
SPARQL Beyond Subgraph Matching

Birte Glimm and Markus Krötzsch

Oxford University Computing Laboratory, UK

Abstract. We extend the Semantic Web query language SPARQL by defining
the semantics of SPARQL queries under the entailment regimes of RDF, RDFS,
and OWL. The proposed extensions are part of the SPARQL 1.1 Entailment
Regimes working draft which is currently being developed as part of the W3C
standardization process of SPARQL 1.1. We review the conditions that SPARQL
imposes on such extensions, discuss the practical difficulties of this task, and ex-
plicate the design choices underlying our proposals. In addition, we include an
overview of current implementations and their underlying techniques.

1 Introduction

SPARQL provides a query language for querying RDF data that has gained significant
popularity since its standardization by the World Wide Consortium (W3C) in January
2008 [12]. Almost all RDF stores support SPARQL either directly or via dedicated
SPARQL wrappers. The main mechanism for computing query results in SPARQL is
subgraph matching: RDF triples in both the queried RDF data and the query pattern
are interpreted as nodes and edges of directed graphs, and the resulting query graph is
matched to the data graph using variables as wild cards.

Various W3C standards, including RDF [3] and OWL [9], provide semantic inter-
pretations for RDF graphs that allow additional RDF statements to be inferred from
explicitly given assertions. It is desirable to utilize SPARQL as a query language in
these cases as well, but this requires basic graph pattern matching to be defined using
semantic entailment relations instead of explicitly given graph structures. Such exten-
sions of the SPARQL semantics are known as entailment regimes.

The subject of this paper is to introduce SPARQL entailment regimes for RDF and
RDFS entailment [3], OWL Direct Semantics [7], and OWL RDF-Based Semantics
[14]. The proposed extensions are part of the SPARQL 1.1 Entailment Regimes specifi-
cation, which is currently being developed by the W3C SPARQL working group.1 The
goal of this paper is to provide a detailed outline of these proposals that is valuable to
practitioners and researchers alike. We provide extended discussions of the considera-
tions that have led to our design, and we survey principal implementation techniques.

Although SPARQL has been designed to allow for the definition of entailment
regimes, their precise definition is not straightforward. Naive approaches easily lead to
infinite query results that are of no practical interest. Possible reasons include trivial re-
namings of blank nodes, RDFS’s infinitely many axiomatic triples, and the entailment
of arbitrary consequences from inconsistent inputs, each of which suggests different

1 http://www.w3.org/2009/sparql/wiki/

http://www.w3.org/2009/sparql/wiki/


handling as discussed below. A second problem is that OWL is not primarily based on
RDF triples but defines entailments in terms of ontological objects. Thus, triples can be
genuine input data or merely part of the encoding of a complex object.

The paper is structured as follows. Section 2 gives a short introduction to RDF(S)
and OWL, and Section 3 reviews the basics of SPARQL subgraph matching. In Sec-
tion 4, we offer our interpretation of the conditions that SPARQL 1.0 defines for en-
tailment regimes. The entailment regimes for RDF and RDFS are defined in Section 5,
and the extensions of SPARQL with OWL’s RDF-Based Semantics and the OWL Direct
Semantics are presented in Section 6. Finally, Sections 7 and 8 explain basic implemen-
tation techniques for SPARQL entailment regimes and discuss further related work.

2 RDF Graphs and Their Semantics

SPARQL queries are evaluated over RDF graphs which remain the basic data structure
even when adopting a more elaborate semantic interpretation. RDF is based on the set
I of all International Resource Identifiers (IRIs), the set RDF-L of all RDF literals, and
the set RDF-B of all blank nodes. The set RDF-T of RDF terms is I∪RDF-L∪RDF-B.
We generally abbreviate IRIs using prefixes rdf, rdfs, owl, and xsd to refer to the RDF,
RDFS, OWL, and XML Schema Datatypes namespaces, respectively. The prefix ex is
used for an imaginary example namespace.

An RDF graph is a set of RDF triples of the form (subject, predicate, object) ∈
(I∪RDF-B)× I×RDF-T. We normally omit “RDF” in our terminology if no confusion
is likely, and we use Turtle syntax [1] for all examples. The vocabulary Voc(G) of a
graph G is the set of all terms that occur in G.

Semantically, RDF graphs can be interpreted in a number of ways based on various
W3C recommendations. The simple semantics [3] considers only the graph structure of
RDF, whereas more elaborate semantics such as RDFS entailment [3] or OWL Direct
Semantics [7] provide a special meaning to certain RDF terms.

The common basis for all such semantics is that they were specified by defining a
model theory: one defines a suitable kind of interpretation, and specifies necessary and
sufficient conditions for one such interpretation to satisfy a given RDF graph. When
defining a semantics E (such as RDF, RDFS, etc.) one often speaks of E-interpretations
and E-satisfaction. The set of all E-interpretations that E-satisfy a graph G are called
the E-models of G. Semantic entailment follows from this notion: a graph G E-entails a
graph G′, written G |=E G′, if and only if every E-model of G is also an E-model of G′.

In this work, we encounter the simple semantics, RDF semantics, and RDFS seman-
tics [3], as well as the OWL Direct Semantics [7] and OWL RDF-Based Semantics [14].
This order roughly mirrors the amount of entailments obtained under each of these se-
mantics, e.g., all RDF-entailments are also RDFS-entailments. This ideal compatibility
is not always given, especially since the OWL Direct Semantics is defined in the tradi-
tion of first-order logic, whereas the other semantics are based on a specific notion of
interpretation introduced for RDF. The latter was found difficult to extend to expressive
languages like OWL, and indeed entailment under the OWL RDF-Based Semantics is
undecidable and is mostly used by tools that restrict to a sub-language of OWL.



On the other hand, the OWL Direct Semantics is only defined for graphs that respect
certain additional conditions. This is so since this semantics is defined based on OWL
objects of which RDF graphs are but an indirect representation. The OWL 2 functional-
style syntax (FSS) directly corresponds to the OWL objects [8]. For example, the triple

ex:a owl:sameAs ex:b corresponds to SameIndividual(ex:a ex:b).

Since the mapping from RDF triples to OWL objects is not defined for arbitrary RDF
graphs, the OWL 2 Direct Semantics makes restrictions on the well-formedness of RDF
graphs that can be used with the semantics. OWL 2 DL describes the largest subset of
RDF graphs for which the OWL 2 Direct Semantics is defined.

3 The SPARQL Query Language

We do not recall the complete surface syntax of SPARQL here but simply introduce
the underlying algebraic operations using our notation. A detailed introduction to the
relationship of SPARQL queries and their algebra is given in [4].

Queries are built using a countably infinite set V of query variables disjoint from
RDF-T. SPARQL supports a variety of filter expressions, or just filters, built from RDF
terms, variables, and a number of built-in functions and operators; see [12] for details.

Definition 1. A triple pattern is member of the set (RDF-T∪V)× (I∪V)× (RDF-T∪V),
and a basic graph pattern (BGP) is a set of triple patterns. More complex graph pat-
terns are inductively defined to be of the form BGP, Join(GP1,GP2), Union(GP1,GP2),
LeftJoin(GP1,GP2, F), and Filter(F,GP), where BGP is a BGP, F is a filter, and GP(i)
are graph patterns that share no blank nodes.2 The sets of variables and blank nodes in
a graph pattern GP are denoted by V(GP) and B(GP), respectively.

SPARQL allows literals to be used as triple subjects although RDF graphs cannot
currently contain such triples. This is meant to support (future) extensions of RDF.

We exclude a number of SPARQL features from our discussion. First, we disre-
gard any of the new SPARQL 1.1 query constructs since their syntax and semantics
are still under discussion in the SPARQL working group. Second, we do not consider
output formats (e.g., SELECT or CONSTRUCT) and solution modifiers (e.g., LIMIT or
OFFSET) which are not affected by entailment regimes. Third, we exclude SPARQL
datasets that allow SPARQL endpoints to cluster data into several named graphs and a
default graph. For simpler presentation, we omit dataset clauses and assume that queries
are evaluated over the default graph, called the active graph for the query.

Evaluating a SPARQL graph pattern results in a solution sequence that lists possible
bindings of query variables to RDF terms in the active graph. Such bindings are repre-
sented by partial functions µ from V to RDF-T, called solution mappings. For a solution
mapping µ – and more generally for any (partial) function – the set of elements on which
µ is defined is the domain dom(µ) of µ, and the set ran(µ) B {µ(x) | x ∈ dom(µ)} is
the range of µ. For a graph pattern GP, we use µ(GP) to denote the pattern obtained by

2 As in [12], disallowing GP1 and GP2 to share blank nodes is important to avoid unintended
co-references. This was not needed in [10] where blank nodes were not considered.



Table 1. Evaluation of algebraic operators in SPARQL

JUnion(GP1,GP2)KG B
{
(µ, n) | n = M1(µ) + M2(µ) > 0

}
JJoin(GP1,GP2)KG B

{(
µ, n

)
| n =

∑
(µ1 ,µ2)∈J(µ)

(
M1(µ1) ∗ M2(µ2)

)
> 0

}
where

J(µ) B
{
(µ1, µ2) | µ1, µ2 compatible and µ = µ1 ∪ µ2

}
JFilter(F,GP)KG B

{
(µ, n) | M(µ) = n > 0 and Jµ(F)K = true

}
JLeftJoin(GP1,GP2,F)KG B JFilter(F, Join(GP1,GP2))KG ∪{(

µ1,M1(µ1)
)
| for all µ2 with M2(µ2) > 0 : µ1 and µ2 are

incompatible or J(µ1 ∪ µ2)(F)K = false
}

applying µ to all elements of GP in dom(µ). This convention is extended in the obvious
way to filter expressions, and to all functions that are defined on variables or terms.

The order of solution sequences is relevant for later processing steps in SPARQL,
but not for obtaining the solutions for a graph pattern. To disregard the order for-
mally, we use solution multisets. A multiset over an underlying set S is a total function
M : S → IN+∪{ω}where IN+ are the positive natural numbers, andω > n for all n ∈ IN+.
The value M(s) is the multiplicity of s ∈ S , and ω denotes a countably infinite number
of occurrences. Infinitely many occurrences of individual solution mappings are indeed
possible when considering SPARQL entailment regimes, and a major concern of this
work is to avoid this for the entailment regimes we define.

We often represent a multiset M with underlying set S by the set {(s,M(s)) | s ∈ S }.
Accordingly, we may write (s, n) ∈ M if M(s) = n. Also, we assume that M(s) denotes
0 whenever s < S . In some cases, it is also convenient to use a set-like notation where
repeated elements are allowed, e.g. writing {̇a, b, b}̇ for the multiset M with underlying
set {a, b}, M(a) = 1, and M(b) = 2.

To define the solution multiset for a BGP under the simple semantics, we still need
to consider the effect of blank nodes. Intuitively, these act like variables that are pro-
jected out of a query result, and thus they may lead to duplicate solution mappings. This
is accounted for using RDF instance mappings as follows:

Definition 2. An RDF instance mapping is a partial function σ : RDF-B → RDF-T
from blank nodes to RDF terms. We extend σ to pattern graphs and filters as done for
solution mappings above. The solution multiset JBGPKG for a basic graph pattern BGP
over the active graph G is the following multiset of solution mappings:

{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for all 1 ≤ i ≤ n,
dom(σi) = B(BGP) and µ(σi(BGP)) is a subgraph of G}.

Note that the number n in the definition of JBGPKG is always finite.
The algebraic operators that are required for evaluating non-basic graph patterns

correspond to operations on multisets of solution mappings which are the same for all
entailment regimes. To take infinite multiplicities into account, we assume ω + n =

n + ω = ω for all n ≥ 0, ω ∗ n = n ∗ ω = ω for all n > 0 and ω ∗ 0 = 0 ∗ ω = 0. To



Table 2. Conditions for extending BGP matching to E-entailment (quoted from [12])

1. The scoping graph SG, corresponding to any consistent active graph AG, is uniquely speci-
fied and is E-equivalent to AG.

2. For any basic graph pattern BGP and pattern solution mapping P, P(BGP) is well-formed
for E.

3. For any scoping graph SG and answer set {P1, . . . ,Pn} for a basic graph pattern BGP, and
where BGP1, . . . ,BGPn is a set of basic graph patterns all equivalent to BGP, none of which
share any blank nodes with any other or with SG

SG |=E (SG ∪ P1(BGP1) ∪ . . . ∪ Pn(BGPn)).
4. Each SPARQL extension must provide conditions on answer sets which guarantee that every

BGP and AG has a finite set of answers which is unique up to RDF graph equivalence.

incorporate the effect of filters, it suffices to know that SPARQL assigns to any filter F
an effective truth value that we will denote by JFK.

Definition 3. Two solution mappings µ1 and µ2 are compatible if µ1(v) = µ2(v) for all
v ∈ dom(µ1) ∩ dom(µ2). If this is the case, a solution mapping µ1 ∪ µ2 is defined by
setting (µ1 ∪ µ2)(v) B µ1(v) if v ∈ dom(µ1), and (µ1 ∪ µ2)(v) B µ2(v) otherwise.

The evaluation of a graph pattern over G, denoted J · KG, is defined as in Table 1,
where we abbreviate multisets JGPKG / JGP1KG / JGP2KG by M / M1 / M2 for readability.

Note that two mappings with disjoint domains are always compatible. Intuitively,
Join(GP1,GP2) represents all possible combinations of mappings from JGP1KG with
compatible mappings from JGP2KG, as accounted for by taking the product of multi-
plicities. One mapping in a join may result from various combinations of compatible
mappings, so that we need to compute a sum of their multiplicities. The expression
LeftJoin(GP1,GP2,F) combines the filtered join of the inputs with all mappings of
JGP1KG which are not represented in this filtered join.

4 Extending Basic Graph Pattern Matching

To extend SPARQL for entailment regimes like RDFS or OWL Direct Semantics, it
suffices to modify the evaluation of BGPs accordingly, while the remaining algebra op-
erations can still be evaluated as in Definition 3. When considering E-entailment, we
thus define solution multisets JBGPKE

G. The SPARQL Query 1.0 specification [12] al-
ready envisages the extension of the BGP matching mechanism, and provides a set of
conditions for such extensions that we recall in Table 2. We found these conditions hard
to interpret since their terminology is not aligned well with the remaining specifica-
tion. In the following, we discuss our reading of these conditions, leading to a revised
clarified version presented in Table 3.3

3 The current SPARQL working group is not chartered to revise the existing specification, so
the ongoing work on entailment regimes is based on the assumption that the conditions were
meant to be in the revised form.



Table 3. Clarified conditions for extending BGP matching to E-entailment

An entailment regime E provides conditions on BGP evaluation such that for any evaluation J·KE
G

that satisfies these conditions, any basic graph pattern BGP, and any graph G, the multiset of
graphs

{
(µ(BGP), n) | (µ, n) ∈ JBGPKE

G

}
is uniquely determined up to RDF graph equivalence.

1. For any consistent active graph AG, the entailment regime E uniquely specifies a scoping
graph SG that is E-equivalent to AG.

2. A set of well-formed graphs for E is specified such that, for any basic graph pattern BGP,
scoping graph SG, and solution mapping µ in the underlying set of JBGPKE

SG, the graph
µ(BGP) is well-formed for E.

3. For any basic graph pattern BGP, and scoping graph SG, if S denotes the underlying set of
JBGPKE

SG, then there is a family of RDF instance mappings (σµ)µ∈S such that

SG |=E SG ∪
⋃
µ∈S

µ(σµ(BGP)).

4. Entailment regimes should provide conditions to prevent trivial infinite solution multisets.

Condition (1) forces an entailment regime to specify a so-called scoping graph
based on which query answers are computed instead of using the active graph directly.
Since an entailment regime’s definition of BGP matching is free to refer to such derived
graph structures anyway, the additional use of a scoping graph does not increase the
freedom of potential extensions. We assume, therefore, that the scoping graph is the
active graph in the remainder. If the active graph is E-inconsistent, entailment regimes
specify the intended behavior directly, e.g., by requiring that an error is reported.

Condition (2) refers to a “pattern solution mapping” though what is probably meant
is a pattern instance mapping P, defined in [12] as the combination of an RDF instance
mapping σ and a solution mapping µ where P(x) = µ(σ(x)). We assume, however,
that (2) is actually meant to refer to all solution mappings in JBGPKE

G. Indeed, even for
simple entailment where well-formedness only requires P(BGP) to be an RDF graph,
condition (2) would be violated when using all pattern instance mappings. To see this,
consider a basic graph pattern BGP = {_:a ex:b ex:c}. Clearly, there is a pattern instance
mapping P with P(_:a) = "1"ˆˆxsd:int, but P(BGP) = {"1"ˆˆxsd:int ex:b ex:c} is not
an RDF graph. Similar problems occur when using all solution mappings. Hence we
assume (2) to refer to elements of the computed solution multiset JBGPKE

G. The notion
of well-formedness in turn needs to be specified explicitly for entailment regimes.

Condition (3) uses the term “answer set” to refer to the results computed for a BGP.
To match the rest of [12], this has to be interpreted as the solution multiset JBGPKE

G.
This also means mappings Pi are solution mappings (not pattern instance mappings as
their name suggests). The purpose of (3), as noted in [12], is to ensure that if blank node
names are returned as bindings for a variable, then the same blank node name occurs
in different solutions only if it corresponds to the same blank node in the graph. To
illustrate the problem, consider the following graphs:

G : ex:a ex:b _:c. G1 : ex:a ex:b _:b1. G2 : ex:a ex:b _:b2. G3 : ex:a ex:b _:b1.
_:d ex:e ex:f. _:b2 ex:e ex:f. _:b1 ex:e ex:f. _:b1 ex:e ex:f.



Clearly, G simply entails G1 and G2, but not G3 where the two blank nodes are iden-
tified. Now consider a basic graph pattern BGP = {ex:a ex:b ?x.?y ex:e ex:f}. A so-
lution multiset for BGP could comprise two mappings µ1 : ?x 7→ _:b1, ?y 7→ _:b2 and
µ2 : ?x 7→ _:b2, ?y 7→ _:b1. So we have µ1(BGP) = G1 and µ2(BGP) = G2, and both
solutions are entailed. However, condition (3) requires that G ∪ µ1(BGP) ∪ µ2(BGP) is
also entailed by G, and this is not the case in our example since this union contains G3.
The reason is that our solutions have unintended co-references of blank nodes that (3)
does not allow. SPARQL’s basic subgraph matching semantics respects this condition
by requiring solution mappings to refer to blank nodes that actually occur in the active
graph, so blank nodes are treated like (Skolem) constants.4 The revised condition in Ta-
ble 3 has further been modified to not implicitly require finite solution multisets which
may not be appropriate for all entailment regimes. In addition, we use RDF instance
mappings for renaming blank nodes instead of requiring renamed variants of the BGP.

Finally, condition (4) requires that solution multisets are finite and uniquely deter-
mined up to RDF graph equivalence, again using the “answer set” terminology. Our
revised condition clarifies what it means for a solution multiset to be “unique up to
RDF graph equivalence.” We move the uniqueness requirement above all other condi-
tions, since (2) and (3) do not make sense if the solution multiset was not defined in this
sense. The rest of the condition was relaxed since entailment regimes may inherently
require infinite solution multisets, e.g., in the case of the Rule Interchange Format RIF
[6]. It is desirable that this only happens if there are infinite solutions that are “inter-
esting,” so the condition has been weakened to merely recommend the elimination of
infinitely many “trivial” solution mappings in solution multisets. The requirement thus
is expressed in an informal way, leaving the details to the entailment regime. Within this
paper, we will make sure that the solution multisets are in fact finite (both regarding the
size of the underlying set, and regarding the multiplicity of individual elements).

5 The RDF and RDFS Entailment Regimes

We focus on specifying the RDFS entailment regime, since the case of RDF is an obvi-
ous simplification of this entailment regime. The major problem for RDFS entailment
is to avoid trivially infinite solution multisets as suggested by Table 3 (4), where three
principal sources of infinite query results have to be addressed:

1. An RDF graph can be inconsistent under the RDFS semantics in which case it
RDFS-entails all (infinitely many) conceivable triples.

2. The RDFS semantics requires all models to satisfy an infinite number of axiomatic
triples even when considering an empty graph.

3. Every non-empty graph entails infinitely many triples obtained by using arbitrary
blank nodes in triples.

We now discuss each of these problems, and derive a concrete definition for BGP
matching in the proposed entailment regime at the end of this section.

4 Yet, SPARQL allows blank nodes to be renamed when loading documents, so there is no
guarantee that blank node IDs used in input documents are preserved.



5.1 Treatment of Inconsistencies

SPARQL does not require entailment regimes to yield a particular query result in cases
where the active graph is inconsistent. As stated in [12], “[the] effect of a query on an
inconsistent graph [. . . ] must be specified by the particular SPARQL extension.” One
could simply require that implementations of the RDFS entailment report an error when
given an inconsistent active graph. However, a closer look reveals that inconsistencies
are extremely rare in RDFS, so that the requirement of checking consistency before
answering queries would impose an unnecessary burden on implementations.

Indeed, graphs can only be RDFS-inconsistent due to improper use of the datatype
rdf:XMLLiteral. A typical example for this is the following graph:

ex:a ex:b "<"ˆˆrdf:XMLLiteral. ex:b rdfs:range rdfs:Literal.

The literal in the first triple is ill-typed as it does not denote a value of rdf:XMLLiteral.
This does not cause an inconsistency yet but forces "<"ˆˆrdf:XMLLiteral to be inter-
preted as a resource that is not in the extension of rdfs:Literal, which in turn cannot
be the case in any model that satisfies the second triple. Ill-typed literals are the only
possible cause of inconsistency in RDFS and as such not a frequent problem.5 More-
over, inconsistencies of this type are inherently “local” as they are based on individual
ill-typed literals that could easily be ignored if not related to a given query.

It has thus been decided in the SPARQL working group that systems only have to
report an error if they actually detect an inconsistency. Until this happens, queries can
be answered as if all literals were well-typed. Our exact formalization corresponds to a
behavior where tools simply assume that all strings are well-typed for rdf:XMLLiteral,
and hence does not put additional burden on implementers.

5.2 Treatment of Axiomatic Triples

Every RDFS model is required to satisfy an infinite number of axiomatic triples. The
reason is that the RDF vocabulary for encoding lists includes property names rdf:_i for
all i ≥ 1, with several (RDFS) axiomatic triples for each rdf:_i. For instance, we find a
triple rdf:_i rdf:type rdf:Property for all i ∈ IN. Thus, the query ?x rdf:type rdf:Property
could have infinitely many results. We consider such results trivial in the sense of Ta-
ble 3 (4), and thus we want avoid them in the RDFS entailment regime.

We therefore propose that axiomatic triples with a subject of the form rdf:_i are only
taken into account if the subject’s IRI explicitly occurs in the active graph. This ensures
that only finitely many axiomatic triples are considered, since there is only a finite
number of axiomatic triples whose subjects do not have the form rdf:_i. To conveniently
formalize this, Definition 5 below still refers to the standard RDFS entailment with all
axiomatic triples, and restricts the range of solution mappings to an answer domain
instead. Ignoring axiomatic triples for IRIs rdf:_i that occur only in a query but not in
the active graph ensures that the total number of entailments that are relevant for query
answering is finite. This would not be the case if new entailments would be required

5 Implementations may support additional datatypes that can lead to similar problems. Such
extensions go beyond the RDFS semantics we consider here, yet inconsistencies remain rare
even in these cases.



whenever a given query contains a hitherto unused IRI. This distinguishes our approach
from [5] where a partial closure algorithm is used to decide RDFS entailment for a set
of axiomatic triples based on both the given graph and the query graph.

5.3 Treatment of Blank Nodes

Even if condition (3) in Table 3 holds, solution multisets could include infinitely many
results that only differ in the identifiers for blank nodes. Simple entailment avoids this
problem by restricting results to blank nodes that occur in the active graph. For entail-
ment regimes, however, one must take entailed triples into account. This already leads
to triples with different blank nodes, as illustrated in the graphs G1 and G2 in Section 4.

Restricting the range of solution mappings to blank nodes in the active graph would
ensure finiteness but is not a satisfactory solution. To see why, consider the graph

G : ex:a ex:b ex:c. ex:d ex:e _:f.
The query BGP = {ex:a ex:b ?x} yields only one solution mapping µ : ?x 7→ ex:c
under simple entailment. Yet, the mapping µ′ : ?x 7→ _:f uses only blank nodes from G,
and satisfies G |= µ′(BGP) even under simple semantics. This shows that the latter two
conditions are not sufficiently specific for handling blank nodes in entailment regimes.
A more adequate approach is the use of Skolemization:

Definition 4. Let the prefix skol refer to a namespace IRI that does not occur as the
prefix of any IRI in the active graph or query. The Skolemization sk(_:b) of a blank
node _:b is defined as sk(_:b) B skol:b. We extend sk(·) to graphs and filters just like
other (partial) functions on RDF terms.

Intuitively, Skolemization changes blank nodes into resource identifiers that are not
affected by entailment. Clearly, we do not want Skolemized blank nodes to occur in
query results, but it is useful to restrict to solution mappings µ for which sk(G) |=
sk(µ(BGP)). In the above example, this condition is indeed satisfied by µ but not by µ′.

5.4 Defining the RDF(S) Entailment Regimes

The set of well-formed graphs for the RDFS entailment regime is simply the set of all
RDF graphs. BGP matching for RDFS is defined as follows.

Definition 5. Let Voc(RDFS) be the RDFS vocabulary, G an RDF graph, and BGP
a basic graph pattern. The answer domain w.r.t. G under RDFS entailment, written
ADRDFS(G), is the set Voc(G) ∪

(
Voc(RDFS) \ {rdf:_i | i ∈ IN}

)
. The evaluation of BGP

over G under RDFS entailment JBGPKRDFS
G is the solution multiset

{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
sk(G) |=RDFS sk(µ(σi(BGP))) and (ran(µ) ∪ ran(σi)) ⊆ ADRDFS(G)}.

Other types of graph patterns are evaluated as in Definition 3. If the active graph is
RDFS-inconsistent, implementations may compute solution multisets based on the as-
sumption that all literals of type rdf:XMLLiteral are well-typed, so that no inconsistency
occurs. When the inconsistency is detected, implementations should report an error.



Since computing a partial RDFS closure for an RDF graph can be done in polyno-
mial time [5] and BGP evaluation then amounts to subgraph matching over the partial
closure, it follows that the complexity of the evaluation problem under the RDFS regime
is the same as for standard SPARQL. For set semantics instead of multiset semantics
this is known to be PSPACE-complete [10].

The entailment regime for RDF is defined similarly, but using RDF entailment and
the RDF vocabulary instead. Note that the above definition can also be restricted to
simple entailment, yielding the same solution multisets as Definition 2.

6 The OWL Entailment Regimes

In contrast to the RDFS semantics, a graph does no longer admit a unique canonical
model that can be used to compute answers under the RDF-Based Semantics (RBS)
and Direct Semantics (DS) of OWL, i.e., we can no longer imagine queries to act on a
unique “completed” version of the active graph. This affects reasoning algorithms (see
Section 7), but has only little effect on our definitions. The main new challenges for
OWL are its expressive datatype constructs that may lead to infinite answers, and the
fact that the OWL DS is defined in terms of OWL objects to which a given RDF graph
and query must first be translated. The problems discussed for RDF(S) also require
slightly different solutions for OWL:

1. Inconsistent input ontologies are required to be rejected with an error.
2. The axiomatic triples of RDFS are used only by the RBS and can again be handled

by suitably restricting solutions to an answer domain.
3. The problem of blank nodes occurs for both semantics and can again be addressed

by Skolemization, but for DS the blank nodes that are used to encode OWL objects
must not be Skolemized.

The main difference to RDFS is the stricter first item which no longer permits deferred
inconsistency detection. Inconsistencies in RDFS were easy to ignore since they always
related to single literals. Neither OWL semantics suggests such simple reasoning under
inconsistencies. Although proposals exists for addressing this, they disagree on the in-
ferred entailments and tend to require complex computations. On the other hand, typical
OWL reasoning algorithms are model building procedures which detect inconsistencies
as part of their normal operation. Hence, reporting errors in this case can usually be
done without additional effort.

6.1 Infinite Entailments in Datatype Reasoning

In order to see how datatype reasoning in OWL can cause infinite entailments, consider
the graph and query in Table 4. Recall that a abbreviates rdf:type, [. . .] denotes an
implicit blank node, and (. . .) denotes an RDF list. G states that all data values to which
Peter is related via ex:dp are in the singleton set of the integer 5. The query asks for all
data values to which ex:Peter cannot be related with ex:dp. Without suitable restrictions,
all (infinitely many) integers other than 5 could be used in solution mappings for ?x.



Table 4. A query with infinitely many entailed solutions

G : ex:Peter a [ a owl:Restriction; BGP : ex:Peter a [ a owl:Restriction;
owl:onProperty ex:dp; owl:onProperty ex:dp;
owl:allValuesFrom [ a rdfs:Datatype; owl:allValuesFrom [ a rdfs:Datatype;

owl:oneOf ("5"ˆˆxsd:integer)]] owl:datatypeComplementOf [
a rdfs:Datatype; owl:oneOf (?x)]]]

Moreover, it is currently unknown how to compute all mappings for literal variables
even for cases where there number is finite – testing all literals is clearly not an option.6

We therefore restrict the answer domain for the OWL entailment regimes to include
only literals that are explicitly mentioned in the input graph. Like for the IRIs rdf:_i, this
may lead to unexpected behavior, since mentioning a literal in the input may lead to
new query results even for queries not directly related to this literal. Yet, we think this
problem is so rare in practice that a more detailed analysis of the problematic datatype
expressions is not worthwhile, even if it could further limit unintuitive behavior.

6.2 The OWL 2 RDF-Based Semantics Entailment Regime

The OWL 2 RDF-Based Semantics treats classes as individuals that refer to elements
of the domain. Each such element is then associated with a subset of the domain, called
the class extension. This means that semantic conditions on class extensions are only
applicable to those classes that are actually represented by an element of the domain
which can lead to less consequences than expected. An example is given by the follow-
ing graph and BGP:

G : ex:a rdf:type ex:C BGP : ?x rdf:type [ rdf:type owl:Class ;
owl:unionOf ( ex:C ex:D ) ]

G states that ex:a has type ex:C, while BGP asks for instances of the complex class de-
noting the union of ex:C and ex:D. One might expect µ : ?x 7→ ex:a to be a solution, but
this is not the case under the OWL 2 RDF-Based Semantics (see also [14, Sec. 7.1]). It
is guaranteed that the union of the class extensions for ex:C and ex:D exists as a subset
of the domain; no statement in G implies, however, that this union is the class extension
of any domain element. Thus, µ(BGP) is not entailed by G.

The entailment holds, however, when the statement ex:E owl:unionOf ( ex:C ex:D )
is added to G. In the OWL Direct Semantics, in contrast, classes denote sets and not do-
main elements, so G entails µ(BGP) under DS where, formally, G must first be extended
with an ontology header to become well-formed for DS. Note that a similar situation
occurs for the example in Section 6.1, but the problem still occurs if the necessary
expressions are introduced.

Summing up, the RBS handles blank nodes just like RDFS, even in cases where they
are needed for encoding OWL class expressions. This allows us to use Skolemization
just like in the case of RDFS in the next definition.

6 Hence one cannot call such solutions “trivial” in the sense of Table 3. Indeed, our restrictions
are motivated by pragmatic considerations, not by formal requirements of SPARQL.



Table 5. Grammar extension for extended OWL objects

Class B IRI | Var ObjectProperty B IRI | Var DataProperty B IRI | Var
Individual B NamedIndividual | AnonymousIndividual | Var

Literal B typedLiteral | stringLiteralNoLanguage | stringLiteralWithLanguage | Var

Definition 6. Let Voc(OWL2) be the OWL 2 vocabulary, G a graph, and BGP a basic
graph pattern. We write |=RBS to denote the OWL 2 RDF-Based Semantics entailment
relation. The answer domain w.r.t. G under RDF-Based Semantics entailment, written
ADRBS(G), is the set Voc(G) ∪ (Voc(OWL2) \ {rdf:_i | i ∈ IN}). The evaluation of BGP
over G under RDF-Based Semantics entailment JBGPKRBS

G is the solution multiset

{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
sk(G) |=RBS sk(µ(σi(BGP))) and (ran(µ) ∪ ran(σi)) ⊆ ADRBS(G)}.

6.3 The OWL 2 Direct Semantics Entailment Regime

The OWL 2 Direct Semantics is not defined in terms of triples, but in terms of OWL
objects that constitute an ontology. The OWL 2 recommendation specifies how to con-
struct an ontology OG from a graph G that satisfies some further conditions [9]. Thus
G is well-formed for the OWL DS entailment regime if OG is defined. In the follow-
ing, we conveniently identify ontologies with their unique canonical representation in
Functional-Style Syntax [8]. Some RDF triples are mapped to so-called non-logical ax-
ioms such as annotations, declarations, or import directives. Such axioms can only have
indirect effect on DS entailment, e.g., since imported axioms are taken into account,
but they do not directly lead to entailments. In particular, annotations do not contribute
query results under DS.

Like the active graph, also the BGP of the query is mapped into an OWL 2 DL
ontology, extended to allow variables in place of class names, object property names,
datatype property names, individual names, or literals. Table 5 shows how productions
of the OWL 2 functional-style syntax grammar [8] are extended to allow variables as
defined by the Var production from the SPARQL grammar [12]. Solution mappings in a
query result are applied to such extended ontologies to obtain a set of OWL DL axioms
that is compatible with the queried ontology and also entailed by it under DS.

The construction of ontologies from graphs requires type declarations for proper-
ties, classes, and (custom) datatypes to avoid ambiguities, and we need similar typing
information for terms and variables in BGPs. For example, the BGP {?s ?p ?o} could
refer to DataPropertyAssertion(?p ?s ?o) or ObjectPropertyAssertion(?p ?s ?o) if
the type of ?p is not given. We take type declarations from the queried ontology into
account, so that only variables may require further typing.

Formally, an extended ontology OG
BGP is constructed for a basic graph pattern BGP

and graph G using the parsing process for RDF graphs as defined in [9] with three
modifications: variable identifiers are allowed in place of IRIs and literals in all parsing
steps, an ontology header may be added to BGP if not given, and the type declarations
given in BGP are augmented with the declarations in G (denoted AllDecl(G) in [9]). The



complete parsing process is detailed in the latest entailment regimes working draft.7

BGP is well-formed for the OWL DS entailment regime and a graph G if OG
BGP can be

obtained in this way and is an extended OWL DL ontology.
We can now define the evaluation of graph patterns. Skolemization is now applied

to OG, which ensures that only blank nodes that represent anonymous OWL individuals
are Skolemized, not blank nodes used for encoding complex OWL syntax in RDF.

Definition 7. Consider a graph G that is well-formed for the OWL 2 DS entailment
regime, and a basic graph pattern BGP that is well-formed for DS and G. With sk(OG)
we denote the result of replacing each blank node b in OG with sk(b). The answer do-
main w.r.t. G under OWL 2 Direct Semantics entailment, written ADDS(G), is Voc(OG).
If OG is inconsistent, queries must be rejected with an error. Otherwise, we write |=DS

for the OWL 2 Direct Semantics entailment relation and define the evaluation of BGP
over G under OWL 2 Direct Semantics entailment JBGPKDS

G as the solution multiset

{(µ, n) | dom(µ) = V(BGP), and n is the maximal number such that
σ1, . . . , σn are distinct RDF instance mappings such that, for each 1 ≤ i ≤ n,
OG ∪ µ(σi(OG

BGP)) is an OWL 2 DL ontology, and
sk(OG) |=DS sk(µ(σi(OG

BGP))) and (ran(µ) ∪ ran(σi)) ⊆ ADDS(G)}.

Since ADDS(G) is finite, clearly the solution multiset and each multiplicity is finite
too. Although the restriction to ADDS(G) avoids infinite results as discussed in Sec-
tion 6.1, reasoners may have to consider a large number of literals as potential variable
bindings and we expect that not all systems will provide a complete implementation for
queries with literal variables.

The complexity of standard reasoning problems in OWL are well-understood and
BGP evaluation can be implemented using the standard reasoning techniques. The com-
plexity of OWL reasoning usually outweighs that of the SPARQL algebra operations,
i.e., checking whether a solution mapping is a solution is complete for nondeterministic
exponential time in OWL DL and undecidable for the RDF-Based semantics.

7 Implementations of SPARQL Entailment Regimes

We now discuss how the interplay between SPARQL query processing and semantic
inference can be implemented in practice. Three principal approaches for this task are
reviewed below. An overview of optimized implementation techniques for SPARQL
algebra operators or specific reasoning algorithms is beyond the scope of this work.

Materialization and Partial Closure One can often extend the input graph with all rele-
vant semantic consequences, pre-computed at load time, and evaluate SPARQL queries
on this extended graph under the simple semantics. The approach is not applicable to
entailment regimes for which one cannot pre-compute all relevant consequences, e.g.,
for OWL DS entailment where arbitrarily complex class expressions may be required.
In the case of RDF(S) and OWL RDF-Based Semantics, however, our definitions en-
sure that the relevant consequences are finite and depend on the input graph only.8

7 http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/
8 Computing all such consequences for OWL RBS is of course still undecidable.

http://www.w3.org/TR/2010/WD-sparql11-entailment-20100601/


Materialization is the most common implementation technique, supported in systems
such as AllegroGraph, Jena, BigOWLIM and SwiftOWLIM, Mulgara, OntoBroker, or
Virtuoso.9 The partial closure algorithm proposed in [5] for checking RDF(S) entail-
ment can be adapted to implement the RDF(S) regime: Blank nodes in the initial graph
have to marked since only they can be used in solution and instance mappings, whereas
new blank nodes introduced by the partial closure algorithm cannot be used for variable
bindings. Blank nodes in the query are treated as variables that are projected out imme-
diately after BGP evaluation; the multiplicity of a solution is then given by the number
of original solutions from which it can be obtained through this projection.

Query Rewriting These techniques change the query rather than the queried graph.
One or more, possibly more complex queries are then evaluated over the original graph.
More expressive query features may be needed, e.g., by using regular expressions to
capture the transitivity of rdfs:subClassOf. To the best of our knowledge a pure query
rewriting techniques has so far only be proposed for a subset of RDFS [11]. A com-
bination with materialization, however, is also possible and successfully used, e.g., to
realize RDFS entailment in Sesame [17].

Modified Query Evaluation The most direct approach for implementing our definitions
is to modify existing SPARQL processors to evaluate BGPs differently. This can be ac-
complished, e.g., with the free ARQ library (http://jena.sourceforge.net/ARQ/). While
this offers much flexibility, computing BGP matches on demand may preclude many
optimizations for evaluating algebra operators. Yet, this method is a good approach
for adding SPARQL support to systems that perform complex inferencing. The Hermit
OWL reasoner (http://hermit-reasoner.com/) is currently being extended accordingly to
support the proposed DS entailment regime. This work also includes the modification
of the OWL API for parsing BGPs into extended OWL ontologies.

8 Related Work

Section 7 listed various efforts that are closely related to the implementation of our
proposals. Here we focus on alternative proposals for querying expressive semantic
data sources, especially for OWL.

OWL DS queries that ask for individuals and literals only are closely related to con-
junctive queries (CQs) on description logic (DL) knowledge bases; see [4] for a basic
introduction. An important difference is that CQs admit full existential variables that can
represent any domain element which can be (indirectly) inferred to exist. In contrast,
variables and blank nodes under OWL DS entailment may only bind to individuals that
are represented by a given blank node or IRI in the input, corresponding to so-called
distinguished variables in CQs. As of today, decidability of CQ entailment has only
been established for a sublanguage of OWL 2 [13]. Restricted CQ answering still is the
most common query service provided by OWL reasoners today. For example, KAON2
(http://kaon2.semanticweb.org/) and the TrOWL system (http://trowl.eu/) support the
CQ subset of the OWL DS regime, whereas RacerPro (http://racer-systems.com/) has

9 See http://en.wikipedia.org/wiki/Triplestore for more information on the mentioned systems.

http://jena.sourceforge.net/ARQ/
http://hermit-reasoner.com/
http://kaon2.semanticweb.org/
http://trowl.eu/
http://racer-systems.com/
http://en.wikipedia.org/wiki/Triplestore


its proprietary query language for CQs, called nRQL [2]. Similarly, OWLgres [16] and
Quonto10 support the CQ fragment, but they implement the OWL QL profile, which
restricts the expressivity of the input ontology to allow for a more efficient implemen-
tation based on standard database techniques.

We are not aware of a complete implementation of the DS entailment regime. As
of today, the Pellet OWL 2 DL reasoner (http://clarkparsia.com/pellet) is the most ad-
vanced system. The subset of SPARQL that Pellet supports – called SPARQL-DL [15]
– consists of queries that can be translated into a pre-defined set of query atoms in an
abstract syntax; with the semantics defined per abstract query atom.

Explicitly listing admissible queries has the advantage that one can focus on queries
that are well supported by OWL reasoners. Our definition of OWL DS entailment, in
contrast, uses a more general approach based on a direct mapping of BGPs to extended
OWL ontologies. This allows for queries that are not typically supported by reasoners,
e.g., when using variables to represent class names in complex class expressions.

Furthermore, SPARQL-DL treats blank nodes in queries like non-distinguished CQ
variables with full existential meaning, whereas the DS regime treats such blank nodes
like SPARQL variables that are projected out after BGP evaluation. Blank nodes under
DS entailment thus are largely like distinguished CQ variables, though we allow blank
nodes in the input to occur in results via Skolemization. Our design choice makes the
treatment of blank nodes more uniform across all SPARQL entailment regimes, and it
avoids the computational problems with non-distinguished variables in OWL.

9 Conclusions

We have presented extensions for SPARQL to incorporate RDF, RDFS, OWL RDF-
Based semantics, and OWL Direct Semantics entailment. When comparing the individ-
ual entailment regimes, we find that a surprisingly high level of compatibility can be
achieved between the different formalisms.

The presented regimes are closely related to the SPARQL Entailment Regimes doc-
ument currently developed in the W3C SPARQL working group and we believe that
our extended discussions and the resulting definitions provide a useful resource for im-
plementers and users of SPARQL.

Our work also provides a basis for further extensions of SPARQL. Entailment
regimes such as D-entailment can easily be added. A RIF entailment regime is also cur-
rently under development in the SPARQL Working Group, although some preliminaries
still have to be clarified, e.g., how an RDF graph can import or encode a RIF rule set. An
integration of new SPARQL operators, which are defined algebraically such as the mi-
nus operator currently under discussion, is straightforward. SPARQL modifications that
introduce extension points besides BGP matching, in contrast, would require more con-
siderations. Depending on the outcome of current discussions, this might be the case for
path expressions in SPARQL 1.1. Yet, our overall impression is that SPARQL is ready
– both theoretically and practically – for taking the step beyond sub-graph matching.
Acknowledgements This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies and RInO: Reasoning Infrastructure for Ontologies and
10 http://www.dis.uniroma1.it/quonto/

http://clarkparsia.com/pellet
http://www.dis.uniroma1.it/quonto/


Instances, and by DFG in the project ExpresST. We thank the members of the SPARQL
working group for valuable comments and suggestions.

References

1. Beckett, D., Berners-Lee, T.: Turtle – Terse RDF Triple Language. W3C Team Submission
(14 January 2008), available at http://www.w3.org/TeamSubmission/turtle/

2. Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with Racer + nRQL. In:
Proc. KI-2004 International Workshop on Applications of Description Logics (2004)

3. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (10 February 2004), available at
http://www.w3.org/TR/rdf-mt/

4. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman
& Hall/CRC (2009)

5. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. J. of Web Semantics 3(2–3), 79–
115 (2005)

6. Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note (22 June 2010), avail-
able at http://www.w3.org/TR/rif-overview/

7. Motik, B., Patel-Schneider, P.F., Cuenca Grau, B. (eds.): OWL 2 Web Ontology Language:
Direct Semantics. W3C Recommendation (27 October 2009), available at http://www.w3.
org/TR/owl2-direct-semantics/

8. Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Language: Struc-
tural Specification and Functional-Style Syntax. W3C Recommendation (27 October 2009),
available at http://www.w3.org/TR/owl2-syntax/

9. Patel-Schneider, P.F., Motik, B. (eds.): OWL 2 Web Ontology Language: Mapping to RDF
Graphs. W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-mapping-to-rdf/
10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-

tions on Database Systems 34(3), 1–45 (2009)
11. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. J. of Web

Semantics (2010), to appear, http://web.ing.puc.cl/~jperez/papers/jws2010.pdf
12. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recom-

mendation (15 January 2008), available at http://www.w3.org/TR/rdf-sparql-query/

13. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries. J. of Arti-
ficial Intelligence Research (2010), accepted for publication, http://www.comlab.ox.ac.uk/

files/2175/paper.pdf
14. Schneider, M. (ed.): OWL 2 Web Ontology Language: RDF-Based Semantics.

W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-rdf-based-semantics/
15. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Golbreich, C., Kalyan-

pur, A., Parsia, B. (eds.) Proc. OWLED 2007 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)

16. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: Dolbear, C., Ruttenberg,
A., Sattler, U. (eds.) Proc. OWLED 2008 Workshop on OWL: Experiences and Directions.
CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008)

17. Stuckenschmidt, H., Broekstra, J., Amerfoort, A.: Time – space trade-offs in scaling up RDF
Schema reasoning. In: WISE 2005 Workshops. LNCS, vol. 3807, pp. 172–181. Springer
(2005)

http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-syntax/

