
An Overview of the Annex System

D.A. Grove T.C. Murray C.A. Owen C.J. North J.A. Jones M.R. Beaumont B.D. Hopkins

Defence Science & Technology Organisation

PO Box 1500, Edinburgh, South Australia 5111

Abstract

This paper describes the security and network architec-

ture of the Annex system, a family of technologies for secure

and pervasive communication and information processing

that we have developed at the Australian Government’s De-

fence Science and Technology Organisation. Our security

architecture is built on top of a distributed object-capability

system, which we believe provides an ideal platform for de-

veloping very high assurance devices. Our network archi-

tecture revolves around next generation networking tech-

nologies, including Mobile IPv6 and 802.11i wireless net-

working, but includes a small number of important exten-

sions to improve security, robustness and mobility in the

military context. A particular and unique contribution of

our work is the tight integration of our very strong security

architecture with next generation networking technologies.

To complete the paper we describe our reference implemen-

tation of the Annex security and networking architecture,

which consists of a number of devices known collectively as

the Annex Ensemble.

1 Introduction

There is growing momentum within the Australian De-

fence Force (ADF) and its coalition partners to develop op-

erations based on Network Centric Warfare (NCW) [2]. The

goal of NCW is to simplify and unify the mechanisms for

assured information sharing between interested parties in

order to achieve a more efficient and effective fighting force.

This is a particularly difficult problem for military commu-

nication and information processing systems because clas-

sified information at different security levels must be strictly

partitioned. This is almost universally enforced by replicat-

ing, in isolation, computing and network resources for each

security level. Clearly this does not scale and it will not al-

low the benefits of NCW to be fully realised. The solution

to this problem is the holy grail of military computer secu-

rity, to develop trusted systems that are capable of enforcing

Multi Level Security (MLS) [24].

NCW will include the networking of assets such as fixed

bases, mobile platforms, sensors, weapons systems and

the individual war fighter into a Global Information Grid

(GIG) [1]. To be truly effective, this ubiquitous GIG will

need to be globally scalable, interoperable, reliable and se-

cure. This ambitious vision will only be fulfilled in concert

with the provision of a next-generation data communication

network: one that can be easily, dynamically and automat-

ically configured to provide seamless and secure network

access to forces anywhere and at any time.

The Command, Control, Communications and Intelli-

gence Division in the Defence Science and Technology Or-

ganisation is developing an experimental network, called

Annex, which aims to provide enhanced connectivity be-

tween military forces as well as seamless connectivity to

civilian entities using standard Internet Protocols. Annex

is based on IPv6 [7] with Hierarchical Mobile IPv6 exten-

sions [14, 25]. This allows for authentication and encryp-

tion using IPsec [13], provides flow markers to assist in the

efficient management of streaming data, and supports ad-

dressing for mobile nodes. While maintaining full back-

ward compatibility, Annex enabled systems are also en-

hanced with network awareness to improve real-time per-

formance, robustness and security of communication be-

tween Annex enabled devices.

Although we have used Commercial Off The Shelf

(COTS) technologies like those above wherever possible,

the most fundamental design and implementation rule that

we have applied during our development process is that very

strong security mechanisms must be able to protect all as-

pects of the system. We believe that without security as the

foundation, all other technology above it, no matter how so-

phisticated, is severely limited in its applicability to NCW.

Indeed, we also feel that otherwise good technologies will

eventually fail in much of the commercial marketplace if

security is not equally well addressed.

The Annex security architecture is a foundation for pro-

viding very strong security using a universal system for ac-

cess control based on capabilities [8]. Our capability sys-

tem is implemented with trusted hardware and software that

was developed entirely in-house, and together these form



our Trusted Computing Base (TCB). The TCB allows An-

nex equipment to be used by any number of mutually suspi-

cious, autonomous participants, with differing security poli-

cies and interests, facilitating secure access to and sharing

of networked resources within the GIG. The Annex secu-

rity architecture has been designed to naturally support the

principles of least authority, mutual suspicion and need to

know (see [5] for a glossary explaining terms) while allow-

ing arbitrary security policies to be specified and provably

enforced. Although minimal formal analysis has been per-

formed on our TCB to date, we recognise that this will be

essential in taking our devices beyond the proof-of-concept

stage.

2 The Annex Security Architecture

The Annex security architecture provides an NCW plat-

form that can support autonomous, mutually suspicious or-

ganisations to operate in coalition. Each organisation may

define their own security policies regarding the sharing of

resources and information, which the platform will enforce.

The semantics of the underlying security model are encap-

sulated in a few simple rules. Hence, the model and its

implementation lend themselves to formal analysis [27],

which we believe will allow Annex to provide very strong

security guarantees.

2.1 Capability Architectures

The Annex security architecture is based on a distributed

capability system. Capabilities are unforgeable, authority-

carrying references [8], although they may be copied under

certain, strictly controlled conditions. They combine into

one atomic entity the name of the object to which they refer

as well as the permission required to access that object. This

bond provides a very strong tool for avoiding the confused

deputy problem [12] because it leaves no room for ambigu-

ity about what authority is being wielded during any request

to access any resource. Capabilities also simplify the imple-

mentation of trusted systems because they unify addressing

and protection mechanisms.

Access requests in a capability system can only be au-

thorised by capability presentation. The entire authority of

a subject is defined by the capabilities it possesses and the

transitive closure of what the possession of those capabili-

ties permits. Subjects have no ambient authority, so a sub-

ject’s authority can be limited by simply restricting the ca-

pabilities it holds. Therefore capabilities naturally promote

least privilege [22] and the related principle of least author-

ity [18]. The second principle is an extension of the first and

includes causal effects that may arise from a subject exer-

cising their permissions, including collaboration with other

subjects.

Another important tool for enabling least authority is

delegation [28]. During collaboration it is often necessary

for one subject to wield part of another’s authority. This can

be achieved most easily if the second subject can delegate

the appropriate authority to the first. In capability systems

delegation is as simple as passing on a capability.

In spite of their benefits, capability systems have been

criticised for the complexity required to manage capability

distribution and revocation. Another perceived weakness of

capability systems is a perceived lack of support for manda-

tory security policies [26]. Recent research is beginning to

show, however, that these concerns may not be too burden-

some if an appropriate capability model is used [18, 20, 23].

2.2 The Object-Capability Model

The object-capability model [18] manages complexity

by providing natural support for abstractions. This allows

fine-grained security policies to be specified using program-

ming abstractions that “automatically” manage complexity

in the same way that usual programming abstractions allow

the construction of very complex software. Other abstrac-

tions allow mandatory security policies to be implemented

in the object-capability model [18].

In an object-capability system capabilities address ob-

jects and allow method invocation, the only action that can

be performed. Method invocation with object-capabilities is

therefore similar to using protected procedures in CAP [29]

or Hydra [15], but it is more securable by virtue of being

the only available calling convention and also more flexible

and fine-grained. Abstractions are implemented by objects

whose methods expose functionality but hide implementa-

tion details, like in object-oriented programming. Abstrac-

tions may be arbitrarily composed because all object refer-

ences (capabilities) are treated in exactly the same way.

The fundamental rule of object-capability systems is that

“only connectivity begets connectivity” [17]. In practice,

this leads to a small set of rules regarding capability prop-

agation. These rules completely define the semantics of

an object-capability system and provide a sound model on

which to reason about the flow of authority and information.

2.3 Annex Capabilities

The Annex security architecture uses the object-

capability model, but where capabilities are implemented

using a password capability system [3] that has also been

extended with partitioning. Annex capabilities are therefore

stored as regular data using a password capability scheme,

but may only reside within the protective bounds of the ker-

nel. Outside of the kernel, objects reference capabilities us-

ing handles. When an object receives a new capability, for

example during a method invocation, the kernel automati-



cally replaces the capability with a per-object handle to that

capability and creates a mapping between the two. Parti-

tioning is completely transparent to objects, allowing them

to treat handles as if they were real capabilities, but allows

the enforcement of certain mandatory security properties in-

cluding confinement, the simple security property and the

*-property [19] because capability propagation can be en-

forced in accordance with the rules of the object-capability

model.

Password capabilities are unforgeable because they con-

tain a long and probabilistically unguessable password.

Password capabilities also provide a universal capability

representation that works across machine boundaries, tak-

ing advantage of Annex’s network addressing architecture

(see Section 3). A single Annex capability uniquely iden-

tifies a single object within the entire Annex network and

allows the holder to invoke a subset of the object’s meth-

ods. Table 1 depicts an Annex capability.

Table 1. Format of an Annex Capability
DeviceID ObjectID CapID Password

64 48 16 256

The DeviceID field uniquely identifies the device on

which an addressed object resides. This field corresponds to

the least significant 64-bits of the device’s IPv6 address and

is known as its host identifier. This information is sufficient

for routing invocation requests to a target device (see Sec-

tion 3.4). The ObjectID field uniquely identifies a par-

ticular object on the target device. Each object is assigned

a device-wide unique identifier. A type-marker, currently

based on a cryptographic hash of the object’s source code

implementation, is also embedded within the ObjectID

field to ensure that any confusion regarding an object’s type

will result in an invalid object reference. The CapID field

is an object-wide unique identifier that is assigned when a

capability is created. It uniquely identifies a particular ca-

pability from any other capabilities to the same object but

with different permissions.

The Password field gives the capability its authority.

While passwords provide no extra protection in the case that

the underlying axioms of the system remain intact – the ker-

nel will already be enforcing connectivity begets connectiv-

ity – they do provide a significant extra barrier against capa-

bility forgery on remote devices or via attacks on the kernel

itself. Hence, a capability structure without a valid pass-

word is considered invalid and presentation will not pro-

vide the holder with any information, including whether the

target object exists. Capability passwords are assigned ran-

domly from a very large space in order to ensure that guess-

ing a valid capability is infeasible.

2.3.1 Methods and Permissions

Methods are grouped into two classes. User methods must

be defined separately for each object. They expose the inter-

face of the abstraction that the object implements. System

methods are inherited by all objects and provide the basic

capability operations required of all objects. These opera-

tions include the derivation [3] of less powerful capabilities

from those that are more powerful, and the destruction of

individual capabilities.

A catalogue maps valid capabilities to a pair of permis-

sion bit-vectors: (SystemPerms, UserPerms). During

compilation, individual methods are automatically mapped

to individual bits within the appropriate bit-vector. Annex

uses permissions to explicitly control the methods that may

be executed by a particular capability, rather than the stan-

dard object-capability notion of a facet [17]. This avoids the

need to instantiate multiple objects, which is advantageous

on low resource embedded devices like those used in Annex

(see Section 4).

2.4 Annex Capability Kernel

We have developed an operating system kernel that im-

plements the Annex security architecture. The kernel is

responsible for managing objects, overseeing the invoca-

tion of methods on those objects and for providing network

transparency. Because our Annex Capability Kernel runs on

trusted hardware (described in Section 4), Annex provides

a complete platform for creating secure, object-capability

based application software. Currently, however, it does

rely on a small amount of untrusted hardware and software

to provide network transport and untrusted user interaction

services – but we are already working on extensions to our

system to remove these limitations. In the mean time, our

first generation Annex Kernels reside on secure PCMCIA

cards that are hosted on untrusted commodity computers,

such as COTS servers or hand-held PDAs.

The untrusted host may make method calls on objects

to which it holds capabilities; however, the host only ever

holds very weak capabilities and never holds capabilities

to remote objects. The method calls available to the host

mirror the user interface provided to the user, enabling un-

trusted user interaction via the untrusted host. The host is

also responsible for forwarding remote method invocations

over the Annex network. In this case, all remote invocations

are encrypted so that only the remote destination kernel can

read their contents, limiting the possible attacks available

to the surrogate host or intermediate network to Denial of

Service (DoS) and traffic analysis.

As shown in Figure 1 the kernel consists of four key

components, along with a small set of trusted objects to ex-

pose core kernel functionality and hardware abstractions.

The arrows in the diagram indicate that trusted applications



Trusted Applications

Scheduler
Crypto

Tunnels

Object Cap.

System

Capability Kernel

Trusted Hardware

Method Dispatcher

Untrusted Applications

Untrusted OS

Untrusted Hardware

Network

Other Devices

Figure 1. Software architecture of the first

generation Annex Capability Kernel and its
relationship to its untrusted surrogate plat-
form.

may communicate with untrusted applications on their sur-

rogate platform, or also with trusted applications on a dif-

ferent host via a secure tunnelling mechanism.

Firstly, a scheduler allows for multiple method invoca-

tions to be serviced in parallel. This allows the kernel to

efficiently process blocking operations like network com-

munication. All methods execute in separate threads that

may only access the target object and the method invoca-

tion parameters. Although our prototype devices do not

strictly enforce this isolation, we are developing hardware

and software features that will guarantee absolute separa-

tion in the future. Our first generation scheduler is also non-

preemptive so co-operative multitasking is required, which

causes problems when using synchronous method calls, but

we are updating our programming model and scheduler to

overcome these limitations [11].

Secondly, a tunnels manager provides for mutually au-

thenticated, confidential communication between object-

capability kernels running on different devices. The Diffie-

Hellman Station-to-Station protocol using Elliptic-Curve

Cryptography (ECC) provides mutual authentication and

symmetric-key agreement. The Advanced Encryption Stan-

dard (AES) operating in CFB mode ensures confidentiality.

Tunnels can be cached for efficiency and different channels

of communication can be multiplexed over one tunnel.

Tunnels are directly connected into the third component,

the dispatcher. The dispatcher provides both network trans-

parent method invocation and enforces capability-based ac-

cess control to local objects. This centralised checking

mechanism makes it possible to avoid error or abuse during

capability verification. Furthermore, because Annex capa-

bilities are the exclusive object naming mechanism the dis-

patcher provides mandatory access control that cannot be

bypassed.

To achieve this the dispatcher relies on a number of com-

ponents that make up the object-capability implementation.

Our object-capability implementation comprises an object-

type database, an object store and a password capability

catalogue. Before a method invocation is dispatched the va-

lidity of the capability is checked with the catalogue, com-

paring the permissions it carries against those required by

the method in the object’s type definition. If they match

then the object is loaded from the store and the method is

executed.

Finally, our development environment includes tools for

writing and compiling object type definitions. Each defi-

nition must include the object’s method code as well as a

description of the internal state that the object maintains,

which is saved in the object store. Our initial implementa-

tion relied on static compile-time definitions of all possible

object types, but we have now prototyped a loader that al-

lows new object types to be instantiated at run time. This

enables packaged collections of object-type definitions to

be dynamically replaced. Thus the Annex architecture pro-

vides not only an access control framework but the means

by which to develop and deploy arbitrary services to extend

functionality.

2.5 Distribution and Revocation

The Annex security architecture is flexible enough to

support a wide range of capability distribution and revoca-

tion schemes, implemented on top of the object-capability

model. Possibilities for capability distribution mechanisms

include centralised authority hierarchies and decentralised

“webs of trust” as in PGP [30]. Our current proof-of-

concept services, however, only use simple distribution

schemes in order to allow us to experiment with the basic

ideas before constructing more sophisticated mechanisms.

It should be noted that once implemented, any mechanism

should be readily reusable so long as it treats all capabilities

it distributes identically.

Once a capability has been distributed, the only way to

cancel its authority is by revoking that capability. While

it is simple to revoke a capability by removing its record

from the appropriate catalogue, determining which capabil-

ities require revocation is very difficult without information

regarding the propagation of capabilities between devices,

otherwise it is impossible to know who holds any partic-

ular capability. We have developed a kernel-based algo-

rithm for recording this information in a capability propaga-

tion graph, similar to that invented by Gligor [9]. Gligor’s

system, however, was only designed for single host sys-

tems, where the capability propagation graph is completely

available and always correct. In contrast, the distributed

and mutually suspicious nature of our system makes stor-

ing a global propagation graph impractical and imprudent.

Hence, our revocation system was designed so that only lo-



cal capability propagation information is stored by any one

device. All devices cooperate to process this information

in a distributed manner when revocation operations must be

performed. In this respect our revocation algorithm is also

similar to Miller’s membrane pattern [16], but where our

capability tracking is performed by the kernel rather than

by the objects themselves. This allows our system to en-

force transitive revocation policies, although it does slightly

increase kernel complexity.

Since capabilities are partitioned so that objects only

ever know about handles to capabilities, the dispatcher can

always unambiguously identify capability transfers: they

only occur as strongly typed parameters during method

calls. When the dispatcher intercepts a capability transfer,

it logs a (sequence number, capability, source object, desti-

nation object) tuple to an ordered list, called the capability

transfer table. Entries in the table must be retained so long

as the objects they point to exist, but old entries could be mi-

grated to specialised log servers to reduce storage require-

ments on end-user devices. Furthermore, because maintain-

ing and processing capability propagation information is ex-

pensive, our revocation system can be selectively enabled or

disabled on a per-capability basis, as deemed appropriate by

the issuer of a capability.

If it is later determined that a capability should be re-

voked – for example when someone no longer needs to per-

form a particular role, when someone no longer needs ac-

cess to a certain resource, when it is discovered that an ob-

ject was buggy or has been compromised, or when a device

may have been lost or compromised – then the issuing de-

vice will be notified, which will remove the capability from

its catalogue. It will also initiate distributed flushing proce-

dures that recurse through the capability propagation graph

of the affected capability, purging any of the now useless

copies of the capability from other devices.

3 The Annex Network

The Annex network architecture reflects our vision of

what an ideal communication network for NCW, unencum-

bered by current practice and technology limitations, will

look like. This is not to say that the Annex network archi-

tecture is radically different from existing network archi-

tectures, but it is certainly far more focused on the future.

Rather than simply taking existing technologies (along with

all of their limitations) and figuring out how they could be

applied to our vision, we first developed our architecture

and then looked for any existing or developing technologies

that could fulfil any of our requirements; wherever these

technologies are inadequate we have developed our own.

Consequently many aspects of the Annex network architec-

ture closely resemble next generation networking technolo-

gies that are under development, although we have made a

small number of significant enhancements that aid transpar-

ent wide-area mobility, robustness and provide strong secu-

rity guarantees.

3.1 Wireless Networks

Wireless networking is becoming increasingly common.

This is partially because wireless networks are easier and

often cheaper to deploy. More importantly, however, it is

because people like to be untethered. The ability for peo-

ple to access the information they require at any time and

place will help them to get their jobs done faster and better

than ever before. There are two key issues that need to be

overcome, however, before wireless networks will live up

to their potential: reliability and security.

While the reliability of current wireless network tech-

nologies is not perfect, the explosion in the number of

wireless network deployments around the world shows

that users are willing to live with occasional performance

glitches in return for the freedom that wireless networks

provide. Furthermore, the reliability of wireless networking

products is improving with every generation of new tech-

nology.

Similarly, the mechanisms available for securing wire-

less networks are also improving. Although these have

been woefully inadequate for many years, leaving wireless

networks dangerously exposed to unauthorised use, denial-

of-service, eavesdropping and impersonation, they have re-

cently matured to the level where they may be adequate

in many circumstances. Taking stock of the lessons learnt

from the flawed design of WEP and the more recent design

compromises made for WPA, and standing back from the

management/deployment complexities of VPNs, the IEEE

has recently ratified a new security standard for wireless

networks, called 802.11i. The strongest form of protection

in 802.11i is called the Robust Security Network (RSN).

RSN uses 802.1X for authentication, which specifies an

authentication and authorisation mechanism for allowing or

disallowing clients to access a wireless link. It uses a virtual

port-based approach, where both clients and networks must

prove their identity and authority to each other before fur-

ther network access is granted. After authentication, con-

fidentiality and integrity is provided by the Advanced En-

cryption Standard algorithm in Counter mode with Cipher

block chaining Message authentication code (AES-CCMP),

using a key size of 128, 192 or 256 bits.

A number of 802.11i products that utilise 802.1X with

AES-CCMP have already been accredited under the US

Government’s Federal Information Processing Standard

(FIPS) 140-2 for sensitive but unclassified use. Although

Annex uses 802.11i to protect the wireless link layer, this

is intended to guard against casual interference only; strong

security guarantees are provided by the security architecture



described in Section 2.

3.2 IPv6 Networks

Future military networks are envisaged to operate on

a global scale with multiple levels of mobility between

end user devices and the supporting network infrastructure.

IPv6 [7], the evolutionary successor to IPv4 upon which the

Internet currently depends, is rightly seen as a major en-

abler for NCW and the GIG. A key aspect of this is IPv6’s

very large address space, which will be required to support

the large number of networks and individually addressable

nodes that are envisaged in the GIG. On top of this, Mobile

IPv6 (MIPv6) [14] offers transparent support for computers

that may change their point of attachment to the network.

During the MIPv6 handover period, however, a signifi-

cant number of packets being streamed between highly mo-

bile nodes may arrive late or be lost altogether. Conse-

quently the MIPv6 protocol is not particularly suitable for

real-time data flows between mobile hosts, such as for mo-

bile telephony. Hierarchical Mobile IPv6 (HMIPv6) [25]

is able to ensure faster handovers, but it is limited to fixed

infrastructure deployments with a fairly static routing hier-

archy. While this may be sufficient for most civilian net-

works, it is too limiting for highly mobile and transient mil-

itary networks. We therefore designed several backwards-

compatible enhancements to HMIPv6 for Annex networks

that remove these limitations, as described below.

3.3 Enhanced Addressing

An important IPv6 network allocation policy is that of

route aggregation, where prefix allocations are hierarchi-

cally assigned so that the number of routes that must be

remembered by the Internet’s core routers is minimised.

IPv6’s improved routing performance comes at a cost, how-

ever, as route aggregation leads to sparse address allocation.

Annex leverages this sparsity to encode topological network

information in IPv6 addresses, which can enhance address-

ing efficiency even for highly mobile nodes and infrastruc-

ture [10].

Annex employs a partitioned address allocation policy.

This is done so that nodes can be uniquely identified regard-

less of their point of attachment to the network, and to ex-

ploit the structured network topologies that tend to emerge

in large organisations for the purpose of enhancing routing

efficiency and functionality.

Table 2 shows the structure of an Annex device’s ad-

dress, with suggested bit allocations. The prefix field rep-

resents the fixed part of the IPv6 address space that will be

supplied by an Internet allocation authority and represents

the entire Annex domain. We have obtained a provider-

independent IPv6 allocation of 2001:4418/32 from AP-

Table 2. Addressing for Annex networks

Prefix Family BrickL2,L1,L0 Reserved DeviceID

32 8 8 8 8 16 48

NIC in which to host a trial version of the Annex network.

The family field is used to partition the global Annex ad-

dress space into a number of domains or high level net-

works, where each can maintain its own independent ad-

ministrative control, routing, security, and service require-

ments.

Annex Bricks are network infrastructure devices that

provide a range of network and security services. Each

family assigns their own BrickLn fields to oversee routing,

service handling, and structure within their own networks.

The example address partitioning scheme promotes a three

level (i.e. fairly flat) routing hierarchy, although more lev-

els could be used. These 3 levels could correspond to global

coverage (such as satellite) routers at L2, capital platforms

at L1 and tactical vehicles at L0.

The host part in the lower 64 bits of the IPv6 address (16

bits of which are currently reserved for future use) contains

the unique identity of any entity within the Annex network.

This address remains unchanged for the lifetime of the unit

and is never re-used. We envisage that these addresses will

be physically burnt into the memory of devices to guaran-

tee that they can not be modified. In some cases it may even

be desirable to burn an entire 128-bit IPv6 identifier into de-

vices, for example where disposable units are used or where

security policies dictate that a device must only ever be used

on a particular, designated network.

3.4 Network Awareness

Because Annex devices can be uniquely distinguished

by their globally unique 64 bit host part and their current

family, any device can be addressed by uttering its <prefix,

family, brickLn, DeviceID> tuple, regardless of the value of

the BrickLn field(s), which represents the device’s current

point of attachment to the network. In particular, however,

the <prefix, family, ZERO>/64 part of any Annex family’s

network is required to act as the home network for that fam-

ily. Hence, any device can be contacted at its home address

by zeroising the BrickLn fields in the tuple described above.

If a correspondent node or intermediate router has a better

idea about the current location of a device, however (i.e. it

has any BrickLn stored in its binding update tables) it can

utter the tuple with that information to facilitate more direct

routing.

Uttering an address tuple describes our special form

of IPv6 header construction, where source and desti-



nation addresses are each stored twice within the IPv6

header. The first source/destination pair corresponds to the

source/destination pair found in a normal IPv6 header, and

should (initially) contain the sending device’s care-of ad-

dress and the recipient’s care-of address if it is known, or

home address (i.e. where BrickLn is zeroised) if it is not.

Unlike traditional [H]MIPv6, these addresses are mutable

by intermediate routers. The second source/destination pair

should be stored in an IPv6 Destination Option extension

header, and should contain the sending device’s home ad-

dress and the recipient’s home address. These addresses

are immutable but are also, therefore, amenable to com-

pression. Since home networks are always located where

Brick fields are zero and because the DeviceID on a foreign

network will almost always be the same as on the home

network, the storage requirements for the second set of ad-

dresses can almost be eliminated; in Annex networks these

storage requirements will actually be less than those of in-

curred by standard [H]MIPv6 [10]. When the packet is

finally delivered to the destination device, the main IPv6

header’s source/destination pair will be replaced with the

copies in the extension header and passed up to higher level

processing as though the communication occurred directly

between the two device’s home addresses. If IPSec authen-

tication is being used, care must be taken to ensure that the

Authentication Header is created and verified with the same

sets of predictably mutable source/destination address pairs

in the main header and extension header. In addition, where

ICMP status messages are generated in response to an ut-

tered packet (eg for IPv6 path MTU discovery), care must

be taken to route that response back to the home source ad-

dress stored in the packet’s extension header.

Whereas normal HMIPv6 must encapsulate such com-

munication in a new tunnel for every level of Mobility

Access Point (MAP), Annex MIPv6 routing allows the

source/address pair in the main IPv6 header to be modi-

fied at will by intermediate Annex-MAPs. The simplicity

afforded by avoiding the need to process extension head-

ers/tunnel packets at every MAP will allow Annex-MAP

routers to employ specialised hardware to perform very

fast rerouting of Annex MIPv6 packets according to infor-

mation stored in the MAPs binding caches. In addition,

avoiding the use of preconfigured tunnels between MAPs

means the routing topology may be dynamically altered

to improve performance, robustness, security and/or other

network characteristics. Such network awareness is very

important in the military context, where directed threats

against a communications network can change rapidly.

In addition to utilising hierarchical IPv6 Annex-MAP

functionality, Annex devices can directly address other de-

vices within a given MAP’s sub-tree without involving the

destination device’s home agent: a source device need sim-

ply utter a message addressed to the unique host part of

another device and a specified MAP. If the uttered device

is being actively managed by that MAP (either directly or

indirectly via some hierarchy) the message will be routed

appropriately, as all MAPs know how to route towards de-

vices beneath them in the MAP hierarchy if they are bound.

Alternatively, if it is not, an Annex-augmented MAP may

decide, depending on policy and/or other information con-

tained in the message’s IPv6 header, to report failure or pos-

sibly zeroise (or broadcast on) one or more BrickLn fields

and forward the packet on to broaden the search space for

the destination device.

This augmented MAP functionality described above will

provide Annex with more robustness and power than stan-

dard HMIPv6. Firstly, it provides a mechanism for packets

to be very efficiently routed within the Annex domain. Sec-

ondly, it will give Annex devices the ability to contact other

devices if they are reachable, whether their home agents are

available or not, which is useful in a battlefield situation

where local network connectivity has been maintained but

the connection to remote network elements has been sev-

ered.

Enhanced topology awareness and mobile routing is not

the only capability provided by network awareness in the

Annex system. Other functionality includes classification-

based routing, traffic priority and preemption and location-

based services. More information and examples of how

Annex IPv6 extensions can support intelligent routing de-

cisions can be found elsewhere [10].

4 The Annex Ensemble

The Annex Ensemble, shown in Figure 2 and described

further below, provides a reference platform for experimen-

tation and development based on the Annex security and

network architectures described in the previous sections. It

comprises a range of devices for secure communication and

data processing, designed to provide the Annex user with a

trusted, personal platform for applications such as classified

audio/video conferencing and data processing. When used

together, these devices form a personal area network, which

connects the war fighter to the GIG in a NCW environment.

All Ensemble components are personalised for the par-

ticular individual to whom they are issued. At the time of

manufacture, each device is provided with a unique identity

that distinguishes it from every other device within the An-

nex network. Devices are never reissued and are designed

to be disposable, in the sense that it is expected that a par-

ticular individual will be issued with many different devices

over the course of their service, many of which will be re-

placements for previously issued devices.

With the exception of the COTS iPAQ, the design and

implementation of hardware and software for all elements

of the Ensemble was conducted entirely in-house. Conse-



(a)
(b)

(c)

(e)

(d)

Figure 2. The first generation Annex Ensem-
ble devices are: (a) MiniSec, which incor-
porates a (b) Secure Multi-function Card; (c)

Button; (d) Badge; and (e) Codestick.

quently, everything except the iPAQ is considered “trusted”.

This is not to say that any of these components have been

accredited to be secure yet – much work remains ahead

of us down that path – but the Ensemble has allowed us

to validate the basic ideas that underpin the Annex system

through a process of rapid prototyping and experimentation.

It has facilitated the incremental roll-out of Annex function-

ality, beginning with the end devices and moving towards

the core network. For example, the Secure Multi-function

Card which forms the Trusted Computing Base (TCB) of

many of our first generation devices provides a reference

implementation of the Annex Capability Kernel. By cou-

pling this TCB with various COTS software and hardware

components, we have been able to construct a number of

functional Annex devices, includingMiniSec and Brick pro-

totypes. The MiniSec is an example of a typical Annex end

user device, while Bricks are designed to form a core part

of the Annex network infrastructure.

Our first generation Ensemble devices implement a num-

ber of prototype services, including secure telephony, video

conferencing, network control, credential exchange and

identity management. Some of these services rely on mul-

tiple cooperating Ensemble devices. For example, the

MiniSec and Button operate in tandem to facilitate secure

telephony, but including the Badge also enables support for

video calls. We now describe each Ensemble component in

more detail.

4.1 MiniSec

The MiniSec is a personal communication and data pro-

cessing device that provides its user with secure access

to Annex resources and applications. Our first generation

MiniSec device consists of a COTS Hewlett Packard iPAQ

hand-held computer augmented by a TCB in the form of

the Secure Multi-function Card (described in the following

section). The TCB is composed of custom hardware and

software, implementing the Annex security architecture as

described in Section 2. The TCB software includes the An-

nex Capability Kernel and application-specific objects. This

software handles all sensitive data while the iPAQ, a po-

tentially hostile environment, merely provides convenient

network transport and GUI facilities for non-sensitive data

or data that has already been encrypted by the TCB. Al-

though our first generation MiniSec device therefore lacks

MLS GUI facilities for showing sensitive information, we

have already developed a second generation “MiniSec 2”

device with full MLS display capabilities, which we hope

to publish more details about soon. MiniSecs are connected

into the wider Annex network using Mobile IPv6 over an

802.11i protected wireless LAN as described in Section 3.

Network transport and user interface software on the

iPAQ interacts with the object system on the TCB through

a user-space library and kernel driver. This allows software

on the iPAQ to perform method invocations on (and receive

callbacks from) trusted objects on the TCB. Method invoca-

tions are made using regular (albeit weakly permissive) ca-

pabilities that have been passed from the TCB to the iPAQ.

Callbacks are delivered via a special trusted object that pro-

vides an interface mirroring callback requirements. Ideally

the untrusted software on the iPAQ would not need to hold

any capabilities at all, but it is required to support the user

interface component of our first generation prototypes. Ul-

timately, however, we aim to implement user interface com-

ponents with trusted software running on trusted hardware

so that even weak capabilities do not need to be exported

beyond the TCB.

We have prototyped a secure mobile telephony system

based on the MiniSec platform, which allows a user to

establish and manage any number of Multi Level Secure

point-to-point or conference calls. Each distinct call or con-

ference operates at a single, designated security level at any

one point in time, although that level may be dynamically

adjusted by the call’s initiator. Any participants not cleared

to a dynamically selected security level will be automati-

cally put on hold until the conversation returns to their se-

curity level or below. Any user is free, however, to dynami-

cally switch between any of the calls that they are involved

in, or to create a new call, although only one call may be

selected to be active at any one point in time. All call sig-

nalling and (unencrypted) audio data is managed by trusted



hardware and software objects on the TCB, while the iPAQ

simply transports TCB-encrypted data streams (using RTP

over IPv6) and provides a convenient, although untrusted,

user interface. Critical security information such as the clas-

sification level of the current call is displayed by several

trusted LEDs on the TCB, however, so security breaches

of the the untrusted software running on the iPAQ are lim-

ited to Denial of Service (DoS) attacks and traffic analysis.

In our current implementation the untrusted nature of our

GUI also makes it theoretically possible for the untrusted

software to misdirect a call to an unintended recipient. The

scope of this attack is greatly diminished by the trusted soft-

ware, however, which still guarantees that both parties are

appropriately cleared to talk to each other at the chosen se-

curity level. In addition we are working on another trusted

output mechanism (via the Badge, which will be described

shortly) that will display the remote party’s identity and cre-

dentials to solve this problem more rigorously.

4.2 Secure Multi-function Card

Our Secure Multi-function Card (SMC) is a reconfig-

urable PCMCIA card that provides the trusted hardware

platform for our TCB. It includes an ISO7810-compliant

interface to the SMC card’s host computer, a 32 bit ARM

micro-controller for running the Annex Capability Kernel

and trusted objects, a number of I/O facilities and other

hardware resources, and a large Xilinx FPGA. The I/O and

other hardware facilities include two Bluetooth devices, a

SIM-card reader, a USB-host port, a Freescale MPC180

security coprocessor for accelerating Elliptic Curve Cryp-

tography (ECC) key-agreement calculations, and several

trusted push buttons and LED outputs. The FPGA is in-

terposed between all of the other components and its job is

to mediate all data flows between them, under the direction

of a number of highly-trusted hardware abstraction objects

running within the Annex Capability Kernel.

The FPGA can be reconfigured to suit different appli-

cation requirements, but it is currently geared towards the

encryption, decryption, routing and mixing of audio data to

support our secure mobile telephony application. To this

end the SMC provides a number of data channels, either

input or output, that terminate on the PCMCIA host, or in

one special case at a Bluetooth channel to the Button (which

is described in the following section). Each of these chan-

nels are routed through a block-based, key-agile AES en-

gine operating in CFB mode that encrypts data leaving the

TCB and decrypts data entering it. Encrypted audio data

sent to the PCMCIA host can then be transmitted to TCBs

on other MiniSecs. Decrypted audio data can either be re-

encrypted and sent to the Button for immediate playback, or

first directed through a PCM mixing block in the case of a

conference call. Channel routing is performed according to

a switching matrix within the FPGA, which is in turn con-

trolled by highly-trusted objects running within the Annex

Capability Kernel.

4.3 Button

The Button is a wearable accessory that clips on to a shirt

collar and provides a secure hands-free audio I/O device

for the Annex Ensemble. In its current incarnation it pro-

vides 4 hours of talk time and significantly longer standby

time. It captures audio in 64-kbps µ-law format using a

sensitive electret microphone and outputs audio via a built-

in speaker or headphone attachment. A dedicated acoustic

echo cancelling chip allows the Button to operate in full-

duplex speaker phone mode. The Button also incorporates

a tri-colour LED that conveys MLS status to the user, and a

push button for user action signalling, for example to accept

or reject incoming calls.

Each Button is designated for use with a particular SMC

card by Bluetooth pairing. The Button’s I/O audio channels

are connected, via the Bluetooth link, to I/O channels on

the SMC so that audio recording and playback can be con-

trolled and routed by trusted objects in the TCB. A Class 2

Bluetooth v1.2 link is used, which has a range of about 10

metres and minimises radio frequency interference between

the Bluetooth and 802.11b devices on the MiniSec. Com-

munication over the link is carried by a custom RFCOMM-

based protocol, with all data encrypted by a FPGA-based

256 bit AES engine. Finite life time Key Material for the

crypto engine is supplied by the SMC over a physical link

once a day, for example during recharging.

4.4 Badge

Complementary to the Button, the Badge is a wearable

display that provides secure display and video capture fa-

cilities for the Annex Ensemble. We have prototyped the

Badge using an embedded Linux computer, coupled with

an FPGA, a touch sensitive LCD, forward and backward

facing cameras, video compression hardware and a Blue-

tooth radio. Like on the Button the FPGA encrypts and de-

crypts Bluetooth communications, but on the Badge it also

provides digital signature and verification facilities. This

allows the Badge to be used as an MLS data display, for

example for classified imagery or video streams, or, poten-

tially, as a trusted GUI for certain MiniSec applications.

The Badge also acts as a trusted, context-aware identity

badge that alters its display depending on the environment,

based on availability (or absence of) securely transmitted

signals from nearby Bricks (see Section 4.6). Outside a De-

fence installation, for example, the display may become in-

active, whereas inside a high security facility it will display

the full credentials of its holder. The Badge can also be used



to assist with the verification of an unknown party’s creden-

tials. For example, a security guard might use his Badge

to display the identity photo of a visitor, sourced from their

Codestick (described next) or a trusted database, thus pro-

tecting against the use of forged, stolen or tampered devices.

4.5 Codestick

The Codestick is a high assurance credential exchange

device. Its primary function is to unburden Defence per-

sonnel from having to remember multiple passwords, carry

around multiple security tokens or forward on security

clearance details in advance of meetings. The Codestick

is designed as a tamper-proof device that can only be acti-

vated by biometric authentication, which we hope will help

it to achieve very high levels of security accreditation.

Two individuals with their own personalised Codesticks

can exchange personal security credentials directly, with-

out recourse to a third party. Secure cryptographic proto-

cols, directed communication mechanisms and trusted high

assurance design ensures that the credential exchanges are

truly peer-to-peer and provide integrity and confidentiality

for all data involved in the transactions. This is a substantial

improvement over Defence’s current credential exchange

system, where each party must get their own security officer

to manually exchange clearance information with the other

party’s security officer – an awkward, slow and error-prone

process.

The Codestick also provides single sign-on functionality

that allows its owner to automatically log on to Enterprise

networks and any number of web-based systems, and digital

signature, encryption, decryption and signature verification

facilities to protect its owner’s email.

Many functions of the Codestick have already reached

stable operation. A user trial of the device is now being

prepared. More information about the Codestick can also

be found in patent number WO 2004/109973 [4].

4.6 Bricks

Although not strictly part of the Annex Ensemble, i.e.

the devices that one would carry around on their person,

Bricks are an essential component in the Annex system.

Bricks are infrastructure devices that form the backbone

of the Annex network or provide other Annex enabled ser-

vices. In the same way that our MiniSec is comprised of

a COTS iPAQ augmented with an SMC card, we have de-

veloped a number of prototype Bricks by adding an SMC

card to existing server or network hardware. Coupling

these SMCs with appropriate trusted object implementa-

tions makes it possible to draw these platforms under the

control of the Annex capability framework, with the many

authorisation and security related benefits that this affords.

The first Brick modules we implemented provide gate-

ways between our secure VOIP system and the Public

Switched Telephone Network (PSTN) and GSM phone net-

works. Calls from MiniSec devices to a public telephone

system transit the secure VOIP network to a gateway point,

which, after establishing a new, normal telephone call be-

tween the gateway device and destination telephone, then

acts as the intermediary for audio data between both sys-

tems. We used OpenH323 [21] to implement the PSTN

side of our gateway device. Outgoing calls can be made

by a fixed line telephony card, or, using an extension to

OpenH323 that we developed, via a mobile telephone sup-

porting the Bluetooth Hands Free profile [6]. Incoming calls

from either the PSTN or a Bluetooth enabled mobile phone

are supported by the same processes in reverse.

We have also created experimental IPv6 routers and

wireless access points whose operational parameters can be

controlled by trusted objects running under an Annex Capa-

bility Kernel. We achieved this by connecting a serial line

from a trusted “router control” object on a MiniSec device

to the serial console (i.e. configuration) port on a Cisco

router. As well as implementing the serial communica-

tion channel, the control object also implements a state ma-

chine that models the router’s command line interface to ab-

stract away the configuration terminal’s stateful behaviour,

thus exposing a simple but powerful interface for accessing

the extensive range of configuration options available via

the router’s executive. We made use of this to implement

a proof-of-concept Multi Level Secure network admission

policy, such that only appropriately classified MiniSec de-

vices could make use of a particular network.

Although the details of our implementation are beyond

the scope of this paper, we used the following basic ap-

proach: (1) the router’s initial traffic filtering policies com-

pletely firewall all newly connected clients from sending

or receiving any traffic, other than to the MiniSec device

controlling the router; (2) the router control object would

cause the broadcast of an authentication beacon contain-

ing a weakly permissive capability for itself to any poten-

tial MiniSec clients that have roamed onto the network,

thus allowing them to initiate capability-based authentica-

tion with the Brick; (3) this new client would address the

router control object using the beacon capability and attach

a capability to a credential object proving that it is cleared

to the appropriate level (see [20] for more details about this

step); and (4) the router control object would modify the

router’s traffic-filtering rules allowing the newly authenti-

cated MiniSec device to access the network.

5 The Annex Testbed

The Annex testbed is a reference implementation of

all of the Annex elements described in this paper. It in-



cludes several dozen complete ensembles, although most

elements are only early prototypes. The Annex IPv6 net-

work, which is distributed by a wide area ATM network

connecting DSTO sites almost 1000km apart, is composed

of a number of Cisco routers and 802.11b access points that

employ 802.11i link-layer security; more recently we have

also linked this network to the IPv6 Internet. Our MiniSecs

use a modified Mobile IPv6 for Linux (MIPL) implementa-

tion, which allows their users to seamlessly roam with their

enesmbles throughout the entire network. This provides an

ideal platform for experimentation with the Annex frame-

work and novel security and mobility applications.

We began conducting both on-site and off-site demon-

strations (via the IPv6 Internet) of our secure mobile tele-

phony application using the Annex testbed in August 2005.

This environment allows users to make any number of con-

current point-to-point calls, conference calls, calls to ex-

ternal telephone numbers by the PSTN or GSM mobile

phones, all under the secure control of the Annex capability

system. Not only does this provide a robust platform for fur-

ther experimentation and implementation, we also believe

that it helps to demonstrate the viability of the overall An-

nex concept and the technologies that underpin it.

6 Conclusion and Further Work

This paper summarised the security and network archi-

tecture that underpins a family of DSTO developed tech-

nologies and devices that are collectively known as the An-

nex System. The centerpiece of all of our devices is the

the Annex Security Architecture explained in Section 2, a

trusted platform for distributed object-capability based soft-

ware, which is inherently more secure and amenable to for-

mal analysis than programs that are developed using current

software engineering practices. In addition, Section 3 de-

scribed how the distributed aspect of our security architec-

ture is based squarely on next generation networking tech-

nologies, such as IPv6 and 802.11i wireless networking, but

includes a small number of important extensions to improve

security, robustness and mobility in the military context.

Although some researchers have been separately inves-

tigating similar security and network architectures, we are

not aware of any other projects that have made significant

progress – or even attempts – to combine these types of

technology. Furthermore, because both of these concepts

must be used in tandem to truly progress the state of the art

in secure mobile devices, very few of these projects have

been forced to go beyond simple proof of concept exam-

ples. In contrast, our contribution has been to not only

combine advances in high assurance software and mobile

devices, but also to demonstrate complex real world appli-

cations based on the fusion of these ideas.

In Section 4 we introduced our reference implementa-

tion of the Annex security and network architecture, a Multi

Level Secure ensemble of devices including: the MiniSec, a

wide area communications hub with an example MLS voice

application; the Button, a small, secure Bluetooth based

speakerphone; the Badge, a secure, wearable, context sen-

sitive display; the Codestick, a high assurance credential

exchange device; and Bricks, a range commodity network

infrastructure devices retrofitted for subservience to an aux-

iliary, trusted Annex security device.

We have been performing demonstrations and conduct-

ing scientific trials of our ensemble of Annex devices since

late 2005. Since then we have also been working on a sec-

ond generation of Annex devices, including a far more re-

fined version of the Codestick device and also a substan-

tially improved MiniSec. Our “MiniSec2” device, which

we hope to publish more details on soon, supports Multi

Level Secure operation for any unmodified, off the shelf ap-

plications, including document editing and viewing, email,

web browsing, voice and video communications and more.

References

[1] David Alberts and Richard Hayes. Power to the Edge:

Command and Control in the Information Age. CCRP

Publications, 2003.

[2] David. S. Alberts, John J. Gartska, and Frederick P

Stein. Network Centric Warfare: Developing and

Leveraging Information Superiority. CCRP Publica-

tions, 1999.

[3] M. Anderson, R. D. Pose, and C. S. Wallace. A

password capability system. The Computer Journal,

29(1):1–8, 1986.

[4] Mark Anderson. Credential communication device,

December 2004. International Publication Number

WO 2004/109973.

[5] ATIS Committee T1A1. ATIS TelecomGlossary 2000,

2001. http://www.atis.org/tg2k/.

[6] Bluetooth Car Working Group. Hands-Free Pro-

file specification version 1.5, 2005. http://www.

bluetooth.com.

[7] S. Deering and R. R. Hinden. Internet Protocol, Ver-

sion 6 (IPv6) (RFC 2460), December 1998.

[8] J. B. Dennis and E. C. Van Horn. Programming se-

mantics for multiprogrammed computations. Commu-

nications of the ACM, 9:143–154, 1966.

[9] Virgil D. Gligor. Review and revocation of ac-

cess privileges distributed through capabilities. IEEE

Transactions on Software Engineering, 5:575–586,

1979.



[10] D. A. Grove, M. Anderson, and C. J. North. Enhanc-

ing Hierarchical Mobile IPv6 addressing for the An-

nex architecture. In Proceedings of the 7th Interna-

tional Conference on High Speed Networks and Multi-

media Communications (LNCS 3079), pages 492–502,

2004.

[11] D. A. Grove, T. Newby, C.A. Owen, C.J. North, A.P.

Murray, T.C. Murray, A.V. Uzanov, and T.J. Cuthbert-

son. The second generation Annex TCB. In In prepa-

ration, 2007.

[12] Norm Hardy. The confused deputy (or why capabil-

ities might have been invented). Operating Systems

Review, 22(4):36–38, October 1988.

[13] IETF IPsec working group. IPSec (RFC 4301-4309),

December 1998.

[14] D. Johnson, C. Perkins, and J. Arkko. Mobility sup-

port in IPv6 (RFC 3775), June 2004.

[15] Henry M. Levy. Capability-Based Computer Systems.

Digital Press, 1984.

[16] Mark S. Miller. Robust Composition: Towards a

Unified Approach to Access Control and Concurrency

Control. PhD thesis, Johns Hopkins University, Balti-

more, Maryland, USA, May 2006.

[17] Mark S. Miller, Chip Morningstar, and Bill Frantz.

Capability-based financial instruments. In Proceed-

ings of Financial Cryptography 2000, February 2000.

[18] Mark S. Miller and Jonathan S. Shapiro. Paradigm re-

gained: Abstraction mechanisms for access control. In

8th Asian Computing Science Conference (ASIAN03),

pages 224–242, December 2003.

[19] Mark S. Miller, Ka-Ping Yee, and Jonathan S. Shapiro.

Capability myths demolished. Technical report, HP

Laboratories, 2003.

[20] T.C. Murray and D.A. Grove. Non-delegatable author-

ities in capability systems. Submitted to the Journal of

Computer Security, 2007.

[21] OpenH323 Project. http://sourceforge.

net/projects/openh323.

[22] J. H. Saltzer and M. D. Schroeder. The protection of

information in computer systems. Proceedings of the

IEEE, 63(9):1208–1308, September 1975.

[23] Jonathan S. Shapiro and Samuel Weber. Verifying

the EROS confinement mechanism. In Proceedings of

the IEEE Symposium on Security and Privacy, 2000,

pages 166–176, 2000.

[24] Richard Smith. Multilevel security. In Hossein

Bidgoli, editor, Handbook of Information Security:

Threats, Vulnerabilities, Prevention, Detection and

Management. Wiley, New York, 2005.

[25] H. Soliman, C. Castelluccia, and K. El Malki. Hier-

archical Mobile IPv6 mobility management (hmipv6)

(RFC 3775), August 2005.

[26] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,

D. Anderson, and J. Lepreau. The Flask security ar-

chitecture: System support for diverse security poli-

cies. In Proceedings of the Eighth USENIX Security

Symposium, pages 123–139, 1999.

[27] Fred Spiessens and Peter Van Roy. A practical formal

model for safety analysis in capability-based systems.

In TGC 2005, LNCS 3705, pages 248–278, 2005.

[28] Marc Stiegler. A picturebook of secure cooperation,

2004. http://www.skyhunter.com/marcs/

SecurityPictureBook.ppt.

[29] M.V. Wilkes and R. M. Needham. The Cambridge

CAP Computer and its Operating System. Elsevier

North-Holland, 1979.

[30] P. Zimmerman. Pretty Good Privacy, June 1993. Dis-

tributed with PGP software.


