
Science of Computer Programming 75 (2010) 1048–1076

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Type-directed weaving of aspects for polymorphically typed
functional languages
Kung Chen a, Shu-Chun Weng b, Meng Wang c, Siau-Cheng Khoo d,∗, Chung-Hsin Chen a
a National Chengchi University, Taiwan
b National Taiwan University, Taiwan
c Oxford University, United Kingdom
d National University of Singapore, Singapore

a r t i c l e i n f o

Article history:
Received 17 September 2008
Received in revised form 1 March 2010
Accepted 9 April 2010
Available online 20 May 2010

Keywords:
Aspect-oriented programming
Type-scoped advice
Static weaving
Polymorphically typed functional language

a b s t r a c t

Incorporating aspect-oriented paradigm to a polymorphically typed functional language
enables the declaration of type-scoped advice, in which the effect of an aspect can
be harnessed by introducing possibly polymorphic type constraints to the aspect.
The amalgamation of aspect orientation and functional programming enables quick
behavioral adaption of functions, clear separation of concerns and expressive type-directed
programming. However, proper static weaving of aspects in polymorphic languages with
a type-erasure semantics remains a challenge. In this paper, we describe a type-directed
static weaving strategy, as well as its implementation, that supports static type inference
and static weaving of programs written in an aspect-oriented polymorphically typed
functional language, AspectFun. We show examples of type-scoped advice, identify the
challenges faced with compile-time weaving in the presence of type-scoped advice, and
demonstrate how various advanced aspect features can be handled by our techniques.
Finally, we prove the correctness of the static weaving strategy with respect to the
operational semantics of AspectFun.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Aspect-oriented programming (AOP) aims at modularizing concerns such as profiling and security that crosscut
components of a software system [11]. In AOP, a program consists of many functional modules and some aspects that
encapsulate the crosscutting concerns. An aspect provides two kinds of specification: pointcut , comprising a set of functions,
designates when and where to crosscut other modules; and advice, which is a piece of code, that will be triggered for
execution when the corresponding pointcut is reached during run time. The complete program behavior is derived by some
novel ways of composing functional modules and aspects according to the specifications given within the aspects. Such a
composing activity can be done at compile time or run time, and is referred to as weaving in AOP. Weaving results in the
behavior of those functional modules impacted by aspects being modified accordingly.
While majority of the developments of AOP have been based on the object-oriented (OO) paradigm, there has been

increasing awareness that the idea of AOP, if not the exact mechanism developed in the OO setting, is able to offer
distinguished benefit to conventional functional languages in terms of modularity [23,22]. To start with, let us consider
a simple example of sorting a list. Assuming we already have a function sort :: [a] -> [a] that implements the
quicksort algorithm and picks the pivot from the head. For specific application domains, it is generally very useful if we can

∗ Corresponding author.
E-mail address: khoosc@comp.nus.edu.sg (S.-C. Khoo).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.04.001

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:khoosc@comp.nus.edu.sg
http://dx.doi.org/10.1016/j.scico.2010.04.001

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1049

augment the algorithmwith some domain knowledge in amodular fashion. For example, in an application of predominately
nearly sorted lists, the following aspect provides a special case for already sorted lists. (Our aspect language employs a syntax
very similar to that of Haskell. Detailed syntax will be presented in the following section.)

opt@advice around {sort} (arg) =
if isSorted arg then arg else proceed arg

This piece of code defines an aspect with the name opt, which designates sort as the pointcut . Effectively, this aspect
watches function sort and executes its advice body when sort is called with an input that binds to arg. Since quicksort
calls itself internally, nearly sorted lists also benefit from this aspect by having more efficient recursive invocations. The
special function proceed, whichmay be called inside the body of around advice, is bound to a function that represents ‘‘the
rest of the computation at the advised function’’; specifically, it enables control to be reverted to the advised function, such
as sort. An important difference between calling proceed and the actual function, say sort, is that proceed does not
trigger the same advice again.
The same predicate, isSorted, can be used to impose contracts that are separated modularly from the main functional

concern.

corr@advice around {sort} (arg) =
let res = proceed arg
in if isSorted res then res else error "Not Sorted!"

This contract aspect performs the computation first by calling proceed; it then takes over the returned result and checks
for its sortedness. Note that the error function is a built-in function of Haskell whose type is String->a.
Functionsort is polymorphic,whichworks uniformly on all input listswith comparable elements. From time to time,we

may want to adapt this generic behavior for some specific (set of) types. For example, suppose later in the development, we
add into the system some 32 bits binary numbers encoded as records for constant access to each digit. Pair-wise comparison
on them is thus expected to be expensive. We can then switch to the more suitable radixsort algorithm.

radix@advice around {sort} (arg::[Binary]) = radixSort arg

This aspect includes a type constraint [Binary] on its pointcut which limits the scope of its impact through type scoping
on its argument; this is called a type-scoped advice. This means that execution of radix will be triggered only when sort
is invoked with an argument of such list elements.
The advantage of using aspects is evident. Improvement to the existing program can be done modularly with easy

deployment and retraction of aspects. Since multiple pieces of advice can be attached to the same point and executed in
sequence, the aspects above can be picked and matched freely.
Though small, the sort example gives a glimpse of three important applications of AOP in functional programming that

are summarized below.

1. Behavioral Adaptation: Aspect optmakes function sort behave differently for the special case of sorted list based on
the inherited recursive structure of function sort.

2. Separation of Concerns: Aspect corr allows contracts to be imposed on function sort separately from the functional
component.

3. Type-directed Programming: Aspect radix augments function sortwith type specific behaviors.

Given these distinct benefits, it is attractive to introduce AOP into functional languages. Indeed, notable proposals of
AOP extensions have been made for ML [5,15]. However, proper static weaving of aspects in languages with type-erasure
semantics such as Haskell remains a challenge. Specifically, it is difficult to determine statically the exact type context of an
invocation of a polymorphic function in order to ensure proper weaving, at compile time, of aspects with type scopes. For
example, consider the following program

sortcat l = concat ((map sort) l)

When compiling sortcat, it is not clear whether aspect radix should be triggered as the element type of parameter l is
not known.
Not only does this problem exist in the functional setting, it also exists in any AOP language with type-erasure semantics

and parametric polymorphism. For example, as pointed out by Jagadeesan et al., correct static weaving of aspects are
threatened by the introduction of generics in Java [8]. Jagadeesan et al. illustrate this concern through the following Java
code:

class List<T extends Comparable<T>> {
T[] contents; ...
List<T> max(List<T> x) {

// general code for general types
} }

1050 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Programs π ::= d in π | e
Declarations d ::= x = e | f x = e | n@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf | pc − cf
Primitive PC’s ppc ::= f x | any | any\[f] | n
Cflows cf ::= cflow(f) | cflow(f (_ :: t))

| cflowbelow(f) | cflowbelow(f (_ :: t))
Expressions e ::= c | x | proceed | λx.e | e e | let x = e in e

Types t ::= Int | Bool | a | t → t | [t]
Advice Predicates p ::= (f : t)
Advised Types ρ ::= p.ρ | t
Type Schemes σ ::= ∀ā.ρ

Fig. 1. Syntax of the AspectFun language.

This class implements a list with a method max. When the input is a Boolean list, we may want to use bit operations for
implementation efficiency. This can be attained via a type-scoped aspect.

aspect BooleanMax {
List<Boolean> around(List<Boolean> x): args(x) &&

execution(List<Boolean> List<Boolean>.max(List<Boolean>)) {
// special code for boolean arguments

} }

However, for those invocations of max that occur inside another polymorphic method, we shall run into the same difficulty
of static weaving as described above. Furthermore, due to the type-erasure semantics of Java, run-time type test of the list
element type is not feasible. The solution presented in this paper, which works well in functional languages such as Haskell,
can shed light on the possible improvement to the compilation of aspect-oriented programs written in other paradigms.
In this paper, we present a type-directed aspect weaving scheme for polymorphically typed functional languages that

can solve this problem with static weaving. We consolidate our past research in this field [21,20,2] and makes significant
revisions and extensions to several dimensions of our research. Moreover, we illustrate our scheme with an experimental
language, AspectFun, and provide the following:

1. A complete treatment of static and consistent weaving for the core features of AspectFun, including type-scoped advice
and nested advice (whose body is also advised).

2. A full formulation of the correctness of static weaving wrt the operational semantics of AspectFun and its proof.
3. A complete implementation of our static weaving scheme which turns aspect-oriented functional programs into
executable Haskell code without aspects.1

The outline of the paper is as follows: Section 2 presents our experimental language AspectFun, highlighting various
aspect-oriented features our scheme supports through examples in AspectFun. Section 3 defines an operational semantics
for AspectFun. In Section 4, we describe our type inference system and the corresponding type-directed static weaving
process. Next, we formulate the correctness of static weavingwith respect to the semantics ofAspectFun. Finally, we discuss
relatedwork in Section 6 and conclude in Section 7. Appendix provides the detailed proof of the correctness of staticweaving.

2. AspectFun: The aspect language

This section introduces the aspect-oriented functional language, AspectFun, for our investigation. We shall first describe
the core features of AspectFun, and outline the compilation process we employ to implement it. Thenwe shall present some
example applications of AspectFun.

2.1. Language features

Fig. 1 presents the language syntax.2Wewrite ō as an abbreviation for a sequence of objects o1, . . . , on (e.g. declarations,
variables, etc.) and fv(o) as the set of free variables in o. We assume that ō and o, when used together, denote unrelated
objects.

1 The implementation is available at http://of.openfoundry.org/projects/801/.
2 To simplify the presentation, we leave out type annotations, user-defined data types, if expressions, patterns and sequencings (;), but may make use
of them in examples.

http://of.openfoundry.org/projects/801/

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1051

In AspectFun, top-level definitions include global variables and function definitions, as well as aspects. An aspect is an
advice declaration which includes a piece of advice and its target pointcuts. The prefix part, n@, of an advice declaration
simply names the advice under n. Pointcuts are denoted by {pc} (arg), where pc stands for either a primitive pointcut,
represented by ppc , or a composite pointcut. Pointcuts specify certain join points in the program in which advice is triggered
when program execution reaches there. Here, we focus on join points at function invocations. Thus a primitive pointcut,
ppc , specifies a function or advice name the invocations of which, either directly or indirectly via functional arguments, will
be advised. Furthermore, the applicability of a piece of advice is bounded by its pointcut as well as its optional type scope,
which is specified as part of the arg component, namely x :: t .
Advice is a function-like expression thatmay be executed before, after , or around a join point. An around advice is executed

in place of the indicated join point, allowing the advised pointcut to be replaced. A special keyword proceedmay be used
inside the body of around advice. It is bound to the function that represents ‘‘the rest of the computation’’ at the advised
pointcut. As both before advice and after advice can be simulated by around advice that uses proceed, we only need to
consider around advice in this paper.
A primitive pointcut can also be a catch-all keyword any. When used, the corresponding advice will be triggered

whenever a named function is invoked. For example, the pointcut any\[f , g] will select all named functions except f and
g . Besides, since advice is also named, we allow advice to advise other advice. A sequence of pointcuts, {pc}, indicates the
union of all the sets of join points selected by the pci’s. The argument variable arg is bound to the actual argument of the
named function call and it may contain a type scope.
Note that, since our pointcuts are name-based, invocations of anonymous functions are not considered as join points,

even when any is used. Besides, only global functions and advice are subject to advising. Although our weaving scheme can
also handle local functions, we choose not to do so for it will make the base program not oblivious to the alpha conversion.
On the other hand, because of this decision, we need to apply alpha renaming to local declarations beforehand so as to avoid
name clashes.
In passing, we note two other features of primitive pointcuts. First, in AspectFun, advice is named and their names can

appear in a pointcut. Thus we allow advice to be developed to advise other advice. We refer to such advice as second-order
advice. Second, the function name in a primitive pointcut can be followed by an optional sequence of arguments to support
advising on partially applied functions. Following the terminology used by Masuhara et al. [15], we refer to such pointcuts
as curried pointcuts.
The composite pointcuts in AspectFun are those related to the control flow of a program. Specifically, we can write a

pointcut which identifies a subset of invocations of a specific function based on whether they occur in the dynamic context
of other functions. For example, the pointcut f +cflow(g) selects those invocations of f which aremadewhen the function g
is still executing (i.e. invoked but not returned yet). On the other hand, if the operator before the cflow designator is a minus
sign (e.g. f − cflow(g)), it means the opposite, namely only invocations of f which are not under the dynamic context of g
will be selected.
Following AspectJ, our aspect language also provides two kinds of pointcut designators for specifying control flow

restrictions. The first one is expressed as cflow(f), and it captures all the join points in the control flow from the specific
application to function f , including that specific f -application. The second one is expressed as cflowbelow(f), and it captures
all the join points in the control flow from the specific application to f , but excluding that specific f -application.
Lastly, the expressions in AspectFun are pretty standard. As to the types, we introduce a conservative extension of the

standardHindley–Milner type schemeswhich includes the so-called advice predicates to form advised types,ρ. This construct
is inspired by the predicated types [18] used in Haskell’s type classes. Advised type augments common type scheme with
advice predicates, (f : t), to capture the need of static advice weaving based on type context. We shall explain them in detail
in Section 4.1.
Before ending this part, we outline the implementation scheme we employ for compiling AspectFun programs. The

target language is Haskell [6]. The overall compilation process of AspectFun can be divided into ten steps, as outlined in
Fig. 2. Briefly, the process performs global analysis and optimization on a program and comprises the following five major
components: (1) Syntactic processing and dependency analysis of an AspectFun program; (2) Static type inference to add
type information to the abstract syntax tree; (3) Type-directed static weaving to convert aspects to functions and produce
a piece of woven code; (4) Analysis and optimization of the woven code; (5) Translation of a woven program into a Haskell
program. The first component is pretty standard. The second component performs a Hindley–Milner like type inference
to reconstruct type information by treating advice as normal functions with proceed calls as recursive calls. Section 4 will
present the third and the last component, which are the major results of this paper. We refer the readers to our earlier
work [2] for details of the fourth component.

2.2. Examples

As outlined in the Introduction, there are three major applications of functional AOP, namely behavioral adaptation,
separation of non-functional concerns, and type-directed programming, which distinguish it from traditional functional
programming. In the sequel of the section, we illustrate these three points in more detail with examples. The complete
AspectFun programs of these examples are available in the distribution of the AspectFun compiler.

1052 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

AspectFun
program

1. Parsing and
Dependency

analysis

Abstract
syntax tree

2. De-sugaring

Type
environment for
built-in functions

Refined abstract
syntax tree

3. HM-like Type
inference

Base type
environment

Explicit
AspectFun

4. Static pointcut
matching

Function-advice
association

5. Type Inference
and Static

weaving (Sec. 4)

Expressions
with chains

6. Guard insertion

Not discussed
in this paper

Expressions
with chains
and guards

7. Cflow anlayses
and Optimization

8. Monad
Transformation

Chain
expressions

9. Chain
expansion

Sugared lambda
calculus

10. Code
generation

Haskell
program

Fig. 2. Compilation process of AspectFun .

2.2.1. Behavioral adaptation
AOP enables us to adapt and reuse existing code in a modular fashion. Let us consider an example of monadic evaluators

[17] for the lambda calculus.

Example 1.
data Term = Var String

| Lam String Term
| App Term Term

eval :: Term -> M Term
eval (Var n) = return (Var n)
eval (Lam n t) = return (Lam n t)
eval (App t1 t2) = do t1’ <- eval t1

t2’ <- eval t2
case t1’ of

Lam n t -> eval (subst (n,t2’) t)
t -> return (App t t2’)

The evaluator, eval, reduces a lambda term using a monad, M. The default evaluation strategy above is call-by-value. A
definition of a call-by-name evaluator will be very similar and only differs in the App case. Instead of defining two separate
functions that are largely overlapping, we can treat the above definition as a ‘template’ function and override it later by
aspects.

cbn@advice around {eval} (e) =
case e of (App t1 t2) ->

do t1’ <- eval t1
case t1’ of Lam n t -> eval (subst (n,t2) t)

t -> return (App t t2)
_ -> proceed e

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1053

Note that, inside the body of advice cbn, there are two calls to the function eval, which is being advised.We call such advice,
whose body is also advised, nested advice.
Aspects do in-place modification of the target functions, which makes the original definitions inaccessible in the same

scope. In the above example, the semantics of eval is changed to call-by-name by cbn; and we loses the original call-by-
value evaluator. A way to avoid this problem is to alias the template function and advise the new name as follows.

evalcbn = eval
cbn@advice around {eval+cflow(evalcbn)} (e) =

case e of (App t1 t2) ->
do t1’ <- eval t1

case t1’ of Lam n t -> eval (subst (n,t2) t)
t -> return (App t t2)

_ -> proceed e

In this version, advice cbn employs a control-flow-based pointcut which only applies to recursive calls to eval originated
from evalcbn. We can still invoke the original call-by-value evaluator by calling eval directly.
Without aspects, the idiomatic way of achieving reuse of recursive pattern in functional programming is through higher-

order combinators, such as fold. However, advanced planning is required; and programs must be written in a particular
syntactic style.

2.2.2. Separation of non-functional concerns
The signature application of AOP is themodular tracing. There is no doubt that it is also useful in functional programming

as well. Let us consider a simple example for illustration (Example 2).

Example 2.
--Tracing Aspects
n1@advice around {any} (arg) =

println "entering " ++ tjp;
proceed arg in

n2@advice around {f} (arg::[Char]) =
print " argument string ";
println arg;
proceed arg in

--Base program
f x = x in
h x = f x in
(f 10, f "c", h "d")

// Execution trace
entering f
entering f

argument string: "c"
entering h
entering f

argument string: "d"

The code in Example 2 defines two aspects named n1 and n2 respectively; it also defines amain/base program consisting
of declarations of f and h and a main expression returning a triplet. The first aspect n1 employs the all-catching pointcut,
any, to trace the execution of all functions in themain program. Inside the advice, a special run-time reflection tjp (standing
for this join point) refers to the name of the advised function. Very often, for polymorphic or overloaded functions, we want
to have more refined messages that reflect the type context of the executions. In aspect n2, there is a type scope on the
first argument. In addition to the generic trace produced by aspect n1, aspect n2 prints out function f’s string (list of Char)
inputs. The result of deploying the two aspects are shown to the right of the example code.3

2.2.3. Type-directed programming
We have seen examples that exhibit type specific behavior with type-scoped advice. This kind of type-directed

programming is commonplace in functional programming and themodularity benefit brought in by AOP is highly desirable,
as has been convincingly argued byWashburn andWeirich [23]. In this section, instead of showingmore examples of purely
static resolution of type-directed functions that readers are already accustomed to, we look at a functional idiom of Generic
Programming [7] that generally requires some dynamic typing mechanisms and show how the extensibility of AOP plays a
crucial role in constructing such an idiom [23,22].
Type-directed programming allows us specify a case for every data type. This is fine-grained, but not very general: we

cannot write reusable definitions that explore structural similarities among types. Consequently, many boiler-plate codes
are created [12]. Consider a function strings that extracts all the strings stored in a structure. With a nominal approach,
we are required to define a case for every data type, which mainly specifies non-productive inductive traversals.
In contrast, generic programming is about defining functions that work for all types but that also exhibit type specific

behavior [7]. It exploits structural information of data types, and dispatches based on structural representations. For

3 Our compiler employs the composition of two Haskell functions, (unsafePerformIO . putStrln), to implement the println operation.
Moreover, the sequencing construct, ‘‘;’’, is implemented in terms of the seq facility of Haskell.

1054 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

example, the Spine type defined below is a general and uniformway of representing elements of a data type that can support
the definition of generic functions, such as strings.

data Spine a = Con (Constr a)
| forall b. App (Spine (b -> a)) b

data Constr a = Descr a

If a constructor does not take any argument, it is encoded by Con together with information about the constructor.
Otherwise, a constructor taking arguments is encoded by applying App to the representation of the constructor and to its
arguments. The function toSpine, which converts a data type to its spine representation, can be defined in a type-directed
manner.

toSpine :: a -> Spine a
toSpine x = undefined

int@advice around {toSpine} (arg::Int) = Con (Descr 0)
char@advice around {toSpine} (arg::Char) = Con (Descr ’a’)
list@advice around {toSpine} (arg::[a]) =

case arg of [] -> Con (Descr [])
(x:xs) -> App (App (Con (Descr (:))) x) xs

...

Type-scoped advice is put into gooduse to bring in newcases oftoSpine for the ever-growing set of data types. For example,
toSpine [1,2,3] produces

App (App (Con (Descr (:)) 1) [2,3])

This shallow encoding is pushed inwards by generic functions that make use of it, as we will see shortly. Since all data types
are now mapped to a single one, Spine, we can easily define functions that work on this representation. For example, the
following code collects strings from a structure.

strings :: a -> [String]
strings x = strings’ (toSpine x)

strings’ :: Spine a -> [String]
strings’ (Con c) = []
strings’ (App f x) = strings’ f ++ strings x

The intention of the above program is to uniformly traverse the structures of any data types (including strings seen as lists of
Chars). To be able to collect strings, we need a small exception of this generic behavior that returns a stringwhen the input is
a string. This is another type-directed operation. It is tempting to use type-scoped advice here to advise strings. However,
we notice that the call to strings in the body of strings’ is given the second argument of App as input, whose type is
existentially quantified in the definition of Spine and is not available statically. This makes type-scoped advice, together
with any other type-directed-programming mechanisms that relies on static resolution, not applicable.
A standard technique for handling this exception case, which can be found in the generic programming literature, is to

use dynamic ‘‘type’’ testing based on some kinds of term encodings of types [12,13,7]. Independently, encoding of dynamic
type casting in statically type languages [24,3] is also available. Here, we choose to follow Hinze and Löh [7] by wrapping a
value of type a with a type representation to form a data type, Typed a, and use a cast function that compares the type
representation with a target type. As a result, the exceptional case of string inputs can be handled by the following advice.

n@advice around {strings} (x) =
case cast x :: Maybe String of Just s -> [s]

Nothing -> proceed x

This advice intercepts all executions of strings. When the input is dynamically verified to be a string, we return that string
in the result; otherwise, control is passed back to strings if there is no other intercepting advice. (We need to adapt the
earlier definition of toSpine to accept Typed a as its argument type. The detail is omitted here.)
We think this ability of accepting dynamic type castingwith aspects is one of the strengths of AOP, since it allowsmodular

extensions. Suppose we later implement a data type of ASCII code of characters and wish to consider a list of ASCII’s as a
string, function strings can be easily extended with another special case using the following aspect.

n1@advice around {strings} (x) =
case cast x :: Maybe [Ascii] of Just s -> [s]

Nothing -> proceed x

Thismodular extensibility is difficult to achievewith other type-directed approaches such as Haskell type classes. It is worth
mentioning that just like encodings of dynamic typing do not render static typing obsolete, the use of type casts in advices
does not replace static weaving.

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1055

Programs π ::= d in π | e
Declarations d ::= x = e | f = e |

n :: σ@advice around {pc} (arg) = e
Arguments arg ::= x | x :: t
Pointcuts pc ::= ppc | pc + cf | pc − cf
Primitive PC’s ppc ::= f x̄ | any | any\[f̄] | n
Cflows cf ::= cflow(f) | cflow(f (_ :: t)) |

cflowbelow(f) | cflowbelow(f (_ :: t))
Label l ::= f : t | ε
Expressions e ::= c | x | λlx : t.e | e e | let x = e in e |

e{t} | Λa. e | proceed | tjp

Types t ::= Int | Bool | a | t → t | [t]
Type Schemes σ ::= ∀ā.t

Fig. 3. Syntax of EA.

Expressions e ::= · · · | th
AdvStore A ::= Adv
Advice Adv ::= (n : σ , pc, t, e)
Environments E ::= x 7→ th
Values v ::= c | cl
Thunk th ::= (|e, E |) | cl
Closure cl ::= (|λlx : t. e, E |) | (|Λa. e, E |)

Fig. 4. Semantic domains for EA.

3. The semantics of AspectFun

This section presents an operational semantics for AspectFun. As type information is required at the triggering of advice
for execution, our semantics is presented in terms of an explicitly typed version ofAspectFun, referred as EA in the following
discussion. Fig. 3 displays the syntactic constructs of EA.
The syntactic structure of EA remains the same as that of AspectFun. The main enhancements are four type-related

constructs at the expression level. The constructs of type applications and type abstractions are standard ones; they are
denoted by e{t} and Λa.e, respectively. The type annotations for lambda parameters are also common in explicitly typed
languages. The only new construct is a set of labels which annotate lambda expressions that can be the target of advice
weaving. Essentially, a label specifies the name and the type of a function with which the lambda expression is associated
via a top-level declaration. Hence, a label identifies a join point and its type context.
The types and type schemes of EA follow the convention of the Hindley–Milner type system. The semantics specification

of EA includes the following notations on types. We write t D t ′, denoting that type t is more general than or equivalent
to type t ′, iff there exists a substitution S over type variables in t such that St = t ′, and the notation, S = t D t ′ , is an
abbreviation for it. We write t ≡ t ′ iff t D t ′ and t ′ D t . When t D t ′ but t 6≡ t ′, we say t is more general than t ′. Similarly,
we say a type t is more specific than a type t ′ if t ′ D t and t 6≡ t ′. Finally, the most general unifier between two types, t and
t ′, is denoted bymgu(t, t ′).
Conversion from AspectFun to EA is done by the standard Hindley–Milner type inference with few straightforward

enhancements. First, type abstractions and type applications are made explicit. Second, when inferring the type for a piece
of advice, invocation of the underlying advised function via proceed is treated as a recursive function call. Finally, top-level
lambda expressions are annotated with labels that specify the name and type of the function they define.

3.1. Operational semantics for EA

The operational semantics for EA is specified in terms of the judgement E;A ` π ⇓ v, where π is an EA program, E
is an environment that maintains the bindings of variables and functions, and A is a repository that keeps advice-related
information derived from advice declarations in π . We shall often refer to the environment and advice store pair as the
operational semantics context for brevity. The full semantic domains and the set of environment-based, big-step reduction
rules to define the judgement are shown in Figs. 4 and 5, respectively.
We adopt call-by-name evaluation for EA.4 Thus we add a new form of expression, called thunk, which is only used in the

operational semantics, but not in the source expression. A thunk is a pair of an expression and an environment. When the

4 Note that Haskell uses call-by-need evaluation.

1056 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

(OS:Value) E;A ` c ⇓ c

E;A ` (|λlx : t. e, E ′|) ⇓ (|λlx : t. e, E ′|) E;A ` (|Λa. e, E ′|) ⇓ (|Λa. e, E ′|)

(OS:Lamb) E;A ` λlx : tx. e ⇓ (|λlx : tx. e, E |) E;A ` Λa. e ⇓ (|Λa. e, E |)

(OS:Thunk)
E ′;A ` e ⇓ v

E;A ` (|e, E ′|) ⇓ v
e is not an abstraction

(OS:App)

E;A ` e1 ⇓ (|λlx : tx. e3, E ′|) Trigger((|λx : tx. e3, E ′|), l) = (|λy : ty. e4, E ′′|)
E ′′[y 7→ (|e2, E |)];A ` e4 ⇓ v

E;A ` e1 e2 ⇓ v

(OS:Ty-App)
E;A ` e1 ⇓ (|Λa. e2, E ′|) E ′;A ` [t/a]e2 ⇓ v

E;A ` e1{t} ⇓ v

(OS:Let)
E[x 7→ (|e1, E |)];A ` e2 ⇓ v

E;A ` let x = e1 in e2 ⇓ v
(OS:Var)

[x 7→ e] ∈ E E;A ` e ⇓ v

E;A ` x ⇓ v

(OS:Decl)
E[id 7→ (|e1, E |)];A ` π ⇓ v

E;A ` id = e1 in π ⇓ v

(OS:Adv)

∀ā.t1 → t2 = σ
E;A ` n :: σ@advice around {pc} (x :: t1) = e1 in π ⇓ v

E;A ` n :: σ@advice around {pc} (x) = e1 in π ⇓ v

(OS:Adv-An)

∀ā.t1 → t2 = σ
E;A.(n : σ , pc, t1, (|Λā.λn:t1→t2x : t1.e1, E |)) ` π ⇓ v

E;A ` n :: σ@advice around {pc} (x :: t1) = e1 in π ⇓ v

Fig. 5. Operational semantics for EA.

expression in a thunk is a lambda expression or a type abstraction, the thunk is called a closure. Constants and closures are
considered values in EA and will not be further evaluated. Finally, during the evaluation of an EA program, the environment
associates a namewith a thunk as its binding. Wewrite E[y 7→ th] for the environment which extends E by assigning thunk
th to variable y, assuming that any name clash has been resolved via proper renaming.
Among the reduction rules for EA three rules, namely (OS:Decl), (OS:Adv) and (OS:Adv-An), process top-level

declarations; and the rest of rules handle various forms of expressions. Rule (OS:Decl) makes a thunk out of the defining
expression of a global variable or function and the current environment, and then puts it into the environment for further
evaluation of the underlying program. On the other hand, rules (OS:Adv) and (OS:Adv-An) collect the set of advice declared
in a program and deposit it in the advice store,A. BothA and E are essential to the evaluation of the expression inside an
EA program.
The (OS:Adv) rule simply delegates the collection task to the (OS:Adv-An) rule, making non-type-scoped advice a special

case of type-scoped advice with the inferred parameter type as the scope. The (OS:Adv-An) performs the real work of advice
collection: organizing a type-scoped advice into a quadruple, (n : σ , pc, t, e), and appending it to the advice store A. The
quadruple consists of advice name type pair, pointcut, type scope and thunkified advice body.
As to the reduction rules for expressions of EA they mostly follow the standard ones for a typed lambda calculus with

constants. The only exception is the rule for function application, (OS:App), which also handles the triggering andweaving of
advice. Specifically, the closure to apply and the label associated with it are passed to the advice triggering function Trigger,
which is specified in Fig. 6 together with other auxiliary function declarations. The Trigger function first chooses the set of
eligible advice based on the label and the argument type, and weaves them into the function invocation – through a series
of environment extension of advice closures – for execution. Note that, although we adopt the call-by-name evaluation
strategy, our weaving scheme does not rely on this choice.
Three points worth mentioning here. First, in the main body ofWeave function, the function Trigger is invoked again to

handle any possible triggering of second-order advice. Second, among the advice matched by JPMatch, the function Choose
keeps all the advice whose type scope is more general than the type passed to it, regardless of its return type. Consequently,
it is likely that, during the subsequent execution of thewoven advice, a run-time type errormay occur and the reduction fails
(unless, of course, the program has been analyzed to be safe by our type system). Third, the set of advice selected by Choose
is kept in a list and ordered according to the sequential ordering of their declarations in the program. While we believe

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1057

Trigger : e× l→ e
Trigger(e, ε) = e
Trigger((|λx : tx. e, Ef |), f : tf) = Weave((|λx : tx. e, Ef |), tf , Choose(f , tx))

Weave : e× t × Adv→ e
Weave(e, tf , []) = e
Weave(ef , tf , adv : advs) = Let (n : ∀ā. tn, pc, t, (|Λā. e, En|)) = adv

t̄ be types such that [t̄/ā]tn = tf
ep = Weave(ef , tf , advs)
(λn:t

′
nx : tx. ea) = [t̄/ā]e

In Trigger((|λx : tx. ea, En.proceed = ep|), n : t ′n)
Choose(f , t) = [(ni : σi, pci, ti, ei) | (ni : σi, pci, ti, ei) ∈ A, ti D t,

∃pc ∈ pci s.t. JPMatch(f , pc)]
JPMatch(f , pc) = (f ≡ pc) ∨ (pc ≡ any) ∨ (pc ≡ any \ [h̄] ∧ f 6∈ h̄)

Fig. 6. Operational semantics for EA: Auxiliary function declarations.

that the issue of chaining order is orthogonal to our study here, it is understood that advice is to be chained in a specific
order during execution. Hence, we fix the order in our semantics definition, and assume that the order chosen during static
weaving (Section 4) is the same.

3.2. Example

We use a contrived example to demonstrate how the semantics of AspectFun works. The AspectFun program listed in
Example 3 includes three kinds of advice, namely type-scoped advice, polymorphic advice and second-order advice. They
will be triggered according to the type context at different join points during the execution of the program.
Example 3.

nscope@advice around {f} (arg::[a]) = proceed (tail arg) in
n @advice around {g} (arg) = proceed arg in
n2nd @advice around {n} (arg) = proceed arg in
f x = x in
g x = (f x, f (x, x), f [x]) in
h x = g [x] in
k x = g x in
(h 1, k 2)

The EA version of the above program is as follows:
nscope :: (∀ a.[a]→[a])@advice around {f} (arg::[a]) =

proceed (tail{a} arg) in
n :: (∀ a.a→tg)@advice around {g} (arg) = proceed arg in
n2nd :: (∀ a.a→tg)@advice around {n} (arg) = proceed arg in
f = Λa.λf:a→a x:a. x in
g = Λa.λg:a→tg x:a. (f{a} x, f{(a, a)} (x, x), f{[a]} [x]) in
h = Λa.λh:a→th x:a. g{[a]} [x] in
k = Λa.λk:a→tg x:a. g{a} x in
(h{Int} 1, k{Int} 2)

where tg and th are abbreviations for (a, (a, a), [a]) and ([a], ([a], [a]), [[a]]), respectively.
After applying the advice collection procedure to the above program, we get the following advice store:

(nscope : ∀a.[a] → [a], f, [a], Λa.λnscope:[a]→[a]arg : [a]. proceed (tail{a} arg)),
(n : ∀ab.a→ b, g, a, Λa.Λb.λn:a→barg : a. proceed arg),
(n2nd : ∀ab.a→ b, n, a, Λa.Λb.λn2nd:a→barg : a. proceed arg)

Then we apply the big-step reduction rules to evaluate the program. In particular, the application of h {Int} 1 in the main
expression will result in the invocation of g {[Int]} 1, which will then lead to the weaving of advice n and n2nd. During
the evaluation of g’s body, fwill be applied to three different types of arguments: [Int], ([Int], [Int]), and [[Int]]. The advice
nscopewill be triggered, except for the second one, since the call Choose(f, ([Int], [Int]),A) returns an empty set. The case
for the application of (k {Int} 2) is also similar. The notable difference is that, during the evaluation of the three function
calls to f, only the last one of f {[Int]}will trigger the advice nscope. Finally, the result of executing the EA program is

(([], ([1], [1]), []), (2, (2, 2), []))

1058 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

4. Static weaving

In our compilation scheme, aspects are woven statically (Step 5 in Fig. 2). Specifically, we present in this section a
type inference system which guarantees type safety and, at the same time, weaves the aspects through a type-directed
translation. The input to the inference and weaving system is a well-typed EA program, converted from its AspectFun
version as described in Section 3. But, to ease the presentation, we often omit the type annotations in an expression in
the following discussion. Moreover, we concentrate on advice with only primitive pointcuts, yet our static weaving scheme
can be adequately extended to handle composite pointcuts such as f+cflowbelow(g). The readers are referred to our
earlier work [2] for the detailed treatment.

4.1. Type-directed weaving

The essential construct of our staticweaving scheme is the advised type. As brieflymentioned in Section 2, an advised type,
denoted as ρ, is used to capture function names and their types that may be required for advice resolution.We illustrate this
concept with our tracing example given in Section 2. The relevant code snippet is repeated below for ease of presentation.

n1@advice around {any} (arg) = ... in
n2@advice around {f} (arg::[Char]) = ... in
f x = x in
h x = f x in
(f 10, f "c", h "d")

We focus on the call to function f in the body of h. The issue of static weaving here is essentially the same aswe described
in Section 1 for the example of function sortcat. If we were to naively infer that the argument x to function f in the RHS
of h’s definition is of polymorphic type, we would be tempted to conclude that (1) advice n1 should be triggered at the call,
and (2) advice n2 should not be triggered as its type scope is less general than a→ a. As a result, only n1would be statically
woven to the call to f.
Unfortunately, this naive approach would cause inconsistent behavior of f at run time, as only the invocation of f "c"

will trigger advice n2. By contrast, according to the operational semantics of AspectFun, both of the invocations (f "c")
and (f "d") (indirectly called from (h "d")) should trigger n2. We consider such a naive approach to static weaving
as incoherent because the two invocations of f would exhibit different behaviors (i.e., they would receive different sets of
advice) even though they would receive arguments of the same type. More formally, a static weaving scheme is deemed as
‘‘coherent’’ if the static woven program evaluates to the same value as the evaluation of the original program according to
its operational semantics.5
Our static weaving scheme resolves this problem by inferring an advised type for function h. Specifically, function h

possesses the advised type ∀a.(f : a → a).a → a, in which (f : a → a) is called an advice predicate. It signifies that the
execution of any application of hmay require triggering of the advice on f whose type can be instantiated to t ′ → t ′, where t ′ is
an instantiation of type variable a.Moreover, function h and the invocation h "d"will be translated by the weaver into the
following form.

h df x = df x
<h, {n1}> <f, {n1, n2}> "d"

Here function f inside the definition of h has been turned into an advice parameter , df, which may be resolved to
a woven expression. We use the notation, 〈_ , {. . .}〉, to denote such woven expressions and refer to them as chain
expressions. Intuitively, a chain expression denotes composition of advice associated with an underlying function. For
instance, 〈f , {n1, n2}〉 denotes chaining of two pieces of advice n1 and n2 to the advised function f. During the code
generation stage, chain expressions will be expanded to ordinary Haskell expressions, as will be shown in Section 4.4.
Note that advised types are used to indicate the existence of some advice indeterminable at compile time. If a function

contains only applications whose advice is completely determined, then the function will not be associated with an advised
type; it will be associated with a normal (and possibly polymorphic) type. As an example, the type of the advised function
f in Example 2 is ∀a.a→ a since it does not contain any application of advised functions in its definition.
The main set of type inference rules, as described in Figs. 7 and 8, is an extension to the Hindley–Milner system. We

introduce a judgement Γ ` e : ρ e′ to denote that expression e has type ρ under type environment Γ and it is
translated to e′. We assume that the advice declarations are preprocessed and all the names which appear in any of the
pointcuts are recorded in an initial global store A. Note that locally defined functions are not subject to being advised and
not listed in A. We also assume the type information of all the functions collected in the previous step of AspectFun to EA
conversion is stored in Γbase. The function | · | returns the cardinality of a sequence of objects.

5 This notion of ‘‘coherence’’ is different from the coherence concept defined in qualified types [9]which states that different translations of an expression
are semantically equivalent.

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1059

(Var)
x : ∀ā.p̄.t x ∈ Γ

Γ ` x{t̄} : [t̄/ā]p̄.t x{t̄}
(Var-P)

x{t̄} : t dx ∈ Γ

Γ ` x{t̄} : t dx

(Var-A)

x :∗ ∀ā.p̄.tx ∈ Γ t ′ = [t̄/ā]tx n̄ : ∀b̄.q̄.tn FG x̄ n̄ ∈ Γ
Γ ` ni{t̄i} : t ′ ei wvΓ (x : t ′) |ȳ| = |p̄| x ∈ x̄ [ni | [t̄i/b̄] = ti D t ′]

Γ ` x{t̄} : [t̄/ā]p̄.tx λȳ.〈x{t̄} ȳ , {ei}〉

(App)

Γ ` e1 : t1 → t2 e′1
Γ ` e2 : t1 e′2

Γ ` e1 e2 : t2 (e′1 e
′

2)

(Abs)
Γ .x : t1 x ` e : t2 e′

Γ ` λx : t1.e : t1 → t2 λx.e′

(Let)
Γ ` e1 : ρ e′1 Γ .f : ∀ā.ρ f ` e2 : t e′2

Γ ` let f = Λā.e1 in e2 : t let f = Λā.e′1 in e
′

2

(Pred)

x :∗ ∀ā.p̄.tx ∈ Γ [t̄/ā]tx D t
Γ .x{t̄} : t dx ` e : ρ e′t

Γ ` e : (x{t̄} : t).ρ λdx : t.e′t

(Rel)

Γ ` e : (x{t̄} : t).ρ e′

Γ ` x{t̄} : t e′′ x 6= e

Γ ` e : ρ e′ e′′

Fig. 7. Static typing and weaving rules for expressions.

(Global)
Γ ` e : ρ e′ Γ .id :(∗)∀ā.ρ id ` π : t π ′

Γ ` id = Λā.e in π : t id = Λā.e′ in π ′

(Adv)

∀ā.tx → t = σ Γ .proceed : tx → t proceed ` λx : tx.ea : p̄.tx → t e′a
fi : ∀b̄.ti ∈ Γbase tx → t D [t̄/b̄]ti Γ .n : ∀ā.p̄.tx → t FG f̄ n ` π : t ′ π ′

Γ ` n :: σ@advice around {f̄ } (x) = ea in π : t ′

 n = Λā.addProceed(e′a, tx → t) in π ′

(Adv-an)

∀ā.tx → t = σ Γ .proceed : tx → t proceed ` λx : tx.ea : p̄.tx → t e′a
fi : ∀ā.ti → t ′i ∈ Γbase S = [t̄/ā]ti D tx t D S[t̄/ā]t

′

i

Γ .n : ∀ā.p̄.tx → t FG f̄ n ` π : t ′ π ′

Γ ` n :: σ@advice around {f̄ } (x :: tx) = eain π : t ′

 n = Λā.addProceed(e′a, tx → t) in π ′

Fig. 8. Static typing and weaving rules for declarations.

The typing environment Γ contains not only the usual type bindings (of the form x : σ e) but also advice bindings of
the form n : σ FG x̄. This states that an advice with the name n of type σ is defined on a set of functions x̄. We may drop the
FG x̄ part if it is irrelevant to our discussion. This type σ is inferred from the body and type scope of the advice described in
rules (Adv) and (Adv-an); and it is used to guard advice application in rule (Var-A). When a bound function name is advised
(i.e. x ∈ A), we use a different binding :∗ to distinguish it from the non-advised ones so that the former may appear in an
advice predicate as in rule (Pred). We also use the notation :(∗) to represent a binding which is either : or :∗. When there are
multiple bindings of the same variable in a typing environment, the newly added one always shadows previous ones.

4.2. Predicating and releasing

Before illustrating the main typing rules, we introduce aweavable constraint of the formwvΓ (f : t)which indicates that
applicable advice is to be triggered at the call to f instantiated by typing environment Γ with type t . It is formally defined
as:

Definition 1. Given a function f and its instantiated type t1 → t2 under a typing environment Γ , the predicate wvΓ (f :
t1 → t2) holds iff the following implication holds:

((∀n.n :(∗) ∀ā.p̄.t ′1 → t ′2 FG f̄) ∈ Γ ∧ f ∈ f̄ ∧ t1 ∼ t
′

1)⇒ (t ′1 → t ′2 D t1 → t2).

where t1 ∼ t2 means that t1 and t2 are unifiable.

1060 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

This condition basically means that under a given typing environment, a function’s type is no more general than any of its
advice. For instance, under the environment Γ = {n1 : ∀a.[a] → [a] FG f, n2 : Int → Int FG f}, wvΓ (f : b→ b) is false
because the type is not specific enough to determine whether n1 and n2 should apply whereas wvΓ (f : Bool → Bool) is
vacuously true and, in this case, no advice applies. Note that since unification and matching are defined on types instead of
type schemes, quantified variables are freshly instantiated to avoid name capturing. In this paper, we sometimes omit the
typing environment part of the weavable constraint when it is clear from the context.
There are three rules for variable lookups. Rule (Var) is standard. Complementarily, in the case that variable x is advised

(x ∈ A), there are two rules, (Var-A) and (Var-P), for handling it, depending on type context underlying the occurrence
of x. Essentially, when the weavable condition holds, rule (Var-A) applies; otherwise, rule (Var-P) does. The details are as
follows.
Rule (Var-A) will create a fresh instance t ′ of the type scheme bound to x in the environment. Then we check weavable

condition of (x : t ′). If the check succeeds (i.e., x’s input type is no more general or equivalent to those of the advice with
unifiable types), x will be chained with the translated forms of all the advice defined on it, having equivalent or more
general types than x has (the selection is done by [ni|ti D t ′]). We coerce all these pieces of selected advice to have non-
advised type during their translation Γ ` ni : t ′ ei. This ensures correct weaving of advice advising the bodies of
the selected advice. The detail will be elaborated in Section 4.6. Finally, the translated expression is normalized by bringing
all the advice abstractions of x outside the chain 〈. . .〉. This ensures type compatibility between the advised call and its
advice.
If the weavable condition check fails, there must exist some advice for xwith more specific types, and rule (Var-A) fails

to apply. Since x ∈ A still holds, rule (Pred) can be applied, which adds an advice predicate to a type. (Note that we only
allow sensible choices of t constrained by tx D t .) Correspondingly, its translation yields a lambda abstraction with an advice
parameter. This advice parameter enables concrete advice-chained functions to be passed in at a later stage, called releasing,
through the application of rule (Rel). Before releasing, any occurrences of an advice parameter in the contextwill be handled
by rule (Var-P), and remains intact.
To sum up, variables that are not advised are handled by rule (Var). Advised variables whose type instantiations satisfy

the weavable condition are handled by rule (Var-A). In other situations, variables are turned to an advice parameter by rule
(Pred) and then handled by rule (Var-P).
We illustrate the application of rules (Pred) and (Rel) by deriving the type and the woven code for the program shown

in Example 2. We use C as an abbreviation for Char . During the derivation of the definition of h, we have:

Γ = { f :∗ ∀a.a→ a f, n1 : ∀a.a→ a FG f,h n1, n2 : ∀b.[C] → [C] FG f n2}

f{t} : t → t df ∈ Γ2
(Var-P)

Γ2 ` f{t} : t → t df

x : t x ∈ Γ2
(Var)

Γ2 ` x : t x
(App)

Γ2 = Γ1.x : t x ` (f{t} x) : t (df x)
(Abs)

Γ1 = Γ , f{t} : t → t df ` λx : t.(f{t} x) : t → t λx.(df x)
(Pred)

Γ ` λx : t.(f{t} x) : (f{t} : t → t).t → t λdf .λx.(df x)

Next, for the derivation of the first element of the main expression, h "d", we have:

Γ3 = { f :∗ ∀a.a→ a f, n1 : ∀a.a→ a FG f,h n1,
n2 : ∀b.[C] → [C] FG f n2, h :∗ ∀a.(f{a} : a→ a).a→ a h}

A B
(Rel)

Γ3 ` h{[C]} : [C] → [C] (〈h{[C]} , {n1}〉) 〈f{[C]} , {n1, n2}〉
. . .

(App)
Γ3 ` (h{[C]} "d") : [C] 〈h{[C]} , {n1}〉 〈f{[C]} , {n1, n2}〉 "d"

where

A =
h :∗ ∀a.(f{a} : a→ a).a→ a h ∈ Γ3 . . .

(Var-A)
Γ3 ` h{[C]} : (f{[C]} : [C] → [C]).[C] → [C] 〈h{[C]} , {n1}〉

and

B =
f :∗ ∀a.a→ a f ∈ Γ3 . . .

(Var-A)
Γ3 ` f{[C]} : [C] → [C] 〈f{[C]} , {n1, n2}〉

We note that rules (Abs), (Let) and (App) are rather standard. Rule (Let) only binds f with : (instead of with :∗) which
signalizes locally defined functions are not subject to advising.
Rules (Pred) and (Rel) introduce and eliminate advice predicates respectively. Rule (Pred) adds an advice predicate to

a type. Correspondingly, its translation yields a lambda abstraction with an advice parameter. At a later stage, rule (Rel)

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1061

addProceed : (e, t) −→ e
addProceed (λdf : tf .λx : tx.e1, t)= λdf : tf .λproceed : t.λx : tx.e1

Fig. 9. Proceed lifting.

is applied to release (i.e., remove) an advice predicate from a type. Its translation generates a function application with an
advised expression as argument.

4.3. Handling advice

Declarations define top-level bindings including those of advice. We use a judgement Γ ` π : ρ π ′ which closely
reassembles the one for expressions.
Rule (Global) is very similar to rule (Let)with the tiny difference that (Global)will bind idwith :when it is not in A; and

with :∗ otherwise. It is a rule shared by both function and non-function declarations.
There are two type inference rules for handling advice. Rule (Adv) handles non-type-scoped advice, whereas rule

(Adv-An) handles type-scoped advice. In rule (Adv), we firstly infer the (possibly advised) type of the advice as a function
λx.ea under the type environment extendedwithproceed. The advice body is therefore translated. Note that this translation
does not necessarily complete all the chaining because the weavable conditionmay not hold. In this case, just like functions,
the advice is parameterized. At the same time, an advised type is assigned to it and only released when it is chained in rule
(Var-A).
After type inference of the advice, we ensure that the advice’s type is more general than or equivalent to all functions’

in the pointcut. Note that the type information of all the functions is stored in Γbase. Then, this advice is added to the
environment. It does not appear in the translated program, however, as it is translated into a function awaiting participation
in advice chaining. The last step in translating the advice declarations is to turn the keyword proceed into an additional
parameter, representing the rest of computation (i.e., continuation). This is done by the addProceed function shown in
Fig. 9.
In rule (Adv-An), variable x can only be bound to a value of type tx such that tx is no more general than the input type of

those functions in the pointcut. This constraint is similar to the subsumption rule used for type annotations which requires
the annotated type to be no more general than the inferred one. For each function in the pointcut, we match a freshly
instantiation of the input type ti to tx which results in a substitution S. The output type of the advice t is expected to bemore
general or equivalent to the type of each functions under the substitution S.
In passing, we note that these two rules can be merged but it makes the rule rather complicated. Hence we keep them

separated. In addition, as all the advice has a function type, attempts to advise a non-function type expressionwill be rejected
by the type system.

4.4. Translating chain expressions

The last step of AspectFun compilation is to expand chain expressions produced after static weaving to standard
expressions in AspectFun, which are called expanded expressions. It is in fact separated into two steps: chain expansion
and typeErase, as shown in Fig. 10. Expansion of chain expressions is defined by an expansion operator [[·]]. It is applied
compositionally on expressions, with the help of an auxiliary function proceedApply to substitute proper function for the
proceed parameter. Moreover, proceedApply also handles expansion of second-order advice. Function typeErase simply
removes any type annotations from its input expression.
Admittedly, the chain expansion step is rather straightforward. One may suggest that the step should be integrated into

the weaving step, thus eliminating the need of generating programs in the intermediate form. However, we argue that a
staged translation processwith chain expression as an intermediate formopens awide scope of opportunities for optimizing
the translated code. For instance, it is obvious that some advice will never invoke proceed. For such pieces of advice, all
subsequent advice chained after any of them is considered dead code and should be eliminated. We can therefore prune
such chains by performing dead-code elimination analysis on the woven code. We have also presented an optimization of
control-flow-based pointcuts by taking advantage of the explicit intermediate form [2].
Looking at the compilation of AspectFun program in Example 3 (Section 3) again, the intermediate result produced by

static weaving is as follows:

nscope proceed arg = proceed (tail arg) in
n proceed arg = proceed arg in
n2nd proceed arg = proceed arg in
f x = x
g df x = (df x, f (x, x), <f, {nscope}> [x]) in
h x = (\df. <g df, {<n, {n2nd}>}>) <f, {nscope}> [x] in
k df x = (\df. <g df, {<n, {n2nd}>}>) df x in
(h 1, k f 2)

1062 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

eM : Expressions containing advice chains
[[·]] : eM −→ Expanded expression
[[x = e1 in e2]] = x = [[e1]] in [[e2]]
[[let x = e1 in e2]] = let x = [[e1]] in [[e2]]
[[λx : t.e]] = λx : t.[[e]]
[[e1 e2]] = [[e1]] [[e2]]
[[Λa.e]] =Λa.[[e]]
[[e{t}]] = [[e]]{t}
[[x]] = x
[[proceed]] = proceed
[[〈f {t̄} e , {}〉]] = [[f {t̄} e]]
[[〈f {t̄} e , {ea, eadvs}〉]] = proceedApply(ea, 〈f {t̄} e , {eadvs}〉)

proceedApply(n{t̄} e, k) = [[n{t̄} e k]] if rank(n) = 0
proceedApply(〈n{t̄} e , {ns}〉, k)= [[〈n{t̄} e k , {ns}〉]] otherwise

rank(x) =

1 if x ≡ 〈f {t̄} e , {}〉
1+maxi rank(eai) if x ≡ 〈f {t̄} e , {ea}〉
0 otherwise

typeErase : Expanded expression −→ Implicit AspectFun
typeErase(x = e1 in e2) = x = typeErase(e1) in typeErase(e2)
typeErase(let x = e1 in e2) = let x = typeErase(e1) in typeErase(e2)
typeErase(λx : t.e) = λx.typeErase(e)
typeErase(e1 e2) = typeErase(e1) typeErase(e2)
typeErase(Λa.e) = typeErase(e)
typeErase(e{t}) = typeErase(e)
typeErase(x) = x
typeErase(proceed) = proceed

Fig. 10. Definition of chain expansion.

After applying chain expansion and type erasing, the final result is the following AspectFun expression:

nscope proceed arg = proceed (tail arg) in
n proceed arg = proceed arg in
n2nd proceed arg = proceed arg in
f x = x in
g df x = (df x, f (x, x), nscope f [x]) in
h x = (\df. n2nd (n (g df))) (nscope f) [x] in
k df x = (\df. n2nd (n (g df))) df x in
(h 1, k f 2)

4.5. Advising recursive functions

We have seen our predicating/releasing systemwork for non-recursive function. However, if we apply rule (Rel) to a call
of an advised recursive function, it may end up looping infinitely.
Let us illustrate thiswith an example of advising recursive functions.Many listmanipulation functions, such asreverse,

append, and union, can be written in a recursive pattern in which their accumulating parameter is simply returned when
their input parameter is empty.6We can capture this pattern using a piece of advice. Herewe focus on the reverse function
to illustrate our scheme. The dummy advice n1 in the following program is necessary for demonstrating the issue involved.

n@advice around {reverse, append, setUnion} (arg) =
\y -> if (null arg) then y else (proceed arg) y in

n1@advice around {reverse} (arg::[Bool]) = proceed arg in
reverse :: [a]->[a]->[a]
reverse x accum = reverse (tail x) (cons (head x) accum) in
reverse [1,2] []

After conducting type inference of advice n, n1 and function reverse, we obtain the following result (we omit the
irrelevant translation part for the moment). We write tr as an abbreviation of [a] → [a] → [a].

Γ = { n : ∀ab.[a] → b→ b, n1 : ∀a.[Bool] → a, reverse :∗ ∀a.(reverse : tr).tr}

6 The second input of append can be seen as an accumulator parameter. A similar argument applies to union.

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1063

Due to the presence of advice n1, the type context inside the body of reverse is not specific enough to statically
weave advice n with the recursive call of reverse. Hence we give reverse an advised type which has a predicate on
reverse itself. Subsequently, when typing the main expression, reverse [1,2] [], we need to release the predicate
(reverse: [Int] → [Int]) using the (Rel) rule. However, this will lead to the following infinite releasing process because
the advised type has a predicate that is the same as the base type.

...
(Rel)

Γ ` reverse : [Int] → [Int] → [Int]
. . .

(Rel)
Γ ` reverse : [Int] → [Int] → [Int] . . .

(App)
Γ ` (reverse [1, 2]) : [Int] → [Int]

(App)
Γ ` (reverse [1, 2] []) : [Int]

Our solution is to break the looping of (Rel) applications by devising a different releasing rule for recursive functions
which predicate on themselves.

(Rel-F)
Γ ` f {t̄} : (f {t̄} : t).t e′ F fresh

Γ ` f {t̄} : t let F = (e′ F) in F

Rule (Rel-F) spots the pattern that a function is predicated by itself and stops further releasing of that predicate. This
is correct since the releasing of the predicate is expected to generate identical advised expression as the translation of f.
Therefore, we can use a fixed point combinator to self-apply the translation result recursively. For example, as a result of
rule (Rel-F), the main expression in the reverse example above is translated to

let F = (\y-> <reverse y,{n}>) F
in F [1,2] []

Note that the sub-expression \y-> <reverse y,{n}> is derived by rule (Var-A) from typing reverse {[Int]}. The
combinator F enables reverse to carry the advice n alongside its recursive invocations.
Moreover, mutually recursive functions can be expressed as a tuple of functions, and handled by extending rule (Rel-F).

Specifically, when releasing the predicate of any component of mutual recursive functions, the static weaver will introduce
a tuple of mutually recursive fixed point combinators accordingly.

4.6. Advising advice bodies

In AspectFun, we can write advice that advises other advice, either directly or indirectly. As advice is named, the so-
called second-order advice simply includes names of other advice to advise them. Alternatively, inside the body of an advice
definition, there may be calls to other functions that are advised by other advice. As mentioned before, we call such advice
nested advice. For example, advice n3 in the following program is a piece of nested advice, as n3 calls f which is in turn
being advised by n1 and n2.

n1@advice around {f} (arg::Int) = proceed arg in
n2@advice around {f} (arg) = proceed arg in
f x = x in
n3@advice around {g} (arg) = f arg in
g x = x in
h x = g x in
h 1

Asmentioned earlier, to handle nested advice properly, the rules (Adv) and (Adv-an)make an attempt to translate advice
bodies, too. Concretely, when a call to g is chainedwith advice n3, the body of n3must also be advised. Moreover, the choice
of advice must be coherent.
However, just like the translation of function bodies, the local type contexts may not be specific enough to satisfy the

weavable condition. We illustrate this with the call of f inside advice n3. Specifically, at the time when the declaration of
n3 is processed, the body of the advice is translated. Since the current type context is not sufficiently specific, an advised
type, ∀a.(f : a→ a).a→ a is given to n3.
This in turn affects the translation of function h. Recall that when the translation attempts to chain advice using Rule

(Var-A), the judgement Γ ` ni : t ′ ei in the premise forces the advice to have a non-advised type. This is to ensure that
all the advice abstractions are fully released so that chaining can take effect. In the case that this derivation fails, it signifies
that the current context is not sufficiently specific for advising some of the calls in this advice’s body, and chaining has to be
delayed.

1064 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Now consider the call to g in the body of h’s definition. The type context for g is a → a, which is proper for weaving
its advice n3. Consequently, the call to f inside the body of n3 is also of type a→ a. However, this type is not sufficiently
specific for advising f. As a result, we have to give h an advised type with g:a->a as the predicate. The program is then
translated as follows.

n1 proceed arg:Int = proceed arg in
n2 proceed arg = proceed arg in
f x = x in
n3 df proceed arg = df arg in
g x = x in
h dg x = dg x in
h <g,{n3 <f,{n1,n2}>}> 1

Note that advice n3 is only chained in the main expression where the context is sufficiently specific for both the calls to g
and f.
Nested advice that applies to the execution of its own body merits further discussion because such advice becomes

mutually dependent on the functions it advises. On the one hand, we can employ this dependency to achieve modular and
adaptive code reuse for recursive functions. Recall the eval function and its advice cbn presented in Example 1 (Section 2).
Inside cbn, function eval is invoked, which in turn will trigger cbn to ensure the evaluation strategy is changed to call-by-
name completely.
On the other hand, such a piece of advice must be handled with care because it may make the weaver non-terminating

as the case of recursive functions. Consider the following program with a list function f and two pieces of advice, n and n1,
on f.

n@advice around {f}(arg) = if null arg then arg else f (tail arg) in
n1@advice around {f}(arg::[Int]) = proceed arg in
f (x:xs) = xs in
f [1,2,3]

Here advice n on function f invokes f inside its body, thus forming a cycle between f and itself. In other words, function f
and advice n are just like two mutually recursive functions. Hence we can translate the example using the same technique
of (Rel-F) rule as follows.

n df proceed arg = (if (null arg) then arg
else (df (tail arg))) in

n1 proceed arg = (proceed arg) in
f (x:xs) = xs in
(let VF = <f,{n VF, n1}> in VF) [1,2,3]

However, if we modify the body of advice n by supplying a different type of argument, say [arg], to the call to f, then
the static weaver will run into an infinite releasing loop when handling the main expression. The reason is obvious: the
static weaving of a piece of advice requires releasing of some predicate, (f : t), which in turn, directly or indirectly, calls for
releasing of another predicate on identical advisee, f , but with a structurally increasing type, say [t]. Such vicious circular
advice that crashes the static weaver will also cause the program to loop even when weaving is done at run time. Therefore,
we choose to reject such advice statically by enhancing the rules (Adv) and (Adv-an)with a sanity check that identifies such
predicate cycles. Specifically, after translating an advice declaration, for each predicate of the advice, the static weaver will
compute the set of predicates that will be released when the underlying advice is woven. If there exist multiple predicates
on the same advisee with structurally increasing types in the set, the weaver will reject the program.
Lastly, we note that, besides the cycles formed from cyclical calls of advice and functions, there is onemore kind of cycles

that can be created, namely cycles formed through triggering of two or more pieces of advice. This is possible because of
the presence of second-order advice. However, we do not see any practical value of having such a circular set of advice and
insist on a stratified approach to declaring advice. In this approach, programs with circular set of advice will be spotted by
our dependency analysis step and rejected.

4.7. Unresolved advice predicates

A problem inherent with our advised type approach to static weaving is the possibility of unresolved advice predicates.
For example, consider the following AspectFun program:

n@advice around {f} (arg::[Char]) = proceed (tail arg) in
f l = length l in
g i = i + f [] in
g 5

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1065

After static weaving, the function g has type scheme ∀a.(f : [a] → Int).Int → Int , and is translated to the following
intermediate result:

g df i = i + df []

As the type scope of f’s advice n is more specific than [a], the static weaver cannot resolve the advice predicate
(f : [a] → Int). Hence, subsequently when g is applied (g 5 above), the static weaver will be forced to resolve this
advice predicate arbitrarily. In particular, depending on what the type variable a is instantiated to, advice nmay or may not
be applied.
Obviously this is unacceptable. Thus we should consider such programs as ill-typed and reject them statically. Similar to

Haskell’s type classes, such an unresolved advice predicate, p, manifests itself in an advised type, p̄.t , as there are some type
variables in p, but not in the type body t . Hence we can easily detect it during typing a definition. Specifically, we refine the
gen(Γ , p̄.t) function used in the typing rules so that if f v(p̄) 6⊆ f v(t), then gen will return an error to reject the expression
under typing.

5. Correctness of static weaving

The correctness of static weaving is proven by relating it to the operational semantics of EA. Specifically, given an EA
program, we prove that if it is well-typed by our static typing and weaving rules, then the resulting woven program,
after chain expansion, is equivalent to the original program according to the operational semantics of EA. The detail of
the correctness proof is available in Appendix. In this section, we outline and explain the structure of our proof.

5.1. Proof overview

Given an EA program, π ≡ (ds, e), our static weaver converts it into a different form in which advice declarations in
ds are turned into function declarations and all expressions in π are woven with applicable advice. Therefore, a woven EA
program will be evaluated under a different operational semantics context from that of its source version. Hence the basis
for our proof is a general definition of equivalence between EA expressions, e and e∗, under different operational semantics
contexts, as denoted by (E∗,A∗); (E,A) ` e∗ ' e.7
Obviously, our proof does not concern the equivalence relation in general, but only the equivalence of a statically woven

expression and its source version under two operational semantics contexts that are related by the static weaver. Thus we
must define some kind of consistency between a context, (E,A), and its woven version, (E∗,A∗). In particular, when static
weaving is done, the advice storeA∗ will be empty. Moreover, the essential information of the static weaver is manifested
in the static weaving environment, Γ . Hence we define a consistency relation of two operational semantics contexts with

respect to a static weaving environment and denote it by E∗
Γ
∞ (E,A).

Essentially, the above consistency relates the bindings found in E∗ and (E,A) for every identifier in the domain of Γ . Its
definition is built on two other definitions. First, the two operational semantics contexts must ‘‘respect’’ the type bindings
maintained by the static weaving environment in a specific way. We define such respect relations and denote them by
(E,A) ∝ Γ and E∗ ∝ Γ . Besides types, we also need a ‘‘consistency’’ relation at the expressions level. Specifically, we
define the consistency of expression relation between a woven EA expression, e∗, and its source expression, e, under type-

consistent contexts, and denote it by E∗; (E,A) ` e∗
Γ
∞ e.

Based on these definitions, the correctness result is derived from two theorems. First, we prove that, under consistent
contexts and the static weaving environment derived from an EA program, any expressions produced by the static weaver
will be consistent with their corresponding source expressions. Then we prove that the static weaver maintains the
consistency of contexts when processing every form of top-level declarations, thus leading to the equivalence,', between
the chain-expanded woven program and the original program.

5.2. Proof structure

We begin with the definition of an equivalence between two EA expressions of the same type. It is mutually dependent
on the equivalence between two values of EA. Moreover, since our ultimate goal is to relate a woven EA expression and
its source version, and the woven expression will be evaluated in a different context from its source version, we define the
equivalence relation with respect to two operational semantic contexts.

Definition 2 ('). Let e∗ and e be two EA expressions with type σ . We define an equivalence relationship between the
expressions under the two pairs of operational semantics context, (E∗,A∗), and (E,A), written as

(E∗,A∗); (E,A) ` e∗ ' e : σ

7 As a convention, we put a superscript star to an expression, an environment and an advice store to indicate that they are derived after static weaving.

1066 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

if
E∗;A∗ ` e∗ ⇓ v∗ iff E;A ` e ⇓ v andA∗;A ` v∗ ∼= v : σ

whereA∗;A ` v∗ ∼= v : σ is defined by:

A∗;A ` c ∼= c : σ
A∗;A ` (|Λb∗. e∗1, E

∗

1 |)
∼= (|Λb. e1, E1|) : ∀a.σ1
iff ∀t, (E∗1 ,A

∗); (E1,A) ` [t/b∗]e∗1 ' [t/b]e1 : σ1
A∗;A ` (|e∗1, E

∗

1 |)
∼= (|e1, E1|) : t1 → t2
where e∗1 and e1 are both lambda expressions

iff (E2,A∗); (E3,A) ` e2 ' e3 : t1 implies
(E2,A

∗); (E3,A) ` (|e∗1, E
∗

1 |) e2 ' (|e1, E1|) e3 : t2

We shall omit the type scheme σ when it is obvious from the context.
Note that we can also extend the above equivalence to relate two open EA programs since all top-level declarations of an

EA program will be turned into a thunk and put into the environment or advice store for evaluating the main expression.
As an example of the equivalence relation, consider the definition of g in Example 3 (Section 3.2): g x = (f x, f(x,

x), f [x]). In particular, we focus on the part in which function f is applied to a list argument [x], namely f {[a]}
[x] in the explicitly typed version. As described in Section 4.4, after static weaving, this occurrence of function f is woven
with advice nscope as <f {[a]}, {nscope {a}}> and is subsequently expanded to nscope {a} (f {[a]}). It is
easy to show that

(E∗,∅); (E,A) ` nscope {a} (f {[a]}) ' f {[a]}
where E∗ is the operational semantics environment with static weaving done while (E,A) is the original operational
semantics context.
First, the left-hand side expression, (nscope {a} (f {[a]})), will be evaluated to a closure of the lambda expression

\arg:[a].proceed (tail {a} arg) and an environment in which proceed is bound to the value of f {[a]}.
On the other hand, when the right-hand side expression, f {[a]} is evaluated and applied to [x], by the definition of
Trigger, the advice nscopewill be triggered and woven to f {[a]}, resulting in the same closure. Hence, by the definition
of∼=, the two expressions are equivalent.
Next, we give a definition which ensures that the type bindings in a static weaving environment are consistent with

those of the expressions kept by an operational semantics context. Note that, as the static weaver will eventually convert all
advice declarations into normal function declarations, the woven expression will be evaluated in an operational semantics
context with an empty advice store. Therefore, we provide two definitions for specifying consistency of type bindings: one
for the general operation semantics contexts and the other for the specialized contexts in which the advice store is empty,
thus relating only the operational semantics environment. Both are specified in terms of the three forms of bindings which
may occur in a static weaving environment. Essentially, the general definition of consistency states the condition before
performing static weaving while the specialized one for the case after static weaving is done. For brevity, we refer to both
definitions of consistency as respect of environment.
Definition 3 (Respect of Environment). An operational semantics environment E and an advice store A are said to respect
a static weaving environment Γ , written as (E,A) ∝ Γ , if the domains of E andA are disjoint and the union of them are as
large as the domain of Γ , and for every x in the domain of Γ ,
1. if x : ∀ā.ρ x ∈ Γ then [x 7→ (|ex, E ′|)] ∈ E , and Γ ′ ` ex{ā} : ρ for any Γ ′ satisfying (E ′,A) ∝ Γ ′.
2. if x{t̄} : ρ dx ∈ Γ then [x 7→ (|ex, E ′|)] ∈ E , and Γ ′ ` ex : ρ for any Γ ′ satisfying (E ′,A) ∝ Γ ′.
3. if x : ∀ā.p̄.ty → tx FG f x ∈ Γ then (x : ∀ā.ty → tx, pc, ty, (|ex, E ′|)) ∈ A, and Γ ′ ` ex{ā} : p̄.ty → tx for any Γ ′

satisfying (E ′,A) ∝ Γ ′.

The specialized version of respect of environment relation holds without the advice store. Specifically, an operational
semantics environment E∗ is said to respect a static weaving environment Γ , written as E∗ ∝ Γ , if the domain of E∗ is as
large as that of Γ and for every x in the domain of Γ ,
1. if x : ∀ā.ρ x ∈ Γ then [x 7→ (|e∗x , E

′
|)] ∈ E∗, and Γ ′ ` e∗x {ā} : ρ for any Γ

′ satisfying E ′ ∝ Γ ′.
2. if x{t̄} : ρ dx ∈ Γ then [dx 7→ (|e∗x , E

′
|)] ∈ E∗, and Γ ′ ` e∗x : ρ for any Γ

′ satisfying E ′ ∝ Γ ′.
3. if x : ∀ā.ρ FG f x ∈ Γ then [x 7→ (|e∗x , E

′
|)] ∈ E∗, and Γ ′ ` e∗x {ā} : ρ for any Γ

′ satisfying E ′ ∝ Γ ′.
Besides consistency of type bindings,we need to define the consistency of binding definitions common in two operational

semantics contexts. Yet, as advice predicates may appear in the binding definitions produced by static weaving, we cannot
apply the' directly to relate them to those in the operational semantics context of the source program. Hence, we need to
provide a conditional form of equivalencewhichmatches an EA expressionwith advice predicates to a pure EA expression in
away that is compliantwith the' relation and satisfies the underlying advice predicates. First, we notice that the predicates
created during static weaving can be realized at run time through functions – and their associated advice – of appropriate
types. This is captured by the notion of feasibility.

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1067

Definition 4 (Feasibility to Predicates). Given Γ , E∗, E , andA with E∗ ∝ Γ and (E,A) ∝ Γ , an EA expression e∗ is said to
be feasible to a predicate g{t̄} : tg , written as (|e∗, E∗|) m g{t̄} : tg , ifwv(g : tg) and (E∗,∅); (E,A) ` e∗ ' g{t̄} : tg .

As an example of predicate feasibility, consider the definition of h in Example 3 (Section 3.2): h x = g [x].
According to the static weaving described in Section 4.4, function g is typed with a predicate f:a->a. When it is applied
to an argument of type [b] inside h, we get a more instantiated predicate f:[b]->[b]. As the type scope of the advice
nscope for f matches the application context, the condition wv(f : [b] → [b]) holds. Hence, in this context, f can be
statically woven with advice nscope. Besides, as stated before, (E∗,∅); (E,A) ` (nscope {b} (f {[b]})) ' f{[b]}, and
thus (|nscope {b} (f {[b]}), E∗|) m f{[b]} : [b] → [b].
Next, we define the conditional form of equivalence, called consistency of expressions, based on the definition of feasibility

and the ' relation. It specifies that a woven EA expression with advice predicates is consistent with a corresponding EA
expression under a type-constrained context if they are equivalent (') after the advice predicates involved are properly
realized by feasible expressions.

Definition 5 (Consistency of Expressions). GivenΓ , E∗, E , andAwith E∗ ∝ Γ and (E,A) ∝ Γ , we say that an EA expression
e∗ with type p̄.t is consistent with another expression e under Γ , written as

E∗; (E,A) ` e∗
Γ
∞ e : p̄.t

if given some fresh variables dpwith |dp| = |p̄|, for all type substitution S and thunks (|e∗p, E∗|) such that (|e∗p, E∗|) m Sp̄, then

(E∗[dp 7→ (|e∗p, E∗|)],∅); (E,A) ` [[Se
∗ dp]] ' Se : St

holds.

Now we can define the consistency between the binding definitions of two operational semantics contexts under a
specific static weaving environment. It is specified in terms of the ‘‘consistency of expressions’’ relation for each form of
bindings which may occur in a static weaving environment derived from an EA program.

Definition 6 (Consistency of Bindings). GivenΓ , E∗, E , andA, the environment E∗ is said to be consistentwith (E,A)under

Γ , written as E∗
Γ
∞ (E,A), if

1. E∗ ∝ Γ and (E,A) ∝ Γ ,
2. lambda expressions of the closures in E∗ have no labels,
3. for every x in the domain of Γ ,
(a) if x : ∀ā.p̄.t x ∈ Γ then

E∗1 ; (E1,A) ` e
∗

x
Γ
∞ bexc : p̄.t

where [x 7→ (|Λā.e∗x , E
∗

1 |)] ∈ E∗ and [x 7→ (|Λā.ex, E1|)] ∈ E .
(b) if x{t̄} : t dx ∈ Γ then

E∗1 ; (E1,A) ` e
∗

dx
Γ
∞ ex{t̄} : t

where [dx 7→ (|e∗dx, E
∗

1 |)] ∈ E∗ and [x 7→ (|ex, E1|)] ∈ E .
(c) if x : ∀ā.p̄.ty → tx FG f x ∈ Γ then (x : ∀ā.ty → tx, pc, ty, (|Λā.ex, E1|)) ∈ A, [x 7→ (|Λā.e∗x , E

∗

1 |)] ∈ E∗, and

E∗1 ; (E1.proceed = ep,A) ` λdp.(e∗x dp e
∗

p)
Γ
∞ bexc : p̄.ty → tx

for all e∗p and ep such that (E
∗

1 ; ∅); (E1,A) ` e
∗
p ' ep

where b·c removes the label from a lambda function. Specifically, bλlx : tx. ec = λx : tx. e. Note that the binding of proceed
can be seen as a special case of that of an ordinary variable and handled by 3(a).

Based on the above definitions, we can proceed to develop the intermediate results that will lead to the correctness of
static weaving.
We start by investigating the correspondence between the expression produced by static weaving and its source version.

Essentially, the main target here is the chain expressions, which are the other core products of our static weaving scheme
besides advice predicates. In particular, a key step towards proving the correctness of our static weaving scheme is that the
chain expression assembled by (Var-A) rule is consistent with the source expression of applying the underlying advised
function (associated with the variable expression operated by (Var-A) to the types in context). We accomplish this step via
the following two lemmas about advice chaining and chain expansion. Before stating the lemmas, we define some auxiliary
functions required to specify advice names and type substitutions involved in a chain expression.

1068 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Definition 7 (AdviceName and AdviceSet).

AdviceSet(λȳ.〈f ȳ , {ē}〉) = {AdviceName(ei) | ei ∈ ē}
AdviceName(e) = case e of

n dg → n
〈n dg , {adv}〉 → n

AdviceUnifiers(e, t) = let (AdviceName(e) : ∀ā.tn, . . .) ∈ A
[t̄/ā]tn = t

in t̄

The first lemma shows that the set of advice selected by (Var-A) rule is the same as those returned by Choose function of
the operational semantics.

Lemma 1 (Advice Selection). If (E,A) ∝ Γ , and Γ ` f {t̄} : p̄.t1 → t2 λdp.〈f {t̄} dp , {ē∗}〉, then for any type substitutions
S we have AdviceSet(λdp.〈f {t̄} dp , {ē∗}〉) = Names(Choose(f , St1)) where Names(s) = {n | (n : σn, . . .) ∈ s}.

The second lemma shows that the chain expression assembled by (Var-A) rule is consistent with the source expression
under the same program context.

Lemma 2 (Consistency of chain expressions). Suppose that E∗
Γ
∞ (E,A). If

1. Γ ` f {t̄} : p̄.t λdp.〈f {t̄} dp , {e∗0, e
∗

1, . . . , e
∗
n}〉, f v(p̄) ⊆ f v(t), and

2. for i = 0, 1, . . . , n, let (AdviceName(e∗i) : σi, pc i, (|ei, Ei|)) ∈ A,

E∗; (Ei[proceed 7→ epr],A) ` proceedApply(e∗i , e
∗

pr)
Γ
∞ ei{AdviceUnifiers(e∗i , t)} : t,

holds for all (E∗,∅); (Ei,A) ` e∗pr ' epr ,

then

E∗; (E,A) ` λdp.〈f {t̄} dp , {ē∗}〉
Γ
∞ f {t̄} : p̄.t.

Given the above lemmas, we prove the following theorem which states that, under consistent contexts and the static
weaving environment derived from an EA program, any expressions produced by the static weaver will be consistent with
their corresponding source expressions.

Theorem 1 (Soundness of Expression Weaving). If E∗
Γ
∞ (E,A), Γ ` e : p̄.t e∗, and f v(p) ⊆ f v(t), then E∗; (E,A) `

e∗
Γ
∞ e : p̄.t.

Finally, we prove that the static weaver maintains the consistency of contexts when processing all forms of top-level
bindings of an EA program. Thus, combined with the above theorem, we establish the correctness of our static weaving
scheme, as the following theorem shows.

Theorem 2 (Soundness of Static Weaving). Let π0 be an EA program. If ∅ ` π0 : t π∗0 , then ` [[π
∗

0]] ' π0 : t.

6. Related work

6.1. Aspect-oriented languages

Two works closely related to ours are AspectML [5,4] and Aspectual Caml [15]. Both works have made many significant
results in supporting polymorphic pointcuts and advice in strongly typed functional languages such as ML. While these
works have introduced some expressive aspect mechanisms into the underlying functional languages, they have not
successfully reconciled coherent and static weaving — two essential features for an aspect-oriented functional language
we investigated in this paper.
AspectML [5,4] advocates first-class join points for constructing generic aspect libraries. In order to support non-

parametric polymorphic advice, AspectML includes case-advice which is similar to our type-scoped advice. Its type system
is a conservative extension to the Hindley–Milner type inference algorithm with a form of local type inference based on
some required annotations. During execution, advice is looked up through labels and run-time type analysis is performed
to handle the matching of type-scoped pointcuts. This completely dynamic mechanism gives additional expressiveness by
allowing run-time advice introduction. However, many optimization opportunities are lost as advice triggering information
is not present during compilation. Lastly, advice is anonymous in AspectML and apparently not intended to be the targets
of advising, i.e. no second-order advice.
Aspectual Caml [15] supports static typing and weaving. In particular, type inference on advice is carried out without

consulting the types of the functions designated by the pointcuts. Similar to AspectML, it allows a restricted form of type-

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1069

scoped advice. In addition to supporting polymorphic pointcuts, Aspectual Caml also supports monomorphic pointcuts
which, when associated with a piece of advice, enable the user to express type-scoped advice. Static weaving is achieved by
traversing type-annotated base program ASTs to insert advices at matched joint points. The type of the applied advice must
be more general than those of the joint points, through which type safety is guaranteed. This design has the advantage of
clean separate compilation as aspects can be compiled completely independently from the base program. In our case, we
value correctness and understandability of program more than the ease of separate compilation.
Aspectual Caml’s lexical approach alsomakes it easy to advise anonymous functions. However, for polymorphic functions

invoked indirectly through aliases or functional arguments, this approach cannot achieve coherent weaving results.
Formal specification of the main features of aspect-oriented languages is first given by Wand et al. [19]. There, a

denotational semantics is developed for a miniature first-order procedural language, which is intended as a baseline
semantics for correctness measurements. Some facets of our operational semantics for AspectFun follow the spirit of their
work. But there are also many differences. Notably, in the dynamic context, their semantics differs from ours by having
variables in advice always bound by the pointcuts. Consequently, when there are multiple pieces of applicable advice, the
argument passed to proceed is ignored. This behavior can ‘‘lead to an intriguing discontinuity’’ [19]; this ‘‘means that
multiple around advice interact in a somewhat surprising way’’ [19]. Moreover, in the static context, their semantics is
untyped, whereas static safety and type-scoped advice are at the heart of our design.

6.2. Type-directed programming

Our weaving translation was originally inspired by the dictionary translation of Haskell type classes [18]. A number of
subsequent applications of type classes [14,10] also share some similarities. However, the issues discussed in this paper
are unique, which make our translation substantially different from the others. Our research does not focus on designing
complicated source-level type system that harnesses type-directed programming. Rather, we introduce advised types only
to facilitate static weaving, and these types are not visible to users. This design follows the obliviousness principle of
AOP, which dictates that aspect introduction should not cause changes to the base program’s signature. At the same time,
some reasoning properties, such as parametricity [16], that have been carefully preserved by pure functional languages are
threatened. We leave it to future work for possible reconciliation of the two.
A more operational difference between AOP and type classes is the multiple triggering of aspects. Type classes are

designed for overloading of functions where one instance is always selected for each invocation. In contrast, any number of
advice can be attached to the same join point and the execution of them are properly coordinated by the use of proceed.
As we have seen in Section 2.2.3, this flexibility gives us significant expressiveness in places where type classes struggle.
Our work is not the first to explore type-directed programming with aspects. Washburn and Weirich [23] have

demonstrated type-directed programming in AspectML, and the idea of using AOP for extensible generic programming
is due to them. The example in Section 2.2.3 demonstrated that the expressivity of dynamic type analysis can be readily
harnessed in AspectFunwith separate dynamic typing mechanisms encoded in statically typed languages.

7. Conclusion

Static and coherent weaving are two main foci in this investigation of incorporating aspects into a functional languages
with higher-order functions and parametric polymorphism. This paper consolidates our previous research results [21,20,2],
andmakes several significant revisions and extensions alongmultiple dimensions of our research. Not only do we provide a
complete treatment to the core features in AspectFun, we also present an operational semantics of AspectFun. Above all, we
provide a formal account of the correctness of our static typing and weaving rules with respect to the operational semantics
of AspectFun.
Moreover, we have extended our static weaving scheme to handle complex pointcuts, namely curried pointcuts

and control-flow-based pointcuts (cflowbelow and cflow). The detail is not covered in this paper. Besides, a monadic
compilation scheme for analyzing and optimizing the execution of control-flow-based pointcuts has been incorporated in
our implementation.
Moving ahead, we will investigate additional optimization techniques and conduct empirical experiments on perfor-

mance gain. As our implementation automatically converts base program to monadic form, it is particularly promising to
investigate use of aspects in capturing side-effecting computation and its monadification implementation in AspectFun [1].
On a different front, we plan to explore ways of applying our static weaving system to other language paradigms. In

particular, Java 1.5 has been extended with parametric polymorphism by the introduction of generics. Yet, as mentioned in
[8], the type-erasure semantics of Java prohibits the use of dynamic type tests to handle type-scoped advices. We speculate
our static weaving scheme could be a key to the solution of the problem.

Acknowledgements

The authors would like to thank the anonymous referees for valuable suggestions on how to improve a previous version
of this paper. This research is partially supported by the National University of Singapore under research grant ‘‘R-252-000-
252-112’’, and by the National Science Council, Taiwan, ROC under grant number ‘‘NSC 97-2221-E-004-001-MY3’’.

1070 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Appendix. Proof of correctness of static weaving

In this appendix, we give in detail the proof of correctness of static weaving. After presenting a few straightforward
propositions, we shall prove the key lemmas and theorems stated in Section 5. Note that, as in the main text, e is used to
stand for an EA source expression and e∗ for the result of static weaving.
We begin by listing down some properties about operational semantics and basic properties about expression

equivalence.

Proposition 1. If we write (E∗,A∗); (E,A) ` e∗ ' e in a different form

(e∗; E∗,A∗) ' (e; E,A)

then it is an equivalence relation, that is, satisfying reflexivity, symmetry, and transitivity.

Proposition 2. Given an EA expression e∗ and an annotated lambda expression λf :tf x : tx.e, if (E∗,A∗); (E,A) ` e∗ '
Trigger((|λx : tx.e, E1|), f : tf), then (E∗,A∗); (E1,A) ` e∗ ' λf :tf x : tx.e, and vice versa.

Proposition 3. If (E,A) ` e ⇓ v then, for any x ∈ dom(E), we always have (E,A) ` [E(x)/x]e ⇓ v.

Lemma 1 (Advice Selection). If (E,A) ∝ Γ , and Γ ` f {t̄} : p̄.t1 → t2 λdp.〈f {t̄} dp , {ē∗}〉, then for any type substitutions
S we have AdviceSet(λdp.〈f {t̄} dp , {ē∗}〉) = Names(Choose(f , St1)) where Names(s) = {n | (n : σn, . . .) ∈ s}.

Proof.
1. We first show that the translation in the lemma is derived via (Var-A) rule. This is proved by induction on the number
of predicates in p̄ as follows.
If p̄ is empty, then clearly the translation is just an instance of (Var-A) rule due to the presence of advice chain. Suppose

that when p̄ contains n predicates, it is still an instance of (Var-A). Now assume that there are n+1 predicates in p̄. If the
outermost predicate is generated by applying the (Pred) rule, then we have the derivation, Γ .x{t̄ ′} : t xt ` e : ρ e∗t
where ρ has n predicates and t is the type instantiating the type scheme of x. By the induction hypothesis, this translation
is derived via (Var-A) rule and e ≡ x is an advised function. This contradicts the condition of the (Pred) rule. Since no
other rule produces a translation with the given form of predicated typed and chain expression except (Var-A), the
translation in the lemma is indeed an instance of (Var-A), on an advised function, f {t̄}.

2. We then prove the lemma in two steps:
(a) if Γ ` f {t̄} : p̄.t e∗c and Γ ` f {St̄} : S(p̄.t) e

∗

d , then AdviceSet(e
∗
c) = AdviceSet(e

∗

d).
(b) if Γ ` f {St̄} : S(p̄.t1 → t2) λdp.〈f {St̄} dp , {ē∗}〉 then

Names(Choose(f , St1)) = AdviceSet(λdp.〈f {St̄} dp , {ē∗}〉)
Combining these two steps yields the set equality in the lemma.

(a) From the premise of (VAR-A), we must have AdviceSet(e∗c) ⊆ AdviceSet(e∗d). Hence it suffices to show that
AdviceSet(e∗d) ⊆ AdviceSet(e

∗
c). This is done by contradiction, as follows.

Assume that there exists an advice binding n : ∀b̄.q̄.tn FG f such that tn D St but tn 6D t . Let t1 → t2 = t and
tk → tnk = tn. By tn D St , we have tk D St1, which in turn implies that tk and t1 are unifiable. So, by the condition
wv(f : t1 → t2), we have tn D t . This contradicts the assumption.
Since no such advice exists, AdviceSet(e∗d) ⊆ AdviceSet(e

∗
c).

(b) Let Aset = AdviceSet(λdp.〈f dp , {ē∗}〉), Cset = Names(Choose(f , St1)). By (E,A) ∝ Γ ,

ni : ∀b.q.ti → tni FG f ∈ Γ ⇔
(ni : ∀α.τx → τni , pci, τi, ei) ∈ A ∧ ∃pc ∈ pci. JPMatch(f , pc) ≡ true

Let us consider the advice selection criteria for both Aset and Cset . For advice ni to be selected in Aset , (Var-A) requires
that ti → tni D t1 → t2. By contrast, Cset requires that ti D t1 according to Choose(f , t1).
First, it is easy to see that Aset ⊆ Cset since ti → tni D t1 → t2 implies ti D t1.
Second, we show that Cset ⊆ Aset by assuming otherwise and get a contradiction due to (E,A) ∝ Γ . If there exists

an advice nk with type ∀b̄.p̄′.tk → tnk such that nk ∈ Cset but not Aset . Then, tk D t1 but S1tnk 6D S1t2 where t1 = S1tk.
Let ∀ā.p̄.tf1 → tf2 = Γ (f), then (t1 → t2) = [St̄/ā](tf1 → tf2). Consider the kinds of advice binding for nk.
(i) (Adv): By the condition of (Adv), tk → tnk D tf1 → tf2 , which in turn implies that tnk D t2 since

tf1 → tf2 D t1 → t2. This contradicts the assumption.
(ii) (Adv-An): By the condition of (Adv-An), there exists a substitution S0 such that

tk = S0tf1
and tnk D S0tf2 (1)

Then t1 = S1S0tf1 , i.e. S1S0 = [St̄/ā]. Hence by (1),
S1tnk D S1S0tf2 = [St̄/ā]tf2 = t2

This contradicts the assumption.
Since no such advice exists, we conclude that Cset ⊆ Aset . �

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1071

Lemma 2 (Consistency of chain expressions). Suppose that E∗
Γ
∞ (E,A). If Γ ` f {t̄} : p̄.t λdp.〈f {t̄} dp , {e∗0, e

∗

1, . . . , e
∗
n}〉,

f v(p̄) ⊆ f v(t), and for i = 0, 1, . . . , n, (AdviceName(e∗i) : σi, pc i, (|ei, Ei|)) ∈ A,

E∗; (Ei[proceed 7→ epr],A) ` proceedApply(e∗i , e
∗

pr)
Γ
∞ ei{AdviceUnifiers(e∗i , t)} : t,

holds for all (E∗,∅); (Ei,A) ` e∗pr ' epr , then

E∗; (E,A) ` λdp.〈f {t̄} dp , {ē∗}〉
Γ
∞ f {t̄} : p̄.t.

Proof. We prove the lemma according to the requirements stated in Definition 5 (consistency of expressions). Specifically,
given S and (|e∗p, E∗|) such that (|e∗p, E∗|) m Sp̄ as in Definition 5, we need to prove that

(E∗[dp 7→ (|e∗p, E∗|)],∅); (E,A) ` [[(λdp.S〈f {t̄} dp , {ē
∗
}〉) dp]] ' S(f {t̄}) = f {St̄}

We then β-reduce left-hand side cancelling out the lambda and application. Writing E∗0 = E∗[dp 7→ (|e∗p, E∗|)] and
(|Λā.λf :tf x : tx. ef , E1|) = E(f), by Proposition 3, it is equivalent to show that

(E∗0 ,∅); (E,A) ` [[S〈f {t̄} dp , {ē
∗
}〉]] ' (|[St̄/ā](λf :tf x : tx. ef), E1|) : St

Let S ′ = [St̄/ā]. By applying Proposition 2 on the RHS, it suffices to show that

(E∗0 ,∅); (E,A) ` [[S(〈f {t̄} dp , {ē
∗
}〉)]] '

Trigger((|λx : S ′tx. S ′ef , E1|), f : S ′tf)

By the definition of Trigger(·), we can rewrite the RHS of the above equation to

Weave((|λx : S ′tx. S ′ef , E1|), S ′tf , Choose(f , S ′tx))

According to Lemma 1, AdviceSet(λdp.〈f {t̄} dp , {ē∗}〉) = Names(Choose(f , S ′tx)). Thus, it suffices to show that

(E∗0 ,∅); (E,A) ` [[Se
∗

c]] '

Weave((|λx : S ′tx. S ′ef , E1|), S ′tf , {A(ni) | ni ← AdviceSet(e∗c)}) (2)

where e∗c ≡ 〈f {t̄} dp , {ē
∗
}〉. Besides, we strengthen the equation by allowing f to be advice and prove (2) by mathematical

induction on the length of ē∗.
When f is advice, (f . . . , (|λx : S ′tx. S ′ef , E1|)) ∈ A, e∗c is defined as 〈f {t̄} dp e

∗

fp , {ē
∗
}〉, and E1 in (2) is replaced by

E1[proceed 7→ efp]where e∗fp and efp are equivalent under (E
∗,∅) and (E1,A).

Induction basis for the length: |ē∗| = 0:
Here, e∗c ≡ 〈f {t̄} dp , {}〉. We proceed by reducing both sides of (2).

LHS ≡ [[S〈f {t̄} dp , {}〉]]
= Sf {t̄} dp ; E∗0 ,∅

by Proposition 3 and let [f 7→ (|Λā.λdp.e∗f , E
∗

1 |)] ∈ E∗

' [St̄/ā]e∗f ; E∗1 [dp 7→ (|e∗p, E∗|)],∅
RHS ≡ Weave((|λx : S ′tx. S ′ef , E1|), S ′tf , {})
= (|S ′λx : tx. ef , E1|) ; E,A
' S ′λx : tx. ef ; E1,A

By E∗
Γ
∞ (E,A), we could expand the respect relationship of binding of f in E∗ and E and get

(E∗1 [dp 7→ (|e∗p, E∗|)],∅); (E1,A) ` [St̄/ā]e
∗

f ' S
′λx : tx. ef : t

Hence (2) holds for function f . For f being advice, all the above remains the same except extra efp and e∗fp are added, which
match the case for advice in Definition 6.

Induction step for the length (|ē∗| = m):
Suppose that the equivalence statement (2) above holds for all ē∗ with |ē∗| < m. When |ē∗| = m, let ē∗ = e∗1, e

∗

2, . . . , e
∗
m.

We reduce the LHS of (2) as follows:

[[S〈f {t̄} dp , {e∗1, e
∗

2, . . . , e
∗

m}〉]] = proceedApply(Se
∗

1, S〈f {t̄} dp , {e
∗

2, . . . , e
∗

m}〉)

1072 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Let (n1 : ∀b̄.tn, pc, ty, (|Λb̄.λn1:tny : ty.en, En|)) ∈ A. We reduce the RHS of (2) according to the definitions ofWeave (in Fig. 6)
and get

[Stn/b̄]tn = S ′tf
ep = Weave((|λx : S ′tx.S ′ef , E1|), S ′tf , {A(n2), . . . ,A(nm)})
ea = [Stn/b̄]en
RHS = Trigger((|λy : [Stn/b̄]ty.ea, En[proceed 7→ ep]|), n1 : [Stn/b̄]tn) ; E,A

by Proposition 2
' λn1:[Stn/b̄]tny : [Stn/b̄]ty.ea ; En[proceed 7→ ep];A
' (Λb̄.λn1:tny : ty.en){Stn} ; En[proceed 7→ ep];A

Thus, we need to show that

(E∗0 ,∅); (En[proceed 7→ Weave((|λx : S ′tx.S ′ef , E1|)], S ′tf , {A(n2), . . . ,A(nm)}),A)
` proceedApply(Se∗1, S〈f {t̄} dp , {e

∗

2, . . . , e
∗
m}〉) ' (Λb̄.λ

n1:tny : ty.en){Stn} : S ′tf (∗)

By the assumption of the lemma,

E∗0 ; (En[proceed 7→ epr],A) ` proceedApply(e∗1, e
∗

pr)
Γ
∞ (Λb̄.λn1:tny : ty.en){tn} : t

Applying Definition 5 with the same S, we see that (*) holds if

(E∗0 ,∅); (E,A) ` e
∗
pr ≡ [[S〈f {t̄} dp , {e

∗

2, . . . , e
∗
m}〉]] '

epr ≡ Weave((|λx : S ′tx.S ′ef , E1|), S ′tf , {A(n2), . . . ,A(nm)})

But this is immediate from the induction hypothesis for the length (|ē∗| = m− 1), and the lemma is proven. �

A special case of Definition 5 occurs when there is no predicates on type. In such a case, we do not have to consider ep in
Definition 5, which yields a stronger proposition.

Proposition 4. If E∗; (E,A) ` e∗
Γ
∞ e : p̄.t and p̄ is empty, then (E∗,∅); (E,A) ` [[Se∗]] ' Se : St for any type substitution

S.

Theorem 1 (Soundness of Expression Weaving). If E∗
Γ
∞ (E,A), Γ ` e : p̄.t e∗, and f v(p) ⊆ f v(t), then E∗; (E,A) `

e∗
Γ
∞ e : p̄.t.

Proof. Weagain strengthen the statement by allowing e to be an advice namewith type application andprove it by induction
on the height (h) of the derivation tree for Γ ` e : p.t e∗.
When e is advice n{AdviceUnifiers(e∗i , t)}, respect relation is replaced by E∗; (En[proceed 7→ ep],A) `

proceedApply(e∗, e∗p)∞ en{AdviceUnifiers(e
∗

i , t)} : p̄.t for all (E
∗,∅); (En,A) ` e∗p ' epwhere (n : σn, pc, tx, (|en, En|)) ∈ A

as in Lemma 2.

Induction basis (h = 1):
There are only two cases, namely (Var) and (Var-P), and e ≡ x{t̄} for some variable, function, or advice x that

x : σ e∗ ∈ Γ or x{t̄} : t dx ∈ Γ . Both cases are direct from E∗
Γ
∞ (E,A).

Induction step:
Suppose that the respect condition hold for all derivation trees of height less than h. We prove that, for an expression e

with a derivation tree, Γ ` e : p̄.t e∗, of height h. Consider the last step of the derivation:

Case (Pred): We have a derivation of the form:

x :∗ ∀ā.p̄x.tx ∈ Γ [t̄/ā]tx D t1
Γ .x{t̄} : t1 dx ` e : q.t e∗t

Γ ` e : (x{t̄} : t1).q.t λdx.e∗t

Hence, p ≡ (x{t̄} : t1).q and e∗ ≡ λdx.e∗t . We need to show that

E∗; (E,A) ` λdx.e∗t
Γ
∞ e : (x{t̄} : t1).q̄.t

According to Definition 5, assuming dp are fresh, when given S and (|e∗p, E∗|) m S(x{t̄} : t1).Sq̄, we show that

E∗[dp 7→ (|e∗p, E∗|)]; (E,A) ` [[Se
∗

t dp]] ' Se : St (3)

Since p̄ ≡ (x{t̄} : t1).q, we can write (|e∗p, E∗|) as (|e
∗
x , E
∗
|).(|e∗q, E∗|), dp = dx.dq such that (|e

∗
x , E
∗
|) m S(x{t̄} : t1).

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1073

Then

LHS of (3) = [[Se∗t dp]] ; E∗[dp 7→ (|e∗p, E∗|)],∅
= [[Se∗t dp]] ; E

∗
[dx 7→ (|e∗x , E

∗
|)][dq 7→ (|e∗q, E∗|)],∅

= [[Se∗t dp]] ; E∗2 [dq 7→ (|e∗q, E∗|)],∅

where E∗2 = E∗[dx 7→ (|e∗x , E
∗
|)]. By (|e∗x , E

∗
|) m S(x{t̄} : t1), E∗2 is consistent with (E,A) under Γ .x{t̄} : t1 dx. Hence we

can apply induction on, Γ .x{t̄} : t1 dx ` e : q.t e∗t to get

E∗2 ; (E,A) ` e
∗
t
Γ .x{t̄}:t1 dx
∞ e : q̄.t

⇒ (E∗2 [dq 7→ (|e∗q, E∗|)],∅); (E,A) ` [[Se
∗
t dp]] ' Se : St

⇒ (E∗[dp 7→ (|e∗p, E∗|)],∅); (E,A) ` [[Se
∗
t dp]] ' Se : St

which shows that (3) holds.
Case (Rel): We have a derivation of the form:

Γ ` e : (x{t̄} : t1).ρ e∗1
Γ ` x{t̄} : t1 e∗2 x 6= e

Γ ` e : ρ e∗1 e
∗

2

Hence p̄.t ≡ ρ and e∗ ≡ e∗1 e
∗

2 . By induction on the second sub-derivation, E
∗
; (E,A) ` e∗2

Γ
∞ x{t̄} : t1, and by Proposition 4,

(E∗,∅); (E,A) ` [[Se2]] ' x{St̄} : St1
for any type substitution S, that is, (|Se∗2, E

∗
|) m x{St̄} : St1.

On the another hand, by induction on the first sub-derivation,

E∗; (E,A) ` e∗1
Γ
∞ e : (x{t̄} : t1).ρ

Substituting dx.dp, S, and (|Se∗2, E
∗
|).(|e∗p, E

∗

1 |) m (x{St̄} : St1).Sp̄ into Definition 5, we get

(E∗[dx 7→ (|Se∗2, E
∗
|)][dp 7→ (|e∗p, E

∗

1 |)],∅); (E,A) ` [[Se
∗

1 dx dp]] ' Se (4)

By Proposition 3, substituting dxwith (|Se∗2, E
∗
|) turns (4) into

(E∗[dp 7→ (|e∗p, E
∗

1 |)],∅); (E,A) ` [[Se
∗

1 Se
∗

2 dp]] ' Se (5)

which proves E∗; (E,A) ` e∗1 e
∗

2
Γ
∞ e.

Case (Var-A): In this case, x must be an advised function or advice. From the premise of the rule, we have Γ ` ni{t̄} :
t e∗i . By the induction hypotheses of these sub-derivations, those ei such that (ni : σi, pc i, txi, (|ei, Ei|)) ∈ A satisfies
E∗; (Ei[proceed 7→ ep],A) ` proceedApply(e∗i , e

∗
p)∞ ei{t̄} : t .

Since the type t has no predicate, by Proposition 4,

E∗; (Ei[proceed 7→ ep],A) ` proceedApply(e∗i , e
∗

p)∞ ei{t̄} : t

We can then apply Lemma 2 for function x to derive the proof.
For the case that x is bound to a piece of advice, it is just the strengthened proposition in the proof of Lemma 2, and it is

also proved.
Case (Let) We have a derivation of the form:

Γ ` e1 : ρ e∗1 Γ .f : ∀ā.ρ f ` e2 : t e∗2

Γ ` let f = Λā.e1 in e2 : t let f = Λā.e∗1 in e
∗

2

Here e∗ ≡ let f = Λā.e∗1 in e
∗

2 .
By induction on the first sub-derivation,

E∗; E,A ` e∗1 ∞ e1 : ρ

Thus

E∗ [f 7→ (|[[Λā. e∗1]], E
∗
|)]

Γ .f :∀ā.ρ f
∞ (E [f 7→ (|Λā. e1, E |)],A)

By induction on the second sub-derivation with the enlarged environments,

E∗ [f 7→ (|[[Λā. e∗1]], E
∗
|)]; (E [f 7→ (|Λā. e1, E |)],A) ` e∗2

Γ .f :∀ā.ρ f
∞ e2 : t

Finally applying the operational semantics (OS:App) rule proves the case.

1074 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

Case (Abs): We have a derivation of the form:

Γ .x : t1 x ` eb : t2 e∗b

Γ ` λx : t1.eb : t1 → t2 λx : t1.e∗b

Induction hypothesis gives that for all E∗1
Γ .x:t1 x
∞ (E1,A), E∗1 ; (E1,A) ` e

∗

b ∞ eb : t2.
Given any pair of expressions ex and e∗x with (E

∗,∅); (E,A) ` e∗x ' ex : t1, it is obvious that

E∗[x 7→ (|e∗x , E
∗
|)]

Γ .x:t1 x
∞ (E[x 7→ (|ex, E |)],A)

So we can assign the left-hand side to E∗1 , the right-hand side to (E1,A1), and apply Proposition 4 getting

(E∗1 ,∅); (E1,A) ` Se
∗

b ' Seb : St2

for all type substitution S. Thus

(E∗,∅); (E,A) ` Sλx : t1.e∗b ' Sλx : t1.eb : S(t1 → t2)

⇒ E∗; (E,A) ` λx : t1.e∗b
Γ
∞ λx : t1.eb : t1 → t2

Case (App): By straightforward induction on e1 and e2 of (e1 e2). �

Theorem 2 (Soundness of Static Weaving). Let π0 be an EA program. If ∅ ` π0 : t π∗0 , then ` [[π
∗

0]] ' π0 : t.

Proof. We use a stronger proposition to prove it. Suppose E∗
Γ
∞ (E,A). If Γ ` π : t π∗ for a sub-program π of π0,

i.e. π0 ≡ d0.π , then (E∗,∅); (E,A) ` [[π∗]] ' π : t . Afterwards, the original result of the theorem can be obtained by
assigning ∅ to Γ , E∗, E ,A and d0.
Let π ≡ d̄.e. We prove the above proposition by induction on the length of declarations of π , |d̄|.

Induction basis:
|d̄| = 0: we haveπ ≡ e. Since the type of a program is restricted to non-predicated type, this case is a direct consequence

of Theorem 1 and Proposition 4.

Induction step:
When the proposition holds for π with length(d̄) = k, we shall prove it for π1 with length(d̄) = k+ 1. Let π1 ≡ d.π . The

Induction step to prove is that if E∗1
Γ1
∞ (E1,A1) and Γ1 ` π1 : t1 π∗1 then (E

∗

1 ,∅); (E1,A1) ` [[π
∗

1]] ' π1. We prove it
by a case analysis on d and induction on the derivation for Γ1 ` d.π : t1 π∗1 :

Case (Global): We have a derivation of the form:

Γ1 ` ex : p̄.tx e∗x Γ1.x : ∀ā.p̄.tx x ` π : t1 π∗

Γ1 ` x = Λā. ex in π : t1 x = Λā. e∗x in π
∗

Given Γ1 ` ex : p̄.tx e∗x , by Theorem 1, E
∗

1 ; (E1,A1) ` e
∗
x
Γ1
∞ ex : p̄.tx. And by E∗1

Γ1
∞ (E1,A1) and Definition 6,

Γ ≡ Γ1. x : ∀ā.p̄.tx x

E∗ ≡ E∗1 [x 7→ (|[[Λā. e∗x]], E
∗

1 |)]
Γ
∞ (E1 [x 7→ (|Λā. ex, E1|)],A1) ≡ (E,A)

Thus, by the induction hypothesis of the second premise, Γ ` π : t1 π∗, we have

(E∗,∅); (E,A) ` [[π∗]] ' π : t1

Combining with

(E∗1 ,∅); (E∗,∅) ` [[π∗1]] ≡ x = [[Λā. e∗x]] in [[π
∗
]] ' [[π∗]] : t1

(E1,A1); (E,A) ` π1 ≡ x = Λā. ex in π ' π : t1

implies (E∗1 ,∅); (E1,A1) ` [[π
∗

1]] ' π1 : t1.
Case (Adv): We have a derivation of the form:

Γ1.proceed : tn proceed ` λx : tx.ea : p̄.tn e∗a
fi : ∀b̄.ti ∈ Γbase tn D [t̄/b̄]ti Γ1.n : ∀ā.p̄.tn FG f̄ n ` π : t1 π∗

Γ1 ` n :: ∀ā.tn@advice around {f̄ } (x) = ea in π : t1
 n = Λā.addProceed(e∗a, tn) in π

∗

with tx being the argument part of tn.

K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076 1075

First, we apply Theorem 1 to the first sub-derivation and get

E∗1 [proceed 7→ e∗pr]; (E1[proceed 7→ epr],A1) ` e∗a
Γ1.proceed:tn proceed

∞ λx.ea : p̄.tn

for any equivalent e∗pr and epr . This implies that for all (|e∗p, E
∗

1 |) m p̄ and type substitution [t̄/ā],

(E∗1 [proceed 7→ e∗pr][dp 7→ (|e∗p, E
∗

1 |)],∅); (E1[proceed 7→ epr],A1) `

[t̄/ā][[e∗a dp]] ' [t̄/ā]λx.ea : [t̄/ā]tn (6)

where e∗a ≡ λdx.e
∗
n . Then we are ready to prove that

Γ ≡ Γ1.n : ∀ā.p̄.tn FG f̄ n

E∗ ≡ E∗1 .n = (|Λā.addProceed(e
∗
a, tn), E

∗

1 |)
Γ
∞

(E1,A1.(n : ∀ā.tn, pc, tx, (|Λā.λn:tnx : tx.ea, E1|))) ≡ (E,A)

This can be shown by proving

E∗1 ; (E1[proceed 7→ epr],A1) `

λdp.(addProceed(e∗a, tn) dp e
∗
pr)

Γ1.proceed:tn proceed
∞ bλn:tnx.eac : p̄.t

Applying Definition 5 to the above statement:

[t̄/ā]LHS = [t̄/ā][[addProceed(e∗a, tn)]] dp e
∗
pr ; E∗1 [dp 7→ (|e∗p, E

∗

1 |)],∅

' [t̄/ā][[λdx.λproceed.e∗n]] dp e
∗
pr ; E∗1 [dp 7→ (|e∗p, E

∗

1 |)],∅

' [t̄/ā][[e∗n]] ; E∗1 [proceed 7→ e∗pr][dx 7→ dp][dp 7→ (|e∗p, E
∗

1 |)],∅

' [t̄/ā][[(λdx.e∗n) dp]] ; E∗1 [proceed 7→ e∗pr][dp 7→ (|e∗p, E
∗

1 |)],∅

by (6)
' [t̄/ā]λx.ea ; E1.proceed = epr ,A
' [t̄/ā]RHS

Thus, by the induction hypothesis, (E∗,∅); (E,A) ` [[π∗]] ' π : t1. And

(E∗1 ,∅); (E∗,∅) ` [[π∗1]] ≡ n = [[Λā. addProceed(e∗a, tn)]] in [[π
∗
]] ' [[π∗]] : t1

(E1,A1); (E,A) ` π1 ≡ n :: ∀ā.tn@advice around {f̄ } (x) = ea in π ' π : t1

implies (E∗1 ,∅); (E1,A1) ` [[π
∗

1]] ' π1 : t1.
Note that the equivalence between π1 and π is obtained by the rule (OS:Adv), which delegates the reduction to

(OS:Adv-An)with tx, the argument part of tn, as the type scope of the new advice tuple.
Case (Adv-An): We have a derivation of the form:

Γ .proceed : tx → t ` λx : tx.ea : p̄.tx → t e∗a
fi : ∀ā.ti → t ′i ∈ Γbase S = [t̄/ā]ti D tx t D S[t̄/ā]t

′

i
Γ .n : ∀ā.p̄.tx → t FG f̄ n ` π : t1 π∗

Γ ` n :: ∀ā.tx → t@advice around {f̄ } (x :: tx) = eain π : t1
 n = Λā.addProceed(e∗a, tx → t) in π∗

The proof is exactly the same as the previous case. The extra premises of the weaving rule only rules out the programs
we considered ill-typed and will not change anything in the proof for well-typed programs. �

References

[1] K. Chen, J.-Y. Lin, S.-C. Weng, S.-C. Khoo, Designing aspects for side-effect localization, in: G. Puebla, G. Vidal (Eds.), PEPM ’09: Workshop on Partial
Evaluation and Program Manipulation (2009-01-26), ACM Press, 2009, pp. 189–198.

[2] K. Chen, S.-C. Weng, M. Wang, S.-C. Khoo, C.-H. Chen, A compilation model for aspect-oriented polymorphically typed functional languages, in: Static
Analysis, 14th International Symposium, SAS 2007, in: LNCS, vol. 4634, Springer-Verlag, 2007, pp. 34–51.

[3] J. Cheney, R. Hinze, A lightweight implementation of generics and dynamics, in: Proc. of Haskell Workshop’02, ACM Press, 2002, pp. 90–104.
[4] D.S. Dantas, D. Walker, G. Washburn, S. Weirich, PolyAML: a polymorphic aspect-oriented functional programmming language, in: Proc. of the Tenth
ACM SIGPLAN International Conference on Functional Programming, ACM Press, 2005.

[5] D.S. Dantas, D. Walker, G. Washburn, S. Weirich, AspectML: A polymorphic aspect-oriented functional programming language, in: ACM Transactions
on Programming Languages and Systems, TOPLAS, 2007.

[6] Haskell 98. Haskell 98 language report, http://research.microsoft.com/Users/simonpj/haskell98-revised/haskell98-report-html/.
[7] R. Hinze, A. Löh, Generic programming in 3D, Science of Computer Programming 74 (8) (2009) 590–628.
[8] R. Jagadeesan, A. Jeffrey, J. Riely, Typed parametric polymorphism for aspects, Science of Computer Programming 63 (3) (2006) 267–296.
[9] M.P. Jones, Qualified types: theory and practice. Ph.D. Thesis, Oxford University, 1992.
[10] M.P. Jones, Exploring the design space for type-based implicit parameterization. Tech. Rep., Oregon Graduate Institute of Science and Technology,

1999.

http://research.microsoft.com/Users/simonpj/haskell98-revised/haskell98-report-html/

1076 K. Chen et al. / Science of Computer Programming 75 (2010) 1048–1076

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-oriented programming, in: M. Akşit, S. Matsuoka
(Eds.), in: Proceedings European Conference on Object-Oriented Programming, vol. 1241, Springer-Verlag, Berlin, Heidelberg, and New York, 1997,
pp. 220–242.

[12] R. Lämmel, S. Peyton Jones, Scrap your boilerplate: a practical design pattern for generic programming, in: Proceedings of the ACM SIGPLANWorkshop
on Types in Language Design and Implementation, TLDI 2003, ACM SIGPLAN Notices 38 (3) (2003) 26–37.

[13] R. Lämmel, S. Peyton Jones, Scrap your boilerplate with class: extensible generic functions, in: Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP 2005, ACM Press, 2005, pp. 204–215.

[14] J.R. Lewis, M. Shields, J. Launchbury, E. Meijer, Implicit parameters: dynamic scoping with static types, in: Symposium on Principles of Programming
Languages, 2000, pp. 108–118.

[15] H. Masuhara, H. Tatsuzawa, A. Yonezawa, Aspectual Caml: an aspect-oriented functional language, in: Proc. of the Tenth ACM SIGPLAN International
Conference on Functional Programming, ACM Press, 2005, pp. 320–330.

[16] P. Wadler, Theorems for free! in: FPCA’89: Proceedings of the Fourth International Conference on Functional Programming Languages and Computer
Architecture, ACM, New York, NY, USA, 1989, pp. 347–359.

[17] P. Wadler, The essence of functional programming, in: Proc. of the 19th Annual ACM Symposium on Principles of Programming Languages,
Albuquerque, NM, ACM Press, 1992, pp. 1–14.

[18] P. Wadler, S. Blott, How to make ad-hoc polymorphism less ad-hoc, in: Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages, ACM, 1989, pp. 60–76.

[19] M.Wand, G. Kiczales, C. Dutchyn, A semantics for advice and dynamic join points in aspect-oriented programming, ACMTransactions on Programming
Languages and Systems 26 (5) (2004) 890–910.

[20] M. Wang, K. Chen, S.-C. Khoo, On the pursuit of static and coherent weaving, in: Foundations of Aspect-Oriented Languages Workshop at AOSD 2006.
Iowa State University, TR 06-01, 2006, pp. 37–46.

[21] M. Wang, K. Chen, S.-C. Khoo, Type-directed weaving of aspects for higher-order functional languages, in: PEPM’06: Workshop on Partial Evaluation
and Program Manipulation, ACM Press, 2006.

[22] M. Wang, B.C.d.S. Oliveira, What does aspect-oriented programming mean for functional programmers? in: P. Jansson (Ed.), Proceedings of the ACM
SIGPLANWorkshop on Generic Programming, WGP’09, ACM, 2009.

[23] G.Washburn, S.Weirich, Good advice for type-directed programming aspect-oriented programming and extensible generic functions, in: Proceedings
of the 2006 ACM SIGPLANWorkshop on Generic Programming, ACM Press, New York, NY, USA, 2006, pp. 33–44.

[24] S. Weirich, Type-safe cast: (functional pearl), in: Proc. of ICFP’00, ACM Press, 2000, pp. 58–67.

	Type-directed weaving of aspects for polymorphically typed functional languages
	Introduction
	AspectFun: The aspect language
	Language features
	Examples
	Behavioral adaptation
	Separation of non-functional concerns
	Type-directed programming

	The semantics of AspectFun
	Operational semantics for EA
	Example

	Static weaving
	Type-directed weaving
	Predicating and releasing
	Handling advice
	Translating chain expressions
	Advising recursive functions
	Advising advice bodies
	Unresolved advice predicates

	Correctness of static weaving
	Proof overview
	Proof structure

	Related work
	Aspect-oriented languages
	Type-directed programming

	Conclusion
	Acknowledgements
	Proof of correctness of static weaving
	References

