉̂tr ′ ∈ T⇒ tr̂〈α, α〉̂tr ′ ∈ T ∧ tr̂tr ′ ∈ T,

for α ∈ offerΣ ∪ notOfferΣ.
4. ready aandnotReady aactions are available as alternatives to one another:

tr̂〈ready a〉 ∈ T ⇔ tr̂〈notReady a〉 ∈ T.

5. Either anoffer aor notOffer aaction is always available.

tr̂tr ′ ∈ T⇒ tr̂〈offer a〉̂tr ′ ∈ T ∨ tr̂〈notOffer a〉̂tr ′ ∈ T.

Gavin Lowe / Extending CSP with tests for availability 9

Proof: (Sketch)

1. This follows directly from the definition of=⇒.
2. The follows from Lemma 7 and the definition of−−⊲.
3. This follows directly from the definition of−−⊲: offerandnotOffertransitions always

form self-loops.
4. This follows directly from Lemma 6.
5. This follows directly from the definition of−−⊲: each state has either anoffer aor a

notOffer aloop.

2

5.1. Compositional traces semantics

We now give compositional rules for the traces of a process. The semantics for each process
will be an element of the following model.

Definition 10 TheReadiness-Testing Traces Modelcontains those setsT ⊆ (Σ‡)∗ that satisfy
conditions 2–5 of Lemma 9.

We writetracesR[[P]] for the traces ofP3. Below we will show that these are congruent to the
operational definition above.

STOPanddiv are equivalent in this model: they can perform no standard events; they
can only signal that they are not offering events.

tracesR[[STOP]] = tracesR[[div]] = (notOfferΣ)∗.

The processa → P can initially signal that it is not offering events; it can then signal
that it is offeringa but not offering other events; it can then performa, and then continue
like P.

tracesR[[a→ P]] =
Init ∪ {tr̂〈a〉̂tr ′ | tr ∈ Init ∧ tr ′ ∈ tracesR[[P]]}
whereInit = {tr̂tr ′ | tr ∈ (notOfferΣ)∗ ∧ tr ′ ∈ ({offer a} ∪ notOffer(Σ− {a}))∗}.

The processif ready a then P else Q can initially signal that it is not offering events; it can
then either detect thata is ready and continue asP, or detect thata is not ready and continue
like Q.

tracesR[[if ready a then P else Q]] =
(notOfferΣ)∗ ∪
{tr̂〈ready a〉̂tr ′ | tr ∈ (notOfferΣ)∗ ∧ tr ′ ∈ tracesR[[P]]} ∪
{tr̂〈notReady a〉̂tr ′ | tr ∈ (notOfferΣ)∗ ∧ tr ′ ∈ tracesR[[Q]]}.

The processP ⊲ Q can either perform a trace ofP, or can perform a trace ofP with no
standard events, and then (after the timeout) perform a trace of Q. The processP ⊓ Q can
perform traces of either of its components.

tracesR[[P ⊲ Q]] =
tracesR[[P]] ∪ {trP̂trQ | trP ∈ tracesR[[P]] ∧ trP |̀ Σ = 〈〉 ∧ trQ ∈ tracesR[[Q]]},

tracesR[[P ⊓ Q]] = tracesR[[P]] ∪ tracesR[[Q]].

Before the first visible event, the processP 2 Q can perform anoffer aaction if eitherP
or Q can do so; it can perform anotOffer aaction if both PandQ can do so. Therefore,P

3We include the subscript “R” in tracesR[[P]] to distinguish this semantics from the standard traces semantics,
traces[[P]].

10 Gavin Lowe / Extending CSP with tests for availability

andQ must synchronise on allnotOfferactions before the first visible event. Lettr ‖
notOfferΣ

tr ′

be the set of ways of interleavingtr and tr ′, synchronising on allnotOfferactions (this op-
erator is a specialisation of the‖

X
operator defined in [Ros97, page 70]). The three sets in

the definition below correspond to the cases where (a) neither process performs any visi-
ble events (so the two processes synchronise onnotOfferactions throughout the execution),
(b) P performs at least one visible event (after which,Q is turned off), and (c) the symmetric
case whereQ performs at least one visible event.

tracesR[[P 2 Q]] =

{tr | ∃ trP ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ tr ∈ trP ‖
notOfferΣ

trQ} ∪

{tr̂〈a〉̂tr ′P | ∃ trP̂〈a〉̂tr ′P ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOfferΣ

trQ} ∪

{tr̂〈a〉̂tr ′Q | ∃ trP ∈ tracesR[[P]], trQ̂〈a〉̂tr ′Q ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOfferΣ

trQ}.

In order to give a semantic equation for parallel composition, we define a relation to

capture how traces of parallel components are combined4. We write(trP, trQ) A‖B7−→ tr if the
tracestrP of P and trQ of Q can lead to the tracetr of PA‖BQ. Let privateA = (A− B) ∪
offer(A−B) ∪ notOffer A∪ ready(Σ− B)∪ notReady(Σ−B); these are the actions that the
process with alphabetA can perform without any cooperation from the other process.Let
syncA,B = (A ∩ B) ∪ offer(A ∩ B); these are the actions that the two processes synchronise

upon. The relationA‖B7−→ is defined by:

(〈〉, 〈〉) A‖B7−→ 〈〉,

if (trP, trQ) A‖B7−→ tr andb ∈ B, then

(〈α〉̂trP, trQ) A‖B7−→ 〈α〉̂tr, for α ∈ privateA,

(〈α〉̂trP, 〈α〉̂trQ) A‖B7−→ 〈α〉̂tr, for α ∈ syncA,B,

(〈ready b〉̂trP, 〈offer b〉̂trQ) A‖B7−→ 〈ready b〉̂tr,

(〈notReady b〉̂trP, 〈notOffer b〉̂trQ) A‖B7−→ tr,

(〈notReady b〉̂trP, 〈offer b〉̂trQ) A‖B7−→ 〈notReady b〉̂tr,

〈The symmetric equivalents of the above cases〉.

In the second clause: the first case corresponds toP performing a private action; the second
case corresponds toP andQ synchronising on a shared action; the third case corresponds
to a readiness test ofP detecting thatQ is offeringb; the fourth case corresponds to a non-
readiness test ofP detecting thatQ is not offeringb; the fifth case corresponds to a non-
readiness test ofP detecting thatQ is offering b. The reader might like to compare this
definition with the corresponding operational semantics rules for parallel composition.

The semantics of parallel composition is then as follows; note that each component
is restricted to its own alphabet, and that the composition can perform arbitrarynotOffer
(Σ− A− B) actions:

4One normally defines a set-valued function to do this, but in our case it is more convenient to define a
relation, since this leads to a much shorter definition.

Gavin Lowe / Extending CSP with tests for availability 11

tracesR[[PA‖BQ]] =
{tr | ∃ trP ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ (Σ− A) ∪ offer(Σ− A) ∪ notOffer(Σ− A) = 〈〉 ∧
trQ |̀ (Σ− B) ∪ offer(Σ− B) ∪ notOffer(Σ− B) = 〈〉 ∧

(trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B)}.

The semantic equation for hiding ofA captures thatnotReady Aandoffer Aactions are
blocked,A andready Aactions are internalised, and arbitrarynotOffer Aactions can occur.

tracesR[[P \ A]] =

{tr | ∃ trP ∈ tracesR[[P]] • trP |̀ (notReady A∪ offer A) = 〈〉 ∧
trP \ (A∪ ready A) = tr \ notOffer A}.

We now consider the semantics of recursion. Our approach follows the standard method
using complete partial orders; see, for example, [Ros97, Appendix A.1].

Lemma 11 The Readiness-Testing Traces Model forms a complete partial order under the
subset ordering⊆, with tracesR[[div]] as the bottom element.

Proof: ThattracesR[[div]] is the bottom element follows from item 2 of Lemma 9. It is straight-
forward to see that the model is closed under arbitrary unions, and hence is a complete partial
order. 2

The following lemma can be proved using precisely the same techniques as for the standard
traces model; see [Ros97, Section 8.2].

Lemma 12 Each of the operators is continuous with respect to the⊆ ordering.

Hence from Tarski’s Theorem, each mappingF definable using the operators of the language
has a least fixed point given by

⋃
n≥0 Fn(div). This justifies the following definition.

tracesR[[µ X • F(X)]] =

the⊆-least fixed point of the semantic mapping corresponding toF.

The following theorem shows that the two ways of capturing the traces are congruent.

Theorem 13 For all tracestr ∈ (Σ‡)∗:

tr ∈ tracesR[[P]] iff P tr
=⇒ .

Proof: (Sketch.) By structural induction over the syntax of the language. We give a couple
of cases in Appendix B. 2

Theorem 14 For all processes,tracesR[[P]] is a member of the Readiness-Testing Traces
Model (i.e., it satisfies conditions 2–5 of Lemma 9).

Proof: This follows directly from Lemma 9 and Theorem 13. 2

We can relate the semantics of a process in this model to the standard traces semantics.
Let φ be the function that replaces readiness tests by nondeterministic choices, i.e.,

φ(if ready a then P else Q) = φ(P) ⊓ φ(Q)

andφ distributes over all other operators (e.g.φ(PA‖BQ) = φ(P)A‖Bφ(Q)). The standard
traces ofφ(P) are just the projection onto standard events of the readiness-testing traces
of P.

Theorem 15 traces[[φ(P)]] = {tr |̀ Σ | tr ∈ tracesR[[P]]}.

12 Gavin Lowe / Extending CSP with tests for availability

5.2. Failures

We now consider how to refine the semantic model, to make it analogous to the stable failures
model [Ros97], i.e. to record information about which events can by stably refused.

The refusal of events seems, at first sight, to be very similarto those events not being
offered, as recorded bynotOfferactions. The difference is that refusals are recorded only in
stable states, i.e. where no internal events are available:this means that if an event is stably
refused, it will continue to be refused (until a visible event is performed); on the other hand,
notOfferactions can occur in any states, and may subsequently becomeunavailable. So, for
example:

• a → STOP⊓ STOPis equivalent toa → STOPin the Readiness-Testing Traces
model, since the traces ofSTOPare included in the initial traces ofa → STOP; but
a→ STOP⊓ STOPcan stably refusea initially, whereasa→ STOPcannot.

• a→ STOP⊲ STOP⊲ a→ STOPhas the trace〈offer a, notOffer a, offer a〉 (where the
notOffer aaction is from the intermediateSTOPstate) whereasa→ STOPdoes not;
but neither process can stably refusea beforea is performed.

Recall that in the standard model, stable failures are of theform (tr, X), wheretr is a
trace andX is a set of events that are stably refused. For the language inthis paper, should
refusal sets contain actions other than standard events?

Firstly, we should not consider states withreadyor notReadytransitions to be stable:
recall that we consider these actions to be similar toτ events, in that they are not externally
visible. We define:

stable P⇔∀α ∈ readyΣ ∪ notReadyΣ ∪ {τ} • ¬P α
−→ .

Therefore such actions are necessarily unavailable in stable states, so there is no need to
record them in refusal sets.

There is also no need to record the refusal of anoffer a action, since this will happen
precisely when the eventa is refused. It turns out that includingnotOffer actions within
refusal sets can add to the discriminating power of the model. Consider

P= a→ STOP⊲ STOP,

Q= (a→ STOP⊲ STOP) ⊓ a→ STOP.

ThenP andQ have the same traces, and have the same stable refusals of standard events.
However,Q can, after the empty trace, stably refuse{b, notOffer a} (i.e., stably offera and
stably refuseb), whereasP cannot.

We therefore have a choice as to whether or not we includenotOffer actions within
refusal sets. We choose not to, because the distinctions onecan make by including them do
not seem useful, and excluding them leads to a simpler model:in particular, the refusal of
notOffer actions do not contribute to the performance or refusal of any standard events. I
suspect that includingnotOfferactions within refusal sets would lead to a model similar in
style to the stable ready sets model [OH86,Ros09a].

Hence, we define, forX ⊆ Σ:

P ref X⇔ stable P∧ ∀ x ∈ X • ¬P x
−→ .

We then define the stable failures of a process in the normal way:

(tr, X) ∈ failuresR[[P]]⇔∃Q • P tr
=⇒ Q ∧ Q ref X. (2)

Definition 16 The Readiness-Testing Stable Failures Model contains those pairs(T, F)
whereT ⊆ (Σ‡)∗, F ⊆ (Σ‡)∗ × PΣ, T satisfies conditions 2–5 of the Readiness-Testing
Traces Model, and also

Gavin Lowe / Extending CSP with tests for availability 13

6. If (tr, X) ∈ F thentr ∈ T.

Below, we give compositional rules for the stable failures of a process. Since the notion
of refusal is identical to as in the standard stable failuresmodel, the refusal components are
calculated precisely as in that model, and so the equations are straight-forward adaptations of
the rules for traces. The only point worth noting is that in the constructif ready a then Pelse Q,
no failures are recorded before theif is resolved.

failuresR[[div]] = {},

failuresR[[STOP]] = {(tr, X) | tr ∈ (notOfferΣ)∗ ∧ X ⊆ Σ},

failuresR[[a→ P]] =

{(tr, X) | tr ∈ Init ∧ a /∈ X} ∪
{(tr̂〈a〉̂tr ′, X) | tr ∈ Init ∧ (tr ′, X) ∈ failuresR[[P]]}
whereInit = {tr̂tr ′ | tr ∈ (notOfferΣ)∗ ∧ tr ′ ∈ ({offer a} ∪ notOffer(Σ− {a}))∗},

failuresR[[if ready a then P else Q]] =

{(tr̂〈ready a〉̂tr ′, X) | tr ∈ (notOfferΣ)∗ ∧ (tr ′, X) ∈ failuresR[[P]]} ∪
{(tr̂〈notReady a〉̂tr ′, X) | tr ∈ (notOfferΣ)∗ ∧ (tr ′, X) ∈ failuresR[[Q]]},

failuresR[[P ⊲ Q]] =

{(tr, X) | (tr, X) ∈ failuresR[[P]] ∧ tr |̀ Σ 6= 〈〉} ∪
{(trP̂trQ, X) | trP ∈ traces[[P]] ∧ trP |̀ Σ = 〈〉 ∧ (trQ, X) ∈ failuresR[[Q]]},

failuresR[[P ⊓ Q]] = failuresR[[P]] ∪ failuresR[[Q]],

failuresR[[P 2 Q]] =
{(tr, X) | ∃(trP, X) ∈ failuresR[[P]], (trQ, X) ∈ failuresR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ tr ∈ trP ‖
notOfferΣ

trQ} ∪

{(tr̂〈a〉̂tr ′P, X) |
∃(trP̂〈a〉̂tr ′P, X) ∈ failuresR[[P]], trQ ∈ traces[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOfferΣ

trQ} ∪

{(tr̂〈a〉̂tr ′Q, X) |
∃ trP ∈ traces[[P]], (trQ̂〈a〉̂tr ′Q, X) ∈ failuresR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOfferΣ

trQ},

failuresR[[PA‖BQ]] =
{(tr, Z) | ∃(trP, X) ∈ failuresR[[P]], (trQ, Y) ∈ failuresR[[Q]] •

trP |̀ (Σ− A) ∪ offer(Σ− A) ∪ notOffer(Σ− A) = 〈〉 ∧
trQ |̀ (Σ− B) ∪ offer(Σ− B) ∪ notOffer(Σ− B) = 〈〉 ∧

(trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B) ∧ Z− A− B = X ∩ A∪ Y∩ B},

failuresR[[P \ A]] =

{(tr, X) | ∃(trP, X ∪ A) ∈ failuresR[[P]] •

trP |̀ (notReady A∪ offer A) = 〈〉 ∧ trP \ (A∪ ready A) = tr \ notOffer A},

failuresR[[µ X • F(X)]] =

the⊆-least fixed point of the semantic mapping corresponding toF.

The fixed-point definition for recursion can be justified in a similar way to as for traces.
The congruence of the above rules to the operational definition of stable failures —i.e., equa-
tion (2)— can be proved in a similar way to Theorem 13. Conditions 2–5 of the Readiness-
Testing Stable Failures Model are satisfied, because of the corresponding result for traces

14 Gavin Lowe / Extending CSP with tests for availability

(Theorem 14). Condition 6 follows directly from the definition of a stable failure, and the
congruence of the operational and denotational semantics.

The following theorem relates the semantics of a process in this model to the standard
stable failures semantics.

Theorem 17 failures[[φ(P)]] = {(tr |̀ Σ, X) | (tr, X) ∈ failuresR[[P]]}.

6. Model checking

In this section we illustrate how one can use a standard CSP model checker, such as
FDR [Ros94,For97], to analyse processes in the extended language of this paper. We just
give an example here, in order to give the flavour of the translation; we discuss prospects for
generalising the approach in the concluding section of the paper.

We consider the following solution to the readers and writers problem.

Guard(r, w) =
w = 0 ∧ r < N & notReady startWrite& startRead→ Guard(r + 1, w)
2 r > 0 & endRead→ Guard(r − 1, w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r, w + 1)
2 w > 0 & endWrite→ Guard(r, w− 1).

This is the solution from Section 3 that gives priority to writers, except we impose a bound
of N upon the number of readers, and add guards to the second and fourth branches, in order
to keep the state space finite. We will show that this solutionis starvation free as far as the
writers is concerned: i.e. if a writer is trying to gain access then one such writer eventually
succeeds.

We will simulate the above guard process using standard CSP,in particular simulat-
ing theready, notReady, offer andnotOfferactions by fresh CSP events on channelsready,
notReady, offer andnotOffer. Each process is translated into a form that uses these channels,
following the semantics presented earlier; the simulationwill have transitions that correspond
to the−−⊲ transitions of the original, except it will have a few additionalτ transitions that
do not affect the failures-divergences semantics. More precisely, letα̂ be the event used to
simulate the actionα; for example, ifα = ready ethenα̂ = ready.e. Then each processP
is simulated by a translationtrans(P), where ifP

α
−−⊲ Q thentrans(P)

α̂
−→(

τ
−→)∗ trans(Q),

and vice versa. In particular, for each standard evente, we must add anoffer.e or notOffer.e
loop to each state.

For convenience, and to distinguish between the source and target languages, we present
the simulation using prettified machine-readable CSP.5

The standard events and the channels to simulate the non-standard actions are declared
as follows:

channel s t a r t W r i t e , endWrite , startRead , endRead
E = { s t a r t W r i t e , endWrite , startRead , endRead}
channel ready , notReady , o f f e r , no tO f fe r : E

We start by defining some helper processes. The following process is the translation of
STOP: it can only signal that it is not offering standard events.

STOPT = no tO f fe r ?e → STOPT

5The CSP text below is produced (almost) directly from the machine-readable CSP using LATEX macros.

Gavin Lowe / Extending CSP with tests for availability 15

The following process is the translation ofe→ P: initially it can signal that it is not offering
standard events; it can then timeout into a state wheree is available, after which it acts likeP;
in this latter state it can also signal that it is offeringe but no other standard events.6

P r e f i x (e ,P) = no tO f fe r ?e1 → P r e f i x (e ,P) ⊲ Pre f i x1 (e ,P)

Pre f i x1 (e ,P) =
e → P
2 o f f e r . e → Pre f i x1 (e ,P)
2 no tO f fe r ?e1 : d i f f (E,{e}) → Pre f i x1 (e ,P)

The reader might like to compare these with the−−⊲ semantics in Appendix A.
In order to simulate theGuard process, we simulate each branch as a separate parallel

process: the branches ofGuardsynchronise onnotOfferactions before the choice is resolved,
so the processes simulating these branches will synchronise on appropriatenotOffer events.
The first branch is simulated as below:

Branch (1 , r ,w) =
i f w==0 and r<N then

notReady . s t a r t W r i t e → P r e f i x (startRead , Res tar t (1 , r +1 ,w))
2 ready . s t a r t W r i t e → STOPT
2 no tO f fe r ?e → Branch (1 , r ,w)

else STOPT

We explain theRestart process below. Note how thenotReady startWritetest is simulated by
the notReady.startWrite andready.startWrite events. Note also how the process signals which
standard events are and are not available in the different states. The other branches are slightly
simpler, as they do not include readiness tests.

Branch (2 , r ,w) =
i f r>0 then P r e f i x (endRead , Res tar t (2 , r−1,w)) else STOPT

Branch (3 , r ,w) =
i f r ==0 and w==0 then P r e f i x (s t a r t W r i t e , Res tar t (3 , r ,w+1)) else STOPT

Branch (4 , r ,w) =
i f w>0 then P r e f i x (endWrite , Res tar t (4 , r ,w−1)) else STOPT

When one branch executes and reaches a point corresponding to a recursion within the
Guard process, all the other branch processes need to be restarted, with new values forr or
w. We implement this by the executing branch signalling on thechannelrestart.

R = {0 . .N} −− poss ib le values of r
W = {0 . .1} −− poss ib le values of w
BRANCH = {1 . .4} −− branch i d e n t i f i e r s
channel r e s t a r t : BRANCH.R.W

Restar t (i , r ,w) = r e s t a r t ! i . r .w → Branch (i , r ,w)

Each branch can receive such a signal from another branch, asan interrupt, and restart with
the new values forr andw.7

Branch ’ (i , r ,w) =
Branch (i , r ,w) △ r e s t a r t ? j : d i f f (BRANCH,{ i })? r ’ . w’ → Branch ’ (i , r ’ ,w ’)

6The operatordiff represents set difference.
7The△ is an interrupt operator; the left hand side is interrupted when the right hand side performs an event.

16 Gavin Lowe / Extending CSP with tests for availability

Below we will combine theseBranch’ processes in parallel so as to simulateGuard. We
will need to be able to identify which branch performs certain events. For eventse other
thannotOffer events, we renamee performed by branchi to c.i.e. We rename eachnotOffer.e
event performed by branchi to both itself andnotOffer1.i.e: the former will be used before the
choice is resolved (synchronised between all branch processes), and the latter will be used
after the choice is resolved (privately to branchi):8

EE = union (E, {|ready , notReady , o f f e r |}) −− events o ther than no tO f fe r
channel c : BRANCH.EE −− c . i . e represents event e done by Branch (i , ,)
channel notOf fer1 : BRANCH.E

Branch ’ ’ (i , r ,w) =
Branch ’ (i , r ,w)

[[e \ c . i . e | e ← EE]]
[[no tO f fe r . e \ no tO f fe r . e , no tO f fe r . e \ notOf fer1 . i . e | e ← E]]

alpha (i) = {|c . i , r e s t a r t , no tOf fe r , no tOf fe r1 . i |} −− alphabet o f branch i

Below we will combine the branch processes in parallel, together with a regulator pro-
cessReg that, once a branch has done a standard event to resolve the choice, blocks all events
of the other branches until a restart occurs; further, it forces processes to synchronise on
notOffer events before the choice is resolved, and subsequently allows the unsynchronised
notOffer1 events.9

Reg = c? i ?e → (i f member (e ,E) then Reg ’ (i) else Reg)
2 no tO f fe r ? → Reg

Reg ’ (i) = c . i ? → Reg ’ (i) 2 r e s t a r t . i ? ? → Reg 2 notOf fer1 . i ? → Reg ’ (i)

We build the guard process by combining the branches and regulator in parallel, hiding
therestart events, and reversing the above renaming.10

Guard0 (r ,w) =
(‖ i : BRANCH • [alpha (i)] Branch ’ ’ (i , r ,w))

[| {|c , r e s t a r t , no tOf fe r , no tOf fe r1 |} |] Reg
Guard (r ,w) =

(Guard0 (r ,w) \ {| r e s t a r t |})
[[c . i . e \ e | e ← EE, i ← BRANCH]]
[[notOf fer1 . i . e \ no tO f fe r . e | e ← E, i ← BRANCH]]

We now model the readers and writers themselves. Each readeralternates between per-
forming startRead andendRead. Each writer is similar, but, for later convenience, we add an
eventwriterTrying to indicate that it is trying to perform a write.

channel w r i t e r T r y i n g

Reader = P r e f i x (startRead , P r e f i x (endRead , Reader))
Wr i t e r = w r i t e r T r y i n g → P r e f i x (s t a r t W r i t e , P r e f i x (endWrite , Wr i t e r))

ReadersWriters = (||| r : { 1 . .N} • Reader) ||| (||| w: { 1 . .N} • Wr i te r)

8union represents the union operation.
9member tests for membership of a set.
10The‖ is an indexed parallel composition, indexed byi; here theith component has alphabetalpha(i). The

notation[| A |] is the machine-readable CSP version of‖
A

.

Gavin Lowe / Extending CSP with tests for availability 17

We need to synchronise theoffer.startWrite and notOffer.startWrite events of the writers
with the ready.startWrite andnotReady.startWrite events of the guard, respectively. For conve-
nience, we block the remainingoffer andnotOffer events, since we make no use of them, and
processes do not change state when they perform such an event.

ReadersWriters ’ =
ReadersWriters [[o f f e r . s t a r t W r i t e \ ready . s t a r t W r i t e ,

no tO f fe r . s t a r t W r i t e \ notReady . s t a r t W r i t e]]

System =
l e t SyncSet = union (E,{ ready . s t a r t W r i t e , notReady . s t a r t W r i t e }) within
(Guard (0 ,0) [| SyncSet |] ReadersWriters ’) [| {|o f f e r , no tO f fe r |} |] STOP

We can check the simple safety property that the guard allowsat most one active writer
at a time, and never allows both readers and writers to be active.

Spec (r ,w) =
w==0 and r<N & star tRead → Spec (r +1 ,w)
2 r>0 & endRead → Spec (r−1,w)
2 r ==0 and w==0 & s t a r t W r i t e → Spec (r ,w+1)
2 w>0 & endWrite → Spec (r ,w−1)

i n t e r n a l s = {|ready , notReady , o f f e r , no tO f fe r |}

asser t Spec (0 ,0) ⊑T System \ {|ready , notReady , w r i t e r T r y i n g|}

This test succeeds, at least for small values ofN.
More interestingly, we can also verify that the guard is fairto the writers, in the sense

that if at least one writer is trying to gain access, then one of them eventually succeeds. The
parametern of WLSpec0, below, records how many writers are currently trying; whenn>0
(i.e. at least one writer is trying), this process insists that a writer can start.

WLSpec(n) =
n<N & w r i t e r T r y i n g → WLSpec(n+1)
2 n>0 & s t a r t W r i t e → WLSpec(n−1)
2 (notReady . s t a r t W r i t e → WLSpec(n) ⊓ STOP)

System ’ =
l e t hiddens = d i f f ({|startRead , endRead , endWrite , ready , notReady|} ,

{notReady . s t a r t W r i t e })
within System \ hiddens

asser t WLSpec(0) ⊑FD System ’

The above refinement test succeeds. In particular, this means that the right hand side is
divergence-free, so that thestartWrite events will become available after a finite number of
the hidden events. (Note though that we keep thenotReady.startWrite visible, to avoid a diver-
gence that would be caused by an infinite repetition ofnotReady.startWrite, startRead, endRead
events, when no writer was trying.)

7. Discussion

In this paper we have considered an extension of CSP that allows processes to test whether
an event is available. We have formalised this construct by giving an operational semantics
and congruent denotational semantic models. We have illustrated how we can use a standard
model checker to analyse systems in this extended language.

18 Gavin Lowe / Extending CSP with tests for availability

In this final section we discuss some related work and possible extensions to this work.

7.1. Comparison with standard models

There have been several different denotational semantic models for CSP. Most of these
are based on the standard syntax of CSP, with the standard operational semantics. It is not
possible to compare these models directly with the models inthis paper, since we have used
a more expressive language, with the addition of readiness tests; however, we can compare
them with the sub-language excluding this construct.

For processes that do not use readiness tests, the two modelsof this paper are more
distinguishing than the standard traces and stable failures models, respectively. Theorems 15
and 17 show that our models make at least as many distinctionsas the standard models. They
distinguish processes that the standard models identify, such as

a→ STOP⊓ (a→ STOP⊲ b→ STOP) and a→ STOP⊓ b→ STOP:

the former, but not the latter, has the trace〈offer a, b〉.
In [Ros09a], Roscoe gives a survey of the denotational models based on the standard

syntax. The most distinguishing of those models based on finite observations (and so not
modelling divergences) is thefinite linear model, FL. This model uses observations of the
form 〈A0, a0, A1, a1, . . . , an−1, An〉, where eachai is an event that is performed, and eachAi is
either (a) a set of events, representing that those events are offered in a stable state (and so
ai ∈ Ai), or (b) the special value• representing no information about what events are stably
offered (perhaps because the process did not stabilise).

For processes with no readiness tests,FL is incomparable with the models in this paper.
Our models distinguish processes thatFL identifies, essentially because the latter records
the availability of events only in stable states, whereas our models record this information
also in unstable states. For example, the processes

(b→ STOP⊲ a→ STOP) ⊓ b→ STOP and a→ STOP⊓ b→ STOP

are distinguished in our models since just the former has thetrace〈offer b, a〉; however they
are identified inFL (and hence all the other finite observation models from [Ros09a]) be-
cause thisb is notstablyavailable.

Conversely,FL distinguishes processes that our models identify, such as

a→ b→ STOP⊓ (a→ STOP⊲ STOP) and a→ (b→ STOP⊓ STOP) ⊲ STOP,

since the former has the observation〈{a}, a, •, b, •〉, but the latter does not since itsa is
performed from an unstable state; however, they are identified by our failures model (and
hence our traces model) since this records stability information only at the end of a trace.
I believe it would be straightforward to extend our models torecord stability information
throughoutthe trace in the wayFL does.

Roscoe also shows that each of the standard finite observation models can be extended
to model divergences in three essentially different ways. Ibelieve that it would be straight-
forward to extend the model in this paper to include divergences following any of these tech-
niques.

7.2. Comparison with other prioritised models

As we described in the introduction, the readiness tests canbe used to implement a form of
priority. There have been a number of previous attempts to add priority to CSP.

Lawrence [Law04] models priorities by representing a process as a set of triples of
the form(tr, X, Y), meaning that after performing tracetr, if a process is offered the set of

Gavin Lowe / Extending CSP with tests for availability 19

eventsX, then it will be willing to perform any of the events fromY. For example, a process
that initially gives priority toa overb would include the triple〈〉, {a, b}, {a}).

Fidge [Fid93] models priorities using a set of “preferences” relations over events. For
example, a process that gives priority toa over b would have the preferences relation
{a 7→ a, b 7→ b, a 7→ b}.

In [Low93,Low95], I modelled priorities within timed CSP using an order over the sets
(actually, multi-sets) of events that the process could do at the same time. For example, a
process that gives priority toa over b (and would rather do either than nothing) at time 0
would have the ordering(0, {a}) ⊐ (0, {b}) ⊐ (0, {}).

All the above models are rather complex: I would claim that the model in this paper
is somewhat simpler, and has the advantage of allowing a translation into standard CSP, in
order to use the FDR model checker.

One issue that sometimes arises when considering priority is what happens when two
processes with opposing priorities are composed in parallel. For example, considerP ‖ Q
whereP andQ give priority toa andb respectively:

P= a→ P1 2 notReady a & b→ P2,

Q= b→ Q1 2 notReady b & a→ Q2.

There are essentially three ways in which this parallel composition can behave (in a context
that doesn’t blocka or b):

• If P performs itsnotReady test beforeQ, the test succeeds; if, further,P makes theb
available beforeQ performs itsnotReady test, thenQ’s notReady test will fail, and so
the parallel composition will performb;

• The symmetric opposite of the previous case, whereQ performs itsnotReady test and
makesa available beforeP performs itsnotReady test, and so the parallel composition
performsa;

• If both processes perform theirnotReady tests before the other process makes the
corresponding event available, then both tests will succeed, and so both events will be
possible.

I consider this to be an appropriate solution. By contrast, the model in [Law04] leads to this
system deadlocking; in [Low93,Low95] I used a prioritised parallel composition operator to
give priority to the preferences of one components, therebyavoiding this problem, but at the
cost of considerable complexity.

7.3. Readiness testing for channels

Most CSP-like programming languages make use of channels that pass data. In such lan-
guages, one can often test for the availability ofchannels, rather than of individual events.
Note, though, that there is an asymmetry between the reader and writer of the channel: the
reader will normally want to test whether there isanyevent on the channel that is ready for
communication (i.e. the writer is ready to communicate), whereas the writer will normally
want to test whetherall the events on the channel are ready for communication (i.e. the reader
is ready to communicate). It would be interesting to extend the language of this paper with
constructs

if ready all A then P else Q and if ready any A then P else Q,

whereA is a set of events (e.g. all events on a channel), to capture this idea.

20 Gavin Lowe / Extending CSP with tests for availability

7.4. Model checking

In Section 6, we gave an indication as to how to simulate the language of this paper using
standard CSP, so as to use a model checker such as FDR.

This technique works in general. This can be shown directly,by exhibiting the transla-
tion. Alternatively, we can make use of a general result from[Ros09b], where Roscoe shows
that any operator with an operational semantics that is “CSP-like” —essentially that the op-
erator can turn arguments on, interact with arguments via visible events, promoteτ events of
arguments, and maybe turn arguments off— can be simulated using standard CSP operators.
The−−⊲ semantics of this paper is “CSP-like” in this sense, so we canuse those techniques
to simulate this semantics. We intend to automate the translation.

One difficulty is that the translation from [Ros09b] can produce processes that are infi-
nite state because they branch off extra parallel processesat each recursion of the simulated
process. In Section 6 we avoided this problem byrestartingtheBranch processes that consti-
tuted the guard at each recursion (this uses an idea also due to Roscoe), whereas Roscoe’s ap-
proach would branch off new processes at each recursion. I believe the technique in Section 6
can be generalised and probably automated.

7.5. Full abstraction

The denotational semantic models we have presented turn outnot to be fully abstract with
respect to may-testing [dNH84]. Consider the processif ready a then P else P. This is denota-
tionally distinct fromP, since its traces haveready aor notReady aevents added to the traces
of P. Yet there seems no way to distinguish the two processes by testing: i.e., there is no
good reason to consider those processes as distinct.

We believe that one could form a fully abstract semantics as follows. Consider the
relation∼ over sets of traces defined by

(S∪ {tr̂tr ′}) ∼ (S∪ {tr̂〈ready a〉̂tr ′, tr̂〈notReady a〉̂tr ′})
for all S∈ P(Σ∗), tr, tr ′ ∈ Σ∗, a ∈ Σ.

In other words, two sets are related if one is formed from the other by addingready aand
notReady aactions in the same place. Let≈ be the transitive reflexive closure of∼. This
relation essentially abstracts away irrelevant readinesstests. We conjecture thatP and Q
are testing equivalent ifftraces[[P]] ≈ traces[[Q]], and that it might be possible to produce a
compositional semantics corresponding to this equivalence. It is not clear that the benefits of
full abstraction are worth this extra complexity, though.

Acknowledgements

I would like to think Bill Roscoe and Bernard Sufrin for interesting discussions on this work.
I would like to thank the anonymous referees for a number of very useful suggestions.

References

[And00] Gregory R. Andrews.Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley, 2000.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and “writers”.
Communications of the ACM, 14(10):667–668, 1971.

[dNH84] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes.Theoretical Computer
Science, 34:83–133, 1984.

[Fid93] C. J. Fidge. A formal definition of priority in CSP.ACM Transactions on Programming Languages
and Systems, 15(4):681–705, 1993.

Gavin Lowe / Extending CSP with tests for availability 21

[For97] Formal Systems (Europe) Ltd.Failures-Divergence Refinement—FDR 2 User Manual, 1997.
[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.
[Law04] A. E. Lawrence. Triples. InProceedings of Communicating Process Architectures, pages 157–184,

2004.
[Low93] Gavin Lowe.Probabilities and Priorities in Timed CSP. DPhil thesis, Oxford, 1993.
[Low95] Gavin Lowe. Probabilistic and prioritized models of Timed CSP.Theoretical Computer Science,

138:315–352, 1995.
[OH86] E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for communicating processes.

Acta Informatica, 23(1):9–66, 1986.
[Ros94] A. W. Roscoe. Model-checking CSP. InA Classical Mind, Essays in Honour of C. A. R. Hoare.

Prentice-Hall, 1994.
[Ros97] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1997.
[Ros09a] A. W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and

Algebraic Programming, 78(3):163–190, 2009.
[Ros09b] A.W. Roscoe. On the expressiveness of CSP. Available via http://web.comlab.ox.ac.uk/

/files/1383/complete(3).pdf, 2009.
[WB09] Peter Welch and Neil Brown. Communicating sequential processes for Java (JCSP).http://

www.cs.kent.ac.uk/projects/ofa/jcsp/, 2009.
[WBM+07] Peter Welch, Neil Brown, James Morres, Kevin Chalmers, and Bernhard Sputh. Integrating and

extending JCSP. InCommunicating Process Architectures, pages 48–76, 2007.

A. Derived operational semantics

The definition of the−−⊲ relation, and the operational semantic rules for the−→ relation can
be translated into the following defining rules for−−⊲.

STOP
notOffer a
−−−⊲ STOP for a ∈ Σ

a→ P
notOffer b
−−−⊲ a→ P for b ∈ Σ

ǎ→ P
offer a
−−−⊲ a→ P

a→ P
τ
−−⊲ ǎ→ P

ǎ→ P
a
−−⊲ P

ǎ→ P
notOffer b
−−−⊲ a→ P for b 6= a

if ready a then P else Q
ready a
−−−⊲ P

if ready a then P else Q
notReady a
−−−⊲ Q

if ready a then P else Q
notOffer b
−−−⊲ if ready a then P else Q for b ∈ Σ

P
a
−−⊲ P′

P 2 Q
a
−−⊲ P′

P
τ
−−⊲ P′

P 2 Q
τ
−−⊲ P′

2 Q

P
ready a
−−−⊲ P′

P 2 Q
ready a
−−−⊲ P′

2 Q

P
notReady a
−−−⊲ P′

P 2 Q
notReady a
−−−⊲ P′

2 Q

P
offer a
−−−⊲ P′

P 2 Q
offer a
−−−⊲ P′

2 Q

P
notOffer a
−−−⊲ P′

Q
notOffer a
−−−⊲ Q′

P 2 Q
notOffer a
−−−⊲ P′

2 Q′

P
a
−−⊲ P′

P ⊲ Q
a
−−⊲ P′

P
τ
−−⊲ P′

P ⊲ Q
τ
−−⊲ P′ ⊲ Q

22 Gavin Lowe / Extending CSP with tests for availability

P
ready a
−−−⊲ P′

P ⊲ Q
ready a
−−−⊲ P′ ⊲ Q

P
notReady a
−−−⊲ P′

P ⊲ Q
notReady a
−−−⊲ P′ ⊲ Q

P
offer a
−−−⊲ P′

P ⊲ Q
offer a
−−−⊲ P′ ⊲ Q

P
notOffer a
−−−⊲ P′

P ⊲ Q
notOffer a
−−−⊲ P′ ⊲ Q

P
α
−−⊲ P′ α ∈ (Σ− A)) ∪ {τ} ∪ ready(Σ− A) ∪ notReady(Σ− A) ∪

offer(Σ− A) ∪ notOffer(Σ− A)P \ A
α
−−⊲ P′ \ A

P
α
−−⊲ P′

α ∈ A∪ ready A
P \ A

τ
−−⊲ P′ \ A

P \ A
notOffer a
−−−⊲ P \ A, for a ∈ A

P
α
−−⊲ P′

α ∈ privateA ∪ {τ}
PA‖BQ

α
−−⊲ P′

A‖BQ

P
α
−−⊲ P′

Q
α
−−⊲ Q′

α ∈ syncA,B
PA‖BQ

α
−−⊲ P′

A‖BQ

P
ready b
−−−⊲ P′

Q
offer b
−−−⊲ Q′

b ∈ B
PA‖BQ

ready b
−−−⊲ P′

A‖BQ′

P
notReady b
−−−⊲ P′

Q
notOffer b
−−−⊲ Q′

b ∈ B
PA‖BQ

τ
−−⊲ P′

A‖BQ′

P
notReady b
−−−⊲ P′

Q
offer b
−−−⊲ Q′

b ∈ B
PA‖BQ

notReady b
−−−⊲ P′

A‖BQ′

PA‖BQ
notOffer d
−−−⊲ PA‖BQ,

for d ∈ Σ− A− B.

B. Congruence of the operational semantics

In this appendix, we prove some of the cases in the proof of Theorem 13:

tr ∈ tracesR[[P]] iff P tr
=⇒ .

Hiding

We prove the case of hiding in Theorem 13 using the derived rules in Appendix A.

(⇒) Supposetr ∈ tracesR[[P \ A]]. Then there exists sometrP ∈ tracesR[[P]] such that
trP |̀ (notReady A∪ offer A) = 〈〉 andtrP \ (A∪ ready A) = tr \ notOffer A. By the inductive

hypothesis,P
trP=⇒, i.e.,P

α1
−−⊲ . . .

αn
−−⊲ for someα1, . . . , αn such thattrP = 〈α1, . . . , αn〉 \

{τ}. From the derived operational semantics rules,P\Ahas the same transitions but with each
αi ∈ A∪ready Areplaced by aτ , i.e., transitions corresponding to the tracetrP\(A∪ready A).
Further, using the third derived rule for hiding, arbitrarynotOffer Aself-loops can be added
to the transitions, giving transitions corresponding to tracetr. HenceP \ A tr

=⇒.

(⇐) SupposeP\A tr
=⇒. Consider the transitions ofP that lead to this trace. By considera-

tion of the derived rules, we see thatP
trP=⇒ for some tracetrP such thattrP |̀ (notReady A∪

offer A) = 〈〉 and trP \ (A ∪ ready A) = tr \ notOffer A. By the inductive hypothesis,
trP ∈ tracesR[[P]]. Hence,tr ∈ tracesR[[P \ A]].

Gavin Lowe / Extending CSP with tests for availability 23

Parallel composition

We prove the case of parallel composition in Theorem 13 usingthe derived rules from Ap-
pendix A.

(⇒) Supposetr ∈ tracesR[[PA‖BQ]]. Then there existtrP ∈ tracesR[[P]] andtrq ∈ tracesR[[Q]]
such thattrP |̀ (Σ−A)∪offer(Σ−A)∪notOffer(Σ−A) = 〈〉, trQ |̀ (Σ−B)∪offer(Σ−B)∪

notOffer(Σ−B) = 〈〉 and(trP, trQ) A‖B7−→ tr\notOffer(Σ−A−B). By the inductive hypothesis,

P
trP=⇒ andQ

trQ
=⇒. SoP

α1
−−⊲ . . .

αn
−−⊲ andQ

β1
−−⊲ . . .

βm
−−⊲ for someα1, . . . , αn, β1, . . . , βm

such thattrP = 〈α1, . . . , αn〉 \ {τ} and trq = 〈β1, . . . , βm〉 \ {τ}. We then have that

PA‖BQ
tr\notOffer(Σ−A−B)

==⇒ , since each event implied by(trP, trQ) A‖B7−→ tr \ notOffer(Σ − A− B)
has a corresponding transition implied by the operational semantics rules (formally, this is a

case analysis over the clauses ofA‖B7−→, combined with a straightforward induction onm+ n).
Further, using the final derived rule for parallel composition, arbitrarynotOffer(Σ − A− B)
self-loops can be added to the transitions, giving transitions corresponding to tracetr. Hence
PA‖BQ tr

=⇒.

(⇐) SupposePA‖BQ tr
=⇒. Then by item 3 of Lemma 9,PA‖BQ

tr\notOffer(Σ−A−B)
==⇒ . Con-

sider the transitions ofP andQ that lead to this trace according to the operational seman-

tics rules, sayP
α1
−−⊲ . . .

αn
−−⊲ and Q

β1
−−⊲ . . .

βm
−−⊲. Let trP = 〈α1, . . . , αn〉 \ {τ} and

trq = 〈β1, . . . , βm〉\{τ}; soP
trP=⇒ andQ

trQ
=⇒. By the inductive hypothesis,trP ∈ tracesR[[P]]

andtrQ ∈ tracesR[[Q]]. Also, by consideration of the operational semantics rules, trP |̀ (Σ −
A)∪offer(Σ−A)∪notOffer(Σ−A) = 〈〉 andtrQ|̀ (Σ−B)∪offer(Σ−B)∪notOffer(Σ−B) = 〈〉.

Further,(trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B), since each transition implied by the opera-

tional semantics rules has a corresponding event implied bythe definition of A‖B7−→ (formally,
this is a case analysis over the operational semantics rules, combined with a straightforward
induction onm+ n). Hencetr ∈ tracesR[[PA‖BQ]].

