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Abstract

In this technical report, we discuss the use of code obfuscation as means of pro-
tecting the intellectual property of software. An obfuscation is a behaviour preserving
program transformation which aims to make a program harder to understand (which
can mean it becomes unintelligible to automated program comprehension tools or
that the result of program analyses become less useful to a human adversary).

This report consists of three main parts. The first part of the report discusses
some of the possible definitions of obfuscation and gives an extensive survey of some
of the current obfuscation techniques. The second part considers a report written by
University of Applied Sciences of Upper Austria, Hagenberg which discuss a variety
of different protection techniques (including obfuscation). The last part reviews the
techniques that we have seen so far. We provide an analysis of some of the reasons
why current obfuscators are generally weak and why some of the better obfuscation
techniques have not been implemented. Finally, we give recommendations for how
better obfuscators can be created using obfuscation techniques which have not yet
been implemented.

Acknowledgements I would like to thank to Siemens AG, Munich for sponsor-
ing the work and, in particular, Barbara Fichtinger, my contact in Siemens, who gave
constructive comments during the writing of this report.
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Part I

Survey

1 Definitions of Code Obfuscation

The goal of software protection through code obfuscation is to transform the source code
of an application to the point that it becomes “harder to understand” — which can
mean it becomes unintelligible to automated program comprehension tools or the result
of program analyses become less useful to a human adversary.

The motivation for protecting software through obfuscation arises from the problem
of software piracy, which can be summarised as a reverse engineering process undertaken
by a software pirate when stealing intellectual artefacts (such as a patented algorithm)
from commercial software. Commercially popular software such as the Skype VoIP client
[3], the SDC Java DRM (according to Santos et al [29]), and most license-control systems
rely, at least in part, on obfuscation for their security. Collberg et al [6, 7] were the first
to formally define obfuscation in terms of a semantic-preserving transformation function
O which maps a program P to a program O(P ). However, after the landmark result
of Barak et al [2], which proved that every obfuscator will fail to completely obfuscate
some programs, there seems little hope of designing a perfectly-secure software black-box,
for any broad class of programs. To date, no one has devised an alternative to Barak’s
model, in which we would be able to derive proofs of security for systems of practical
interest. These theoretical difficulties do not lessen practical interest in obfuscation, nor
should it prevent us from placing appropriate levels of reliance on obfuscated systems in
cases where the alternative of a hardware black-box is infeasible or uneconomic.

A variety of different definitions for obfuscation, and thus what “harder to under-
stand” means, has been proposed in the literature. We will briefly look at four definitions
and highlight some of the problems with each of the definitions.

1.1 Collberg et al

The definition of an obfuscating transformation from [6, Page 6] is:

Let P
T−→ P ′ be a transformation of a source program P into a target

program P ′. The transformation P
T−→ P ′ is an obfuscating transformation,

if P and P ′ have the same observable behaviour. More precisely, in order for
P

T−→ P ′ to be a legal obfuscating transformation the following conditions
must hold:

• If P fails to terminate or terminates with an error condition, then P ′

may or may not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

The quality of an obfuscation transformation is measured in terms of various metrics
which measure the complexity of code such as:
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• Cyclomatic Complexity [22] — the complexity of a function increases with the num-
ber of predicates in the function.

• Nesting Complexity [15] — the complexity of a function increases with the nesting
level of conditionals in the function.

• Data-Structure Complexity [24] — the complexity increases with the complexity of
the static data structures declared in a program. For example, the complexity of
an array increases with the number of dimensions and with the complexity of the
element type.

Using such metrics Collberg et al [6] measure the potency of an obfuscation as follows.
Let T be a transformation which maps a program P to a program P ′. The potency of a
transformation T with respect to the program P is defined to be:

Tpot(P ) =
E(P ′)
E(P )

− 1

where E(P ) is the complexity of P (using an appropriate metric). T is said to be a
potent obfuscating transformation if Tpot(P ) > 0 (i.e. if E(P ′) > E(P )). In Collberg et
al [6], P and P ′ are not required to be equally efficient — it is stated that many of the
transformations given will result in P ′ being slower or using more memory than P .

Other properties Collberg et al [6] measure are:

• Resilience — this measures how well a transformation survives an attack from a
deobfuscator. Resilience takes into account the amount of time required to con-
struct a deobfuscator and the execution time and space actually required by the
deobfuscator.

• Execution Cost — this measures the extra execution time and space of an obfuscated
program P ′ compared with the original program P .

• Quality — this combines potency, resilience and execution cost to give an overall
measure.

These three properties are measured informally on a non-numerical scale (e.g. for re-
silience, the scale is trivial, weak, strong, full, one-way).

Another useful measure of obfuscation is the stealth of an obfuscation [7]. An obfus-
cation is stealthy if it does not “stand out” from the rest of the program, i.e. it resembles
the original code as much as possible. Stealth is context-sensitive — what is stealthy in
one program may not be in another one and so it is difficult to quantify (as it depends
on the whole program and also the experience of the reader).

The metrics mentioned above are not always suitable to measure the degree of obfus-
cation. Consider these two code fragments, which use predicates p and q and statements
A, B and C:

if (p) {A} else { if (q) {B} else {C}} (1)
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if (p) {A};
if (¬p ∧ q) {B}; (2)
if (¬p ∧ ¬q) {C}

These two fragments are equivalent if the statements do not change the values of the
predicates. If we transform (1) to (2) then the cyclomatic complexity is increased but
the nesting complexity is decreased. Which fragment is more obfuscated?

1.2 Barak et al

Barak et al [2] takes a more formal approach to obfuscation — their notion of obfuscation
is as follows. An obfuscator O is a “compiler” which takes as input a program P and
produces a new program O(P ) such that for every P :

• Functionality — O(P ) computes the same function as P .

• Polynomial Slowdown — the description length and running time of O(P ) are at
most polynomially larger than that of P .

• “Virtual black box” property — “Anything that can be efficiently computed from
O(P ) can be efficiently computed given oracle access to P” [2, Page 2].

With this definition, Barak et al construct a family of functions which is unobfuscatable
in the sense that there is no way of obfuscating programs that compute these functions.
Thus their notion of obfuscation is impossible to achieve.

This definition of obfuscation, in particular the “Virtual Black Box” property, is too
strong — obfuscators will still be of practical use even if they do not provide perfect black
boxes. This definition does not give an indication of the quality of a proposed obfuscation
technique (the measure says whether the transformation completely obfuscates or not).
After the publication of Barak et al [2], the focus of obfuscation research has changed to
designing obfuscations that are difficult, but not necessarily impossible, for an attacker
to undo.

1.3 Assertion Obfuscations

The obfuscations discussed in the DPhil thesis of Drape [9] were defined for abstract data-
types. The data-types contained a declaration of the type (including invariants), a list of
operations and a list of assertions that the data-type operations satisfied. Drape observed
that when considering what an operation computes, we often see what properties that
operation has, i.e. the assertions that it satisfies. If an operation is obfuscated then it
should be harder to find out what properties this operation has. Since a list of assertions
is given when defining a data-type, then each the definition of each operation will have
to satisfy the assertions and so a proof for each assertion will have to be constructed. If
we have an obfuscated operation then the assertion proofs should be harder to construct
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than for unobfuscated operation. This observation lead to the following definition for
obfuscation:

Let g be an operation and A be an assertion that g satisfies. We obfuscate
g to obtain gO and let AO be the assertion corresponding to A which gO

satisfies. The obfuscation O is said to be an assertion obfuscation if the proof
that gO satisfies AO is more complicated than the proof that g satisfies A.

An obfuscation metric, which tried to measure whether one proof is more complicated
than another, was given. The metric used proof trees and it was validated by consid-
ering various data obfuscations. This definition only measures how well an operation is
obfuscated with respect to a certain set of assertions — there is no guarantee that the
operation will be obfuscated for other assertions. Also, as the metric is dependent on
the way assertions are proved so if the assertions for an operation and its obfuscation are
proved in different ways then the proofs cannot be compared.

1.4 Slicing Obfuscations

Program slicing as a software engineering technique was first introduced by Weiser [35]
in 1980. A program slice consists of the parts of a program that potentially affect the
values of some variables computed at some point of interest — the program point and
the set of variables are called the slicing criterion [32]. Collberg et al [6] discussed how
a program slicing could be used as a deobfuscation tool and potentially identify parts of
an obfuscated program which are bogus.

Drape et al [13] proposed a way of obfuscating by first slicing a program P for a
particular variable, v (say), to create a slice Sv. Rather than just considering the size of
the slice, Drape et al instead looked at those statements of P which were not contained in
Sv — which were called orphan statements. Obfuscations would then be added to P with
the aim of reducing the number of orphaned statements when the slice Sv was recom-
puted. This lead to the definition of a slicing obfuscation — that is an obfuscation which
decreases the number of orphan statements for a particular variable. Obfuscations which
are particularly good slicing obfuscations are those which add dependencies between the
variables in the slicing criterion.

This definition is very specific and only deals with obfuscations which impede slicing.
There is no guarantee that a slicing obfuscation will be a suitable obfuscation in other
contexts.

1.5 Using Metrics

We have seen that definitions for obfuscation often refer to metrics to measure the ef-
fectiveness of an obfuscation. In Section 1.1 we saw that to measure the potency of an
obfuscation Collberg et al [6] used various software complexity measures such as Cy-
clomatic Complexity [22]. However these metrics by themselves cannot give a definite
measure of how good an obfuscation is. In Section 1.1 we saw that a program could be
obfuscated according to one metric but not another. One of the obfuscation measures
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mentioned by Collberg et al [7] is the concept of stealth. However, it is very hard to
produce a metric which would directly measure the stealth of an obfuscation as it is very
context-sensitive and so the metric would have to take into the whole program (or at the
very least a localised portion of the program).

Nakamura et al [25] performed experiments to estimate the cost of mentally simulat-
ing programs. The experiments consisted of giving eight Java programmers one of two
obfuscations of a particular Java program. The programmers then had to simulate the
program mentally using a model (called the Virtual Mental Simulation Model) which
used a queue representing short term memory. The results were then used to assess how
comprehensible the programs were. As with the metrics used by Collberg et al it would
be easy to add bogus obfuscations, to make programs appear more obfuscated. Since the
metric of Nakamura et al relied on a queue of recently seen variable definitions we could
decrease the comprehension metric by interleaving bogus variable assignments. It was
also not clear whether the experience of the programmer would make a difference to the
results — for example, would similar results have been obtained if experienced functional
programmers had taken part?

For the assertion definition from the thesis of Drape [9] (Section 1.3) a metric for
proof trees was developed. This metric measured the cost of a proof (essentially how
many steps a proof takes) and the height of a proof tree. So the definition tries to
measure the degree of obfuscation by considering the complexity of proofs rather than
the complexity of operations. In the thesis, it was discussed what made a good assertion
obfuscation by using the results of these metrics. However for a fair comparison using
these measurements, all proofs have to be constructed in a consistent way (and some ways
to help with the consistency were discussed). Also, we can only be sure of the quality of
an obfuscation with respect with a certain of assertions — the obfuscation may not be
suitable for other assertions.

The definition of slicing obfuscations of Drape et al [13] also used metrics to validate
their definition [18]. The metrics considered, such as Maximum and Minimum Coverage
[26], were ones that have used to assess the quality of program slicers. The obfusca-
tions considered in Majumdar et al [18] all increased the metrics and so decreased the
effectiveness of slicing.

The slicing obfuscation definition (Section 1.4) is the only definition of obfuscation
that we have discussed that has an explicit attack model — namely, obfuscations were
created with the knowledge that a potential adversary would use a program slicer to
try to deobfuscate the program. The metrics that were used to assess the quality of
the obfuscations also took into account the attack model. Other obfuscation definitions
could be considered to have attack models. For instance, the assertion definition (Section
1.3) could have an attack model where an adversary is armed with a theorem prover.
Given the impossibility result of Barak et al [2] it is unlikely to create obfuscations that
can be defended against all possible attackers. Therefore when designing obfuscations,
and metrics to measure the effectiveness of the obfuscations, we should be aware of what
attacks they could defend against and we should use a wide range of techniques where
possible to defend against different attackers.
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2 Example of Obfuscating Transformations

This section gives a brief overview of some the obfuscation techniques mentioned in the
taxonomy of Collberg et al [6] and we will also consider some techniques that have devel-
oped since the taxonomy paper was written. We will start by discussing obfuscations that
fall in the three main categories given in Collberg et al [6], namely: layout, control-flow
and data obfuscations. The obfuscations discussed in these categories will be applicable
to a wide variety of programming languages — more language specific obfuscations will
be discussed in a later section.

2.1 Layout Obfuscations

Layout Obfuscations are concerned with changing the look of a program rather than
with changing the semantics. One simple obfuscation is to remove any comments that a
programmer may insert as part of the documentation of the program. A more malicious
approach is to insert bogus comments so that a portion of the program appears to be
doing something different to what was claimed. Comments are often removed anyway
when compiling/decompiling a program.

Another layout obfuscation is to change the formatting of a program, for instance,
removing all of the unnecessary whitespace and indenting. There are famous examples
of formatting obfuscations such as in the Obfuscated C contest [16].

A popular layout obfuscations is to change identifier names — not only for variables
but also for classes, methods, etc. This transformation aims to change meaningful names
such as “total” or “output” into names such as “a” or “ghe251c”. A more malicious
renaming would aim to name variables in a confusing manner — for example a variable
which works out the total could be named “average” instead. Tools that use renaming
also try to have as many items (including methods, fields and classes) as possible sharing
the same name either by identifying the scope of a variable or by using overloading. Again
this type of transformation may be undone by compiling/decompiling depending on how
the compiler names its variables.

Layout obfuscations are generally not considered to be very strong as they can often
be easily undone and, as mentioned earlier, they are not concerned with the semantics
of a program. Despite this, layout obfuscations are often used in automatic obfuscation
tools.

2.2 Control-Flow Obfuscations

The layout obfuscations discussed in the last section attempt to change the syntax of the
program rather than the semantics. One set of semantic transformations are those which
are targeted at the control-flow and so these transformations try to change conditional
statements, jumps and loops. We can change the control-flow in a program by, for
example, adding bogus conditional jumps or changing while loops. Majumdar et al [21]
surveyed control-flow obfuscations and highlighted two techniques which we will discuss
in Sections 2.2.1 and 2.2.5.
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2.2.1 Opaque Predicates

A predicate P is opaque [7] at a program point s if the value of P at s is known at compile
time. The notation P T

s (PF
s ) denotes a predicate which always evaluates to True (False)

at s (the program point s can be omitted if it is clear from context) and P ? to denote a
predicate which sometimes evaluates to True and sometimes to False. Opaque predicates
can be used to create bogus code in programs, for example

S ⇒ if (P T ) {S}
S ⇒ if (PF ) {Sbug} else {S}
S ⇒ if (P ?) {S} else {Scopy}

This first transformation tries to disguise the fact that S will always be executed; the
second uses a copy of S which contains bugs and the third uses a functionally equivalent
copy of S. Opaque predicates can also be used to add bogus jumps and are particularly
useful for creating irreducible flow graphs (see Section 2.2.3).

It is an open problem to generate opaque predicates which are suitable for obfusca-
tions. Predicates can be based on known mathematical identities, for example n2 +1 6= 0
(mod 7) for all integral n. These identities are either quite easy prove or are so com-
plicated that they stand out from the rest of the program (i.e. they are not stealthy).
Also these mathematical identities tend to be true for all values of a variable and so we
could test the predicate with a large set of random numbers to see that the predicate has
a constant Boolean value. It would be more effective if we could have a predicate that
was based on some program invariant at a particular program point. This could mean
that such a predicate would be true (say) at a particular point, which is known to the
obfuscator, but could be false elsewhere. We could also develop linked predicates such as
the following simple block which obfuscates the assignment x = 2:

x = integer value;
...
if (x mod 3 = 1) {x = x + 1; } else {x = x + 3; }

< x is not used or modified >
if (x mod 3 = 1) {x = 3 ∗ x + 2; } else {x = 2 + ((x mod 3) mod 2); }

The first predicate is not opaque but the second one is as it is always false. It would be
harder to spot that x = 2 if we could separate the if statements by a block of code that
does not use or modify x.

When creating slicing obfuscations, Majumdar et al [19] used opaque predicates to
extend the scope of variables. Suppose that we have the following code fragment:

x = E; S; x = F

where S is a block of statements in which x may be used but not defined and F is an
expression which does not depend (directly or indirectly) on x. This means that the new
assignment x = F kills the previous definition of x and so the backwards slice for x may
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not contain the block S. If we have an opaquely true predicate p then we can transform
the code fragment to:

x = E; S; if (pT ) x = F ; else x ++;

So, now the backwards slice for x should contain the whole code fragment.
It is important that the opaque predicates we choose are stealthy. This is so that

the predicates do not “stand out” from the rest of the program and signal to an attacker
that something important is been obfuscated. However we can use predicates that are
not stealthy with pieces of code that are bogus (i.e. not executed) or unimportant. The
aim of using deliberately unstealthy opaque predicates is to try to fool an attacker into
believing the predicates are protecting important pieces of code.

2.2.2 Extensions of Opaque Predicates

As mentioned in the previous section, one of the limitations with using opaque predicates
is that often the value of an opaque predicate is true for all possible inputs. This lead
Palsberg et al [27] to developing dynamically opaque predicates. These are a set of
predicates which all evaluate to the same result in any given run, but in different runs
they may evaluate to different values. For example, if we had a block of three statements
S1; S2; S3 and two linked predicate p and q (which evaluate to the same value in the
same run) then we can obfuscate the block as follows:

if (p) S1; else {S1; S2; }
if (q) {S2; S3; } else S3;

This transformation is valid under certain conditions such as ensuring that the statements
S1 and S2 do not change the value of q. We can easily extend this to obfuscate larger
blocks with a bigger set of dynamically opaque predicates but the conditions for ensuring
that the transformation is valid become more complex.

Palsberg et al [27] mention that it is advantageous to use both traditional opaque
predicate and dynamically opaque predicate when obfuscating. This is because it will be
harder for an attacker to know whether a certain predicate is opaque, part of a set of
dynamically opaque predicate or one that comes from the original, unobfuscated program.

Majumdar and Thomborson [20] proposed creating temporally unstable opaque pred-
icates for distributed environments using values from an aliased data structure. A tem-
porally unstable opaque predicate can be evaluated at different program points during
an execution run and the values from this predicate are not identical. This means that
the same predicate can be used to obfuscate different portions of control-flow.

2.2.3 Irreducible flow graphs

In Collberg et al [6] there is a discussion about how opaque predicates can be used to
create bogus statements which appear to jump into the middle of a loop — thus creating
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an irreducible flow graph. For example:

if (PF ) {goto L; }
...
while (C)
{ ...

L : ... }

Languages such as C# and Java do not permit such jumps to be written. However this
type of jump would be allowed in the intermediate languages (CIL or Bytecode) — see
Section 2.4.4. Thus we could write a program in the high-level language, convert to in-
termediate language where we add the bogus jump and then recompile. If a decompiler
tried to re-construct the high-level code then it would have to produce more complicated
code as it tries to turn the irreducible jump into a reducible one. This type of trans-
formation is an example of a language breaking transformation. A possible specification
of this transformation at the intermediate language level was described in the thesis of
Drape [9].

2.2.4 Loop Transformations

There are many transformations we can do to a loop which has the form:

while (condition)
{ body }

One such transformation is to change one of the induction variables using an encoding
(see Section 2.3.2). For example, suppose we had the loop:

i = 0;
while (i < N)
{ ...i...

i = i + 1; }

and using the variable encoding λ x.(2x + 1) we can transform the loop to:

i = 1;
while (i < 2 ∗N + 1)
{ ...((i− 1)/2)...

i = i + 2; }

We can add a bogus induction variable into the loop which can make the loop conditions
more complicated. For example, if we had the loop:

i = 0;
while (i < 10)
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{ ...

i = i + 1; }

and assuming that the value of i is only changed at the end of the loop then we can add
a variable j into the loop as follows:

i = 0;
j = 1;
while ((i < 10) && (j < 120)
{ ...

i = i + 1;
j = j + 2 ∗ i; }

If we assume that i and j are only modified at the end of the loop then the loop terminates
when i = 10 as before but the proof of the termination value is harder now than it was
before the transformation. The condition for j (i.e. j < 120) is an opaque predicate
for loop as we know that it is true throughout the whole of the execution of the loop
(but maybe not true outside the loop). We can also use bogus induction variables to
create bogus dependencies for other variables — this type of transformation is useful
when creating slicing obfuscations [19].

A program can contains many loops and often the same variable is used for an in-
duction variable. The scope of an induction variable is usually just the loop itself as the
variable is initialised before the start of the loop and not used outside the loop. If we
have two loops that use the same variable as an induction variable (and the variable is
not used outside the loops):

i = 0;
while (i < M)
{ ...

i = i + 1; }
< i is not modified here >

i = 0;
while (i < N)
{ ...

i = i + 2; }

We can extend the scope of the induction variable by changing the initialisation of the
second loop:

i = 0;
while (i < M)
{ ...
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i = i + 1; }
< i is not modified here >

i = i−M ;
while (i < N)
{ ...

i = i + 2; }

The value of i in the second initialisation is still 0 since we know at the end of the first
loop that i = M . We could also change the first loop so that it decreased, making the
value of i at the end of loop be 0. Thus we would not need an initialisation of i for the
second loop. If the first loop used a different induction variable j (say) then providing
it was safe to do so (for example, ensuring that j is not used after the first loop) we
could make both loops use the same induction variable i. Again, we should try to remove
the initialisation to i in the second loop. Extending the scope of the induction variables
tries to ensure that the first loop would be included in a backwards slice for i (as used in
Majumdar et al [18]).

Other loop transformations mentioned in Collberg et al [6] include loop fission, which
attempts to split up one loop which has more one than one statement in the loop body
into several separate loops, blocking, which tries to repeatedly split the iteration of the
loop into an inner and outer loop, and loop unrolling, which repeats a loop body one or
more times. These loop transformations can be used as optimisations by a compilers —
for example, loop blocking can be used to improve cache behaviour. So we may find that
some of these loop transformations can be undone in the compilation process.

When creating obfuscations to restrict the usefulness of program slicing, Majumdar
et al [19] found that loop transformations were helpful in decreasing the effectiveness of
slicing but not every program uses a loop. However, Majumdar et al [19] discuss how it
is possible to “fake” a loop. Suppose that we had a block of code B and state before B
is σ. Then we need to find a predicate p for which p(σ) is true but p(B(σ)) is false. If
we have such a predicate then B can be transformed to

while (p) {B}

2.2.5 Control-Flow flattening

In Wang et al [34], a technique for flattening control-flow is described. The idea of this
transformation is to remove control-flow constructs such as while loops so that all basic
blocks have the same predecessor and successor in the control-flow graph. So, for example,
suppose we have this piece of code:

init;
while (cond)
{ loop body; }
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Then we could remove the while loop and replace it with a switch block which loops until
an end statement is reached:

var = 1;
switch (var)
{ case 1 :

init; var = 2; break;
case 2 :

if (cond) var = 3; else var = 4; break;
case 3 :

loop body; var = 2; break;
case 4 :

var = 1; end; }

The variable var acts as a dispatcher and effectively controls the execution of the blocks.
Each case contains an assignment to var (and in the last case the assignment is a dummy
one).

Here is a more complicated example which has conditional statements:

init;
while (cond)
{ loop body;

if (test) stat1; else stat2; }

Again, we can use a switch block to convert the program to:

var = 1;
switch (var)
{ case 1 :

init; var = 2; break;
case 2 :

if (cond) var = 3; else var = 7; break;
case 3 :

loop body; var = 4; break;
case 4 :

if (test) var = 5; else var = 6; break;
case 5 :

stat1; var = 2; break;
case 6 :

stat2; var = 2; break;
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case 7 :
var = 1; end; }

It is quite easy to reconstruct the conditional statement and the while loop from the
switch block. So, Wang et al [34] describe some extra levels of obfuscation. First, some
dummy cases can be added to the switch to obscure the control-flow — for instance,
irreducible jumps could be added (Section 2.2.3). Also, a global variable, such as an
array, can be used to dynamically determine the values of the dispatcher variable. Finally,
pointers can be used so that static analysis of the control-flow becomes difficult to perform.

Madous et al [17] created a rewriting framework called DIABLO which contains a
control-flow flattening transformation which is applied to x86 code. Another technique
is described in Chow et al [4]. The transformation in Chow et al consists of a number
of different steps including splitting basic blocks into pieces, introducing dummy pieces,
renaming variables and forming “lumps” (essentially sequences of instructions with par-
ticular properties). As with the flattening technique of Wang et al , the method of Chow
et al uses a dispatcher to control the progression between the various lumps. In this
case, the dispatcher can be modelled as a deterministic finite automata in which the flow
is specified using a specific state space. To ensure that the is hard to determine, the
dispatcher state space is expanded by including dummy states.

2.2.6 Method Transformations

Most of the transformations that we have seen so far have been quite localised and usually
affect just one method. In Collberg et al [6] there are many transformations we can apply
to methods themselves:

• Inline Methods We can replace a method call with the body of the method. If
a method name is overloaded then we may have to include code which checks the
type of the method and the parameters.

• Outline Methods We can make a sequence of statements into a method by re-
placing the statements with a method call.

• Clone Methods We can create many copies of the same methods by applying
different obfuscations (and other transformations). At the method call, we can
choose which clone to call from a set of clones. If we have different calls to the
original method in the program then we can replace each call with calls to a different
set of clone methods.

• Interleave Methods We can merge two separate methods into one method. At
the call sites for each method we replace the call to the original method with a
parameter, which is used to distinguish between the two original methods, and a
call to the new method.

As well as using these transformations by themselves, we can combine these transforma-
tions to give more complicated obfuscations. For example, we could inline a method m
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into the calling method c and then we could outline a different block from c into a new
method m′.

2.3 Data Obfuscations

As well as obfuscating the control-flow, we can also obfuscate the data and the data
structures that a program may use. We may transform a variable individually by using
variable encodings (Section 2.3.2) or we may change the whole structure of a data-type
(see, for example, the array transformations in Section 2.3.4).

2.3.1 Specifying Data Obfuscations

In the thesis of Drape [9], the idea of obfuscating abstract data-types was introduced. The
abstract data-types consist of a module containing a declaration of the data-type and the
operations that are implemented in the data-type. This abstraction matches the object-
oriented view of classes, constructors and methods. By obfuscating abstract data-types
we can consider the operations more generally without worrying about implementation
issues. The abstract data-types in Drape’s thesis [9] were specified using a functional
language and obfuscation was described in terms of a data refinement [8].

In Drape et al [14], this work was extended to develop a framework for specifying
imperative data obfuscations. A data obfuscation O can be specified by defining two
functions af , the abstraction function, and cf , the conversion function, which satisfy
cf ; af ≡ skip. The conversion function is a statement (or a block of statements) which
performs the obfuscation and the abstraction function undoes the obfuscation. Drape
et al then showed how to obfuscate assignments, conditional statements and loops. To
obfuscate a block of statements we can obfuscate each statement in the block and then
compose the results. If a block B is obfuscated, using the functions cf and af , to obtain
O(B) then

B ≡ cf ; O(B); af (3)

This equation gives us a way of proving the correctness of the obfuscation of B.
Another benefit of using this alternative formulation is that we can precisely specify

where we want to apply a data obfuscation. We can localise our transformation to a
specific block. For example, if our program had three code blocks A; B; C then we can
apply our obfuscation O to just block B and so

A; B; C =⇒ A; cf ; O(B); af ; C

2.3.2 Variable Encoding

The idea of a variable encoding (or transformation) is to change a variable into an ex-
pression. For example,

i⇒ a ∗ i + b

where a and b are constants. The encoding needs to be invertible so that the “correct”
value of the variable can be obtained if needed (for example, if the value of the variable
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is output or is needed for the computation of another variable). Under an encoding
we need to transform both uses and definitions of i separately. For example, using the
transformation above,

i = 2 =⇒ i = a ∗ 2 j = i + 1 =⇒ j =
i− b

a
+ 1

An expression such as i + + is both a definition and a use and so

i + + =⇒ a ∗
(

i− b

a
+ 1

)
+ b

which (using exact arithmetic) can be simplified to

i = i + a

In general (from the thesis of Drape [9]), we can encode a variable i by using an
encoding function f and we also require a function g such that g · f = id. We have two
different rewrite rules:

• a use of i is replaced by g(i)

• an assignment to i of the form i = E is replaced by i = f(E′) where E′ = E[g(i)�i]

where � denotes variable substitution. The rewrite rule for assignment covers the case
where the variable i appears in the right-hand side of the assignment. An implementation
of this transformation for intermediate language was described in Drape et al [11].

Using the specification discussed in Section 2.3.1 the encoding above can be specified
as:

cf ≡ i = a ∗ i + b af ≡ i =
i− b

a

In terms of the functions f and g mentioned above, we have:

cf ≡ i = f(i) af ≡ i = g(i)

and the condition g · f = id is equivalent to cf ; af ≡ skip.
A stronger variant of this transformation (given in Drape et al [12]) uses two variables

so that a variable seems to depend on the value of another variable. For example

i =⇒ a ∗ i + b ∗ j

where j is another variable and a and b are constants. Using the specification of Drape
et al [14], the conversion and abstraction functions are:

cf ≡ i = a ∗ i + b ∗ j af ≡ i =
i− b ∗ j

a

The rewrite rules for this encoding are more complicated because whenever we have a
definition for j then we must also have a definition of i. The rewrite rules are as follows:
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• (use of i) U(i) =⇒ U( i−b∗j
a )

• (def of i) i = E =⇒ i = a ∗ E′ + b ∗ j where E′ = E[ i−b∗j
a �i]

• (def of j) j = f(i) =⇒


t = i− b ∗ j;
j = f(t/a);
i = t + b ∗ j;


This transformation is useful for creating false dependencies and can be used to reduce
the effectiveness of program slicing [19].

As can be seen above, this obfuscation relies on exact arithmetic to obtain the true
value of the variable when needed. When using this obfuscation we must ensure that the
value of the variable does not overflow. A problem for automation is deciding on criteria
to pick a suitable variable for encoding. If, for example, the most frequently occurring
variable is picked then there will be a corresponding slow-down of the execution time as
there will be many more arithmetic operations.

2.3.3 Merging and Splitting

As well as obfuscating individual variables, we can also work with obfuscating a number
of variables together. Collberg et al [6] discuss merging variables where we can merge
two (or more) variables into one. Suppose that we want to merge two variables x and y.
If we know that 0 6 x < N and y > 0 then we can define z as follows:

z = N ∗ y + x

As well as merging two or more variables, we can split up one variable in two (or
more) other variables. Collberg et al [6] shows how Boolean variables can be split. In
Drape et al [14] an integer variable x is split into two variables a and b such that

a = x div 10 and b = x mod 10

For example, under this transformation, the statement x + + is transformed to:

a = (10 ∗ a + b + 1) div 10;
b = (b + 1) mod 10;

These assignments are equivalent to:

if (b == 9) {a = a + 1; b = 0; } else {b = b + 1; }

The proof of correctness, using the specification discussed in Section 2.3.1, for this equiv-
alence is given in Drape et al [14].
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2.3.4 Array Transformations

As well as obfuscating a single variable (or a small set of variables) we can obfuscate
arrays. Before performing array transformations, we must ensure that the arrays are safe
to transform. For example, we may require that a whole array is not passed to another
method or that elements of the array do not throw exceptions.

One of the simplest ways to obfuscate arrays is by changing the array indices. Such
a change could be achieved either by a variable encoding (such as in Section 2.3.2) or
by defining a permutation. Two other transformations which obfuscates array indices
are called folding and flattening. So, for example, we could fold a 1-dimensional array
of size m × n into a 2-dimensional array of size [m, n]. Similarly we could flatten an
n-dimensional array into a 1-dimensional array. These transformations can be defined by
using the variable merging (for array flattening) and variable splitting (for array folding)
techniques mentioned in Section 2.3.3.

The array transformation that we have seen so far effectively just encoded the array
index. Next we will consider some transformations that change the structure of one or
more arrays.

Array Splitting Collberg et al [6] give an example of a structural transformation called
an array split :

int [ ] A = new int [10];

. . .
A[i] = . . . ;

⇒
int [ ] A1 = new int [5];
int [ ] A2 = new int [5];
. . .
if ((i % 2) == 0) A1[i/2] = . . . ;

else A2[i/2] = . . . ;

This transformation was generalised in Drape [10]. An array split in which an array A
of size n is broken up into two other arrays B1 and B2 of sizes m1 and m2 respectively
(where m1 + m2 > n) can be specified by defining three functions. The types of the
functions are as follows:

ch :: [0..n) → B
f1 :: [0..n) → [0..m1)
f2 :: [0..n) → [0..m2)

Then the relationship between A and B1 and B2 is given by the following rule:

A[i] =
{

B1[f1(i)] if ch(i) is true
B2[f2(i)] otherwise

To ensure that there are no index clashes we require that f1 is injective for the values for
which ch is true (similarly for f2). A specification of this transformation for intermediate
language was described in Drape et al [11].

This relationship between the original array and the two split arrays can be generalised
so that A could be split between more than two arrays. For this, ch should be regarded as
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a choice function which will determine which array each element should be transformed
to. The transformation is further generalised in Drape [10] by defining splits for more
general data-types such as lists and matrices. Using these generalisations gives us more
scope for obfuscation. For example, we could fold an array into a matrix, then use a
matrix split and finally flatten the individual split matrices — this would give us a new
way of splitting an array.

Array Merging We can the reverse the process of splitting an array by merging two
(or more) arrays into one larger array. As with a split, we will need to determine the
order of the elements in the new array.

Let us give a simple example of a merge. Suppose we have arrays B1 of size m1 and
B2 of size m2 and a new array A of size m1 + m2. We can define a relationship between
the arrays as follows:

A[i] =
{

B1[i] if i < m1

B2[i−m1] if i ≥ m1

This transformation is analogous to the concatenation of two lists.

2.3.5 Other data obfuscations

Some other data obfuscations mentioned in Collberg et al [6] are:

• Variable Promotion In an object-oriented language, we can promote a local inte-
ger variable to an object. Then it would be possible to reuse the object in a variety
of unrelated methods (assuming the value of the variable is not needed between
different methods) and so make it appear that there is a relationship between the
methods.

• Variable Scope We can change the scope of variable so that, for example, we make
a local variable global. As with variable promotion we can try to link up unrelated
methods by using this new global variable. Extending the scope of variables is
important when trying to create slicing obfuscations [18] — for example, in Section
2.2.4 we saw that we can try to re-use the same induction variable.

2.4 Language dependent transformations

Most of the obfuscations mentioned so far can be applied to a variety of language
paradigms. We will briefly look at some obfuscations that require specific language fea-
tures.

2.4.1 Exceptions

Many programming languages have features which allow the user to add in code which
can deal with any exceptions that may be thrown. We can use exceptions to change the
control-flow of programs. For example, suppose we had the following loop:

i = 0;
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while (i < N)
{ loop code

i + +; }
after loop

Then using a fresh variable s we can change it to:

try

{ i = 0;
s = 1;
while (true)
{ s = s + s/(N − i);

loop code
i + +; }

}
catch (DivideByZero)
{ s = dummy; }
finally

{ after loop }

We can replace the predicate true with some other predicate that is true for the loop but
maybe false otherwise — this is to make it less obvious that the loop will only terminate
by throwing an exception.

We can also use opaque predicates (Section 2.2.1) with try/catch blocks. For instance,
suppose we had the following code fragment:

stat1;
stat2;

Then using the false predicate p we can transform it to:

try

{ if (pF ) {throw error} else stat1; }
catch (error)
{ bogus code }
finally

{ stat2; }

When using try/catch blocks we must make sure that no other uncaught exceptions
are thrown. However we could choose to throw a number of different exceptions which
can all be handled by different catch blocks — thus we could obfuscate a switch block
by a series of try/catch blocks.
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2.4.2 Object-oriented Transformations

Collberg et al [6] discuss some transformations which are suitable to obfuscate object-
oriented programs. Many Java programs rely on calls to standard libraries but we cannot
obfuscate these calls. Instead some of these libraries calls could be implemented in the
program itself which we can then obfuscate separately.

One series of transformations mentioned in Collberg et al [6] aim to modify the in-
heritance relations between different classes by inserting a bogus class or by refactoring.
Refactoring is a technique for finding elements which are common to classes and then
moving these features to a new class. For obfuscation, false refactoring could be per-
formed on classes which have no common behaviour.

We could also use variations of the method transformations described in Section 2.2.6
to obfuscate classes and in Section 2.3.5 we described some transformations that could
be used to obfuscate fields.

2.4.3 Pointers

We can add pointers to a program to help to obfuscate a program since performing
accurate alias analyses is known to be a hard problem. We saw in Section 2.2.5 that the
control-flow flattening technique of Wang et al [34] is strengthened by the presence of
pointers. Collberg et al [5] and Palsberg el al [27] discuss a number of ways in which
pointer structures can be used to create watermarks, for example, by encoding a number
as a linked list or as a tree. Once these structures are created then they could be used
to generate opaque predicates as the pointer is known at obfuscation time and should be
unchanged throughout the execution of the program.

2.4.4 Intermediate Language

All of the example obfuscations we have seen have been targeted at high-level program-
ming languages. However many of the obfuscations can also be applied to intermediate
languages such as Java Bytecode and .NET CIL (Common Intermediate Language). Both
of these languages are stack based and are the compilation targets for different source
languages such as Java and C#.

An advantage of using intermediate languages is that we can add obfuscations that
may not allowed in the source language. For instance, in Section 2.2.3 we saw that we
can add irreducible jumps to confuse the control-flow. In Java and C#, jumps into loops
are not allowed but they can be added at the intermediate language level.

There may also be instructions in the intermediate language that do not have a
direct translation back into the higher-level language. For example, CIL has a type
called a typed reference which creates an object which contains a pointer and a type —
the command mkrefany creates a typed reference and the commands refanyval and
refanytype unpacks the value and type from the typed reference. These types cannot
be easily converted back into legal C# code and so the use of typed references may break
a C# decompiler. So, for example, if we want to obfuscate the local variable V_0 with a
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typed reference then we need a variable V_1 (say) which has type typedref. We replace
a store instruction stloc.0 with

stloc.0
ldloca.s V_0
mkrefany int32
stloc.1

This code block stores the value into V_0 and then puts the address of V_0 and the type
int32 onto the stack which are stored into the variable V_1. For a use of V_0 we replace
ldloc.0 with

ldloc.1
refanyval int32
ldind.i4

The command ldind.i4 loads the value of type int32 (i4 means 4-byte integers) from
an address onto the stack.

It is hard to manually add obfuscations to intermediate languages, particularly those
that aim to obfuscated loops as loops are written using jumps and conditionals. However
there are tools that automatically add obfuscations to intermediate language such as
DashO [30] and Dotfuscator [31].

2.5 Different Classifications

In the previous sections we have discussed various obfuscations according to one of the
categories used by Collberg et al [6] — namely layout, control-flow and data obfuscations.
It has been quite easy to split up our obfuscations using this classification. As some
obfuscations can belong to more than one category — for example, most obfuscations
change the program layout and an array split changes the control-flow as well as changing
the program data — we have classified each obfuscation according to its primary effect.
So an array split is a data obfuscation as it primarily obfuscates the program data by
changing a data-type. This classification also determines what metrics we should use to
measure the effectiveness of an obfuscation. For instance, if we have a data obfuscation
then we should assess its effectiveness using a metric which somehow measures the data
in a program (such as Data-Structure Complexity [24]) rather than one which measures
the control-flow. Thus as well as partitioning the obfuscations, this classification also
instructs us on which metrics we should use to assess the quality of an obfuscation.

Collberg et al [6] subdivided the control-flow and data obfuscations into subcategories
such as aggregation transforms (those which break up or merge computations) and order-
ing transformations (those which change the order of computations). These subcategories
does not appear to as useful as the overall classification as it is harder to completely clas-
sify some obfuscations using these subcategories. For example, an array split can be seen
to be an aggregation transformation and an ordering transformation as the data stored
in the array is broken up into different pieces and in a different order.

24



Another category of obfuscations discussed in Collberg et al [6] are Preventive Trans-
formations. These obfuscations essentially show us how to defend against a specific
attack model — in particular against automatic deobfuscation techniques such as slicing
and statistical analysis. The slicing obfuscations in Drape et al [13] use both data and
control-flow obfuscations to defend against attacks from program slicers. Thus we could
classify our obfuscations according to whether they defended against various attacks.

Another obfuscation classification could be obtaining by grouping the obfuscations
according to how they affected various software metrics. For example, if we consider
Data-Structure Complexity [24] from the Collberg et al definition (Section 1.1) then
array transformations such as splits and folds would increase this measure. This type
of classification would not split up obfuscations into disjoint groups as, for example, the
array split will also increase the cyclomatic complexity [22]. Five slice-based metrics were
proposed by Meyers and Binkley [23] as measures of the quality of software. Majumdar
et al [18] used these metrics to assess the quality of obfuscations, such as inserting bogus
predicates, which were designed to reduce the effectiveness of program slicing. Thus the
obfuscations used by Majumdar et al could grouped together using a metrics classification.
We can also classify obfuscations according to the assertion definition of Drape [9] (Section
1.3). A metrics classification would be similar to an attacks classification as we often use
metrics to measure the effectiveness of attacks.

Part II

Evaluation

3 Intellectual Property Protection report

We now discuss the project report “Intellectual Property Protection” written by Stefan
Vogl, Emanuel Mathis, Martin Ortner and Georg Schönberger from the University of
Applied Sciences of Upper Austria, Hagenberg [33]. This report was written as part of
a semester project on behalf of Siemens and, henceforth, will be referred to as the IPP
report.

The report considers various protection methods, including obfuscations, which aim
to protect the Intellectual Property of programs. Three different programming languages
(and associated lower level languages) were considered: ANSI-C (with MS-DOS), Java
(with Bytecode) and C# (with .NET CIL).

We will summarise the main findings of the report and discuss the protection tech-
niques consider with a particular focus on obfuscation techniques. We will concentrate
on the methods rather than the specific protection tools used — further details of the
tools can be found in the report [33].
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3.1 Measurements

For each of the protection methods, the IPP report uses a variety of measures to judge
the effectiveness of each of the protections. The report uses the following measures to
answer different questions on a five point scale:

• Ease of Integration How easy is it to protect an application? Is the protection
process automatable or scriptable? (1 means “very easy”)

• Complexity What is the level of protection? How hard is it to read and understand
the protected code? How hard is it to automate a process which will reverse the
protection? (1 means “low complexity”)

• Maintainability Is it possible to apply patches and hotfixes? (1 means “hard to
maintain”)

• Mutation of code How much code has been modified or appended? (1 means
“little change”)

• Error Tracing How easy is it to trace errors/exceptions? (1 means “hard to trace”)

• Antivirus behaviour Does the protected file appear suspicious to virus scanners?
(1 means “very suspicious”)

These properties were measured on a five point scale and we summarise the results for
each of the protection methods that we will discuss.

As well as these measures, for each protection method, the IPP report also discussed
Functionality Impact — measured on a three point scale (None, Partial and Full) — File
Size and Known attacks (in particular, whether the protection has been defeated).

3.2 Protection Methods for C and DOS

The IPP report first considers programs written in ANSI-C and the associated PE
(portable executable) files that are created when compiling the programs. The PEs were
then disassembled to an MS-DOS assembler language and the program protections were
applied at this level. This means that the protections are used at quite a low-level and
thus most of the obfuscations described in Part I would not be suitable as protections for
the disassembled code.

3.2.1 Assembler Obfuscation

The IPP report discusses some obfuscations which can be applied to assembler code.
It is possible to interleave different instructions, if the machine architecture supports
pipelining, so that the execution of multiple instructions can be overlapped. Since this
process is often performed by compilers it would be hard to add obfuscations that would
deliberately interleave instructions as the compiler may remove these transformations in
the compilation process. Similarly, the use of “non-intuitive” instructions was discussed
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— for example using a left shift instead of multiplying by a power of two — but the
compiler may perform such transformations if they speed up the execution of the code.

An example of a control-flow transformation was discussed next. Suppose that we
have that following piece of code:

main()
{ FunctionA();

FunctionB(); }

FunctionA()
{ FuncAPart1();

FuncAPart2();
FuncAPart3(); }

FunctionB()
{ FuncBPart1();

FuncBPart2();
FuncBPart3(); }

This can be transformed to

main:
jmp FAP1

FBP3: call FunBPart3
jmp end

FBP1: call FuncBPart1
jmp FBP2

FAP2: call FuncAPart2
jmp FAP3

FBP2: call FuncBPart2
jmp FBP3

FAP1: call FuncAPart1
jmp FAP2

FAP3: call FunAPart3
jmp FBP1

end:

and we could rename the labels and the function calls to make the order of execution less
obvious. The kind of transformation is similar to the Method Interleaving transformation
that was discussed in Section 2.2.6. A further transformation was be made to the code by
adding opaque predicates (see Section 2.2.1). So, for example, the instruction jmp FAP1
above was transformed to
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cmp 1,2
jnz FAP1

which compares 1 and 2 and then performs a jumps if the two values are not equal — the
other predicates were of a similar form. The predicates given where very trivial and it
is possible that an optimising compiler may remove such predicates as the jumps can be
statically determined. Adding more resilient predicates into assembly language is hard
to do since it is a low-level language.

Another assembly language obfuscation discussed was token renaming, which was
discussed in Section 2.1. The report shows an example using a renaming transformation.
In C, the code looks very different after the transformation and is much harder to read.
But the new code requires an extra header and so many of the renaming for functions, such
as printf, can be seen. However, at assembly language level, there are some similarities
between the code before and after the transformations. Some of the standard function
calls are replaced by calls to renamed methods but as some of the output strings are
visible then it is possible to determine which calls represents printf. There is also no
guarantee that these renamings would survive the compilation/decompilation process.

The obfuscations which were used to try to protect assembly code were fairly trivial
and they do not provide sufficient protection as the obfuscations could be removed by
an optimising compiler. As stated earlier, it is hard to add strong obfuscations to such a
low-level language.

3.3 Other protection methods

We now briefly describe some of the other (non-obfuscation) protection methods for
assembly code that were discussed in the IPP report.

• Code Virtualisation changes commands that are understood by (say) x86 pro-
cessors into commands that can only be read by custom virtual machines. The
report discuss how code virtualisation makes the job of a reverse engineer more
difficult but sometimes it is possible to figure out some details of the code as strings
and constants are not changed. Code virtualisation can slow down the performance
of code as the code has to be transformed from the virtual machine to the real
processor.

• An application called a PE Protector uses a variety of protection techniques
such as optimisations and compressions as well as tricks to hinder debugging and
tracing. Although the application uses a variety of methods, the report mentions
that tutorials exist showing how to reverse the protection.

Measures (described in Section 3.1) for the three protection methods we have discussed
can be seen in Table 1.

The methods used to protect C programs were used on a specific assembly language
in MS-DOS. The report does not really consider whether different operating systems or
compilers would make a difference to the protection methods.
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Metric Assembler
Code PE

Virtualisation Protector
Ease of Integration 2 3 3
Complexity 1 3 4
Maintainability 5 1 1
Mutation of Code 2 5 4
Error Tracing 4 4 1
Anti-Virus Behaviour 5 5 2

Table 1: Metric measures for the C protection methods

4 Protection Methods for C# and Java

Programs written in Java and C# (and other languages for the .NET framework) are
compiled into an intermediate language, for Java the intermediate language is called
Java Bytecode and for .NET it is called the Common Intermediate Language (CIL).
Compiled programs can be distributed to a variety of platforms and architecture as it
is only necessary to have a virtual machine (such as the JVM) which can Just-In-Time
compile the intermediate language to the native machine code.

The intermediate languages are typed, stack-based languages and are human readable
(although CIL is more complicated than Bytecode as CIL is designed to be the compilation
target for a variety of languages). It is possible to decompile the intermediate language
back into a higher-level language, for example, using a tool such as the Salamander .NET
decompiler [28]. Thus if we want to prevent reverse engineering then we have to protect
our code. The IPP report examines various protection methods which were applied at
the intermediate language level. The attack model for these protection methods is that
it is assumed that an attacker is armed with an automatic decompilation tool and so it
is the aim of the protection methods to make the decompilation process harder.

4.1 Obfuscation tools for C# and Java

First, we will briefly look at the some of the obfuscations for Java and .NET which were
discussed in the IPP report. Measures (described in Section 3.1) for the methods in Java
can be seen in Table 2 and for those in .NET can be seen in Table 3.

4.1.1 Shrinking

For Java, a technique, called shrinking, was considered as a protection method. The
aim of shrinking is to remove information, such as debugging information, from bytecode
which is not needed to execute the program. This transformation can be considered as a
layout obfuscation (see Section 2.1) as the main aim of the transformation is to change
the “look” of the program rather its flow or data structures. The IPP report show an
example of a main method which had the shrinking transformation applied to it. After
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Metric Shrinking Name String Flow
Ease of Integration 5 4 2 2
Complexity 4 2 3 3
Maintainability 3 3 5 5
Mutation of Code 4 3 3 3
Error Tracing 2 3 5 5
Anti-Virus Behaviour 5 5 4 5

Table 2: Metric measures for the Java protection methods

Metric Name String Flow
Ease of Integration 3 5 5
Complexity 2 3 3
Maintainability 5 4 1
Mutation of Code 1 1 3
Error Tracing 3 1 2
Anti-Virus Behaviour 5 5 5

Table 3: Metric measures for the .NET protection methods

shrinking, some of the methods in the original class do not seem to appear in the new
class (because they have been removed from the variable table), some names are renamed
and it was not possible to fully decompile the bytecode into Java. However, analysing
the bytecode instructions for the original and shrunken main method shows that there is
little difference between the two methods. This means that an attacker can still see what
the program does by inspecting the bytecode even if the program cannot be decompiled.

4.1.2 Name Obfuscation

A protection method that was applied to both Java and .NET programs was called
Name Obfuscation — which we mentioned as a layout obfuscation in Section 2.1. Name
obfuscations aim to change meaningful identifier names into ones which do not help an
attacker understand what a program does. This type of transformation can be used to
try to protect “sensitive” areas of a program such as those that deal with license checks
or password verifications.

The IPP report applied renaming tools to example programs at the intermediate
language level. After renaming, the example programs could be completely decompiled.
Comparing the before and after programs, it could be seen that the structure of the
programs was the same. The only significant difference was that the some methods were
renamed to the same method name — this is possible if the methods have different type
signatures.

The IPP report noted that it is not possible to rename standard library calls such
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as routines which print text to the screen. It is also not possible to rename methods or
variables that may be used outside the obfuscation scope and so we may have problems
renaming public methods.

4.1.3 String Encryption

Identifier names can often useful information to an attacker wanting to understand what
a program does. In the previous section, we mentioned a transformation that aimed to
change the names of identifiers as names can often give hints to attackers. An attacker
may also consider the text strings of a program to try to understand what a program
does. As mentioned earlier, variable renaming is useful to protect “sensitive” program
areas but we should also transform strings (such as “Please enter your password”) which
give information to an attacker.

The IPP report discussed the use of string encryption as a protection method and
showed some example transformations. A string encryption transformation aims to re-
place all the strings (and the associated calls to a print method) with a call to a new
method. Each time this new method is called a parameter is used so that the appropriate
string can be outputted. This transformation can be considered as a data obfuscation
(see Section 2.3).

Since all the strings need to be printed out correctly the obfuscated program will
contain a method which handles the decryption and formatting of the strings. If an
attacker can find this method then it would be possible for the attacker to change the
code and force all of the strings to be decrypted and printed out. This means that an
attacker could use these strings to find any areas of interest (such as passwords checks).
Thus string encryption alone is not sufficient to protect a program.

4.1.4 Flow Obfuscations

None of the transformations considered so far for Java and .NET have significantly
changed the structure of the programs. The IPP report applied flow transformations
to some for loops written in Java and C#.

A for loop such as

for (int i = 0; i < N ; i + +)
{ [body] }
[after loop]

is transformed into something like this in .NET CIL:

.method example()
{

.locals init(
[0] int32 i,
[1] int32 N,
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... )
L_11: ldc.i4.0
L_12: stloc.0
L_13: br_s L_09
L_21: [body]

...
L_31: ldloc.0
L_32: ldc.i4.1
L_33: add
L_34: stloc.0
L_41: ldloc.0
L_42: ldloc.1
L_43: ble.s L_04
L_51: [after loop]

A loop in intermediate language consists of four parts. The first part (labels L_11 to
L_12) consists of the initialisation of the loop which then jumps to the test. The second
part (L_11) is the main loop body and the third part is the increment of the induction
variable (in labels L_31 to L_34). The final part of the loop (from L_41 to L_43) contains
the loop test — if the test is true then there is a jump back to the loop body; otherwise
the loop finishes.

For Java, a for loop was transformed at the bytecode level using an obfuscation tool.
The tool mainly added two new items to the bytecode. Firstly, an instruction athrow,
which throws an exception, was added in between the loop initialisation and the body.
Since there is a branch immediately after the initialisation and the code will eventually
jump back to the top of the loop body, it is possible to add bogus in between these parts
as it will not be executed. Note that this does not create an irreducible jumps as the
bogus code does not jump into the middle of the loop. Similarly, a bogus block of code,
which contained some goto statements, was added after the main method. Both of these
additions meant that the bytecode could not be fully decompiled.

For .NET (and CIL), the transformation to obfuscate loops tried to complicated
the control-flow by adding a switch statement. The new switch block appear near the
beginning of the transformed code and contains a list of branch targets — each of the
targets correspond to a particular part of the loop. The switch statement uses a new
local variable which it set to the appropriate value (corresponding to the list of branch
targets) at various points in the program. The transformation is similar to the control-
flow flattening transformation described in Section 2.2.5. The IPP report shows the IL
code before and after the transformation but does not give the output (or error message!)
of any attempt to decompile the transformed code. However it is possible to manually
trace the program to work out the control-flow.

Both of the loop obfuscations considered aimed to change the control-flow so that it
becomes difficult for an automatic tool to decompile the IL code (we can consider this to
be the attack model). While the transformations did change the control-flow structure
of the loop (and indeed made the decompilation harder) the main body of the loop was
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left unchanged and it was also fairly easy to manually identify the various parts of the
loop. The IPP report also mentions that (in common with many obfuscations) these
transformations increase the code size and could impact on the efficiency of transformed
programs.

5 Summary

The IPP report considered a variety of protection methods (including some obfuscating
transforms) for some different situations.

We can classify the obfuscating transforms using the classification given in Section 2:

• Layout Obfuscations: Name obfuscations for Java and C# (discussed in 4.1.2),
token renaming (Section 3.2.1) and shrinking for Java (Section 4.1.1) are layout
obfuscations.

• Control-Flow Obfuscations: The flow obfuscations considered by the IPP report
were the use of opaque predicates to confuse assembler control-flow (Section 3.2.1),
adding bogus code between flow blocks in bytecode (Section 4.1.4) and using switch
blocks in CIL.

• Data Obfucations: The only obfuscation discussed by the IPP report that could
be considered to be a data obfuscation was string encryption (Section 4.1.3).

As mentioned in Section 2.1, layout obfuscations are commonly used in automatic
tools but flow and data obfuscations are less so. There was only one obfuscation, namely
string encryption, that could be considered as a data obfuscation and as discussed in Sec-
tion 4.1.3 it is not a strong protection method. One of the example programs considered
by the IPP report used arrays (a Java password program) but the obfuscations consid-
ered did not obfuscate these arrays and none of the obfuscations attempted to change
the variables (other than by changing the names). It was not clear whether the lack of
good data obfuscations was specific to the specific obfuscation tools considered or if data
obfuscations are not generally implemented in commercial obfuscators.

The assembler obfuscation used trivial predicates to obfuscate control-flow. Since
the assembler language is a very low-level language then it is hard to write more com-
plicated predicates. It would be interesting to see if such predicates could be written
in the high-level language (in this case using C) but there would be no guarantee that
these transformations would survive the compilation/decompilation process. Since the
compilation of Java and C# (and other languages in the .NET framework) programs
use an intermediate language then it should be possible to add in obfuscations that are
specific to the intermediate language that try to make the decompilation process harder.
In Sections 2.2.3 and 2.4.4 we discussed some transformations that would be suitable as
obfuscations to prevent decompilation. However, none of these decompilation preventa-
tive transformation have been implemented in the tools considered by the IPP report.
As with the lack of data obfuscations, it is not clear whether this is due to the particular
tools considered or indicative of commercial obfuscators.
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In Section 1.5 we considered some metrics that have been used to try to measure
the effectiveness of obfuscations. We discussed the problems with defining obfuscations
and when designing obfuscations and metrics we should aim to defend against particular
attacks (i.e. the attack model). In Section 3.1 we discussed the measurements that
the IPP report used to evaluate the different protection methods. Only the Complexity
measure gives an indication of the quality of an obfuscation — the others mainly measure
the impact of the obfuscations on the code such as whether the transformed code is easy
to maintain or whether the transformation is easy to apply to the code. It is not clear
from the IPP report how the complexity measure was calculated. The most complex
obfuscation according to the complexity measure was the shrinking transformation for
Java (Section 4.1.1) with a score of 4. This high score seems to be due to the fact that
the code after applying shrinking could not be fully decompiled although the bytecode
looks very similar before and after the transformation. However, the flow obfuscations
(Section 4.1.4) had lower scores but the programs could not be fully decompiled and the
programs look different (and in the case of the flow obfuscation for .NET, the IL code
has been restructured). It is unclear why the shrinking obfuscations scores higher despite
having a similar effect to the flow obfuscations.

In Section 2 we discussed a number of different obfuscation techniques including a
number from Collberg et al [6]. We have seen that the IPP report has considered a range
of different protection tools but these tools did not use many of the obfuscation that we
discussed in Section 2. Our aim now will be to consider what obfuscation methods might
be contained in the next generation of obfuscation tools. Thus we will consider some of
the obfuscations from Section 2 that were not surveyed in the IPP report and discuss
whether they can be implemented easily.

Part III

Overview

6 Review of different techniques

As we stated in Section 2.1, layout transformations are often implemented by obfuscation
tools. This statement is supported in the IPP report [33] which discussed a number
of different layout obfuscations: namely assembler language renamings (Section 3.2.1),
Java and C# renamings (Section 4.1.2) and shrinking for Java (Section 4.1.1). Layout
transformations affect the syntax of programs and are generally concerned with how the
program “looks” not with the semantics of the program. As discussed in Section 4.1.1,
some layout transformations do not have any effect on a program at intermediate language
level (because compilers and decompilers will perform their own renamings) and so layout
transformations are considered to be weak obfuscations.

In the rest of this section we will consider some of the obfuscations discussed in Section
2 to see whether they were considered in the IPP report. We will also discuss some of
the problems associated with trying to automate these obfuscations.
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6.1 Problems with Creating Opaque Predicates

We considered opaque predicates in Section 2.2.1 and showed how they can be used
with a variety of transformations such as creating irreducible flow graphs (Section 2.2.3),
loop transformations (Section 2.2.4) and exceptions (Section 2.4.1). However the only
tool investigated in the IPP report [33] that used opaque predicates was the Assembler
Obfuscation (Section 3.2.1) and as we discussed earlier the predicates were simple and
could be removed by an optimising compiler. As discussed in Section 2.2.1 it is difficult
to generate suitable opaque predicates which are hard to break (i.e. they are not trivially
true) and stealthy (see Section 1.1). Collberg et al [7] proposed some predicates such as
x2(x + 1)2 ≡ 0 (mod 4) and 7y2 − 1 6= x2 which are based on mathematical identities.
These predicates may not be stealthy and so attackers may concentrate on trying to
remove them. Also, the predicates are true for all integers and not just at the particular
program points that they are used. In Section 2.4.3 we discussed how Collberg et al [5]
and Palsberg et al [27] created data structures using pointers which could be used to
generate opaque predicates. However these predicates suffer similar problems as they are
not stealthy (due to the fact that a generated data structure is lurking in the program)
and the code for generating the structure would be contained within the program itself
which would make it reasonably straightforward to compute the values of the predicates.
Palsberg et al also proposed dynamically opaque predicates which are a set of predicates
which all evaluate to the same value in each run. It appears that no obfuscation tool has
implemented such a set of predicates since it is hard to find a group of statements which
could be obfuscated using these predicates. We saw in Section 2.2.2 that using just two
linked predicates require us to have a set of conditions for the predicates and statements
— a large set of predicates would require more complex conditions.

We could instead try to use program invariants as predicates. Using invariants could
address the problems with the mathematical identities proposed by Collberg et al as the
invariants should be stealthy as they relate specifically to the program and the invariants
may not be true throughout the whole program.

An example of using invariants to create opaque predicates was given in Majumdar et
al [19]. The paper used various obfuscation techniques, aimed to decrease the usefulness
of program slicing, on an example word count method. The unobfuscated method, written
in C, was as follows:

word count()
{ int c, nl = 0, nw = 0, nc = 0, in;

in = F ;
while ((c = getchar())! = EOF)
{ nc ++;

if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;
else if (in == F ) {in = T ; nw ++; }

if (c ==′ \n′) nl ++; }
out(nl, nw, nc); }
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word count()
{ int c, nl = 0, nw = 0, nc = 0, in = F ;

while ((c = getchar())! = EOF)
{ nc ++;

if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;
else if (in == F ) {in = T ; nw ++; }

if (c ==′ \n′)
{ if (nw <= nc) nl ++; }

if (nl > nc) nw = nc + nl;
else { if (nw > nc) nc = nw − nl; } }

out(nl, nw, nc); }

Figure 1: Obfuscated word count method

In the method, nc represents the number of characters, nw the number of words and nl
the number of lines. As nc is always incremented for every character, in the loop we have
the following invariant

nc ≥ nw ∧ nc ≥ nl (4)

Note that if a normal piece of prose was the input then we would expect that nw ≥ nl
but this is not always the case (suppose that we had a file that just consisted of newline
characters) and so we cannot use this as a predicate.

If the method above is backwards sliced from the out statement (which represents
some output from the method) with nl as the slicing variable then the only statement in
the body of the loop that is in the slice is

if (c ==′ \n′) nl ++;

To make the rest of the body of the loop appear in the slice we can use the invariant (4)
to make bogus conditional statements — the obfuscated method can be seen in Figure
1. These conditionals create false dependencies between the three variables and so the
whole loop body will be included in the backwards slice for any of the three variables
from the end of the method.

To remove these predicates, an attacker would need to understand the program itself
rather than just spot mathematical identities (as with the predicates mentioned earlier).
However, as with all opaque predicates, it is possible to run a tracer over the program
which would show that the bogus predicates evaluate to the same value in every run.

Having chosen a suitable opaque predicate, the obfuscator has now to decide where
to place the predicate. Using an invariant based predicate restricts the scope of the
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Top Level
block
⇒

switch (var)
{ case A : block; var = B; break;

case B : end; }
Sequence

case A : {p; q}; var = B; break;
⇒

case A : p; var = C; break;
case C : q; var = B; break;

Conditional
case A : if (c) {p; } else {q; }; var = B; break;
⇒

case A : if (c) var = C; else var = D; break;
case C : p; var = B; break;
case D : q; var = B; break;

Loop
case A : while (c) q; var = B; break;
⇒

case A : if (c) var = C; else var = B; break;
case C : q; var = A; break;

Figure 2: Rewrite rules for control-flow flattening

placement to the places in the program where the invariant holds. When creating slicing
obfuscations, Majumdar et al usually place obfuscations just before the slicing point so
that false dependencies could be created. Also, as we discussed in Section 2.2.1, opaque
predicates can be used in the middle of a method to extend the scope of a variable.

6.2 Flattening

In Section 2.2.5 we discussed the control-flow flattening described in Wang et al [34]
and how a tool for x86 language [17] had been developed. We also saw in Section 4.1.4
that a variance of the flattening tool was implemented for CIL. So there are tools that
implement control-flow flattening for low-level languages but it should be possible to
apply this transformation to source code.

Figure 2 describes a possible set of rewrite rules for flattening source code control-flow.
The Top Level rule creates a switch statement for an entire block of code and should
only be applied once. Each of the other three rules are used to deal with different cases
in a block of code. Note that in the rules, the labels C and D denote fresh labels which
have to be created. The Sequence rule can be used to break up a block of code into
different statements — this transformation can be used to separate contiguous pieces of
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code by using labels which are not consecutive. The Conditional rule is should not be
used on conditional statements which are already of the form

if (condition) var = v1; else var = v2;

(these statements actually do not match our rewriting rule). Finally, the Loop rule is
used to remove while loops. Note that this rule can deal with nested loops and will
include such loops within the same switch statements. So we can use these rules to
perform flattening on source level code — in fact, we can easily produce the flattening
examples we gave in Section 2.2.5 (with different label names) using these rules. The only
situation in which we would have difficulty using these rules is if we already had a switch
statement in our block of code. In that case, we would have to “inline” the inner switch
statements by using the same switch variable and renaming the labels as necessary.

6.3 Creating Loop Transformations

Creating loop transformations at the intermediate language is difficult as we have to be
able to identify loops in the code before we can perform transformations. We would need
to identify the header, the body and the exits of the loop and the presence of nested
loops makes the identification much harder [1]. So it would be easier to apply loop
transformations at the source code level.

Loop obfuscations are particularly helpful in creating dependencies between different
variables — adding these dependencies is the key to producing obfuscations which impede
the usefulness of program slicing [13]. For example, suppose we want to find the backwards
slice for a variable x. To obfuscate the slice we want to make x depend on different
variables and so increase the size of the slice. Consider the code fragment:

while (i < N)
{ ...

S : x = ... y ...

... }

The variable x is dependent on the variable y but, as we are in a loop, the statements
in the loop that occur after S (in addition to those that come before S) will be included
in the backwards slice. The variable x is also dependent on the induction variable i. As
mentioned in Section 2.2.4 we can introduce a bogus induction variable j (say) by adding
a condition for j into the loop guard and we can then use j to create dependencies
between the variables in the loop. We have to ensure that the condition for j is invariant
during the execution of the loop but could false elsewhere in the program. Full details of
this transformation can be found in Majumdar et al [19]. Another loop transformation
discussed in Section 2.2.4 that is useful for obfuscating slices is to extend the scope of
an induction variable. For this transformation we need a number of safety conditions to
ensure that we can extend the scope safely.

In Section 2.2.4 we mentioned some of the loop obfuscations discussed by Collberg et
al [6] such as unrolling, fission and blocking. As we stated earlier, these transformation
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may be performed by an optimising compiler and so any obfuscations that we add using
these loop transformation may be altered in the compilation phase. Collberg et al [6]
mention that these transformations could be removed fairly easily but that a stronger
obfuscation could be achieved by combining these transformations. The stealthiness of
these transformations could also be an issue — for example, if an attacker sees a number
of nested loops then the attacker may suspect that loop blocking has taken place.

6.4 Data Obfuscations

In our summary of the IPP report (Section 5) we noted that string encryption was the only
obfuscation discussed by the IPP report that could be considered to be a data obfuscation.
However, in Section 2.3, we discussed a number of different data obfuscations — why were
none of these obfuscations implemented by the tools discussed in the IPP report?

One of the main reasons that obfuscation tools rarely implement data obfuscations is
that they are generally hard to automate. String encryption (discussed in Section 4.1.3)
generally encrypts all strings at every point in the program (usually by replacing strings
by a method call) and so this means that string encryptions are easier than most data
obfuscations to automate. Moat other data obfuscations require the obfuscator to select
a particular variable to obfuscate. Also, in Section 2.3.1 we saw that it is possible to
localise where we apply a data obfuscation which gives an obfuscator freedom to choose
where to place a data obfuscation.

No array obfuscations were amongst the techniques considered in IPP report. We
are unsure whether the lack of array obfuscations is due to specific obfuscation tools
or specific programs considered or if array obfuscations are just not implemented in
commercial obfuscators. Array obfuscations are generally harder to implement due to
the conditions needed to ensure that we can safely transform an array (for instance, we
may have arrays that are globally used or are entirely passed between methods). Some
conditions for finding arrays which are suitable for splitting and a specification of array
splitting for intermediate language were given in Drape et al [11]. However, we can specify
all of the array obfuscations discussed in Section 2.3.4 using the framework described in
Section 2.3.1 (see Drape et al [12, 14] for more details). Thus we can localise any array
obfuscation so that it can be applied where it is safe to do so. This means that we can
obfuscate an array in a particular method and then remove the obfuscation before it is
passed to another method.

6.5 Review of Language Dependent Transformations

In Section 2.2.3 and 2.4.4 we discussed some transformations that could be used to obfus-
cate intermediate languages. As we mentioned earlier, higher level languages such as C#
and Java do not allow jumps into the middle of loops but we can write these bogus irre-
ducible jumps in the relevant intermediate language. This would mean that a decompiler
would have problems trying to re-construct the source code since the irreducible jump
would have to be turned in a reducible one. Thus the code produced may be incorrect
or the loop would have to be removed. However, none of the transformations considered
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by the IPP report tried to create irreducible jumps. This might be due to the fact that
when creating a bogus jump we have to use an opaque predicate and, as we discussed
in Section 6.1, good opaque predicates are harder to create. Also, as we mentioned in
Section 6.3, it is hard to create loop obfuscations at the intermediate language level and
it is also hard to create suitable opaque predicate at this level too.

In Section 2.4.4, we mentioned how we can create obfuscations using intermediate
language instructions which do not have a direct translation to source code. We showed
how to use typed reference which can be used to obfuscate an variable and we gave rewrite
rules for assignments and uses of the variable. The rewrite rules need to be applied to all
occurrences of the variable and we may encounter problems if the variable is passed to
another method (however the simplest thing to do would be to localise the obfuscation
to a single method and unobfuscate the variable before it is passed to another method).
Also, this obfuscation is not stealthy since this transformation uses instructions which are
not commonly used — the use of these instructions may appear suspicious to an attacker.

In Section 2.4.1 we discussed ways in which exceptions could be used to create ob-
fuscations. One transformation showed how we could exit from a loop by throwing an
exception. Another used an opaque predicate to fake an exception to obscure the control-
flow but, as with all transformations that use opaque predicates, this obfuscation may
be hard to implement as it requires finding a suitable predicate to use. When adding
exception obfuscations we must ensure that the new exception handling does not inter-
fere with the exceptions which may be thrown by the original program. One of the Java
bytecode obfuscations considered by the IPP report [33] (mentioned in Section 4.1.4)
inserted an exception (using athrow) into a bogus part of the code. The exception was
placed between the initialisation and body of a loop in a part of the code that is never
executed. As intermediate languages generally have less structure than source code, it is
often harder to identify parts of the intermediate code which are not executed and thus
make it easier to insert bogus code at the intermediate language level.

In Section 2.2.6 we mentioned a number of method transformations that we given in
Collberg et al [6]. Two method obfuscations were considered in the IPP report. The first
(described in Section 3.2.1) was similar to the method interleaving described in Section
2.2.6 — control-flow between the various fragments was handled by jumps. The second
(discussed in Section 4.1.2) was the standard renaming transformation but applied to
method as well as variable names. As we mentioned earlier this transformation is safe
if the methods have different type signatures. Method transformations are much harder
to implement than many of the other transformations that we have discussed. The
conditions for ensuring that a method transformation is safe to perform need to take into
account the program (rather than just a specific portion of a program) as a method could
be called from any place in the program. Also, if a method is part of the interface of a
program then we may not be able to transform the method.

6.6 Automation Problems

In the last few sections, we discussed a number of different techniques and identified
some of the problems that may occur when trying to implement and automate these
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obfuscations.

6.6.1 Placement

One of the main concerns with creating obfuscations is deciding where the “best” places
are to put obfuscations. For example, if we had a program with some loops, which loop
(or set of loops) should we choose to obfuscate? An obfuscation may slightly slow down
the execution of a program so choosing a loop that is executed many times or one that
has a large loop body may adversely slow down a program. Conversely choosing a small
loop or one that is executed rarely may not result in an obfuscation that is sufficiently
complex to deter an attacker. Even when we have decided on which loop to obfuscate,
should we add in a bogus variable, try one of the optimising compiler transformations
or try to extend the scope of the induction variable to a neighbouring loop? In Section
2.2.4 we mentioned that we can fake a loop but which block of code should we apply this
transformation to?

A similar problem arises when applying data obfuscations, namely which variable
should we choose to obfuscate? If we choose a variable that is used extensively throughout
a program and choose an obfuscation that slows down execution then we risk affecting
program performance. We also have to decide whether we want a variable to be obfuscated
for the entire scope of the variable or whether we want to localise the effect.

When creating slicing obfuscations, Majumdar et al [19] first used a program slicer to
analyse a program. The output variables (for example, those that are part of a printf
statement) were used to determine the slicing criterion for backwards slices of the pro-
gram. Obfuscations were then added to the program essentially to try to increase the
size of the slice for each output variables by trying to include parts of the program that
were not contained in the original slices. The approach determined which variables to
obfuscate and where to place obfuscations. Thus we should try to use attack tools to aid
us in deciding the places were our programs are “vulnerable” which will help us decide
where to place obfuscations. Note that the obfuscations in Majumdar et al [19] were
added manually and it would be interesting to see if the creation of slicing obfuscations
could be implemented in an obfuscation tool.

6.6.2 Stealth

As we mentioned in Section 1.1 the notion of the stealth of an obfuscation is context
sensitive. This means that a transformation that is stealthy (i.e. it does not “stand out”)
when applied to one program is not necessarily stealthy when used with another program.
Thus when using an automatic obfuscation we cannot be sure whether an obfuscation
will be stealthy as we cannot easily measure the “context” of a program. Thus we will be
restricted to using more general obfuscations that can be applied to a variety of situations
and so we may not be able to use more complex obfuscations.
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6.6.3 Applying different obfuscations

If we build a tool that contains a number of different obfuscations then it is possible that
many different obfuscations could be applied to the same piece of code or variable. Thus
we need to be aware of the effect of applying two obfuscations to the same piece of code
and so we will need to consider the resulting obfuscation obtained by composing two
different obfuscations together. For example, using the array transformations discussed
in Section 2.3.4, suppose that we split an array A into two arrays B1 and B2 using the
odd/even split (so elements of A with even indices go into B1 and the rest into B2). If
we now use the array merge described in Section 2.3.4 which effectively concatenates two
arrays then we will obtain an array which has the same elements as A but in a different
order. However, if we merge the arrays by interleaving, i.e. taking one element from B1

and then one from B2 and so on, then we will get A back again. This process is illustrated
below:

[0, 1, 2, 3, 4, 5, 6]
↓ split

[0, 1, 2, 3, 4, 5, 6]
interleave←− [0, 2, 4, 6] [1, 3, 5]

concatenate−→ [0, 2, 4, 6, 1, 3, 5]

So, by applying two different obfuscations we could in fact remove the original obfuscation.
But, on the hand, we may find that applying two different obfuscations may yield a more
complicated transformation such when we applied a concatenate merge after a split.
Using the specification framework of Drape et al [14] we will be able to work out the
resulting obfuscation obtained by composing two data obfuscations. Another issue that
we need to consider when applying two obfuscations is that the order in which we apply
the obfuscation. For example, if we have a single array then we not be able to apply an
array merge first but if we split the array first then we could perform a merge.

6.6.4 Intermediate Language vs. Source Code

The IPP report [33] considered applying obfuscation at the intermediate language level.
Obfuscations such as language breaking transformations (Section 6.5) and adding ir-
reducible jumps are easier to add at the intermediate level than at source code level.
However, there are some obfuscations such as loop transformations (see Section 6.3) that
are harder to add at the lower level. Thus when creating an obfuscation tool we should
have the flexibility to add transformations at both the intermediate and source code levels
as appropriate.

6.6.5 Other issues

We now briefly summarise some of the other issues we need to consider when trying to
implement obfuscations.

• We need to decide on how many obfuscations we apply to a program and how many
times we apply one particular obfuscation. A limit of the number of obfuscations

42



that we apply to a program is important to ensure that we do not adversely affect
the speed of the program.

• We have seen that it is hard for an automatic tool to decide where to place ob-
fuscations and to choose suitable candidates for variable obfuscations. Often it is
easier for a programmer to choose the suitable variables for obfuscation and so it
would be useful if a programmer could annotate the program to give hints to an
automatic obfuscator. Annotations could also be used to indicate invariants which
could be used to create opaque predicates.

• We have not considered how to apply obfuscations across methods. For example, if
we select a variable for obfuscation should we limit the scope of the obfuscation to
a single method or to all the places where the variable is used?

• Some obfuscations have conditions that describe when they can be applied (such
as when it is “safe” to apply an obfuscation). An automatic obfuscator needs to be
aware of such conditions and has to have a mechanism for checking the conditions.

7 Looking to the Future

So far we have surveyed various obfuscation techniques and the IPP report [33] evaluated
some protection tools— however we found that the obfuscations contained in these tools
were not very potent. We would like to develop more successful obfuscations than the
ones that are commonly found in protection tools and we have discussed a number of
issues that may hinder the successful implementation of more productive obfuscation
techniques.

In the rest of this section we will try to predict which obfuscation techniques we think
can be implemented quickly, which techniques will have a small latency before they can
be successfully implemented and finally those which we feel will require more research
and analysis before implementation can be achieved.

7.1 Immediate

Now, we propose some obfuscation techniques which we believe can be created fairly
quickly.

• In Section 1.4 we discussed how Drape et al [13] proposed creating obfuscations by
first attack a program with a program slicer. We could extend this method to cover
other attack tools such as pointer analysis and theorem provers. The results from
these tools could help us in creating obfuscations that would guard against future
attacks using these tools.

• In Section 2.2.3 we saw that we could create irreducible jumps in intermediate
language. To create irreducible jumps, a loop needs to be identified (in Section
4.1.4 we gave an outline for what a for loop looks like in IL) and then a jump can
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be created using an opaquely false predicate. For the short term, as the aim of the
transformation is to make decompilation harder, a simple predicate could be chosen
to use for the creation of the jump.

• Another intermediate language transformation that we could implement is to look
instructions at the intermediate level which cannot be easily translated into higher
level code. The aim of adding code which use such instructions is to impede the
decompilation process. In Section 2.4.4 we gave an example of a possible set of
instructions for CIL.

• In Section 2.1 we saw a number of layout obfuscations and we mentioned that
this type of transformation is popular in protection tools (as witnessed by the IPP
report [33]). Instead of performing the routine layout obfuscations, deliberately
malicious layout obfuscations, such as renaming variables to misleading names or
documenting comments which do not describe the true intent of the program, could
be added.

7.2 Short Term

We now describe some techniques which require some further study but should be rea-
sonably straightforward to implement.

• In Section 2.2.1 we discussed opaque predicates and in subsequent sections we
showed how such predicates could be used in the creation of obfuscations. It is
hard to create suitable opaque predicates but in Section 6.1 we discussed how Ma-
jumdar et al [19] used program invariants to manufacture opaque predicates. So
when code is developed a programmer should try to document suitable invariants at
various program points. However if the code is modified then it may be necessary
to modify the invariants (but if the code is modified in a “functional” way then it
should be possible to recompute the invariants). The invariants can then be used
to manually add obfuscations.

To automate this process it will be necessary to have some way of converting the
documentation of predicates into creating predicates and also some way of docu-
menting suitable invariants — this might be a longer term goal.

• In Section 2.2.5 we saw a technique for flattening control-flow and we discussed
how this transformation had been implemented for x86 code. In Section 6.2 we
gave some rewrite rules which should enable flattening to be implemented at source
code level. Wang et al [34] also discussed some extra obfuscations which can be
added and so any source code implementation should also include extra levels of
protection.

• In Section 2.3.4 we described a number of array obfuscation from Collberg et al [6]
and, as we mentioned in Sections 5 and 6.4, none of techniques considered in the
IPP report [33] used array obfuscations. Drape et al [11] gave a specification for an
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array split including safety conditions. As we mentioned in Section 6.4, the array
obfuscations discussed by Collberg et al [6] can be specified using the framework
described in Section 2.3.1 (from the work of Drape et al [14]). Thus it should be
possible to implement array obfuscations using the techniques described above.

• In Section 6.6.1 we discussed the problem of choosing suitable places to add obfus-
cations. We mentioned that when creating slicing obfuscation Majumdar et al [19]
used an attack tool (namely a program slicer) to aid in the choice of suitable places.
So other attack tools could be used to identify program portions (or variables) which
are vulnerable to attack and this information can be used to create obfuscations
which could defend against future attacks.

• For various obfuscations, such as array transformations (Section 2.3.4) and loop
transformation (Section 2.2.4), we need conditions which describe when it is safe
to apply these obfuscations. Thus before implementation it will be necessary to
consider each obfuscation and think about what safety conditions the obfuscation
needs to satisfy.

• In Section 1.1 we mentioned the concept of the stealth of an obfuscation (discussed
further in Collberg et al [7]). Obfuscations that are not stealthy flag important
areas of a program or give indications about how obfuscations may be removed. In
Section 2.2.1 we remarked on the fact that deliberately unstealthy opaque predicates
can be created which protect unimportant areas of a program. Other obfuscations
can be faked too — for instance, bogus program areas can be created (by using an
opaque predicate) and then many obfuscations can be added to these areas. By
concentrating on areas of bogus code, obfuscations can be added generally without
affecting the efficiency with the aim of focussing an attacker’s interest on these parts
of the program.

7.3 Long Term

Finally we outline some obfuscation techniques which we believe require extensive research
and effort before they can be successfully created.

• When describing obfuscations we have often mentioned the concept of stealth (de-
scribed in Collberg et al [7]) To effectively measure the quality of an obfuscation,
a way of measuring stealth is needed but currently no such measure exists. One of
the main problems with measuring stealth is that it is context dependant. An area
for future work is to develop a metric for stealth — to do this it would be necessary
to have some way of measuring the “context” of a program point.

• Most of the obfuscations that we have described are applicable within a single
method or procedure. In Section 2.2.6 we described a number of transformations
that could be used to obfuscate methods. Two potential areas for investigation are
to implement the method transformations and to make the existing transformation
be applicable across different methods.
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• In Section 2.2.4 we discussed a number of transformations that could be used to
obfuscate loops. However, as we mentioned in Sections 6.3 and 6.5, it is difficult to
add loop obfuscations to intermediate code. This is because it can be difficult to
identify loops in the intermediate code. In Section 4.1.4 we showed what a for loops
could look like in CIL but not all for loops may be constructed in this way. More
general loops may be constructed in different ways and the code may also contain
nested loops. So, before loop obfuscations can be implemented at the intermediate
level, it is necessary have patterns for identifying potential loops, conditions for the
loop transformations and have suitable rewrite rules for the transformations.

• In Section 1.4 we described how Drape et al [13] and Majumdar et al [19] used a
slicer when creating obfuscations (which were added manually to a program). In
Section 6.6.1 we discussed how this approach aided in deciding which program places
and variables should be obfuscated. Further research is needed to see how these
slicing obfuscations could be implemented in an automatic tool. To able to decide
where to place obfuscations, the tool needs to be able to interpret the results of a
slicer and to choose an appropriate obfuscation. When creating slicing obfuscations,
Majumdar et al [19] used a slicer to test the quality of the obfuscations. It would
also be useful for an automatic obfuscator to be able to check potential obfuscations
to decide which obfuscation is the most suitable.

• We discussed how we could use exceptions to create obfuscations (in Section 2.4.1).
To implement exception obfuscations, it is necessary to decide on suitable places to
add such obfuscations and ensure that the placement of any new exception handling
does not interfere with any exceptions that the program may legitimately throw.
As intermediate language has less structure than source code, it may be harder to
implement exception obfuscations at the intermediate level.

• In Section 6.6.3 we discussed that if we add two successive obfuscations to the same
data object then we may find that the resulting effect removes the first obfuscation
or is more complicated than the either of the two original obfuscations. It is impor-
tant to study the effects of repeatedly applying different data obfuscations to a data
object. Since data obfuscations can be specified functionally (using the framework
of Drape et al [14]) it is possible to compose obfuscations to discover the resultant
transformation. The order in which obfuscations are applied may also play a role
in the strength of the resulting obfuscation.

7.4 Concluding remarks

In the previous sections, we have highlighted some of the important implementation issues
that need to be addressed before we can expect to build successful obfuscation tools — a
summary of the various techniques can be found in Table 4. We expect that with further
research into the area of obfuscation, we should be able to successfully implement many
of the techniques that we surveyed in Part I.
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Immediate Short Term Long Term
Data Arrays Ordering
Control-Flow Irreducible Jumps Invariant predicates IL loops

Flattening Methods
Other Attack tools Placement Stealth
Techniques IL commands Conditions Exceptions

Malicious layout Bogus Automate slicing

Table 4: Summary of potential future work in obfuscation implementation
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