Analysing the Information Flow Properties of
Object-Capability Patterns

Toby Murray and Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

{toby.murray,gavin.lowe}@comlab.ox.ac.uk

Abstract. We consider the problem of detecting covert channels within
security-enforcing object-capability patterns. Traditional formalisms for
reasoning about the security properties of object-capability patterns re-
quire one to be aware, a priori, of all possible mechanisms for covert
information flow that might be present within a pattern, in order to de-
tect covert channels within it. We show how the CSP process algebra,
and its model-checker FDR, can be applied to overcome this limitation.

1 Introduction

The object-capability model [9] is a security architecture for the construction of
software systems that naturally adhere to the principle of least authority [9],
a refinement of Saltzer and Schroeder’s principle of least privilege [19]. Several
current research projects, including secure programming languages like E [9],
Joe-E [8] and Google’s Caja [10], and microkernel operating systems like the
Annex Capability Kernel [5] and sel.4 [1], implement the object-capability model
to provide platforms for cooperation in the presence of mutual suspicion.

Security properties are enforced in object-capability systems by deploying
security-enforcing abstractions, called patterns, much in the same way that a
program’s ordinary functional properties are implemented by ordinary program-
ming abstractions and design patterns. It is therefore very important to be able to
understand precisely the security properties that an individual object-capability
pattern does, and does not, enforce.

For systems in which confidentiality is a primary concern, we are most often
interested in those security properties that capture the ways in which informa-
tion may flow within them. In object-capability applications that involve confi-
dentiality, the information flow properties of security-enforcing object-capability
patterns are of vital importance. In particular, it is necessary to be able to detect
the existence of covert channels within object-capability patterns.

Whilst the formal analysis of object-capability patterns has received some
attention [20], the previous formalisms that were employed require all effects that
are to be reasoned about to be explicitly included in any model of an object-
capability pattern that is being analysed. Thus, in order for covert channels
to be detected within an object-capability pattern, the mechanisms for covert

information propagation must be explicitly modelled. This requires one who
wishes to detect covert channels in a pattern to be aware, a priori, of the possible
mechanisms for covert information flow within it.

In this paper, we show how the CSP process algebra [14], and its model
checker FDR [4], can be applied to model object-capability patterns and detect
covert channels within them, without forcing the programmer to enumerate the
mechanisms by which information may covertly propagate. We adopt CSP for
modelling object-capability systems, as opposed to what others might consider to
be a more natural formalism such as the m-calculus, because we can use FDR to
automatically check our properties via CSP’s formal theory of refinement which,
as will become evident, is integral to our understanding of both object-capability
systems and information flow within them.

We conclude this section by briefly explaining the object-capability model
and the fragment of CSP used in this paper. Further details about CSP can
be found in [14]. In Section 2, we explain how object-capability systems can be
modelled in CSP. In doing so, we present an example model of a Data-Diode pat-
tern, from [9], that is designed to allow data to flow from low-sensitivity objects
to high-sensitivity ones, whilst preventing data propagating in the reverse direc-
tion. In Section 3, we give a general definition for information flow security for
object-capability systems modelled in CSP and argue that the information flow
property Weakened RCFNDC for Compositions [12], which can be automatically
tested in FDR, is an appropriate test to apply to such systems. Applying this test
to our model from Section 2, we find that it does indeed contain covert channels,
before showing how to refine the model to an implementation that passes the
test. The analysis here considers only a small instance of the Data-Diode pattern
composed with a handful of other objects. Therefore, in Section 4, we show how
to generalise our results to systems of arbitrary size in which objects may create
arbitrary numbers of other objects, applying the theory of data-independence [6].
Finally, we conclude and consider related work in Section 5.

Some proofs are omitted but appear in [11]. Thanks to Bill Roscoe for useful
discussions about data-independence, and to the anonymous reviewers.

The Object-Capability Model The object-capability model [9] is a model of
computation and security that aims to capture the semantics of many actual
object-based programming languages and capability-based systems, including
all of those mentioned in Section 1. An object-capability system is an instance
of the model and comprises just a collection of objects, connected to each other
by capabilities. An object is a protected entity comprising state and code that
together define its behaviour. An object’s state includes both data and the ca-
pabilities it possesses. A capability, ¢, is an unforgeable object reference that
allows its holder to send messages to the object it references by invoking c.

In an object-capability system, the only overt means for objects to interact is
by sending messages to each other. Capabilities may be passed between objects
only within messages. In practice, object o can pass one of its capabilities, c,
directly to object p only by invoking a capability it possesses that refers to p,

including ¢ in the invocation. This implies that capabilities can be passed only
between objects that are connected, perhaps via intermediate objects.

Each object may expose a number of interfaces, known as facets. A capability
that refers to an object, o, also identifies a particular facet of o. This allows the
object to expose different functionality to different clients by handing each of
them a capability that identifies a separate facet, for example.

An object may also create others. In doing so, it must supply any resources
required by the newly created object, including its code and any data and capa-
bilities it is to possess initially. Hence, a newly created object receives its first
capabilities solely from its parent. When creating an object, the parent exclu-
sively receives a capability to the child. Thus, an object’s parent has complete
control over those objects the child may come to interact with in its lifetime.
This is the basis upon which mandatory security policies can be enforced [9].

In object-capability operating systems like sel.4, each process may be thought
of as a separate object. In object-capability languages like Caja, objects are akin
to those from object-oriented languages; capabilities are simply object references.

CSP A system modelled in CSP comprises a set of concurrently executing
processes that execute by performing events. Processes communicate by syn-
chronising on common events, drawn from the set X of all visible events.

The process STOP represents deadlock and cannot perform any events. The
process 7a : A — P, is initially willing to perform all events from the set A and
offers its environment the choice of which should be performed. Once a particular
event, a € A, has been performed, it behaves like the process P,.

CSP allows multi-part events to be defined, where a dot is used to separate
each part of an event. Suppose we define the set of events {plot.x.y | z,y € N}.
Then the process plot?z?y — STOP offers all plot events whilst the process
plot?z : {1,...,5}!13 — STOP offers all events from {plot.z.3 |z € {1,...,5}}.
{eg. ... ci [} denotes the set of events whose first k components are cy, ..., cg.

The process P [() can behave like either the process P or the process (Q and
offers its environment the initial events of both processes, giving the environment
the choice as to which process it behaves like. The process P M @ can also behave
like either P or @ but doesn’t allow the environment to choose which; instead,
it makes this choice internally. P\ A denotes the process obtained when P is
run but all occurrences of the events in A are hidden from its environment.

The process P || @ runs the processes P and @Q in parallel forcing them to

A

synchronise on all events from the set A. The process S = H (P;, A;) is the

1<i<n
alphabetised parallel composition of the n processes Pi,..., P, on their corre-
sponding alphabets Aq,..., A,. Each process P, may perform events only from

its alphabet A;, and each event must be synchronised on by all processes in
whose alphabet it appears. P; 4, |4, P> is equivalent to H1<Z_<2(Pi,Ai).

A process diverges when it performs an infinite number of internal 7 events.
A process terminates by performing the special termination event v'. In this
paper, we restrict our attention to processes that never diverge nor terminate.

Given a CSP process P, traces(P) denotes the set that contains all finite
sequences of visible events (including all prefixes thereof) that it can perform. A
stable-failure is a pair (s, X) and denotes a process performing the finite sequence
of events s and then reaching a stable state in which no internal 7 events can
occur, at which point all events from X are unavailable, i.e. X can be refused.
We write failures(P) for the set that contains all stable-failures of the process
P. We write divergences(P) for the set of traces of P after which it can diverge.
For all of the processes P that we consider in this paper, divergences(P) = {}.
For any divergence-free process P, traces(P) = {s | (s, X) € failures(P)}.

CSP’s standard denotational semantic model is the failures-divergences
model [14]. Here a process P is represented by the two sets: failures(P)
and divergences(P). One CSP process P is said to failures-divergences re-
fine another @, precisely when failures(P) C failures(Q) A divergences(P) C
divergences(@). In this case, we write Q C P.

Sequences are written between angle brackets; () denotes the empty sequence.
s"t denotes the concatenation of sequences s and ¢. s \ H denotes the sequence
obtained by removing all occurrence of events in the set H from the sequence s.
s| H denotes the sequence obtained by removing all non-H events from s.

2 Modelling Object-Capability Systems in CSP

In this section, we describe our approach to modelling object-capability systems
in CSP. Note that we ignore the issue of object creation for now. This will be
handled later on in Section 4.

We model an object-capability system System that comprises a set Object
of objects as the alphabetised parallel composition of a set of pro-
cesses {behaviour(o) | o € Object} on their corresponding alphabets {a(0) | 0 €
Object}. So System = ||OeObject(beh(wwur(o)7 a(0)).

The facets of each object o € Object are denoted facets(o). We restrict our
attention to those well-formed systems in which facets(o) N facets(p) # {} =
o = p. Recall that an individual capability refers to a particular facet of a
particular object. Hence, we define the set Cap = | J{facets(0) | o € Object} that
contains all entities to which capabilities may refer.

The events that each process behaviour(o) can perform represent it sending
and receiving messages to and from other objects in the system. We define events
of the form fi.f>.0p.arg to denote the sending of a message from the object with
facet f1 to facet fy of the object with this facet, requesting it to perform operation
op, passing the argument arg and a reply capability f1, which can be used later
to send back a response. Here f1, fo € Cap. Arguments are either capabilities,
data or the special value null, so arg € Cap U Data U {null}, for some set Data of
data. An operation op comes from the set {Call, Return}. These operations model
a call/response remote procedure call sequence in an object-capability operating
system or a method call/return in an object-capability language.

The alphabet of each object o € Object contains just those events involving o.

Hence, a(o) = {|fi.f2 | f1, fo € Cap A (f1 € facets(o) V fa € facets(o))[}.

We require that the process behaviour(o) representing the behaviour of each
object o € Object adheres to the basic rules of the object-capability model, such
as not being able to use a capability it has not legitimately acquired. We codify
this by defining the most general and nondeterministic process that includes all
permitted behaviours (and no more) that can be exhibited by an object o. Letting
facets = facets(o) denote the set that comprises o’s facets, and caps C Cap and
data C Data denote the sets of capabilities and data that o initially possesses,
the most general process that includes all behaviours permitted by the object-
capability model that o may perform is denoted Untrusted(facets, caps, data).

Untrusted(facets, caps, data) =
?me : facets?c : caps U facets?op?arg : caps U data U {null} —
Untrusted(facets, caps, data) O
?from : Cap — facets?me : facets?op?arg —
Untrusted(facets, caps U ({arg, from} N Cap), data U ({arg} N Data))
nSTOP.

This object can invoke only those capabilities ¢ € caps U facets that it pos-
sesses. In doing so it requests an operation op, and may include only those argu-
ments arg € capsU dataU{null} it has, along with a reply capability me € facets
to one of its facets. Having done so, it returns to its previous state.

This object can also receive any invocation from any other, where the reply
capability included in the invocation is from € Cap — facets, to one of its facets
me € facets, requesting an arbitrary operation op, and containing an arbitrary
argument arg. If such an invocation occurs, the object may acquire the reply
capability from, as well as any capability or datum arg in the argument. This
process may also deadlock at any time, making it maximally nondeterministic.

The behaviour behaviour(o) of an object o € Object, whose initial capabilities
and data are caps(o) and data(o) respectively, is then valid if and only if all
behaviours it contains are present in Untrusted(facets(o), caps(0), data(o)). This
leads to the following definition of a valid object-capability system.

Definition 1 (Object-Capability System). An object-capability system is a
tuple (Object, behaviour, facets, Data), where Object, behaviour, facets and Data
are as discussed above and, letting Cap = |J{facets(o) | o € Object}, there exist
functions caps : Object — P Cap and data : Object — P Data that assign
manimal initial capabilities and data to each object so that, for each o € Object,
Untrusted(facets(o), caps(0), data(o)) E behaviour(o).

2.1 An Example Pattern

We illustrate these concepts by modelling the Data-Diode pattern [9, Fig-
ure 11.2], which is designed to allow low-sensitivity objects to send data to
to high-sensitivity ones whilst preventing information flowing the other way.

A data-diode is an object that has two facets, a read-facet and a write-
facet!. It stores a single datum and begins life holding some initial value. In-

1 Tt is unclear whether the read and write interfaces should be implemented as facets
of a single object or as forwarding objects of a composite object. We choose the

@ DDReader Diode DDWriter @

Fig.1. A system in which to analyse the Data-Diode pattern. Bold circles indicate
objects with arbitrary behaviour.

voking its read-facet causes it to return its current contents. Invoking its write-
facet with an argument causes it to replace its current contents with the argu-
ment. We model a data-diode with read-facet readme and write-facet writeme
that initially contains the datum wal from the set Data as the CSP pro-
cess ADataDiode(readme, writeme, val), defined as follows.

ADataDiode(readme, writeme, val) =
?from : Cap — {readme, writeme}!readme!Calllnull —
readme! from!Returnlval — ADataDiode(readme, writeme, val) O
?from : Cap — {readme, writeme }lwriteme!Call?newVal : Data —
writeme! from!Return!null — A DataDiode(readme, writeme, new Val).

Observe that this process passes Data items only, refusing all Cap arguments.

To analyse this pattern, we instantiate it in the context of the object-
capability system System depicted in Figure 1. Here, we see a data-diode,
DataDiode, with read- and write-facets DDReader and DDWriter respectively.
An arbitrary high-sensitivity object High has a capability to the data-diode’s
read-facet, allowing it to read data written by an arbitrary low-sensitivity ob-
ject Low, which has a capability to the data-diode’s write-facet. High and Low
possess the data HighDatum and LowDatum respectively.

Let Object = {High, DataDiode,Low}, HighData = {HighDatum},
LowData = {LowDatum}, Data = HighData U LowData, facets(DataDiode) =
{DDReader, DDWriter} and facets(other) = {other} for other # DataDiode. The
process System is then defined as explained earlier using the behaviours:

behaviour(DataDiode) = A DataDiode(DDReader, DDWriter, null),
behaviour(High) =

Untrusted(facets(High), facets(High) U {DDReader}, HighData),
behaviour(Low) = Untrusted(facets(Low), facets(Low) U {DDWriter}, LowData).

3 Information Flow in Object-Capability Patterns

Performing some basic refinement checks in FDR, which test whether certain
events cannot occur in System, reveals that Low cannot obtain any HighData
but that High can obtain LowDatum in this system. We now consider how to test

former option at this point and will explore the latter in Section 3.1.

whether, despite preventing this overt flow of data, DataDiode might provide a
covert channel from High to Low. We will argue that the correct property to
apply to System is Weakened RCEFNDC for Compositions, introduced in [12].

Information flow properties have been well-studied in the context of process
algebras, including CSP (e.g. [3,2,17,7]). The obvious approach would take one
of these properties and apply it to the process behaviour(DataDiode) to see
whether it allows information to flow from its high interface DDReader to its
low interface DDWriter.

However, this approach doesn’t take into account the constraints im-
posed by the object-capability model on the objects like High and Low
that may interact with DDReader and DDWriter. This is because these con-
straints are not reflected in behaviour(DataDiode) but are instead imposed upon
behaviour(High) and behaviour (Low). For example, observe that initially the pro-
cess behaviour(DataDiode) can perform the event High.DDWriter.Call.null; how-
ever, this event cannot be performed in System because it can occur there only
when both High and DataDiode are willing to perform it, and behaviour(High)
cannot perform it initially because High does not initially possess a capability to
DDWriter. In order to get accurate results, therefore, one needs to analyse the
entire system System, using an appropriate information flow property.

Recall that the processes behaviour(High) and behaviour(Low), which both
instantiate the process Untrusted, are purposefully highly nondeterministic, in
order to ensure that each is as general as possible. This makes the entire sys-
tem System very nondeterministic. It has long been recognised that many stan-
dard information flow properties suffer from the so-called “refinement paradox”
in which a property holds for a system but can be violated by one of the system’s
refinements. The refinements of a system capture the ways in which nondeter-
minism can be resolved in it. The refinement paradox is dangerous because it
allows a nondeterministic system to be deemed secure when, under some reso-
lution of the system’s nondeterminism, it may actually be insecure [7].

A fail-safe way to avoid the refinement paradox is to apply an information
flow property that is refinement-closed [7]. A property is refinement-closed when,
for every process P, it holds for P only if it holds for all P’s refinements.

While we want to avoid the refinement paradox, refinement-closed proper-
ties are too strong for our purposes. This is because the refinements of a parallel
composition include those in which the resolution of nondeterminism in one com-
ponent can depend on activity that occurs within the system that the component
cannot overtly observe.

For example, System is refined by a process that has the trace
(High.High.Call.High, Low.Low.Call.null) but also has the stable-failure
({), {Low.Low.Call.null}). This refinement means that System fails a num-
ber of refinement-closed information flow properties, e.g. Roscoe’s Lazy
Independence [14, Section 12.4] and Lowe’s Refinement-Closed Failures Non-
Deducibility on Compositions [7]. These two behaviours arise because of the
nondeterminism in Low: initially Low may either perform Low.Low.Call.null or
may refuse it, depending on how this nondeterminism is resolved. In the trace

above, where High performs the event High.High.Call.High, Low’s nondetermin-
ism is resolved such that Low.Low.Call.null occurs; while in the stable-failure,
where High doesn’t perform its event, this nondeterminism in Low is resolved
the other way. The resolution of the nondeterminism in Low here thus depends
on whether High has performed its event, in which it interacts with just itself.

A system that exhibits both of these behaviours therefore allows High’s inter-
actions with just itself to somehow influence Low. In such systems it is impossible
to talk sensibly about the information flow properties of the Data-Diode pattern.

We see that in general, one cannot talk sensibly about the information flow
properties of object-capability patterns without assuming that the only way for
one object to directly influence another is by sending it a message or receiving
one from it, since it is only overt message passing that any pattern can hope to
control. Thus, in any system, we assume that the resolution of nondeterminism
in any object can be influenced only by the message exchanges in which it has
partaken before the nondeterminism is resolved.

Without specifying how the nondeterminism in any object may be resolved
after it has engaged in some sequence s of message exchanges, this therefore im-
plies that whenever it performs s, the nondeterminism should be resolved con-
sistently [12]. Two resolutions of the nondeterminism in a process after it has
performed s are inconsistent when it can perform some event e in one but refuse e
in the other. Under this definition, the two different resolutions of the nonde-
terminism in Low above, depending on whether High has performed its event
that doesn’t involve Low, are inconsistent: in each case, Low performs/refuses
the event Low.Low.Call.null after performing no others.

We therefore confine ourselves to the ways of resolving the nondeterminism
in each object in which this kind of inconsistency does not arise. Note that these
are precisely the deterministic refinements of each object, under the standard
definition of determinism for CSP processes.

Definition 2 (Determinism). A divergence-free process P is said to be deter-
ministic, written det(P), iff As,e ® s"(e) € traces(P) A (s,{e}) € failures(P).

With this in mind, we seek an information flow property that holds for

a system System = Honbject(behaviour(o),a(o)) just when those refinements

of System, in which the nondeterminism in each object is resolved to pro-

duce a deterministic process, are deemed secure. Any such deterministic com-

ponentwise refinement may be written as System’ = cobi t(bo,a(o)) where
o jec

Vo € Object o behaviour(o) C b, A det(b,). Let DCRef (System) denote the
set of all deterministic componentwise refinements of System. Any such refine-
ment System’ € DCRef(System) will itself be deterministic [14]. Many infor-
mation flow properties, which might otherwise disagree, agree when applied to
deterministic processes. Hence, given any such property Prop, we arrive at the
following definition of information flow security for object-capability systems.

Definition 3. An object-capability system captured by the CSP pro-
cess System = (behaviour(o), a(0)) is secure wunder componen-

‘OE Object

twise refinement with respect to the information flow property Prop iff
V System’ € DCRef (System) o Prop(System').

3.1 Testing Information Flow

The information flow property Weakened RCFNDC for Compositions [12] is
equivalent to Definition 3 when Prop is Lowe’s Refinement-Closed Failures Non-
Deducibility on Compositions [7] (RCFNDC). RCFNDC is equivalent when ap-
plied to deterministic processes to a number of standard information flow prop-
erties, including [16] at least all those that are no stronger than Roscoe’s Lazy
Independence [14, Section 12.4] and no weaker than Ryan’s traces formulation of
noninterference [18, Equation 1]. Therefore, we adopt Weakened RCFNDC and
its associated automatic refinement check [12] to test for information flow here.

Like similar information flow properties, given two sets H and L that parti-
tion the alphabet of a system, Weakened RCFNDC tests whether the occurrence
of events from H can influence the occurrence of events from L. In [12], it is shown

that any divergence-free alphabetised parallel composition S = ||1<1_<n(Pi7 A;p)
satisfies Weakened RCFNDC, written WRCFNDC(S), iff:
As,les| H#E{() ANl €LA
(s i(l) € traces(S) A s\ H € traces(S) A .)
Jielec A Ns] A #s\H| A; AN (s\ H| A;,{l}) € failures(F;) (1)
(s \ H"(l) € traces(S) A s € traces(S) A .) .
Jielec A, Ns A #s\H| A; A (s Ay, {l}) € failures(P;)

Let H = {|{h.DDReader, DDReader.h,h.h’ | h,h’ € facets(High)[} denote the
set of events that represent High interacting with DDReader and itself. Similarly
let L = {/i.DDWriter.Call.arg, DDWriter.l.Return.null, 1.l | 1,I" € facets(Low)[}.
Then a refinement check in FDR reveals that System from Section 2.1 can per-
form no events outside of H U L. This implies, for example, that neither High
nor Low can obtain a capability to the other. Therefore, H and L partition the
effective alphabet of System.

Applying the refinement check for Weakened RCFNDC to System with these
definitions of H and L, using FDR, reveals that Weakened RCFNDC doesn’t
hold. Interpreting the counter-example returned from FDR, we see that System
can perform the trace (Low.DDWriter.Call.LowDatum) but also has the failure
({High.DDReader.Call.null), { Low.DDWriter.Call.LowDatum}). This indicates that
initially Low can invoke DDWriter but that if High invokes DDReader, it can cause
Low’s invocation to be refused. This occurs because DataDiode cannot service
requests from High and Low at the same time. This constitutes a clear covert
channel, since High can signal to Low by invoking DDReader which alters whether
Low’s invocation is accepted.

Low may be unable to observe this covert channel in some object-capability
systems, e.g. those in which a sender of a message is undetectably blocked until
the receiver is ready to receive it. For this kind of system, one might wish to re-
place Prop with another property, such as Focardi and Gorrieri’s Traces NDC [3],

that detects only when high events can cause low events to occur, rather than
also detecting when they can prevent them from occurring as happens in the
counter-example above. Modifying Weakened RCFNDC to do so simply involves
removing the second disjunct from Equation 1. However, we choose to make the
conservative assumption that this counter-example represents a valid fault.

Correcting the fault here involves modifying the data-diode implementation
so that its interfaces for writing and reading, DDWriter and DDReader, can be
used simultaneously. We do so by promoting these interfaces from being facets
of a single process to existing as individual processes in their own right. These
processes simply act now as proxies that forward invocations to the facets of an
underlying A DataDiode process, as depicted in Figure 2.

The behaviour of a proxy me that forwards invocations it receives using the
capability target is given by the process AProzy(me, target) defined as follows.

AProzy(me, target) =?from : Cap — {me}!me!Call?arg : Data U {null} —
meltarget!Calllarg — target!me!Return?res : Data U {null} —
me!from!Returnlres — AProxzy(me, target).

The data-diode is now a composite of three entities, DDReader,
DDWriter and DataDiode, and as such is referred to as DDComposite.
We model the system depicted in Figure 2 as an object-capability sys-
tem comprising the objects from Object = {High, DDComposite, Low},
where facets(DDComposite) = {DDReader, DDWriter, DDR, DDW} and, letting
R = {|DDReader.xz,z.DDReader | = € facets(DDComposite) — {DDReader}},
W = {|DDWriter.z:, 2.DDWriter | « € facets(DDComposite) — {DDWriter}|},
DD = ADataDiode(DDR,DDW, null) and the other definitions be as before,

behaviour(DDComposite) =
<(APr0xy(DDReader, DDR) || DD) || AProzy(DDWriter, DDW)) \ (RUW).
R w

DDComposite is formed by taking the two proxies, DDReader and DDWriter,
and composing them in parallel with DataDiode, whose read- and write-interfaces
are now DDR and DDW respectively. Notice that we then hide the internal
communications within DDComposite since these are not visible to its outside
environment and it is unclear how to divide these events between the sets H
and L. FDR can be used to check that this system, System, satisfies Definition 1.

Fig. 2. An improved Data-Diode implementation.

Performing the appropriate refinement checks in FDR reveal that High can
acquire LowDatum but Low cannot acquire any HighData, and that System can
perform no events outside of H U L, as before. FDR reveals that Weakened
RCFNDC holds for System. Hence, we are unable to detect any covert channels
in this model of the improved Data-Diode implementation.

4 Generalising the Results

We have verified this improved Data-Diode implementation in the context of
only a handful of other objects and in the absence of object creation. In this
section, we show how to generalise our analysis to all systems that have the
form of Figure 3, and have arbitrary HighData and LowData. Here, the objects
within each cloud can be interconnected in any way whatsoever; however, the
only capability to an object outside of the high object cloud that each high object
may possess is DDReader. The same is true for the low objects and DDWriter.
This figure captures all systems containing an arbitrary number of high- and low-
sensitivity objects and, thus, all those in which each object may create arbitrary
numbers of others that share its level of sensitivity.

Roughly, the approach we take is to show that the improved system analysed
in the previous section is a safe abstraction of all systems captured by Figure 3,
such that if the safe abstraction is deemed secure then so will all of the systems

it abstracts. For one system System' = H cObi t/(behaviour'(o),o/(o)) to be a
o jec

safe abstraction of another System = ”oe Objm(beham’our(o)7 a(0)), we require

that if System’ is deemed secure, then so must System.

Recall that, by Definition 3, System is secure iff Prop(Systemp) holds for
all Systemp, € DCRef(System) for some information flow property Prop. We
therefore insist that in order for System’ to be a safe abstraction of System, that
each System, is also present in DCRef (System’).

Definition 4 (Safe Abstraction). Given any System’ and System as above,
System’ is a safe abstraction of System iff DCRef (System) C DCRef (System”).

We now show that each system System captured by Figure 3 can be safely
abstracted by a system System’ of the form of Figure 2. We form System’ by
taking each cloud of objects in System and aggregating all of the objects in the

High Low
objects objects

Fig. 3. Generalising the results.

cloud into a single object in System’. In order to be a proper aggregation, each
object from System’ must have all facets, capabilities, data and behaviours of all
the objects from System that it aggregates. We formally capture that System’
is an aggregation of System via a surjection Abs : Object — Object’ that maps
each object of System to the object that aggregates it in System’.

Definition 5 (Aggregation). Let (Object, behaviour, facets, Data) and
(Object’, behaviour', facets', Data) be two object-capability systems with iden-

tical sets of data, captured by System =

‘ o€ Object (behaviour(o), a(o)) and

(behaviour'(0), o’ (0)) respectively. Then the second is an

System’ = _
o€ Object’

aggregation of the first when there exists some surjection Abs : Object — Object’
such that for all o € Object’, facets'(0') = \J{facets(0) | o € Abs™'(0')} and

Vs € traces(System) e VX € P X o
(s a'(0),X) € failures(||O€Abs_l(o,)(beham'our(o),a(o))) =
(s| a'(0'), X) € failures(behaviour’ (o)),

where Abs (o) = {0 | 0 € Object A Abs(o) = 0'}.

The proof of the following theorem requires some technical results beyond
the scope of this paper; given limitations on space, it can be found in [11].

Theorem 1. Let System and System’ capture two object-capability systems as
stated in Definition 5. Then if System’ is an aggregation of System, it is also a
safe abstraction of System.

We claim that any finite collection K C Object of objects
||O€K(beham'0ur(o), a(0)), can be aggregated by a single object with be-
haviour Untrusted(|J, ¢ facets(0), U ¢ caps(0), U, ek data(o)) that has all of
their capabilities, data and facets. Briefly, by Definition 1, behaviour(o) C
Untrusted(facets(o), caps(0), data(o)) for each o € K for some sets caps(o)
and data(o) of capabilities and data that it possesses initially. Fur-
ther Untrusted(facets(o) U facets(o’), caps(o) U caps(0), data(o) U data(o’)) C
Untrusted(facets(0), caps(0), data(0)) o(o)lla(ory Untrusted(facets(o’), caps(o’),
data(0')). The claim then follows by induction on the size of K.

So consider any system that has the form of Figure 3 and let 7' denote
the facets of the high objects, U the facets of the low objects and V =
HighData U LowData, i.e. V = Data. Then this system can be safety abstracted
by a system Systemr r;y of the form of Figure 2 in which facets(High) = T,
facets(Low) = U, HighData =V and LowData = V', so that Data = V. Notice
that we allow High and Low to both possess all data in the safe abstraction in
order to obtain maximum generality. If we can show that Systemq (s, is secure
for all non-empty choices of T', U and V, by Theorem 1, we can conclude that
the improved Data-Diode implementation is secure in all systems captured by
Figure 3 with arbitrary HighData and LowData.

The theory of data-independence [6] can be applied to show that a property
Prop holds of a process Pr, parameterised by some set 7', for all non-empty
choices of T, if Prop(Pr) can be shown for all non-empty T of size N or less,
for some N. N is called the data-independence threshold for T for Prop(Pr).
The theory requires that Pr be data-independent in T', meaning roughly that Pp
handles members of the type T uniformly, not distinguishing one particular value
of T from another. We apply data-independence theory to show that thresholds
of size 1, 2 and 2 for T, U and V respectively are sufficient to demonstrate the
security of Systemq (;y, for all non-empty choices of each set.

We will use the following standard result. Let Py be a process that is data-
independent in some set T and satisfies NoEqT for T, meaning that it never
needs to test two values of T for equality. Let ¢ be a surjection whose domain is T,
where we write ¢(T') for {¢(t)|t € T} and ¢~ (X)) for {y | y € T A ¢(y) € X}.
Then [6, Theorem 4.2.2], lifting ¢ to events and traces,

{(p(5), X) | (5,07 1(X)) € failures(Pr)} C failures(Py(r). (2)

Theorem 2. Let St = H1<i<n

tion, whose components and alphabets are polymorphically parameterised by some
set T, such that St and each Pr; are data-independent in T' and satisfy NoEqT
for T. Also let Hr and Lt be two sets polymorphically parameterised by T that
partition the alphabet of St for all non-empty T. Let W denote the mazimum
number of distinct elements of T that appear in any single event from L. Then

W + 1 is a sufficient data-independence threshold for T for WRCEFNDC(St).

(Pr,i, Ar,i) be an alphabetised parallel composi-

Proof. Assume the conditions of the theorem. Suppose for some T with size
greater than W, Sp fails Weakened RCFNDC for Hy and Lp. Then let
T = {to,...,tw} for fresh elements %o,...,ty. We show that Sz fails Weak-
ened RCFNDC for Hy and L.

Let ¢ : T — T be a surjection; we fix the choice of ¢ below. Lift ¢ to
events by applying ¢ to all components of type 7. Then ¢ maps an event in
the alphabet of St to an event in the alphabet of Sz. Also, lifting ¢ to sets of
events, p(Ar;) = Ay, for 1 <i<n, ¢(Hr) = Hy and ¢(L7) = L.

Observe that S¢(}) = S7. So, by Equation 2, the presence of certain be-
haviours in Sp implies the presence of related behaviours in S7. Recall the
characterisation of Weakened RCFNDC from Equation 1. Suppose St fails the
first disjunct of Equation 1 for Hy and Lp. We show that Sy fails this disjunct
for Hz and L. The second disjunct is handled similarly. Then there exists some
s, land ¢ € {1,...,n} such that

s Hr#{() ANl € Ly As™(l) € traces(St) A s\ Hr € traces(St) A
le AT,i N s r AT,i 7é S \ Hr r AT,i AN (S \ Hr r AT,i; {l}) S failures(PT)i).

Let tg,...,tx_1 be the distinct members of T that appear in [. Then k <
W. Choose ¢(t;) = t; for 0 < i < k — 1 and let ¢(t) = 5 for all other t €
T — {to,...,ts—1}. Let § = ¢(s) and | = ¢(I). Then 5 H # () Al € L A
L e Ap,; A 5 Ap; # 8 \ fI[‘ Az ;. Applying Equation 2 to Sr, we have

() e traces(Sz) A 3\ H € traces(Sz). Further, {1} = ¢~ ({I}) by construction.
So, applying Equation 2 to Pr;, we obtain (§\ H [A i {l}) € failures(PTVi). O

Set HT,U,V = {\t.DDReader, DDReader.t, t.tllt, t e T|} and LT,U,V =
{/u.DDWriter.Call.d, DDWriter.u.Return.null, u.v' | u, v’ € U,d € Data U {null}]}.
Then Systemr 7y and all of its components are data-independent in 7', U and
V' and satisfy NoEQqT for each.

Applying Equation 2, it is easily shown that Hy v and Ly v partition the
alphabet of Systemr ;v for all non-empty choices of T', U and V, if they do so
when each of these sets has size 1. FDR confirms the latter to be true.

To verify Weakened RCFNDC, Theorem 2 suggests thresholds for T, U and
V of 1, 4 and 2 respectively. This threshold for U arises from events in Lt v
of the form u.u'.op.u” for u,v', v’ € U.

In fact, in the proof of Theorem 2, [is necessarily an event in the alphabet of
a process that can perform both Hr and Ly events. Hence, we can strengthen
this theorem to take W to be the maximum number of distinct values of type T
in all such events in Lr. For Systemy ; y, this means that all events from {ju.u’ |
u,u’ € Ul} can be excluded when calculating the threshold for U, reducing it to 2.

The most expensive of the 4 tests implied by these thresholds examines about
6 million state-pairs, taking around 4 minutes to compile and complete on a
desktop PC; the others are far cheaper. All tests pass, generalising our results.

5 Conclusion and Related Work

We have shown how to apply CSP and FDR to automatically detect covert chan-
nels in security-enforcing object-capability patterns without forcing the program-
mer to specify the mechanisms by which information may propagate covertly.

Our approach couples the objects that implement a pattern with arbitrary,
Untrusted, high- and low-sensitivity objects that exhibit all behaviours permit-
ted by the object-capability model. This has the added advantage that we can
compare how a pattern functions in different kinds of object-capability system,
such as single-threaded versus concurrent systems, by simply refining the defini-
tion of the Untrusted process. Investigating how the information flow properties
of patterns are affected by changing the context in which they are deployed is
an obvious avenue for future work.

The assumption that objects affect each other only by passing messages
means that our analysis cannot be applied to timed systems in which objects
have access to a global clock, for instance. Extending this work to cover such
systems may allow us to detect possible timing channels that may exist in them.

Spiessens’ [20] is the only prior work of which we are aware that examines
the security properties of object-capability patterns. The ideas of safe abstrac-
tion and aggregation defined in Section 4 were heavily inspired by similar ideas
in [20]. Spiessens’ formalism has the advantage of not requiring the use of data-
independence arguments to generalise analyses of small systems to large systems.
On the other hand, our approach, unlike Spiessens’, can detect covert channels in

a pattern without forcing the programmer to specify the means by which infor-
mation can propagate covertly. Instead, these means are captured by information
flow properties that can be applied to any pattern being analysed.

The notion of aggregation is also similar to (the inverse of) van der Meyden’s
architectural refinement [21]. Finally, data-independence theory has been applied
before to generalise analyses of small systems to larger systems, including to the
analysis of cryptographic protocols [15] and intrusion detection systems [13].

References

1. D. Elkaduwe, G. Klein, and K. Elphinstone. Verified protection model of the seL.4
microkernel. In Proceedings of VSTTE ’08, pages 99—114. Springer, 2008.
2. R. Focardi. Comparing two information flow security properties. In Proceedings of
CSFW 96, pages 116-122. IEEE Computer Society, 1996.
3. R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. Journal of Computer Security, 3(1):5-33, 1995.
4. Formal Systems (Europe), Limited. FDR2 User Manual, 2005.
5. D. Grove, T. Murray, C. Owen, C. North, J. Jones, M. R. Beaumont, and B. D.
Hopkins. An overview of the Annex system. In Proceedings of ACSAC 07, 2007.
6. R. S. Lazié. A Semantic Study of Data Independence with Applications to Model
Checking. D.Phil. thesis, Oxford University Computing Laboratory, 1999.
7. G. Lowe. On information flow and refinement-closure. In Proceedings of the Work-
shop on Issues in the Theory of Security (WITS ’07), 2007.
8. A. M. Mettler and D. Wagner. The Joe-E language specification, version 1.0.
Technical Report EECS-2008-91, University of California, Berkeley, August 2008.
9. M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. PhD thesis, Johns Hopkins University, 2006.
10. M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content
in sanitized JavaScript (draft), 2008.
11. T. Murray. Analysing the Security Properties of Object-Capability Patterns. D.Phil.
thesis, University of Oxford, 2010. Forthcoming.
12. T. Murray and G. Lowe. On refinement-closed security properties and nondeter-
ministic compositions. In Proceedings of AVoCS ’08, pages 49-68, 2009.
13. G. T. Rohrmair and G. Lowe. Using data-independence in the analysis of intrusion
detection systems. Theoretical Computer Science, 340(1):82-101, 2005.
14. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
15. A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers
by data independence techniques. J. Comput. Secur., 7(2-3):147-190, 1999.
16. A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proceedings of CSFW °99, page 228. IEEE Computer Society, 1999.
17. P. Ryan and S. Schneider. Process algebra and non-interference. Journal of Com-
puter Security, 9(1/2):75-103, 2001.
18. P. Y. A. Ryan. A CSP formulation of non-interference and unwinding. IEEE
Cipher, pages 19-30, Winter 1991.
19. J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEFE, 63(9):1208-1308, September 1975.
20. A. Spiessens. Patterns of Safe Collaboration. PhD thesis, Université catholique de
Louvain, Louvain-la-Neuve, Belgium, February 2007.
21. R. van der Meyden. Architectural refinement and notions of intransitive noninter-
ference. In Proceedings of ESSoS 2009, pages 60-74. Springer, 2009.

