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An intensional model for the programming language PCF is described,

in which the types of PCF are interpreted by games, and the terms by cer-

tain “history-free” strategies. This model is shown to capture definability

in PCF. More precisely, every compact strategy in the model is definable in

a certain simple extension of PCF. We then introduce an intrinsic preorder

on strategies, and show that it satisfies some striking properties, such that

the intrinsic preorder on function types coincides with the pointwise pre-

order. We then obtain an order-extensional fully abstract model of PCF by

quotienting the intensional model by the intrinsic preorder. This is the first

syntax-independent description of the fully abstract model for PCF. (Hy-

land and Ong have obtained very similar results by a somewhat different

route, independently and at the same time).

We then consider the effective version of our model, and prove a Uni-

versality Theorem: every element of the effective extensional model is de-

finable in PCF. Equivalently, every recursive strategy is definable up to

observational equivalence.
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1. INTRODUCTION

The Full Abstraction Problem for PCF [Plo77, Mil77, BCL85, Cur92b] is one of
the longest-standing problems in the semantics of programming languages. There
is quite widespread agreement that it is one of the most difficult; there is much
less agreement as to what exactly the problem is, or more particularly as to the
precise criteria for a solution. The usual formulation is that one wants a “semantic
characterization” of the fully abstract model (by which we mean the inequationally
fully abstract order-extensional model, which Milner proved to be uniquely specified
up to isomorphism by these properties [Mil77]). The problem is to understand what
should be meant by a “semantic characterization”.

Our view is that the essential content of the problem, what makes it important,
is that it calls for a semantic characterization of sequential, functional computation
at higher types. The phrase “sequential functional computation” deserves careful
consideration. On the one hand, sequentiality refers to a computational process
extended over time, not a mere function; on the other hand, we want to capture just
those sequential computations in which the different parts or “modules” interact
with each other in a purely functional fashion.

There have, to our knowledge, been just four models of PCF put forward as
embodying some semantic analysis. Three are domain-theoretic: the “standard
model” based on Scott-continuous functions [Plo77]; Berry’s bidomains model based
on stable functions [Ber79]; and the Bucciarelli-Ehrhard model based on strongly
stable functions [BE91]. The fourth is the Berry-Curien model based on sequential
algorithms [BC82].5 Of these, we can say that the standard model gives a good ac-
count of functional computation at higher types, but fails to capture sequentiality,
while the sequential algorithms model gives a good analysis of sequential compu-
tation, but fails to capture functional behaviour. In each case, the failure can
calibrated in terms of definability: the standard model includes parallel functions;

1This research was supported by grants from UK SERC and ESPRIT Basic Research Ac-
tion 6811 “CLICS II”. Radha Jagadeesan was supported in part by grants from NSF and ONR.
Pasquale Malacaria was supported in part by the HCM fellowship n. ERBCHBICT940947.

2samson@comlab.ox.ac.uk
3radha@cs.luc.edu
4P.Malacaria@qmw.ic.ac.uk
5Cartwright and Felleisen’s model without error values turns out to be equivalent to the sequen-

tial algorithms model [CF92, Cur92a]. The main result in [CF92, Cur92a] is that the sequential
algorithms model with errors is fully abstract for SPCF, an extension of PCF with a catch con-
struct and errors. This is a fine result, but SPCF has a rather different flavour to PCF, and
arguably is no longer purely functional in character.
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the sequential algorithms model includes algorithms which compute “functionals”
which are sensitive to non-functional aspects of the behaviour of their arguments.
The bidomains model also contains non-sequential functions; while the strongly
stable model, in the light of a recent result by Ehrhard [Ehr], can be seen as the
“extensional collapse” of the sequential algorithms model. In short, all these mod-
els are unsatisfactory because they contain “junk”. On the other side of the coin,
we have Milner’s result that an order-extensional model is fully-abstract iff all its
compact elements are definable.

Intensional Full Abstraction
This suggests that the key step towards solving the Full Abstraction problem

for PCF is to capture PCF definability. This motivates the following definition.
A model M (not necessarily extensional) is intensionally fully abstract if it is al-
gebraic, and all its compact elements are definable in PCF. In support of this
terminology, we have the fact that the fully abstract model can be obtained from
an intensionally fully abstract modelM in the following canonical fashion. Firstly,
define a logical relation onM induced by the ordering on the ground types (which
are assumed standard, i.e. isomorphic to the usual flat domains of natural num-
bers and booleans). Because of the definability properties of M, this relation is a
preorder at all types. In particular, it is reflexive at all types. This says that all
elements of the model have extensional (functional) behaviour—there is no junk.

We can now apply Theorem 7.2.2 of [Sto88] to conclude that M can be col-
lapsed by a continuous homomorphism to the fully abstract model. In short, the
fully abstract model is the extensional collapse of any intensionally fully abstract
model. Moreover, note that the collapsing map is a homomorphism, and in partic-
ular preserves application. This contrasts sharply with “collapses” of the standard
model to obtain the fully abstract model, as in the work of Mulmuley [Mul87]
and Stoughton and Jung [JS93], which are only homomorphic on the “inductively
reachable” subalgebra.

Thus we propose that a reasonable factorization of the full abstraction problem
is to look for a semantic presentation of an intensionally fully abstract model,
which embodies a semantic analysis of sequential functional computation. The
construction of such a model is our first main result; it is described in Sections 2
and 3.

We have explained how the (order-extensional, inequationally) fully abstract
model can be obtained from any intensionally fully abstract model by means of
a general construction, described in [Sto88]. However, this description of the fully
abstract model leaves something to be desired. Firstly, just because the construc-
tion in [Sto88] is very general, it is unlikely to yield any useful information about
the fully abstract model. Secondly, it is not entirely syntax-free: it refers to the
type structure of PCF.

What would the ideal form of description of the fully abstract model be? We sug-
gest that it should comprise the specification of a cartesian closed category whose
objects are certain cpo’s, given together with certain additional “intensional” struc-
ture, to be used to characterize sequentiality; and whose morphisms are continuous
functions between these cpo’s—not all continuous functions, of course, but only the
sequential ones, as determined by the intensional structure. The interpretation of
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PCF generated from this category should then be the fully abstract model. Most of
the attempts at solving the full abstraction problem of which we are aware, includ-
ing Berry’s bidomains, Curien’s bicds, and Bucciarelli and Erhard’s strongly stable
functions, clearly fall within this general scheme. (Thus for example the intensional
structure in bidomains is the stable ordering; for domains with coherence it is the
coherence.)

In Section 4, we will explain how the category of games described in Section 2
does indeed give rise to a category of sequential domains in exactly this sense. This
yields the first syntax-independent description of the fully abstract model for PCF.

A still more stringent requirement on a description of the fully abstract model is
that it should yield effective methods for deciding observation equivalence on terms.
For example, consider “Finitary PCF”, i.e. PCF based on the booleans rather than
the natural numbers. The interpretation of each type of Finitary PCF in the fully
abstract model is a finite poset. A natural question is whether these finite posets can
be effectively presented. Suppose that we have a category of sequential domains
as described in the previous paragraph, yielding a fully abstract model of PCF.
If the “intensional structure” part of the interpretation of each type could itself
be specified in a finite, effective fashion, then such a model would immediately
yield a positive solution to this problem. Because of its intensional character, our
model does not meet this requirement: there are infinitely many strategies at each
functional type of Finitary PCF. The same point occurs in one form or another
with all the currently known descriptions of the fully abstract model for PCF. A
remarkable result by Ralph Loader [Loa96] shows that this is in fact inevitable.
Loader proved that observation equivalence for Finitary PCF is undecidable. This
shows that an intensional description of the fully abstract model is the best that
we can hope to do.

Related Work
The results in the present paper were obtained in June 1993 (the results on

Intensional Full Abstraction in Section 3) and September 1993 (the results on the
intrinsic preorder and (extensional) Full Abstraction in Section 4). They were
announced on various electronic mailing lists in June and September 1993. An
extended abstract of the present paper appeared in the Proceedings of the Second
Symposium on Theoretical Aspects of Computer Science, which was held in Sendai
in April 1994 [AJM94].

Independently, and essentially simultaneously, Martin Hyland and Luke Ong gave
a different model construction, also based on games and strategies, which led to
the same model of PCF, and essentially the same results on Intensional Full Ab-
straction. Following our work on the intrinsic preorder, they showed that similar
results held for their model. What is interesting is that such similar results have
been obtained by somewhat different routes. Hyland and Ong’s approach is based
on dialogue games and innocent strategies, in the tradition of Lorentzen’s dialogue
interpretations of logical proofs [Lor60, Lor61], and the work by Kleene and Gandy
on the semantics of higher-type recursion theory [Gan93], while our approach is
closer to process semantics and the Geometry of Interaction [AJ94a, Mal93]. Fur-
ther work is needed to understand more fully the relationship between the two
approaches.
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Independently, Hanno Nickau obtained essentially the same model and results as
Hyland and Ong [Nic94]. A very different description of the fully abstract model
for PCF was obtained by Peter O’Hearn and Jon Riecke, using Kripke logical rela-
tions [OR95]. This construction is very interesting, and probably of quite general
applicability, but does not appear to us to embody a specific semantic analysis of
sequentiality.

Since the results described in this paper were obtained, there has been signifi-
cant further progress in the use of game semantics to give fully abstract models
for programming languages. These results all build on the concepts, methods and
results developed in the present paper, and that of Hyland and Ong. For an expos-
itory account of some of these results, and some references, see [AM99]; there is an
overview in [Abr97]. The main results of the present paper are recast in an abstract,
axiomatic form in [Abr00]. There have also been some significant applications of
game semantics, notably [MH99, GM00].

2. THE MODEL

We shall refer to [AJ94a] for general background and motivation on game seman-
tics.

We begin by fixing some notation. If X is a set, we write X? for the set of
finite sequences (words, strings) on X. We shall use s, t, u, v and primed and
subscripted variants of these to denote sequences, and a, b, c, d, m, n and variants
to denote elements of these sequences. Concatenation of sequences will be indicated
by juxtaposition, and we will not distinguish notationally between an element and
the corresponding unit sequence. Thus e.g. as denotes a sequence with first element
a and tail s. If f : X → Y , then f? : X? → Y ? is the unique monoid homomorphism
extending f . We write |s| for the length of a finite sequence, and si for the i’th
element of s, 1 ≤ i ≤ |s|. Given a set S of sequences, we write Seven for the subset
of even length sequences and Sodd for the subset of odd length sequences. If Y ⊆ X

and s ∈ X?, we write s�Y for the result of deleting all occurrences of symbols
not in Y from s. We write s v t if s is a prefix of t, i.e. for some u, su = t.
We always consider sequences under this prefix ordering and use order-theoretic
notions [DP90] without further comment.

Given a family of sets {Xi}i∈I we write
∑

i∈I Xi for their disjoint union (coprod-
uct); we fix ∑

i∈I

Xi = {(i, x) | i ∈ I, x ∈ Xi}

as a canonical concrete representation. In particular, we write X1+X2 for
∑

i∈{1,2}Xi.
If s ∈ (

∑
i∈I Xi)? and i ∈ I, we define s�i ∈ Xi inductively by:

ε�i = ε

((j, a)s)�i =
{

a(s�i), i = j

s�i, i 6= j.

We use fst and snd as notation for first and second projection functions. Note
that with s as above, fst?(s) is a sequence of indices i1 · · · ik ∈ I? tracking which
components of the disjoint union the successive elements of s are in.
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We will also need some notation for manipulating partial functions. We write
f : X ⇀ Y if f is a partial function from the set X to the set Y ; and fx � y

for “fx is defined and equal to y”. If f : X ⇀ Y is an injective partial function,
we write f∗ : Y ⇀ X for the converse, which is also an injective partial function.
(NB: the reader should beware of confusing f? with f∗. In practice, this should
not be a problem.) If f, g : X ⇀ Y are partial functions with disjoint domains of
definition, then we write f ∨ g : X ⇀ Y for the partial function obtained by taking
the union of (the graphs of) f and g. We write 0X for the everywhere-undefined
partial function on X and sometimes idX , sometimes 1X for the identity function
on X. We shall omit subscripts whenever we think we can get away with it.

2.1. Games
The games we consider are between Player and Opponent. A play or run of the

game consists of an alternating sequence of moves, which may be finite or infinite.
Our plays are always with Opponent to move first.

A game is a structure A = (MA, λA, PA,≈A), where

• MA is the set of moves.
• λA : MA → {P,O} × {Q,A} is the labelling function.

The labelling function indicates if a move is by Player (P) or Opponent (O), and if
a move is a question (Q) or an answer (A). The idea is that questions correspond
to requests for data, while answers correspond to data (e.g. integer or boolean
values). In a higher-order context, where arguments may be functions which may
themselves be applied to arguments, all four combinations of Player/Opponent
with Question/Answer are possible. λA can be decomposed into two functions
λPO

A : MA → {P, O} and λQA
A : MA → {Q, A}.

We write

{P, O} × {Q, A} = {PQ,PA,OQ,OA}
〈λPO

A , λQA
A 〉 = λA,

MP
A = λ−1

A ({P} × {Q,A}),
MO

A = λ−1
A ({O} × {Q, A}),

MQ
A = λ−1

A ({P, O} × {Q}),
MA

A = λ−1
A ({P, O} × {A})

etc., and define

P = O, O = P,

λPO
A (a) = λPO

A (a), λA = 〈λPO
A , λQA

A 〉.

• Let M~
A be the set of all finite sequences s of moves satisfying:

(p1) s = at =⇒ a ∈MO
A

(p2) (∀i : 1 ≤ i < |s|) [λPO
A (si+1) = λPO

A (si)]
(p3) (∀t v s) (|t�MA

A | ≤ |t�M
Q
A |).

Then PA, the set of valid positions of the game, is a non-empty prefix closed subset
of M~

A .
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The conditions (p1)–(p3) can be thought of as global rules applying to all games.
(p1) says that Opponent moves first, and (p2) that Opponent and Player alternate.
(p3) is known as the bracketing condition, and can be nicely visualised as follows.
Write each question in a play as a left parenthesis “(”, and each answer as a right
parenthesis “)”. Then the string must be well-formed in the usual sense, so that
each answer is associated with a unique previous question—the most recently asked,
as yet unanswered question. In particular, note that a question by Player must be
answered by Opponent, and vice versa.
• ≈A is an equivalence relation on PA satisfying

(e1) s ≈A t =⇒ λ?
A(s) = λ?

A(t)
(e2) s ≈A t, s′ v s, t′ v t, |s′| = |t′| =⇒ s′ ≈A t′

(e3) s ≈A t, sa ∈ PA =⇒ ∃b. sa ≈A tb.

Note in particular that (e1) implies that if s ≈A t, then |s| = |t|.

For example, the game for Nat has one possible opening move ∗ (request for data),
with λNat(∗) = OQ; and for each n ∈ ω, a possible response n with λNat(n) = PA.
≈Nat is the identity relation on PNat. The game for Bool is defined similarly.

2.2. Strategies
A strategy for Player in A is a non-empty subset σ ⊆ P even

A such that σ =
σ ∪ dom(σ) is prefix-closed, where

dom(σ) = {sa ∈ P odd
A | ∃b. sab ∈ σ}.

We will be interested in a restricted class of strategies, the history-free (or history
independent, or history insensitive) ones. A strategy σ is history-free if it satisfies

• sab, tac ∈ σ =⇒ b = c

• sab, t ∈ σ, ta ∈ PA =⇒ tab ∈ σ (equivalently, ta ∈ dom(σ)).

Henceforth, “strategy” will always by default mean “history-free strategy”.
Given any strategy σ, we can define fun(σ) : MO

A ⇀ MP
A by

fun(σ)(a) � b iff (∃s) [sab ∈ σ].

Conversely, given f : MO
A ⇀ MP

A we can define traces(f) ⊆ (M~
A )even inductively

by:

traces(f) = {ε} ∪ {sab | s ∈ traces(f), sa ∈ PA, f(a) � b}.

We say that f induces the strategy σf = traces(f), if traces(f) ⊆ PA. Note that
if τ is a strategy, we have

fun(σf ) ⊆ f, σfun(τ) = τ

so there is always a least partial function on moves canonically inducing a (history-
free) strategy.
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Proposition 2.1. If f : MO
A ⇀ MP

A is any partial function, then traces(f) ⊆
M~

A .

Proof. Certainly any s ∈ traces(f) satisfies “O moves first” and the alternation
condition. We show that it satisfies the bracketing condition by induction on |s|.
If s = tab, then since ta ∈ PA and |ta| is odd, the number of questions in ta

must exceed the number of answers; hence s satisfies the bracketing condition.

The equivalence relation on positions extends to a relation on strategies, which
we shall write as @≈.
σ @≈ τ iff:

sab ∈ σ, s′ ∈ τ, sa ≈ s′a′ =⇒ ∃b′. [s′a′b′ ∈ τ ∧ sab ≈ s′a′b′]. (1)

By abuse of notation we write the symmetric closure of this relation as ≈:

σ ≈ τ iff σ @≈ τ ∧ τ @≈ σ.

Interpreting the equivalence on positions as factoring out coding conventions,
σ ≈ τ expresses the fact that σ and τ are the same modulo coding conventions.
σ ≈ σ expresses a “representation independence” property of strategies.

Proposition 2.2 (Properties of @≈).
@≈ is a partial preorder relation (i.e. transitive) on strategies. Hence ≈ is a partial

equivalence relation (i.e. symmetric and transitive).

Proof. Suppose σ @≈ τ and τ @≈ υ, and s ∈ σ, u ∈ υ, sab ∈ σ and sa ≈ ua′′. By
induction on |sa| using the definition of σ@≈τ and (e3), there is ta′b′ ∈ τ with sab ≈
ta′b′. But then ta′ ≈ ua′′, and since τ @≈ υ, ua′′b′′ ∈ υ with ta′b′ ≈ ua′′b′′ and hence

sab ≈ ta′b′ ≈ ua′′b′′ as required.

¿From now on, we are only interested in those history-free strategies σ such that
σ ≈ σ.We write Str(A) for the set of such strategies over A. If σ is such a strategy
for a game A, we shall write σ : A. We write Â for the set of partial equivalence
classes of strategies on A, which we think of as the set of “points” of A. We write
[σ] = {τ | σ ≈ τ} when σ ≈ σ.

2.3. Multiplicatives

Tensor.
The game A⊗B is defined as follows. We call the games A and B the component

games.

• MA⊗B = MA + MB , the disjoint union of the two move sets.
• λA⊗B = [λA, λB ], the source tupling.
• PA⊗B is the set of all s ∈M~

A⊗B
such that:

1. Projection condition: The restriction to the moves in MA (resp. MB) is in
PA (resp. PB).
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2. Stack discipline: Every answer in s must be in the same component game
as the corresponding question.

• s ≈A⊗B t iff s�A ≈A t�A ∧ s�B ≈B t�B ∧ fst?(s) = fst?(t).

We omit the easy proof that≈A⊗B satisfies (e1)–(e3). Note that, if the equivalence
relations ≈A and ≈B are the identities on PA and PB respectively, then ≈A⊗B is
the identity on PA⊗B .

The tensor unit is given by

I = (∅, ∅, {ε}, {(ε, ε)}).

Linear Implication. The game A(B is defined as follows. We call the games
A and B the component games.

• MA(B = MA + MB , the disjoint union of the two move sets.
• λA(B = [λA, λB ].
• PA(B is the set of all s ∈M~

A(B
such that:

1. Projection condition: The restriction to the moves in MA (resp. MB) is in
PA (resp. PB).

2. Stack discipline: Every answer in s must be in the same component game
as the corresponding question.

• s ≈A(B t iff s�A ≈A t�A ∧ s�B ≈B t�B ∧ fst?(s) = fst?(t).

Note that, by (p1), the first move in any position in PA(B must be in B.
We refer to the condition requiring answers to be given in the same components

as the corresponding questions as the stack discipline. It ensures that computations
must evolve in a properly nested fashion. This abstracts out a key structural feature
of functional computation, and plays an important rôle in our results.

Proposition 2.3 (Switching Condition). If a pair of successive moves in a
position in A⊗B are in different components, (i.e. one was in A and the other in
B), then the second move was by Opponent (i.e. it was Opponent who switched
components). If two successive moves in A(B are in different components, the
second move was by Player (i.e. it was Player who switched components).

Proof. Each position in A⊗B can be classified as in one of four “states”: (O, O),
i.e. an even number of moves played in both components, so Opponent to move in
both; (P,O), meaning an odd number of moves played in the first component, so
Player to move there, and an even number of moves played in the second component,
so Opponent to play there; (O, P ); and (P, P ). Initially, we are in state (O, O).
After Opponent moves, we are in (P,O) or (O, P ), and Player can only move in the
same component that Opponent has just moved in. After Player’s move, we are back
in the state (O,O). A simple induction shows that this analysis holds throughout
any valid play, so that we can never in fact reach a state (P, P ), and Player must
always play in the same component as the preceding move by Opponent. A similar



10 ! Please write \authorrunninghead{<Author Name(s)>} in file !

analysis applies to A(B; in this case the initial state is (P,O), after Opponent’s

move we are in (P, P ), and after Player’s response we are in (O,P ) or (P, O).

Note that, by comparison with [AJ94a], the Switching Condition is a consequence
of our definition of the multiplicatives rather than having to be built into it. This is
because of our global condition (p1), which corresponds to restricting our attention
to “Intuitionistic” rather than “Classical” games. Note also that the unreachable
state (P, P ) in A⊗B is precisely the problematic one in the analysis of Blass’ game
semantics in [AJ94a].

2.4. The Category of Games
We build a category G:

Objects : Games

Morphisms : [σ] : A→ B is a partial equivalence class [σ] ∈ Â(B

We shall write σ : A→ B to mean that σ is a strategy in A(B satisfying σ ≈ σ.
There are in general two ways of defining a (history-free) strategy or operation

on strategies: in terms of the representation of strategies as sets of positions, or via
the partial function on moves inducing the strategy. Some notation will be useful
in describing these partial functions. Note that the type of the function f inducing
a strategy in A(B is

f : MP
A + MO

B ⇀ MO
A + MP

B .

Such a function can be written as a matrix

f =
(

f1,1 f1,2

f2,1 f2,2

)
where

f1,1 : MP
A ⇀ MO

A f1,2 : MO
B ⇀ MO

A

f2,1 : MP
A ⇀ MP

B f2,2 : MO
B ⇀ MP

B .

For example, the twist map

MP
A + MO

A
∼= MO

A + MP
A

corresponds to the matrix (
0 idMO

A

idMP
A

0

)
where 0 is the everywhere-undefined partial function. (Compare the interpretation
of axiom links in [Gir89a].) The strategy induced by this function is the copy-cat
strategy as defined in [AJ94a]. As a set of positions, this strategy is defined by:

idA = {s ∈ P even
A(A | s�1 = s�2}.
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In process terms, this is a bi-directional one place buffer [Abr94]. These copy-cat
strategies are the identity morphisms in G.

Composition. The composition of (history-free) strategies can similarly be de-
fined either in terms of the set representation, or via the underlying functions
on moves inducing the strategies. We begin with the set representation. Given
σ : A→ B, τ : B → C, we define

σ‖τ = {s ∈ (MA + MB + MC)? | s�A,B ∈ σ, s�B, C ∈ τ}
σ; τ = {s�A, C | s ∈ σ‖τ}even.

This definition bears a close resemblance to that of “parallel composition plus hid-
ing” in the trace semantics of CSP [Hoa85]; see [AJ94a] for an extended discussion
of the analogies between game semantics and concurrency semantics, and [Abr94]
for other aspects.

We now describe composition in terms of the functions inducing strategies. Say
we have σf : A → B, σg : B → C. We want to find h such that σf ;σg = σh.
We shall compute h by the “execution formula” [Gir89b, Gir89a, Gir88]. Before
giving the formal definition, let us explain the idea, which is rather simple. We
want to hook the strategies up so that Player’s moves in B under σ get turned into
Opponent’s moves in B for τ , and vice versa. Consider the following picture:

-�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA ?

?

?

?

??

??

MP
C

MO
C

MO
B

MP
B

MP
B

MO
B

MO
A

MP
A

gf

Assume that the Opponent starts in C. There are two possible cases:

• The move is mapped by g to a response in C: In this case, this is the response
of the function h.
• The move is mapped by g to a response in B. In this case, this response is

interpreted as a move of the Opponent in B and fed as input to f . In turn, if f

responds in A, this is the response of the function h. Otherwise, if f responds in B,
this is fed back to g. In this way, we get an internal dialogue between the strategies
f and g.

It remains to give a formula for computing h according to these ideas. This is
the execution formula:

h = EX(f, g) =
∨
k∈ω

mk.
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The join in the definition of h can be interpreted concretely as union of graphs.
It is well-defined because it is being applied to a family of partial functions with
pairwise disjoint domains of definition. The functions mk : MP

A +MO
C ⇀ MO

A +MP
C

are defined by

mk = π? ◦ ((f + g) ◦ µ)k ◦ (f + g) ◦ π.

The idea is that mk is the function which, when defined, feeds an input from MP
A

or MO
C exactly k times around the channels of the internal feedback loop and then

exits from MO
A or MP

C . The retraction

π : MA + MC C MA + MB + MB + MC : π?

is defined by

π? = [inl, 0, 0, inr] π = [in1, in4]

and the “message exchange” function µ : MO
A + MP

B + MO
B + MP

C ⇀ MP
A + MO

B +
MP

B + MO
C is defined by

µ = 0 + [inr, inl] + 0.

Here, 0 is the everywhere undefined partial function.
The fact that this definition of composition coincides with that given previously

in terms of sets of positions is proved in [AJ94a, Proposition 3].

Proposition 2.4. Composition is monotone with respect to @≈:

σ, σ′ : A→ B, τ, τ ′ : B → C, σ @≈ σ′, τ @≈ τ ′ =⇒ σ; τ @≈ σ′; τ ′.

Proof. We follow the analysis of composition given in the proof of Proposition 1
of [AJ94a]. Suppose σ @≈ σ′, τ @≈ τ ′, ca ∈ σ; τ and c ≈ c′. Then ca = u�A, C

for uniquely determined u = cb1 · · · bka such that u�A,B ∈ σ, u�B,C ∈ τ . We
must have c ∈ MC . Since τ @≈ τ ′, c′b′1 ∈ τ ′ for unique b′1, and cb1 ≈ c′b′1. Now
b1 ∈ dom(σ) and σ @≈ σ′ implies that b′1b

′
2 ∈ σ′ for unique b′2, and b1b2 ≈ b′1b

′
2. Con-

tinuing in this way, we obtain a uniquely determined sequence u′ = c′b′1 · · · b′ka′

such that u′�A,B ∈ σ′, u′�B,C ∈ τ ′, and ca ≈ c′a′, as required. This ar-

gument is extended to general strings s ∈ σ; τ by an induction on |s|.

We say that a string s ∈ (MA1 + . . . + MAn
)? is well-formed if it satisfies the

bracketing condition and the stack discipline; and balanced if it is well-formed,
and the number of questions in s equals the number of answers. Note that these
properties depend only on the string s̄ obtained from s by replacing each question
in A1, . . . , An by (1, . . . , (n respectively, and each answer in A1, . . . , An by )1, · · · , )n

respectively.

Lemma 2.1. The balanced and well-formed strings in (MA1 + · · · + MAn)? are
generated by the following context-free grammar:

bal ::= ε | bal bal | (i bal )i (i = 1, . . . , n)
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wf ::= ε | bal wf | (i wf (i = 1, . . . , n).

(More precisely, s is well-formed (balanced) iff s̄ is derivable from wf (bal) in the
above grammar.)

Proof. It is easy to see that the terminal strings derivable from bal are ex-
actly the balanced ones, and that strings derivable from wf are well-formed. Now
suppose that s is well-formed. We show by induction on |s| that s is derivable
from wf. If s is non-empty, it must begin with a question, s = (it. If this ques-
tion is not answered in s, then t is well-formed, and by induction hypothesis t

is derivable from wf, hence s is derivable via the production wf → (iwf. If
this question is answered, so s = (iu)iv, then (iu)i is balanced, and hence deriv-
able from bal, and v is well-formed, and so by induction hypothesis derivable

from wf. Then s is derivable from wf via the production wf→ bal wf.

Lemma 2.2 (Projection Lemma). If s ∈ (MA1 + · · · + MAn)? is well-formed
(balanced), then so is s�Ai1 , . . . , Aik

for any subsequence Ai1 , . . . , Aik
of A1, . . . , An.

Proof. We use the characterization of well-formed and balanced strings from the
previous lemma, and argue by induction on the size of the derivation of s from wf or
bal. Suppose s is well-formed. If s is empty, the result is immediate. If s is derivable
via wf→ bal wf, so s = tu where t is balanced and u is well-formed, then we can
apply the induction hypothesis to t and u. Similarly when s = (it where t is well-
formed, we can apply the induction hypothesis to t. The argument when s is bal-

anced is similar.

Lemma 2.3 (Parity Lemma). If s ∈ σ‖τ is such that s = tmun, where m, n

are moves in the “visible” components A and C, then:

•if m, n are in the same component, then |u�B| is even.
•if m, n are in different components, then |u�B| is odd.

Proof. Firstly, we consider the case where all moves in u are in B. Suppose for
example that m and n are both in A. Then the first move in u is by σ, while the
last move is by τ , since it must have been σ which returned to A. Thus |u| is even.
Similarly if m and n are both in C. Now suppose that m is in A while n is in C.
Then the first and last moves in u were both by σ, so |u| is odd; and similarly if m

is in C and n is in A.
Now we consider the general case, and argue by induction on |u|. Suppose m

and n are both in A. Let u = u1m1u2, where all moves in u1 are in B. Suppose
firstly that m1 is in A; then |u1| is even, and by induction hypothesis |u2�B| is
even, so |u�B| is even. If m1 is in C, then |u1| is odd, and by induction hypoth-

esis |u2�B| is odd, so |u�B| is even. The other cases are handled similarly.

Proposition 2.5. If σ : A→ B and τ : B → C, then σ; τ satisfies the bracketing
condition and the stack discipline.
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Proof. By the Projection Lemma, it suffices to verify that every s ∈ σ‖τ is
well-formed. We argue by induction on |s|. The basis is trivial. Suppose s = tm.
If m is a question, it cannot destroy well-formedness. If m is an answer with no
matching question, then by induction hypothesis t is balanced. Suppose m is in A

or B; then by the Projection Lemma, t�A, B is balanced, so m has no matching
question in s�A, B = (t�A,B)m, contradicting s�A, B ∈ σ. A similar argument
applies when m is in B or C.

So we need only consider s = umvn where m, n are a matching question-answer
pair. It remains to show that m and n must be in the same component. Suppose
firstly that m and n both occur in A or B. Note that v is balanced, and then by
the Projection Lemma, so is v�A,B. So m and n will be paired in s�A, B ∈ σ, and
hence they must be in the same component. Similarly when m and n are both in
B or C.

The final case to be considered is when m and n both occur in A or C. Since v is
balanced, by the Projection Lemma so is v�B. It follows that |v�B| is even, so by the

Parity Lemma, m and n must be in the same component.

Combining Propositions 2.4.2 and 2.4.6 with Proposition 2 from [AJ94a], we
obtain:

Proposition 2.6. G is a category.

2.5. G as an autonomous category
We have already defined the object part of the tensor product A⊗B, linear impli-

cation A(B, and the tensor unit I. The action of tensor on morphisms is defined
as follows. If σf : A → B, σg : A′ → B′, then σf⊗σg : A⊗A′ → B⊗B′ is induced
by the partial function

(MP
A + MP

A′) + (MO
B + MO

B′)
∼= (MP

A + MO
B ) + (MP

A′ + MO
B′)

f+g
⇀ (MO

A + MP
B ) + (MO

A′ + MP
B′)

∼= (MO
A + MO

A′) + (MP
B + MP

B′).

The natural isomorphisms for associativity, commutativity and unit of the tensor
product:

assocA,B,C : (A⊗B)⊗C ∼= A⊗(B⊗C)
symmA,B : A⊗B ∼= B⊗A

unitA : A⊗I ∼= A

are induced by the evident bijections on the sets of moves:

((MP
A +MP

B )+MP
C )+(MO

A +(MO
B +MO

C )) ∼= ((MO
A +MO

B )+MO
C )+(MP

A +(MP
B +MP

C ))

(MP
A + MP

B ) + (MO
B + MO

A ) ∼= (MO
A + MO

B ) + (MP
B + MP

A )

(MP
A + ∅) + MO

A
∼= (MO

A + ∅) + MP
A .
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The application morphism AppA,B : (A(B)⊗A→ B is induced by

((MO
A + MP

B ) + MP
A ) + MO

B
∼= ((MP

A + MO
B ) + MO

A ) + MP
B .

????
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B

MP
A

MP
A

MP
B

MP
B

MO
A

MO
A

This “message switching” function can be understood in algorithmic terms as fol-
lows. A demand for output from the application at MO

B is switched to the function
part of the input, A(B; a demand by the function input for information about
its input at MO

A is forwarded to the input port A; a reply with this information
about the input at MP

A is sent back to the function; an answer from the function
to the original demand for output at MP

B is sent back to the output port B. Thus,
this strategy does indeed correspond to a protocol for linear function application—
linear in that the “state” of the input changes as we interact with it, and there are
no other copies available allowing us to backtrack.

As for currying, given σf : A⊗B → C, Λ(σf ) : A→ (B(C) is induced by

MP
A +(MP

B +MO
C ) ∼= (MP

A +MP
B )+MO

C
f
⇀ (MO

A +MO
B )+MP

C
∼= MO

A +(MO
B +MP

C ).

For discussion of these definitions, and most of the verification that they work as
claimed, we refer to Section 3.5 of [AJ94a].

Proposition 2.7.

1.If σ ≈ σ′ and τ ≈ τ ′ then σ⊗τ ≈ σ′⊗τ ′.
2.σ⊗τ satisfies the stack discipline.

Proposition 2.8. G is an autonomous category.
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2.6. Products
The game A&B is defined as follows.

M
A&B

= MA + MB

λ
A&B

= [λA, λB]

P
A&B

= PA + PB

≈
A&B

= ≈A + ≈B .

The projections

A
fst←− A&B

snd−→ B

are induced by the partial injective maps

(MP
A + MP

B ) + MO
A ⇀ (MO

A + MO
B ) + MP

A

(MP
A + MP

B ) + MO
B ⇀ (MO

A + MO
B ) + MP

B

which are undefined on MP
B and MP

A respectively. Pairing cannot be defined in
general on history-free strategies in G; however, it can be defined on the co-Kleisli
category for the comonad !, as we will see.

2.7. Exponentials
Our treatment of the exponentials is based on [AJ93]. The game !A is defined

as the “infinite symmetric tensor power” of A. The symmetry is built in via the
equivalence relation on positions.

• M!A = ω ×MA =
∑

i∈ω MA, the disjoint union of countably many copies of
the moves of A. So, moves of !A have the form (i,m), where i is a natural number,
called the index, and m is a move of A.
• Labelling is by source tupling:

λ!A(i, a) = λA(a).

• We write s�i to indicate the restriction to moves with index i. P!A is the set
of all s ∈M~

!A such that:

1. Projection condition: (∀i) [s�i ∈ PA].

2. Stack discipline: Every answer in s is in the same index as the corresponding
question.

• Let S(ω) be the set of permutations on ω.

s ≈!A t ⇐⇒ (∃π ∈ S(ω))[(∀i ∈ ω. s�i ≈A t�π(i)) ∧ (π ◦ fst)∗(s) = fst∗(t)].

Dereliction. For each game A and i ∈ ω, we define a strategy

deri
A : !A→ A
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induced by the partial function hi:

hi(j, a) =
{

a, i = j

undefined, i 6= j

hi(a) = (i, a).

In matrix form

hi =
(

0 ini

in∗i 0

)
.

Proposition 2.9.

1.For all i, j:

deri
A ≈ derj

A.

2.deri
A satisfies the stack discipline.

By virtue of this Proposition, we henceforth write derA, meaning deri
A for arbi-

trary choice of i.

Promotion. A pairing function is an injective map

p : ω × ω � ω.

Given σf : !A→ B and a pairing function p, we define σ†p : !A→ !B as the strategy
induced by the partial function f†p defined by:

f†p(p(i, j), a) =
{

(p(i, j′), a′), f(j, a) = (j′, a′)
(i, b), f(j, a) = b

f†p(i, b) =
{

(p(i, j), a), f(b) = (j, a)
(i, b′), f(b) = b′.

In matrix form

f†p =
(

t ◦ (1× f1,1) ◦ t∗ t ◦ (1× f1,2)
(1× f2,1) ◦ t∗ 1× f2,2

)
where

t(i, (j, a)) = (p(i, j), a).

Proposition 2.10.

1.If σ, τ : !A→ B, σ ≈ τ , and p, q are pairing functions, then σ†p ≈ τ †q .

2.σ†p satisfies the stack discipline.

By virtue of this Proposition, we shall henceforth write σ†, dropping explicit
reference to the pairing function.
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Proposition 2.11. For all σ : !A→ B, τ : !B → C:

(m1) σ†; τ † ≈ (σ†; τ)†

(m2) der†A; σ ≈ σ

(m3) σ†; derB ≈ σ.

As an immediate consequence of this Proposition and standard results [Man76]:

Proposition 2.12. (!, der, (·)†) is a comonad in “Kleisli form”. If we define,
for σ : A → B, !σ = (derA; σ)† : !A → !B, and δA : !A → !!A by δA = id†!A, then
(!, der, δ) is a comonad in the standard sense.

Contraction and Weakening. For each game A, we define weakA : !A → I by
weakA = {ε}.

A tagging function is an injective map

c : ω + ω � ω.

Given such a map, the contraction strategy conc
A : !A → !A⊗!A is induced by the

function(
0 (r × 1) ◦ inl∗ ∨ (s× 1) ◦ inr∗

inl ◦ (r∗ × 1) ∨ inr ◦ (s∗ × 1) 0

)
where r = ω

inl−→ ω + ω
c−→ ω, s = ω

inr−→ ω + ω
c−→ ω.

Again, it is easily verified that conc
A ≈ conc′

A for any tagging functions c, c′.

Proposition 2.13. conA, weakA are well-defined strategies which give a cocom-
mutative comonoid structure on !A, i.e. the following diagrams commute:

!A
[conA] - !A⊗!A

!A⊗!A

[conA]

?

[conA⊗idA]
- (!A⊗!A)⊗!A

[assocA]
- !A⊗(!A⊗!A)

[idA⊗conA]

?

!A
[conA] - !A⊗!A

!A

[idA]

?
�

[unitA]
!A⊗I

[idA⊗weakA]

?

!A
[conA]- !A⊗!A

@
@
@
@
@

[conA]
R

!A⊗!A

[symmA,A]

?

2.8. The co-Kleisli category
By Proposition 2.7.4, we can form the co-Kleisli category K!(G), with:
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Objects The objects of G.
Morphisms K!(G)(A,B) = G(!A, B).
Composition If σ : !A → B and τ : !B → C then composition in K!(G) is given

by:

σ # τ = σ†; τ.

Identities The identity on A in K!(G) is derA : !A→ A.

Exponential laws.

Proposition 2.14.

1.There is a natural isomorphism eA,B : !(A&B) ∼= !A⊗!B.

2.!I = I.

Proof.

1. We define eA,B :!(A&B)(!A⊗!B as (the strategy induced by) the map which
sends inl(a, i) ∈ !A⊗!B to (inl(a), i) ∈ !(A&B), (inl(a), i) ∈ !(A&B) to inl(a, i) ∈
!A⊗!B and similarly sends inr(b, i) ∈ !A⊗!B to (inr(b), i) ∈ !(A&B), (inr(b), i) ∈
!(A&B) to inr(b, i) ∈ !A⊗!B.

We define e−1
A,B : (!A⊗!B)(!(A&B) as (the strategy induced by) the map which

sends inl(a, 2i) ∈ !A⊗!B to (inl(a), i) ∈ !(A&B), (inl(a), i) ∈ !(A&B) to inl(a, 2i) ∈
!A⊗!B and (inr(b), i) ∈ !(A&B) to inr(b, 2i + 1) ∈ !A⊗!B, inr(b, 2i + 1) ∈ !A⊗!B
to (inr(b), i) ∈ !(A&B).

It is straightforward to check that eA,B , e−1
A,B are strategies. Let’s prove that

eA,B , e−1
A,B define the required isomorphism.

• For eA,B ; e−1
A,B : (!A2⊗!B2)((!A1⊗!B1) (we have used different subscripts

for different copies of the same game) we have that inl(a, i) ∈ (!A1⊗!B1) is sent
to inl(a, 2i) ∈ (!A2⊗B2) and inr(b, j) ∈ (!A1⊗!B1) is sent to inr(b, 2j + 1) ∈
(!A2⊗B2) . This strategy is equivalent to the identity. The automorphism which
witnesses the equivalence is the map which sends i in !A1 to 2i and j in !B1 to
2j + 1 (and is the identity elsewhere).

• For e−1
A,B ; eA,B the same map as above witnesses the equivalence of e−1

A,B ; eA,B

with the identity.

2. Immediate by definition.

Products in K!(G).

Proposition 2.15. I is terminal in K!(G).

Proof. For any game A there is only one strategy in !A(I, namely {ε}.
This is because I has an empty set of moves and for any opening move a in !A

we have λ!A(I(a) = P so that Opponent has no opening move in !A(I.
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Proposition 2.16. A
π1←− A&B

π2−→ B is a product diagram in K!(G), where

π1 = !(A&B) der−→ A&B
fst−→ A

π2 = !(A&B) der−→ A&B
snd−→ B.

If σ :!C(A, τ :!C(B then their pairing 〈σ, τ〉 :!C(A&B is defined by

〈σ, τ〉 =!C
con- !C⊗!C

σ† ⊗ τ †- !A⊗!B
e- !(A&B)

der- A&B.

In fact, we have:

Proposition 2.17. K!(G) has countable products.

Cartesian closure. We define A⇒ B ≡ !A(B.

Proposition 2.18. K!(G) is cartesian closed.

Proof. We already know that K!(G) has finite products. Also, we have the
natural isomorphisms

K!(G)(A&B, C) = G(!(A&B), C)
∼= G(!A⊗!B,C)
∼= G(!A, !B(C)
= K!(G)(A, B ⇒ C).

Thus K!(G) is cartesian closed, with “function spaces” given by ⇒.

We shall write I = K!(G), since we think of this category as our intensional
model.

2.9. Order-enrichment
There is a natural ordering on strategies on a game A given by set inclusion.

It is easily seen that (history-free) strategies are closed under directed unions, and
that {ε} is the least element in this ordering. However, morphisms in G are actually
partial equivalence classes of strategies, and we must define an order on these partial
equivalence classes.

We define:

[σ] vA [τ ] iff σ @≈ τ.

Proposition 2.19. vA is a partial order over Â. The least element in this
partial order is [{ε}].

We have not been able to determine whether (Â,vA) is a cpo in general. However,
a weaker property than cpo-enrichment suffices to model PCF, namely rationality,
and this property can be verified for K!(G).
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A pointed poset is a partially ordered set with a least element. A cartesian closed
category C is pointed-poset enriched (ppo-enriched) if:

• Every hom-set C(A, B) has a ppo structure (C(A, B),vA,B ,⊥A,B).
• Composition, pairing and currying are monotone.
• Composition is left-strict: for all f : A→ B,

⊥B,C ◦ f = ⊥A,C .

C is cpo-enriched if it is ppo-enriched, and moreover each poset

(C(A, B),vA,B)

is directed-complete, and composition preserves directed suprema. C is rational if
it is ppo-enriched, and moreover for all f : A×B → B:

• The chain (f (k) | k ∈ ω) in C(A,B) defined inductively by

f (0) = ⊥A,B , f (k+1) = f ◦ 〈idA, f (k)〉

has a least upper bound, which we denote by fO.
• For all g : C → A, h : B → D,

g ◦ fO ◦ h =
⊔
k∈ω

g ◦ f (k) ◦ h.

Altough the standard definition of categorical model for PCF is based on cpo-
enriched categories, in fact rational categories suffice to interpret PCF, as we will
see in Section 2.10.

Strong completeness and continuity. Let A be a game, and (Λ, 6) a directed
set. A family {[σλ] | λ ∈ Λ} is said to be strongly directed if there exist strategies
σ′λ for each λ ∈ Λ such that σ′λ ∈ [σλ] and λ 6 µ ⇒ σ′λ ⊆ σ′µ.

Proposition 2.20. A strongly directed family is v-directed. Every strongly di-
rected family has a v-least upper bound.

Now consider the constructions in G we have introduced in previous sections.
They have all been given in terms of concrete operations on strategies, which have
then been shown to be compatible with the partial preorder relation @≈, and hence to
give rise to well-defined operations on morphisms of G. Say that an n-ary concrete
operation Φ on strategies is strongly continuous if it is monotone with respect to @≈,
and monotone and continuous with respect to subset inclusion and directed unions:

• σ1
@≈ τ1, . . . , σn

@≈ τn =⇒ Φ(σ1, . . . , σn) @≈ Φ(τ1, . . . , τn)
• Φ(

⋃
S1, . . . ,

⋃
Sn) =

⋃
{Φ(σi, . . . , σn) | σi ∈ Si, i ∈ 1, . . . , n}

for directed S1, . . . , Sn. (Note that for n = 0, these properties reduce to Φ ≈ Φ.)
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Proposition 2.21. Composition, tensor product, currying and promotion are
strongly continuous.

Proposition 2.22. K!(G) is a rational cartesian closed category.

2.10. The model of PCF
PCF is an applied simply-typed λ-calculus; that is, the terms in PCF are terms of

the simply-typed λ-calculus built from a certain stock of constants. As such, they
can be interpreted in any cartesian closed category once we have fixed the interpre-
tation of the ground types and the constants. The constants of PCF fall into two
groups: the ground and first-order constants concerned with arithmetic manipula-
tion and conditional branching; and the recursion combinators YT : (T ⇒ T )⇒ T

for each type T . These recursion combinators can be canonically interpreted in
any rational cartesian closed category C. Indeed, given any object A in C, we can
define ΘA : 1× (A⇒ A)⇒ A −→ (A⇒ A)⇒ A by

ΘA = JF : (A⇒ A)⇒ A ` λfA⇒A.f(Ff) : (A⇒ A)⇒ AK.

Now define YA = ΘO
A : 1 −→ (A⇒ A)⇒ A. Note that

YA =
⊔
k∈ω

Θ(k)
A =

⊔
k∈ω

JY(k)
A K,

where

Y(0)
A = λfA⇒A.⊥A Y(k+1)

A = λfA⇒A.f(Y(k)
A f).

These terms Y(k)
A are the standard “syntactic approximants” to YA.

Thus, given a rational cartesian closed category C, a model M(C) of PCF can
be defined by stipulating the following additional information:

• For each ground type of PCF, a corresponding object of C. This suffices to
determine the interpretation of each PCF type T as an object in C, using the
cartesian closed structure of C. (For simplicity, we shall work with the version of
PCF with a single ground type N .)
• For each ground constant and first-order function of PCF, say of type T , a

morphism x : 1→ A in C, where 1 is the terminal object in C, and A is the object
in C interpreting the type T . (x is a “point” or “global element” of the type A.)

We say that M(C) is a standard model if C(1, N) ∼= N⊥, the flat cpo of the
natural numbers, and moreover the interpretation of the ground and first-order
arithmetic constants agrees with the standard one. We cite an important result
due to Berry [Ber79, BCL85].

Theorem 2.1 (Computational Adequacy). IfM(C) is a standard model, then
it is computationally adequate; i.e. for all programs M and ground constants c,

M −→∗ c ⇐⇒ JMK = JcK
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and hence the model is sound: for all terms M, N : T ,

JMK v JNK =⇒ M vobs N.

(Berry stated his result for models based on cpo-enriched categories, but only
used rational closure.)

Thus to obtain a model M(K!(G)) it remains only to specify the ground types
and first-order constants. The interpretation of N as Nat has already been given
at the end of Section 2.1. It is readily seen that N̂at ∼= N⊥.

Ground constants. For each natural number n, there is a strategy n : I → Nat,
given by

n = {ε, ∗n}.

Also, ΩNat = [{ε}].

Arithmetic functions. For each number-theoretic partial function f : N ⇀ N
there is a strategy

σf = {ε, ∗2∗1} ∪ {∗2 ∗1 n1m2 | f(n) � m}.

Conditionals. The strategy κ interpreting if0 : N ⇒ N ⇒ N ⇒ N is defined
as follows: in response to the initial question, κ interrogates its first argument; if
the answer is 0, then it interrogates the second argument, and copies the reply to
the output; if the answer is any number greater than 0, it interrogates the third
argument, and copies the reply to the output.

Proposition 2.23. M(K!(G)) is a standard model of PCF.

3. INTENSIONAL FULL ABSTRACTION
3.1. PCFc

In order to obtain our intensional full abstraction result, it turns out that we
need to consider an extension of PCF. This extension is quite “tame”, and does not
change the character of the language. It consists of extending PCF with a family
of first order constants

casek : N ⇒ N ⇒ · · · ⇒ N︸ ︷︷ ︸
k

⇒ N

for each k ∈ ω. The functions that these constants are intended to denote are
defined by:

casek ⊥ n0 n1 . . . nk−1 = ⊥
casek i n0 n1 . . . nk−1 = ni, 0 ≤ i < k

casek i n0 n1 . . . nk−1 = ⊥, i ≥ k.

The interpretation of casek as a strategy is immediate: this strategy responds
to the initial question by interrogating its first input; if the response is i, with
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0 ≤ i < k, it interrogates the i + 1’th input and copies the answer to the output;
otherwise, it has no response.

To see how harmless this extension, which we call PCFc, is, note that each term
in PCFc is observationally equivalent to one in PCF. Specifically,

casek ≡obs λxN .λyN
0 . . . . λyN

k−1.

if0 x y0

(if0 (pred x) y1

...
(if0 (pred pred pred︸ ︷︷ ︸

k

x) yk−1 Ω) . . .).

The point is that our intensional model is sufficiently fine-grained to distinguish
between these observationally equivalent terms. However, note that our results in
Section 4 apply directly to PCF.

3.2. Evaluation Trees
We shall now describe a suitable analogue of Böhm trees [Bar84] for PCFc. These

give an (infinitary) notion of normal forms for PCFc terms, and provide a bridge
between syntax and semantics.

We use Γ, ∆ to range over type environments x1 : T1, . . . , xk : Tk. We define
FET(Γ, T ), the finite evaluation trees of type T in context Γ, inductively as follows:

• M ∈ FET(Γ, x : T, U)
λxT .M ∈ FET(Γ, T ⇒ U)

• Ω, n ∈ FET(Γ, N)

•

Γ(x) = T1 ⇒ . . . Tk ⇒ N,

Pi ∈ FET(Γ, Ti), 1 ≤ i ≤ k,

Qn ∈ FET(Γ, N), n ∈ ω,

∃n ∈ ω. ∀m ≥ n. Qn = Ω
case(xP1 . . . Pk, (Qn | n ∈ ω)) ∈ FET(Γ, N)

We regard these evaluation trees as defined “up to α–equivalence” in the usual
sense. Note that if we identify each

case(xP1 . . . Pk, (Qn | n ∈ ω))

with

casel(xP1 . . . Pk, Q0, . . . , Ql−1)

for the least l such that Qn = Ω for all n ≥ l, then every finite evaluation tree is a
term in PCFc.

We order FET(Γ, T ) by the “Ω–match ordering”: MvN if N can be obtained
from M by replacing occurrences of Ω by arbitrary finite evaluation trees.

Proposition 3.1. (FET(Γ, T ),v) is a pointed poset with non-empty meets. Ev-
ery principal ideal is a finite distributive lattice.
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Now we define ET(Γ, T ), the space of evaluation trees, to be the ideal completion
of FET(Γ, T ). As an immediate consequence of proposition 3.1, we have

Proposition 3.2. ET(Γ, T ) is a dI-domain. The compact elements are terms
of PCFc.

Strictly speaking, the compact elements of ET(Γ, T ) are principal ideals ↓(M),
where M is a finite evaluation tree, which can be identified with a term in PCFc

as explained above.

3.3. The Bang Lemma
We now prove a key technical result. This will require an additional hypothesis

on games. Say that a game A is well-opened if the opening moves of A can only
appear in opening positions. That is, for all a ∈MA if a ∈ PA then

sa ∈ PA ⇒ s = ε.

It is easy to see that N and I are well-opened, that if A and B are well-opened so
is A&B and that if B is well-opened so is A ⇒ B. Here and henceforth we blur
the distinction between the type N and the game it denotes. Thus the category of
well-opened games is cartesian closed, and generates the same PCF model M(I).

Now let A be well-opened and consider s ∈ P even
!A(!B. Using the switching condi-

tion, we see that s can be written uniquely as

s = β1 · · ·βk

where each “block” βj has the form (ij , bj)tj , i.e. starts with a move in !B; every
move in !B occurring in βj has the form (ij , b′) for some b′, i.e. has the same index
as the opening move in βj ; if βi, βj are two adjacent blocks then i 6= j; and |βj | is
even (so each block starts with an O-move). We refer to ij as the block index for
βj . For each such block index i we define si to be the subsequence of s obtained
by deleting all blocks with index i′ 6= i.

Some further notation. For s ∈M∗
!A(!B, we define

FST(s) = {i | ∃a.(i, a) occurs in s}

i.e. the set of all indices of moves in !A occurring in s. Also, we write s�A, j for
the projection of s to moves of the form (j, a), i.e. moves in !A with index j; and
similarly s�B, j.

Lemma 3.1. For all σ :!A(!B with A well-opened, s ∈ σ, and block indices i, j

occurring in s:

(i)si ∈ σ,
(ii)i 6= j implies FST(si) ∩ FST(sj) = ∅.

Proof. By induction on |s|. The basis is trivial. For the inductive step, write
s = β1 . . . βkβk+1, t = β1 . . . βk, umm′ = βk+1. Let the index of βk+1 be i. We
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show firstly that (tu)im ∈ P!A(!B . By the induction hypothesis, for all j ∈
FST((tu)i), (tu)i�A, j = tu�A, j, while obviously (tu)i�B, i = tu�B, i. Also, m

is either a move in !B with index i, or a move in !A. In the latter case, by the
switching condition the index of m is in FST((tu)i). Hence the projection conditions
are satisfied by (tu)im. Moreover (tu)im is well-formed by the Projection Lemma
2.4.4. Thus (tu)im ∈ P!A(!B as required.

By induction hypothesis, (tu)i ∈ σ, and since σ = σf is a well-defined history-
free strategy, with f(m) = m′ since tumm′ ∈ σ we conclude that (tumm′)i =
(tu)imm′ ∈ σ. Moreover, for j 6= i, (tumm′)j = (tu)j ∈ σ by induction hypothesis.
This establishes (i).

Now note that, if tu satisfies (ii), so does tum by the switching condition. Suppose
for a contradiction that tumm′ does not satisfy (ii). This means that m′ = (j, a),
where j ∈ FST((tu)i′) for some i′ 6= i and hence that s�A, j = s′a where s′ 6= ε, so
that a is a non-opening move in A. But we have just shown that (tu)imm′ ∈ σ ⊆
P!A(!B and hence that (tu)imm′�A, j ∈ PA. By induction hypothesis

FST((tu)i) ∩ FST((tu)i′) = ∅

and hence (tu)imm′�A, j = a. Thus a is both an opening and a non-opening move of

A, contradicting our hypothesis that A is well opened.

With the same notation as in lemma 3.1:

Corollary 3.1.

(i)∀j ∈ FST(si) si�A, j = s�A, j.
(ii)∀j 6∈ FST(si) si�A, j = ε.
(iii)si�B, i = s�B, i.
(iv)j 6= i implies si�B, j = ε.

Lemma 3.2. Let σ, τ :!A(!B with A well-opened. If σ; derB ≈ τ ; derB then
σ ≈ τ .

Proof. We prove the contrapositive. Suppose σ 6≈ τ . Then w.l.o.g. we can
assume that there exist positions sab, s′a′ such that sab ∈ σ, s′ ∈ τ , sa ≈ s′a′, and
either s′a′ 6∈ dom(τ) or s′a′b′ ∈ τ and sab 6≈ s′a′b′. Let the block index of a in sa

be i, and of a′ in s′a′ be i′. Note that the block index of b in sab must also be i.
By Lemma 3.1, (sab)i ∈ σ and s′i′ ∈ τ . We claim that (sa)i ≈ (s′a′)i′ . Indeed,

if s = β1 . . . βk, s′ = β′1 . . . β′k′ , then by definition of ≈!A(!B we must have k = k′

and the permutation π = [πA, πB] witnessing sa ≈ s′a′ must map the block index
of each βj to that of β′j , so that in particular sa�B, i ≈ s′a′�B, i′. Moreover, πA

must map FST((sa)i) bijectively onto FST((s′a′)i′). Using Corollary 3.1 for each
j ∈ FST((sa)i), (sa)i�A, j = sa�A, j ≈ s′a′�A, πA(j) = (s′a′)i′�A, πA(j).

Now let tcd be defined by replacing each (i,m) ∈!B in siab by m; and t′c be
defined by replacing each (i′, m′) ∈!B in s′ia

′ by m′. Then tcd ∈ σ; derBi, t′ ∈
τ ; derBi′ and tc ≈ t′c′. We wish to conclude that tcd, t′c′ witness the non equivalence
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σ; derB 6≈ τ ; derB. Suppose for a contradiction that for some d′, t′c′d′ ∈ τ ; derBi′

and tcd ≈ t′c′d′. This would imply that for some b′, s′i′a
′b′ ∈ τ and siab ≈

s′i′a
′b′. Since s′a′ ∈ P!A(!B and τ is a well-defined history-free strategy, this

implies that s′a′b′ ∈ τ . Using Lemma 3.1 and Corollary 3.1 as above, sab ≈
s′a′b′. This yields the required contradiction with our assumptions on sab, s′a′.

Proposition 3.3 (The Bang Lemma).
For all σ : !A(!B with A well opened,

σ ≈ (σ; derB)†.

Proof. By the right identity law (Prop. 2.11 (m3)), σ; derB ≈ (σ; derB)†; derB.

By Lemma 3.2, this implies that σ ≈ (σ; derB)†.

3.4. The Decomposition Lemma
In this section we prove the key lemma for our definability result. We begin with

some notational conventions. We will work mostly in the cartesian closed category
M(K!(G)). We write arrows in this category as σ : A⇒ B and composition e.g. of
σ : A ⇒ B and τ : B ⇒ C as τ ◦ σ. We will continue to write composition in the
Linear Category G in diagram order denoted by ; . We write

Ap : (A⇒ B)&A⇒ B

for the application in the cartesian closed category, and “linear” application in G
as

LAPP : (A(B)⊗A→ B

All games considered in this section are assumed to be well-opened. If s ∈M∗
D⇒B ,

we write

FST(s) = {i | ∃d .(i, d) occurs in s}

i.e. the set of all indices of moves in !D occurring in s.
Now we define a strategy

χ : N&Nω ⇒ N

corresponding to the case construct. It will actually be most convenient to firstly
define the affine version

χa : N1⊗Nω
2 (N0

where we have tagged the occurrences of N for ease of identification;

χa = Pref{∗0 ∗1 n1 ∗2,n m2,nm0 | n, m ∈ ω}

i.e. χa responds to the initial question by interrogating its first input; if it gets the
response n it interrogates the n’th component of its second input, and copies the
response as its answer to the initial question.
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Now we define

χ = !(N&Nω)
eN,Nω

−→ !N⊗!Nω derN⊗derNω−→ N⊗Nω χa−→ N

We will now fix some notation for use in the next few lemmas. Let

σ : C&(A⇒ N2)⇒ N1

be a strategy where we have tagged the two occurrences of N for ease of identifica-
tion. We assume that σ’s response to the initial question ∗1 in N1 is to interrogate
its second input, i.e. to ask the initial question ∗2 in N2. Thus any non-empty
position in σ must have the form ∗1 ∗2 s. Moreover by the stack discipline any
complete position in σ, i.e. one containing an answer to the initial question ∗1,
must have the form

∗1 ∗2 s n2 t n1

where n2 is the answer corresponding to the question ∗2 (this is the sole—albeit
crucial—point at which the stack condition is used in the definability proof). Thus
a general description of non-empty positions in σ is that they have the form

∗1 ∗2 s n2 t

where n2 is the answer corresponding to ∗2, or

∗1 ∗2 s

where ∗2 is not answered in s.

Lemma 3.3. For all ∗1 ∗2 s n2 t ∈ σ

(i)∗1 ∗2 n2t ∈ σ

(ii)FST(s) ∩ FST(t) = ∅.

Proof. By induction on |t|, which must be odd. (The proof follows very similar
lines to that of Lemma 3.1 in the previous section). The basis is when t = m,
and f(n2) = m, where σ = σf . Then (i) follows because σ is a well-defined
history-free strategy, and (ii) holds because otherwise m = (j, d) where d is both a
starting move, using ∗1 ∗2 n2m ∈ σ, and a non-starting move, using ∗1 ∗2 sn2t ∈ σ,
contradicting well-openedness. If t = umm′, then we firstly show that

∗1 ∗2 n2um ∈ P
C&(A⇒N)⇒N

By the induction hypothesis and the switching conditions, for all j ∈ FST(um)

∗1 ∗2 n2um�C&(A⇒ N), j = ∗1 ∗2 sn2um�C&(A⇒ N), j

so ∗1 ∗2 n2um satisfies the projection conditions because ∗1 ∗2 sn2um does. Also,
∗2sn2 is balanced so by the Parity Lemma 2.4.3 ∗1 t is well formed, and hence
∗1 ∗2 n2um is well formed. Thus

∗1 ∗2 n2um ∈ PC&(A⇒N)⇒N
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Now since σ = σf is a well-defined history-free strategy with f(m) = m′, and
∗1∗2n2u ∈ σ by induction hypothesis, we must have ∗1∗2n2umm′ ∈ σ, establishing
(i).

For (ii) suppose for a contradiction that m′ = (j, d) for j ∈ FST(s). Then
∗1 ∗2 sn2t�C&(A⇒ N), j = s′d ∈ P

C&(A⇒N)
, where s′ 6= ε. On the other

hand, by induction hypothesis ∗1 ∗2 n2umm′�C&(A⇒ N), j = d, and by (i),

d ∈ P
C&(A⇒N)

. This contradicts our assumption that games are well-opened.

Now we define

σ′ = {∗1 ∗2 s n2n1 | ∗1 ∗2 s n2 ∈ σ}∪ {∗1 ∗2 s | ∗1 ∗2 s ∈ σ, ∗2 not answered in σ}

and for all n ∈ ω

τn = {∗1t | ∗1 ∗2 n2 t ∈ σ}

Lemma 3.4. σ′ : C&(A ⇒ N) ⇒ N and τn : C&(A ⇒ N) ⇒ N (n ∈ ω) are
valid strategies.

Proof. The fact that each τn is a set of valid positions follows from Lemma 3.3.
That σ′, τn are history-free and satisfy the partial equivalence relation follows di-

rectly from their definitions and the fact that σ is a valid strategy.

Lemma 3.5. σ ≈ conC ; σ′⊗〈τn | n ∈ ω〉;χa.

Proof. Unpacking the definition of the RHS τ = conC ;σ′⊗〈τn | n ∈ ω〉; χa we
see that the second and third moves of χa synchronize and cancel out with the first
and last moves of σ′ respectively, and the fourth and fifth moves of χa cancel out
with the first and last moves of the appropriate τn. Thus positions in τ have the
form

∗1 ∗2 s′n2t
′ or ∗1 ∗2s′

where ∗1∗2sn2t, ∗1∗2s are positions in σ, and s′, t′ are bijectively reindexed versions
of s and t, with the property that FST(s′) ∩ FST(t′) = ∅. However, by Lemma 3.3
we know that FST(s) ∩ FST(t) = ∅, and hence

∗1 ∗2 s′n2t
′ ≈ ∗1 ∗2 sn2t

and σ ≈ τ as required.

Lemma 3.6. σ ≈ χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉
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Proof.

χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉 = definition
(con; (σ′†⊗〈τn | n ∈ ω〉†; e; der)†; e−1; der⊗der;χa ≈ Bang Lemma
con; (σ′†⊗〈τn | n ∈ ω〉†); e; e−1; der⊗der; χa ≈
con; (σ′†⊗〈τn | n ∈ ω〉†); der⊗der; χa ≈
con; (σ′†; der⊗〈τn | n ∈ ω〉†; der);χa ≈
con; (σ′⊗〈τn | n ∈ ω〉); χa ≈ Lemma 3.5
σ.

We continue with our decomposition, and define

σ′′ = {s | ∗1 ∗2 s ∈ σ, ∗2 not answered in s}

Lemma 3.7. σ′′ : C&(A⇒ N)⇒!A is a well-defined strategy, and

σ′ ≈ con
C&(A⇒N)

; π2⊗σ′′; LAPP. (†)

Proof. We must firstly explain how moves in σ′′ can be interpreted as being of
type C&(A ⇒ N) ⇒!A. Let the index in !(C&(A ⇒ N)) of the response by σ to
the initial question ∗1 be i0. Then we regard all moves in s ∈ σ′′ with index i0 as
moves in the target !A , and all moves with index i 6= i0 as moves in the source
!(C&(A ⇒ N)). The projection conditions and stack discipline are easily seen to
hold for s with respect to this type. The fact that σ′′ is history-free and satisfies
the partial equivalence relation follows directly from its definition and the fact that
σ′ is a valid strategy.

Now write τ for the RHS of (†). We diagram τ , tagging occurrences of the types
for ease of reference.

!(C0&(!A0(N0))

!(C1&(!A1(N1))⊗!(C2&(!A2(N2))

con

?

(!A3(N3)⊗ !A4

π2⊗σ′′

?

N5

LAPP

?

From the definitions LAPP plays copy-cat strategies between N3 and N5 and
!A3 and !A4; π2 plays a copy-cat strategy between !A3(N3 and a single in-
dex i0 in !(C1&(!A1(N1)); con splits !(C0&(!A0(N0)) into two disjoint address
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spaces !(C0&(!A0(N0))L and !(C0&(!A0(N0))R and plays copy-cat strategies be-
tween !(C0&(!A0(N0))L and !(C2&(!A2(N2)) and between !(C0&(!A0(N0))R

and !(C2&(!A2(N2)). Thus we see that the opening move in N5 is copied to
(i0, N0)L via N3 and (i0, N1), and any response in (i0, N0)L is copied back to N5.
Similarly, O’s moves (i0, !A0)L are copied to !A4 via (i0, !A1) and !A3; and P’s
responses in !A4 following σ′′ are copied back to (i0, !A0)L. Finally, O’s moves in
!(C0&(!A0(N0))R are copied to !(C2&(!A2(N2)), and P’s responses following σ′′

are copied back to !(C0&(!A0(N0))R.
As regards sequencing, the initial move ∗5 is copied immediately as ∗i0,L. Oppo-

nent may now either immediately reply with ni0,L, which will be copied back as n5,
completing the play; or move in (i0, !A0)L— the only other option by the switching
condition. Play then proceeds following σ′′ transposed to

σ′′ : !(C0&( !A0(N0))R → (i0, !A0)L,

until Opponent replies with some ni0,L to ∗i0,L. Thus positions in τ have the form

∗5 ∗i0,L s′ ni0,L n5 or ∗5 ∗i0,L s′

where s′ is a bijectively reindexed version of s ∈ σ′′, with s ≈ s′. Clearly σ′′ ≈ σ′′,

and hence σ′ ≈ τ .

We now prove a useful general lemma.

Lemma 3.8. For all strategies γ : C ⇒ (A⇒ B), δ : C ⇒ A

Ap ◦ 〈γ, δ〉 ≈ conC ; (γ⊗δ†); LAPP.

Proof.

Ap ◦ 〈γ, δ〉 = definition
(conC ; γ†⊗δ†; e; der(A⇒B)⊗A)†; e−1; derA⇒B⊗idA; LAPP ≈ Bang Lemma
conC ; γ†⊗δ†; e; e−1; derA⇒B⊗idA; LAPP ≈
conC ; γ⊗δ†; LAPP.

Now consider a game

(A1& . . .&Ak)⇒ N

where

Ai = (Bi,1& . . . &Bi,li)⇒ N, 1 ≤ i ≤ k.

Let Ã = A1& . . .&Ak, B̃i = Bi,1& . . .&Bi,li , 1 ≤ i ≤ k.
We define ⊥Ã : Ã ⇒ N by ⊥Ã = {ε} and KÃn : Ã ⇒ N (n ∈ ω) by KÃn =

{ε, ∗n}.Thus ⊥Ã is the completely undefined strategy of type Ã ⇒ N while KÃn

is the constant strategy which responds immediately to the initial question in N

with the answer n.
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Finally, if 1 ≤ i ≤ k, and for each 1 ≤ j ≤ li

σj : Ã⇒ Bi,j

and for each n ∈ ω

τn : Ã⇒ N

we define

Či(σ1, . . . , σli , (τn | n ∈ ω)) : Ã⇒ N

by

Či(σ1, . . . , σli , (τn | n ∈ ω)) = χ ◦ 〈Ap ◦ 〈πi, 〈σ1, . . . , σli〉〉, 〈τn | n ∈ ω〉〉.

Lemma 3.9 (The Decomposition Lemma (uncurried version)).
Let σ : (A1& . . .&An)⇒ N be any strategy, where

Ai = (Bi,1& . . . &Bi,li)⇒ N, 1 ≤ i ≤ k.

Then exactly one of the following three cases applies:

(i)σ = ⊥Ã.
(ii)σ = KÃn for some n ∈ ω.
(iii)σ ≈ Či(σ1, . . . , σli , (τn | n ∈ ω))

where 1 ≤ i ≤ k, σj : Ã⇒ Bi,j , 1 ≤ j ≤ li, τn : Ã⇒ N, n ∈ ω .

Proof. By cases on σ’s response to the initial question. If it has no response, we
are in case (i). If its response is an immediate answer n for some n ∈ ω, we are in
case (ii). Otherwise, σ must respond with the initial question in the i’th argument,
for some 1 ≤ i ≤ k. In this case, write C = A1& . . .&Ai−1&Ai+1& . . .&Ak. We
have the natural isomorphism

α : !(C&Ai) ∼= !Ã : α−1

so we can apply Lemma 3.6 to conclude that

α; σ ≈ χ ◦ 〈σ′, 〈τn | n ∈ ω〉〉

By Lemma 3.7

σ′ ≈ con; π2⊗σ′′; LAPP

where σ′′ : C&Ai ⇒!B̃i. By the Bang Lemma,

σ′′ ≈ (σ′′; der)†.

Moreover

σ′′; derB : C&Ai ⇒ (Bi,1& . . .&Bi,li)
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so by the universal property of the product,

σ′′; derB ≈ 〈σ1, . . . , σli〉

where σj : C&Ai ⇒ Bi,j , 1 ≤ j ≤ li.
Thus σ′ ≈ con; π2⊗〈σ1, . . . , σli〉†; LAPP and by Lemma 3.8,

σ′ ≈ Ap ◦ 〈π2, 〈σ1, . . . , σli〉〉

Thus

σ ≈ α−1; α; σ
≈ α−1; (χ ◦ 〈Ap ◦ 〈π2, 〈σ1, . . . , σli〉〉, 〈τn | n ∈ ω〉〉
≈ χ ◦ 〈Ap ◦ 〈πi, 〈α−1; σ1, . . . , α

−1;σli〉〉, 〈α−1; τn | n ∈ ω〉〉
= Či(α−1;σ1, . . . , α

−1; σli , (α
−1; τn | n ∈ ω)).

The Decomposition Lemma in its uncurried version is not sufficiently general for
our purposes. Suppose now that we have a game

(A1& . . .&Ak)⇒ N

where

Ai = Bi,1 ⇒ . . . Bi,li ⇒ N, (1 ≤ i ≤ li).

If for some 1 ≤ i ≤ k and each 1 ≤ j ≤ li we have

σj : Ã⇒ Bi,j

and for each n ∈ ω

τn : Ã⇒ N

then we define

Ci(σ1, . . . , σli , (τn | n ∈ ω)) : Ã⇒ N

by

Ci(σ1, . . . , σli , (τn | n ∈ ω)) = χ ◦ 〈Ap ◦ 〈. . . Ap ◦ 〈πi, σ1〉, . . . , σli〉, 〈τn | n ∈ ω〉〉.

To relate Ci and Či, consider the canonical isomorphisms

αi : Bi,1 ⇒ . . . Bi,li ⇒ N ∼= (Bi,1& . . .&Bi,li)⇒ N : α−1
i (1 ≤ i ≤ k)

Let α̃ =!(α1& . . .&αk) so

α̃ :!(A1& . . .&Ak) ∼=!(Au
1& . . .&Au

k)

where Au
i = (Bi,1& . . .&Bi,li)⇒ N is the uncurried version of Ai. Then

Ci(σ1, . . . , σli , (τn | n ∈ ω)) ≈ α̃; Či(α̃; σ1, . . . , α̃;σli , (α̃; τn | n ∈ ω)) (1)
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In terms of λ−calculus, this just boils down to the familiar equations

Curry(f)xy = f(x, y)

Uncurry(g)(x, y) = gxy

To see the relationship between the combinators ⊥,Kn and C and the syntax of
PCF, we use the combinators to write the semantics of finite evaluation trees.

Given P ∈ FET(Γ, T ) where Γ = x1 : T1, . . . , xk : Tk, we will define

S(Γ ` P : T ) : (S(T1)& . . .&S(Tk))⇒ S(T )

• S(Γ ` λxT .P : T ⇒ U) = Λ(S(Γ, x : T ` P : U))
• S(Γ ` Ω : N) = ⊥T̃

• S(Γ ` n : N) = KT̃ n

• S(Γ ` case(xiP1 . . . Pli , (Qn | n ∈ ω)) : N) = Ci(σ1, . . . , σli , (τn | n ∈ ω))
where

Ti = Ui,1 ⇒ . . . Ui,li ⇒ N,

σj = S(Γ ` Pj : Ui,j), 1 ≤ j ≤ li,

τn = S(Γ ` Qn : N), n ∈ ω.

We can now prove the general form of the Decomposition Lemma:

Proposition 3.4 (Decomposition Lemma). Let σ : (A1& . . .&Ap)⇒ (Ap+1 ⇒
. . . Aq ⇒ N) be any strategy, where

Ai = Bi,1 ⇒ . . . Bi,li ⇒ N, 1 ≤ i ≤ q

We write C̃ = A1, . . . , Ap, D̃ = Ap+1, . . . , Aq. (Notation : if τ : C̃, D̃ ⇒ N , then
ΛD̃(τ) : C̃ ⇒ (Ap+1 ⇒ · · · ⇒ Aq ⇒ N).)

Then exactly one of the following three cases applies.

(i)σ = ΛD̃(⊥C̃,D̃).
(ii)σ = ΛD̃(KC̃,D̃n) for some n ∈ ω.
(iii)σ = ΛD̃(Ci(σ1, . . . , σli , (τn | n ∈ ω))), where 1 ≤ i ≤ q, and

σj : C̃, D̃ ⇒ Bi,j , 1 ≤ j ≤ li,

τn : C̃, D̃ ⇒ N, n ∈ ω.

Proof. Let αi : Ai
∼= Au

i : α−1 be the canonical isomorphism between Ai and
its uncurried version

Au
i = (Bi,1& . . .&Bi,li)⇒ N

for each 1 ≤ i ≤ q.



! Please write \titlerunninghead{<(Shortened) Article Title>} in file ! 35

Let

α̃ =!(α1& . . .&αp&αp+1& . . .&αq).

Note that

⊥C̃,D̃ = α̃;⊥C̃u,D̃u (2)
KC̃,D̃n = α̃;KC̃u,D̃un (3).

We can apply Lemma 3.9 to σ̌ = α̃−1; Λ−1

D̃
(σ) : C̃u, D̃u ⇒ N . The result now

follows from equations (1)–(3) since

σ ≈ ΛD̃(α̃; σ̌).

With the same notations as in the Decomposition Lemma:

Lemma 3.10 (Unicity of Decomposition).

(i)If σ ≈ ⊥C̃,D̃ then σ = ⊥C̃,D̃.

(ii)If σ ≈ KC̃,D̃n then σ = KC̃,D̃n.

(iii)If Ci(σ1, . . . , σli , (τn | n ∈ ω)) @≈Ci(σ′1, . . . , σ
′
li
, (τ ′n | n ∈ ω)) then

σj
@≈ σ′j , 1 ≤ j ≤ li,

τn
@≈ τ ′n, n ∈ ω.

Proof. (i) and (ii) are trivial.
For (iii) write σ = Ci(σ1, . . . , σli , (τn | n ∈ ω)) and τ = Ci(σ′1, . . . , σ

′
li
, (τ ′n |

n ∈ ω)).
Suppose firstly that s ∈ τn. Then ∗1 ∗2 n2s ∈ σ, so since σ @≈ τ , for some t,

∗1 ∗2 n2t ∈ τ and ∗1 ∗2 n2s ≈ ∗1 ∗2 n2t. This implies that t ∈ τ ′n and s ≈ t. We
conclude that τn

@≈ τ ′n.
Now suppose that s ∈ σj . Then ∗1 ∗2 s′ ∈ σ where s′ is a reindexed version of s

with s ≈ s′. Since σ @≈ τ , there exists t′ such that ∗1 ∗2 t′ ∈ τ and ∗1 ∗2 s′ ≈ ∗1 ∗2 t′.

This implies that there exists t ∈ σ′j with s ≈ t. We conclude that σj
@≈ σ′j .

3.5. Approximation Lemmas
The Decomposition Lemma provides for one step of decomposition of an arbitrary

strategy into a form matching that of the semantic clauses for evaluation trees.
However, infinite strategies will not admit a well-founded inductive decomposition
process. Instead, we must appeal to notions of continuity and approximation, in
the spirit of Domain Theory [AJ94b].

We define a PCF type-in-context ([Cro94]) to be a type of the form

(T1& . . .&Tp)⇒ U

where T1, . . . , Tp, U are PCF types. Given such a type-in-context T , we will write
Str(T ) for the set of strategies on the game S(T ).
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The Unicity of Decomposition Lemma says that decompositions are unique up to
partial equivalence. Referring to the Decomposition Lemma, Prop. 3.4, note that
the proof of the decomposition

σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω))

involved defining specific strategies σ1, . . . , σli , (τn | n ∈ ω) from the given σ. If we
also fix specific pairing and tagging functions and dereliction indices in the definition
of promotion, dereliction, contraction etc.( and hence in the M(I) operations of
composition, pairing, currying etc.), we obtain an operation Φ on strategies such
that

Φ(σ) =


1 in case (i)
(2, n) in case (ii)
(3, σ1, . . . , σli , (τn | n ∈ ω)) in case (iii)

according to the case of the Decomposition Lemma which applies to σ. We shall
use Φ to define a family of functions

pk : Str(T )→ Str(T ) (k ∈ ω)

inductively as follows:

• p0(σ) = ΛŨ (⊥T̃ ,Ũ )
•

pk+1(σ) =


ΛŨ (⊥T̃ ,Ũ ), Φ(σ) = 1
ΛŨ (KT̃ ,Ũn), Φ(σ) = (2, n)
ΛŨ (Ci(pk(σ1), . . . , pk(σli), (τ

′
n | n ∈ ω))), Φ(σ) = σ0

where

σ0 = (3, σ1, . . . , σli , (τn | n ∈ ω))

and

τ ′n =
{

pk(τn), 0 ≤ n ≤ k

ΛŨ (⊥T̃ ,Ũ ), n > k.

The principal properties of these functions are collected in the following Lemma.

Lemma 3.11 (Approximation Lemma for Strategies). For all k ∈ ω:

(i)σ ⊆ τ implies pk(σ) ⊆ pk(τ)
(ii)If σ0 ⊆ σ1 ⊆ . . . is an increasing sequence,

pk(
⋃
l∈ω

σl) =
⋃
l∈ω

pk(σl)

(iii)σ @≈ τ implies pk(σ) @≈ pk(τ)
(iv)pk(σ) @≈ σ

(v)∀s ∈ σ. |s| ≤ 2k ⇒ ∃t ∈ pk(σ). s ≈ t

(vi)pk(σ) ⊆ pk+1(σ)
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(vii)
⋃

l∈ω pl(σ) ≈ σ

(viii)pk(pk(σ)) ≈ pk(σ)

Proof. Firstly, consider the operation Φ(σ). In case (iii), where

Φ(σ) = (3, σ1, . . . , σli , (τn | n ∈ ω))

Φ(σ) is obtained by firstly defining σ′ and the τn from σ, then σ′′ from σ′, and
finally

σj = (σ′′; der)†; πj .

Note that σ′; σ′′ and the τn are defined locally, i.e. by operations on positions
applied pointwise to σ and σ′ respectively. Together with the ⊆ −monotonicity
and continuity of Promotion, Dereliction, Contraction etc. (Proposition 2.9.4) this
implies (i) and (ii). Now note that Ci is ⊆ − and @≈A monotonic by Proposition
2.9.3. A straightforward induction using @≈−monotonicity and ⊆ −monotonicity
of Ci respectively and the Unicity of Decomposition Lemma yelds (iii). Similarly
routine inductions using @≈−monotonicity and ⊆ −monotonicity of Ci respectively
prove (iv) and (vi).

We prove (v) by induction on k. The basis is trivial as are cases (i) and (ii) of
the Decomposition Lemma at the inductive step. Suppose we are in case (iii), with

σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω))

Consider firstly s ∈ σ where s = ∗1 ∗2 s′ with ∗2 not answered in s′. Then s′ ∈ σ′′

where σ′′ is derived from σ′ and σ′ from σ as in the proof of the Decomposi-
tion Lemma. Since 〈σ1, . . . , σli〉† ≈ σ′′, s′ can be decomposed into subsequences
sj,1, . . . , sj,pj with s′j,q ≈ sj,q ∈ σj , 1 ≤ j ≤ li, 1 ≤ q ≤ pj .

Since |sj,q| < |s|, we can apply the induction hypothesis to conclude that sj,q ≈
uj,q ∈ pk(σj), and hence that there is ∗1 ∗2 u ∈ pk+1(σ) with s ≈ ∗1 ∗2 u. The case
where s = ∗1 ∗2 s′n2t is similar.

To prove (vii), note firstly that the union
⋃

l∈ω pl(σ) is well-defined by (vi). Now⋃
l∈ω pl(σ) @≈ σ follows from (iv), while σ @≈

⋃
l∈ω pl(σ) follows from (v).

Finally (viii) can be proved by induction on k and (iii) using the Unicity of De-

composition Lemma.

We now turn to evaluation trees. Let Γ = x1 : T1, . . . , xk : Tk. We define a family
of functions

qk : ET(Γ, U)→ ET(Γ, U) (k ∈ ω)

inductively by

q0(P ) = λx̃Ũ .Ω
qk+1(λx̃Ũ .Ω) = λx̃Ũ .Ω
qk+1(λx̃Ũ .n) = λx̃Ũ .n

qk+1(λx̃Ũ .case(xiP1 . . . pli , (Qn | n ∈ ω)))
= λx̃Ũ .case(xiqk(P1) . . . qk(Pli), (Q

′
n | n ∈ ω))
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where

Q′
n =

{
qk(Qn), 0 ≤ n ≤ k

λx̃Ũ .Ω, n > k

The following is then standard:

Lemma 3.12 (Approximation Lemma for Evaluation Trees). The (qk | k ∈
ω) form as increasing sequence of continuous functions with

⊔
k∈ω qk = idET(Γ,U).

Each qk is idempotent and has finite image.

3.6. Main Results
We are now equipped to address the relationship between strategies and evalua-

tion trees directly. Let Γ = x1 : T1, . . . , xk : Tk. We define a map

ς : FET(Γ, U)→ Str(T̃ ⇒ U)

this map is a concrete version of the semantic map defined in section 2.4. That
is, we fix choices of pairing functions etc. as in the definition of Φ in 2.5, and
define ς(Γ ` P : U) as a specific representative of the partial equivalence class
S(Γ ` P : U). Thus we will have

S(Γ ` P : U) = [ς(Γ ` P : U)].

We were sloppy about this distinction in 2.4; we give the definition of ς explicitly
for emphasis:

ς(Γ ` λxT .P : T ⇒ U) = Λ(ς(Γ, x : T ` P : U))
ς(Γ ` Ω : N) = ⊥T̃

ς(Γ ` n : N) = KT̃ n

ς(Γ ` case(xiP1 . . . Pli , (Qn | n ∈ ω)) = Ci(σ1, . . . , σli , (τn | n ∈ ω))

where

Ti = Bi,1 ⇒ . . .⇒ Bi,li ⇒ N,

σj = ς(Γ ` Pj : Bi,j), 1 ≤ j ≤ li,

τn = ς(Γ ` Qn : N), n ∈ ω.

Lemma 3.13. If P v Q then ς(Γ ` P : U) ⊆ ς(Γ ` Q : U)

Proof. By induction on the construction of P , using ⊆–monotonicity of Ci.

Let T̃ = T1, . . . , Tl, and Con(T̃ ) be the set of all T̃−contexts x1 : T1, . . . , xp : Tp.
For each k ∈ ω, we define a map

ηk : Str(T̃ ⇒ U)→ ΠΓ∈Con(T̃ )FET(Γ, U)

inductively by:
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η0(σ)Γ = λỹŨ .Ω

ηk+1(σ)Γ =


λỹŨ .Ω, σ = ΛŨ (⊥T̃ ,Ũ )
λỹŨ .n, σ = ΛŨ (KT̃ ,Ũn)
λỹŨ .case(ziP1 . . . Pli , (Qn | n ∈ ω)),

σ ≈ ΛŨ (Ci(σ1, . . . , σli , (τn | n ∈ ω)))

where

Γ = x1 : T1, . . . , xp : Tp,

∆ = y1 : U1, . . . , yq : Uq

z̃ = x1, . . . , xp, y1, . . . , yq,

Pj = ηk(σj)Γ, ∆, 1 ≤ j ≤ li

and

Qn =
{

ηk(σj)Γ, ∆, 0 ≤ n ≤ k

Ω n > k

Lemma 3.14. For all k ∈ ω :

(i)σ @≈ τ implies ηk(σ)Γ v ηk(τ)Γ .
(ii)If σ0 ⊆ σ1 ⊆ . . . is an increasing sequence,

ηk(
⋃
l∈ω

σl)Γ =
⊔
l∈ω

ηk(σl)γ.

(iii)ηk(σ)Γ v ηk+1(σ)Γ
(iv)qk(ηl(σ)Γ) = ηk(σ)γ, l ≥ k

Proof. (i) is proved similarly to part (iii) of the Approximation Lemma for
strategies; (ii) is proved similarly to part (ii); and (iii) to part (vi); (iv) is proved by

a routine induction on k.

Lemma 3.15. For all P ∈ FET(Γ, U), σ ∈ Str(T̃ ⇒ U), k ∈ ω :

(i)ηk(ς(Γ ` P : U))Γ = qk(P )
(ii)ς(Γ ` (ηk(σ)Γ) : U) ≈ pk(σ)

Proof. Both parts are proved by induction on k. The induction bases are trivial
as are cases (i) and (ii) of the Decomposition Lemma at the inductive step, and
the corresponding cases on the construction of P

(i)

ηk+1(ς(Γ ` λỹŨ .case(ziP1 . . . Pli , (Qn | n ∈ ω)))) =
λỹŨ .case(ziP

′
1 . . . P ′

li
, (Q′

n | n ∈ ω))
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where

P ′
j = ηk(ς(Γ, ∆ ` Pj : Bi,j))Γ, ∆

= ind.hyp qk(Pj)

Q′
n =

{
ηk(ς(Γ, ∆ ` Qn : N))Γ, ∆, 0 ≤ n ≤ k

Ω n > k

= ind.hyp
{

qk(Ω) 0 ≤ n ≤ k

Ω n > k

(ii)

ς(Γ ` ηk+1(Ci(σ1, . . . , σli , (τn | n ∈ ω)))Γ : U ≈
ΛŨ (Ci(σ′1, . . . , σ

′
li
, (τ ′n | n ∈ ω)))

where

σ′j ≈ ς(Γ, ∆ ` (ηk(σj)Γ, ∆) : U)
≈ind.hyp pk(σj)

τ ′n ≈
{

ς(Γ,∆ ` (ηk(τn)Γ,∆) : N) 0 ≤ n ≤ k

⊥T̃ ,Ũ n > k

≈ind.hyp

{
pk(τn) 0 ≤ n ≤ k

⊥T̃ ,Ũ n > k

Now we define functions

S : ET(Γ, U)→ Str(T̃ , U)

E : Str(T̃ , U)→ ET(Γ, U)

by:

S(P ) =
⋃
k∈ω

ς(Γ ` qk(P ) : U)

E(σ) =
⊔
k∈ω

ηk(σ)Γ

By Lemma 3.13 and the Approximation Lemma for evaluation trees, (ς(Γ ` qk(P ) :
U) | k ∈ ω) is an ⊆ −increasing sequence of strategies, so S is well-defined.
Similarly, by Lemma 3.14 E is well-defined.

We now prove the key result on definability.

Theorem 3.1 (Isomorphism Theorem).

(i)For all P ∈ ET(Γ, U)

E ◦ S(P ) = P
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(ii)For all σ ∈ Str(T̃ ⇒ U),

S ◦ E(σ) ≈ σ

(iii)Let T = T̃ ⇒ U . Then there is an order-isomorphism

S≈ : ET(Γ, U) ' S(T̂ ) : E≈

where S≈(P ) = [S(P )] (i.e. the partial equivalence class of S(P )), and E≈([σ]) =
E(σ).

Proof.
(i)

E ◦ S(P )
= definition

⊔
k∈ω ηk(

⋃
l∈ω ς(Γ ` ql(P ) : U))Γ

= Lemma 3.14(ii)
⊔

k∈ω

⊔
l∈ω ηk(ς(Γ ` ql(P ) : U))Γ

=
⊔

n∈ω ηn(ς(Γ ` qn(P ) : U))Γ
= Lemma 3.15

⊔
n∈ω qn ◦ qn(P )

= Lemma 3.12 P.

(ii)

S ◦ E(σ)
=

⋃
k∈ω ς(Γ ` qk(

⊔
l∈ω ηl(σ)Γ) : U)

= continuity of qk

⋃
k∈ω ς(Γ `

⊔
l∈ω qk(ηl(σ)Γ) : U)

= Lemma 3.14(iv)
⋃

k∈ω ς(Γ ` (ηk(σ)Γ) : U)
≈ Lemma 3.15

⋃
k∈ω pk(σ)

≈ Lemma 3.11 σ.

(iii) Firstly E≈ is well-defined and monotone by Lemma 3.14(i). Also, S≈ is mono-

tone by Lemma 3.13. By (i) and (ii), E≈ = S−1
≈ .

As an immediate corollary of the Isomorphism Theorem and Proposition 3.2.2:

Proposition 3.5. For each PCF type T , S(T̂ ) is a dI-domain. Hence M(I) is
an algebraic cpo-based model.

Thus although a priori we only knew that M(I) was a rational model, by
virtue of the Isomorphism theorem we know that the carrier at each PCF type is
an algebraic cpo. Hence the notion of intensional full abstraction makes sense for
M(I). Recall from the introduction that a model is intensionally fully abstract for
a language L if every compact element of the model is denoted by a term of L.

We can now prove the culminating result of this section.

Theorem 3.2 (Intensional Full Abstraction).
M(I) is intensionally fully abstract for PCFc.
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Proof. Consider any PCF type T . By the Isomorphism Theorem, the compact
elements of S(T ) are the image under S≈ of the compact elements of ET(Γ0, T )
(where Γ0 is the empty context). But the compact elements of ET(Γ0, T ) are just
the finite evaluation trees FET(Γ0, T ) and the restriction of S≈ to FET(Γ0, T ) is

the semantic map S(.) on finite evaluation trees qua terms of PCFc.

4. EXTENSIONAL FULL ABSTRACTION
4.1. The Intrinsic Preorder

We define the Sierpinski game Σ to be the game

Σ = ({q, a}, {(q, OQ), (a, PA)}, {ε, q, qa}, idPΣ)

with one initial question q, and one possible response a. Note that Σ̂ is indeed the
usual Sierpinski space. i.e. the two-point lattice ⊥ < > with ⊥ = {ε},> = {ε, qa}.

Now for any game A we define the intrinsic preorder .A on Str(A) by:

x .A y ⇐⇒ ∀α : A→ Σ. x; α @≈ y; α

Note that if we write x↓ ≡ x = > and x↑ ≡ x = ⊥, then:

x .A y ⇐⇒ ∀α : A→ Σ. x; α↓ ⊃ y; α↓

It is trivially verified that .A is a preorder.

Lemma 4.1 (Point Decomposition Lemma).

(i)∀x ∈ Str(!A). x ≈ (x; derA)† =!(x; derA)
(ii)∀x ∈ Str(A&B). x ≈ 〈x; fst, x; snd〉
(iii)∀x ∈ Str(A⊗B). ∃y ∈ Str(A), z ∈ Str(B). x ≈ y ⊗ z

Proof. Firstly we must explain the notation. We think of a strategy σ in A

indifferently as having the type σ : I → A. Now since !I = I, we can regard
!σ :!I →!A as in Str(!A). Similarly, since I ⊗ I = I, we can regard σ ⊗ τ as in
Str(A ⊗ B), where σ ∈ Str(A), τ ∈ Str(B). Finally, using !I = I again we can
form 〈σ, τ〉 ∈ Str(A&B) where σ ∈ Str(A), τ ∈ Str(B).

Next we note that (i) is a special case of the Bang Lemma, while (ii) follows
from the universal property of the product.

Finally, we prove (iii). Given x ∈ Str(A ⊗ B), write x = σf , where f : MO
A +

MO
B ⇀ MP

A + MP
B . By the switching condition, we can decompose f as f = g + h,

where g : MO
A ⇀ MP

A , and h : MO
B ⇀ MP

B . Now define y = σg, z = σh. It is clear
that y and z are well-defined strategies, and

x = σf = σg+h ≈ σg ⊗ σh = y ⊗ z.

Now we characterise the intrinsic preorder on the Linear types. The general
theme is that “intrinsic = pointwise”. This is analogous to results in Synthetic
Domain Theory and PER models, although the proofs are quite different, and
remarkably enough no additional hypotheses are required.
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Lemma 4.2 (Extensionality for Tensor).
For all x⊗ y, x′ ⊗ y′ ∈ Str(A⊗B)

x⊗ y .A⊗B x′ ⊗ y′ ⇐⇒ x .A x′ ∧ y .B y′

Proof. (⇒). If x⊗ y .A⊗B x′ ⊗ y′ and x;α↓, then x⊗ y; β↓ where

β = A⊗B
idA ⊗⊥B,I- A⊗ I

∼ - A
α - Σ,

⊥B,I = {ε}. This implies that x ⊗ y;β↓, and hence that x′; α↓. This shows that
x .A x′; the proof that y .B y′ is similar.

(⇐). Suppose that x .A x′, y .B y′ and x⊗ y; γ↓ where γ : A⊗ B → ±. Then
define α : A→ Σ by:

α = A
∼- A⊗ I

idA ⊗ y- A⊗B
γ - Σ

Then x; α ≈ x ⊗ y; γ↓, so x′; α ≈ x′ ⊗ y; γ↓ since x .A x′. This shows that
x⊗ y .A⊗B x′ ⊗ y. A similar argument shows that x′ ⊗ y .A⊗B x′ ⊗ y′, and so

x⊗ y .A⊗B x′ ⊗ y .A⊗B x′ ⊗ y′.

Lemma 4.3 (Extensionality for Product).
For all 〈x, y〉, 〈x′, y′〉 ∈ Str(A&B)

〈x, y〉 .
A&B

〈x′, y′〉 ⇐⇒ x .A x′ ∧ y .B y′

Proof. By the definition of A&B, any γ : A&B → Σ must factor as

γ = A&B
fst - A

α - Σ

or as

γ = A&B
snd - B

β - Σ

This shows the right-to-left implication. Conversely, given α : A→ Σ we can form

A&B
fst - A

α - Σ

and similarly for β : B → Σ.

Lemma 4.4 (Linear Function Extensionality).
For all f, g ∈ Str(A(B)

f .A(B g ⇐⇒ ∀x ∈ Str(A), x; f .B x; g
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Proof. (⇒) Suppose f .A(B g, x ∈ Str(A), β : B → Σ and x; f ;β↓. Then we
define γ : (A(B)→ Σ by

γ = (A(B)
∼- (A(B)⊗ I

idA(B ⊗ x- (A(B)⊗A
LAPP- B

β - Σ

For all h ∈ Str(A(B), h; γ ≈ x; h;β, so x; g; β ≈ g; γ↓ since f .A(B g and f ; γ↓.
(⇐) Suppose f ; γ↓ where γ : (A(B) → Σ. From the switching condition we

know that γ can respond to the initial move in Σ only in B or Σ; to a move in B

only in B or Σ and to a move in A only in A or Σ. Moreover, whenever Player is to
move in A the number of moves played in B is odd, hence there is an unanswered
question in B which must have been asked more recently than the opening question
in Σ. By the stack discipline γ can in fact only respond in A to a move in A. Thus
if γ ∈ σf where f : MO

A + MP
B + MO

O ⇀ MP
A + MO

B + MP
Σ we can decompose f as

f = g + h where: g : MO
A ⇀ MP

A , h : MP
B + MO

Σ ⇀ MO
B + MP

Σ . If we now define
x = σg, β = σh then:

(i) x ∈ Str(A).
(ii) β : B → Σ.
(iii) ∀h ∈ Str(A(B).h; γ ≈ x; h; β.

Now

f ; γ↓ ⊃ x; f ; β↓
⊃ by assumption x; g; β↓
⊃ g; γ↓

as required.

This argument can be understood in terms of Classical Linear Logic. If we think
of A(Σ as “approximately A⊥”, then

(A(B)(Σ ≈ (A(B)⊥ = A⊗B⊥ ≈ A⊗ (B(Σ).

To prove our final extensionality result, we will need an auxiliary lemma.

Lemma 4.5 (Separation of head occurrence).
For all σ :!A→ Σ, for some σ′ :!A⊗A→ Σ:

σ ≈!A
conA- !A⊗!A

id!A ⊗ derA- !A⊗A
σ′ - Σ

Proof. If σ = ⊥!A,Σ or σ = K!A>, the result is trivial. If σ responds to the
initial question q with a move (i, a) in !A we define σ′ by interpreting the index
i as a separate tensorial factor rather than an index in !A. The only non-trivial
point is to show that σ′ ≈ σ′. If q(i, a)sm ≈ q(i, a)s′m′ where q(i, a)s, q(i, a)s′ ∈ σ′,
then any permutation π witnessing the equivalence must satisfy π(i) = i. Let the
response of σ′ to m be (j1, a1) and to m′ (j2, a2). Since σ ≈ σ we must have
q(i, a)sm(j1, a1) ≈!A(Σ q(i, a)s′m′(j2, a2), and hence either j1 = j2 = i or j1 6=
j2 6= i. In either cases, q(i, a)sm(j1, a1) ≈!A⊗A(Σ q(i, a)s′m′(j2, a2), as required.
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Lemma 4.6 (Bang Extensionality).
For all x, y ∈ Str(A).

x .A y ⇐⇒!x .!A!y

Proof. (⇐) If !x .!A!y and x; α↓ then !x; (derA;α)↓, so !y; (derA; α)↓, and
hence y;α↓ as required.

(⇒) If !x; α↓, define |α| to be the number of indices in !A occurring in !x‖α. We
show that, for all α :!A → Σ such that !x; α↓, !y;α↓, by induction on |α|. For the
basis, note that !x; α↓ and |α| = 0 implies that α = K!A>. For the inductive step,
let |α| = k + 1. By Lemma 4.5, for some β :!A⊗A→ Σ, α ≈ conA; id!A⊗ derA; β.
For all z ∈ Str(A). !z; conA; id!A ⊗ derA ≈!z ⊗ z, so !z ⊗ z;β ≈!z; α.

Now define

γ =!A
∼- !A⊗ I

id!A ⊗ x- !A⊗A
β - Σ

For all z ∈ Str(A), !z; γ ≈!z ⊗ x;β. In particular, !x; γ ≈!x ⊗ x; β ≈!x; α↓. Since
|α| > 0, there is a first index i0 in !A used by α. By the definition of γ, !x‖γ is !x‖α
with all moves at index i0 deleted. Hence |γ| < |α|, and by induction hypothesis
!y; γ↓.

Define δ : A→ Σ by

δ = A
∼- I ⊗A

!y ⊗ idA- !A⊗A
β - Σ.

Then for all z ∈ Str(A). z; δ ≈!y ⊗ z; β. In particular, x; δ ≈!y ⊗ x; β ≈!y; γ↓. By
the assumption that x .A y, y; δ↓. This implies that !y;α ≈!y ⊗ y;β↓, as re-
quired.

Lemma 4.7 (Intuitionistic Function Extensionality).

σ .A⇒B τ ⇐⇒ ∀x : 1⇒ A, β : B ⇒ Σ. β ◦ σ ◦ x↓ ⊃ β ◦ τ ◦ x↓.

Proof.

σ .A⇒B τ ⇐⇒ ∀z ∈ Str(!A).z; σ .B z; τ
Linear Function Extensionality

⇐⇒ ∀x ∈ Str(A).x†; σ .B x†; τ
Bang Lemma, !I = I

⇐⇒ ∀x ∈ Str(A). x†;σ† .!B x†; τ †

Bang Extensionality, derI = idI

⇐⇒ ∀x ∈ Str(A), β :!B → Σ. x†;σ†;β↓ ⊃ x†; τ †;β↓
⇐⇒ ∀x : 1⇒ A, β : B ⇒ Σ. β ◦ σ ◦ x↓ ⊃ β ◦ τ ◦ x↓.

Lemma 4.8 (Congruence Lemma).

(i)σ .A⇒B σ′ ∧ τ .B⇒C τ ′ ⊃ τ ◦ σ .A⇒C τ ′ ◦ σ′
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(ii)σ .C⇒A σ′ ∧ τ .C⇒B τ ′ ⊃ 〈σ, τ〉 .
C⇒A&B

〈σ′, τ ′〉.
(iii)σ .A&B⇒C τ ⊃ Λ(σ) .A⇒(B⇒C) Λ(τ).

Proof. (i)

β ◦ τ ◦ σ ◦ x↓ ⊃ β ◦ τ ′ ◦ σ ◦ x↓ τ .B⇒C τ ′

⊃ β ◦ τ ′ ◦ σ′ ◦ x↓ σ .A⇒B σ′.

(ii) For all x : 1 ⇒ C, 〈σ, τ〉 ◦ x ≈ 〈σ ◦ x, τ ◦ x〉 : I → A&B; and similarly,
〈σ′, τ ′〉 ◦ x ≈ 〈σ′ ◦ x, τ ′ ◦ x〉. By (i), σ ◦ x .A σ′ ◦ x and τ ◦ x .B τ ′ ◦ x. The result
now follows by Product Extensionality.

(iii) Identifying morphisms with points of arrow types,

γ ◦ Λ(σ) ◦ x ◦ y↓ ⊃ γ ◦ σ ◦ 〈x, y〉↓
⊃ γ ◦ τ ◦ 〈x, y〉↓ σ .

A&B⇒C
τ

⊃ γ ◦ Λ(τ) ◦ x ◦ y↓.

Finally we consider the relationship between the intrinsic and intensional pre-
orders.

Lemma 4.9.

(i)If σ @≈A τ , then σ .A τ .
(ii)If σo ⊆ σ1 ⊆ . . . is an increasing sequence, and for all n, σn .A τn, then⋃
n∈ω σn .A τn.

Proof. (i) By @≈−monotonicity of composition (Proposition 2.9.3) if σ @≈A τ and
σ; α = > then > = σ;α @≈A τ ; α and hence τ ; α = >.

(ii) By ⊆ −continuity of composition (Proposition 2.9.3), similarly to (i).

By Lemma 4.9, σ ≈ τ implies σ ' τ where ' is the equivalence induced by the
preorder .. Thus each ' −equivalence class is a union of ≈ −classes. Henceforth,
when we write [σ] we shall mean the ' −equivalence class of σ.

We can define the notion of strong chain of ' −equivalence classes, just as we
did for ≈ −classes: a sequence

(†) [σ0] . [σ1] . . . .

such that there are (σ′n | n ∈ ω) with σ′n ∈ [σn] and σ′n ⊆ σ′n+1 for all n ∈ ω.

Lemma 4.10. Every strong . −chain has a . −least upper bound.

Proof. Given a strong chain (†), take
⊔

n∈ω[σn] = [σ′] where σ′ =
⋃

n∈ω σ′n. For
all n, σn ' σ′n ⊆ σ′, so by Lemma 4.9(i), [σ′] is un upper bound for ([σn] | n ∈ ω).

Finally, if [τ ] is another upper bound, then for all n, σ′n . τ ; so by Lemma 4.9(ii),

σ′ . τ .
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4.2. The Extensional Category
We begin with some general considerations on quotients of rational cartesian

closed categories. Let C be a rational CCC. A precongruence on C is a family
.= {.A,B | A,B ∈ Obj(C)} of relations .A,B⊆ C(A,B) × C(A, B) satisfying the
following properties:

(r1) each .A,B is a preorder
(r2) f .A,B f ′ and g .B,C g′ implies g ◦ f .A,C g′ ◦ f ′

(r3) f .C,A f ′ and g .C,B g′ implies 〈f, g〉 .C,A×B 〈f ′, g′〉
(r4) f .A×B,C g implies Λ(f) .A,B⇒C Λ(g)
(r5) vA,B ⊆ .A,B

(r6) for all f : A×B → B, g : C → A, h : B → D:

(∀n ∈ ω. h ◦ f (n) ◦ g .C,D k) ⊃ h ◦ f∇ ◦ g .C,D k.

Given such a precongruence, we define a new category C/. as follows. The
objects are the same as those of C;

C/.(A, B) = (C(A, B)/ 'A,B ,≤A,B).

That is, a morphism in C/ .(A,B) is a 'A,B −equivalence class [f ], where 'A,B is
the equivalence relation induced by .A,B . The partial ordering is then the induced
one:

[f ] ≤A,B [g]⇐⇒ f .A,B g.

Note that by (r5), [⊥A,B ] is the least element with respect to this partial order.
By (r2)–(r4), composition, pairing and currying are well-defined on ' −equivalence
classes by

[g] ◦ [f ] = [g ◦ f ],
〈[f ], [g]〉 = [〈f, g〉],
Λ([f ]) = [Λ(f)] .

It is then immediate by (r5) and the fact that C is a rational (and hence in particular
a ppo-enriched) CCC that C/. is a ppo-enriched CCC. It remains to verify ratio-
nality for C/.. By (r2) and (r5), for any f : A × B → B, g : C → A, h : B → D,

the sequence ([h ◦ f (n) ◦ g] | n ∈ ω) is a ≤C,D-chain. By (r5) and (r6), [h ◦ f∇ ◦ g]
is the ≤C,D −least upper bound of this chain. In particular , taking g = idA and
h = idB , [f∇] is the least upper bound of ([f (n)] | n ∈ ω).

We record this result, which is a variant of [ADJ76], as

Lemma 4.11 (Rational Quotient). If . is a precongruence on a rational CCC
C, then C/. is a rational CCC.

Now we define a family .= {.A⇒B | A,B ∈ Obj(K!(G))}.

Lemma 4.12. . is a precongruence on K!(G).
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Proof. The fact that .A→B is a preorder has already been noted. (r2)–(r4)
are the pre-congruence Lemma 4.1.8. (r5) is Lemma 4.1.9(i). Finally, we verify
(r6). Let σ : A&B ⇒ B, τ : C ⇒ A, θ : B ⇒ D. As already explained, since
@≈ ⊆ ., we work directly with ' −classes of strategies, rather that ' −classes
of ≈ −classes of strategies. Now (θ ◦ σ(n) ◦ τ | n ∈ ω) is a ⊆ −chain (using
⊆ −monotonicity of composition), and we can apply Lemma 4.1.9(ii) to yeld
(r6).

Now we define E = K!(G)/..

Proposition 4.1. E is a rational CCC. Moreover, E is well-pointed in the order-
enriched sense:

f ≤A,b g ⇔ ∀x : 1→ A. f ◦ x ≤A,B g ◦ x .

Proof. E is a rational CCC by Lemma 4.11 and 4.12. It is well-pointed by Intu-

itionistic Function Extensionality (Lemma 4.1.7).

Now we define the PCF model M(E) with the same interpretation of Nat as in
M(K!(G)). The ground and first-order constants of PCF are interpreted by the
' −equivalence classes of their interpretations in M(K!(G)).

Proposition 4.2. M(E) is an order-extensional standard model of PCF.

Proof. M(E) is an order-extensional model of PCF by Proposition 4.2.3. It is

standard because M(K!(G)) is, and .Nat=vNat .

4.3. An alternative view of E
We now briefly sketch another way of looking at E , which brings out its exten-

sional character more clearly, although technically it is no more than a presenta-
tional variant of the above description. Given a game A, define

D(A) = ({[x]' | x ∈ Str(A)},≤A)

Then D(A) is a pointed poset. Given σ : A ⇒ B, define D(σ) : D(A) → D(B) as
the (monotone) function defined by:

D(σ)([x]) = [σ ◦ x]

Write f : A→E B if f : D(A)→ D(B) is a monotone function such that f = D(σ)
for some σ : A ⇒ B. In this case we say that f is sequentially realised by σ, and
write σ 
 f .

Note that there are order-isomorphisms

• D(I) ∼= 1
• D(A&B) ∼= D(A)×D(B)
• D(A⇒ B) ∼= D(A)⇒E D(B)
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Here D(A) × D(B) is the cartesian product of the posets D(A),D(B), with the
pointwise order; while D(A)⇒E D(B) is the set of all functions f : A→E B, again
with the pointwise order.

Now note that, with respect to the representations of D(A&B) as a cartesian
product and D(A ⇒ B) as a “function space”, the interpretations of composi-
tion, pairing and projections, and currying and application in E are the usual
set-theoretic operations on functions in extenso. That is,

D(τ ◦ σ) = D(τ) ◦ D(σ)
D(〈τ, σ〉) = 〈D(σ),D(τ)〉
D(π1) = π1

D(π2) = π2

D(Λ(σ)) = Λ(D(σ))
D(Ap) = Ap

where the operations on the right hand sides are defined as in the category of sets
(or any concrete category of domains).

Thus an equivalent definition of E is as follows:

Objects as in K!(G)
Arrows f : A→E B

Composition function composition

The rôle of the intensional structure, that is of the use of the game A to represent
the abstract space D(A), is to cut down the function spaces to the sequentially
realisable functions. Specifically, note the use of A and B in the definition of
D(A)⇒E D(B).

4.4. Full Abstraction
We recall that a model M is fully abstract for a language L if, for all types T

and closed terms M,N : T

MJMK vMJNK⇔M vobs N (†)

where

M vobs N ⇔ ∀ program context C[.]
C[M ]⇓n ⊃ C[N ]⇓n

Here a program context C[.] is one for which C[P ] is a closed term of type N for any
closed term P : T ; and ⇓ is the operational convergence relation. The left—to—
right implication in (†) is known as soundness and the converse as completeness.
It is standard that soundness is a consequence of computational adequacy [Cur93];
thus by Proposition 2.10.1, standard models are sound. Also, full abstraction for
closed terms is easily seen to imply the corresponding statement (†) for open terms.

Theorem 4.1. M(E) is fully abstract for PCF.

Proof. Firstly,M(E) is a standard model by Proposition 4.2, and hence sound.
We shall prove the contrapositive of completeness. Suppose M, N are closed terms
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of PCF of type T = T1 ⇒ . . . Tk ⇒ Nat and

M(E)JMK �JT KM(E)JNK.

Let [σ] = M(E)JMK, [τ ] = M(E)JNK. By Intuitionistic Function Extensionality,
for some x1 ∈ Str(JT1K), . . . , xk ∈ Str(JTkK),

β :!N → Σ, β ◦ σ ◦ x1 ◦ . . . ◦ xk↓ and β ◦ τ ◦ x1 ◦ . . . ◦ xk↑.

By @≈−monotonicity of composition, this implies that σ ◦ x1 ◦ . . . ◦ xk 6 @≈Natτ ◦ x1 ◦
. . .◦xk, and hence that σ◦x1◦. . .◦xk = n for some n ∈ ω, and τ ◦x1◦. . .◦xk 6= n. By
⊆ −continuity of composition and the properties of the projections pk given in the
Approximation Lemma 3.5.1, for some m ∈ ω, σ ◦ pm(x1) ◦ . . . ◦ pm(xk) = n, while
by ⊆ −monotonicity of composition, τ ◦pm(x1)◦ . . .◦pm(xk) 6= n. By Lemma 3.6.3,
there are finite evaluation trees,and hence PCFc terms P1, . . . , Pk such that JPiK =
[pm(xi)], 1 ≤ i ≤ k. This means that JMP1 . . . PkK = n, while JNP1 . . . PkK 6= n.
By computational adequacy, this implies that MP1 . . . Pk⇓n and ¬(NP1 . . . Pk⇓n).
By Lemma 3.1.1, each PCFc term is observationally congruent to a PCF term.
Hence there is a PCF context C[.] = [.]Q1 . . . Qk, where Qi

∼=obs Pi, 1 ≤ i ≤ k,

such that C[M ]⇓n and ¬(C[N ]⇓n). This implies that M 6vobs N , as required.

As an instructive consequence of this proof, we have:

Corollary 4.1 (Context Lemma). For all closed M,N : T1 ⇒ . . . Tk ⇒ Nat,

M vobs N ⇔ ∀ closed P1 : T1, . . . , Pk : Tk

MP1 . . . Pk⇓n ⊃ NP1 . . . Pk⇓n

Proof. The left-to-right implication is obvious, by considering applicative con-
texts [.]P1 . . . Pk. The converse follows from the proof of the Full Abstraction The-
orem, since if M 6vobs N , then JMK � JNK by soundness, and then by the argument
for completeness this can be translated back into an applicative context separating

M and N .

The point of reproving this well-known result is that a semantic proof falls out
of the Full Abstraction Theorem. By contrast, Milner had to prove the Context
Lemma directly, as a necessary preliminary to his syntactic construction of the
fully abstract model. Moreover, the direct syntactic proof, particularly for the
λ−calculus formulation of PCF [Cur93], is quite subtle. This gives some immediate
evidence of substance in our “semantic analysis”.

5. UNIVERSALITY

The definability result we have achieved so far refers only to compact strategies.
Our aim in this section is to characterize precisely which strategies are (extension-
ally) definable in PCF, and in fact to construct a fully abstract model in which all
strategies are definable.
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5.1. Recursive Strategies
We shall develop effective versions of G and E . Our treatment will be very sketchy,

as the details are lengthy and tedious, but quite routine. We refer to standard texts
such as [Soa87] for background.

We say that a game A is effectively given if there is a surjective map eA : ω →MA

with respect to which λA (with some coding of {P, O,Q, A}) and the characteristic
functions of PA and ≈A (with some coding of finite sequences) are tracked by
recursive functions. A strategy σ on A is then said to be recursive if σ is a recursively
enumerable subset of PA (strictly speaking, if the set of codes of positions in σ is
r.e.).

Lemma 5.1. σ = σf is recursive iff f is tracked by a partial recursive function.
There are recursive functions taking an index for σ to one for f , and vice versa.

Proof. The predicate f(a) ' b⇔ ∃s.sab ∈ σ is clearly r.e. in σ, hence f has an
r.e. graph and is partial recursive

Conversely, given f define a predicate G(s, n) by:

G(s, 0) = s = ε,

G(s, n + 1) = ∃a, b, t. s = tab ∧ s ∈ PA ∧G(t, n) ∧ f(a) ' b.

Clearly G is r.e. and hence so is

σ = graph(f) = {s | ∃n.G(s, n)}.

These constructions are defined via simple syntactic transformations and yield effec-

tive operations on indices.

If A and B are effectively given, one can verify that the effective structure lifts
to A⊗B, A(B, A&B and !A. Also, I and Nat are evidently effectively given.
The most interesting point which arises in verifying these assertions is that ≈!A

is recursive. This requires the observation that, in checking s ≈!A t, it suffices to
consider permutations π ∈ S(ω) of bounded (finite) support, where the bound is
easily computed from s and t.

Similarly, one can check that all operations on strategies defined in Section 2
effectivize. For example, it is easily seen that the definition of σ; τ in terms of
sets of positions is r.e. in σ and τ ; or, we can give an algorithm for computing
EX(f, g). This algorithm simply consists of applying f and g alternately starting
from whichever is applicable to the input, until an “externally visible” output ap-
pears. Note that it is not the case in general that unions of ⊆ −chains of recursive
strategies are recursive. For example every strategy of type N(N is a union of an
increasing chain of finite and hence recursive strategies. However, given a recursive
σ : A&B ⇒ B, σ∇ =

⋃
n∈ω σ(n) is recursive, since it can be enumerated uniformly

effectively in n (“r.e. unions of r.e. sets are r.e.”).
Thus we can define a category Grec with objects effectively given games, and

morphisms (partial equivalence classes of ) recursive strategies. Also, the interpre-
tations of PCF constants in M(K!(G)) are clearly recursive strategies.

Proposition 5.1.
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(i)Grec is a Linear category
(ii)K!(Grec) is a rational cartesian closed category
(iii)M(K!(Grec)) is a standard model of PCF

We can now consider the extensional quotient Erec = K!(Grec)/. where . is
defined just as for K!(G), but of course with respect to recursive tests, i.e. recursive
strategies A(Σ. All the results of section 4 go through with respect to recursive
tests.

Proposition 5.2. Erec is a well-pointed rational CCC. M(Erec) is a fully ab-
stract model of PCF.

Proof. The result does require a little care, since the Isomorphism Theorem 3.6.4
is not valid for M(Erec). However, the Isomorphism Theorem was not used in the
proof of the Full Abstraction Theorem 4.3.1, but rather the finitary version Lemma

3.6.3, which is valid in M(Erec).

It is worth remarking that a nice feature of our definition of model in terms of
rationality rather than cpo-enrichment is that the recursive version Erec is again a
model in exactly the same sense as E . By contrast, in the cpo-enriched setting one
must either modify the definition of model explicitly (by only requiring complete-
ness with respect to r.e. chains), or implicitly by working inside some recursive
realizability universe.

5.2. Universal Terms
The fact that M(K!(Grec)) and M(Erec) are models shows that all PCF terms

denote recursive strategies, as we would expect. Our aim now is to prove a converse;
every recursive strategy is, up to extensional equivalence, the denotation of a PCF
term, and hence every functional in the extensional model M(Erec) is definable in
PCF.

More precisely our aim is to define, for each PCF type T , a “universal term”
UT : Nat⇒ T , such that

EJUT dσeK = [σ]

for each recursive σ. These universal terms will work by simulating the evaluation
tree corresponding to σ.

Firstly, we recall some notations from recursion theory. We fix an acceptable
numbering of the partial recursive functions [Soa87] such that φn is the n’th partial
recursive function and Wn is the n’th r.e. set. We also fix a recursive pairing
function 〈−,−〉 : ω × ω → ω and a recursive coding of finite sequences.

A recursive strategy σ is regarded as being given by a code (natural number)
dσe. By virtue of Lemma 5.1.1 we use such a code indifferently as determining σ

by

σ = σf where f = φdσe
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or

Wdσe = {dse | s ∈ σ}

The following lemma is a recursive refinement of the Decomposition Lemma, and
assumes the notations of Section 3.4.

Lemma 5.2 (Decomposition Lemma (Recursive Version)). For each PCF type
T there are partial recursive functions

DT ,HT : ω ⇀ ω and BT : ω × ω ⇀ ω

such that, if σ is a recursive strategy on T

DT dσe =


undefined, σ = ⊥T̃

〈2, n〉, σ = KT̃ n

〈3, i〉, R(σ)

HT dσe =
{
〈dσ1e, . . . , dσlie〉, R(σ)
undefined, otherwise

BT (dσe, n) =
{
dτne, R(σ)
undefined, otherwise

where R(σ) stands for

Φ(σ) = (3, i, σ1, . . . , σli , (τn | n ∈ ω)).

Proof. DT dσe is computed by applying φdσe to the (code of) the initial question.
The extraction of τn from σ, τn = {∗1s | ∗1 ∗2 ns ∈ σ}, is obviously r.e. in σ,
uniformly effectively in n. Hence we obtain an r.e. predicate s ∈ BT (dσe, n), and
by an application of the S-m-n theorem we obtain the index for “BT dσen = dτne”.

Similarly the extraction of σ′ from σ is r.e. in σ, and that of σ′′ for σ′ is r.e. in σ′;
while σ1, . . . , σli are obtained from σ′′ by composition, dereliction and projection,
which are computable operations by Proposition 5.1.2. Hence applying the S-m-n

theorem again we obtain the codes for σ1, . . . , σli .

Given a PCF type T , we define the subtypes of T to be the PCF types occurring
as subformulas of T , e.g. (N ⇒ N) and N are subtypes of (N ⇒ N) ⇒ N . Let
S1, . . . , Sq be a listing of all the (finitely many) subtypes of T , where we write

Si = Si,1 ⇒ . . . Si,li ⇒ N

To aid the presentation, we will use an abstract datatype CtxtT of “T -contexts”,
which we will show later how to implement in PCF. We will make essential use of
the fact that, while contexts can grow to arbritary size in the recursive unfolding
of an evaluation tree of type T , the types occurring in the context can only be
subtypes of T .
CtxtT comes with the following operations:
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• emptycontextT : CtxtT

• getS : N ⇒ CtxtT ⇒ S for each subtype S of T

• extendSi : CtxtT ⇒ Si,1 ⇒ . . . Si,li ⇒ CtxtT for each subtype Si of T

• mapT : N ⇒ CtxtT ⇒ N .

If Γ = x1 : U1, . . . , xn : Un, then Γi is the subsequence of all entries of type Si,
1 ≤ i ≤ q and Γj = xj : Uj

The idea is that, if Γ is an “abstract context”,

• extendSi
Γx

Si,1
1 . . . x

Si,li

li
= Γ, x1 : Si,1, . . . , xli : Si,li

• mapT i Γ = 〈i1, i2〉 where Γi = x : Si1 = Γi1
i2

• getSi
jΓ = Γi

j .

Now we use the standard fact that every partial recursive function φ : ω ⇀ ω can
be represented by a closed PCF term M : N ⇒ N in the sense that, for all n ∈ ω

Mn ⇓ m⇔ φn ' m.

This obviously implies that partial recursive functions of two arguments can be
represented by closed terms of type N ⇒ N ⇒ N . Specifically, we fix terms
DT,HT : N ⇒ N and BT : N ⇒ N ⇒ N which represent DT , HT and BT

respectively.
Now we define a family of functions

FS : CtxtT ⇒ N ⇒ S

for each subtype S = U1 ⇒ . . . Uk ⇒ N of T , by the following mutual recursion:

FS = λkN .λΓCtxt
T .λxU1

1 . . . λxUk

k

let〈k1, k2〉 = DT k in

if k1 = 2 then k2 else

if k1 = 3 then

let ∆ = extendS Γx1 . . . xk in

let 〈i1, i2〉 = mapT k2 ∆ in

case i1 of

1 : . . .
...
i : let 〈k1, . . . , kli〉 = HSk in

let n = (getSi
i2∆)(FSi,1k1∆) . . . (FSi,li

kli∆)
in FN (BSkn)∆

i + 1 : . . .
...
q : . . .

otherwise : Ω
endcase

else Ω

These functions have been defined using some “syntactic sugar”. Standard tech-
niques can be used to transform these definitions into PCF syntax. In particular
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Bekic̆’s rule [Win93] can be used to transform a finite system of simultaneous re-
cursion equations into iterated applications of the Y combinator. The universal
term UT can then be defined by

UT = FT emptycontextT .

It remains to be shown how CtxtT can be implemented in PCF. To do this, we
assume two lower-level data-type abstractions, namely product types T × U with
pairing and projections, and list types list(T ) for each PCF type T , with the usual
operations:

• emptyT : list(T )⇒ N

• consT : T ⇒ list(T )⇒ list(T )
• hdT : list(T )⇒ T

• tlT : list(T )⇒ list(T )
• nilT : listT

We write l↓i for the i’th component of a list.
We represent an abstract context Γ by the q + 1−tuple (l1, . . . , lq, mlist) where

li : list(Si), 1 ≤ i ≤ q and mlist : list(N). The idea is that li = Γi, while

mlist↓i = 〈i1, i2〉 = mapT i Γ.

It is straightforward to implement the operations on contexts in terms of this
representation.

• emptycontextT = ([], . . . , [], [])
• mapT i(l1, . . . , lq, mlist) = mlist↓i
• getSi

j(l1, . . . , lq, mlist) = li↓j
• extendSi(l1, . . . , lq, mlist)x1 · · ·xli = L

where

L = extend1Si,li
(· · · (extend1Si,2(extend1Si,1(l1, . . . , lq, mlist)x1)x2) · · ·)xli

and extend1Si,j (l1, . . . , lq, mlist)x equals

(l1, . . . , lj + +[x], . . . , lq, mlist + +[〈j, lengthSj
(lj) + 1〉])

where −+ +− is list concatenation.

Finally, we show how to represent lists and products in PCF. We represent lists by

List(T ) = (N ⇒ T )×N

where e.g.

• consT =

λxT .λl : List(T )
let (f, n) = l in (g, n + 1)

where

g = λiN . if i = 0 then x

else f(i− 1)
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• emptyT (f, n) = n = 0.

A function taking an argument of product type

T × U ⇒ V

can be replaced by its curried version

T ⇒ U ⇒ V

while a function returning a product type can be replaced by the two component
functions.

This completes our description of the universal term UT .
For each PCF type T , we define a relation M R T a between closed PCF terms

of type T and strategies a ∈ Str(T ) by

M R T a ⇐⇒ JMK ' a.

This is extended to sequences M̃ R T̃ ã in the evident fashion.
We fix a type T with subtypes S1, . . . , Sq as in the previous discussion.

Lemma 5.3. Let T̃ ⇒ S be a PCF type-in-context and σ ∈ Str(T̃ ⇒ S) a
compact strategy, where T̃ , S are subtypes of T . Let Γ be a closed expression of type
CtxtT (which we will regard as a sequence of closed terms), and ã a sequence of
strategies. Then

Γ R T̃ ã⇒ (FSdσeΓ) R S(σã).

Proof. By induction on the height of the finite evaluation tree corresponding to
σ under Theorem 3.1 , and by cases on the Decomposition Lemma for σ. The cases
for σ = ΛS̃(⊥T̃ ,S̃) and σ = ΛS̃(KT̃ ,S̃n) are clear.

Suppose

σ ≈ Ci(σ1, . . . , σli , (τn | n ∈ ω)).

By Intuitionistic Function Extensionality Lemma, it suffices to show that, for all
closed M̃ and strategies b̃ such that M̃ R S̃ b̃

FSdσeΓM̃ R Nσãb̃.

Let ∆ = extendSΓM̃, c̃ = ã, b̃. Then ∆ R T̃ ,S̃ c̃, so by induction hypothesis,

FSi,jdσje∆ R Si,j σj c̃, 1 ≤ j ≤ li

Hence if we define

M = ∆i(FSi,1dσ1e∆) · · · (FSi,li
dσlie∆)

= ∆i1
i2

(FSi,1dσ1e∆) · · · (FSi,li
dσlie∆)

where 〈i1, i2〉 = map i∆, then M R Nci(σ1c̃) · · · (σli c̃). Thus if ci(σ1c̃) · · · (σli c̃) =
⊥N , then JMK = ⊥n, while if ci(σ1c̃) · · · (σli c̃) = n then JMK = n.
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In the former case,

JFSdσeΓM̃K ' ⊥N ' σc̃.

In the latter case,

JFSdσeΓM̃K ' JFN (Bdσen)∆K

' JFNdτne∆K,

while σc̃ ' τnc̃, and by induction hypothesis FNdτne∆ R Nτnc̃.

Now we define a family of relations (�k| k ∈ ω), where �k⊆ ω × ω, inductively
as follows:

�0 = ω × ω

n �k+1 m ⇐⇒ (Dn = 〈2, p〉 ⇒ Dm = 〈2, p〉)
∧ (Dn = 〈3, i〉 ⇒ Dm = 〈3, i〉
∧ [Hn = 〈k1, . . . , kli〉 ⇒

Hm = 〈k′1, . . . , k′li〉 ∧
∧li

j=1 kj �k k′j ]
∧ ∀p : 0 � p � k. Bnp �k Bmp).

We can read n �k m as: the stategy coded by m simulates the strategy coded
by n for all behaviours of size ≤ k.

We write

n � m ⇐⇒ ∀k ∈ ω.n �k m.

Lemma 5.4. For all PCF types T , σ ∈ Str(T ), k ∈ ω :

(i)pk(σ) � σ.
(ii)σ �k pk(σ)

Lemma 5.5. With S, Γ, M̃ as in Lemma 5.3, and σ any strategy in Str(S):

JFSdσeΓM̃K = n ⇐⇒ ∃k ∈ ω. JFSdpk(σ)eΓM̃K = n

Proof. (⇐) By Lemma 5.4(i).
(⇒) By Lemma 5.4(ii), using continuity, and hence the fact that only finitely

many calls to D,H and B are made in evaluating FSdσeΓM̃ . (This can be made pre-

cise using Berry’s Syntactic Approximation Lemma for PCF [BCL85]).

Theorem 5.1 (Universality Theorem). For all PCF types T and recursive
strategies σ ∈ Str(T ) with n = dσe,

M(K!(G))JUT nK 'T σ.

Thus every functional in M(Erec) (equivalently, every functional in M(E) realised
by a recursive strategy) is definable in PCF.
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Proof. For all closed M̃ : T̃ .

JUT dσeM̃K = n ⇐⇒ ∃k ∈ ω. JUT dpk(σ)eM̃K = n

by Lemma 5.5
⇐⇒ ∃k ∈ ω. pk(σ)JM̃K = n

by Lemma 5.3
⇐⇒ σJM̃K = n

by the Approximation Lemma for strategies.

By the Intuitionistic Function Extensionality Lemma this shows that JUT dσeK '
σ.

In the case of cpo-enriched models, an important result due to Milner is that the
fully-abstract order extensional model is unique up to isomorphism. For rational
models, the situation is not quite so rigid. For example, both M(E) and M(Erec)
are fully abstract, but M(Erec) is properly contained in M(E). To see this, note
that all monotonic functions of type N ⇒ N are sequentially realised and hence
live inM(E), while only the recursive ones live inM(Erec). We can, however, give
a very satisfactory account of the canonicity of M(Erec). We define a category
FAMOD(PCF) with objects the fully abstract (rational) models of PCF. A homomor-
phism F :M(C)→M(D) is a functor from the full cartesian closed sub category of
C generated by the interpretation of N inM(C) to the corresponding subcategory
of D. F is additionally required to be a rational CCC functor, and to preserve the
interpretation of N and of the PCF ground and first-order constants.

Theorem 5.2 (Extensional Initiality Theorem).
M(Erec) is initial in FAMOD(PCF).

Proof. Let N be any fully abstract model. By the Universality Theorem, there
is only one possible definition of F :M(Erec)→ N , given by

F (M(Erec)JMK) = N JMK

for all closed terms M of PCF. SinceM(Erec) and N are both fully abstract,

M(Erec)JMK ≤ M(Erec)JNK

⇔ M vobs N

⇔ N JMK ≤ N JNK

so this map is well-defined, and preserves and reflects order. It is a homomorphism

by the compositional definition of the semantic function.
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