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Abstract. We consider extensions of the lightweight description logic
(DL) EL with numerical datatypes such as naturals, integers, rationals
and reals equipped with relations such as equality and inequalities. It is
well-known that the main reasoning problems for such DLs are decid-
able in polynomial time provided that the datatypes enjoy the so-called
convexity property. Unfortunately many combinations of the numerical
relations violate convexity, which makes the usage of these datatypes
rather limited in practice. In this paper, we make a more fine-grained
complexity analysis of these DLs by considering restrictions not only on
the kinds of relations that can be used in ontologies but also on their
occurrences, such as allowing certain relations to appear only on the left-
hand side of the axioms. To this end, we introduce a notion of safety for a
numerical datatype with restrictions (NDR) which guarantees tractabil-
ity, extend the EL reasoning algorithm to these cases, and provide a
complete classification of safe NDRs for natural numbers, integers, ra-
tionals and reals.
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1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL1 and OWL 2 [2]. EL++ [3] is a lightweight DL for
which reasoning is tractable (i.e., can be performed in time that is polynomial
w.r.t. the size of the input), and that offers sufficient expressivity for a number
of life-sciences ontologies, such as SNOMED CT [4] or the Gene Ontology [5].
Among other constructors, EL++ supports limited usage of datatypes. In DL,
datatypes (also called concrete domains) can be used to define new concepts by
referring to particular values, such as strings or integers. For example, the con-
cept Human u ∃hasAge.(<, 18) u ∃hasName.(=,“Alice”) describes humans whose
age is less than 18 and whose name is “Alice”. Datatypes are characterised first
by the domain their values can come from and also by the relations that can be
used to constrain possible values. In our example, (<, 18) refers to the domain
of natural numbers and uses the relation “<” to constrain possible values to

1 http://www.w3.org/2004/OWL



2 Despoina Magka, Yevgeny Kazakov, and Ian Horrocks

those less than 18, while (=, “Alice”) refers to the domain of strings and uses the
relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, EL++ allows only for
datatypes which satisfy a condition called p-admissibility [3]. In an nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved in
polynomial time, and that concept disjunction cannot be expressed using da-
tatype concepts. For example, if we were to allow both ≤ and ≥ for integers,
then we could express A v B t C by formulating the axioms A v ∃R.(≤, 5),
∃R.(≤, 2) v B and ∃R.(≥, 2) v C. Thus, allowing both ≤ and ≥ has the same
effect as extending EL++ with disjunction, which is well known to cause in-
tractability [3]. Similarly, we can show that p-admissibility prevents us from
having both ≤ and = or both ≥ and = in the language. For this reason, the EL
Profile of OWL 2, which is based on EL++, admits only equality (=) in datatype
expressions.

In this paper, we demonstrate how these restrictions can be significantly
relaxed without loosing tractability. As a motivating example, consider the fol-
lowing two axioms which might be used, e.g., in a pharmacy-related ontology:

Panadol v ∃contains.(Paracetamol u ∃mgPerTablet.(=, 500)) (1)

Patient u ∃hasAge.(<, 6) u
∃hasPrescription.∃contains.(Paracetamol u ∃mgPerTablet.(>, 250)) v ⊥ (2)

Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of
paracetamol per tablet must not be prescribed to a patient younger than 6 years
old. The ontology could be used, for example, to support clinical staff who want
to check whether Panadol can be prescribed to a 3-year-old patient. This can
easily be achieved by checking whether the following concept is satisfiable w.r.t.
the ontology:

Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol (3)

Unfortunately, this is not possible using EL++, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however, pos-
sible to express axioms (1) and (2) and concept (3) in a tractable extension of
EL. A polynomial classification procedure can then be used to determine the
satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X v Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol

for some new concept name X would entail X v ⊥.
Our idea is based on the intuition that equality in (1) and (3) serves a different

purpose than inequalities do in (2). Equality in (1) and (3) is used to state a fact
(the content of a drug and the age of a patient) whereas inequalities in (2) are
used to trigger a rule (what happens if a certain quantity of drug is prescribed
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to a patient of a certain age). In other words, equality is used positively and
inequalities are used negatively. It seems reasonable to assume that positive
usages of datatypes will typically involve equality since a fact can usually be
precisely stated. On the other hand, it seems reasonable to assume that negative
occurrences of datatypes will typically involve equality as well as inequalities
since a rule usually applies to a range of situations. In this paper, we make a
fine-grained study of datatypes in EL by considering restrictions not only on the
kinds of relations included in a datatype, but also on whether the relations can
be used positively or negatively.

The main contributions of this paper can be summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the EL reasoning algorithm [3] to provide a polynomial reason-
ing procedure for an extension of EL with NDRs, and we prove that this
procedure is sound for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of EL
with a safe NDR is tractable, and prove that our reasoning procedure is
complete for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that
the numerical datatype restrictions can be significantly relaxed by allowing
arbitrary numerical relations to occur negatively—not only equality as cur-
rently specified in the OWL 2 EL Profile. As argued earlier, this combination
is of particular interest to ontology engineering, and is thus a strong candi-
date for the next extension of the EL Profile in OWL 2.

This work is based on a Master’s thesis [6].

2 Preliminaries

In this section we introduce an extension of EL⊥ [3] with numerical datatypes
which we denote by EL⊥(D). In the DL literature the notion of a datatype is
better known as a concrete domain [7]; we call them datatypes to be more con-
sistent with OWL 2 [2]. The syntax of EL⊥(D) uses a set of concept names NC ,
a set of role names NR and a set of feature names NF . EL⊥(D) is parametrised
with a numerical domain D, such that D ⊆ R, where R is the set of real numbers.
NC , NR and NF are countably infinite sets and, additionally, pairwise disjoint.

Definition 1 (D-datatype restriction). We call (s, y), where y ∈ D and
s ∈ {<,≤, >,≥,=}, a D-datatype restriction (or simply a datatype restriction
if the domain D is clear from the context). Given a domain D, a D-datatype
restriction r = (s, y) and an x ∈ D, we say that x satisfies r and we write r(x)
iff (x, y) ∈ s, where s is interpreted as the corresponding standard relation on
real numbers.
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Table 1. Concept descriptions in EL⊥(D)

Name Syntax Semantics

Concept name C CI

Top > ∆I

Bottom ⊥ ∅
Conjunction C uD CI ∩DI
Existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
Datatype restriction ∃F.r {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I ∧ r(v)}

Intuitively, a datatype restriction is used to specify a subset of the numerical
domain so that one can form new concepts that refer to elements of this subset.
The set of concepts is recursively defined using the constructors listed in the
middle column of Table 1, where C and E are concepts, R ∈ NR, F ∈ NF and r
is a D-datatype restriction. We typically use the capital letters A, B to refer to
concept names and the capital letters C, E or F to refer to concepts. We also
set the abbreviations N>C = NC ∪ {>} and N>,⊥C = NC ∪ {>,⊥}.

An axiom α in EL⊥(D) or simply an axiom α is an expression of the form
C v E, where C and E are concepts. An EL⊥(D)-ontology O or simply an
ontology O is a set of axioms. We say that a concept E occurs in a concept C iff
E is used as a concept in the construction of C. Moreover, a concept F is said
to positively (negatively) occur in an axiom C v E iff it occurs in the concept E
(C); we alternatively say that we have a positive (negative) occurrence of F .

An interpretation of EL⊥(D) is a pair I = (∆I , ·I), where ∆I is a non-empty
set which we call the domain of the interpretation and ·I is the interpretation
function. The interpretation function maps each concept name A to a subset AI

of ∆I , each role name R ∈ NR to a relation RI ⊆ ∆I × ∆I and each feature
name F ∈ NF to a relation F I ⊆ ∆I × D. Note that we do not require the
interpretation of features to be functional. In this respect, they correspond to
the data properties in OWL 2 [2]. The constructors of EL⊥(D) are interpreted
as indicated in the right column of Table 1. For an axiom α, where α = C v D,
we write I |= α and we say that an interpretation I satisfies an axiom α, iff
CI ⊆ DI . If I |= α for every α ∈ O, then I is a model of O and we write I |= O.
Additionally, if every model I of O satisfies the axiom α then we say that O
entails α and we write O |= α. We define the signature of an ontology O as the
set sig(O) of concept, role and feature names that occur in O. We say that a
concept, role or feature name X is fresh w.r.t. an ontology O iff X /∈ sig(O).

One of the most common reasoning tasks w.r.t. an ontology O is the classifi-
cation of an ontology O, that is computing all axioms of the form A v B, where
A, B ∈ N>,⊥C and O |= A v B. The set of these axioms is called the taxonomy
of the ontology O.

We say that an axiom in EL⊥(D) is in normal form if it has one of the forms

NF1-NF6 of the left part of Table 2, where A, A1, A2, B ∈ N>C , B′ ∈ N>,⊥C ,

R ∈ NR, F ∈ NF , and r is a D-datatype restriction. Given an EL⊥(D)-ontology,
if the normalization rules of the right part of Table 2 are applied, we obtain an
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Table 2. Normal form of axioms and normalization rules for EL⊥(D)

Normal forms Normalization rules

NF1 A v B′ C uH v E → {H v Af , C uAf v E}
NF2 A1 uA2 v B ∃R.G v D → {G v Af , ∃R.Af v D}
NF3 A v ∃R.B G v H → {G v Af , Af v H}
NF4 ∃R.B v A C v ∃R.H → {C v ∃R.Af , Af v H}
NF5 A v ∃F.r B v C uD → {B v C,B v D}
NF6 ∃F.r v A ⊥ v C → ∅

ontology which contains only axioms in normal form [3]. For the rules of Table 2,
we have that B ∈ N>C , G,H /∈ N>C , R ∈ NR, C, D, E, G and H are concepts
and Af is a fresh concept name w.r.t. the so far transformed ontology.

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively and
negatively. We then present a polynomial consequence-based classification pro-
cedure for EL⊥ extended with NDRs and prove its soundness. Finally we prove
that the procedure is complete provided that the NDR satisfies special safety
requirements.

Definition 2 (Numerical Datatype with Restrictions). A numerical data-
type with restrictions (NDR) is a triple (D, O+, O−), where D ⊆ R is a numeri-
cal domain and O+, O− ⊆ {<,≤, >,≥,=} is the set of positive and, respectively,
negative relations. An axiom in EL⊥(D) is an axiom in EL⊥(D, O+, O−) if for
every positive (negative) occurrence of a concept ∃F.(s, y) in the axiom, s ∈ O+

(s ∈ O−). An EL⊥(D, O+, O−)-ontology is a set of axioms in EL⊥(D, O+, O−).

Subsequently, we describe when a datatype restriction is inconsistent and
when one datatype restriction implies another (w.r.t. a domain D). These defi-
nitions of inconsistency and implication for datatype restrictions are necessary
for the formulation of the inference rules, which we then briefly present.

3.1 The Classification Procedure and Soundness

We are going to describe a classification procedure for EL⊥(D, O+, O−), which
is closely related to the procedure for EL++ [3]. In order to formulate inference
rules for datatypes we need to introduce notation for satisfiability of a datatype
restriction and implication between datatype restrictions.

Definition 3. For two D-datatype restrictions r+ and r−, we write r+ →D ⊥
iff there is no x ∈ D such that r+(x) holds. Otherwise, we write r+ 9D ⊥.
We write that r+ →D r− iff r+(x) implies r−(x), ∀x ∈ D. Otherwise, we write
r+ 9D r−.
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Table 3. Reasoning rules in EL⊥(D)

IR1
A v A IR2

A v > CR1
A v B
A v C′ B v C′ ∈ O

CR2
A v B A v C

A v D B u C v D ∈ O CR3
A v B

A v ∃R.C B v ∃R.C ∈ O

CR4
A v ∃R.B B v C

A v D ∃R.C v D ∈ O CR5
A v ∃R.B B v ⊥

A v ⊥

ID1
A v ⊥ A v ∃F.r+ ∈ O , r+ →D ⊥

CD1
A v ∃F.r+
A v B

∃F.r− v B ∈ O , r+ →D r−

CD2
A v B

A v ∃F.r+
B v ∃F.r+ ∈ O

A,B,C,E ∈ N>C

C′ ∈ N>,⊥
C

R ∈ NR, F ∈ NF

We assume that deciding whether r+ →D ⊥ and r+ →D r− can be done in
polynomial time. It is easy to see that this is the case when D is the set of natural
numbers, integers, reals or rationals for the set of relations {<,≤, >,≥,=}.

The classification procedure for EL⊥(D) takes as an input an EL⊥(D)-ontology
O whose axioms are in normal form and applies the inference rules in Table 3
to derive new axioms of the form NF1, NF3 and NF5 in Table 2. The rules are
applied to already derived axioms and use axioms in O and properties r+ →D ⊥
and r+ →D r− as side-conditions. The procedure terminates when no new ax-
iom can be derived. It is easy to see that the procedure runs in polynomial time
because there are only polynomially many axioms of the form NF1, NF3 and
NF5 possible over sig(O). It can be easily proved that the procedure is sound
because the rules derive logical consequences of the axioms.

Theorem 1 (Soundness). Let O be an EL⊥(D)-ontology consisting of axioms
in normal form and O′ consists of all axioms that are derivable using the rules
of Table 3 for O. Every model I of O is a model of O′ as well.

Proof. For every axiom α ∈ O′, we prove that I |= α by induction on the length
of the derivation of α.

Induction base: If α is obtained using rules IR1 and IR2 then I |= α trivially.
Suppose that α = A v ⊥ is obtained using rule ID1. In this case, A v ∃F.r+ ∈ O
and since I |= O then AI ⊆ (∃F.r+)I . Since r+ →D ⊥ we have (∃F.r+)I = ∅.
Therefore, AI ⊆ ∅ and so I |= A v ⊥.

Induction step: For the cases when axiom α is obtained using rules IR1-CR5

(that do not involve datatypes) the proof is identical with the case of EL++

[3]. Suppose that α = A v B is obtained using CD1 from A v ∃F.r+. Then
by induction hypothesis, AI ⊆ (∃F.r+)I . Since I |= O, (∃F.r−)I ⊆ BI and
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r+ →D r−, we have that AI ⊆ BI . So, I |= A v B. Suppose that α = A v ∃F.r+
is obtained using CD2 from A v B. Then by induction hypothesis, AI ⊆ BI .
Since I |= O, BI ⊆ (∃F.r+)I and, so, AI ⊆ (∃F.r+)I . So, I |= A v ∃F.r+.

3.2 Completeness and safe NDRs

The completeness proof is based on the canonical model construction similarly
as for EL++ [3]. In order to deal with datatypes in the canonical model we
introduce a notion of a datatype constraint. Intuitively, a constraint specifies
which datatype restrictions should hold in a model and which should not.

Definition 4 (Constraint). A constraint over (D, O+, O−) is defined as a pair
of sets (S+, S−), such that S+ = {(s1+, y1), . . . , (sn+, yn)} with si+ ∈ O+, S− =

{(s1−, z1), . . . , (sm− , zm)} with sj− ∈ O−, yi, zj ∈ D, (si+, yi) 9D (sj−, zj) and
(si+, yi) 9D ⊥ for 1 ≤ i ≤ n, 1 ≤ j ≤ m and m, n ≥ 0.

Definition 5. A constraint (S+, S−) over (D, O+, O−) is satisfiable iff there
exists a solution of (S+, S−) that is a set V ⊆ D such that every r+ ∈ S+ is
satisfied by at least one v ∈ V but no r− ∈ S− is satisfied by any v ∈ V .

Our model construction procedure works only for the cases where we can ensure
that every constraint over a numerical domain is satisfiable. This leads us to a
notion of safety for an NDR.

Definition 6 (NDR Safety). Let (D, O+, O−) be an NDR. (D, O+, O−) is
safe iff every constraint over (D, O+, O−) is satisfiable.

We define strong and weak convexity for NDRs and prove that an NDR is safe
iff it is weakly convex.

Definition 7 (Strong and Weak Convexity). The NDR (D, O+, O−) is
strongly convex when for every ri+ = (si+, yi) and rj− = (sj−, zj), with si+ ∈ O+,

sj− ∈ O− and yi, zj ∈ D (1 ≤ i ≤ n, 1 ≤ j ≤ m), if
∧n

i=1 r
i
+ →D

∨m
j=1 rj−, then

there exists an rj− (1 ≤ j ≤ m) such that
∧n

i=1 r
i
+ →D rj−. (D, O+, O−) is weakly

convex when the implication holds for n = 1.

For example the NDR (Z, {<,>}, {=}) is weakly convex but not strongly
convex. It is weakly convex since the implications ((<, y) →Z

∨m
j=1(=, zj))

and ((>, y) →Z
∨m

j=1(=, zj)) never hold. However, it is not strongly convex:
it is (>, 2) ∧ (<, 5)→Z (=, 3) ∨ (=, 4), but also (>, 2) ∧ (<, 5) 9Z (=, 3) and
(>, 2) ∧ (<, 5) 9Z (=, 4).

Lemma 1. (D, O+, O−) is safe iff it is weakly convex.

Proof. We assume that (D, O+, O−) is not weakly convex and we prove that it
is non-safe. Since it is not weakly convex we have that for some r+ →D

∨m
j=1 r

j
−

there exists no rj− such that r+ →D rj−. In order to prove non-safety it is
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sufficient to define a constraint which is not satisfiable. We define (S+, S−),
with S+ = {r+} and S− = {rj−}mj=1. (S+, S−) is indeed a constraint because

r+ 9D ⊥ (otherwise r+ →D rj− is true for every rj−) and for every rj−, r+ 9D
rj− (otherwise r+ →D rj− is true for at least one rj−). Additionally, it is not

satisfiable, because from r+ →D
∨m

j=1 rj− there can be found no x such that

r+(x) and
∧m

j=1 ¬r
j
−(x).

We prove that if (D, O+, O−) is not safe, then it is not weakly convex.
Since it is not safe then there exists a non-satisfiable constraint (S+, S−), where
S+ = {ri+}ni=1 and S− = {rj−}mj=1. If S− = ∅, then since ri+ 9D ⊥ for 1 ≤ i ≤ n,
there is a solution V = {xi | 1 ≤ i ≤ n} for (S+, S−). Thus, S− 6= ∅. If S+ = ∅
then there is the solution V = ∅ for (S+, S−). Thus, S+ 6= ∅. Since (S+, S−)
is a constraint, then ri+ 9D rj− for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since (S+, S−)
is not satisfiable for every 1 ≤ i ≤ n there exists no x such that ri+(x) and∧m

j=1 ¬r
j
−(x), that is if ri+(x) then rj−(x) holds for at least one rj− or, otherwise

written, ri+ →D
∨m

j=1 rj−. From this and ri+ 9D rj− for every rj−, (D, O+, O−)
is not weakly convex. ut

Theorem 2 (Completeness). Let (D, O+, O−) be a safe NDR, let O be an
EL⊥(D, O+, O−)-ontology containing axioms in normal form and let O′ be the
saturation of O under the rules of Table 3. For every A, B ∈ (N>C ∩ sig(O)), if
O |= A v B, then A v B ∈ O′ or A v ⊥ ∈ O′.

Proof. The proof is analogous to the completeness proof of the subsumption
algorithm for EL++ [3]; we build a canonical model I for O using O′ and show
that if A 6v B ∈ O′ and A 6v ⊥ ∈ O′ then I 2 A v B.
For every A ∈ NC , F ∈ NF , define S+(A,F ) and S−(A,F ), as follows:

S+(A,F ) = {r+ | A v ∃F.r+ ∈ O′, A v ⊥ /∈ O′} (3)

S−(A,F ) = {r− | ∃F.r− v B ∈ O, A v B /∈ O′} (4)

We now show that (S+(A,F ), S−(A,F )) is a constraint w.r.t (D, O+, O−). First
we prove that r+ 9D ⊥, ∀r+ ∈ S+(A,F ), which is true because otherwise
due to rule ID1 it would be A v ⊥ ∈ O′, in contradiction to the definition
of S+(A,F ). Additionally, there is no r+ ∈ S+(A,F ) and r− ∈ S−(A,F ) such
that r+ →D r−, otherwise from A v ∃F.r+ ∈ O′, ∃F.r− v B ∈ O and CD1

it would be A v B ∈ O′ which contradicts the definition of S−(A,F ). Since
(S+(A,F ), S−(A,F )) is a constraint over (D, O+, O−) and (D, O+, O−) is safe,
there exists a solution V (A,F ) ⊆ D of (S+(A,F ), S−(A,F )). We now construct
the canonical model I:

∆I = {xA | A ∈ N>C ∩ sig(O), A v ⊥ /∈ O′} (5)

BI = {xA | xA ∈ ∆I , A v B ∈ O′} (6)

RI = {(xA, xB) | A v ∃R.B ∈ O′, xA, xB ∈ ∆I} (7)

F I = {(xA, v) | v ∈ V (A,F )} (8)

We prove that I |= O by showing that I |= α, when α takes one of the NF1-NF6.
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NF1 A v B: We need to prove AI ⊆ BI . Take an x ∈ AI . By (6), x = xC
such that C v A ∈ O′. From A v B ∈ O and since O′ is closed under CR1, we
have C v B ∈ O′. Hence x = xC ∈ BI by (6).

If B = ⊥, then we need to show that AI = ∅. If there exists x ∈ AI ,
then by (6) x = xC such that C v A ∈ O′. Since O′ is closed under CR1 and
A v ⊥ ∈ O′, we have C v ⊥ ∈ O′. Thus, x = xC /∈ ∆I by (5), which contradicts
our assumption that x ∈ AI .

We examine separately the case when A = >. We have that xA ∈ ∆I and
we need to show that xA ∈ BI . From rule IR2, we have that A v > ∈ O′. From
rule CR1, A v B ∈ O′; since xA ∈ ∆I and A v B ∈ O′ we get xA ∈ BI by (6).

NF2 A1 uA2 v B: We prove (A1 uA2)
I ⊆ BI . Take an x ∈ (A1 u A2)I ;

then, x ∈ AI1 , x ∈ AI2 and by (6) x = xA for some concept name A such that
A v A1 ∈ O′ and A v A2 ∈ O′. Since A v A1 ∈ O′, A v A2 ∈ O′ and
A1 u A2 v B ∈ O closure under rule CR2 gives A v B ∈ O′ and, therefore,
x ∈ BI , by (6).

NF3 A v ∃R.B: We show AI ⊆ (∃R.B)I ; take an x ∈ AI . By (6), x = xC
where C v A ∈ O′. Since A v ∃R.B ∈ O and O′ is closed under CR3, we have
C v ∃R.B ∈ O′. Since xC ∈ ∆I , we have C v ⊥ /∈ O′ and, hence, B v ⊥ /∈ O′
by CR5. Thus, xB ∈ ∆I and (xC , xB) ∈ RI by (7). Since B v B ∈ O′ by IR1, we
have xB ∈ BI by (6). Thus, x = xC ∈ (∃R.B)I .

NF4 ∃R.B v A: We prove (∃R.B)I ⊆ AI ; take an x ∈ (∃R.B)I . Then, there
exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ BI . By (7) and (6) x = xC
and y = xD such that C v ∃R.D ∈ O′ and D v B ∈ O′ respectively. Since
∃R.B v A ∈ O and O′ is closed under CR4, we have C v A ∈ O′. Hence,
x = xC ∈ AI by (6).

NF5 A v ∃F.r+: We show that AI ⊆ (∃F.r+)I ; take an x ∈ AI . By (6),
there exists a concept name C such that x = xC and C v A ∈ O′. Since
A v ∃F.r+ ∈ O and O′ is closed under CD2, we have C v ∃F.r+ ∈ O′. We use
(3) and (4) to build (S+(C,F ), S−(C,F )); we have r+ ∈ S+(C,F ). By (8) we
have (xC , v) ∈ F I for every v ∈ V (C,F ). Since r+ ∈ S+(C,F ), there exists
v ∈ V (C,F ) such that v satisfies r+ and, hence, x = xC ∈ (∃F.r+)I .

NF6 ∃F.r− v B: We prove that (∃F.r−)I ⊆ BI ; take an x ∈ (∃F.r−)I . By
(5), there exists a concept name C such that x = xC . We use (3) and (4)
and construct (S+(C,F ), S−(C,F )). Since xC ∈ (∃F.r−)I , by (8), there exists
v ∈ V (C,F ), such that r−(v) and V (C,F ) is a solution for (S+(C,F ), S−(C,F )).
Hence, r− /∈ S−(C,F ), and so, C v B ∈ O′ by (4). Now by (6) and C v B ∈ O′,
we have that xC ∈ BI .

We now show that if A v B /∈ O′ and A v ⊥ /∈ O′, then O 2 A v B by
proving I 2 A v B (since I |= O). AI * BI holds, because xA ∈ ∆I (from
A v ⊥ /∈ O′ and (5)), xA ∈ AI (from A v A ∈ O′ )using rule IR1 and by (6) and
xA /∈ BI (from A v B /∈ O′ and (6)). ut
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Table 4. Maximal safe NDRs for N

NDR O+ O−

NDR1 {=} {<,≤, >,≥,=}
NDR2 {<,≤, >,≥,=} {<,≤}
NDR3 {<,≤, >,≥,=} {>,≥}
NDR4 {>,≥,=} {<,≤,=}

Table 5. Transformations C1 ⇒ C2 preserving constraints and their satisfiability for
N, where S−, S+ and S are sets of datatype restrictions and y1 ≤ y2, z1 ≤ z2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − 1)} {(<, z)} {(≤, z − 1)}
{(>, y)} {(≥, y + 1)} {(>, z)} {(≥, z + 1)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

{(<, 0)} ∅

4 Maximal Safe NDRs for N

In this section we present a full classification of safe NDRs for natural numbers;
for the current section we assume that every constraint is over the domain N
(0 ∈ N). Table 4 lists all maximal safe NDRs for N. We prove that: (i) every NDR
in Table 4 is safe, (ii) extending any of these NDRs with a new relation leads to
non-safety and (iii) every safe NDR is contained in some NDR in Table 4.

Table 5 presents some basic transformations that preserve satisfiability of
constraints.

Lemma 2. Let C1 and C2 be as defined in Table 5 and (N, O+, O−) be an
NDR. Then (i) C1 is a constraint over (N, O+, O−) iff C2 is a constraint over
(N, O+, O−) and (ii) if C1 and C2 are both constraints over (N, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.

Corollary 1. Let NDRi = (N, Oi
+, O

i
−), with 1 ≤ i ≤ 4. For every (S1

+, S
1
−)

over NDRi there exists a constraint (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ N and

z1, . . . , zm ∈ N such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where y1 < . . . < yn, z1 < . . . < zm, z1 < y1, zm > yn , yi 6= zj (2 ≤ i ≤ n− 1,
2 ≤ j ≤ m − 1, m, n ≥ 0) and (S1

+, S
1
−) over NDRi is satisfiable iff (S2

+, S
2
−)

over NDRi is satisfiable.

The proof of Lemma 2 and Corollary 1 is trivial by a routine check of all cases.
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Table 6. Examples of non-safe NDRs for N where (s+, y) →N (s1−, z1) ∨ (s2−, z2),
(s+, y) 9N (s1−, z1) and (s+, y) 9N (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2

{>} {=,≥} 1 2 3
{>} {=, >} 1 2 2
{≥} {=,≥} 1 1 2
{≥} {=, >} 1 1 1

{<} {=} 3 1 2
{≤} {=} 2 1 2

Lemma 3. Every NDR in Table 4 is safe.

Proof. We prove Lemma 3 by building a solution V for every constraint over
NDRs in Table 4. By Corollary 1 we can assume w.l.o.g. the following restrictions
for (S+, S−) and construct the corresponding solution V :

NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with z1 < y1 < . . . < yn < zm,
z1 < . . . < zm and yi 6= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.

NDR2: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.

NDR3: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}.

NDR4: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn−1), (≥, yn)} and for
S− that S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm)} with y1 < . . . < yn, z1 < . . . < zm,
z1 < y1 and yi 6= zj (1 ≤ i ≤ n − 1, 2 ≤ j ≤ m). V = {y1, . . . , yn−1, y′n}, where
y′n = max(yn, zm) + 1. ut

Lemma 4. Let (N, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(N, O+, O−) is non-safe.

(b) If O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−, then (N, O+, O−) is
non-safe.

(c) If O+ ∩ {<,≤} 6= ∅ and {=} ⊆ O−, then (N, O+, O−) is non-safe.

Proof. In order to prove that the NDR is non-safe it suffices, from Lemma 1 to
prove that it is not weakly convex. We provide restrictions (s+, y), (s1−, z1) and
(s2−, z2), such that s+ ∈ O+, s1−, s2− ∈ O− and (s+, y)→N (s1−, z1) ∨ (s2−, z2),
(s+, y) 9N (s1−, z1), (s+, y) 9N (s2−, z2) that consist a violation of the weak
convexity condition. Table 6 provides the counterexamples; the first four, next
four and last two lines refer to Lemma 4(a), 4(b) and 4(c) respectively. ut
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Lemma 5. Every NDR in Table 4 is maximal safe, that is if any relation is
added to O+ or O− it becomes non-safe.

Proof. We examine all cases of adding a new relation to NDRs in Table 4:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 4(a).
NDR2: If > or ≥ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR2 becomes non-safe due to Lemma 4(c).
NDR3: If < or ≤ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR3 becomes non-safe due to Lemma 4(c).
NDR4: If > or ≥ is added to O−, then non-safety is due to Lemma 4(b). For

adding < or ≤ to O+, non-safety is due to Lemma 4(c). ut

It remains to be proved that every safe NDR is contained in some NDR in
Table 4. In the following, we assume that Oi

+ and Oi
− are defined such that

NDRi = (N, Oi
+, O

i
−) with 1 ≤ i ≤ 4.

Lemma 6. If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
some i (1 ≤ i ≤ 4).

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. If O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅
at the same time, then from Lemma 4(a), the NDR is non-safe. Therefore, we
examine two cases: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.

Case 2.1: O− ⊆ {>,≥,=}. We further distinguish whether O− ⊆ {>,≥} or
{=} ⊆ O−.

Case 2.1.1: O− ⊆ {>,≥} = O3
− and O+ ⊆ O3

+.
Case 2.1.2: {=} ⊆ O−. By Lemma 4(c) it should be O+ ⊆ {>,≥,=} = O4

+

otherwise the NDR is non-safe. If O− ∩ {>,≥} 6= ∅ then the NDR is non-safe by
Lemma 4(b); otherwise O− = {=} ⊆ O4

−.
Case 2.2: O− ⊆ {<,≤,=} = O4

−. If O+ ⊆ {>,≥,=}, then O+ ⊆ O4
+. Oth-

erwise, O+ ∩ {<,≤} 6= ∅ and we distinguish cases whether O− ⊆ {<,≤} or
{=} ∈ O−.

Case 2.2.1: O− ⊆ {<,≤} = O2
− and O+ ⊆ O2

+.
Case 2.2.2: {=} ∈ O−. In this case, S is non-safe by Lemma 4(c). ut

5 Maximal Safe NDRs for Z

We now identify the maximal safe NDRs for the domain of integers.

Lemma 7. Let C1 and C2 be as defined in Table 5 and (Z, O+, O−) be an
NDR. Then (i) C1 is a constraint over (Z, O+, O−) iff C2 is a constraint over
(Z, O+, O−) and (ii) if C1 and C2 are both constraints over (Z, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.
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Table 7. Transformations C1 ⇒ C2 preserving constraints and their satisfiability for
Z, where S−, S+ and S are sets of datatype restrictions and y1 ≤ y2, z1 ≤ z2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − 1)} {(<, z)} {(≤, z − 1)}
{(>, y)} {(≥, y + 1)} {(>, z)} {(≥, z + 1)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

Table 8. Maximal safe NDRs for Z

NDR O+ O−

NDR1 {=} {<,≤, >,≥,=}
NDR2 {<,≤, >,≥,=} {=}
NDR3 {<,≤, >,≥,=} {<,≤}
NDR4 {<,≤, >,≥,=} {>,≥}
NDR5 {>,≥,=} {<,≤,=}
NDR6 {<,≤,=} {>,≥,=}

Corollary 2. Let NDRi = (Z, Oi
+, O

i
−), with 1 ≤ i ≤ 6. For every (S1

+, S
1
−)

over NDRi there exists a constraint (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ Z and

z1, . . . , zm ∈ Z such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where y1 < . . . < yn, z1 < . . . < zm, z1 < y1, zm > yn , yi 6= zj (2 ≤ i ≤ n− 1,
2 ≤ j ≤ m − 1, m, n ≥ 0) and (S1

+, S
1
−) over NDRi is satisfiable iff (S2

+, S
2
−)

over NDRi is satisfiable.

Table 8 provides the safe NDRs for integers. When we compare the results
with Table 4 we notice two new maximal safe NDRs, namely NDR2 and NDR6.
The reason is that integers do not have a minimal element such as 0 in the
case of naturals. In particular positive occurrences of < (or ≤) and negative
occurrence of = are no longer dangerous (e.g. (≤, 1) 9Z (=, 1)∨ (=, 0) does not
hold anymore).

Lemma 8. Every NDR in Table 8 is safe.

Proof. We prove Lemma 8 by building a solution V for every constraint over
NDRs in Table 8. By Corollary 2 we can assume w.l.o.g. the following restrictions
for (S+, S−) and construct the corresponding solution V :

NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with y1 < . . . < yn, z1 < . . . < zm
and yi 6= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.



14 Despoina Magka, Yevgeny Kazakov, and Ian Horrocks

NDR2: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(=, z1), . . . , (=, zm)} with y1 < . . . < yn, z1 < . . . < zm
and yi 6= zj (1 ≤ j ≤ m, 2 ≤ i ≤ n− 1). If we set y′1 = min(y1, z1)− 1 and
y′n = max(yn, zm) + 1, we have V = {y′1, y2, . . . , yn−1, y′n}.

NDR3: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.

NDR4: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}.

NDR5: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn−1), (≥, yn)} and for
S− that S− ⊆ {(≤, z1), (=, z2), (=, z3), . . . , (=, zm)} with y1 < . . . < yn, z1 < y1,
z1 < . . . < zm and yi 6= zj (1 ≤ i ≤ n−1, 2 ≤ j ≤ m). V = {y1, y2, . . . , yn−1, y′n},
where y′n = max(yn, zm) + 1.

NDR6: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn)} and for S−
that S− ⊆ {(=, z1) . . . , (=, zm−1), (≥, zm)} with y1 < . . . < yn, z1 < . . . < zm
and yn < zm, yi 6= zj (2 ≤ i ≤ n, 1 ≤ j ≤ m − 1). V = {y′1, y2, . . . , yn−1, yn},
where y′1 = min(y1, z1)− 1. ut

Lemma 9. Let (Z, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(Z, O+, O−) is non-safe.

(b) If O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−, then (Z, O+, O−) is
non-safe.

(c) If O+ ∩ {<,≤} 6= ∅, O− ∩ {<,≤} 6= ∅ and {=} ⊆ O−, then (Z, O+, O−) is
non-safe.

Proof. In order to prove that the NDR is non-safe it suffices, by Lemma 1 to
prove that it is not weakly convex. We provide restrictions (s+, y), (s1−, z1) and
(s2−, z2), such that s+ ∈ O+, s1−, s2− ∈ O− and (s+, y)→Z (s1−, z1) ∨ (s2−, z2),
(s+, y) 9Z (s1−, z1), (s+, y) 9Z (s2−, z2) that consist a violation of the weak con-
vexity condition. Table 9 provides the counterexamples; the first four, following
four and last four lines refer to Lemma 9(a), 9(b) and 9(c) respectively. ut

Lemma 10. Every NDR in Table 8 is maximal safe, that is if any relation is
added to O+ or O− it becomes non-safe.

Proof. We examine all cases of adding a new relation to NDRs in Table 8:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 9(a).
NDR2: If > or ≥ is added to O−, then non-safety is due to Lemma 9(b). When
< or ≤ is added to O− then NDR2 becomes non-safe due to Lemma 9(c).
NDR3: If > or ≥ is added to O−, then non-safety is due to Lemma 9(a). When

= is added to O− then NDR3 becomes non-safe due to Lemma 9(c).
NDR4: If < or ≤ is added to O−, then non-safety is due to Lemma 9(a). For

adding = to O−, non-safety is due to Lemma 9(b).
NDR5: If > or ≥ is added to O−, then non-safety is due to Lemma 9(a). When
< or ≤ is added to O+ then NDR5 becomes non-safe due to Lemma 9(c).
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Table 9. Examples of non-safe NDRs for Z where (s+, y) →Z (s1−, z1) ∨ (s2−, z2),
(s+, y) 9Z (s1−, z1) and (s+, y) 9Z (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2

{>} {=,≥} 1 2 3
{>} {=, >} 1 2 2
{≥} {=,≥} 1 1 2
{≥} {=, >} 1 1 1

{<} {=,≤} 3 2 1
{<} {=, <} 3 2 2
{≤} {=,≤} 2 2 1
{≤} {=, <} 2 2 2

NDR6: If < or ≤ is added to O−, then non-safety is due to Lemma 9(a). For
adding > or ≥ to O+, non-safety is due to Lemma 9(b). ut

In the following, we assume that Oi
+ and Oi

− are defined such that NDRi =
(N, Oi

+, O
i
−) with 1 ≤ i ≤ 6.

Lemma 11. If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
some i (1 ≤ i ≤ 6).

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. If O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅
at the same time, then from Lemma 9(a), the NDR is non-safe. Therefore, only
two cases are possible: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.

Case 2.1: O− ⊆ {>,≥,=}. We further distinguish on whether O− ⊆ {>,≥}
or {=} ⊆ O−.

Case 2.1.1: O− ⊆ {>,≥} = O4
− and O+ ⊆ O4

+.
Case 2.1.2: {=} ⊆ O−. If O− = {=}, then O− ⊆ O2

− and O+ ⊆ O2
+. Oth-

erwise, O− ∩ {>,≥} 6= ∅. We examine two cases: either O+ ∩ {>,≥} 6= ∅ or
O+ ⊆ {<,≤,=}.

Case 2.1.2.1: O+ ∩ {>,≥} 6= ∅. In this case by 9(b) the NDR is non-safe.
Case 2.1.2.2: O+ ⊆ {<,≤,=} = O6

+ and O− ⊆ O6
−.

Case 2.2: O− ⊆ {<,≤,=}. We further distinguish on whether O− ⊆ {<,≤}
or {=} ⊆ O−.

Case 2.2.1: O− ⊆ {<,≤} = O3
− and O+ ⊆ O3

+.
Case 2.2.2: {=} ⊆ O−. If O− = {=}, then O− ⊆ O2

− and O+ ⊆ O2
+. Oth-

erwise, O− ∩ {<,≤} 6= ∅. We examine two cases: either O+ ∩ {<,≤} 6= ∅ or
O+ ⊆ {>,≥,=}.

Case 2.2.2.1: O+ ∩ {<,≤} 6= ∅. In this case by 9(c) the NDR is non-safe.
Case 2.2.2.2: O+ ⊆ {>,≥,=} = O5

+ and O− ⊆ O5
−.

ut
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Table 10. Transformations C1 ⇒ C2 preserving constraints and their satisfiability
for R, where S−, S+ and S are sets of datatype restrictions, y1 ≤ y2, z1 ≤ z2,
C1 ∪ C2 = {(si, xi)}ki=1 and ε = min{|c− d| | c 6= d, c, d ∈ {xi}ki=1}/2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − ε)} {(<, z)} {(≤, z − ε)}
{(>, y)} {(≥, y + ε)} {(>, z)} {(≥, z + ε)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

Table 11. Maximal safe NDRs for R and Q

NDR O+ O−

NDR1 {=} {<,≤, >,≥,=}
NDR2 {<,≤, >,≥,=} {≤,=}
NDR3 {<,≤, >,≥,=} {≥,=}
NDR4 {<,≤, >,≥,=} {<,≤}
NDR5 {<,≤, >,≥,=} {>,≥}
NDR6 {<,>,≥,=} {<,≤,=}
NDR7 {<,≤, >,=} {>,≥,=}

6 Maximal Safe NDRs for R and Q

We continue with the domain of real numbers (R) which does not differ from
the set of natural numbers (Q).

Lemma 12. Let C1 and C2 be as defined in Table 5 and (R, O+, O−) be an
NDR. Then (i) C1 is a constraint over (R, O+, O−) iff C2 is a constraint over
(R, O+, O−) and (ii) if C1 and C2 are both constraints over (R, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.

Corollary 3. Let NDRi = (R, Oi
+, O

i
−), with 1 ≤ i ≤ 7. For every (S1

+, S
1
−)

over NDRi there exists a constraint (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ R and

z1, . . . , zm ∈ R such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where y1 < . . . < yn, z1 < . . . < zm, z1 < y1, zm > yn , yi 6= zj (2 ≤ i ≤ n− 1,
2 ≤ j ≤ m − 1, m, n ≥ 0) and (S1

+, S
1
−) over NDRi is satisfiable iff (S2

+, S
2
−)

over NDRi is satisfiable.

Table 11 presents the maximal safe NDRs for reals, which are the same
for rationals. Reals and rationals are examples of dense domains: between ev-
ery two different numbers there always exists a third one. This property is re-
sponsible for new safe NDRs. Specifically, either ≤ or ≥ can be added to O−
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Table 12. Examples of non-safe NDRs for R where (s+, y) →R (s1−, z1) ∨ (s2−, z2),
(s+, y) 9R (s1−, z1) and (s+, y) 9R (s2−, z2)

{s+} {s1−, s2−} y z1 z2

{<}, {≤} {<,≥}, {≤, >}, {≤,≥} 3 1 1
{<}, {≤} {<,>} 3 2 1
{>}, {≥} {<,≥}, {≤, >}, {≤,≥} 1 3 3
{>}, {≥} {<,>} 1 3 2

{≥} {=, >} 1 1 1

{≤} {=, <} 1 1 1

of NDR2 from Table 8 because it does not violate the weak convexity prop-
erty (e.g. (≤, 5) 9R (=, 5) ∨ (≤, 4)). For the same reason, O+ of NDR5 and
NDR6 from Table 8 can be extended with < and > respectively because the
weak convexity property which did not apply for Z now applies for R (e.g.
(<, 5) 9R (=, 4) ∨ (≤, 3)).

Lemma 13. Every NDR in Table 11 is safe.

Proof. We prove Lemma 13 by building a solution V for every constraint over
NDRs in Table 11. By Corollary 3 we can assume w.l.o.g. the following restric-
tions for (S+, S−) and construct the corresponding solution V :

NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with y1 < . . . < yn, z1 < . . . < zm
and yi 6= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.

NDR2: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm)} with y1 < . . . < yn, z1 < y1,
z1 < . . . < zm and yi 6= zj (2 ≤ j ≤ m, 2 ≤ i ≤ n− 1). V = {y1, . . . , yn−1, y′n},
where y′1 = y1 − ε/2 and y′n = max(yn, z1) + ε.

NDR3: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(=, z1), . . . , (=, zm−1), (≥, zm)} with y1 < . . . < yn,
yn < zm z1 < . . . < zm and yi 6= zj (1 ≤ j ≤ m− 1, 2 ≤ i ≤ n− 1). If we set
y′1 = min(y1, zm)− ε and y′n = yn + ε/2, we have V = {y′1, y2, . . . , yn−1, y′n}.

NDR4: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.

NDR5: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}.

NDR6: For S+ we have that S+ ⊆ {(≤ y1), (=, y2), . . . , (=, yn−1), (≥, yn)} and
for S− that S− ⊆ {(≤, z1), (=, z2), (=, z3), . . . , (=, zm)} with y1 < . . . < yn,
z1 < y1, z1 < . . . < zm and yi 6= zj (2 ≤ i ≤ n − 1, 2 ≤ j ≤ m). We set
y′n = max(yn, zm) + ε and V = {y1, . . . , yn−1, y′n}.

NDR7: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
and for S− that S− ⊆ {(=, z1), . . . , (=, zm−1), (≥, zm)} with y1 < . . . < yn,
z1 < . . . < zm and yn < zm, yi 6= zj (2 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1).
V = {y′1, y2, . . . , yn}, where y′1 = min(y1, z1)− ε. ut
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Lemma 14. Let (R, O+, O−) be an NDR. Then:

(a) If O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅, then
(R, O+, O−) is non-safe.

(b) If {≥} ∈ O+ and O− ∩ {>,=} 6= ∅, then (R, O+, O−) is non-safe.
(c) If {≤} ∈ O+ and O− ∩ {<,=} 6= ∅, then (R, O+, O−) is non-safe.

Proof. In order to prove that the NDR is non-safe it suffices, from Lemma 1 to
prove that it is not weakly convex. We provide restrictions (s+, y), (s1−, z1) and
(s2−, z2), such that s+ ∈ O+, s1−, s2− ∈ O− and (s+, y)→R (s1−, z1) ∨ (s2−, z2),
(s+, y) 9R (s1−, z1), (s+, y) 9R (s2−, z2) that consist a violation of the weak
convexity condition. Table 12 provides the counterexamples; the first four, fifth
and sixth line(s) refer to Lemma 14(a), 14(b) and 14(c) respectively. ut

Lemma 15. Every NDR in Table 11 is maximal safe, that is if any relation is
added to O+ or O− it becomes non-safe.

Proof. We examine all cases of adding a new relation to NDRs in Table 11:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 14(a).
NDR2: If ≥ is added to O−, then non-safety is due to Lemma 14(a). When > is

added to O− then non-safety is due to Lemma 14(b). Finally, if < is added to
O− NDR2 becomes non-safe due to Lemma 14(c).
NDR3: If ≤ is added to O−, then non-safety is due to Lemma 14(a). When > is

added to O− then non-safety is due to Lemma 14(b). Finally, if < is added to
O− then NDR3 becomes non-safe due to Lemma 14(c).
NDR4: If > or ≥ is added to O−, then non-safety is due to Lemma 14(a). For

adding = to O−, non-safety is due to Lemma 14(c).
NDR5: If < or ≤ is added to O−, then non-safety is due to Lemma 14(a). When

= is added to O− then NDR5 becomes non-safe due to Lemma 14(b).
NDR6: If > or ≥ is added to O−, then non-safety is due to Lemma 14(a). For

adding ≤ to O+, non-safety is due to Lemma 14(c).
NDR7: If < or ≤ is added to O−, then non-safety is due to Lemma 14(a). For

adding ≥ to O+, non-safety is due to Lemma 14(b).
ut

In the following, we assume that Oi
+ and Oi

− are defined such that NDRi =
(N, Oi

+, O
i
−) with 1 ≤ i ≤ 7.

Lemma 16. If (R, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
some i (1 ≤ i ≤ 7).

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. If O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅
at the same time, then from Lemma 14(a), the NDR is non-safe. Therefore, we
examine two cases: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.
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Case 2.1: O− ⊆ {>,≥,=}. We further examine whether O− ⊆ {>,≥} or
{=} ⊆ O−.

Case 2.1.1: O− ⊆ {>,≥} = O5
− and O+ ⊆ O5

+.
Case 2.1.2: {=} ⊆ O−. We distinguish two cases: either O− ⊆ {≥,=} or

O− ∩ {>} 6= ∅.
Case 2.1.2.1: O− ⊆ {≥,=}. In this case O+ ⊆ O3

+ and O− ⊆ O3
−.

Case 2.1.2.2: O− ∩ {>,=} 6= ∅. If O+ ∩ {≥} 6= ∅, then the NDR is non-safe
from 14(b). Therefore, O+ ⊆ {<,>,≥,=} = O7

+ and O− ⊆ {>,≥,=} = O7
−.

Case 2.2: O− ⊆ {<,≤,=}. We further examine whether O− ⊆ {<,≤} or
{=} ⊆ O−.

Case 2.2.1: O− ⊆ {<,≤} = O4
− and O+ ⊆ O4

+.
Case 2.2.2: {=} ⊆ O−. We distinguish two cases: either O− ⊆ {≤,=} or

O− ∩ {<} 6= ∅.
Case 2.2.2.1: O− ⊆ {≤,=}. In this case O+ ⊆ O2

+ and O− ⊆ O2
−.

Case 2.2.2.2: O− ∩ {<} 6= ∅. If O+ ∩ {≤} 6= ∅, then the NDR is non-safe
from 14(c). Therefore, O+ ⊆ {<,>,≥,=} = O6

+ and O− ⊆ {<,≤,=} = O6
−. ut

7 Related Work

Datatypes have been extensively studied in the context of DLs [3, 7, 8]. Exten-
sions of expressive DLs with datatypes have been examined in depth [7] with
the main focus on decidability. Baader, Brandt and Lutz [3] formulated tractable
extensions of EL with datatypes using a p-admissibility restriction for datatypes.
A datatype D is p-admissible if (i) satisfiability and implication of conjunctions
of datatype restrictions can be decided in polynomial time, and (ii) D is convex:
if a conjunction of datatype restrictions implies a disjunction of datatype restric-
tions then it also implies on of its disjuncts [3]. In our case instead of condition
(i) we require that implication and satisfiability of just datatype restrictions
(not conjunctions since we do not consider functional features) is decidable in
polynomial time. Condition (ii) is relaxed to the requirement of safety for NDRs
since we take into account not only the domain of the datatypes and the types
of restrictions but also the polarity of their occurrences. The relaxed restrictions
allow for more expressive usage of datatypes in tractable languages, as demon-
strated by the example given in the introduction. Furthermore, Baader, Brandt
and Lutz did not provide a classification of datatypes that are p-admissible; in
our case we provide such a classification for natural numbers, integers, rationals
and reals. The EL Profile of OWL 2 [2] is inspired by EL++ and restricts all
OWL 2 datatypes to satisfy p-admissibility. In particular, only equality can be
used in datatype restrictions. Our result can allow for a significant extension of
datatypes in the OWL 2 EL Profile, where in addition inequalities can be used
negatively.

Our work is not the only one where the convexity property is relaxed without
losing tractability. It has been shown [8] that the convexity requirement is not
necessary provided that (i) the ontology contains only concept definitions of the
form A ≡ C, where A is a concept name, and (ii) every concept name occurs
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at most once in the left-hand side of the definition. In some applications this
requirement can be too restrictive since it disallows the usage of general concept
inclusion axioms (GCIs), such as the axiom (2) given in the introduction, which
do not cause any problem in our case.

8 Conclusions and Future Work

In this work we made a fine-grained analysis of extensions of EL with numerical
datatypes, focusing not only on the types of relations but also on the polarities of
their occurrences in axioms. We made a full classification of cases where these re-
strictions result in a tractable extension for natural numbers, integers and reals.
One practically relevant case for these datatypes is when positive occurrences of
datatype expressions can only use equality and negative occurrences can use any
of the numerical relations considered. This case was motivated by an example of
a pharmacy-related ontology, and can be proposed as a candidate for a future ex-
tension of the OWL 2 EL Profile. For the cases where the extension is tractable,
we provided a polynomial sound and complete consequence-based reasoning pro-
cedure, which can be seen as an extension of the completion-based procedure for
EL. We think that the procedure can be straightforwardly extended to accom-
modate other constructors in EL++ such as (complex) role inclusions, nominals,
domain and range restrictions and assertions, since these constructors do not
interact with datatypes [9]. We hope to investigate these extensions in future
works.

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to extend the
consequence-based procedure for Horn SHIQ [10] with our rules for datatypes.
For example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong con-
vexity property (see Definition 7). In order to achieve even higher expressivity for
datatypes we shall study how to combine different restrictions on the datatypes
occurring in an ontology so that tractability is preserved. For example, using
two safe NDRs in a single ontology may result in intractability, as is the case for
NDR1 and NDR2 for integers (see Table 8). One possible solution to this problem
is to specify explicitly which features can be used with which NDRs in order to
separate their usage in ontologies.
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