
<

OS6

AN OPERATING SYSTEM

FOR A SMALL COMPUTER

by

Joseph Stoy

and

Christopher Strachey

'.~.~_:':

?ii':
.

Oxford University Computin~ L:>boratory

Pro~rammln~ Research Group

OYf0"rf rh;'''"';'1 '"'_'"''

·~l

0",;<.'1 lJ 0" I .J\<l;

OS6

AN OPERATING SYSTE~

FOR A SMALL CO~PUTER

by

Joseph Stay

and

Christopher Strachey

Oxford University

Technical Monograph PRG-8

May 1972

Oxford Uni veTS i ty Computing Labora tory,

Programming Research Group,

45, Banbury Road,

Oxford.

© 1972 Joseph Stay and Christopher Strachey

Oxford University Computing Laboratory,

Programming Research Group,

45 Banbury Road,

Oxford. OX2 6PE

The contents of this hooklet are also to appear
as two papers in the Computer ,Journal, (Vol. IS) , and
are published as a Technical Monograph by spec ia1 arrangement
with the Editors.

References in the literature should be made to
The Computer Joul'naT" as the texts are identical and the
Journal is generally available in libraries.

ABSTRACT

Part I is a general description of a simple operatirg

system, which runs in a virtual machine (implemented on ~

Teal machine by an interpreter). 056 copes wi th

only one user at a tiJlle, and is not a multiprogramming

system: many major problews associated with large

operating systems have therefore been avoided or considerably

simplified. It nevertheless has several features of in:erest.

including the fact that it is written almost entirely in the

high-level language BePL. The most important single fe~ture,

however, is the hierarchical nature of its control struc~ure,

which avoids the need for a special job-control language.

Part II covers the facilities for input/output, and the

handling of files on the disc. The input/output system uses

a very general form of stream; the filing system is designed

to have a clear and logical structure.

CONTENTS

PART
 I

O. PRELIMINARIES
 1

0.0. Introduction
 1
0.1. Choice of Language
 3
0.2. The Virtual Machine
 5
0.3. Requirements of an
 Operating System 6

1. CONTROL AND PROTECTION
 8

1. O. General Ideas
 8

Page

1.1. The Loading of Programs 9

1. 2. Recovery after failure 11

1.2.1. Implementation
1.2.2. Clearing up
1.2.3. The Load-Go Loop

1. 3. Protection from interference 15

2. f~RDWARE MANAGEMENT 18

2.1. Special Operations 18

2.1.1. Boostraps

2.2. Allocation of Resources 19

2.2.1. Storage Allocation

3. OTHER FACILITIES 23

3.1. Debugging facilities 23

4. PRACTICAL RESULTS 25

5. CONCLUS IONS 26

5.1. The "single-user" simplification 26

5.2. Hierarchy and autonomy 26

5.3. Avoidance of a job control language 27

5.4. Machine independence 27

5.S. Importance of the Interpreter 28

REFERENCES 29

PART I!

Page

n. INTRODUCT ION 31

1. CHARACTER SETS 32

z. STREAMS 34

2.1. Basic PToperties 34
2.2. Strea~ functions 35
2.3. ErTors 36
2.4. Other primitives actin~ on streaws 38

2.4.1. Endof
2.4.2. Reset
2.4.3. Close
2.4.4. State and Re6etState
2 .4.5. PutBa~k

2.5. Implementation 42
2.5.1. Implementation of Streams
2.5.2. Implementation of Stream Functions
2.5.3. Implementation of PutBaC'k

2.6. Efficiency of Streams 47
2.7. System StTeams SO
2.8. Input/output routines SO

3. THE FILING SYSTEM 52

3.1. Some basic functions S2
3.1.1. Streams from files
3.1.2. Vectors from fi les
3.1.3. File creation

3.2. Indexes 5S
3.2.1. Index stTucture and sharing

3.3. Deletion of Files 57
3.4. Outline of implementation 57

3.4.1. Disc storage allocation
3.4.2. User details
3.4.3. Protection fro~ errors
3.4.4. Garbage collection

3.5. Extensions to the filing system 61

4. RECAP ITU LATI ON 62

5. ACKNOWLEDGEMENTS 63

REFERENCES 64

nsf, - AN OPERATING SYSTE~

FOR A SMALL COMPUTER

PART I - GENERAL PR INC I PLES AND STRUCTURE

O. PRELIMINARIES

0.0. Intpoduction.

Although there is already considerable understanding of

the theory of programming languages, it seems that operating

systems are still designed ad hoc. In both cases, however, the

object is the same: to direct the activity of a computing machine.

Indeed, many operating systems are driven by "job control

languages" (see, for example, Brown[4J), which are nothing mOTe

than primitive but specialised programming languages. fhe

fundamental concepts of programming languages are now falTly well

understood, but there is a need for theoretical research to bring

similar conceptual understanding to the design of operating systems.

The need for such a coherent overall design and underlying

philosophy is being increasingly emphasized, for example by COX[6J.

Purely theoretical work in this field, if divorced from practical

work, easily becomes sterile and unrealistic; we need to put our

ideas to the test by using them as the basis of a real cpera ting

2

system. This paper and its companion, Part 2 [15J, are a des

cription of such an experimental system.

The object of the experiment is to demonstrate that an

operating system designed to be coherent and elegant can never

theless control a real machine with a group of real users.

Seedham and Hartley [10J rightly state that in this kind of work

one needs both theoretical insight and horse sense. They suggest

that with a formalistic approach - which they illustrate with a

thumbnail sketch of an "ideally simplified computer system"

"there is a very real danger that a lot of small and awkward

corners must be knocked off the problem wi th a view to achieving

simplicity but. unforttmately, at the expense of £acility.'l

Since we believe that the system they are talking about is ours,

we hope to show that we cope with our real environment, admittedly

simplified for the sake of experiment, jn a realistic way.

A computer deuic~ted to the provision of a computing ser

vice is an unsuitable vehicle for this kind of experiment. If

the experimental system is used for the service work the need for

constant reliability and adequate documentation e£fectively pre

vents changes to the basic design of the system, but at the

same time much effort is devoted to removing small bugs as soon as

they are discovered. On the other hand, if the experimental

system is not the machine's normal regime, much inconvenience and

disruption of service is caused by the frequent changes of sys

tem. For these reasons a computer devoted exclusively to soft

ware research is most desirable, and, with the aid of a grant

from the Science Research Council, the Programming Research

Group has recently acquired a Modular One machine for this pur

pose.

Modular One has a l6-bit word, and a cycle time of 7S0nS.

Our complete configuration includes 321 of core, £ast paper tape

input/output, a 1M word disc, a multiplexer for several consoles,

a line printer and a clock, but the machine was originally deliv

ered wi thout the last four items. Our initial e £fort was there

fore restricted to a single user system wi th no permanent file

3

store. Such a limitation was, in fact, not so great a disadvant

age as it might at first sight appear. The design of a single

user system presents several interesting problems which should be

solved before the extra complexities 0 f multi -programming and con

current processing are faced. The function of a multi-user sys

tem is to provide each user with all the facilities of a large

computer J and it follows that the first stage in the design of

such a system should be (but rarely is) the design of a satisfact

ory single-user system. The problems associated wi th the organ

isation of file storage, being logically separate from the rest

of the system, were also conveniently postponed for a time; but

the filing system has since been added, and is described in Part 2.

0.1. Choice of Language

As a deliberate act of policy it was decided to \l{rite the

entire system in one high-level language, as it seems to us that

the current practice of wri ting software in an assembly language

is one of the main sources of the "software problem". There are

three main areas in which the use of a high-level language can

relieve a programmer of tedious organisational details:

(il the control of the path of execution,

(ii) storage allocation,

(iii) the representation of information.

For software work, and particularly in the programming of operat

ing systems, elaborate provisions and conventions about storage

allocation and data representation can be an embarrassment. It

is usually the job of the operating system, for example, to pro

vide a suitable storage allocation algorithm, and it is inapprop

riate that decisions about it should be prejudiced by the design

of the language used. Moreover, the requirement that an opera!

ing system should deal wi th storage allocation implies that the

language should allow addresses to be treated as data objects~

and for calculations to be performed on them. In assembly code

this is a matter of course, but few high level languages are

4

equipped for it. General pointers and addresses, if treated at

all, are either so limited that one may not even assign a new

value to them (cf. arrays in Algol 60) or are strongly associated

with the particular kinds of data structure available in the

language (cf. LISP). Operating systems are concerned wi th the

general problem of the allocation of the actual hardware re

sources J and are one of the few applications where the linear

mode of addressing employed in most computer memories must be

accessible in the language. Software writers also require great

fleXibility in their choice of data representation. It is prob

ably the existence of too many constraints in these two areas that

turns software writers away from high level languages back to

their more permissive machine codes. On the other hand, there is

general agreement about what facilities are desirable to control

the path of execution ~ such things as conditional commands and

expressions, functions and subroutines, cycle commands and recurs

ion.

Although in most existing languages all three areas are

treated with comparable sophistication, it is by no means essent

ial to do so. The resources of the ideal software language shOUld,

in our opinion, be concentrated around the control facilities, and

matters concerning storage and representation left very much to

the programmer.

BCPL, the language used in 0$6 t is just such a language.

It was invented by Martin Richards [llJ [12J, and is superficially

very like CPL [2J, from which it gets its name, with the same

richness as CPL in the syntax of commands and expressions. There

is only one type, the bit pattern: that is to say, the language

deals directly with the representation of objects rather than

with the abstract objects themselves. This property makes the

language unsuitable for the general programmer, as it does not

prevent his performing meaningless operations (such as mUltiply

ing together two labels); on the other hand, it provides the

extra flexibility system programmers require. BCPL has no auto

matic storage allocation - except for a rudimentary stack for

5

local variables and local vectors - but one of the operators in

the language al1o'Ws a bit pattern to be treated as an address~

and the converse operation is also available: this provides the

mechanism for control of storage and the manipulation of data

structures.

0.2. The Virtua l Machine

Much of the difficUlty in writing software concerns the

need to cope with inadequate hardware. Many complaints about

the inefficiency of high-level languages arise because most

modern machines have an instruction set which is grotesquely

unsuitable for implementing them. Nowadays, the majority of

computer instructions are generated by compilers, and it might

reasonably be supposed that the standard compilers for a new

range of machine s would be designed before the order code was

fixed. The design of the Burroughs B6500 machine [sJ is an

example of what this approach might produce.

In an experimental environment an early commitment to a

particular design of machine code is even more unfortWlate. Be

sides, the instruction set of Modular One is ingenious and elab

oratej it is difficult even for an experienced programmer to

decide the best ~ay of coding any particular operation. The

instruction set is not at all convenient for the implementation

of BCPL and a preliminary investigation indicated that the mach

ine code generated by a simple-minded code generator wculd be

very bUlky. The solution to these problems was to design an

interpreted code, known as lC, to fit the needs of the BCPL sys

tem. The IC interpreter was written in Modular One machine code.

and takes about 250 instructions.

The inte rpreter for IC thus behaves as a virtual machine

whose instruction set is IC (a description of the structure of

this machine and of IC will be deferred to a later paper). The

practical effect of using this technique has been to produce very

compact programs with a very simple code generator. but to slow

down the execution time by a factor of about fifteen. The actual

6

hardware of Modular One is entirely concealed behind this virtual

machine; apart from tracking down hardware faults none of our

users has required to know anything of the actual hardware struct

ure of Modular One, nor have they been conscious of the extent to

which the interpreter slows down the execution.. It is worth

pointing out that the virtual machine is of similar complexity

to the Modular One, apart from the control of peripheral trans

fers (see below ~Z.l) which is at present rather more automatic

in the virtual machine. It would therefore be possible to

construct a CPU whose hardware worked directly on IC; this, of

course, would run about fifteen times faster than the present

system.

From now on, when describing 056, we shall use the terms

"machine", "hardware" and II machine code" to refer to the virtual

machine and to Ie, unless the context specifically implies other

wise.

0.3. Requirements of an Operating System

The functions of an operating system may be separated

into several classes:

I, Control and protection of users

(l.l) There must be provision for loading a program

and initiating its execution.

(1.2) The system must have the abil1:ty to recoVer after

failure of a user's program.

(1.3) The user's program must be given t as far as poss

ible, protection from outside interfet'ence.., including

hardware or system failure, and the operation of other

programs.

* We have strictly enforced the rule that no programs are to
be written in Modular One machine code. (In fact all our user
programs are written in BCPL.) This has had the dual benefit
of inSUlating our users, who are chiefly research students in
computing, from the irrelevancies of the machine design and
also of protecting us from a clamour to make full use of the
raw speed of the machine.

2. Hardware Management

(2.1) There must be routines for performing those

special. operations on the hardware which cannot be e.xpress

ed in the user's programming language - for example,

operations concerned with the manipulation of the periph

erals. We include under this heading the mechanism for

loading the operating system itself.

(2.2) The operating system must control the allooation

of resources - e.g. core store) time, peripherals.

3. Other facilities

Many systems also provide a suite of utility routines,

particularly in the realm of input/output, which are in

the operating system not from theoretical necessity, but

merely to save the user the trouble of programming them

himself.

056 fulfils all the functions mentioned above. but because of

the simple nature of the environment, some of the problems are

considerably simplified. We defer to Part 2 all discussion

of the input/output scheme and filing system - which comprises

part of heading 2 and most of heading 3 - and now proceed to

discuss the remaining sections in turn.

B

1. CONTROL AND PROTECTION

1. O. General ideas

The job of getting a program running under an operating

system may consist of various operations involving a number of

choices. For example, a text may be edited, and compiled by

one of a number of compilers; the program may then be loaded,to

gether with previously compiled library routines; the required

input/output facilities and post-mortem arrangements may be set

up, and the program finally executed. The traditional method of

controlling this process is by means of a special-purpose "job

control language". Many of these languages are insufficiently

powerful, so that complex activities must be split into several

jobs, coupled together by means of complicated verbal instruct

ions to the operators. All of them are inelegant. and their

description is usually so complicated that there is a large risk

of error when attempting an uncommon sequence of operations.

A job control language may be thought of as a simple

programming language, and the various editors, compilers and the

rest as utility routines available to the programmer in that lan

guage. The system then appears to be a simple 1Il oad and go" loop:

the program in the job description language is read, and possibly

compiled and executed, though more probably it is interpreted

directly. This being so, it seems reasonable to use the same

high-level programming language as is used throughout the system,

a language designed wi th an eye to clarity of expression and ease

of correct programming. This is the solution adopted in the

present system, except that since the compiler is a mUlti-pass

program with overlays and compilation is consequently a lengthy

process, the steering program is at present precompiled, and the

load-go loop reads and obeys a binary program.

It is foreign to the spirit of high-level programming to

restrict the calling of any routine to the outer level of the

program: indeed, one of the resul ts of progranrrning in a high

level language is that one is never quite sure when one is actual

9

ly writing an "outer level" program. In 056 we make no such re

striction: any program may load, ohey, edit or cOlT'pile any other

program. to any depth, suhj ec t only to the a vai labi 1 i ty of th e

core store. It will be noted that there now appears to be

little difference between obeying a program and applying a sub

routine, except for the trivial point that the former usually

has no parameters.

In a perfect world it would he possible for routines to

be the largest unit of instruction code. But in practice fail

ures occur I and when they do it is necessary to know how Jl'uch of

the hierarchy of activations to abort. A routine activation is

too small a unit fOT this purpose: firstly hecause many fail

ures within routines are in fact the result of errors in surround

ing program, and secondly because the cost Or takin~ adequate

precautions, at every routine call, for recovery after possible

error, would be prohibitive. The style and intelligihility of

a program is usually improved by making extensive use of sub

routines, and it is therefore important to maJre routine applic

ation as cheap as possible.

We may now, at last, give some meaning to the term

"program"; we use it to denote that part of the nested set of

subroutine activations to be aborted if an algorithm fail~. The

word is often used to denote a portion of code loaded all at one

time, which might consist of several concatenated segments, each

of which has been separately compiled. 1\1 thou~h in manyoper

ating systems these are identified, they are two independent

concepts, and in 056 are completely separated.

1.1. The Loading of PrOGrams

The store of the 056 machine is divide~ ~y hardware into

two areas, of which one is reserved for progr8ID code. A comp

i led segment of BCPL text is also in two main parts, a section

of code and one containing pre-initialised variahles (e.g. lahels

and strings); both parts are relocatable. It has proved

satisfactory to ~anage the code area as a 5tack, so that code is

10

strictly last-in-first-out. The space fOT the block of vaTia~

les is claimed from the free store system (described below).

After these blocks, there comes a block of code called an Inter

Lude. Interludes are loaded into the code area and immediately

obeyed; they are subsequently overwritten by the next code

loaded. The interlude is a general feature of the system, and

is available for any purpose; the particUlar example occurring

in compiled BePL programs causes the code to be relocated, using

information which follows the interlude in the compiled program.

BCPL has a global vector, which corresponds quite close

ly to Fortran's COMMON storage: it is the only means by which

sep~Tately compiled segments of prograw can communicate. When

a segment containing global functions, routines or labels is

loaded, it is the final job of the loader to initialise the

appropriate elements in the global vector.

Any program, of course, may call the loader routine in

order to load more code: a program may therefore itself

load from the file system the library routines it requires.

Code may also be explicitly unloaded. The parameter for the

Unload routine specifies how much of the code in ~he code area

is to be retained. The variable blocks corresponding to the

abandoned code are returned to free storage.

The 056 machine has only one global vector. which is of

limited size. There is therefore some danger tha~ the initial

isation of the globals by the loader will overwrite those of

some other segment loaded further up the hierarchy. On the

other hand, elements of the global vector are also used for

storing variables. especially variables used by more than one

section of program, and the ability to overwrite these variables

is, of course, essential. Ideally we would wish to allow

intentional overwritinp., but to protect the user from the

effects of doing so unintentionally. The compromise adopted in

056 is that the function, routine or label loader, when initial

ising a global. should preserve the previous contents. which in

turn would be restored hy the Unload routine. Each global

element is thus effectively a push-down store. "pushed" when a new

global routine. function or label is defined for that element.

and "popped" when the defining code is unloaded.

Al though this compromise is better than nothing, it is

not entirely satisfactory. The difficulties are an example of

those which often occur when it is attempted to impose hierarchical

behaviour on a non-hierarchical structure (in this case a

linear vector). Global functions which have been overwritten

by subsequent definitions are (if only temporarily) completely

inaccessible. and not merely hidden. One would prefer something

more like the Algol scope rules. and a more sophisticated method of

segmentation: but BCPL is more concerned with ease of implementation.

All this is an example of the general tendency for the

power of the hierarchical expression in a language to be reduced

by the lack of corresponding power in the mechanism for storage

of variables.

The ability to trap th"e application of an undefined global J

whether or not it has been previously defined. has been used

in a debugging facility. which is discussed further below

(§3.1.).

1.2. Recovery aft;e.r fai Lure

In OS6. the decision as to how much of the activation

hierarchy to abort after failure is left to the programmer.

There is a routine called Run, which takes a program (that is.

a parameterless routine) as its parameter:

Run[P.rog]

Such a call leads to the application of the parameter in the

usual way:

Frog [J

The execution of Prog[]. or of any routine. may terminate

in one of three ways. The routine itself ~ay decide that it has

finished its job. it may decide that it has failed to such an

12

extent that there is no point in continuing, OT it may be forcibly

interrupted (because it tries to refer outside storage bounds,

fOT example. or because the operator switches off the computer).

In each case, however Prog terminates, the system resumes execut

ion of the routine containing the call of Run, after restoring

the machine, in some respects. to the state it had before the

call of Run.

An example illustrating the use of Run is given by the

following Toutine, which is a very simple steering program for

a compiler.

let SteeringProgram[J be

§SP § Fai tUlle, Exit true, false

I these are two global variables

Run[TextInputJ

unless Failure do Run[Compiler]

repeatunti1 Exit $sp
This routine invokes two further SUbroutines, the TextInput rout

ine and the Compi"ler itself. The loop continues until one of

these routines explicitly sets the global variable Exit. If,

for example, the machine is switched off while reading text, when

switched on again it will continue the loop, omi tting the Run of

Compi"lel' (as Fai"lure will still be true), and will recommence

fl'extInput.

Run is fully recursi.ve: any routine may Run another.

In the example above, the steering program itself might wel~ be

invoked by a call

Run[SteeringProgramJ.

1.2.1. Implementation

The routine Run creates a vector called the Run-block,

for which the space is claimed from the storage allocator. In

this vector are stored the values of some of the more important

system variables, which include those concerned with storage

allocation in both segments, those which conventionally hold

the normal input/output streams (see Part 2), and those concerned

13

with post mortem arrangements. Next a routine is called to prov

ide the program being Run with a fresh free storage area (this is

discussed further below in §2.2). The program is then applied.

Two methods are provided for terminating the Running of

a routine after successful execution. The first, the simpler

in conception and the commoner in practice, is invoked by the

usual methods in BCPL for returning from a subroutine calL

This implies that the routine need not know whether it had been

simply applied, or had been executed under control of Run; in

other words, as far as the writing is concerned, a program and a

routine are identical. Sometimes, however, a job becomes comp

leted when the algorithm is deep in subroutine calls. In this

case another routine, Finish, is available, which (by explicitly

manipUlating the stack pointer) achieves the same effect. It

should be noticed that this second method is invoked by the call

of a system routine, not by a special command in the language:

that is to say, we write

Finish[J

rather than

fi n ish

This is quite deliberate: the meaning of the concept of finishing

a program depends entirely on the particular operating system,

and its ad hoe nature is quite out of place in the semantics of

a language with an hierarchical structure.

For a program which decides it has catastrophically failed,

the proper course is to call the routine GiveUp. This routine

(which conventionally takes one integer parameter, used for

passing diagnostic information) is a variable routine and may

be freely altered by the programmer. A default value, which

prints some standard diagnostic information, is set by the system.

GiveUp is one of the variables preserved in the Run-block) so

that, as will be seen below, any change made by a program is

applicable only until the end of the Run.

When a program is forcibly interrupted, the operator is

given a choice. Either he may force a call of Finish, which

14

qUietly terminates one level of Run, or if diagnostic information

is required, he may force a call of r,iveUp~

When the Running of a program has terminated, Run replaces

the old values of the variables and uses them to restore the mach

ine, in some respects, to the state it had before the call of Run.

In particular, any code loaded during the Run is unloaded, and any

storage claimed during the Run is forcibly returned. Finally the

space occupied by the Run-block is also returned.

1. 2.2. CZeaT'ing up

It sometimes happens that a system routine initiates some

activity which, to avoid endangerin~ the system' 5 security, requires

subsequent completion, even if the program fails. Such activities

include output to a file on the disc (which probably requires final

housekeeping action), and transfers from peripherals to core store

in the free store area (which must be cancelled if incomplete

before the storage is reallocated). Whenever such an activity is

initiated. the concluding action required is entered in a chain

called the CleapUpChain. If the activity is completed properly

under control of the program, the entry is removed from the chain;

otherwise it is obeyed after termination of the program,when

the remaining entries in the chain are called in turn by Run.

The CleapUpChain is also available for activities which

require CQmpletion, not for the sake of system security, but to

avoid inconvenience to the user (for example J to avoid abandoning

part of his output in various buffers). However J precautions must

be taken to ensure that, even if some clearing-up activity fails,

the other entries in the chain are duly obeyed.

~~en an activity is forcibly completed by means of the

ClearUpChain, it may itself close down some further activity in

the normal way: this would cause embarrassment if the further

actiVity had already been forcibly completed. CaTe must be

taken to avoid this situation. The order of the forcible compl

etions is plainly important, and in practice the difficulties

15

are usually avoided by processing the ClearUpChain in a "last in

first out" fashion.

1. 2.3. The Load-Go Loop

We are now in a position to describe the Load-Go Loop \\rhich

is the heart of the operating system. The following is a

slightly simplified version:

let LoadGoLoop[] be

§ Run[LGLoopJ repeat f
and LGLoop(] be

§ Load[]

Run[Pl'ogJ

Note that it is necessary to Run LGLoop to a1101..' for the possib

iIi ty of failure in the loading phase. No specific mention of

unloading is requi red J as it is done automatically by the Run in

LoadGoLoop. l~

1. 3. Protection from inteI'fer~nce

This facet of an operating system's activity is particularly

simplified in 056. In the first place we cater for only one

user running only one program at a time) we therefore merely

need to protect the integrity of the permanent information in the

system. This permanent informat ion is principally in the

filing system, which is discussed in Part 2, but it also includes

the operating system itself.

* To allQ'l'l' for the possibility of recovery if, say, the
machine is switched off between the Runs of LGLoop (i.e.
while obeying the repeat) it is necessary to Run ::'oadGoLoop;
however, to avoid an infinite regression we achieve the saP-Ie
effect by forcibly "tying a loop1! at the end of the chain of
Run blocks, when the systeID is initiated.

16

Most operating systems protect themselves by hardware,

but in 056 there are no privile.gec1 routines, and any part of the

system may be overwritten. This fact makes it impossible fOT

the system to be wholly immune from corruption by an aberrant

program, and we can only hope to cope with the more common forms

of error. But since no other users are involved it is always

possible to reload the system, if for example, a program accidJ

entally clears half the store, and there are compensations. The

chief advantage is the great flexibility offered by such an open

system to programmers who are concerned (as are most of the system's

users) with the development of system programs, or other large

sui tes of programs. For example, a programmer developing a new

disc housekeeping scheme may replace the basic routines which

transfer information to and from the disc by an alternative set

which manipulates a simulated disc in the core, instead of

the disc itself. All the standard file system routines are still

available acting on the simulated disc, and the real disc is not

put at risk until the new routines have been debugged.* (It is

a simple application of the Run apparatus to ensure that the

normal primitive routines are replaced at the conclusion of the
te st) .

In the second place we have avoided altogether the prob

lem of dealing with malice on the part of the users. Such prot

ection would, indeed, be impossible in a system as open as ours,

but in any case we agree with the experience of the Leeds team

[16] that it is unnecessary in our sort of environment (at least

when the operating system is not required to Lation severely

limited computer time).

* It must be admitted, however, that our programmers tend to
discover the value of such a careful approach by bitter experience
in the application of untested routines to the permanent information

17

The system does, however, embody checks against the more

coDUnan forms of ace i dent al error. In mas t case 5 th is activi ty

is quite ad hoc: if, for example, a program does a wild jump, the

most likely address where it will land is zero, and so we arrange

that word zero of the program area is an error trap. Other

cases are merely good practice, such as checking the validity or

consistency of information supplied to system routines, or corning

in from the peripherals. Only a few are a matter of system des

ign, such as the division of the stoTe into two segments. The

space reserved for program is accessible, other than for execution,

only by two special instructions, which occur only in two special

machine code routines. Thus the code in the program segment is

most unlikely to be altered accidentally - and in fact such an

accident has never, to our knOWledge, occurred. We take advant

age of the security of this segment by keeping very important

variables there.

It is worth pointing out that one of the chief causes

of wild errors has been removed by banning assembly code from

the system. The exclusive use of a high-level language implies

that although "silly mistakes" are still made, most of them

are detected by the compiler before they can do harm. The other

kind of typical assembly code mistake, caused by conflicting

use of storage, is minimised by the lImodular" discipline imposed

by a block-structured high-level language.

18

2. HARDWARE MAHAGEMENT

2.1. Special Operations

056 contains three essential routines for providing spec

ial operations. They are written in machine code, as each con

tains a special instruction which is never generated by the

BCPL compiler. Two of these special routines serve to read

and write into the area of core reserved fOT code. The other

provides a means of communication with EXEC, the Executive

program written by Computer Technology Limited, and it is used

almost exclusively for initiating peripheral transfers. EXEC

then autonomously services the peripheral interrupts, filling

or outputting a special buffer. The relegation of this job to

the "hardware" is of course evading a diffieul t problem. It

is not, however, an unrealistic simplification: many computers

have hardware for this purpose.

There are a few other machine code routines, which em

body other special instructions invented to speed up certain

input/output operations. These are described in Part 2.

The essential routines occupy seven words, and the others

a further ten. This is the only machine code in the operating

system itself.

2.1.1. Bootstraps

Some mechanism must be provided with an operating system

for establishing it in an empty machine. This special mechanism

is called a bootstrap.

A bootstrap consists of a series of load-go loops*,

each of which is used to load and initiate the next one, until the

final one which is the load-go loop of the operating system

" the InItIal and final members at least of the series must
be full load-go loops, since both the empty machine and the
operating system are, in some sense, permanent. The intermed
iate members may well be evanescent, in the sense that they are
obeyed only once before their code is overwritten: in such cases
a closed loop is unnecessary and they may be simply load-go
sequences.

19

itself.

The provision of the initial load-go loop varies from

machine to machine. In some it is built co~pletely into the

hardware (and called, for example, "initial orders"), in some

the 1Iload" and "go" phases have to be separately started by the

operator, while in others the loading phase has to be carried out

explicitly using the handkeys.

The details of a bootstrap depend greatly on the hardware.

as well as on the requirements of the operating system which it

loads. They are invariably dirty, and further discussion is

therefore inappropriate here.

2.2. Atto~ation of Resour~e8

We turn now to the question of allocation of resources.

This again is an area considerably simplified in OS6 by the

simple nature of the environment, and in particular by the fact

that we are catering for only one user running only one program

at a time. This, together with th~ fact that there is only

one example of any particular type of peripheral, allows us to

eliminate control of peripheral allocation completely. So far,

operating is always "hands on", and we have therefore not yet

felt the need to have the machine control the tiJ'lle taken by a

program. As the load-go loop becomes more sophisticated, so that

it processes jobs previously left in a queue, some form of

time control will become necessary: this will be implemented

by specifying a time limit as a second parameter to the Run

routine described above~" At present, however, the control of

resources therefore reduces to the problem of storage allocation~

2.2.1. Storage Allocation.

We remarked earlier (§O.l) that BCPL has a rudimentary

stack for local variables and local vectors. Space for this

stack is allocated when the system is initialised (it is given

about 1000 words) and its bounds are then permanently fixed.

However, BCPL programs frequently require off-stack storage:

typical occasions might be when the result of a function is a

20

vector, or when a vector of working space is required to survive

until the next activation of a routine. FOT 056 it was decided

to regard the provision of such semi-permanent storage as a job

for the operating system, rather than to require each individual

program or compiler system to organise its own housekeeping.

Various algorithms exist for dynamic storage allocation.

A good survey is given by Knut} [9 J. Ross [13J describes the AED

free storage package which, though much more sophisticated than

ours, has some similarities. The choice of a system for 056 was

based on some experiments already carried Qut with the University's

KDF9. As usual, the free blocks are chained together. There is

a function (called NewVeco) to find and remove a block of the

required size, if necessary by dividing a larger block. A

complementary routine (called ReturnVeC') i's used to return blocks

of specified size to the chain. Because the word length in the

Modular One is only 16 bits the free single words must be kept in

a separate chain, as there is no room to record their size.

The chain of free blocks may be ordered in several differ

ent ways: the choice is thoroughly discussed by Knuth. After

several experiments, the method selected for OS6 is to chain the

blocks in order of location. When a block is to be allocHed,

the chain is scanned until the first hlock large enough is reached;

this block is split if necessary. When a block is returned, it

is merged with any block (or word) already free with which it is

contiguous. This strategy is identical with the GARB strategy

of the AED system; it is efficient in its use of available storage,

though the overheads of splitting and merging are fairly expensive

in execution time. Ross, whose system allows a choice of three

different strategies, states that this one is "almost always

best .•• where execution time cost is not important for infrequent

wholesale transactions. Also sometimes it is a convenient way to

squeeze out a workable version of a program which is tight on

storage. Sometimes [this strategy] will use less physical space

because it tends to prevent storage from becoming so fragmented

that no (block] of suitable size can be found".

21

The possibility that a program might fail must not be

forgotten when desig~ing the storage allocator. In particular,

a program might claim some space which it never returns. One

solution is an automatic garbage collection system, as used in

LISP. This. however, is Lin'. 'ssible at present, as BePL and the

virtual machine make no d' j[lIiction between an address and a number.

It would be possible to a, caCTI to each word a hidden bit to state

whether or not it containet dll address, and to add some hardware

rules to decide when to rn~l~ the result of an operation as an

address (e.g. number + number =- number, numb81' + address = a.ddress,

address + address is forbiudcn). In this way, a garbage collect

ion scheme could be implemented, but only at the expense of alter~

ing the language by introducing some distinctions of type into its

previously unstratified universe. The situation is similar in

this respect to that described by Ross J where "apparently the prop

per solution to fUlly automatic garbage collection must await future

language extensions •.• ".

The experiment of constructing a garbage collection system

for 056 has not been made. Instead we have imposed on the free

store system the hierarchical structure of Runs. When a program

is Run, in the sense described above (§I.Z), it is supplied with

an area of store for use as off-stack storage. At the end of

the Run all the area is forcibly reclaimed. The area employed

for a Run is the largest free vector in the storage available to

the program invoking the Run. The parameters of a storage area

are kept in a sev.en word block J the FS-block, which is chained

to the previous FS-block. Since it is quite possible for a

vector claimed from one free store area to be returned while the

system is operating in another, smaller J area, the system keeps a

"pending chain" of returned blocks which fall outside the current

area; whenever the system reverts to a previous free store area,

it attempts to return any blocks in the pending chain.

We thus have a hierarchy of free store areas. This is

another similarity with the AED system. There J however,a

22

program may split an area into several "offspring" areas, each

operating under different strategies, and the motivation seems

to be to allow the programmer fine control over the details of

allocation. OUT concern is rather with protection against fail

ure by allowing the storage allocator to keep in step with the

Run mechanism.

It shauld be noticed that this regime prevents a routine

under the control of Run from returning a vector as its result.

This is something of a disadvantage. It is possible to regard

the processor and core store as an evaluating mechanism which

always leaves its resul ts as files in the backing store. But in

practice one wishes to leave results in core, and the desire to

do this is counter balanced by the desire that the system should

not allow any permanent changes to the core in cas e they turn out

to be mistakes. This is a further example of the mismatch

between a hierarchical structure which, because of the way humans

think about problems, we find convenient to employ in our operat

ing systems, and the idea of irrevocable change implicit in a fin

i te storage mechanism. Compromise in this case is usually ach

ieved by having the program invoking a Run provide a vector from

its own resources to contain the eventual resultj however. in

Part 2 we describe a situation (the PutBack problem, §2.S.3)

which requires special treatment.

23

3. OTHER FACILITIES

Most of the wiscellaneoll5 facilities in 056 concern input/

output. and their description is deferred to Part 2. In this

section, however, we describe briefly the facilities available for

debugging programs.

3.1. Debugcdng [ar1i Li ties

When the operator forcibly interrupts a program, he has the

option of forcing a call either of Finish or of GiveUp (see §l. 2).

A third possible choice is of calling a "manual pOSUlortem" routine.

This provides a range of facilities for examining, and altering,

the contents of any word in either the program or the data segments;

there are also rather complicated provisions for resuming the

execution of the program at any point in the current hierarchy of

routine activations within the innermost call of Run. Though

the ability to resume after a "binary patch" is sometimes very

useful, whenever successful a patch should immediately be super

seded by the recompilation of the amended source text.

This method of debugging, thourh convenient, is extremely

expensive, and is in any case only possible in an environment

where programmers are running their own programs and computer time

is freely available. We plan to replace it shortly by a !acility

for dumping a core image on the disc for subsequent e~amination

(eventually, it is hoped, from an interactive console). The

possibility of patching will then no longer he normally available,

though because it occasionally allows the talented system programm

er to save the filing system from collapse it is too i~portant

to be abandoned entirely.

Because of the rather primitive facilities in BCPL !or

inter-segment comwunication, one of the more com~on run-time

errors is the use of an undefined global routine (that is, an

undefined element in the plobal vector). As an aid to debup.ging

this sort of error, we arrange that undefined globals contain a

special routine, called SZeuth. By using the return link

planted by the routine call, SZeuth examines the program code

24

leading up to the call, and is usually able to determine which

undefined element was being accessed. The push-down nature of

the global elements (§l.l) ensures that the value reverts to

Sleuth after use.

25

4. PRACTICAL RESULTS

Work on the first operating sy~tem, OS1, began about three

months before the computer arrived. Apart from the design and

construction of the operating system and its bootstraps, it was

also necessary to design the virtual machine and its machine code

and to write the interpreter, to write a simple aS6embler (princip

ally for the machine code sections of the bootstrap), to write a

new code generator for the BCPL compiler already working on the KDF9

and to adapt the compiler to run under OSl, In this work the

authors, each of whom had other responsibilities, were greatly

helped by Mr. C. Hones, who wrote the code generator and assembler,

and thoroughly checked all the other programming. The components

of the system were tested as far as possible on the KDF9, and the

entire system was compiled on the KDF9, using the code generator

for the new machine, to produce a binary tape.

By courtesy of Computer Technology Limited we were able

to use the machine on two occasions while it was being commissioned

at the factory; this enabled us to assemble the interpreter and

to debug the bootstraps. The machine was delivered and accepted

on the 19th March, 1969, and 051 and the BCPL compiler were

running on it within 45 hours (most of this time was spent waiting

for our daily access to KDF9 to correct the few faults which were

discovered).

Since then the system has gradually evolved to its present

form. 054, for example, the first to contain a disc filing system,

came in April, 1970.* In the meantime the system has been employed

extensively by several users, and much insight has been gained by

analysis of the various ways in which they have used it. This

has enabled us not only to correct a few logical errors, but also

to adapt the virtual machine by adding new instructions to speed

up frequently occurring operations and generally to increase the

system's efficiency.

* S~nce It has taken us two years to evolve from 051 to 056, we do
not expect an i~~inent clash of names with the product of any other
organisation.

26

5. CONCLUSIONS

This paper is a progress report: the research which it

describes is still under way. It should not be regarded as a

definitive statement even on a single-user operating system. It

might, however, be useful to list what conclusions we have reached,

and to discuss how OUT work relates to other research on operating

systems.

5.1. Th8 "Sillg'le-usep" simpLifiC!ation

Our restriction to a single user situation separates us

to a large extent from the mainstream of research. which is

principally concerned with the problems of manipUlating concurrent

autonomous processes and controlling their interaction. The

extension of our system to cover concurrent activities is our next

step; then we expect to be able to draw considerably on work

with other "clean" systems, for example those of Dijkstra [7],

Hansen [8J, and Spooner [14J.

5.2. Hierar~hy and autonomy

It is interesting that both Dijkstra's system (op.~it.)

and ours may be described as hierarchical. In fact the hierarch

ies are quite different. Dijkstra has an hierarchy of resource

allocation, because it is easier to administer one resource at a

timej we allow hierarchical use of the system, be~ause it is

easier to think about a problem at one level at a time. So

Dijkstra has a strictly hierarchically structured system to

service a set of autonomous user processes, whereas our system is

an amorphous set of routines to service a single hierarchically

structured process. Moreover, an attempt to impose an hierarch

ical structure on our system (by forbidding the possible mutual

recursion of our routines) would effectively prevent any hierarchy

in the structure of the user job.

The conclusion to be drawn from this comparison is that

27

hierarchy and autonomy are both essential features, in some way or

other, of any operating system. Certainly our experience has been

that most of our difficulties were examples of the clash between

these two principles. So far we have simplified matters by having

as little autonomy as possible; it remains to be seen what

difficulties occur when we attempt to allow several autonomous,

hierarchically structured processes. Clashes between hierarchy

and autonomy are, of course, by no means confined to computing:

history is full of more or less violent attempts to change the

balance between them. We should perhaps study examples where

fairly stable situations exist, to see if they can help us solve

the computing problem.*

5.3. Avoidance of a job control language

Our hierarchy was made possible partly by our decision to

avoid a "job control language". and to use a high level language

instead. Barron [lJ, for example, is also thinking along similar

lines, and rightly points out that the difficulties come when a

system includes several languages with disparate conventions.

But this problem is not confined to job control languages; it

may occur when a user program calls on a system routine wri tten

in a different high level language. So far we have avoided this

problem, too, by confining ourselves almost exclusively to a single

language; we shall have to reckon with it seriously when we come

to allow processes to be written in different languages, and even

to be run on different virtual machines. controlled and serviced

by the same operating system.

5.4 Machine independence

The problem of language compatibility within a system is

more conspicuous when the operating system itself is written in

a high level language. The great advantage of such a system, on

the other hand, is its freedom from many of the problems of hard

:::
Consider for example, the telephone system (which is biassed

towards autonomy and works fairly well), local government (which,
when. because humans are inVOlved, it veers towards hierarchy, is
less satisfactory) or a collegiate university like O~ford (about
which we offer no comment).

28

ware compatibility. Provided the machines we consider have

viable BePL implementations, and provided their peripheral arrange

ments are satisfactory, the choice of one particular order code

before another is governed purely by questions of compactness of

code and speed. So the details of the Ie machine are irrelev

ant to the success of the system we have described. Indeed. dur

ing our work with the system we have used several different virtual

machines. As the BCPL compiler is wri tten in BePL. it is not

difficult to rewrite the code generator for a new machine; as the

operating system is in BePL, we may then simply recompile it.

In the last such exercise, by the expenditure of about two research

student-months, we "tuned" the order code, reducing the size of

the code by about 25% in core and (because the amount of relocation

information was also reduced) by about 30% on disc, and speeding

up execution by about 15%.

5 .5. Importance of the interpreter

The previous paragraph implies that it would be possible,

by using the sophisticated BCPL code generator for Modular One

machine code [3J, to run the system on the Modular One itself,

without an interpreter.* But we are convinced that our decision

to use an interpreter was wise. It is the only inexpensive way

at present to do practical experiments in processor design. The

alternative is to use a microprogrammable machine, and it is

sadly true that much of the current research on microprogramming

seems to neglect the question of what kind of complex instructions

could usefully be implemented: instead, the hardware designers

have a new opportuni ty to avoid considering the needs of the

software. In our situation, however, the advantage of micre~

programming (a tenfold increase in speed) does not justify the

extra expense and complexity. But we feel it is essential for the

requirements of our programs to begin to influence the design of

our hardl'iare, and the flexibility provided by the interpreter has

been of immense value.

We hope to pUblish the complete text of 056 as Technical

Monograph PRG-9.

~: '10 make the implementation viable it would be necessary to cir
cumvent the hardware restriction limiting the size of a code segment
to 8K.

REFERENCES

[lJ Barron, D.W. (1971). Computer Operating Systems.

Chapman and Hall, London.

[2]	 Barron. D.W •• Buxton, J.N., Hartley. D.F. t Nixon. L.

and Strachey. C. (1963). The main features

of CPL, The Computer Journal, Vol.6,pp.134-143.

[3J Bath, P. (1970). M1CG: A BCPL code generator for Modular

One: private communication.

[4]	 Brown, G.D. (1970), System/36D Job Control Language.

Wiley. !\'ew York.

[5J	 Burroughs Corporation (1967).86500187500 information

processing systems characteristics manual.

Detroit.

[6J Cox, P.R. (197!). Machine-independent operating systems:

a functional approach to design. The Fourth

Generation, InteI'national Computer Sta~e of the

Art Report~ pp.239-258. Infotech, MaIdenhead.

[7J Oijk.stra. E.W. (1968) The Structure of the "THE" -

MUltiprogramming Systet11, Comm. A.C.M.,Vo!.ll,

pp.34l-346.

[8J Hansen, P.B. (1970). The NUCleus of a MUltiprogramming

SYstem, Comm. A.C.M., ,ro L13, pp.238-241,2S0.

[9 J Knuth, D.E. (1968). The Art of Computer Programming,

Vol.l, pp.43S-4SI. Addison-Wesley, Reading, Mass.

[10J Needham,	 R.M .. and Hartley, OJ. (1969). Theory and
Practice in Operating System Design. Second
Symposium on Operating System Prin~iples~ pp.8-12.
A.C.M., Princeton, N.J.

[.11J Richards. M. (1969). BCPL: a tool for compiler writing and
system programming, Pro~. S.J.C.C.,p.SS7. AFIPS.

[J2] Richards, M. (1969). BCPL reference manual, Tednical
Memorandum 69/1. University of Cambridge Computin~
Lahora tory.

[.13J Ross, D.T. (1967). The AED Free Storage Package, Comm. A.C.M
Vol. 10, pp.481-492.

[..14J Spooner,	 C.R. (1971). A. Software architecture for the 70's:
Part I - The General Approach, Software - Practice
and Experien~e, Vol.l, pp.S-38.

[.15J'~ Stay, J.E. and Strachey, C. (1972). 056 - an experimental
operating system for a small computer: Part II
Input/output and filing system, to appear in
The Computer Journal,Vol.lS.

(16J Wells, M., Holdsworth, D., and McCann, A.P. (1971). The
Eldon 2 operating system for KDF9, The Computer
Journal, Vol.14.pp.21-24.

Part II of this	 monograph.*

OS6 - AN OPERATING SYSTEM

FOR A SMALL COMPUTER

PART II - INPUT/OUTPUT AND FILING SYSTEM

o. INTROOUCTION

In Part I [6J we discussed the general design of 056,

an experimental operating system running on a Modular One computer.

This paper is devoted to a description of the provisions made

for input/output in 056, and a description of the disc filing

system.

The input/output facilities are often the messiest parts

of an operating system. The requirements are difficult to

satisfy. On the one hand, the system rnu~t deal with the flow
of information to and from several devices of different kinds.

Some of this information may need processing - such things as

character code conversion - before a program can conveniently

use it; and one device may handle information of several

different types. The paper tape reader, for example, handles

binary code, which requires packing up into words before it

is supplied to the loader, and also text tapes punched in a

variety of character sets. On the other hand, a program should

be capable of processing information of a given type no matter

where it comes from - the program should not require rewriting

for each new source. Very flexible provisions are obviously required.

32

1. CHARACTER SETS

Before we describe the general provisions for input/output,

it is convenient to dispose at once of one of the difficult problems,

which is that of choosing the character set and character codes,

for information processed in the form of text. The problem is

particularly acute if the system must cope with peripherals and

data preparation devices with a variety of different character

sets. A common solution is to deal systematically only with the

intepseation of the character sets in use. This leads to attempts

to restrict high-level languages tO J say, 48 characters. Since

the main purpose of a high-level language is to make programs and

programming more intelligible to human beings, such a restriction

is unhelpful. The elegance of BCPL programs is due to a consider

able extent to the extensive character set employed.

The OS6 solution to the character set problem is almost the

reverse of that described above. The character set handled by

most of the systems programs is practically the union of all the

characters available on the various devices (though, for those

devices which permit overprinting, only the overprinted characters

meaningful in CPL and BCPL are included). This internal character

set is represented by an eight bit code, known as Internal Code.

One bit is used as an underlining indicator, and the remaining seven

are based on ASCII, in the sense that the ASCII charac-ters in the

set have their ASCII values. There are a few unallocated values

to allow for a limited extension, and there are also a few control

characters. Although these include TAB, because it is useful when

writing routines for controlling devices which use it, it is too

device-dependent to be used in the system for any other purpose.

To be forced to use only SPACE would be unacceptable, however, as

half the characters in the average well laid out program would be

spaces, and we therefore include a device-independent character,

4- SPACES.

The result of using Internal Code is that there is a unique

representation inside the machine of the contents of any print

33

position. This makes the design of input routines quite straight

forward. and it also avoids making any preconceived assumptions

about the nature of the information coming in (for example, by

treating 1&' and 'A' as synonymous, which might be true for

logical formulae, but would not do for the names of businesses).

It leaves any equivalence of characters to be dealt with, in

Internal Code, by the program reading the data. Of course, a

program may sometimes attempt to output a character to a device on

which it does not appear: in this case the output routines will

do the best they can, in an ad hOd fashion.

34

2. STREAMS

2.1. Basic ppopertie~

The vehicles provided in 056 for the transfer of information

into and out of the system are called streams. Most streams are

either input streams or output streams, though a few streams. such

as those connected with a keyboard terminal, are capable of transfer

of information in both directions, and are called biZateral. streams.

These are perfectly general objects, and their basic property is

that a number of primitive functions and routines may meaningfully

be applied to them. The most important primitive applicable to

an input stream is the function Next, and for output streams the
most important is the routine Out.

The result of applying Nezt to an input (or bilateral) stream

is an object: the "next" object in the stream. Thus, BytesfromPT

is an input stream of bytes from the paper tape reader, and the
command

x := Next[BytesfromPTJ

will assign to x the value of the next row on the tape (so that

o .:S x s; 255, for eight-hole tape). It will be seen that two

successive applications of Next to a stream will not, in general,

return the same result. The same function Next is applicable to
all input streams, and there is no restriction on the type of object

produced. If Next is applied to a character input stream the result

is a character, and if to a word stream the result is a word. Char·

acter streams ,and word streams oCCur most frequently, but it is also

possible to have streams of strings, or of vectors, or of any other
data type.

The routine Out takes two parameters, an output stream and

an object, and its effect is to output the object along the stream.

For example, if EytestoPT is an output stream of bytes to the paper

tape punch, the command

Out[BytestoPT. xJ

35

will cause a tape row corresponding to ::r: to be punched (though.

because of buffering arrangements, not immediately) • The command

out[By~e8toPT. Ne::r:t[BytesfromPTJJ repeat

would copy paper tape indefinitely.

2.2. Stream funations

Unlike most operating systems, 056 treats streams as "first

class objects". That is to say, they may be freely assigned to

variables, passed as parameters. or returned as the resul t of a

function call. New streams are created by means of stream

functions, which may be provided by the system or be defined by

the user. These stream functions usually take a stream as an

argument, and give a new stream as a result.

To illustrate the use of stream functions we may consider

the problem of reading, with the paper tape reader, a text tape

punched on a machine such as a flexowriter. We have already

mentioned the stream BytesfromPT, which is an input stream of raw

bytes from the reader. These, however, would be in flexowriter

code, and would include shift characters, erase characters. runout

and so on. What we require is a stream of characters in Internal

Code, and to obtain this we use the stream function

IntcodefromFlexowriter :

let 5 = IntcodefromFlexowriter[BytesfromPTJ

5 is now defined to be an Internal Code stream, so that Ne.ztCSJ

will produce an internal code character corresponding to one on the

tape. (Since the flexowriter allows backspacing, it is in fact

necessary to read raw bytes corresponding to a whole line at a time,

and to form a line image in some buffer, from which characters in
Internal Code are read as required: all this mechanism is specified

in the definition of IntcodefromFlexowriter.)

If, instead of a flexowriter, the tape had been prepared on

an Olivetti terminal, we could have written

let 5 = Intc!odefromOlivetti[BytesfromPTJ

35

and the rest of the program using S would be unchanged. We are

thus able to confine the device-dependent part of the program

to where the streams are defined (usually in some kind of steering

program).

A 5 tream produce d by a st Team hmet ion can i tsel f be the

argument of another stream function. and the functions can perform

jobs other than character conversion. As an example. suppose the

tape we have been considering is an Algol 60 program, and we are

wri ting an Algol compiler. Then the layout characters on the tape

(spaces, new-lines etc.) are redundant. and we could wri te a stream

function RemoveLayoutchs to remove them altogether. We could

wri te:

let 32 RemoveLayoutChs[SJ

or, more directly:

let 32 = RemoveLayoutCh8[IntaodefromF~exowriter[Byte8fromPTJJ.

52 is also an Internal Code stream, but Next[52J will never

produce any layout characters. (When we describe the implement

ation of stream functions we shall give the BCPL text of the de

finition of RemoveLayoutChs: see §2.S.2.)

An important property of stream functions is that streams

produced by applications of one of them to two di fferent arguments

are quite independent. For example, if 51 and 52- are two Internal

Code streams from different sources, we might define 53 and 54 by:

let 83 RemoveLayoutChs[51J

and 54 RemoveLayoutChs[52J

Calls of Next[53J and Next[54J could then be mixed in any order,

and there would be no interaction between the two streams.

2.3.	 Errors

Problems arise when a stream has to cope with error

situations: either invalid data coming in, Or commands to output

data unsuitable for the destination device. The difficulties are

due to the wide choice of possible actions. One might abandon the

program (that is, call GiveUp), one might simply ignore the offend

37

ing item, or one might subject it to further analysis to deter

mine what it ought to have been. It is impossible to build

remedial action into a stream function sufficiently general to

satisfy everybody. We therefore arrange that the majority of

stream functions are available in a general form taking an extra

parameter, which is an error function. E.g.:

1et S = GeneralIntcodefromFlexowriter[ByteafromPT. EpporFnJ.

The error function is called when invalid data subsequently occurs,

and it decides what to do about it. The majority of programs,

which do not need to take peculiar special action, use the non

general form, defined by the system:

let IntcodefromFlexowriter[StrJ

= GeneralIntcodefromFlexowritep[Stp~StandardErropFn]

The standard rule at present seems to be to produce an error

report) and otherwise to ignore invalid input data, to replace valid

but unprintable output characters by a space (so that they can be

subsequently inserted, if required) by hand), and invalid characters

if applicable, by a blank tape row.

An exception to the standard rule occurs if a stream functiol

is acting on the paper tape reader stream ByteBfromPT. In this

case a routine called TryAgain is applied. This is defined only on

ByteBfPomPT t and only when nothing is "put back" to the stream in

the sense described in §2.4.S below: in all other cases it leads to

GiveUp. Since the Modular One paper tape reader can read in either

direction, it is possible to move the tape back in order to have

another attempt to read the offending character, and this is what

TpyAgain does. The job is only Slightly complicated by the fact

that input is double buffered by BytesfromPT. After back-skipping

the system pauses to alloW the operator to inspect the tape, and

to clean it up if necessary. A similar routine deals with sum

checked binary input, where it is necessary to reread a whole block.

The TryAgain technique is common practice in magnetic tape

usage, but rare with paper tape. Particularly before the disc was

delivered, however) this routine proved invaluable, as a great

quantity of paper tape was read and it would have been excessively

38

timewasting if every error had been catastrophic.

We have described dealing wi th errors in some detail, in

order to make the point that designing an operating system to be

elegant and coherent does not imply that we must pretend that errors

do not exist. We can deal with particular errors sensibly without

obscuring the basic structure of the system.

2. If. Other primitives acting on strea~~.

In addition to Next and Out, which m~y be thought of as

performing the operations "suck" and "blow" J there are a number of

other primitives which operate on streams.

2.4.1. Endof

Endof is a predicate which is applicable to input streams.

It produces the result true if there are no more objects to be

input. The interpretation of this criterion depends both on the

SOurce of the information and on its nature. When the information

comes from a disc file the matter is simple: the housekeeping in

formation on the disc will contain the length of the file. With

information of indefinite length, however, like input from the paper

tape reader, there is a difficulty. It might be solved by reserving

a particular character to signify the end of the information, but

this is unsatisfactory for streams like BytesfT'omPT which may have

to read a binary tape in which every bit-pattern is significant.

It is because of the impossibility of having a separate "end of stream"

character that a separate function Endof is necessary at all. In the

absence of any knowledge about the structure or nature of the in

formation we cannot tell when it ends, and we therefore make

Endof[ByteBfromPTJ, for example, always false. Stream functions

concerned with particular kinds of information decide according to

their own conventions: text, for example, can be ended by a part

icular unusual sequence of characters, chosen ad hoc (we often use

a full stop on a line by itself), while binary information will requi

more elaborate rules.

This matter is also discussed by Needham and Hartley[5J. who

"do not believe at all that this whole problem can be swept under

39

he rug by an appeal to convention". To surmount the difficulty

of free-format binary information, they recommend the sensing by

the device of the physical end of the medium - in our case. the

end of the tape. We think that this is just as much a matter of

ad hoa convention as any other action, since where the tape

happens to run out or tear has no logical connection with the in

formation on the tape. As an approximate test of this view, we

wrote one of our stream functions to end when it detected over a

foot of runout. This convention was abominated by all, and has

been abolished.

Our insistence that determination of the end of the stream

depends on the nature of the information it contains would lead to

difficulties if we were managing .an input well, or "spooling" the

input, because we would then be processing information without

regard to its content. It would be necessary to impose some sort

of convention which could coexist with all the possible types of

information - in the last resort, the operator could tell the system

when the information had been completely read.

In situations where the terminating character approach is

acceptable, it might waste time to be testing EndofCSJ between each

call of Next[S], So we compromise by arranging that when Endof[SJ

has become true a subsequent call of Next[SJ does not lead to failure:

instead the result of Next[S] is a stream-dependent constant, usually

known as EndofStreamCh.

2.4.2. Reset

Reset is a routine applicable both to input streams and to

output streams J which restores them, in some sense which varies from

stream to stream, to their initial state. In the case of output

streams, any in£ormation temporarily in buffers associated with the

stream is forced to its final destination, while for input streams

any information in buffers is discarded) so that the next object

requested will be read at t.hat time from the input device. Other

action may also be taken, such as setting an input device unready,

or moving to a new page on a printer.

40

2.4,3. CZose

Close also acts both on input and on output streams. It

forces out any information in output buffers, informs the system

that the stream is no longer required. and returns its storage

areas.

2.4.4. State anc,,1 ResetState

Usually, a stream is either an input or an output stream.
Sometimes, however, an input device and an output device. although

logically separate, are physically on the same chassis; then,

as we have already mentioned, for administrative convenience we

combine the two streams into a single bilateral stream. There

is another kind of information which can be obtained from a device:

rather than obtaining another new object (as Next does). we can

look at something to see whether it has changed. For example,

we could look at the on-line/off-line switch on the reader. In the

Case of consoles, the question usually is: rrHas anyone typed

anything yet, and, if so, What?" Again, this kind of information

is logically separable from the stream-like kinds; but since both

kinds come from the same machine, it is convenient to include it

in the stream.

We therefore define two new primitives on streams. The

first is a function, StaterS], which produces the current state of

the device. For those devices where the state is defined by asking

whether some event has yet occurred, we also need a routine.

ResetState[S], to reinitialise the state. (Possibly the Feset

routine. described above, could also do this, but it Seems cleaner

to have a separate routine.)

State and ResetState were a later addition to the scheme,

and for reasons of domestic economy have so far been implemented

only for bilateral streams. They are most frequently used when

the machine is performing some repetitive operation, in order

that the loop may be broken when the operator types a character

on the console. Thus the tape-copying loop quoted above might be

modified to read:

41

Out[BytestoPT, Next[Byt~sfromPT]J

repeatwhile State[Console] = NOTHINGTYPED

(in fact our tape-copying program is a little more elaborate).

Notice the essential difference between State and Next: if Next

is called. the program is held up until a new object comes along,

whereas State can return the null answer.

:2.4.5. PutEack

We frequently require to perform operations like reading

a mUlti-digit number from a character input stream. This raises

the interesting question of what to do with the terminating

character. It must not be simply absorbed as part of the number,

for we may later require to consider it independently. For example,

we may be trying to parse an expression like

27+a

and we shall obviously require to know that the character term

inating the number was ' + I It would be possible to leave the

character in a conventional locationj but then it would be

necessary to take care to remove it immediately, before the location

was used by something else. The cleanest solution would be, if

possible, to return the character to the stream. so that it could

be produced again the next time there was any input. This is done

by the routine PutBack, which takes two arguments, an input stream

and an obj ect; for example:

PutBack[Stream~TermCh]

Then, the next time we call Next[StpeamJ,the result will be TermCh.

PutBack is of unrestricted application. It may be used on

any input stream; it may be used to put back several items seriatim

to a stream (the last item put back will be the first to reappear);

and there is no need for the items put back to have come from the

stream in the first place.

42

2 • ~. Imp Lemen tation

2.5.1. Irroplementation of Strea",s

In principle a stream is represented by a data structure,

the components of which are functions and routines for performing

the primitive operations. In BCPL this is implemented as a vector.

Thus if S is an input stream, the element SD (which in BCPL is typed

as s+o, the zeroth element of S) is reserved for the function which

produces the next object. Let us call the function NextFn. NextFn

will require some working variables to survive from each activation

to the next, in order to keep pointers, buffers and so on. Tn

particular, if S was produced from a stream function,

s = streamFn[Argstream]

then NextFn will reqUire to refer to ArgStream.

The mechanism for referring to non-local variables which

is bui 1 t into the BCPL language is inadequate to de al naturally

with this situation. (So for that matter are those in Algol 60,

Algol 68 and PL/I; two languages which are sufficiently powerful

are PAL [3] and POP~2 [1].) This means that we must make special

provisions to preserve the information ourselves, which we do by

keeping it all in the vector 5. The length of 5 may therefore

vary from stream to stream, but the first few elements are always

reserved for the basic functions and routines.

To obtain the next object from s, we must supply 5 to

NextFn as a parameter,

NextPn[SJ

in order to allow access by NextPn to elements of s. Since NextFn

is itself stored in 50, we may define the general primitive function

Next, applicable to all input streams, by writing

let Next[S] ~ (s+o)[S]

The other primitives are similarly defined; for example

let OuHS. x] be §(S+1)[S. x] $

We arrange that in input streams the element corresponding

to the Out routine contains an error routine, and vice versa. Note

43

that the functions and routines which operate on streams store

the information they must preserve from one call to the next in

the stream vector itself; this means that they can be used on

several different streams in the same program without confusion.

2 .. 5 .. 2. ImpZ~mentation of Stream Functions

The result of applying a stream function is a new stream;

the function must therefore claim a new vector from the storage

allocator, and place in it the functions and routines to perform

the standard operations, together with any other initial information

that may be necessary, including, for example, the stream supplied

as the parameter fOT the stream function.

To illustrate this, we give the BCPL text of a particularly

simple example, the function RemoveLayoutChs described in §2.2

above. To simplify still further, we will ignore State and ResetStat

As PutBaak does not require a vector element (see §2.5.3 below),

the vector has to contain five standard elements (for Next, Out,

Close, Endof and Reset). It must also contain the argument stream,

so a vector of six elements is required; its layout is shown in

the figure.

o
1

2

3

4

5

NextRLC

(Out) an error routine

CloseRLC

Str (the ar2ument stream)

EndofRLC

ResetRLC

The fact that the third element is not reserved for a

standard operation, and is therefore available for Str, is for

historical reasons. In any case, we shall ignore its embarrassing

arbitrariness because, to improve readability. we shall refer to

the elements by name. We therefore define the following constants

(from now on in this section we will be writing BCPL; comments in

this language are introduced by two vertical bars (II) and continue

to the end of the line):

44

manifest
NEXT", 0

OUT", 1

eLOS!' = 2

5TH == 3

ENDOF = 4

RESET = 5

VECSIZE = 5

The definition of RemoveLayoutChs is then as follows

let RemoveLayoutChs[Str]

§RLC let v = NewVec[VECSIZEJ I We claim a vector

v~NgXT : = NextRLC

v+OUT:= StreamError I and initialise the standard

v+CLOSE CloseRLC contents (note that Stl'eamerror

v!rENDOF EndofRLC~ is a system error routine).

v+RESET ResetRLC

v+STR : = Str

result;s v IRLC

We must now define the subsidiary routines. The most

important is NextRLC.

I

and NextRLC[S] = valof

§N §1 let x = Next[S~STRJ I We read a character from the

argument stream

unl ess :r; I *8 I II X '*4' Y x = '*n'

Unless it's a layout character,

then resultis x it's the result;

b repeat IN otherwise we repeat the process.

Note that '*s' means space, 1*4' the 4-space character, and

'*n' newline.

II

45

We next define ClOBeRLC: we close the argument stream,

and return the storage space.

and CloseRLC[5] be

§C CloBelS+STR)

ReturnVec[S I VECSIZEJ .C
The simplest and fastest definition of EndofRLC is merely

to test the end of the argument streaw

and EndofRLC [SJ ~ Endof[S+STRJ

This, however, would be wrong if Str ended with layout

characters, because our function would give the result

false when in fact there were no more characters to corne.

If this were important, we would have to get more complicated

and EndofRLC[S) ~ valof

§E let Str ~ S{STR II Str is the argument stream.

§1 if EndofCStrJ resultis true

§ let Ch = Ne:rt[Str] II Look at the next character.

unless Ch = '*6' V Ch '*4' v Ch = '*n'

If it's not a layout character,
do § PutBack[Str. Ch] put it back on Str,

resultis false and the answer is false;

11 repeat I~ otherwise, repeat.

Note that although Put"Back[Str, ChJ is more

obvious, PutBa~k[S, ChJ would have been more efficient.

ReBetRLC is~ however, simple - we merely reset the argument

stream :

and Re$etRLC[S] be Re$et[S~STR]

That completes the example.

- ----------

46

2.5. ~. Implementation of PutBack

A call of the routine PutBack is of the form

PutBack[S.xJ

where S is an input stream and x is an object. The Toutine claims

a small vector from the free store and stores in it the returned

object, and also the values of some of the first few elements of the

stream vector, which it then overwrites with other Toutines. The

final situation is as shown in the figure.

s So NextPB

1

2

3

1-----
~~eP13 _

-f~
s,
S,
- - --

4 EndofPB S,

5 ResetPB S.

S,

Obj ect
/ S

PutBackChain / Link of
~_

PBChainl.-....--. __ _ __

Then, when Next is applied to S, NextPB is activated. This

restores S to the statuB quo, and returns the PutBaak vector to

free storage; its result is then the object put back. CZosePB

and ResetPB also restore the previous state and then apply the

appropriate original routine; the result of EndofPB is always

false. The PutBack vectors are chained together for a reason

described below, and when a PutBack vector is removed, care is

taken to heal the breach in the chain. Extra care has to be taken

with bilateral streams, to ensure that the output part of the stream

still works when an object has been put back to the input part, since

some elements in the vector are thereby overwritten.

This implementation gave rise to the following difficulty.

I f the last action on an input stream before the end of a Run is

to perform PutBack (e.g. after reading a number), then the PutBack

vector is returned together wi th the rest of the free store area,

and the stream is thereafter unusable. This is troublesome, of I

47

course, only when the stream vector itself is clai~ed from an

earlier free store. and therefore remains in existence longer

than the PutBack vector.

This particUlar problem required a special sOlution. The

free storage system was altered, so that when it reverts to an
earlier free storage area it copies into the earlier area any

PutBack vectors still in use. This is why the PutBackChain is

required.

This is an example of the clash between the hierarchical

structure of 056 and the nature of storage mechanisms J which was

discussed in the previous paper. The solution must be ad hoc,

because in BePL there can be no systematic way of relocating

vectors of information. Fortunately, this is the only place where

the system requires its use of free storaFe to transcend the di-;

cipline of the Run system, and the special solution is therefore

satisfactory. The only general solution would be to alter the

language to allow garbage collection, and to make all off-stack

storage permanen t.

2.6. iUiciency of Streams

A possible objection to the use of streams might be that

the overheads associated with their structure make them excess

ively inefficient. Certainly, when a stream is formed from a

deep nest of stream functions, processing a single character can

involve many function calls. To some extent a greater expenditure

of time than usual is unavoidable, simply because the flexible

nature of streams and the ease of nesting stream function calls

lead to the possibility of specifying much more complex operations

to be performed on each character. It is sometiwes profitable to

examine the program to ensure that some of these operations do not

undo the work of others. A stream, for example, might be formed

by one stream function which unpacks words into bytes, followed

by another one which packs them all up again.

An improvement in speed may be made by streamlining the

definition of Next and Out, by hand-coding them into machine code,

and this was done from the start (that is, they were written in

virtual machine code - see Part 1 (§O.2) for a

'8

definition of "machine code" and "hardware u in this di scussion).

Further analysis was done by taking measurements of the actual

usage of the operating system during the compilation of the null

program, when most of the time is spent in loading the compiler.

A histogram was produced showing how often each group of 10 words

of code had been accessed (there are about 10,000 words of code

in the operating system), The result was a startling concentration

into a few peaks with virtually nothing measurable in between.

Further analysis showed that most of these peaks were at pieces of

program concerned with taking single items out of buffers and

putting them somewhere else after testing for various conditions

such as the end of the buffer.

Our system runs in a virtual machine. which is implemented

by an interpreter. We can therefore easily add new instructions to

our virtual hardware, merely by extending the interpreter. We have

used this fucility several times in order to replace frequently

occurring operations by single instructions, thus increasing the

efficiency of the system. This activity is quite legitimate, pro

vided that the instructions we add are such as could reasonably be

implemented in real hardware if required. The ability to proceed

in this way is very liberating, and is in accord with our general

philosophy of not allowing ourselves to be bullied by machines.

The conclusion to be drawn from our statistical investigation was

that the buffering operations were obvious candidates for such

optimisation.

A new kind of data structure, called a fast stream, was

devised. A stream is marked as being either fast or slow (in

practice by using the sign bit which is not required to be part

of the address). If a stream is marked as being slow, it is a

normal stream of the kind we have already described. If it is a

fast stream, however. we may derive from it the address of a

vector, of the form shown in the figure.

--

49

fast stream Pointer to a further vector -~

Input buffer pointer -.
Input buffer limit -

InDut escave item

Output buffer pointer ~

Output buffer limit -
OutDut escape it~m

The definitions of the primitive stream operations are extended

to deal with fast streams. If Next is applied to a fast stream,

the normal action is to return as result the object referenced by

the input buffer pointer, and to increment the pointer. If the

pointer has reached the limit, the appropriate routine is called

in the further vector, which is very like a normal stream, to

refill the buf£er. It is convenient also to break out of the

buffering if the item picked up is equal to the input escape item.

Out is defined similarly. If S is a fast stream, Endo!CSJ is

false if the input buffer pointer is below its limit, and otherwise

a function in the further vector is called. The other primitives

merely activate routines in the further vector.

Single hardware instructions corresp~nding to Next, Out

and Endof were written into the interpreter; the other primitives

are used less frequently, and are therefore defined in BePL. Hard

ware instructions were also written to implement the routine

Tpans!erIn[S,v1nJ

where S is an input stream (slow or fast). and v is a vector of

length n; its action is to place in the elements of v the results

of n calls o£ Next[SJ. The corresponding output routine

TransferOut[S,v,n]

was implemented by hardware too.

The result of all this was to reduce the ti~e for compiling

the null program by a factor of six. We feel that this is the

proper way to treat problems of efficiency. Peter Landin has

remarked (in a private communication) that most programs are

designed to be as fast as possible - so that one then goes through

a lengthy process (debugging) of improving the correctness to a

tolerable ~evel while preserving the speed - whereas the sensible

50

course would be to design them to be as correct as possible, and

then gradually to increase the speed till it is tolerable while

preserving the accuracy. (Dijkstra [21 suggests that this is

because many programmers find debugging so much fun that they

could not contemplate giving it up, because the element of black

magic in it satisfies one of our most undernourished psychological

needs.) Streams were designed to be elegant, because in the long

run this is the best guarantee that programs using them will be

correct; questions of efficiency, including the decision about

which operations should be done by hardware, were attended to

later.

I t may be convenient in the future to modi £y the behaviour

of fast streams. In particular. for doing more complex activities

like syntax analysis. there may be advantages in replacing the

escape item test by something more elaborate. such as a masked

tes t.

2. 7. System Streams

056 contains one or two permanent streams, closely

associated with particular peripheral devices. An example is

BytesfromPT which is the only route by which paper tape is read

by the system. These streams are permanent in the sense that an

attempt to close them merely resets them.

In addition to the permanent streams, 056 has four global

variables to hold streams reserved for conventional purposes.

These are called variable streams, and may be freely altered by

programs. Their values are preserved in the Run-blocks (see Part I

§1.2.1), and they are restored to their previous values at the end

of each Run. The four variables are In, the normal input stream;

Output .. for normal output; Re.porotStream.. for error reports; and

ConsoZe~ for messages to or from an operator's console.

2.8. Input/output routines

Programs frequently require to print numbe rs, strings etc.

on a character device. It would be possible to do this by stream

functions: for example, one which when applied to a character

output stream would provide a stream for the output of integers.

51

However, programmers usually need finer control over the layout

of their output, and prefer to work directly with characters.

For this reason a set of routines is provided to output items

of various types along character streams. A typical one is

OutN[S,nJ, which outputs n as a decimal integer along the stream S.

As well as this set which takes the stream as a parameter, two

other sets are provided to perform the same operations specifically

on Output and ReportStream. Input functions are also provided for

reading a similar range of items from input streams.

52

3. THE FILING SYSTEM

It now remains for us to describe the outline of the filing

system, the regime under which information is kept on the disc.

We do not claim any great originality or sophistication in the

design of the system. However. this is an area in which there

tends to be confusion - it is easy. for exawple, to muddle the

name of an object with the object itself - and we have taken care

that our system should be "clean", and that its structure should

be clear.

OUT previous discussion on input/output in 056 has been based

on the idea of streams. These could be freely manipulated in the

programming language and had the same status as any other type

of object. We now extend this approach to another kind of object,

called a file. These, like streams, may freely be assigned to

variables, be passed as parameters, or be the result of function

calls. This implies that each file has a unique value, which may

be stored in a single BCPL variable, and is the handle by which to

access the two components of the file's structure, the heading and

the body.

Each file has its own unique heading. This contains various

items of housekeeping information about the file, including the

means by which the system can access the body. The body contains

the information stored in the file, and also belongs exclusively to

one file: files do not share components. An empty file has no body.

3.1. Some basic function~

As in the case of streams, the basic property of a file is

that a number of system functions may meaningfully be applied to

it. One of these, FindHeading, produces the heading of the file

as a vector in core:

let H = FindHeading[fJ

(The contents of this vector are given in full be low, in § 3.4.) •

One of the fields of H is called the titZe of the file. It is a

BCPL string, of arbitrary length. and its sole purpose is to con

tain a description, fit for human consumption, of the contents of

the file. The properties of the file which might concern a program

53

- such as the date it was created, its owner, or the type of

information stored in it - are all kept in other fields of the

heading, and it is not in tended that the SYS tem should do any

thing with the title except print it out from time to time. In

particular, the title is not used when the system is searching

for a file.

Most of the entries in the heading of a file (including

all those already mentioned) are invariant: they are set when

the file is created and may not subsequently be altered. Some of

them - such as the date the file was last changed, or its size

aTe updated automatically by the system. Only one field, which

contains an entry stating who is allowed to overwrite the file.

may be altered by the programmer (by calling a special routine,

Update Permission) •

3.1.1. 5treams from [{les

Other basic functions concern the filebody. The commonest

way of reading a file into the system is by forming an input stream

from it, by the function InfromFile:

let 5 = InfromPile[fJ

5 is a word input stream, so that if f is a file of packed bytes

it is necessary to apply the stream function BytesfromWorde

let 52 = BytesfromWorde[InfromPile[fJJ

5 is a fast stream. If at any time it is reset, then any sub

sequent calls of Next[5J will recommence from the beginning of the

file.

The corresponding function to produce output streams to the

file is also available:

let 53 = OuttoPile[fJ

Since this involves overwriting, it is designed to minimise

accidents in the case of error. As output via 53 proceeds, a new

body is constructed, but only when 53 is closed does this new body

replace the old one. Thus if the program fails before S3 is ex

plicitly closed, f will not be altered; instead the new body is

abandoned.

S4

3.1. 2. VectOl'S [rom f1: 'les

Instead of forming a stream from the information in a file

body, it ruay be treated as a vector. There are two possible ways

of doing this. If the body is not too large, the simplest way is

to transfer it completely to a vector in core. A function is

availab Ie for this:

let v = Ve~tol'fl'omFiZe[f]

By convention va contains n, the size of the body in words, and

the body itself is in v to v • The complementary routine is also
1 " available,

VectortoFileCf.v]

in which the sawe convention is observed.

If the body is too large to exist in core, another mech

anism is needed. An object called a disc vector is defined, which

may be produced by the function DiscVectorfromFi le:

let Dv = DiscVectol'fromFiZeCfJ

Then a particular element of the body may be accessed by a further

function:

let El = DiscVectorEZement[Dv.i]

or updated by a routine:

UpdateDiscVectorElement[Dv.i .x]

Dv is a vector in core which contains addressing information

allowing reasonably quick random access to any part of the file

body. When no longer required it may be relinquished by a call

of the routine ReturnDiscVector[Dv].

3.1. 3. pi le creation

Files are created by the function MakeNewFile. This is

given the title of the file and its type as parameters:

let f'" MakeNewFile['Line printer stream functions' .BCPLTEXTJ

The result is a new empty file.

55

3,2. Indexes

The file f may be created and used freely within a single

program wi th no further apparatus. "ftT) however, is the name of

an ordinary BCPL variable, and is governed by the usual scope

rules: that is, it refers to the file only inside the block of

program at the top of which its definition occurs. If the file

is to be usable by other programs, we need another mechanism.

This mechanism is provided by indexes.

An index is a file (of type INDEX) on which a number of

special routines are defined. When a file is entered in an index,

two names (BCPL strings) are associated with it. This is done

by the routine En~er.

Enter[f.p.q.iJ

means: "associate the names p and q with the file f in the index

file i." Particular values for p and q might be, for example,

'LinePrinter' and 'Text'. If another file is already associated

with p and q in i. the new mapping supersedes the old.

The complementary operation is provided by the function

LookUp:

let f = LookUp[tLinePrintero'~IText'~iJ

defines f to be the file preViously associated with the names

'LinePrinter' and 'Text' in the index i. If there is no such

file, the result is the constant NIL: the request does not lead

to failure. On the other hand, an attempt actually to access the

components of a non-existent file, for example by setting up a

stream, implies that the program has definitely gone wrong, and such

an attempt leads to GiveUp.

A further function applicable to index files is the stream

function EntriesFroom

let S = EntriesFroom[iJ

The result of Ne~t[SJ is then normally a vector containing the two

names and the value of the file (there is also another form of

index entry which we shall mention below). This enables programmers

56

to perform operations like: "Compile all the files in the index

with the second name '056'." It should be noted that the system

itself attaches no semantic significance to either index name

all the information the system requires about a file is in the

heading - but the fact that there are two names allows the pro

grammer to systematise his indexes in any way convenient to himself.

:3.2.1. Index structure and sharina

There is a special index, called the system index, which

the system keeps in a global variable called SystemIndex. Each

user of the system has his own index, for which there is an entry

in the system index. So one may write, for example:

1et i LookUp [' JES I, 'Index I .Sys temIndex]

1et f LookUp['EinePrinter', 'Text' ,iJ

or, all at once;

let f = LookUp['LinePrinter'.'Text',LookUp['JES'.'Indeo:',

Sy $ temIndex J J

In fact, any index may be entered in any other index, not merely

in the system index.

A single file may be associated with different pairs of

names in different indexes, or even in the same index. This is

one form of sharing of files: two different entries point to the

same file. There is another form of sharing sometimes employed,

which is available in OS6. Instead of two entries pointing to the

same file, one entry may point to the other entry (this is the

'special! form of index entry referred to above). Such an entry

is constructed by the routine Link, which takes seven arguments,

Link[Nl,N2.N3.N4.NS.N5.iJ

This means: "Construct a special entry in the index i, so that

the names Nl,N2 refer to the entry with names N3,N4 in a second

index. This second index is entered with names N5,N5 in the system

index." Then a call

LookUp[Nl.N2.iJ

will initiate a search in the second index. In principle links

may occur to any depth; care is taken when setting up a link to

57

ensure that the chain of links does not lead to a loop of ref

erences to each other.

There is a third method of sharing the information in a

file, which is simply to copy the contents into a completely new

file. Which of these three methods is used in any particular

situation is partly a matter of personal taste. The first seems

to be most popular in our group. It is possible, however, to

imagine a situation in which there is a real choice between all

three possibilities.

Suppose a user A keeps programs on the disc, and has the

convention that when correcting a mistake he overwrites the file

body, but if he alters the specification of a program he creates

a new file and changes the entry in his index to point to the new

program. Then a second user B who wishes to access one of A's

programs can choose as follows. If he wants the program as it

stands, ignoring any of A'S later alterations, he copies the file.

If he wants to benefit when A corrects a mistake, but not to have

the specification changes, he constructs an entry pointing to A's

file. If he wants to keep up with A'S latest ideas on what the

program ought to be doing, then he constructs an entry pOinting to

A's entry.

3.3. Deletion of Files

There are three sorts of deleting possible in the system.

One may delete the body of a file, preserving the file itself and

any index entries pointing to it; one may delete the file, heading

and body', but not affect any index entries; or one may delete an

index entry, which will not affect the file the entry pointed to.

All three kinds are separately available in 056. Of course, an

index entry pointing to a deleted file is not much use, and a file

is inaccessible unless at least one entry points to it: these

matters are the concern of a special housekeeping program, which

performs a garbage-collection operation on the filing system.

3.4. Outline of i~pZementation

Files on the disc are accessed through a ~~aster File List

58

(MFL). The value of a file is the serial number of its entry

in the MFLj the MFL entry gives the disc address (page and word)

of the file heading. The Burroughs disc has fixed heads, so the

access time is half a revolution; moreover, the use of an inter

preter slows down the rate at which the system can process in

formation. There is therefore no advantage in optimising the

position of the pages in the body of a file; they are allocated

in no particular order, and the pages of a body aTe chained

together. Usually, the last body page contains a pointer indicating

how much of it is occupied (thus avoiding the Endof problem dis

cussed earlier in §2.4.l).

A diagram of the structure is given in the figure (p.S9).

It should be noted that the headings are kept all together in a

heading file, and the MFL is also a file. This implies, of course,

that the heading file will have its own heading. somewhere in its

own body .. and the MPL will contain its own entry. It is necessary

to know two quantities in order to access the structure: the

address of the first page of the MFL body, and the value of the

system index. The second of these is kept in a global variable,

set up When the system is initiated, and is available to user

programs; the former is private to the system, and is incorporated

as a constant declaration at the head of the appropriate segment

of the text of the system. This is a mistake: if the particular

page developed a fault, it would be impossible to use the filing

system until the segment had been recompiled - and the normal

campi ler uses the disc.

3.4.1.	 Vise stopage n,lloeation

The addresses of all the free pages on the disc are kept

in a file, the free storage file. For efficiency's sake a page

of this file is kept in core I and for safety's sake this core is

in the program segment. It is written back to the disc at frequent

intervals (at the end of each Run, and whenever the page kept in co

changes to another page).

3.1.+.2. User details

The system has a file of users. A user's entry contains

59

f-1

MFL file Heading file Body of f

~

valuel~ f
,+:'itart of j1enrh of---+-

o tltle hea lug n /f=1 ~
I Fi rst page of body

f ~ 11
Number of pa~es in

2 I body - 3k;d
3 Last page of body

4 Type of information ~ ~ SUITlCll"eCK

5 Owner ~_
6 I I Date created

7 I I Date last changedAn index file

~ 8 I I Date las tread-
length ~f-- 9 Permission

..,

2

~Pointer to ~
1st name

Pointer to _
2nd name

- f

1st name

2nd name

file value10 f
11 Title

121 ~ (In 'UCPL)

~-- ----~

r'. /----- r------l
n string Iformat)

~---==.Jk-'

~ ~

his name (a string), the unique number by which he is known to

the system (which gets entered in the owner field of his file

headings), and his main index. A user may IIlog in" by specifying

his name on the console: the system places his personal details

in various system variables (User, UserIn.dex). The entry also

contains the size of the user's allocation of disc storage space.

The system warns him when this is nearly used up, and he is

60

prevented from eJ;ceeding it.

3.4.3. Protectio)';. from errOl'S

Protection in the filing system is of two kinds: we try

to prevent the occurrence of accidents; an0 we keep a certain

quanti ty of redundant information, so that if a crash does happen

we have some chance of reconstituting the system, rather than

having to restart it ab initio.

The most important prophylactic is the permission system,

governing the access programs may have to files. Since we are

solely concerned to prevent accidents, and have no confidential

files, we allow anybody to read anything; there are only three

values for the permission field in the heading, which have the

following meanings:

UNRESTRI CTED anyone can write to the file

OWNER only the owner permitted to write

INHIBITED no one may write to the file.

The permission field may be changed only by the owner (or anyone

masquerading as the owner).

Our present philosophy is not to be constantly checking

the redundant information. Every so often we run a disc validation

program, which thoroughly checks everything, and we investigate

any discrepancies. If there is a crash, we have an armoury of

little programs to aid the system programmers in sorting out the

system.

3.4.4. Garbaqe collection

It is probable that the filing system will contain some

outdated information in inaccessible places. This may be found

and removed by a garbage collection system, which operates in well

defined phases. Firstly, the system index and any deeper indexes

are scanned, and entries referring to deleted files are rewoved.

Having purged these indexes, we construct a list of the files

entered in theJl1, and delete all files which do not occur in the

list. At this stage the heading file may he compacted. Finally,

we form a list of the disc pages used by the files which remain,

61

and ensure that all other pages are entered in the free storage

files.

3.5. Extensions to the filina system

We may require to extend the filing system to deal with

a more sophisticated system, in particular (a) automatic incremental

dumping, if suitable extra equipment becomes available, and (b)

the possibility of several users' using files simultaneously through

a console system. This will probably require new fields in the

heading of a file. to contain new items like its CUTTent status,

for interlocking purposes. None of this will require changes

to the basic principles of the system.

62

4. RECAPITULATIOr~

In any description of an input/output system it is only

too easy to lose sight of the basic outline. Although we wanted

to include some merely corroborative detail intended to give

artistic verisimilitude to an otherwise bald and unconvincing

narrative [ij] it may be worth while repeating the principles

which we hope underlie our system.

The main objects manipulated in the system are streams

and files. Both may be handled freely by all the facilities in

the programming language. In particular, new streams may be

created by stream functions, which may be written by the user,

and which usually take a previously defined stream as argument,

returning a new stream 35 the result. (A new file cannot be

created by a user-defined function because the medium in which

they are stored is administered solely by the system.)

Streams and files are characterised by the basic functions

and routines which act on them. For streams, the most important

of these are Next and Out, which respectively obtain an object

from an input stream and consign one to an output stream (the type

of the object depends on the stream. and the same basic routines

can be applied to all streams).

The basic functions on files allow the information in the

file to be accessed in various ways (random, serial or all at

once), and allow a fi Ie to become the subject of an en try in an

index. The index entry, however, is not part of the file itself.

5. ACKNOWLEDGEMENTS

The work on streams has been going on for some years, and

began long before we had a computer or operating system of our

own. Several people have helped in the implementation of the

systero described in these two papers. Our thanks are due partic

ularly to Julia Bayman, B. N. Biswas, M. K. Harper, C. Hones and

P. D. Mosses.

The work described in §2.6 was performed by P. H. F.

McGregor.

64

REFERENCES

rl] Burstal1 t R.M., Collins. J.S. and Popplestone,R.J.
(1968). POP-2 papers. OliveT & Boyd, Edinburgh
and London.

[2) Dijk:stra, CW. (1971). Concern fOT correctness as a
guiding principle for program composition. The
Fourth Generation, International Computer State of
the Art Report, pp.357-367. Infotech, Maidenhead.

(3J Evans, A.,Jr. (1968). PAL - a language for teaching
programming linguistics. Pro~. ACM 231'd National
Conf. Brandonl Sys terns Pres 5, Pr inceton, N. J.

[4]	 Gilbert, W.S. (1885). The Mikado or The Town of Titipu.
Act II. Chappell &Co. Ltd.

[SJ Needham.	 R.M •• and Hartley. OJ. (1969). Theory and
practice in operating system design.
Second symposium on operating system principles,
pp.8-12., A.C.M, Princeton, N.J.

[6J* Stay, J.E. and Strach~y. C. (972). 056 - an experimental
operating system for a small computer: Part I
general principles and structure.
To appear in The Computer Journal, Vol. IS.

* Part Iof this monograph.

Programming Research Group Technical Monographs

This is a series of technical monographs on topics in the
field of computa tion~ Further copies may be obtained from the
Programming Research Group, (Technical Monographs), 45 Banbury Road,
Oxford, OX2 6PE, England.

PRG-l Henry F. Ledgard.
Production Systems: A Formalism for Specifying
the Syntax and Translation of Computer Languages

(£1.00, $2.50)

PRG-Z Dana Scott.
Ouf;line of a Mathematical TheQry of Computation

(£0.50, $1.25)

PRG-3 Dana Scott.
Th e Lattice of Flow Diagrams

(£1.00, $Z.50)

PRG-4 Christopher Strachey.
An Abstract Model for Storage

(in preparation)

PRG-5 Dana Sco tt and Christopher Strachey.
Daf;a Types as Lattices

(in preparation)

PRG-6 Dana Scott and Christopher Strachey.
Toward a Mathematical Semantics.
for computer Languages

(£0.60, $1.50)
PRG 7 Dana Seo t t.

Continuou8 Lattices
(£0.60, S1. 5))

PRG-8 Joseph Stay and Christopher Strachey.
os 6 - An Opera ting Sys tem for a Sma l l Complt t er

(£1.00, $2.5))

PRG-9
The Text of OS5

(in preparation)

