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ABSTRACT 

Part I is a general description of a simple operatirg 

system, which runs in a virtual machine (implemented on ~ 

Teal machine by an interpreter). 056 copes wi th 

only one user at a tiJlle, and is not a multiprogramming 

system: many major problews associated with large 

operating systems have therefore been avoided or considerably 

simplified. It nevertheless has several features of in:erest. 

including the fact that it is written almost entirely in the 

high-level language BePL. The most important single fe~ture, 

however, is the hierarchical nature of its control struc~ure, 

which avoids the need for a special job-control language. 

Part II covers the facilities for input/output, and the 

handling of files on the disc. The input/output system uses 

a very general form of stream; the filing system is designed 

to have a clear and logical structure. 
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nsf, - AN OPERATING SYSTE~ 

FOR A SMALL COMPUTER 

PART I - GENERAL PR INC I PLES AND STRUCTURE 

O. PRELIMINARIES 

0.0. Intpoduction. 

Although there is already considerable understanding of 

the theory of programming languages, it seems that operating 

systems are still designed ad hoc. In both cases, however, the 

object is the same: to direct the activity of a computing machine. 

Indeed, many operating systems are driven by "job control 

languages" (see, for example, Brown[4J), which are nothing mOTe 

than primitive but specialised programming languages. fhe 

fundamental concepts of programming languages are now falTly well 

understood, but there is a need for theoretical research to bring 

similar conceptual understanding to the design of operating systems. 

The need for such a coherent overall design and underlying 

philosophy is being increasingly emphasized, for example by COX[6J. 

Purely theoretical work in this field, if divorced from practical 

work, easily becomes sterile and unrealistic; we need to put our 

ideas to the test by using them as the basis of a real cpera ting 
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system. This paper and its companion, Part 2 [15J, are a des

cription of such an experimental system.
 

The object of the experiment is to demonstrate that an 

operating system designed to be coherent and elegant can never

theless control a real machine with a group of real users. 

Seedham and Hartley [10J rightly state that in this kind of work 

one needs both theoretical insight and horse sense. They suggest 

that with a formalistic approach - which they illustrate with a 

thumbnail sketch of an "ideally simplified computer system" 

"there is a very real danger that a lot of small and awkward 

corners must be knocked off the problem wi th a view to achieving 

simplicity but. unforttmately, at the expense of £acility.'l 

Since we believe that the system they are talking about is ours, 

we hope to show that we cope with our real environment, admittedly 

simplified for the sake of experiment, jn a realistic way. 

A computer deuic~ted to the provision of a computing ser

vice is an unsuitable vehicle for this kind of experiment. If 

the experimental system is used for the service work the need for 

constant reliability and adequate documentation e£fectively pre

vents changes to the basic design of the system, but at the 

same time much effort is devoted to removing small bugs as soon as 

they are discovered. On the other hand, if the experimental 

system is not the machine's normal regime, much inconvenience and 

disruption of service is caused by the frequent changes of sys

tem. For these reasons a computer devoted exclusively to soft 

ware research is most desirable, and, with the aid of a grant 

from the Science Research Council, the Programming Research 

Group has recently acquired a Modular One machine for this pur

pose. 

Modular One has a l6-bit word, and a cycle time of 7S0nS. 

Our complete configuration includes 321 of core, £ast paper tape 

input/output, a 1M word disc, a multiplexer for several consoles, 

a line printer and a clock, but the machine was originally deliv

ered wi thout the last four items. Our initial e £fort was there

fore restricted to a single user system wi th no permanent file 
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store. Such a limitation was, in fact, not so great a disadvant

age as it might at first sight appear. The design of a single 

user system presents several interesting problems which should be 

solved before the extra complexities 0 f multi -programming and con

current processing are faced. The function of a multi-user sys

tem is to provide each user with all the facilities of a large 

computer J and it follows that the first stage in the design of 

such a system should be (but rarely is) the design of a satisfact

ory single-user system. The problems associated wi th the organ

isation of file storage, being logically separate from the rest 

of the system, were also conveniently postponed for a time; but 

the filing system has since been added, and is described in Part 2. 

0.1. Choice of Language 

As a deliberate act of policy it was decided to \l{rite the 

entire system in one high-level language, as it seems to us that 

the current practice of wri ting software in an assembly language 

is one of the main sources of the "software problem". There are 

three main areas in which the use of a high-level language can 

relieve a programmer of tedious organisational details: 

(il the control of the path of execution, 

(ii) storage allocation, 

(iii) the representation of information. 

For software work, and particularly in the programming of operat

ing systems, elaborate provisions and conventions about storage 

allocation and data representation can be an embarrassment. It 

is usually the job of the operating system, for example, to pro

vide a suitable storage allocation algorithm, and it is inapprop

riate that decisions about it should be prejudiced by the design 

of the language used. Moreover, the requirement that an opera!

ing system should deal wi th storage allocation implies that the 

language should allow addresses to be treated as data objects~ 

and for calculations to be performed on them. In assembly code 

this is a matter of course, but few high level languages are 
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equipped for it. General pointers and addresses, if treated at 

all, are either so limited that one may not even assign a new 

value to them (cf. arrays in Algol 60) or are strongly associated 

with the particular kinds of data structure available in the 

language (cf. LISP). Operating systems are concerned wi th the 

general problem of the allocation of the actual hardware re

sources J and are one of the few applications where the linear 

mode of addressing employed in most computer memories must be 

accessible in the language. Software writers also require great 

fleXibility in their choice of data representation. It is prob

ably the existence of too many constraints in these two areas that 

turns software writers away from high level languages back to 

their more permissive machine codes. On the other hand, there is 

general agreement about what facilities are desirable to control 

the path of execution ~ such things as conditional commands and 

expressions, functions and subroutines, cycle commands and recurs

ion. 

Although in most existing languages all three areas are 

treated with comparable sophistication, it is by no means essent

ial to do so. The resources of the ideal software language shOUld, 

in our opinion, be concentrated around the control facilities, and 

matters concerning storage and representation left very much to 

the programmer. 

BCPL, the language used in 0$6 t is just such a language. 

It was invented by Martin Richards [llJ [12J, and is superficially 

very like CPL [2J, from which it gets its name, with the same 

richness as CPL in the syntax of commands and expressions. There 

is only one type, the bit pattern: that is to say, the language 

deals directly with the representation of objects rather than 

with the abstract objects themselves. This property makes the 

language unsuitable for the general programmer, as it does not 

prevent his performing meaningless operations (such as mUltiply

ing together two labels); on the other hand, it provides the 

extra flexibility system programmers require. BCPL has no auto

matic storage allocation - except for a rudimentary stack for 
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local variables and local vectors - but one of the operators in 

the language al1o'Ws a bit pattern to be treated as an address~ 

and the converse operation is also available: this provides the 

mechanism for control of storage and the manipulation of data 

structures. 

0.2. The Virtua l Machine 

Much of the difficUlty in writing software concerns the 

need to cope with inadequate hardware. Many complaints about 

the inefficiency of high-level languages arise because most 

modern machines have an instruction set which is grotesquely 

unsuitable for implementing them. Nowadays, the majority of 

computer instructions are generated by compilers, and it might 

reasonably be supposed that the standard compilers for a new 

range of machine s would be designed before the order code was 

fixed. The design of the Burroughs B6500 machine [sJ is an 

example of what this approach might produce. 

In an experimental environment an early commitment to a 

particular design of machine code is even more unfortWlate. Be

sides, the instruction set of Modular One is ingenious and elab

oratej it is difficult even for an experienced programmer to 

decide the best ~ay of coding any particular operation. The 

instruction set is not at all convenient for the implementation 

of BCPL and a preliminary investigation indicated that the mach

ine code generated by a simple-minded code generator wculd be 

very bUlky. The solution to these problems was to design an 

interpreted code, known as lC, to fit the needs of the BCPL sys

tem. The IC interpreter was written in Modular One machine code. 

and takes about 250 instructions. 

The inte rpreter for IC thus behaves as a virtual machine 

whose instruction set is IC (a description of the structure of 

this machine and of IC will be deferred to a later paper). The 

practical effect of using this technique has been to produce very 

compact programs with a very simple code generator. but to slow 

down the execution time by a factor of about fifteen. The actual 
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hardware of Modular One is entirely concealed behind this virtual 

machine; apart from tracking down hardware faults none of our 

users has required to know anything of the actual hardware struct

ure of Modular One, nor have they been conscious of the extent to 

which the interpreter slows down the execution.. It is worth 

pointing out that the virtual machine is of similar complexity 

to the Modular One, apart from the control of peripheral trans

fers (see below ~Z.l) which is at present rather more automatic 

in the virtual machine. It would therefore be possible to 

construct a CPU whose hardware worked directly on IC; this, of 

course, would run about fifteen times faster than the present 

system. 

From now on, when describing 056, we shall use the terms 

"machine", "hardware" and II machine code" to refer to the virtual 

machine and to Ie, unless the context specifically implies other

wise. 

0.3. Requirements of an Operating System 

The functions of an operating system may be separated 

into several classes: 

I, Control and protection of users 

(l.l) There must be provision for loading a program 

and initiating its execution. 

(1.2) The system must have the abil1:ty to recoVer after 

failure of a user's program. 

(1.3) The user's program must be given t as far as poss

ible, protection from outside interfet'ence.., including 

hardware or system failure, and the operation of other 

programs. 

* We have strictly enforced the rule that no programs are to 
be written in Modular One machine code. (In fact all our user 
programs are written in BCPL.) This has had the dual benefit 
of inSUlating our users, who are chiefly research students in 
computing, from the irrelevancies of the machine design and 
also of protecting us from a clamour to make full use of the 
raw speed of the machine. 



2. Hardware Management 

(2.1) There must be routines for performing those
 

special. operations on the hardware which cannot be e.xpress


ed in the user's programming language - for example,
 

operations concerned with the manipulation of the periph


erals. We include under this heading the mechanism for
 

loading the operating system itself.
 

(2.2) The operating system must control the allooation
 

of resources - e.g. core store) time, peripherals.
 

3. Other facilities 

Many systems also provide a suite of utility routines, 

particularly in the realm of input/output, which are in 

the operating system not from theoretical necessity, but 

merely to save the user the trouble of programming them 

himself. 

056 fulfils all the functions mentioned above. but because of 

the simple nature of the environment, some of the problems are 

considerably simplified. We defer to Part 2 all discussion 

of the input/output scheme and filing system - which comprises 

part of heading 2 and most of heading 3 - and now proceed to 

discuss the remaining sections in turn. 



B 

1. CONTROL AND PROTECTION
 

1. O. General ideas 

The job of getting a program running under an operating 

system may consist of various operations involving a number of 

choices. For example, a text may be edited, and compiled by 

one of a number of compilers; the program may then be loaded,to

gether with previously compiled library routines; the required 

input/output facilities and post-mortem arrangements may be set 

up, and the program finally executed. The traditional method of 

controlling this process is by means of a special-purpose "job

control language". Many of these languages are insufficiently 

powerful, so that complex activities must be split into several 

jobs, coupled together by means of complicated verbal instruct

ions to the operators. All of them are inelegant. and their 

description is usually so complicated that there is a large risk 

of error when attempting an uncommon sequence of operations. 

A job control language may be thought of as a simple 

programming language, and the various editors, compilers and the 

rest as utility routines available to the programmer in that lan

guage. The system then appears to be a simple 1Il oad and go" loop: 

the program in the job description language is read, and possibly 

compiled and executed, though more probably it is interpreted 

directly. This being so, it seems reasonable to use the same 

high-level programming language as is used throughout the system, 

a language designed wi th an eye to clarity of expression and ease 

of correct programming. This is the solution adopted in the 

present system, except that since the compiler is a mUlti-pass 

program with overlays and compilation is consequently a lengthy 

process, the steering program is at present precompiled, and the 

load-go loop reads and obeys a binary program. 

It is foreign to the spirit of high-level programming to 

restrict the calling of any routine to the outer level of the 

program: indeed, one of the resul ts of progranrrning in a high

level language is that one is never quite sure when one is actual
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ly writing an "outer level" program. In 056 we make no such re

striction: any program may load, ohey, edit or cOlT'pile any other 

program. to any depth, suhj ec t only to the a vai labi 1 i ty of th e 

core store. It will be noted that there now appears to be 

little difference between obeying a program and applying a sub

routine, except for the trivial point that the former usually 

has no parameters. 

In a perfect world it would he possible for routines to 

be the largest unit of instruction code. But in practice fail

ures occur I and when they do it is necessary to know how Jl'uch of 

the hierarchy of activations to abort. A routine activation is 

too small a unit fOT this purpose: firstly hecause many fail

ures within routines are in fact the result of errors in surround

ing program, and secondly because the cost Or takin~ adequate 

precautions, at every routine call, for recovery after possible 

error, would be prohibitive. The style and intelligihility of 

a program is usually improved by making extensive use of sub

routines, and it is therefore important to maJre routine applic

ation as cheap as possible. 

We may now, at last, give some meaning to the term 

"program"; we use it to denote that part of the nested set of 

subroutine activations to be aborted if an algorithm fail~. The 

word is often used to denote a portion of code loaded all at one 

time, which might consist of several concatenated segments, each 

of which has been separately compiled. 1\1 thou~h in manyoper

ating systems these are identified, they are two independent 

concepts, and in 056 are completely separated. 

1.1. The Loading of PrOGrams 

The store of the 056 machine is divide~ ~y hardware into 

two areas, of which one is reserved for progr8ID code. A comp

i led segment of BCPL text is also in two main parts, a section 

of code and one containing pre-initialised variahles (e.g. lahels 

and strings); both parts are relocatable. It has proved 

satisfactory to ~anage the code area as a 5tack, so that code is 
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strictly last-in-first-out. The space fOT the block of vaTia~

les is claimed from the free store system (described below). 

After these blocks, there comes a block of code called an Inter

Lude. Interludes are loaded into the code area and immediately 

obeyed; they are subsequently overwritten by the next code 

loaded. The interlude is a general feature of the system, and 

is available for any purpose; the particUlar example occurring 

in compiled BePL programs causes the code to be relocated, using 

information which follows the interlude in the compiled program. 

BCPL has a global vector, which corresponds quite close

ly to Fortran's COMMON storage: it is the only means by which 

sep~Tately compiled segments of prograw can communicate. When 

a segment containing global functions, routines or labels is 

loaded, it is the final job of the loader to initialise the 

appropriate elements in the global vector. 

Any program, of course, may call the loader routine in 

order to load more code: a program may therefore itself 

load from the file system the library routines it requires. 

Code may also be explicitly unloaded. The parameter for the 

Unload routine specifies how much of the code in ~he code area 

is to be retained. The variable blocks corresponding to the 

abandoned code are returned to free storage. 

The 056 machine has only one global vector. which is of 

limited size. There is therefore some danger tha~ the initial

isation of the globals by the loader will overwrite those of 

some other segment loaded further up the hierarchy. On the 

other hand, elements of the global vector are also used for 

storing variables. especially variables used by more than one 

section of program, and the ability to overwrite these variables 

is, of course, essential. Ideally we would wish to allow 

intentional overwritinp., but to protect the user from the 

effects of doing so unintentionally. The compromise adopted in 

056 is that the function, routine or label loader, when initial

ising a global. should preserve the previous contents. which in 

turn would be restored hy the Unload routine. Each global 



element is thus effectively a push-down store. "pushed" when a new 

global routine. function or label is defined for that element. 

and "popped" when the defining code is unloaded. 

Al though this compromise is better than nothing, it is 

not entirely satisfactory. The difficulties are an example of 

those which often occur when it is attempted to impose hierarchical 

behaviour on a non-hierarchical structure (in this case a 

linear vector). Global functions which have been overwritten 

by subsequent definitions are (if only temporarily) completely 

inaccessible. and not merely hidden. One would prefer something 

more like the Algol scope rules. and a more sophisticated method of 

segmentation: but BCPL is more concerned with ease of implementation. 

All this is an example of the general tendency for the 

power of the hierarchical expression in a language to be reduced 

by the lack of corresponding power in the mechanism for storage 

of variables. 

The ability to trap th"e application of an undefined global J 

whether or not it has been previously defined. has been used 

in a debugging facility. which is discussed further below 

(§3.1.). 

1.2. Recovery aft;e.r fai Lure 

In OS6. the decision as to how much of the activation 

hierarchy to abort after failure is left to the programmer. 

There is a routine called Run, which takes a program (that is. 

a parameterless routine) as its parameter: 

Run[P.rog] 

Such a call leads to the application of the parameter in the 

usual way: 

Frog [J 

The execution of Prog[]. or of any routine. may terminate 

in one of three ways. The routine itself ~ay decide that it has 

finished its job. it may decide that it has failed to such an 
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extent that there is no point in continuing, OT it may be forcibly 

interrupted (because it tries to refer outside storage bounds, 

fOT example. or because the operator switches off the computer). 

In each case, however Prog terminates, the system resumes execut

ion of the routine containing the call of Run, after restoring 

the machine, in some respects. to the state it had before the 

call of Run. 

An example illustrating the use of Run is given by the 

following Toutine, which is a very simple steering program for 

a compiler. 

let SteeringProgram[J be 

§SP § Fai tUlle, Exit true, false 

I these are two global variables 

Run[TextInputJ
 

unless Failure do Run[Compiler]
 

repeatunti1 Exit $sp 
This routine invokes two further SUbroutines, the TextInput rout

ine and the Compi"ler itself. The loop continues until one of 

these routines explicitly sets the global variable Exit. If, 

for example, the machine is switched off while reading text, when 

switched on again it will continue the loop, omi tting the Run of 

Compi"lel' (as Fai"lure will still be true), and will recommence 

fl'extInput. 

Run is fully recursi.ve: any routine may Run another. 

In the example above, the steering program itself might wel~ be 

invoked by a call 

Run[SteeringProgramJ. 

1.2.1. Implementation 

The routine Run creates a vector called the Run-block, 

for which the space is claimed from the storage allocator. In 

this vector are stored the values of some of the more important 

system variables, which include those concerned with storage 

allocation in both segments, those which conventionally hold 

the normal input/output streams (see Part 2), and those concerned 
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with post mortem arrangements. Next a routine is called to prov

ide the program being Run with a fresh free storage area (this is 

discussed further below in §2.2). The program is then applied. 

Two methods are provided for terminating the Running of 

a routine after successful execution. The first, the simpler 

in conception and the commoner in practice, is invoked by the 

usual methods in BCPL for returning from a subroutine calL 

This implies that the routine need not know whether it had been 

simply applied, or had been executed under control of Run; in 

other words, as far as the writing is concerned, a program and a 

routine are identical. Sometimes, however, a job becomes comp

leted when the algorithm is deep in subroutine calls. In this 

case another routine, Finish, is available, which (by explicitly 

manipUlating the stack pointer) achieves the same effect. It 

should be noticed that this second method is invoked by the call 

of a system routine, not by a special command in the language: 

that is to say, we write 

Finish[J 

rather than 

fi n ish 

This is quite deliberate: the meaning of the concept of finishing 

a program depends entirely on the particular operating system, 

and its ad hoe nature is quite out of place in the semantics of 

a language with an hierarchical structure. 

For a program which decides it has catastrophically failed, 

the proper course is to call the routine GiveUp. This routine 

(which conventionally takes one integer parameter, used for 

passing diagnostic information) is a variable routine and may 

be freely altered by the programmer. A default value, which 

prints some standard diagnostic information, is set by the system. 

GiveUp is one of the variables preserved in the Run-block) so 

that, as will be seen below, any change made by a program is 

applicable only until the end of the Run. 

When a program is forcibly interrupted, the operator is 

given a choice. Either he may force a call of Finish, which 
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qUietly terminates one level of Run, or if diagnostic information 

is required, he may force a call of r,iveUp~ 

When the Running of a program has terminated, Run replaces 

the old values of the variables and uses them to restore the mach

ine, in some respects, to the state it had before the call of Run. 

In particular, any code loaded during the Run is unloaded, and any 

storage claimed during the Run is forcibly returned. Finally the 

space occupied by the Run-block is also returned. 

1. 2.2. CZeaT'ing up 

It sometimes happens that a system routine initiates some 

activity which, to avoid endangerin~ the system' 5 security, requires 

subsequent completion, even if the program fails. Such activities 

include output to a file on the disc (which probably requires final 

housekeeping action), and transfers from peripherals to core store 

in the free store area (which must be cancelled if incomplete 

before the storage is reallocated). Whenever such an activity is 

initiated. the concluding action required is entered in a chain 

called the CleapUpChain. If the activity is completed properly 

under control of the program, the entry is removed from the chain; 

otherwise it is obeyed after termination of the program,when 

the remaining entries in the chain are called in turn by Run. 

The CleapUpChain is also available for activities which 

require CQmpletion, not for the sake of system security, but to 

avoid inconvenience to the user (for example J to avoid abandoning 

part of his output in various buffers). However J precautions must 

be taken to ensure that, even if some clearing-up activity fails, 

the other entries in the chain are duly obeyed. 

~~en an activity is forcibly completed by means of the 

ClearUpChain, it may itself close down some further activity in 

the normal way: this would cause embarrassment if the further 

actiVity had already been forcibly completed. CaTe must be 

taken to avoid this situation. The order of the forcible compl

etions is plainly important, and in practice the difficulties 
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are usually avoided by processing the ClearUpChain in a "last in 

first out" fashion. 

1. 2.3. The Load-Go Loop 

We are now in a position to describe the Load-Go Loop \\rhich 

is the heart of the operating system. The following is a 

slightly simplified version: 

let LoadGoLoop[] be 

§ Run[LGLoopJ repeat f 
and LGLoop(] be 

§ Load[] 

Run[Pl'ogJ 

Note that it is necessary to Run LGLoop to a1101..' for the possib

iIi ty of failure in the loading phase. No specific mention of 

unloading is requi red J as it is done automatically by the Run in 

LoadGoLoop. l~ 

1. 3. Protection from inteI'fer~nce 

This facet of an operating system's activity is particularly 

simplified in 056. In the first place we cater for only one 

user running only one program at a time) we therefore merely 

need to protect the integrity of the permanent information in the 

system. This permanent informat ion is principally in the 

filing system, which is discussed in Part 2, but it also includes 

the operating system itself. 

* To allQ'l'l' for the possibility of recovery if, say, the 
machine is switched off between the Runs of LGLoop (i.e. 
while obeying the repeat) it is necessary to Run ::'oadGoLoop; 
however, to avoid an infinite regression we achieve the saP-Ie 
effect by forcibly "tying a loop1! at the end of the chain of 
Run blocks, when the systeID is initiated. 
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Most operating systems protect themselves by hardware, 

but in 056 there are no privile.gec1 routines, and any part of the 

system may be overwritten. This fact makes it impossible fOT 

the system to be wholly immune from corruption by an aberrant 

program, and we can only hope to cope with the more common forms 

of error. But since no other users are involved it is always 

possible to reload the system, if for example, a program accidJ 

entally clears half the store, and there are compensations. The 

chief advantage is the great flexibility offered by such an open 

system to programmers who are concerned (as are most of the system's 

users) with the development of system programs, or other large 

sui tes of programs. For example, a programmer developing a new 

disc housekeeping scheme may replace the basic routines which 

transfer information to and from the disc by an alternative set 

which manipulates a simulated disc in the core, instead of 

the disc itself. All the standard file system routines are still 

available acting on the simulated disc, and the real disc is not 

put at risk until the new routines have been debugged.* (It is 

a simple application of the Run apparatus to ensure that the 

normal primitive routines are replaced at the conclusion of the 
te st) . 

In the second place we have avoided altogether the prob

lem of dealing with malice on the part of the users. Such prot

ection would, indeed, be impossible in a system as open as ours, 

but in any case we agree with the experience of the Leeds team 

[16] that it is unnecessary in our sort of environment (at least 

when the operating system is not required to Lation severely 

limited computer time). 

* It must be admitted, however, that our programmers tend to 
discover the value of such a careful approach by bitter experience 
in the application of untested routines to the permanent information 
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The system does, however, embody checks against the more 

coDUnan forms of ace i dent al error. In mas t case 5 th is activi ty 

is quite ad hoc: if, for example, a program does a wild jump, the 

most likely address where it will land is zero, and so we arrange 

that word zero of the program area is an error trap. Other 

cases are merely good practice, such as checking the validity or 

consistency of information supplied to system routines, or corning 

in from the peripherals. Only a few are a matter of system des

ign, such as the division of the stoTe into two segments. The 

space reserved for program is accessible, other than for execution, 

only by two special instructions, which occur only in two special 

machine code routines. Thus the code in the program segment is 

most unlikely to be altered accidentally - and in fact such an 

accident has never, to our knOWledge, occurred. We take advant

age of the security of this segment by keeping very important 

variables there. 

It is worth pointing out that one of the chief causes 

of wild errors has been removed by banning assembly code from 

the system. The exclusive use of a high-level language implies 

that although "silly mistakes" are still made, most of them 

are detected by the compiler before they can do harm. The other 

kind of typical assembly code mistake, caused by conflicting 

use of storage, is minimised by the lImodular" discipline imposed 

by a block-structured high-level language. 
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2. HARDWARE MAHAGEMENT
 

2.1. Special Operations 

056 contains three essential routines for providing spec

ial operations. They are written in machine code, as each con

tains a special instruction which is never generated by the 

BCPL compiler. Two of these special routines serve to read 

and write into the area of core reserved fOT code. The other 

provides a means of communication with EXEC, the Executive 

program written by Computer Technology Limited, and it is used 

almost exclusively for initiating peripheral transfers. EXEC 

then autonomously services the peripheral interrupts, filling 

or outputting a special buffer. The relegation of this job to 

the "hardware" is of course evading a diffieul t problem. It 

is not, however, an unrealistic simplification: many computers 

have hardware for this purpose. 

There are a few other machine code routines, which em

body other special instructions invented to speed up certain 

input/output operations. These are described in Part 2. 

The essential routines occupy seven words, and the others 

a further ten. This is the only machine code in the operating 

system itself. 

2.1.1. Bootstraps 

Some mechanism must be provided with an operating system 

for establishing it in an empty machine. This special mechanism 

is called a bootstrap. 

A bootstrap consists of a series of load-go loops*, 

each of which is used to load and initiate the next one, until the 

final one which is the load-go loop of the operating system 

" the InItIal and final members at least of the series must 
be full load-go loops, since both the empty machine and the 
operating system are, in some sense, permanent. The intermed
iate members may well be evanescent, in the sense that they are 
obeyed only once before their code is overwritten: in such cases 
a closed loop is unnecessary and they may be simply load-go 
sequences. 
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itself. 

The provision of the initial load-go loop varies from 

machine to machine. In some it is built co~pletely into the 

hardware (and called, for example, "initial orders"), in some 

the 1Iload" and "go" phases have to be separately started by the 

operator, while in others the loading phase has to be carried out 

explicitly using the handkeys. 

The details of a bootstrap depend greatly on the hardware. 

as well as on the requirements of the operating system which it 

loads. They are invariably dirty, and further discussion is 

therefore inappropriate here. 

2.2. Atto~ation of Resour~e8 

We turn now to the question of allocation of resources. 

This again is an area considerably simplified in OS6 by the 

simple nature of the environment, and in particular by the fact 

that we are catering for only one user running only one program 

at a time. This, together with th~ fact that there is only 

one example of any particular type of peripheral, allows us to 

eliminate control of peripheral allocation completely. So far, 

operating is always "hands on", and we have therefore not yet 

felt the need to have the machine control the tiJ'lle taken by a 

program. As the load-go loop becomes more sophisticated, so that 

it processes jobs previously left in a queue, some form of 

time control will become necessary: this will be implemented 

by specifying a time limit as a second parameter to the Run 

routine described above~" At present, however, the control of 

resources therefore reduces to the problem of storage allocation~ 

2.2.1. Storage Allocation. 

We remarked earlier (§O.l) that BCPL has a rudimentary 

stack for local variables and local vectors. Space for this 

stack is allocated when the system is initialised (it is given 

about 1000 words) and its bounds are then permanently fixed. 

However, BCPL programs frequently require off-stack storage: 

typical occasions might be when the result of a function is a 
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vector, or when a vector of working space is required to survive 

until the next activation of a routine. FOT 056 it was decided 

to regard the provision of such semi-permanent storage as a job 

for the operating system, rather than to require each individual 

program or compiler system to organise its own housekeeping. 

Various algorithms exist for dynamic storage allocation. 

A good survey is given by Knut} [9 J. Ross [13J describes the AED 

free storage package which, though much more sophisticated than 

ours, has some similarities. The choice of a system for 056 was 

based on some experiments already carried Qut with the University's 

KDF9. As usual, the free blocks are chained together. There is 

a function (called NewVeco) to find and remove a block of the 

required size, if necessary by dividing a larger block. A 

complementary routine (called ReturnVeC') i's used to return blocks 

of specified size to the chain. Because the word length in the 

Modular One is only 16 bits the free single words must be kept in 

a separate chain, as there is no room to record their size. 

The chain of free blocks may be ordered in several differ

ent ways: the choice is thoroughly discussed by Knuth. After 

several experiments, the method selected for OS6 is to chain the 

blocks in order of location. When a block is to be allocHed, 

the chain is scanned until the first hlock large enough is reached; 

this block is split if necessary. When a block is returned, it 

is merged with any block (or word) already free with which it is 

contiguous. This strategy is identical with the GARB strategy 

of the AED system; it is efficient in its use of available storage, 

though the overheads of splitting and merging are fairly expensive 

in execution time. Ross, whose system allows a choice of three 

different strategies, states that this one is "almost always 

best .•• where execution time cost is not important for infrequent 

wholesale transactions. Also sometimes it is a convenient way to 

squeeze out a workable version of a program which is tight on 

storage. Sometimes [this strategy] will use less physical space 

because it tends to prevent storage from becoming so fragmented 

that no (block] of suitable size can be found". 
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The possibility that a program might fail must not be 

forgotten when desig~ing the storage allocator. In particular, 

a program might claim some space which it never returns. One 

solution is an automatic garbage collection system, as used in 

LISP. This. however, is Lin'. 'ssible at present, as BePL and the 

virtual machine make no d' j[lIiction between an address and a number. 

It would be possible to a, caCTI to each word a hidden bit to state 

whether or not it containet dll address, and to add some hardware 

rules to decide when to rn~l~ the result of an operation as an 

address (e.g. number + number =- number, numb81' + address = a.ddress, 

address + address is forbiudcn). In this way, a garbage collect

ion scheme could be implemented, but only at the expense of alter~ 

ing the language by introducing some distinctions of type into its 

previously unstratified universe. The situation is similar in 

this respect to that described by Ross J where "apparently the prop

per solution to fUlly automatic garbage collection must await future 

language extensions •.• ". 

The experiment of constructing a garbage collection system 

for 056 has not been made. Instead we have imposed on the free 

store system the hierarchical structure of Runs. When a program 

is Run, in the sense described above (§I.Z), it is supplied with 

an area of store for use as off-stack storage. At the end of 

the Run all the area is forcibly reclaimed. The area employed 

for a Run is the largest free vector in the storage available to 

the program invoking the Run. The parameters of a storage area 

are kept in a sev.en word block J the FS-block, which is chained 

to the previous FS-block. Since it is quite possible for a 

vector claimed from one free store area to be returned while the 

system is operating in another, smaller J area, the system keeps a 

"pending chain" of returned blocks which fall outside the current 

area; whenever the system reverts to a previous free store area, 

it attempts to return any blocks in the pending chain. 

We thus have a hierarchy of free store areas. This is 

another similarity with the AED system. There J however,a 
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program may split an area into several "offspring" areas, each 

operating under different strategies, and the motivation seems 

to be to allow the programmer fine control over the details of 

allocation. OUT concern is rather with protection against fail

ure by allowing the storage allocator to keep in step with the 

Run mechanism. 

It shauld be noticed that this regime prevents a routine 

under the control of Run from returning a vector as its result. 

This is something of a disadvantage. It is possible to regard 

the processor and core store as an evaluating mechanism which 

always leaves its resul ts as files in the backing store. But in 

practice one wishes to leave results in core, and the desire to 

do this is counter balanced by the desire that the system should 

not allow any permanent changes to the core in cas e they turn out 

to be mistakes. This is a further example of the mismatch 

between a hierarchical structure which, because of the way humans 

think about problems, we find convenient to employ in our operat

ing systems, and the idea of irrevocable change implicit in a fin

i te storage mechanism. Compromise in this case is usually ach

ieved by having the program invoking a Run provide a vector from 

its own resources to contain the eventual resultj however. in 

Part 2 we describe a situation (the PutBack problem, §2.S.3) 

which requires special treatment. 
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3. OTHER FACILITIES 

Most of the wiscellaneoll5 facilities in 056 concern input/ 

output. and their description is deferred to Part 2. In this 

section, however, we describe briefly the facilities available for 

debugging programs. 

3.1. Debugcdng [ar1i Li ties 

When the operator forcibly interrupts a program, he has the 

option of forcing a call either of Finish or of GiveUp (see §l. 2). 

A third possible choice is of calling a "manual pOSUlortem" routine. 

This provides a range of facilities for examining, and altering, 

the contents of any word in either the program or the data segments; 

there are also rather complicated provisions for resuming the 

execution of the program at any point in the current hierarchy of 

routine activations within the innermost call of Run. Though 

the ability to resume after a "binary patch" is sometimes very 

useful, whenever successful a patch should immediately be super

seded by the recompilation of the amended source text. 

This method of debugging, thourh convenient, is extremely 

expensive, and is in any case only possible in an environment 

where programmers are running their own programs and computer time 

is freely available. We plan to replace it shortly by a !acility 

for dumping a core image on the disc for subsequent e~amination 

(eventually, it is hoped, from an interactive console). The 

possibility of patching will then no longer he normally available, 

though because it occasionally allows the talented system programm

er to save the filing system from collapse it is too i~portant 

to be abandoned entirely. 

Because of the rather primitive facilities in BCPL !or 

inter-segment comwunication, one of the more com~on run-time 

errors is the use of an undefined global routine (that is, an 

undefined element in the plobal vector). As an aid to debup.ging 

this sort of error, we arrange that undefined globals contain a 

special routine, called SZeuth. By using the return link 

planted by the routine call, SZeuth examines the program code 
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leading up to the call, and is usually able to determine which 

undefined element was being accessed. The push-down nature of 

the global elements (§l.l) ensures that the value reverts to 

Sleuth after use. 
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4. PRACTICAL RESULTS 

Work on the first operating sy~tem, OS1, began about three 

months before the computer arrived. Apart from the design and 

construction of the operating system and its bootstraps, it was 

also necessary to design the virtual machine and its machine code 

and to write the interpreter, to write a simple aS6embler (princip

ally for the machine code sections of the bootstrap), to write a 

new code generator for the BCPL compiler already working on the KDF9 

and to adapt the compiler to run under OSl, In this work the 

authors, each of whom had other responsibilities, were greatly 

helped by Mr. C. Hones, who wrote the code generator and assembler, 

and thoroughly checked all the other programming. The components 

of the system were tested as far as possible on the KDF9, and the 

entire system was compiled on the KDF9, using the code generator 

for the new machine, to produce a binary tape. 

By courtesy of Computer Technology Limited we were able 

to use the machine on two occasions while it was being commissioned 

at the factory; this enabled us to assemble the interpreter and 

to debug the bootstraps. The machine was delivered and accepted 

on the 19th March, 1969, and 051 and the BCPL compiler were 

running on it within 45 hours (most of this time was spent waiting 

for our daily access to KDF9 to correct the few faults which were 

discovered). 

Since then the system has gradually evolved to its present 

form. 054, for example, the first to contain a disc filing system, 

came in April, 1970.* In the meantime the system has been employed 

extensively by several users, and much insight has been gained by 

analysis of the various ways in which they have used it. This 

has enabled us not only to correct a few logical errors, but also 

to adapt the virtual machine by adding new instructions to speed 

up frequently occurring operations and generally to increase the 

system's efficiency. 

* S~nce It has taken us two years to evolve from 051 to 056, we do 
not expect an i~~inent clash of names with the product of any other 
organisation. 
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5. CONCLUSIONS 

This paper is a progress report: the research which it 

describes is still under way. It should not be regarded as a 

definitive statement even on a single-user operating system. It 

might, however, be useful to list what conclusions we have reached, 

and to discuss how OUT work relates to other research on operating 

systems. 

5.1. Th8 "Sillg'le-usep" simpLifiC!ation 

Our restriction to a single user situation separates us 

to a large extent from the mainstream of research. which is 

principally concerned with the problems of manipUlating concurrent 

autonomous processes and controlling their interaction. The 

extension of our system to cover concurrent activities is our next 

step; then we expect to be able to draw considerably on work 

with other "clean" systems, for example those of Dijkstra [7], 

Hansen [8J, and Spooner [14J. 

5.2. Hierar~hy and autonomy 

It is interesting that both Dijkstra's system (op.~it.) 

and ours may be described as hierarchical. In fact the hierarch

ies are quite different. Dijkstra has an hierarchy of resource 

allocation, because it is easier to administer one resource at a 

timej we allow hierarchical use of the system, be~ause it is 

easier to think about a problem at one level at a time. So 

Dijkstra has a strictly hierarchically structured system to 

service a set of autonomous user processes, whereas our system is 

an amorphous set of routines to service a single hierarchically 

structured process. Moreover, an attempt to impose an hierarch

ical structure on our system (by forbidding the possible mutual 

recursion of our routines) would effectively prevent any hierarchy 

in the structure of the user job. 

The conclusion to be drawn from this comparison is that 
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hierarchy and autonomy are both essential features, in some way or 

other, of any operating system. Certainly our experience has been 

that most of our difficulties were examples of the clash between 

these two principles. So far we have simplified matters by having 

as little autonomy as possible; it remains to be seen what 

difficulties occur when we attempt to allow several autonomous, 

hierarchically structured processes. Clashes between hierarchy 

and autonomy are, of course, by no means confined to computing: 

history is full of more or less violent attempts to change the 

balance between them. We should perhaps study examples where 

fairly stable situations exist, to see if they can help us solve 

the computing problem.* 

5.3. Avoidance of a job control language 

Our hierarchy was made possible partly by our decision to 

avoid a "job control language". and to use a high level language 

instead. Barron [lJ, for example, is also thinking along similar 

lines, and rightly points out that the difficulties come when a 

system includes several languages with disparate conventions. 

But this problem is not confined to job control languages; it 

may occur when a user program calls on a system routine wri tten 

in a different high level language. So far we have avoided this 

problem, too, by confining ourselves almost exclusively to a single 

language; we shall have to reckon with it seriously when we come 

to allow processes to be written in different languages, and even 

to be run on different virtual machines. controlled and serviced 

by the same operating system. 

5.4 Machine independence 

The problem of language compatibility within a system is 

more conspicuous when the operating system itself is written in 

a high level language. The great advantage of such a system, on 

the other hand, is its freedom from many of the problems of hard

::: 
Consider for example, the telephone system (which is biassed 

towards autonomy and works fairly well), local government (which, 
when. because humans are inVOlved, it veers towards hierarchy, is 
less satisfactory) or a collegiate university like O~ford (about 
which we offer no comment). 
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ware compatibility. Provided the machines we consider have 

viable BePL implementations, and provided their peripheral arrange

ments are satisfactory, the choice of one particular order code 

before another is governed purely by questions of compactness of 

code and speed. So the details of the Ie machine are irrelev

ant to the success of the system we have described. Indeed. dur

ing our work with the system we have used several different virtual 

machines. As the BCPL compiler is wri tten in BePL. it is not 

difficult to rewrite the code generator for a new machine; as the 

operating system is in BePL, we may then simply recompile it. 

In the last such exercise, by the expenditure of about two research

student-months, we "tuned" the order code, reducing the size of 

the code by about 25% in core and (because the amount of relocation 

information was also reduced) by about 30% on disc, and speeding 

up execution by about 15%. 

5 .5. Importance of the interpreter 

The previous paragraph implies that it would be possible, 

by using the sophisticated BCPL code generator for Modular One 

machine code [3J, to run the system on the Modular One itself, 

without an interpreter.* But we are convinced that our decision 

to use an interpreter was wise. It is the only inexpensive way 

at present to do practical experiments in processor design. The 

alternative is to use a microprogrammable machine, and it is 

sadly true that much of the current research on microprogramming 

seems to neglect the question of what kind of complex instructions 

could usefully be implemented: instead, the hardware designers 

have a new opportuni ty to avoid considering the needs of the 

software. In our situation, however, the advantage of micre~ 

programming (a tenfold increase in speed) does not justify the 

extra expense and complexity. But we feel it is essential for the 

requirements of our programs to begin to influence the design of 

our hardl'iare, and the flexibility provided by the interpreter has 

been of immense value. 

We hope to pUblish the complete text of 056 as Technical
 

Monograph PRG-9.
 

~: '10 make the implementation viable it would be necessary to cir 
cumvent the hardware restriction limiting the size of a code segment
to 8K. 
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OS6 - AN OPERATING SYSTEM 

FOR A SMALL COMPUTER 

PART II - INPUT/OUTPUT AND FILING SYSTEM 

o. INTROOUCTION 

In Part I [6J we discussed the general design of 056, 

an experimental operating system running on a Modular One computer. 

This paper is devoted to a description of the provisions made 

for input/output in 056, and a description of the disc filing 

system. 

The input/output facilities are often the messiest parts 

of an operating system. The requirements are difficult to 

satisfy. On the one hand, the system rnu~t deal with the flow 
of information to and from several devices of different kinds. 

Some of this information may need processing - such things as 

character code conversion - before a program can conveniently 

use it; and one device may handle information of several 

different types. The paper tape reader, for example, handles 

binary code, which requires packing up into words before it 

is supplied to the loader, and also text tapes punched in a 

variety of character sets. On the other hand, a program should 

be capable of processing information of a given type no matter 

where it comes from - the program should not require rewriting 

for each new source. Very flexible provisions are obviously required. 
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1. CHARACTER SETS 

Before we describe the general provisions for input/output, 

it is convenient to dispose at once of one of the difficult problems, 

which is that of choosing the character set and character codes, 

for information processed in the form of text. The problem is 

particularly acute if the system must cope with peripherals and 

data preparation devices with a variety of different character 

sets. A common solution is to deal systematically only with the 

intepseation of the character sets in use. This leads to attempts 

to restrict high-level languages tO J say, 48 characters. Since 

the main purpose of a high-level language is to make programs and 

programming more intelligible to human beings, such a restriction 

is unhelpful. The elegance of BCPL programs is due to a consider

able extent to the extensive character set employed. 

The OS6 solution to the character set problem is almost the 

reverse of that described above. The character set handled by 

most of the systems programs is practically the union of all the 

characters available on the various devices (though, for those 

devices which permit overprinting, only the overprinted characters 

meaningful in CPL and BCPL are included). This internal character 

set is represented by an eight bit code, known as Internal Code. 

One bit is used as an underlining indicator, and the remaining seven 

are based on ASCII, in the sense that the ASCII charac-ters in the 

set have their ASCII values. There are a few unallocated values 

to allow for a limited extension, and there are also a few control 

characters. Although these include TAB, because it is useful when 

writing routines for controlling devices which use it, it is too 

device-dependent to be used in the system for any other purpose. 

To be forced to use only SPACE would be unacceptable, however, as 

half the characters in the average well laid out program would be 

spaces, and we therefore include a device-independent character, 

4- SPACES. 

The result of using Internal Code is that there is a unique 

representation inside the machine of the contents of any print 
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position. This makes the design of input routines quite straight

forward. and it also avoids making any preconceived assumptions 

about the nature of the information coming in (for example, by 

treating 1&' and 'A' as synonymous, which might be true for 

logical formulae, but would not do for the names of businesses). 

It leaves any equivalence of characters to be dealt with, in 

Internal Code, by the program reading the data. Of course, a 

program may sometimes attempt to output a character to a device on 

which it does not appear: in this case the output routines will 

do the best they can, in an ad hOd fashion. 
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2. STREAMS 

2.1. Basic ppopertie~ 

The vehicles provided in 056 for the transfer of information 

into and out of the system are called streams. Most streams are 

either input streams or output streams, though a few streams. such 

as those connected with a keyboard terminal, are capable of transfer 

of information in both directions, and are called biZateral. streams. 

These are perfectly general objects, and their basic property is 

that a number of primitive functions and routines may meaningfully 

be applied to them. The most important primitive applicable to 

an input stream is the function Next, and for output streams the 
most important is the routine Out. 

The result of applying Nezt to an input (or bilateral) stream 

is an object: the "next" object in the stream. Thus, BytesfromPT 

is an input stream of bytes from the paper tape reader, and the 
command 

x := Next[BytesfromPTJ 

will assign to x the value of the next row on the tape (so that 

o .:S x s; 255, for eight-hole tape). It will be seen that two 

successive applications of Next to a stream will not, in general, 

return the same result. The same function Next is applicable to 
all input streams, and there is no restriction on the type of object 

produced. If Next is applied to a character input stream the result 

is a character, and if to a word stream the result is a word. Char· 

acter streams ,and word streams oCCur most frequently, but it is also 

possible to have streams of strings, or of vectors, or of any other 
data type. 

The routine Out takes two parameters, an output stream and 

an object, and its effect is to output the object along the stream. 

For example, if EytestoPT is an output stream of bytes to the paper 

tape punch, the command 

Out[BytestoPT. xJ 
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will cause a tape row corresponding to ::r: to be punched (though. 

because of buffering arrangements, not immediately) • The command 

out[By~e8toPT. Ne::r:t[BytesfromPTJJ repeat 

would copy paper tape indefinitely. 

2.2. Stream funations 

Unlike most operating systems, 056 treats streams as "first

class objects". That is to say, they may be freely assigned to 

variables, passed as parameters. or returned as the resul t of a 

function call. New streams are created by means of stream 

functions, which may be provided by the system or be defined by 

the user. These stream functions usually take a stream as an 

argument, and give a new stream as a result. 

To illustrate the use of stream functions we may consider 

the problem of reading, with the paper tape reader, a text tape 

punched on a machine such as a flexowriter. We have already 

mentioned the stream BytesfromPT, which is an input stream of raw 

bytes from the reader. These, however, would be in flexowriter 

code, and would include shift characters, erase characters. runout 

and so on. What we require is a stream of characters in Internal 

Code, and to obtain this we use the stream function 

IntcodefromFlexowriter : 

let 5 = IntcodefromFlexowriter[BytesfromPTJ 

5 is now defined to be an Internal Code stream, so that Ne.ztCSJ 

will produce an internal code character corresponding to one on the 

tape. (Since the flexowriter allows backspacing, it is in fact 

necessary to read raw bytes corresponding to a whole line at a time, 

and to form a line image in some buffer, from which characters in 
Internal Code are read as required: all this mechanism is specified 

in the definition of IntcodefromFlexowriter.) 

If, instead of a flexowriter, the tape had been prepared on 

an Olivetti terminal, we could have written 

let 5 = Intc!odefromOlivetti[BytesfromPTJ 
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and the rest of the program using S would be unchanged. We are 

thus able to confine the device-dependent part of the program 

to where the streams are defined (usually in some kind of steering 

program). 

A 5 tream produce d by a st Team hmet ion can i tsel f be the 

argument of another stream function. and the functions can perform 

jobs other than character conversion. As an example. suppose the 

tape we have been considering is an Algol 60 program, and we are 

wri ting an Algol compiler. Then the layout characters on the tape 

(spaces, new-lines etc.) are redundant. and we could wri te a stream 

function RemoveLayoutchs to remove them altogether. We could 

wri te: 

let 32 RemoveLayoutChs[SJ 

or, more directly: 

let 32 = RemoveLayoutCh8[IntaodefromF~exowriter[Byte8fromPTJJ. 

52 is also an Internal Code stream, but Next[52J will never 

produce any layout characters. (When we describe the implement

ation of stream functions we shall give the BCPL text of the de

finition of RemoveLayoutChs: see §2.S.2.) 

An important property of stream functions is that streams 

produced by applications of one of them to two di fferent arguments 

are quite independent. For example, if 51 and 52- are two Internal 

Code streams from different sources, we might define 53 and 54 by: 

let 83 RemoveLayoutChs[51J 

and 54 RemoveLayoutChs[52J 

Calls of Next[53J and Next[54J could then be mixed in any order, 

and there would be no interaction between the two streams. 

2.3.	 Errors 

Problems arise when a stream has to cope with error 

situations: either invalid data coming in, Or commands to output 

data unsuitable for the destination device. The difficulties are 

due to the wide choice of possible actions. One might abandon the 

program (that is, call GiveUp), one might simply ignore the offend
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ing item, or one might subject it to further analysis to deter

mine what it ought to have been. It is impossible to build 

remedial action into a stream function sufficiently general to 

satisfy everybody. We therefore arrange that the majority of 

stream functions are available in a general form taking an extra 

parameter, which is an error function. E.g.: 

1et S = GeneralIntcodefromFlexowriter[ByteafromPT. EpporFnJ. 

The error function is called when invalid data subsequently occurs, 

and it decides what to do about it. The majority of programs, 

which do not need to take peculiar special action, use the non

general form, defined by the system: 

let IntcodefromFlexowriter[StrJ 

= GeneralIntcodefromFlexowritep[Stp~StandardErropFn] 

The standard rule at present seems to be to produce an error 

report) and otherwise to ignore invalid input data, to replace valid 

but unprintable output characters by a space (so that they can be 

subsequently inserted, if required) by hand), and invalid characters 

if applicable, by a blank tape row. 

An exception to the standard rule occurs if a stream functiol 

is acting on the paper tape reader stream ByteBfromPT. In this 

case a routine called TryAgain is applied. This is defined only on 

ByteBfPomPT t and only when nothing is "put back" to the stream in 

the sense described in §2.4.S below: in all other cases it leads to 

GiveUp. Since the Modular One paper tape reader can read in either 

direction, it is possible to move the tape back in order to have 

another attempt to read the offending character, and this is what 

TpyAgain does. The job is only Slightly complicated by the fact 

that input is double buffered by BytesfromPT. After back-skipping 

the system pauses to alloW the operator to inspect the tape, and 

to clean it up if necessary. A similar routine deals with sum

checked binary input, where it is necessary to reread a whole block. 

The TryAgain technique is common practice in magnetic tape 

usage, but rare with paper tape. Particularly before the disc was 

delivered, however) this routine proved invaluable, as a great 

quantity of paper tape was read and it would have been excessively 
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timewasting if every error had been catastrophic. 

We have described dealing wi th errors in some detail, in 

order to make the point that designing an operating system to be 

elegant and coherent does not imply that we must pretend that errors 

do not exist. We can deal with particular errors sensibly without 

obscuring the basic structure of the system. 

2. If. Other primitives acting on strea~~. 

In addition to Next and Out, which m~y be thought of as 

performing the operations "suck" and "blow" J there are a number of 

other primitives which operate on streams. 

2.4.1. Endof 

Endof is a predicate which is applicable to input streams. 

It produces the result true if there are no more objects to be 

input. The interpretation of this criterion depends both on the 

SOurce of the information and on its nature. When the information 

comes from a disc file the matter is simple: the housekeeping in

formation on the disc will contain the length of the file. With 

information of indefinite length, however, like input from the paper 

tape reader, there is a difficulty. It might be solved by reserving 

a particular character to signify the end of the information, but 

this is unsatisfactory for streams like BytesfT'omPT which may have 

to read a binary tape in which every bit-pattern is significant. 

It is because of the impossibility of having a separate "end of stream" 

character that a separate function Endof is necessary at all. In the 

absence of any knowledge about the structure or nature of the in

formation we cannot tell when it ends, and we therefore make 

Endof[ByteBfromPTJ, for example, always false. Stream functions 

concerned with particular kinds of information decide according to 

their own conventions: text, for example, can be ended by a part

icular unusual sequence of characters, chosen ad hoc (we often use 

a full stop on a line by itself), while binary information will requi 

more elaborate rules. 

This matter is also discussed by Needham and Hartley[ 5J. who 

"do not believe at all that this whole problem can be swept under 
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he rug by an appeal to convention". To surmount the difficulty 

of free-format binary information, they recommend the sensing by 

the device of the physical end of the medium - in our case. the 

end of the tape. We think that this is just as much a matter of 

ad hoa convention as any other action, since where the tape 

happens to run out or tear has no logical connection with the in

formation on the tape. As an approximate test of this view, we 

wrote one of our stream functions to end when it detected over a 

foot of runout. This convention was abominated by all, and has 

been abolished. 

Our insistence that determination of the end of the stream 

depends on the nature of the information it contains would lead to 

difficulties if we were managing .an input well, or "spooling" the 

input, because we would then be processing information without 

regard to its content. It would be necessary to impose some sort 

of convention which could coexist with all the possible types of 

information - in the last resort, the operator could tell the system 

when the information had been completely read. 

In situations where the terminating character approach is 

acceptable, it might waste time to be testing EndofCSJ between each 

call of Next[S], So we compromise by arranging that when Endof[SJ 

has become true a subsequent call of Next[SJ does not lead to failure: 

instead the result of Next[S] is a stream-dependent constant, usually 

known as EndofStreamCh. 

2.4.2. Reset 

Reset is a routine applicable both to input streams and to 

output streams J which restores them, in some sense which varies from 

stream to stream, to their initial state. In the case of output 

streams, any in£ormation temporarily in buffers associated with the 

stream is forced to its final destination, while for input streams 

any information in buffers is discarded) so that the next object 

requested will be read at t.hat time from the input device. Other 

action may also be taken, such as setting an input device unready, 

or moving to a new page on a printer. 
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2.4,3. CZose 

Close also acts both on input and on output streams. It 

forces out any information in output buffers, informs the system 

that the stream is no longer required. and returns its storage 

areas. 

2.4.4. State anc,,1 ResetState 

Usually, a stream is either an input or an output stream. 
Sometimes, however, an input device and an output device. although 

logically separate, are physically on the same chassis; then, 

as we have already mentioned, for administrative convenience we 

combine the two streams into a single bilateral stream. There 

is another kind of information which can be obtained from a device: 

rather than obtaining another new object (as Next does). we can 

look at something to see whether it has changed. For example, 

we could look at the on-line/off-line switch on the reader. In the 

Case of consoles, the question usually is: rrHas anyone typed 

anything yet, and, if so, What?" Again, this kind of information 

is logically separable from the stream-like kinds; but since both 

kinds come from the same machine, it is convenient to include it 

in the stream. 

We therefore define two new primitives on streams. The 

first is a function, StaterS], which produces the current state of 

the device. For those devices where the state is defined by asking 

whether some event has yet occurred, we also need a routine. 

ResetState[S], to reinitialise the state. (Possibly the Feset 

routine. described above, could also do this, but it Seems cleaner 

to have a separate routine.) 

State and ResetState were a later addition to the scheme, 

and for reasons of domestic economy have so far been implemented 

only for bilateral streams. They are most frequently used when 

the machine is performing some repetitive operation, in order 

that the loop may be broken when the operator types a character 

on the console. Thus the tape-copying loop quoted above might be 

modified to read: 
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Out[BytestoPT, Next[Byt~sfromPT]J 

repeatwhile State[Console] = NOTHINGTYPED 

(in fact our tape-copying program is a little more elaborate). 

Notice the essential difference between State and Next: if Next 

is called. the program is held up until a new object comes along, 

whereas State can return the null answer. 

:2.4.5. PutEack 

We frequently require to perform operations like reading 

a mUlti-digit number from a character input stream. This raises 

the interesting question of what to do with the terminating 

character. It must not be simply absorbed as part of the number, 

for we may later require to consider it independently. For example, 

we may be trying to parse an expression like 

27+a 

and we shall obviously require to know that the character term

inating the number was ' + I It would be possible to leave the 

character in a conventional locationj but then it would be 

necessary to take care to remove it immediately, before the location 

was used by something else. The cleanest solution would be, if 

possible, to return the character to the stream. so that it could 

be produced again the next time there was any input. This is done 

by the routine PutBack, which takes two arguments, an input stream 

and an obj ect; for example: 

PutBack[Stream~TermCh] 

Then, the next time we call Next[StpeamJ,the result will be TermCh. 

PutBack is of unrestricted application. It may be used on 

any input stream; it may be used to put back several items seriatim 

to a stream (the last item put back will be the first to reappear); 

and there is no need for the items put back to have come from the 

stream in the first place. 
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2 • ~. Imp Lemen tation 

2.5.1. Irroplementation of Strea",s 

In principle a stream is represented by a data structure, 

the components of which are functions and routines for performing 

the primitive operations. In BCPL this is implemented as a vector. 

Thus if S is an input stream, the element SD (which in BCPL is typed 

as s+o, the zeroth element of S) is reserved for the function which 

produces the next object. Let us call the function NextFn. NextFn 

will require some working variables to survive from each activation 

to the next, in order to keep pointers, buffers and so on. Tn 

particular, if S was produced from a stream function, 

s = streamFn[Argstream] 

then NextFn will reqUire to refer to ArgStream. 

The mechanism for referring to non-local variables which 

is bui 1 t into the BCPL language is inadequate to de al naturally 

with this situation. (So for that matter are those in Algol 60, 

Algol 68 and PL/I; two languages which are sufficiently powerful 

are PAL [3] and POP~2 [1].) This means that we must make special 

provisions to preserve the information ourselves, which we do by 

keeping it all in the vector 5. The length of 5 may therefore 

vary from stream to stream, but the first few elements are always 

reserved for the basic functions and routines. 

To obtain the next object from s, we must supply 5 to 

NextFn as a parameter, 

NextPn[SJ 

in order to allow access by NextPn to elements of s. Since NextFn 

is itself stored in 50, we may define the general primitive function 

Next, applicable to all input streams, by writing 

let Next[S] ~ (s+o)[S] 

The other primitives are similarly defined; for example 

let OuHS. x] be §(S+1)[S. x] $ 

We arrange that in input streams the element corresponding 

to the Out routine contains an error routine, and vice versa. Note 
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that the functions and routines which operate on streams store 

the information they must preserve from one call to the next in 

the stream vector itself; this means that they can be used on 

several different streams in the same program without confusion. 

2 .. 5 .. 2. ImpZ~mentation of Stream Functions 

The result of applying a stream function is a new stream; 

the function must therefore claim a new vector from the storage 

allocator, and place in it the functions and routines to perform 

the standard operations, together with any other initial information 

that may be necessary, including, for example, the stream supplied 

as the parameter fOT the stream function. 

To illustrate this, we give the BCPL text of a particularly 

simple example, the function RemoveLayoutChs described in §2.2 

above. To simplify still further, we will ignore State and ResetStat 

As PutBaak does not require a vector element (see §2.5.3 below), 

the vector has to contain five standard elements (for Next, Out, 

Close, Endof and Reset). It must also contain the argument stream, 

so a vector of six elements is required; its layout is shown in 

the figure. 

o 
1 

2 

3 

4 

5 

NextRLC 

(Out) an error routine 

CloseRLC 

Str (the ar2ument stream) 

EndofRLC 

ResetRLC 

The fact that the third element is not reserved for a 

standard operation, and is therefore available for Str, is for 

historical reasons. In any case, we shall ignore its embarrassing 

arbitrariness because, to improve readability. we shall refer to 

the elements by name. We therefore define the following constants 

(from now on in this section we will be writing BCPL; comments in 

this language are introduced by two vertical bars (II) and continue 

to the end of the line): 
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manifest 
NEXT", 0 

OUT", 1 

eLOS!' = 2
 

5TH == 3
 

ENDOF = 4 

RESET = 5 

VECSIZE = 5 

The definition of RemoveLayoutChs is then as follows 

let RemoveLayoutChs[Str] 

§RLC let v = NewVec[VECSIZEJ I We claim a vector 

v~NgXT : = NextRLC 

v+OUT:= StreamError I and initialise the standard 

v+CLOSE CloseRLC contents (note that Stl'eamerror 

v!rENDOF EndofRLC~ is a system error routine). 

v+RESET ResetRLC
 

v+STR : = Str
 

result;s v IRLC
 

We must now define the subsidiary routines. The most 

important is NextRLC. 

I

and NextRLC[S] = valof 

§N §1 let x = Next[S~STRJ I We read a character from the 

argument stream 

unl ess :r; I *8 I II X '*4' Y x = '*n' 

Unless it's a layout character, 

then resultis x it's the result; 

b repeat IN otherwise we repeat the process. 

Note that '*s' means space, 1*4' the 4-space character, and 

'*n' newline. 
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We next define ClOBeRLC: we close the argument stream, 

and return the storage space. 

and CloseRLC[ 5] be 

§C CloBelS+STR) 

ReturnVec[S I VECSIZEJ .C 
The simplest and fastest definition of EndofRLC is merely 

to test the end of the argument streaw 

and EndofRLC [SJ ~ Endof[S+STRJ 

This, however, would be wrong if Str ended with layout 

characters, because our function would give the result 

false when in fact there were no more characters to corne. 

If this were important, we would have to get more complicated 

and EndofRLC[S) ~ valof 

§E let Str ~ S{STR II Str is the argument stream. 

§1 if EndofCStrJ resultis true 

§ let Ch = Ne:rt[Str] II Look at the next character. 

unless Ch = '*6' V Ch '*4' v Ch = '*n' 

If it's not a layout character, 
do § PutBack[Str. Ch] put it back on Str, 

resultis false and the answer is false; 

11 repeat I~ otherwise, repeat. 

Note that although Put"Back[Str, ChJ is more 

obvious, PutBa~k[S, ChJ would have been more efficient. 

ReBetRLC is~ however, simple - we merely reset the argument 

stream : 

and Re$etRLC[S] be Re$et[S~STR] 

That completes the example. 
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2.5. ~. Implementation of PutBack 

A call of the routine PutBack is of the form 

PutBack[S.xJ 

where S is an input stream and x is an object. The Toutine claims 

a small vector from the free store and stores in it the returned 

object, and also the values of some of the first few elements of the 

stream vector, which it then overwrites with other Toutines. The 

final situation is as shown in the figure. 

s So NextPB 

1 

2 

3 

1-----
~~eP13 _ 

-f~ 
s, 
S, 
- - --

4 EndofPB S, 

5 ResetPB S. 

S, 

Obj ect 
/ S 

PutBackChain / Link of 
~_ 

PBChainl.-....--. __ _ __ 

Then, when Next is applied to S, NextPB is activated. This 

restores S to the statuB quo, and returns the PutBaak vector to 

free storage; its result is then the object put back. CZosePB 

and ResetPB also restore the previous state and then apply the 

appropriate original routine; the result of EndofPB is always 

false. The PutBack vectors are chained together for a reason 

described below, and when a PutBack vector is removed, care is 

taken to heal the breach in the chain. Extra care has to be taken 

with bilateral streams, to ensure that the output part of the stream 

still works when an object has been put back to the input part, since 

some elements in the vector are thereby overwritten. 

This implementation gave rise to the following difficulty. 

I f the last action on an input stream before the end of a Run is 

to perform PutBack (e.g. after reading a number), then the PutBack 

vector is returned together wi th the rest of the free store area, 

and the stream is thereafter unusable. This is troublesome, of I 
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course, only when the stream vector itself is clai~ed from an 

earlier free store. and therefore remains in existence longer 

than the PutBack vector. 

This particUlar problem required a special sOlution. The 

free storage system was altered, so that when it reverts to an 
earlier free storage area it copies into the earlier area any 

PutBack vectors still in use. This is why the PutBackChain is 

required. 

This is an example of the clash between the hierarchical 

structure of 056 and the nature of storage mechanisms J which was 

discussed in the previous paper. The solution must be ad hoc, 

because in BePL there can be no systematic way of relocating 

vectors of information. Fortunately, this is the only place where 

the system requires its use of free storaFe to transcend the di-;

cipline of the Run system, and the special solution is therefore 

satisfactory. The only general solution would be to alter the 

language to allow garbage collection, and to make all off-stack 

storage permanen t. 

2.6. iUiciency of Streams 

A possible objection to the use of streams might be that 

the overheads associated with their structure make them excess

ively inefficient. Certainly, when a stream is formed from a 

deep nest of stream functions, processing a single character can 

involve many function calls. To some extent a greater expenditure 

of time than usual is unavoidable, simply because the flexible 

nature of streams and the ease of nesting stream function calls 

lead to the possibility of specifying much more complex operations 

to be performed on each character. It is sometiwes profitable to 

examine the program to ensure that some of these operations do not 

undo the work of others. A stream, for example, might be formed 

by one stream function which unpacks words into bytes, followed 

by another one which packs them all up again. 

An improvement in speed may be made by streamlining the 

definition of Next and Out, by hand-coding them into machine code, 

and this was done from the start (that is, they were written in 

virtual machine code - see Part 1 (§O.2) for a 
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definition of "machine code" and "hardware u in this di scussion). 

Further analysis was done by taking measurements of the actual 

usage of the operating system during the compilation of the null 

program, when most of the time is spent in loading the compiler. 

A histogram was produced showing how often each group of 10 words 

of code had been accessed (there are about 10,000 words of code 

in the operating system), The result was a startling concentration 

into a few peaks with virtually nothing measurable in between. 

Further analysis showed that most of these peaks were at pieces of 

program concerned with taking single items out of buffers and 

putting them somewhere else after testing for various conditions 

such as the end of the buffer. 

Our system runs in a virtual machine. which is implemented 

by an interpreter. We can therefore easily add new instructions to 

our virtual hardware, merely by extending the interpreter. We have 

used this fucility several times in order to replace frequently 

occurring operations by single instructions, thus increasing the 

efficiency of the system. This activity is quite legitimate, pro

vided that the instructions we add are such as could reasonably be 

implemented in real hardware if required. The ability to proceed 

in this way is very liberating, and is in accord with our general 

philosophy of not allowing ourselves to be bullied by machines. 

The conclusion to be drawn from our statistical investigation was 

that the buffering operations were obvious candidates for such 

optimisation. 

A new kind of data structure, called a fast stream, was 

devised. A stream is marked as being either fast or slow (in 

practice by using the sign bit which is not required to be part 

of the address). If a stream is marked as being slow, it is a 

normal stream of the kind we have already described. If it is a 

fast stream, however. we may derive from it the address of a 

vector, of the form shown in the figure. 
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fast stream Pointer to a further vector -~ 

Input buffer pointer -. 
Input buffer limit -

InDut escave item 

Output buffer pointer ~ 

Output buffer limit -
OutDut escape it~m 

The definitions of the primitive stream operations are extended 

to deal with fast streams. If Next is applied to a fast stream, 

the normal action is to return as result the object referenced by 

the input buffer pointer, and to increment the pointer. If the 

pointer has reached the limit, the appropriate routine is called 

in the further vector, which is very like a normal stream, to 

refill the buf£er. It is convenient also to break out of the 

buffering if the item picked up is equal to the input escape item. 

Out is defined similarly. If S is a fast stream, Endo!CSJ is 

false if the input buffer pointer is below its limit, and otherwise 

a function in the further vector is called. The other primitives 

merely activate routines in the further vector. 

Single hardware instructions corresp~nding to Next, Out 

and Endof were written into the interpreter; the other primitives 

are used less frequently, and are therefore defined in BePL. Hard

ware instructions were also written to implement the routine 

Tpans!erIn[S,v1nJ 

where S is an input stream (slow or fast). and v is a vector of 

length n; its action is to place in the elements of v the results 

of n calls o£ Next[SJ. The corresponding output routine 

TransferOut[S,v,n] 

was implemented by hardware too. 

The result of all this was to reduce the ti~e for compiling 

the null program by a factor of six. We feel that this is the 

proper way to treat problems of efficiency. Peter Landin has 

remarked (in a private communication) that most programs are 

designed to be as fast as possible - so that one then goes through 

a lengthy process (debugging) of improving the correctness to a 

tolerable ~evel while preserving the speed - whereas the sensible 
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course would be to design them to be as correct as possible, and 

then gradually to increase the speed till it is tolerable while 

preserving the accuracy. (Dijkstra [21 suggests that this is 

because many programmers find debugging so much fun that they 

could not contemplate giving it up, because the element of black 

magic in it satisfies one of our most undernourished psychological 

needs.) Streams were designed to be elegant, because in the long 

run this is the best guarantee that programs using them will be 

correct; questions of efficiency, including the decision about 

which operations should be done by hardware, were attended to 

later. 

I t may be convenient in the future to modi £y the behaviour 

of fast streams. In particular. for doing more complex activities 

like syntax analysis. there may be advantages in replacing the 

escape item test by something more elaborate. such as a masked 

tes t. 

2. 7. System Streams 

056 contains one or two permanent streams, closely 

associated with particular peripheral devices. An example is 

BytesfromPT which is the only route by which paper tape is read 

by the system. These streams are permanent in the sense that an 

attempt to close them merely resets them. 

In addition to the permanent streams, 056 has four global 

variables to hold streams reserved for conventional purposes. 

These are called variable streams, and may be freely altered by 

programs. Their values are preserved in the Run-blocks (see Part I 

§1.2.1), and they are restored to their previous values at the end 

of each Run. The four variables are In, the normal input stream; 

Output .. for normal output; Re.porotStream.. for error reports; and 

ConsoZe~ for messages to or from an operator's console. 

2.8. Input/output routines 

Programs frequently require to print numbe rs, strings etc. 

on a character device. It would be possible to do this by stream 

functions: for example, one which when applied to a character 

output stream would provide a stream for the output of integers. 
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However, programmers usually need finer control over the layout 

of their output, and prefer to work directly with characters. 

For this reason a set of routines is provided to output items 

of various types along character streams. A typical one is 

OutN[S,nJ, which outputs n as a decimal integer along the stream S. 

As well as this set which takes the stream as a parameter, two 

other sets are provided to perform the same operations specifically 

on Output and ReportStream. Input functions are also provided for 

reading a similar range of items from input streams. 
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3. THE FILING SYSTEM 

It now remains for us to describe the outline of the filing 

system, the regime under which information is kept on the disc. 

We do not claim any great originality or sophistication in the 

design of the system. However. this is an area in which there 

tends to be confusion - it is easy. for exawple, to muddle the 

name of an object with the object itself - and we have taken care 

that our system should be "clean", and that its structure should 

be clear. 

OUT previous discussion on input/output in 056 has been based 

on the idea of streams. These could be freely manipulated in the 

programming language and had the same status as any other type 

of object. We now extend this approach to another kind of object, 

called a file. These, like streams, may freely be assigned to 

variables, be passed as parameters, or be the result of function 

calls. This implies that each file has a unique value, which may 

be stored in a single BCPL variable, and is the handle by which to 

access the two components of the file's structure, the heading and 

the body. 

Each file has its own unique heading. This contains various 

items of housekeeping information about the file, including the 

means by which the system can access the body. The body contains 

the information stored in the file, and also belongs exclusively to 

one file: files do not share components. An empty file has no body. 

3.1. Some basic function~ 

As in the case of streams, the basic property of a file is 

that a number of system functions may meaningfully be applied to 

it. One of these, FindHeading, produces the heading of the file 

as a vector in core: 

let H = FindHeading[fJ 

(The contents of this vector are given in full be low, in § 3.4.) • 

One of the fields of H is called the titZe of the file. It is a 

BCPL string, of arbitrary length. and its sole purpose is to con

tain a description, fit for human consumption, of the contents of 

the file. The properties of the file which might concern a program 
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- such as the date it was created, its owner, or the type of 

information stored in it - are all kept in other fields of the 

heading, and it is not in tended that the SYS tem should do any

thing with the title except print it out from time to time. In 

particular, the title is not used when the system is searching 

for a file. 

Most of the entries in the heading of a file (including 

all those already mentioned) are invariant: they are set when 

the file is created and may not subsequently be altered. Some of 

them - such as the date the file was last changed, or its size 

aTe updated automatically by the system. Only one field, which 

contains an entry stating who is allowed to overwrite the file. 

may be altered by the programmer (by calling a special routine, 

Update Permission) • 

3.1.1. 5treams from [{les 

Other basic functions concern the filebody. The commonest 

way of reading a file into the system is by forming an input stream 

from it, by the function InfromFile: 

let 5 = InfromPile[fJ 

5 is a word input stream, so that if f is a file of packed bytes 

it is necessary to apply the stream function BytesfromWorde 

let 52 = BytesfromWorde[InfromPile[fJJ 

5 is a fast stream. If at any time it is reset, then any sub

sequent calls of Next[5J will recommence from the beginning of the 

file. 

The corresponding function to produce output streams to the 

file is also available: 

let 53 = OuttoPile[fJ 

Since this involves overwriting, it is designed to minimise 

accidents in the case of error. As output via 53 proceeds, a new 

body is constructed, but only when 53 is closed does this new body 

replace the old one. Thus if the program fails before S3 is ex

plicitly closed, f will not be altered; instead the new body is 

abandoned. 



S4 

3.1. 2. VectOl'S [rom f1: 'les 

Instead of forming a stream from the information in a file 

body, it ruay be treated as a vector. There are two possible ways 

of doing this. If the body is not too large, the simplest way is 

to transfer it completely to a vector in core. A function is 

availab Ie for this: 

let v = Ve~tol'fl'omFiZe[f] 

By convention va contains n, the size of the body in words, and 

the body itself is in v to v • The complementary routine is also 
1 " available, 

VectortoFileCf.v] 

in which the sawe convention is observed. 

If the body is too large to exist in core, another mech

anism is needed. An object called a disc vector is defined, which 

may be produced by the function DiscVectorfromFi le: 

let Dv = DiscVectol'fromFiZeCfJ 

Then a particular element of the body may be accessed by a further 

function: 

let El = DiscVectorEZement[Dv.i] 

or updated by a routine: 

UpdateDiscVectorElement[Dv.i .x] 

Dv is a vector in core which contains addressing information 

allowing reasonably quick random access to any part of the file 

body. When no longer required it may be relinquished by a call 

of the routine ReturnDiscVector[Dv]. 

3.1. 3. pi le creation 

Files are created by the function MakeNewFile. This is 

given the title of the file and its type as parameters: 

let f'" MakeNewFile[ 'Line printer stream functions' .BCPLTEXTJ 

The result is a new empty file. 
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3,2. Indexes 

The file f may be created and used freely within a single 

program wi th no further apparatus. "ftT) however, is the name of 

an ordinary BCPL variable, and is governed by the usual scope 

rules: that is, it refers to the file only inside the block of 

program at the top of which its definition occurs. If the file 

is to be usable by other programs, we need another mechanism. 

This mechanism is provided by indexes. 

An index is a file (of type INDEX) on which a number of 

special routines are defined. When a file is entered in an index, 

two names (BCPL strings) are associated with it. This is done 

by the routine En~er. 

Enter[f.p.q.iJ 

means: "associate the names p and q with the file f in the index 

file i." Particular values for p and q might be, for example, 

'LinePrinter' and 'Text'. If another file is already associated 

with p and q in i. the new mapping supersedes the old. 

The complementary operation is provided by the function 

LookUp: 

let f = LookUp[tLinePrintero'~IText'~iJ 

defines f to be the file preViously associated with the names 

'LinePrinter' and 'Text' in the index i. If there is no such 

file, the result is the constant NIL: the request does not lead 

to failure. On the other hand, an attempt actually to access the 

components of a non-existent file, for example by setting up a 

stream, implies that the program has definitely gone wrong, and such 

an attempt leads to GiveUp. 

A further function applicable to index files is the stream 

function EntriesFroom 

let S = EntriesFroom[iJ 

The result of Ne~t[SJ is then normally a vector containing the two 

names and the value of the file (there is also another form of 

index entry which we shall mention below). This enables programmers 
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to perform operations like: "Compile all the files in the index 

with the second name '056'." It should be noted that the system 

itself attaches no semantic significance to either index name 

all the information the system requires about a file is in the 

heading - but the fact that there are two names allows the pro

grammer to systematise his indexes in any way convenient to himself. 

:3.2.1. Index structure and sharina 

There is a special index, called the system index, which 

the system keeps in a global variable called SystemIndex. Each 

user of the system has his own index, for which there is an entry 

in the system index. So one may write, for example: 

1et i LookUp [' JES I, 'Index I .Sys temIndex] 

1et f LookUp[ 'EinePrinter', 'Text' ,iJ 

or, all at once; 

let f = LookUp['LinePrinter'.'Text',LookUp['JES'.'Indeo:', 

Sy $ temIndex J J 

In fact, any index may be entered in any other index, not merely 

in the system index. 

A single file may be associated with different pairs of 

names in different indexes, or even in the same index. This is 

one form of sharing of files: two different entries point to the 

same file. There is another form of sharing sometimes employed, 

which is available in OS6. Instead of two entries pointing to the 

same file, one entry may point to the other entry (this is the 

'special! form of index entry referred to above). Such an entry 

is constructed by the routine Link, which takes seven arguments, 

Link[Nl,N2.N3.N4.NS.N5.iJ 

This means: "Construct a special entry in the index i, so that 

the names Nl,N2 refer to the entry with names N3,N4 in a second 

index. This second index is entered with names N5,N5 in the system 

index." Then a call 

LookUp[Nl.N2.iJ 

will initiate a search in the second index. In principle links 

may occur to any depth; care is taken when setting up a link to 
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ensure that the chain of links does not lead to a loop of ref

erences to each other. 

There is a third method of sharing the information in a 

file, which is simply to copy the contents into a completely new 

file. Which of these three methods is used in any particular 

situation is partly a matter of personal taste. The first seems 

to be most popular in our group. It is possible, however, to 

imagine a situation in which there is a real choice between all 

three possibilities. 

Suppose a user A keeps programs on the disc, and has the 

convention that when correcting a mistake he overwrites the file 

body, but if he alters the specification of a program he creates 

a new file and changes the entry in his index to point to the new 

program. Then a second user B who wishes to access one of A's 

programs can choose as follows. If he wants the program as it 

stands, ignoring any of A'S later alterations, he copies the file. 

If he wants to benefit when A corrects a mistake, but not to have 

the specification changes, he constructs an entry pointing to A's 

file. If he wants to keep up with A'S latest ideas on what the 

program ought to be doing, then he constructs an entry pOinting to 

A's entry. 

3.3. Deletion of Files 

There are three sorts of deleting possible in the system. 

One may delete the body of a file, preserving the file itself and 

any index entries pointing to it; one may delete the file, heading 

and body', but not affect any index entries; or one may delete an 

index entry, which will not affect the file the entry pointed to. 

All three kinds are separately available in 056. Of course, an 

index entry pointing to a deleted file is not much use, and a file 

is inaccessible unless at least one entry points to it: these 

matters are the concern of a special housekeeping program, which 

performs a garbage-collection operation on the filing system. 

3.4. Outline of i~pZementation 

Files on the disc are accessed through a ~~aster File List 
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(MFL). The value of a file is the serial number of its entry 

in the MFLj the MFL entry gives the disc address (page and word) 

of the file heading. The Burroughs disc has fixed heads, so the 

access time is half a revolution; moreover, the use of an inter

preter slows down the rate at which the system can process in

formation. There is therefore no advantage in optimising the 

position of the pages in the body of a file; they are allocated 

in no particular order, and the pages of a body aTe chained 

together. Usually, the last body page contains a pointer indicating 

how much of it is occupied (thus avoiding the Endof problem dis

cussed earlier in §2.4.l). 

A diagram of the structure is given in the figure (p.S9). 

It should be noted that the headings are kept all together in a 

heading file, and the MFL is also a file. This implies, of course, 

that the heading file will have its own heading. somewhere in its 

own body .. and the MPL will contain its own entry. It is necessary 

to know two quantities in order to access the structure: the 

address of the first page of the MFL body, and the value of the 

system index. The second of these is kept in a global variable, 

set up When the system is initiated, and is available to user 

programs; the former is private to the system, and is incorporated 

as a constant declaration at the head of the appropriate segment 

of the text of the system. This is a mistake: if the particular 

page developed a fault, it would be impossible to use the filing 

system until the segment had been recompiled - and the normal 

campi ler uses the disc. 

3.4.1.	 Vise stopage n,lloeation 

The addresses of all the free pages on the disc are kept 

in a file, the free storage file. For efficiency's sake a page 

of this file is kept in core I and for safety's sake this core is 

in the program segment. It is written back to the disc at frequent 

intervals (at the end of each Run, and whenever the page kept in co 

changes to another page). 

3.1.+.2. User details 

The system has a file of users. A user's entry contains 
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his name (a string), the unique number by which he is known to 

the system (which gets entered in the owner field of his file 

headings), and his main index. A user may IIlog in" by specifying 

his name on the console: the system places his personal details 

in various system variables (User, UserIn.dex). The entry also 

contains the size of the user's allocation of disc storage space. 

The system warns him when this is nearly used up, and he is 
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prevented from eJ;ceeding it. 

3.4.3. Protectio)';. from errOl'S 

Protection in the filing system is of two kinds: we try 

to prevent the occurrence of accidents; an0 we keep a certain 

quanti ty of redundant information, so that if a crash does happen 

we have some chance of reconstituting the system, rather than 

having to restart it ab initio. 

The most important prophylactic is the permission system, 

governing the access programs may have to files. Since we are 

solely concerned to prevent accidents, and have no confidential 

files, we allow anybody to read anything; there are only three 

values for the permission field in the heading, which have the 

following meanings: 

UNRESTRI CTED anyone can write to the file 

OWNER only the owner permitted to write 

INHIBITED no one may write to the file. 

The permission field may be changed only by the owner (or anyone 

masquerading as the owner). 

Our present philosophy is not to be constantly checking 

the redundant information. Every so often we run a disc validation 

program, which thoroughly checks everything, and we investigate 

any discrepancies. If there is a crash, we have an armoury of 

little programs to aid the system programmers in sorting out the 

system. 

3.4.4. Garbaqe collection 

It is probable that the filing system will contain some 

outdated information in inaccessible places. This may be found 

and removed by a garbage collection system, which operates in well 

defined phases. Firstly, the system index and any deeper indexes 

are scanned, and entries referring to deleted files are rewoved. 

Having purged these indexes, we construct a list of the files 

entered in theJl1, and delete all files which do not occur in the 

list. At this stage the heading file may he compacted. Finally, 

we form a list of the disc pages used by the files which remain, 
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and ensure that all other pages are entered in the free storage 

files. 

3.5. Extensions to the filina system 

We may require to extend the filing system to deal with 

a more sophisticated system, in particular (a) automatic incremental 

dumping, if suitable extra equipment becomes available, and (b) 

the possibility of several users' using files simultaneously through 

a console system. This will probably require new fields in the 

heading of a file. to contain new items like its CUTTent status, 

for interlocking purposes. None of this will require changes 

to the basic principles of the system. 
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4. RECAPITULATIOr~ 

In any description of an input/output system it is only 

too easy to lose sight of the basic outline. Although we wanted 

to include some merely corroborative detail intended to give 

artistic verisimilitude to an otherwise bald and unconvincing 

narrative [ij] it may be worth while repeating the principles 

which we hope underlie our system. 

The main objects manipulated in the system are streams 

and files. Both may be handled freely by all the facilities in 

the programming language. In particular, new streams may be 

created by stream functions, which may be written by the user, 

and which usually take a previously defined stream as argument, 

returning a new stream 35 the result. (A new file cannot be 

created by a user-defined function because the medium in which 

they are stored is administered solely by the system.) 

Streams and files are characterised by the basic functions 

and routines which act on them. For streams, the most important 

of these are Next and Out, which respectively obtain an object 

from an input stream and consign one to an output stream (the type 

of the object depends on the stream. and the same basic routines 

can be applied to all streams). 

The basic functions on files allow the information in the 

file to be accessed in various ways (random, serial or all at 

once), and allow a fi Ie to become the subject of an en try in an 

index. The index entry, however, is not part of the file itself. 
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