
PARTIAL CORRECTNESS

OF

COMMUNICATING PROCESSES

AND

PROTOCOLS

BY

ZHOU CHAO CHEN

.AND

C,A.R, HOARE

Technical Monograph PRG-ZO

May 1981

Oxford University Computing Laboratory
Programming Research Group
45 Banbury Road
Oxford OXZ 6PE
U. K.

Pages J to 12 @ IEEE.

Pages 13 to 23 @ Zhou Chao Chen and C.A.R. Hoare

This monograph contains two closely related papers. The first was
presented at the Second International COQference on Distributed
Computing Systems in Paris on 8th April, 1981. The second was
presented at the INWG/NPL Workshop on Protocol testing - towards
proofs? at Teddington on 28th May, 1981.

CONTENTS

PARTIAL CORRECTNESS OF COMMUNICATING SEQUENTIAL PROCESSES.

o. Introduction

1. Processes and their description

1.1 Prel iminaries 2

1.2 Process expressions 2

1.3 Examples of process definitions 4

2. Partial correctness of processes 4

2.1 Inference rules 5

2.2 Examples 7

3. Val idity of inference system 8

3.1 Prefix closures 8

3.2 Denotational semantics of process expressions 8

3.3 Semantics of inference rules 9

3.4 Proofs 10

4. Cone Ius j on 12

References 12

PARTIAL CORRECTNESS OF COMMUNICATION PROTOCOLS

1. Communication protocols 13

2. Weakest environment 17

3. An HDLC protocol 19

3.1 Level 2 19

3.2 Level 1 20

3.3 Level 0 21

3.4 Medium 22

Acknowledgement 23

PARTIAL CORRECTNESS OF COMMUNICATING SEQUENTIAL PROCESSES

Zhou Chao Chen and C.A.R. Hoare

Progranvning Research Group, Uniersity of Oxford.

Institute of Computing Technology, Academia Sinica, Peking.

We Introduce a programming notation to describe
the beha.... iour of groups of parallel processes.
convnunicating with each other o er a network of
named channels. An assertion is a predicate with
free channel names. each of which stands for the
sequence ofalues which hae been communicated
along that channel up to some moment in time. A
process inariantly satisfies an assertion if that
assertion Is true before and after each commun
ication by that process. 'We present a system of
inference rules for pro ing that processes satisfy
assertions, and illustrate their use on some
examples. Theal idity of the inference rules is
established by constructing a model of the
programming notation. and by pro.... ing each inference
rule as a theorem about the model. limitations of
the model and proof system are discussed in the
conclusion.

CR categories: -'l.22 5.24

key words and phrases: program correctness,
parallel prograrrrning, axiomatic semantics,
denotational semantics. communicating processes.

Introduction (0)

The possibi 1ity of using multiple prOCessors.
simultaneously carrying out a single task, has
opened a new dimension in computer programming. To
assist the programmer In exploiting the possibility.
it must be made aailable within the Context of a
high le.... el language; and one such approach Is in
formally described in [2]. But informal descrip
tions are notoriously unrel iable. and some of the
intricacies of parallel ism are notoriously subtle.
For sequential programming languages, these problens
hae been sol ed by the techniques of denotationa!
semantics [5]. Furthermore, the axiomatic methods,
which pro.... ides a basis for proofs that programs
expressed in a language will meet their specification
has been extended to parallel programs (6]. This
paper makes an ambitious attempt to gie both a
denotational and an axiomatic definition for a
language In....ol ing parallel ism, and proes that the
defInitions are consistent. To achie....e this goal.
the language has been kept ery simple; for example
It does not include local ariables. assignments, or
e en sequential composition; and loops are COnstruct
ed by tail recursion. In spite of these omissions.
the expressi e power of the language can be
illustrated by non-tri ial el(amples [tl. A more
serious deficiency is that the proof method
establishes only partial correctness, and cannot

pro.... e (or e en express) the absence of deadlock.
There does not seen to be any easy way of extending
the method to deal with this problem. Howe.... er. the
fact that we e ade the problem of "fairness" seems
to be a merit.

Processes and their description (1)

We regard a process as a potential component of a
network of processes connected by named channels,
along which they ccmnunicate with each other. Each
occurrence of a communicatIon between a process
and one of its neighbours In the network is denoted
as a pair "c.m ", where "m" is the value of the
message and " c" is the name of the channel along
which it passes. For example. "output.)" denotes
communication of the value) on the channel named
"output". and "input.)" denotes COn111unication of
the samealue on a different channel. For the
sake of simplicity. we do not distinguish the
direction of corrrnunication: transmission of a
message on a channel and its receipt by another
process on the So511e channel are regarded as the
same e ent. which occurs only when both processes
are ready for it. Thus "loll re.ACK" denotes
simultaneous transmIssion and receipt of an acknow
ledgement signal ACK along the C~,&(1nel "wire".

The sequence of communications in which a process
engages up to some moment in time can be recorded
as a trace of the beha.... iour of that process. For
exampTe-;-a- process named "copier" is connected to
its neighbours by two channels named "input" and
"wi re":

~>~~

The task of the copier is JUSt to copy messages
from the input channel to the wire. Thus the
following are possible traces of Its beha iour:

(i) <>. i.e•• the empty trace. describing its
beha iour before it has input anything.

(ii) <Input.), wire.)::> is a sequence of two
communicatIons describing Its beha iour when it has
copied its first message, which hasalue).

(iii) <input-2], wire.27. input.O, wire.O,
input.)::> describes a different possible beha iour
of the copier.

Another example is a process named "recopier" wl,ich
simply copies messages from "wire" to "output".

Its	 possible traces include:

(>,	 (wire.3, output.3>,
(wire.27, output.27, wire.O>, etc.

In this paper, we regard a process as being
defined not by in internal Hates and transitions,
but rather by ih e:-;ternally observable behaviour;
or, more precisely, by the set of all traces of
its	 possible communications with its neighbours.
In the case of the copier process, this set will
include (for example) all traces of the forlll
<input.m> or <input.m,OOtput.m>, where m ranges
over al I possible message values. Thus a process
can be identified with a formal language over an
alphabet of cOrmlunications. Such languages can
conveniently be defined by a notation similar to
the production rules of a formal grammar, as will
be shown in the remainder of this section.

Preliminaries (1.1)

We shall aSSlrne that the reader is familiar with
the	 following kinds of syntactic category, and
thei r usual interpretation.

(1)	 Constants, denoting particular values,

e.g., 3 or 27.

(2)	 Variables, denoting unknown values,

e.g., i,j,k,x,y,z.

())	 hpresslons, bui It fran variables, constants
and operators, each of which defines a
value in terms of its constituant variables,
e.g .• (J"'x+y). Note: e:-;presslons are not
allowed to contain process names or channel
names.

(4)	 Names and expressions denoting sets of
values or types, e.g.,
NAT denotes the natural numbers {O,l,2, ... }
{a •.)} denotes the finite range (O,I~2,)}
(ACK,MACK] denotes a pair of acknowledgment
signals.

In a practical programming notation, a strict
typing systemould be desirable to ensure consist
ency of variables, e:-;pressions and messages passing
along each channel. For simplicity. in this paper
we shall henceforth ignore the maUer.

We now introduce the following new syntactic
categories. The forms of the identifiers and
variables and e:-;pressions are fam! 1iar; and we rely
on the good will of the reader to distinguish them
by conte:-;t or meaning.

(5)	 Process names. serv i ng as nOn-termi na I
symbols of a grammar, e.g. copier, recopier,
sender, receiver.

(6)	 Process array names, such as q,mul t, .. If e
Is an expression, then q[e] is a subscripted
process name, denoting a particular process
for each distinct value of e.

(7)	 Process equations of the form pllP, where pis
a process name and ·P. is an expression defining

the baheviour of the procelis. If the name
p occurs Inside the e~pt'"ession P, the
equation Is recursive in the familiar sense.

(8)	 Process array equations, of the form
"q[I:MJl!.P", where q is a process array name,
M is a set-valued expression (or type), I Is
a variable ranging over M, and P Is an
expression defining the behaviour of a
process. P may contain occurrences of the
variable I; it 15 the different values of
I that can differentiate the b~haviour of
distinct elements of the array q. As before
an occurrence of q[eJ inside P Is understood
in the usual recursive sense.

(9)	 Lists of equations for processes and process
arrays, which declare and define a set of
processes and process arrays, possibly by
mutual recursion.

Note. Process names will be used ~ for
recursive definition or for abbreviation,
and never to specify the source or
destination of a communication. These are
specified Indirectly by use of channel
names, as described below.

(10)	 Channel names, e.g. input, wi re, oUtput.

(11)	 Channel array names, e.g. row, col. If e
is an expression, then row[el, col[e) are
subscripted channel names, denoting a
particular distinct channel for each
distinct value of e.

(12)	 Channel arrays, of the form "C[M]" where c
Is a channel array name, and H denotes a
~et of po~slble subscript values. e.g.
col [0 .•)] denotes the set
{coJ[O], col [1], col [2], coJ[3]}·

(13)	 Lists of channels, including channel names,
ehannel arrays, and subscripted channel
names. These are used to declare or specify
the sets of channels connecting pairs or
net....orks of processes.

Process eKpreulons (1.2)

It remains to specify the 1Il0st important features
of the notational system, namely the process
eKpressl'lns which appear on the right hand side of
process equations, and thus define the behaviour of
the processes named on the left hand side. The
e:-;jXIsition of this section is quite informal.
Formally speaking, each process expression defines
a set of traces of its jXIuible behaviour, In terms
of the values of Its free variables, as described
in	 3.1 and).2.

(I)	 STOP is the process that never does any
thing. Its only trace is <>.

(2)	 A process name denotes the process specified
by the process eKpresslon appearing on the
right hand side of its defining equation.

)

())	 A subscripted process name q[e] denotes the
process Q',where the definition of q has the
form q[I:H]6Q, and Q' is formed from Q by
replacing each occurrence of 1 by the value
of e, provided that this is In H.

(~) If c is a channel nal'l'le (possibly subscripted)
and e Is an expression, and P is a process
expression, then "(c~e-tf')" is a process
expression. It denotes the process which
first transmits the value of e on channel c,
and then behaves 1 ike P. e.g.,

(wire~J +copler),

(col[l]~()*I+J)+mult [I]).

(5)	 If x Is a variable, and H is a set expression
and c Is a channel name (possibly subscripted)
and Pis a process e,,;pression, (In general
containing the variable xl then "(c1x:H+P)"
is a process which first communicates on
channel c ~ value of the set H, provided
H is nonempty. I f x denotes the value
communicated, P specifies the subsequent
behaviour of the process. This models Input
of a value from channel c to the variable x,
which serves as a local (bound) variable in
P. The actual value given to,,; is usually
determIned by an output "c!e" performed by
the process of the network located at the
other end of the channel c. e.g.,

(i npu t1x :NAT + (wi re ~x + copi er)

(col [i -1]7y:NAT + (col [i] ~ ()*x+V) +mul t [i l»

Note. In future, brackets may be omitted

on the convention that the arrow Is right

associative. e.g.,

wi reh: NAT + ou tpu t!,,; + recopi er

(6)	 If P and Q are process expressions, then sO
is (pIQ). It denotes a process that behaves
either like P or like Qj the choice between
tharl may be regarded as non-determinate. e.g.

«(wi re ~ACK + outpu t ~ x -0 rece Iver)

1 (wi re ~ NACK + rece iver»

Note. In future the inner brackets may be
omitted, on the convention that + binds
tighter tllan I.

(7)	 Let X be the set of channel names occurring
In P and 'let V be the set of channel names
occurring in Q. Then (P IlvQ) denotes aX
network constructed from processes P and Q,
which are connected to each other by
channels in the Intersection of both sets X
and Y. However P may still be externally
connected to other neighbours by channels
In the set (X-Y), and Q may be externally
connected by channels in the set (V-X).
Thus each external corrmunicatlon bV
(P II Q) is either made by P on a channel of

X V
(X-V), and is ignored by Q, or vice versa.
However any internal communication between
P and Q uses one of the channels of XnY.

A communication on such a channel c requires
simultaneous participation by both P and Q;
one of them determines the value transmitted
by an output "c!e", and the other Is
prepared to accept any value (of the set H)
by an input "c1x:H". e.g .•

A network diagram

wire)fecoPler Ioutput?>

Is denoted by the expression
(coplerJ ~recopier),

where	 X {input,wire) and

V =- {wi re,output}.

Note.	 When the content of the sets X and
V are clear from the context, or from an
accompanying diagram, it is convenient to
omit them.

0) Let L be a list of channels which are used
for internal communication between
processes of a network P. Then (chan LjP)
Is a process in which all interna-j--
communications along any of the channels
in L are removed from the externally
recordable traces of P. Such canmunicatlon
is e,,;pected to occur Independently and
automatically, whenever the processes
connected by the channel are all ready for
it. If more than one such communication is
possible, the choice between them is non
determinate.

The effect of declaring channels local to a
network can be pictured by enclosing the
network in a "black bo,,;", and removing the
narles of the internal channels, For examplel

in u t

is a pictorial representation of the process
e,,;press ion

(chan wire;(copierllrecopler)

Note. Our decision to ignore the direction
of communication leaves open the possibility
that a channel may have a single process
which outputs on it and many other processes
which input from it. All such inputs occur
simultaneously with the output. In theory,
It is possible that all processes connected
by a channel can simUitaneously input from
It, with a highly non-determinate result.
In our examples we shall avoid such
phenomena; a practical prograrrmlng language
should be designed to make them Impossible.

E~amples of process definitions (I. J)

(1)	 A procl::ss which endlessly copies numbers
from a channel named "input" to a channel
named "wi re",

copier Q (input?x;IIIAT -> wi re~)l, -> copier).

A similar process is:

recopier Q (wire?y:IIIAT -+ output~y -> recopier).

(Z)A "sender" process inputs a value y on a
channel named "input" and then behaves 1ike
q[y] ,

sender ~ (input?y:M -> q[y]).

(J)The process q[)l,] (for any)l, in M) first trans
mits the value ~ along the channel named
"wire"; It then inputs from the wire either
an ACK signal or a IIIACK signal. In the first
case, its subsequent behaviour is the s8lle as
that of the sender. In the other case, it
transmi ts the message a~ often as necessary,
until it gets ACK:

q[~:M]	 f::. (wi re~~ -> (wi re1y: (ACK) -> sender
-Iwi re7y: {IIIACK} .. q[x]))

(~)A "receiver" process inputs messages on the
wire. It then either returns an "ACK" signal
and outputs the message, or it returns a
''NACK'' signal and e)l,pects the message to be
retransmitted. The choice between these
alternatives is non-determinate;

recelver.6 (wi re7z:M -+
- (wir .. lACK-> output!z'" receiver

Iwi re~NACK -+ rece Iver)}

(S)A cernmunication protocol is implemented as a
sender and a receiver connected by a single
wire bi-directional channel; communications
on this channel are regarded as local and are
concealed.

,---------------j
protocol

OUtDU~"'~"""'D'""t__f->1senderl<E;--Jrece; ver I

protocol Q (chan wire; (senderllreceiver))

(6)A	 network of multipliers mult [i:1..31 is
designed to input the successive rows of a
matri~ along channels row[l .. l]and transmit
along an "output" channel the scalar product
of each row multiplied by a fi)l,ed vector
v[1 .. 3}. The overall structure of the net
work is as shown in the following diagram.

"CD"W"-[lJJJL-_~.--"'--,

outpus.

Each process multli] inputs a value)l, from
row(i], multiplies it by v[il. adds the product
to a partial sum y which it has Input from
col[i-IJ, and outputs the result on col[l].
These actions are then repeated.

mul t [i: 1 •• 3]	 b. (row[i)?x:NAT -> col [1-1] 7y:IIIAT

--+ col [i]~(v[iP)l,+Y)-+ mul t [i])

The tW'J other processes look after the boundary
cond 1t Ions.

zeroes f::. (col [0] ~O -+zeroes)

Ias t ~ (co 1L3]7y: IIIAT -> output: y -+ last)

These	 processes can be assembled in a network.

netW'Jrk f::. (zeroes! Imul t [1] II

-mult[2111 mult(3]!\last)

rinally [nternal canmunicat[on can be localised

multiplier ~ (chan col[0 •• 3]; netW'Jrk).

Partial l;orrectness of processes (2)

If	 P Is a process e~pression and R [s an assertIon,
we define "PsatR" as meaning that the assertion R
is true beforeand after every canmunlcatlon by P.
In general, R wll I be a predicate contaIning
constants, variables, expressions and logical
connectives. If a variable Ol;CUrs free in roth P
and R, then it ;s understood as the same variable.
and "P~R" must be t rue for a II va 1ues it can take.

1II0te. 'tie do not al low process names to appear In
a sser t Ions.

'tie intend that channel names should appear as free
variables of R; they denote the sesuence of values
communIcated by P along that channel up to serne
moment in time. ror e)l,ample. we write "sSt" to
mean that the sequence t begins with s, i.e.

5

SSt = df Ju .(su = t)

Now the assertion "wire.'> input" means that the
sequence of values transmitted along the wire is
nothing but a copy of some ini tial segment of what
has been transmitted along the input channel. This
assertion is always true of the copier process, so
we can validly claim that "copier sat wire~ input".
Similarly, we can claim that "recoPi""er sat output ~
wire" and that "protocol sat output~ input". We
sha 11 give a set of inference ru Ies for proofs of
the validity of such claims in the remainder of this
section.

But fi rst we define some useful operators on
sequences.

(1) If s is a sequence and x is a message value,

x"s is the sequence wnose first message is x
and wnose remainder is s.

(2)	 lis is the length of the sequence s; thus for
example

copier.!!!. (ilinput~jfwire+l)

i th

message of s i thus

multi pi ier sat (),\J;:NAT. l~idoutput

". outputi =

(3) si (for idl .. IIs}) is the value of the

row[jJ i)

Note: free channel names in P and Rare
regarded as bound in "PsatR". This is
because IPsatR" has to be"true for all
possIble sequences of messages communicated
by P along those channels.

Inference rules (2.1)

Let rand 6 be 1 ists of predicates, including
possibly predicates of the form "PsatR". Then an
Inference is a formula of the form"""Tif~6", which
means that all the predicates of 6 can be validly
Inferred from the set of assumptions listed in r.
An	 inference rule has the form:

fI	 ~ 61
r2	 62

which means that whenever the inference above the
line is valid, the inference below the line is valid
too. We shall take for granted the fami liar
Inference rules for natural deduction, for eKample,
if x 15 not free in r, then

r > R ('.i- i ntroduc t ion)
r ~"'xe:H. R

(I)	 r > T (triviality)

rt-PsatT

The inference above the I ine states that T is
always true (on assumptions r). It fo' lows that
T is true before and after every communication
of P.

Example: ~ wire~wire·

Therefore copier.!!!. wi re~wi reo

(consequence)
r PsatS

(2);..r-7-p"''''~R;.c'--,''',--,,-S

If R is invariantly true of P, and whenever R
is true so is S, then S is also invariantly
true of P.

Example:

Let r;" copier sat wi re~input,

then r +-copler---sit wire~input,
wi re~ input-=;-x"wi rf ~ K"; nput,

and therefore r ~cop i er ~ <wi re~x" input.

(3)	 r +- PsatR, PsatS (conjunction)
,+- P~t{R&S)

If R Is always true of P and 50 is S, then so
is (R&S).

(4) The process STOP a Iways Ieaves a 11 channe Is
empty. Let R<> be formed from R by replacing
all channel names by the constant empty
sequence <>.

(emptyness)

r +- STOP .!!!. R

EKample:,~ <> ,.:; <>.
Therefore +- STOP sat wire~input.

Similarly +- STOP sat «(3"(4"c))~<3,4>&d~e)

{S)The process (c~e+P) behaves like P, except that
the sequence of communications along channel c
has the value of e prefiKed to it. Let R~"c be

fonned from R by replacing all occurrences of
the channel name c by the expression e"c.

(output)

r+ (c!e+P) ~ R

Example: t-(3"<»~<3,4>6<>~<>.

STOPsat(3"(4"c»)~<3,4>&d$e.
therefore +- (c~ STOP) sat «(J"c),.:;<3 .4>&d,.:;e),
5 imi I ar I y +- (c ~ 3 + c ~ 4 ... STOP) !!!Jc~<3 .4>&d~e).

Note. If c is a subscrivted channel name from
an array d[M], then Rd[) is taken to be

e"d[f]
Rd
),i:l'1.ifi;:of then e"d[f]elsed[i].

where i is a fresh variable (not free in for
e).	 This appl ies in the next rule too.

6

(6)	 The cOlTmClnd (c1x:M-+P) is 1 ike (c!It"'P),
eltcept that it is prepared for COlmlunication
of !!:!1. value of It draWl'l from the set H. It
must therefore satisfy its invarlant for all
such values. Let v be a fresh variable which
Is not free inP, Rorc.

(Input)

r~ (ch:H-+P) sat R.

hample. let r = copier sat (wire:s: input).
Then r ~ <) :s: vA<>, copier-5at
(vAwlresvAinput) (proved before).
:.r ~o:s:<>,'!1V(H. (wi re!v -+copler) sat (wi r~vAinput)

(outp'U"t";'lt-int)
:. r ~ (i npu t11t: M-r wi re ~x -+ cop I er) sat (wi re:S: input)

- (Input)
Suggestion: read this proof backwards.

171 The process (P!Q) behaves 1ike P or I ike Q.
It satisfies an invariant whenever both
alternatives satisfy it.

(a 1terna t ive)

An eltample will be given later.

(8)	 Let X be a list of channels, IncludIng all
channels mentioned in R and let Y be a list
of channels, including all channels mentioned
In S. Suppose that P satisfies Rand Q
satisfies S. Then, when they run In parallel,
we claim that (PltllyQ) satisfies the
conjunction (RGS). Clearly, COlTlT1unicatlon by
P on any channel of the set (X-Y) satisfies R,
and does not affect 5, because S does not
mention any of these channels. Similarly.
communication by Q on channels of (Y-X)
preserves the truth of R as well as 5. But
COlMlunicat Ion on a channel of XnY which connects
P with Q requires simultaneous participation
of both P and Q; P ensures that it maintains
the truth of Rand Q ensures that it maintains
the truth of 5. So it must satisfy both RGS.

(parallel ism)

[ltample: .~ copier sat wireS input,
recopier sat output s wire (assume)

Therefore ~(copier:TT recopler) sat
ol,ltPUgWirr\; ~iresinput ~arallelism)

and so ~{copier recopier)sat(outputS input)
- , -- (l:onst'quence)

(where X ={inpur.wire) and Y ={output,wire]l.

(9)	 let R be an assertion which does not mention
any channel of the list l. Suppose P sat Rj
then the truth of R I s unaffected by -
c<rnmunicat ions on any of the channel s of L; and
remains true even when all such COlmlunications
are concealed,

r~PsatR	 (chan)

r~ (chanL; P)!!.!.R

E"'ample. ~(coplerltl lyrecopier)!!l

output:S: Input

(a I ready shown)

therefore ~(chan wire;copier II recopler)sat-- -, -
outputs: input.

(10)	 Consider a process name p, defined recursively
by the equation ¢.P. We allow such deflnitbns
to appear in the list of assumptions of an
inference. Suppose we wish to prove that
"psatR". As always, it is nece'isary to show
th~R is true of empty sequences. Also It
is nece'isary to show that the eltpresslon
defining the behaviour of p satisfies R. But
In proving that PsatR, we will encounter
recursive occurrences of the name p. In order
to cot'l'lplete the proof, ..te wi 11 need to know
sot'l'lethlng about the behaviour of p. The
inference rule given below allows us to assume
about p the very thing that we are trying to
prove about it, n<l11ely psatR.
If p	 is not free in r. -

r j.R
0'

. r, p.!!!.R PsatR (recursion)

r, ~P .. psatR

Note: The Inference rules for recursion depend
on two SUbsidiary inferences, here separated
by semicolon.

Example:	 Let P stand for
(1 nputh: NAT-+ wi re!1t -+ cop 1er).

~<>:s:<> (theorem)
copier ~ wi re:s:input ~

P!!!.wi reS input (a 1ready proved)

therefore copierl:lP ~ copier satwlrt':s:lnput.
- lrecurs ion).

This rule elttends to process array definitions:
If q is not free in r,

r ~ ('!1Jot£M.So) ; r.('ltltEl'I.q{ltJsatS)I-('JI'£M.Qsat5)

r, q(It:M]~Q ~ ('JxcM. q[x]satS)

and al so to longer lists of equat ions, for
eltample: if both P and q are not free In r,

r~R(),('Jlttl'1.S<» ;

r ,psatR, ('Jlttl'1.q(x] satS) j.PsatR, ('JltEM. QsarS)

r,p~p, q[x:HI~Q t p~R,('JxtM.q{x]!!l5)

Examp I es	 (2.2.)

(l) Let	 t.l be the list of definitions.

sender 6(input1x:H""'q[x])
q(x:HJ6Twi re~x ~ (wi re1y: {ACK}"'" sender

- Iwire1y:{HACK}+q(xJ»

Let f be a function from (Hu(ACK.NACK»* to H"'.
such that the value of f(s) is obtained from s by
cancel I ing all occurrences of ACK, and all
consecutive pairs <x.HACK>. e.g.

f«x,HACK, y. ACK»:: y

thus f(<» = <>, f«x>}:: <x> , f(xACK"wlre)

xf(wire) ,

and f(x"HACK....wire) = f(wire).

We want	 to prove that tol ~ sender ~ f(wire)~lnput.

Proof:	 Let AI be the I ist of predicates

sender sat f(wlreh:input,

'w'XE:H. q[Xfsatf(wire)~x"input.

We shall prove the stronger lemma that

to! ~ AI by rule (recursion).

It Is easy to check the first subsidiary inference
that ~ f(o)~<>. Yx€H. f(o)sx....o. The main part of
the proof Is displayed In table I.

(2)	 Let 62 be the definition.

receiver to(wire1x:H+ (wire!ACK +
output~x ... receiver
Iwi re!NACK + recei ver))

We wi sh	 to prove that Ol~ receiversatoutputsf (wi re).
Tt1e proof i ~ left as	 an el\erci se.

(3)	 let 03 be the definition
protocol 0 (charwireisender- -- ,

We wish to prove that 01, Ol, 03

-

II yreceiver).

~ protocol
~ outputS input.

(1)	 sender.!!! f(wlre)Slnput (a' ready proved
from 01)

(2)	 recelver!!!..output~f(wlre) (already proved
from 02)

(3)	 (senderllrece'ver)~(f(wire)sinput £.
outputSf (wi re»

(parallelism (1),(2»

(4)	 (sender 11 rece I ver)~ outputs! nput

(conseQuence(3).transs)

(5)	 (~wlreisenderllrecelver).!!!.outputs Input

(chan.(4))

(6)	 protocol ~ output~input

(03,recursion (5),oso)

Prove the second subsidary Inference:

sender sat f(wire)slnput ,

'w'xEH. q~sat f(wire)sx 'nput

~(input1x:H+q[x]) !!!. f{wlre)Slnput.

'w'xEH. {wi re:x + (wlre1y:{ACK}...,. sender

1.' ,ely' {NAOK} ~ q['I))
.!!!. f(wlre)sx"lnput

(1) sender sat f{wlre)slnput	 (assumption)

(2) 'w'xEH. q [xl sat f (.. I re) sx" input	 (assumpt Ion)

(3) f{<»l:.<>	 (def f)

(4)	 (i nput1x:H + q [xl) sat f (w1 re):s Input
- (Input (2),(3))

l5l xE:H"q[x]~f(wire):sx"lnput	 ('w'-ellm (2)

(6) XE:H (assumption)

(])

(8)	 f (wi re) sinpu t""'f (x"ACK"w Ire) sx" input

(def f)

(9)	 f (wi re) Sx" i npu t""'f (x"NACK"w i re) ~x""l nput

(def f)

(10)	 sender sat f{xACK.....wire):s:x"lnput
- (consequence (1) ,(8»

(11)	 'w'vE;{ACK},sender sat f(xv"wire)sx"lnput
- ('w'-!nt(10»

(12)	 q[ll.] ~ f(x"NACK"wire)Sx lnput
(consequence (7). (9))

(13)	 'w'vdNACKL Q[x] sat f(x"v"wlre)SI\"input
-	 (.,,-Int (12))

(14) f«x»	 5. <x> (def f)

IS)	 (wire1y: (ACK}'" sender) .!!.!. f(x"w! re) SX"input

(Input (11).(14»

(16)	 (wire1y:{NACK}+q[X]).!.!!. f(x"wl re):Sx" Input

(input (13),(14»)

(17)	 (wi re1y: {ACK}+sender Iwi re1y: {NACK} ... q (xl)
~ f(x wire)~xAlnput

(alternative (15),(16)

18) f(o) S; <x> (def f)

(19)	 (wire~x...,.(wire1y:{ACKJ+sender

Iwi re1y: {NACK) ...,. q [xl»)
~ f(wire)sx"input

(output (17),(18))

(--int (6),(19»

(21) 'w'xcH. (19) ('w'-lnt (20)

he desired inference is just	 (1),(2) , (4),(21).

Table \

8

Val idity of the inference system (3)

The validity of an inference system is
established by defining a mathematical model (or
Interpretation) of the formulae of the system, and
proving that the inference rules correspond to
mathematically provable facts about the model. For
the predicate calculus, an interpretation of a
formula (s k.nown as an environment, i.e. a mapping
from free variables of the formula onto points of
sane appropriate mathematical space. For
programs expressed in a progranYning language, it is
desirable that an interpretation should bear some
resemblance to the behaviour of an intended
Implementation of the program. The potential
behaviour of a communicating process is described
by giving the set of all its possible traces, i.e.
a prefix-closed set of sequences of communications.

Prefix closures (J.l.)

let A be the set of all possible communications,
that is, all pairs "c.m" where c is a channel name
and m is a message value. For any subset a of A,
all is defined as the set of all finite sequences
constructed from elements of B. A prefix closure
Is any subset P of A" which satisfies the tw:l
conditions

<> P ,
st P"'s"P foralls,tinA"'.

From this it follows that:

{o} and A", are prefi ... closures.

If P is a preflx closure, then {ole pc A1;.

If P is a prefix closure for all x-in-H,

x

thenxMH PxandxQHP"are also prefiX closures.

Thus prefix closures form a complete lattice,
and any Set of recursive equations using continuous
operators will have a unique least solution. In
fact, all the operators we use will satisfy the
stronger condition of distributing through arbitrary
unions, as do the operations nand 1.1:

If P is a prefix closure, and a"A, we define

(a"'p) = {o} u (a"'sls"P).

Theorem. (a...P) is a prefix closure.

Proof. By inspection, 0 t (a"'P).

let st t (a"'P). If st <> then

s <>, so

S £ (a"'P).

If	 s"#.<>then s = a"'s' for some s', and
st=a"'s't where s't£P.

Since P is prefix-closed, s'£P. Hence a"'s',
which equals s, is in (a"'P).

Theorem, (a--t{J..P) = ~ U.. (a"'P) (distributlvlty
X€n X X£n X of ...)

Proof. lHS={<>}l.J{a"'sls(x~,lx} (def ...)

= (o}u"'~H{a"'s!s£Px) (set theory)

=x~M({o]u{a"'sls£Px}) (set theory)

RMS (def ...)

If C is a set of channel names, and s Is in
A1;, then we define s\C as the sequence formed fran
s by anitting all communications along any of the
channels of C. Thus:

<>\C=<>,
(c.m"'s)\C =c.m"'(s\C) i f c?'C

= s\ C if c£C
st\C = (s\C) (t\C),
v\ C= st ...3 vw . u=vw & v\C=s f; w\C=t

If	 P is a prefix closure, then we define

p\C = {s\C\StP} , PIC = fs!s\CtP}

Theorem. F'I C and PIC are pref ix closures, and

they are distributive in P.

Proofs are anitted; they are simi lar to the previol.6

proof.

p.,C clearly models the effect of localization
of channels in C. If P contains no communication
along C1ny channel ofC then PIC is the set of traces
formed by interleaving a trace of P with an
arbitrary sequence of canmun1catlons on the channels
of C, which are, as 1t were, Ignored by P.

Let P communicate only on channels In X,
and Q corrmunicate only on channels in Y. Then
define

PXI\Q= (P/(y-X»n(Q/(x-y».

le(s be a trace of this set. It follows that

s\XtP and s\ Y£Q. Thus every communication of s

along any channel of X "requires" participation

of Pj similarly, every cOl11T1unication along channels

of 'f "requires" participation of Q; therefore

communications along a common channel of Xny

requires simultaneous participation of both of them.

We use this operator to model parallel composition

of processes.

Theorem. xl1y Is a distributive operator.

Proof.Trivial.

Oenotational semantics of process expresslon~ (J.2.)

The semantics of process expressions Is
defined by a function which maps an arbi trary
process expression onto its meaning, namely, a
prefix closure, containing 211 I possible traces of
the behaviour of the given process. But a process
expression in general contains free variables <Ind
process names, and the meaning of the expression
will depend on the meanings of these variables
and names. So the semantic function is based on

9

an environment l?~whiCh maps names onto their
meanings; more precisely, it maps variable names
onto values, process names onto prefix closures,
and process array names onto arrays of prefix
closures. We stipulate that its daTlaln does not
include channel names. If e is an	 environmen-t
and x js~ and v is a meaning	 of a sort
appropriate for x, then I:![v/x] is defined as the
environment which maps x to v and eVery other
name to	 the same meaning as given by I:!:

g{v/xl (y)"'vify"x

'" I:!(y) if yh.

If e is an expression, we extend the definition of
g to let gleJ stand for the value that e takes when
the free variables of e take the values ascribed
to them by g. Thus, for example,

I:!13D =3. !2lle+f] =l:!ffeD+I:!UfU, etc.

Note. parameters which are syntactic Objects I ike
expressions are contained in double square brackets
n, as is usual in denotational semantics.

Now it remains to extend further thedefinition
of 2 to apply also to process expressions,so that
.E1P) is the prefix closure denoted by P when the
free variables of P take the values ascribed by g.
This is done by considering separately each
possible syntactic structure for the process
expression P, using recursion where necessary to
deal with its substructure.

(I) I:![STOP) = {<»

(2) glp) = I:!(p) if p is a process name

() gUp[eU = g(p}[2Ie!] if p is a	 process array

name

(4) I:!lcl =c if c is a channel name

(5)	 glc[eU = c{gle]] if c is a channel array

name

(6) gUc~e-+-pn = ((I?[c].gle]) -+-l?IP])

(]) glc7x:M-+-PJ = (o)u U(eicl.v) -+- (g[v/x])Ip))

v!QIMI

(8) ,1 p\1lI ~ ,iPJ'eIUl
191	 ,I P II III ~ ,IPI " ,lUI

X Y gUX~ gn~

(10) glchan X;PI = g1P)\Q!X]

Semantics of inference rules (J.3.)

Let s be a sequence of conrnunications. We
define ch(s) as the function which maps every
channel name "c" onto the sequence of messages
whose c(ll1munication alon<;/ c is recorded in s.
Thus if

* usually written J and pronounced "rho".

s=<input.27, wire.Z7,input,O, wire.O, .input.}>

then	 ch(s) (input)= <27,0,3>
ch(s) (wire) <27,0>
ch (s) (c) <> for c*wire and c*input

In general,

ch(O)= AC.<>

c h(c .mAs) = ch (s) [(rnA (ch (s) (c»)) Ic]

If e is an environment (which does not ascribe
values to channel names) then ((!+ch(s» Is an
environment in which channel names have the
values ascribed to them by ch(s): I.e.

(l;I+ch(s))lx!=ch(s)(x) if x Is a channel name
=ch(s)(c[~eD)lfx Is a sub

scripted channel name c(e]
= I:!{x] if x contains no channel

names
This is the environment which is used to calculate
the truth or falsIty of an assertion, R, according
to the normal semantics of the predicate calculus
e.g.

1..-,h(,1I1"5J= (1""h('I)['11 & 1..-,h(,»151
(Q+ch (s) H j nput::>wi reJ=ch (s) (input) sch (s) (wi re)
(g+ch (s)) I 'Wx£H. RJ"''lIlv. V£!il[H!"(g [v/xJ+ch (s))(RI

The predicate "PsatR" states that all traces
of the process P satis~the predicate R, i.e.

~ PsatR]= 'lIls. s£gl P)"(I?+ch (s) 1I R).
and I?I'WxdC PsatRD='Wv.v(g(H]"I:![V&.lIPsatRI.

If T Is a predicate containing free channel names,
we similarly define ~(T1'" 'lIls.((!+ch(s)[TJ. i.e., T
has to be true for all possible sequences of values
passing along the channels.

We now need to define the semantics of a
possibly recursive process definitIon ¢>P. We
define e!¢>pJ as being true If and only-if the
value ascrTbad by Q to the name p is indeed the
intended recursively defined process, that is,
the least solution (in the daTlain of prefiX
closures) to the equation ¢P. Since all the
operators fraTl which P is constructed are contlllJous,
this can be caTlputed as the union of a series of
successive approximations, aD, ai' a ' .. ,Z
where

a == gl STopD
O

a i+ == (Q(ai/p] 1I PI.
1

(here a allows recursion only to depth I, afteri
which it stops)

This technique appl ies also to process array
definitions such as q[x:K]l:t.Q. Here each
approximation a is itself-a process array, and sol
is defined using A-notation

10

ao"'Av:P1.p[STOP)

(ThIs 1s the array such that aO[v] = pi STOP) fo'
all v in H).

a + " Av:H.(l[ai!q] [V!;Il;)UQJl I

O(q["H)"OI= (O(q)·'"H. U ('.ld))

- 12:0 !

If RI , R • R Is a list of predicates, then
2 n

An Inference is valid If and only If its antecedent
logically Implies Its consequent, In all possible
environments.

r~R'" df Vp. p[rJ-p[R]

e.g.	 (~P~p.!!!.R) = ("l? (l(p)= U a I-Vs (Sf(l[pI,,0
(O+ch(,))I'.))

An inference rule~ ;s valid If and only if ,
plB) can be validly deduced from the assumption
piA). Thi s needs to be establ i shed for each
Inference rule of our system.

13.4.1

First we prove some simple lemmas about
",nvlronm",nts. Th",y Can be proved by Induction on
the structure of the formula R.

(a) If	 R: Is formed from R by replacing every. free

occurrence of x by a free occurrence of e, then
(since e contains no channel names):

(p+ch(s»)[R:I = (p+ch(s»)[~ el/x] R.

(b) If R<> is formed from R by replacing all chalnel
names by <>

(cl If c Is a channel name arid e Is an expression
(conta in Ing no channe I names)

((l+ch (s))[R~"cD = (p+Ch ((c. pi eD) liS) II RD

and	 (p+ch (s»[Rgl~1 f]] = (p+1:h((d [~ f]] . (ll e])"s»1 Rl

(d) If the set of channel names in piX] does not
contaIn any of the channel names mentioned In R,
then,

(g+ch(s»)[R] = (g+ch(s\ (lIX]l lIRI

(s Ince ch(s) (c) = ch(s\ C) (cl whenever C€C. l

(1) Trlvlality. SupPQ5e

"p. (ll fI-pl T]. Then

l?lfl- "s. ((l+ch(~)!T]

- "5. S£(lap]-{p+ch(s»)(T~

- pi P !!!. T).

(2) Consequence. Assume "l? pin- pIP.!!!.R)&l?lftos).

(l[rJ-("s. Sf~ PI-«(l+ch (s»)IR) &- ("s. (p+ch(s) 1RI

-«(l+ch(s»BS)

-"s. sfe[PU-(p+ch(s»)lSD

-p[P~s].

(3) Conjunction. TrIvial.

(4) EmptIness. Assume "p. (lir]-~R<). Then

pi rJ-pI RoJ

-(p+ch(o»)[R] (lemma (2)

-'d's. s=o-((l+ch(s»hJ

-"s. Sf(l[STOP]-(p+ch(s»)I R] (def STOP)

-pi STOP .!!!. RI .

(S) Output. Suppose "(l. plrD-(pnR<>]&-pnp~R~lIcl).
Given	 (l such that (l(r] then

I?l R<,.J and P[P~R~IIC)' Thus

s(!?lc)e-+pn-(s=ov 5=I2[c].I2~eDllt)

(for some t in (lap).

In the	 first case,

s=o-«[l+ch(s»)IR) = 21Ro]) (lel1"l11a (2) l
-{p+ch(s»)U RJ (by pffRon).

In the	 second case,

s=pl c] . (ll e] II t _((p+ch (s))(RI

= (p+ch(p[cD·eUeUllt»)nRJ)

-((p+ch(s) H R]= (g+ch (t» [R~IIC])

(lemma	 (3))

So	 "p. plir]-'d's. st:p[c~e+P]-(e+ch(s))[Rn. i ..e.

"g. l?(r]-Q[(c!e-+P)~RI.

II

(6) Input.	 Assume 'viI:!. I:!lr)-(I:![RoJ

I> pIYvEH.p~!!!Re~cJ).

Given p such	 that elr).

then pi Rol

p~'vIvEH. P)\atR\ J ,- v c , I.e.

'vIu. UEp(HI-e (u/ v11 P~.!!!.R~"cl. Thus

S(p[C1x:H+pn-SE({<>}u~e~HI

(,I ,J .v." [v/,]I 'II)

-s=<> v s=plcJ.u~t

(for some UE elH) and tEe[u/x]lP]).

Let us only check the second case:

s=e(cl . u"["'9 (p+ch (s)(RI = (e+ch (el c] . u.\t})(R]

-(~Ch(s)(Rl=

{e[u/"I}+
ch (e [u/v](c] . e[u/ v]l v)~t})l R]

(since v is not free In R and c)

_(p+ch (s)1 RI = (e[U/IIJ+ch(t»)1 R~~c]

(l emma (3))

Furthermore since II is oot free in P,

therefore tEp[u/x)lPI is equillalent to
tEe[u/IIHP~]. Then (P[U/II]+ch(t))nRe~c] follows

from the asumption

So (p+l:h(s)UR1.

Hence

'vis. sEelc7x:H+PI-(p+ch(s»)(RJ, prOllided eHI.

(7) Alternatille. Trillial.

(8)	 Parallel i sm. Assume

'vie. p(rJ-(i1IP~RhelQ.satSI). Gillen p

such	 that pi rl. then

e(P1!!RI and eIQ~SI. Thus

SEPn P II Q)- So: (pff pn .'t i11 Q])
x y pIXIPIY)

- s\ (01YD-i1[X)) E p[P!

"I IpI'i-,IY)), 'l!Q]
(o+'h (,I (o! YI -!1l '1»)1.]&
100'h(,1 (,I'I-pIY))))(S(

{by eiP!!.!.Rl and e[QsBtSDl

~ 100'holll'J , (o+,h(,))(sl
(lerrrna (q))

- (e+ch(s))1 R&SI.
SO Ys. sEe[pxl1 yQII-(p+ch(s))!R&S], prollided e~r].

(9) Chan. Suppose Yeo EJlr]~(P~R]. Gi en i1 such
that

e~rJ.	 then EJlPsatRI. Thus

SEEJI {~l;P)J- sdEJIPJ\EJllll

- SEt\ i1[LI

(for sane t In [liP])

- (0+'h(s»)I'j;(p+oh(t1ellll)
1'1

- (e+'h(,))('J=
(o+,h(t)),'1 (I ('))

- (o+,h(,m'J

(by EJlP!!.!.RI).

Hence .Ys. $EpI(chanL;P»-(p+ch(s)[RI.

prolilded pin.
(10) Recursion. We deal only with the simple cue;
treatment of mutual recursIon Is simllar but much
rrore tedious.

Svppo,. Yp. ,lr/-.I'f,J .od
Yp'.\,Q n&p lP~RI)-p'IP~R)

Gillen e such that eUr J and EJlp6pJ. let us prove
Ys. sEp(pl-(p+ch(s))iR). -

SinCe e[p~J"'e(p)=i~oai and e[pl=e(p}, therefore

SEe(pl" SE i~oa I'

Consider first the base case.

.. ((?+Ch (s)) I RI "'eI R" >1 (lemma (Z)

-(p+ch(s) 1I~) (by first premise).

Note now that (p[ai/p]+ch(s»(RI'"(p+ch(s»)(RI. This
is because R contains no process name and
e[ai/ p) differs from fI only in ascribing a different
"Ialue to the process name p. Simi larly
p[al/p]trl=plr)' since p Is not free in r.

Now assume	 for arbitrary i

Ys. sEai"(e+ch(s»fR)

then Ys. st:,Qlel/pllp)"(e+ch{s)lR)

(St:Q(ai/p]l p] =SEi'I i).

i.e.	 ~[al/pHp.!!!. R).

By	 second pr8l1ise (let P'",~~l/p]),

i?~i/p lH .!.!!. R),

i.e. Ys. sEe",i/ p)(pl"(e",i/ p l+ch(s})[RI)

thus Ys. SEal+I"(e+ch(s»)lR]

(a l +l=i? pi/ p UP) and

(e+,h(,)Ji'I-(p.'/p)',h(,))('J

Hence Ys. SE1~i"(I?+ch(s)lIR]

i.e. Ys.	 sEelpl"(e.+ch(s))lR) .

12

Conclusion (4)

The worst defect of the proof system described
In this paper is that it deals only ith ~

correctness; thus it permits a proof of the
properties of every trace of the behaviour of a
process P, but it cannot prove that P will actually
behave in the desired way. For example P may
deadlock before it has completed its appointed
task, or indeed before doing anythinghatsoever~

This is because the process STOP satisfies ~

satisfiable invarianthatsoever. A simi lar
complaint is made against the theory of partial
correctness of sequential programs, in which a
non-terminating loop satisfies every specification.

The worst defect of the prefill. closure model
of the behaviour of a process is that it takes
an unrea lis tic approach to non ·determ in i sm. For
example, consider a process Q which may non
deterministically decide on a path that leads to
deadlock, or may decide to behave like the process
P. ln our model we have to define this as

Q= SToplp ;

but unfortunately this is identically equal to P.
The same identity holds if the deadlock could
happen after a certain number of communications.
Of course, it is possible to implement the union
process P l' Q for arbitrary P or Q; but only by
running both P and Q in parallel. up to the point
.....here a communication occurs which is not possible
for one of them. afterhlch that one can be
discarded. But this is not the kind of 000

determinism that arises naturally in the
Implementation of parallel processing netl-oOrks,
where the choice between alternatives occurs at
the moment the first communication takes place,
and may therefore be t imedependent.

It is hoped t hat the adopt 1on of a more
realistic flDdel of non-determinism will permit
the formulation of proof rules for the total
correctness of processes; but much further analysis
will be required. The complell.ity of the definitions
and proofs in this paper gives little hope for an
easy solution.

References

I. C.A.R. Hoare.

"A	 Model of COIIIl1unicating Sequential
Processes"

In "On the Construction of Programs"
C.U.P. pp 229-254 (1980).

2.	 C.A.R. Hoare,

'ICOlmlunicating Sequential Processes ll

C.ACM, 2\ ,8 (Aug. 1978).

3. C.A.R. Hoare,

"Procedures and Parameters: An Axiomatic
Approach"

Springer	 Verlag: 'Lecture Notes in Math.'
vol. 188 (1971).

4.	 R. Milner,

"Synthesis of Communicating Behaviour"

Springer Verlag: 'lecture Notes in Computer
Science.' vol. 64 (1978).

5.	 J. Stoy,

IlDenotational Semantics"

MIT Press (1977).

6. K.R.	 Apt, N. Francez, W.P. de Roever,

"A	 Proof System for Communicating Sequential
Processes II

TOPlAS Z,3. 359-385 (July 1980).

1J

P~RTIAL CORRECTNESS OF COMMUNICATION PROTOCOLS

Zhou Chao Chen and C.A.R. Hoare

Programming Research Group, University of Oxford.
In~titute of Computing Technology, Academia Slilled, Peking

The previous paper introduced a notation
for describing the behaviour and proving
invariant propertles of processes communl
eating over an arbitrary network of named
channels. In this paper we confine atten
tion to chains of linearly connected
processes, in which each process can
cornmunlcate only wIth its neIghbour to the
left or to the right. These chains can be
used in the design of multi-level communi
cations protocolSt and an example of such
is given in the final sectlon.

CR Categories: 4.22 5.24

Key words and phrases: partial correctness,
parallel programming, communications
protocols, communicating processes.

Communication protocols. l.

From the most abstract point of view,
a single-directional communlcation
protocol c~n he specified as a process
WhlCh accepts rncSsage3 at the transmitt
ing end (the left), and accurately re
produces them at the receiving end (the
right). Its behaviour can be described as
that of a precess P communicating with
its environment through channels named
"left" and "right". The specification of
its correctness sta~es that the sequence of

values transmitted to the right shall
always be an initial subsequence of the
sequence of values input from the left,
i . e .

P ~ right ~ left.

A very simple process which satisfies this
specification can be defined.

copier ~ (left?x:M-+right:x--copier)

where M is the set of message values that
can be communlcated.

In practice, of course, a communicat
ion protocol must be implemented as two
processes, a sender and a receiver, connec
ted by a transmission medium which physic
ally separates them:

,-----~_._-----

I protocol

~mde,! Eim
The sender copies messages from its left
to the channel on lts right, and the
receiver copies messages from the channels
on its left to the end reclpient on its
right.

In defining the sender and receiver
(or any other processes connected In
series with each other) it is very conve
nient to allow each process to use the
name "left" to refer to the channel on its
left, and the channel name "right" to re
fer to the channel name on its right.
All processes defined in this paper WIll
observe this convention. In order to
connect such processes in serIes, we need
to defIne a new composition operator,
denoted by <>
Using this operator, we can give a formal
definltion of the picture:

protocol ~ (sender <> receIver)

where sender = DeceIver = copier

The formal definition of this operation
(P<>Q) must ensure that wheneVer the proce
ss P communicates on its right and the
process Q communicates on its left, the
effect is the same as if they were commun
icating on the same channel. Let us give
this channel the temporary name "t". Now
we define p[t /rlght I as the process
which behaves exactly like P, except
that whenever P uses the name "right",
P[t/right I uses the name "t", more
formally:

!: Iplt/nghtID= (sit/right Is£ ~Jp]}

where sl t/rightl is formed from s by re
placing every l.1ccurence of the channel
name "right" by "~tn.

Q[t/left] is defined similarly. The
required communication between p and Q
can now be achieved by COmposing them in
paraliel:

(P[t/right]) 'I (Q[t/left] 1,
x y

14

where }(= {left,t land y = (t,right}. Then

the communications on the channel "t" must
be concealed by declaring "t N a5 a local
channel of the construction;

After 5uch a complicated definition, it is
comforting to cheCK that if P and Q
communicate only to the left and to the
right, then (P<>Q)ha5 the 5ame property.
Thus (p <>Q)can be successfully composed
with another such process R, and the comp
osition operator is a550ciative.

Phy5ically, this means it doe5 not matter
in what order the processe5 are connected.
Syntactically, it means that brackets can
be omitted without fear of ambiguity.
The proof rule for this form of composit
ion follows directly from its definition.

rf- p ~ R, Q~ s

where Rand S are predicate5 of the chann
el names "left" and "right", and

where t is a fresh variable, and Rright is
formed from R by replacing all o~curenc

es Df "right" by Nt"~ and s~eft is similar
ly formed from S.

A predicate R containing only two free
variables "left" and "right" has an
obvious corre5pondence wIth a
relation

«left,right>!R}

Under this c~rrespondence, the operation
(R,S) i5 exactly the relational composit
ion of Rand S, and we can freely use
its convenient properties, e.g., that it
is associative and distributes through
"or".

The design of the 5ender/receiver protocol
given above wa5 absurdly simple. For a
practIcable protocol, we need to take into
account the unreliability of the transmis
sion medium over which the message5 are
sent. The unreliable behaviour of the
medium can also be modelled as a proce5s,
which communicates with the 5ending
process (on its left) and the receiving
process (on its right):

left
protocol

sender
right

The formal definition of thi5 series is
just 05 expressive as the picture, and
takes less space

protocol 6. (5ender<>medium<>receiver)

The unreliability of a medium is best
described by introducing an element of
non-determinism into its behaviour. Let
y range over elements of some set N, and
let P be a process description for each
value Jf y. Then TI P describes a

yeN y
process that behaves like ~ of the P '

y
the choice between them being wholly
arbitrary. In terms of sets of traces,
this can be simply defined as the union
of the traces of all the Pyas y ranges
over N

1'.[IT P} u 12.[v/Y!l P !

yeN VE'!JN]

y

The corresponding proof rule is

r ,. y yEN. P 5 at R
y-

rf-('rrPsatR)

yEN y-

AS an example of an uoreliable medium,
consider one that may corrupt a message
in passing. If x is a message value,
let corruptions (xl be the set of poss
ible message values which can result from
such corruption. Of course, it is not
excluded that the message may pass with
out corruption, ~.e.

X (; corruptions (x).

(both the mathematician and engineer will
regard this as such a special case that it
is not worth mentioning separately). Now
the behaviour of the medium can be defined

medium t:. (left? x :Mn (r i gh t ~ y medium))
yEcorruptions(x)

Here, the selection of a particular
corruption of x is nondeterministic.
This medium satisfies the specification:

Ii right ~ # left

8. Yi .:: -;l right. (right. (; corruptions
(left).) Where it c dellOtes the length of
the se~uence c.

l

\ 5

The unrellabiiity of such a medium can and
should be mitigated by increased sophisti
cation in the design of the sender and the
recelver. In this case, it is the
receiver that should try to reconstruct
the correct value of a message from its
corrupted version. Let "correction(y)"
be a functlon that achieves this effect,
1. e.

y y. Y £ corruptions (xl'" <.:orrection{y) = x

Then the "receiver" can be defined:

receiver 6 (left?y:M·right:correction(y)
o

-+receiver }.
o

This satisfles the specification

fj right < # left

& ",i< # right. (right = correctlon (lef t.,) \
i

We now wish to prove that the combination
(medium <> receiver) is an error-free
protocol, i.e. that

O

(medium <> receiverol .=.!!:. right < left.

Using our proof rule for <>, we need to
establlsh:

#t<fj left & {Yi<fj t. t E corruptions
i

(leftil)

& # right < fj t & 'IIi < # right.

right - correction (tIl)
1

right < left

This follows immediately from the postuiat
ed properties of the corruptions and their
corrections.

Unfortunately, it is not possibie in
general to find nontrivial corruption and
correctIon relations for arbltrary
messages; so it is necessary flrst to
introduce some redundancy into the
messages, and to strIp off the redundancy
afterwards. Let us introduce two
functions "expand" and "contract" for this
purpose, and stipUlate that their composit
ion is the identity functIon

(expand; contract) ~ I.

Now we can define new senders and
rece ivers

sender ~ (left?X:M·rightlexpand(X)·
l sender)

l

receiver I o (left?x:M·right:contract(x)
·receiver)

l

In order to achieve reliable transmission,
we use the protocol defined earlier as the
medium over which tRe expanded messages are
sent

protocol 0 sender <> protocol <>
l l o

receiver "

That this is an error-free protocol can be
readily proved by the proof rule of the
composition operator

(expand;I;contract)=(expand~contract)·I

The technique of using a previously defined
protocol as a transmission medIum for a
more elaborate protocol can be used to
advantage in slmplifying the design of
elaborate protocols; indeed, it can be
applied repeatedly at many levels; where
the lowest level is the phy~transmls
sion-mediUm, and the highest level is the
protocol presented to the "end user". Each
level has its own sender and receIver, and
each of them treats the next lower level
as the medium for transmission of its
messages. Pictorially, the structure is
like a set of nested boxes:

'---------- --~

More formally, the levels can be defined

level 0 S <> medium <> R
000

level 6 Sn <> level _ <> R
n n l n

protocol tJ. level
- n

But this conceptual structure for the
protocol 15 quite different from its physI
cal implementation, in which the senders
at all levels are collected at one end of
the transmission medium, and all the
receivers at the other, as descrIbed in the
definitions:

sender 0 (S <> ",(>Sl<> 5 I
n o

receiver • (R <> R <>
o I

16

protocol ~ sender <>medium <>receiver

The associativity of the composition
operator is vltally important to ensure
that the physIcal and the logical group
Ings of the processes will exhib~t

Identical behaviours.

The medium described above ~s a relative
ly well-behaved one. In practice, a trans
missIon medlum may lose messages, as well as
corrupting them, or inserting spurious
messages. For simplicity, we shall confine
attentlon to a medium whlch simply loses
messages

lossy med~um 6 (left?x:M·«right:x·lossy
med~um)

IT lossy med~um)))

where the IT operator denotes non
determinist~c choice between the two
operands whIch it connects.

In order to counteract the unreliability
of such a medium, it ~s essential for the
receIver to be able to send back to the
sender one of a range of signals acknowledg
Ing receipt of messages. Let A be the set
of all suCh signais passing from right to
left. It is reasonable to postulate that
these can be distinguished from messages
passIng in the other direction, i.e.

A [) M

The b~hav~our of medium which transmits
acknowledgements can be defined in the
usual way as a process; and there Is no
guarantee that it will be Immune to loss:

copy back (right?a:A·(left:a·copy back
n copy back)

The overall behaviour of the transmission
medium ~s a merging of the potential
behaviours of the message medium and the
aCknOWledgement med~um.

medium ~ lossy medium I I I copyback.

& s is an interleaving of t and u}.

The proof rule for interleaving operator is
that, if AnM ~!P, then

rl-p~Rl & left I'M righttM <>,

Q ~ R2 & left I'A ~ righttA

r t-plll Q sat Rl(left~A,right~A) &

-- R2 (leftI'M, right~M),

where stC stands for the sequence obtained
from s by cancelling the messages not in

C. An alternat~ve definition of the
med~um without using I I I is:

medium ~ left?x:W'" il xl Iright?y:A->rI y J

t lx:1ot ~ right:xmediumlright?y:A ir {x,y]
medium

rly:A J~ left:y-mediumjleft?X:M.... tr[X,y]
medium

irrX:Hiy:A]~ right:x r[yllleft:y·t\xJI

r [y Jlqx I

In order to counteract the losses on the
med~um defined above, we introduce a
system of adding serial numbers to the
messages and to the acknOWledgement
signals. Let n range over natural
numbers, and leL 5 (n] be the behaviour
of the sender before input of the nth
message, and let q[n,xl be its behavlour
after input of the nth message wlth value
x. In this stdte, it mer~ly repeats
output of the pair of values (n,x) until
it receives the nth aCknowledgement, all
other aCknOwledgements being ignored, An
acknowledgement is represented by a natural
number, in this example A~NN.

sender l\ 5[1]

s[n:I"N] ~(lehh:M-I'qrn.xJ)

g[n,xl ~ (right:(n,x) • q[n,x]

I (right?a:NN.... if a~n ~ s[succ (n) J

else q[n ,x]

Here, g ...~...:~ has its usual
meaning:

£. [!.!. B then P ~ QD ~ g £.~ B] ~ true

~ £.[p] ~ £. [Q]

The correspond~ng proof rule is

r.Bl--psatR; r,--' BI-Q sat R

r l- (if B then P ~ Q) sat R

Of course, in pract~ce the retransmission
of messages should not occur wlth too
great rapid~ty; the process should spend a
reasonable time waiting and listening for
the acknowledgement. But such considerat
~ons of timing have been deliberately
exclUded from our mathematical theory,
which is concerned only with those logical
properties of the processes which are
independent of t~ming.

The Receiver ~s sim~lar to the sender. Its
state after receipt of the nth message is
r[n]. On receipt of the next message, the
serial number is examined. If this is not

1)

equal to succ(n} the message is ignored.
A message with a correct serial number
is transmitted to the right, and its
acknowledgement ~s sent back to the ieft.
Acknowledgements for the previous message
are repeated until a message with the next
hIgher serial number is input

r:eceiver ~ r[oj

r[n:NN] ~ (left?(a:NN, x:M) ..

~ a=succ(n)then right:x~r[succ(n)l

else r[n]

lieft:n" r[n]l

Here, the nota~ion left?(a:NN,x:M} is
used to input an ordered pair of values,

nthe first of which is called a " and the
second "x".

Note that the spurious acknowledgements
for the non-existent Oth message wili be
successfully ignored by the sender. More
importantly, the set of acknowledgement
signals can be reduced to mereiy two
members A = {O,l}, with succ(O} = 1 and
succ (1) ,. o.

2. weakest environment

In designing a chain of processes to meet
some overall specification 5, we may
choose to design first the leftmost
element of the chain to meet some specif
ication Q.

GIven Q and S, it is interesting to
enqu~re what Is the mlnimum speclf~cation

R that must be met by the r~ght part of
the chain in order that their comblnation
must meet the or~ginal specification,
i. e. ,

(QjR)C>S

The reqUired specification is called the
weakest r~ght condit~on, and is defined:

VZ.Q(z/left)~ S(z,right)

ThIs def~nition has two lmportant
properties. Firstly (S r Q) itself
<considered as a process}-would be a
suItable candidate to plug in on the
right of Q in order that the combination
should satisfy S.

Lemma 1

(Q; (S!.Q») ->5.

Proof

LHS]t.Q(left,tl & Vz.Q(z,t)=>o S(z,right)

~; and !.

~]t.Q(left,t) &- (Q(left,tl
... S(left,right))

... S (left,right)

Secondly (SrQ) is both a necessary and
sufficient condition which must be sat~sfied
by any process if it ~s to serve its
purpose in comblnation w~th Q:

Lemma 2

(Q;R)= 5

Proof

LH5 M.,r< t.Q(t,t) & R(t,r))-- 5(M.,r)

~;

v.t,r,t. Q(.t,t} & R(t,r) =>0 s{t,r)

vM.,r,t.R(t,r} =>O{Q{.t,tl =>OS (.t,r»

vt,r. R(t,r) ... v.t.Q(.t,t)=>o 5(.t,r)

RHS
def !.

Theorem r l-Pl ~ Q, P2 sat (S!.Q)

r I-(Pl <> p2) sat S

Of course, exactly similar reason~ng appl~es

~f we wish to design first the rightmost
member of a chain. We therefore define the
weakest left cond~tion:

R , S Vz. R(right,z) =>0 S(left,z)
df

Lemma {(R ~ 5) R) =>0 5.

Lemma 4 ((Q;R) =>05) Iff (Q =>o(R !: 5})

Theorem r I-p1~ (R~S) & P2 sat R

rl- (PI <> P2) ~ 5

In designing a multi-level communication
protocol, it 151 reasonable to design tIle
higher levels first. Each level of the
protocol has an overall specification S,
and consists of a sender wIth specifica
tion Q and a receivep wlth specification R.
It is interesting to enquire what is the
weakest speclfication which must be met by
the lower levels of the protocol 1n order
that the deslgn of the given level (Q,R)
meet Its specification S. We call thIs the
weakest inner condition, and define

wlc{Q,S,R)

R(right,z2} ... 5(zl,2)2
"wic" could also be defined 1n terms of .t
and !., as shown in the following lemma:

Lemma 5 wIC(Q,S,R) R ~(SE.Q)

(R ~ 5) r Q.

The following lemmas give the desIred
properties of wic. They can be proved from
the properties of .t and E..
Lemma 6 (Q; w1c{Q,S,R): R) = 5).

Lemma (M ... wlc(Q,S,R» Iff «Q:H;R) .. 5).

18

Theorem

r !-Pl sat Q, P3 sat R, P2 sat wiC(Q,S,R)

r (pi <~ p2 <~ p3) sat S

In designing a protocol, it is lOgically
impossible to guard against every
conceivable error which can occur in the
transmigS10n medium: For example,
nothing whatever can be dane with a
medium that delivers wholly random bits,
or worse, one which, (like a more
spiritual medium) delivers messages of a
plduslble but wholly fictitioug
transmitter. The best that can be done
is to guard aga1nst mast of the likely
fdilure modes of the transmission medium.
So it is useful to enquire of any given
protocol whdt is the worst behavlour
of the medium which it can tolerate, and
still meet its overall specificdtion.
This is nothing other thdn the weakest
inner condltion of the whole protocol.
The designer of the physical medIum must
ensure that the probdbility of violdtlng
this condition is negligibly small.

Now let us check If the previous protocol
Cdn tolerate the medium, which loses
messages.

By the calculus glven already we Cdn prove
that the processes "sender~, "receiver~

and "medium" satisfy the following
specifications respectively.

Each time when "gender" receive9 a nth
message x from its left gide, it may
transmit a variety of message sequences
to its right side, which constitute the
set T J(,Il' where

T x ,n df

So the speclficatlon of "sender" can be
defined as

T(left,right) df left£M* & riqht£ Tleft,

where

T<~ 'i<>} and Tx ... x "'x ..

l 2 n

{gl"g2"···~snl yt.<n.si£Txi,i &3 S • S £T ,nxn
II; s < S J n -

Similarly we describe the specification of
"receiver" as fallows.

RX,n "'df ({m} u hH4-{n} x M})·~ {(n+l,x)}

R(left,right) "'df left £ Rright

& right £ M*,

{s I3 x, S I. s' £ R & s< s'}
x,o

and

RX I ... x 2"··· ... x = {sl"9 Z... ···"s l!Yi<n.s.£
 n n+ -Rx~.

&]x,s.s£ R 1 & a ,~ s} 1,1
x,n+ n+

The overall specification for the protocol
ts left ~ right.

Then wic (T,left ~ right,R)

=y ~1,z2 T(zl,left)& R(right'~2)

=Y zl,z2 £M"'.left C TZ &
I

right £. RZ2~ Zl~Z2'

The specification of "medium" - LOSS can
roughly be described as : rightrNNXM can
be obtained from lefttNNxM by cancelling
some messages of NNxM, and lefttNN can be
obtained from righttNN by cancelling some
messages of NN.

Now we can see LOSS~wic(T,left>right,R}.

Because if left£Tz & right£ih;2 -&

LOSS (left, right) , then "left" must be of

form:

(x 1)+ "l"(x 11)+"2 "(x ,3)+" •.. ,
wh i 1e "t i ght" mu~ be of fo~:
a<:"(x,l)"r"(X21 2)"2+

A (x3'3)" ... :o

where u,\ stands for any sequence of u and
u+ for nonernp t y sequence of u.

The above definitions of the weakest

conditions are given in terms of the over

all specification and the specifications

of first designed parts. Given process P,

we know, the most precise specification of

P, which can ~efined in terms of channel

predicate, is

P(sl,s2) "'df]."·sq'(P B & stleft= sl &

s tright = 52'

So we define the weakest condition for given
processes dnd overall specification:

S E. P =dfyz.p(z,leftl S(z,right),

P!: S =dfyz.p(right,z) ~S(leftr2),

and wic(pI,S,p2) "'dfYZl,z2'Pl(zl,left) &

P2{right,z2) "'S(zl,z2)'

where P,Pl and P2 are processes a.nd S is a
channel predicate.

The following theorem shows that these
definitions are reasonable.

Theorem.

(ll ~l (P()oQ)~ S I "'~(Q sat (SE.P)

"'!:,I P sat (Q!:S)

19

(Z) .t~ (Pl oQ<>P2) ~ S~ "

~~Q ~ wic(Pl ,s,PZln

Based on these defini tions we can develop a calculus
for the proof of correctness of processes in terms
of weakest conditions. Say, in this calculus we
can get inference rules:

fl- S r(PloP2)" ff-- (SrPl)rPZ
- I -

fl- (PloPZ)lSr- P1 l (PZ l S)

f_wic(Pl<>Ql, S, QZopZ)

-r wic{Ql,wic(Pl,S,PZ),QZ).

The details of the calculus will not be presented
in this paper.

3. An HOLC pro toco 1.

In this section we present an HOLC protocol
using the suggested approach, and simulate a
medium wi th a burst of error. We then prove the
partial correctness of the protocol in spite of
these errors. Since the detai Is of proofs are
quite tedious, only a surrrnary of them are given.

This is a point-to·point unbalanced system
to collect files from a secondary station following
the HDLC procedure. There are three levels in
the protocol. The outermost level, level Z, is
responsible for initiating the link, transmitting
the data and disconnecting the link, according to
the coomands from higher leve15, e.g. a user or
file system. In level 2, the timeout retrans
mission and frame numbering are used to control
error. This levelark'5 on me ... sages, whi Ie the
level 1 transforms messages into bi t streams

or vice versa 1ike interface. The lowest expands
and contracts bi t streams for cyc 1ic redundancy
checks, transparency and framing. So the lowest
level may be divided into three sublevels. The
...hole protocol can be pictured as the following
diagram:

3.1. Level Z.

When PRIMARY receives an order "collect" from
user, a file collection starts;

(1) PRIMARY initiates the link: sending SARM
(Set Asychronous Response I'bde) to SECONDARY.
setting timer for retransmission of SARM, then
wai ting for the response UA

(Unnumbered Acknowledgement) or OM (Disconnected
Mode). OM means that SECONDARY has no da ta to
be transm it ted, so PR IMARY info rms i ts user with
"no", and this short transaction ends. UA means
that SECONDARY wants to transmit a fi Ie, so
PRIMARY informs user with "yes", and ...aits for
da ta fran SECONDARY.

(2) SECONOARY transmits data: a serial number
Ns (roodulo 8) is attached by SECONDARY to each
item of data got from the file system; this
data is then sent to PRIMARY wi th time-out
transmission until RR (Receive Ready) is answered
back. PRIMARY acknowledges receipt of data from
SECONDARY with RR, and checks Ns to avoid
dupl icated data. If the serial number is in
order, the data w;ll be passed to user. If not,
the data will be cancelled.

(3) Primary disconnects the \ ink: At end of
data collection "eof" is received by SECONDARY
from fi Ie sys tern. SECONDARY sends RD (Reques t
Disconnect) to PRI""'-RY, and resends it until it
receives DISC (Disconnect) back. When RD reaches
PRIMARY it informs user with "eof", and answers
SECONDARY with DISC.

The program PRIMARY can be written as follows:

PR I MARY

_J
P ~ (left1co 11 ect ->- 1NI TIATl

I (right1x:M ->- r i ght!D I SC ->- p),

where a1e stands for a1x:iel and 11 for the set of
all messages passing from SECONDARY to PRI/"ARY,

lNJTlAT flright~SARM->-up~set.... WAIT

\~AIT Q..right1UA->-up~reset ->-left~yes->- RECEIVER

lright1DM->-up~reset->-left~no->-- P

ri g ht7x:M-{UA,DM}-. WAIT

I up7t imeout ->-1 NI TlAT

RECEIVER~R(D~

R[n:NN]!::. right1(a:NN, x:DATA) -+ right~RR->
if a=n-then left~x-+R[j1+1 (modS)]

- else R[n]

Iright'lRD ->-left~eof-+ right~DISC->- P

Iright7x: M-{(NN x DATA), RD}->-R[nJj

TIMER~up7 set-+ (up7reset.... TIMER[up~timeout+T1MER)

PRIMARY ~ (chan up; TIMERllp),
XV

where X,,(up} and y= (up,left,right}.

20

SECONDARY can be presented as follows:

S£left7y:A-+.!,i y=SARM

~ right!collect -+

(right1yes -+ left~UA-+ SENDER

Iright?no'" \eft~DM + S)

e \ se S,

where A stands for the set of al t messageS from
PRIMARY to SECONDARY;

SENDER £ S[O];

S[n:NN] £ (right?x: DATA-+Q[n,x])

I (ri ght?eof -+ left~RD -+ up~ set + WD/ SC)

Q[n:NN,x:DATA] £ left~ (n,x)-+up!set-+WRR[n,x]j

WRR [n: NN I x: DATA]£ 1eft?RR -+ up! reset -+ S[n+1 (mod 8)]

11 e ft7SARM + up! res.et -+ 1ef t !uA-+Q{n ,xl

Ileft7y:A-{RR,SARM)-+WRR[n,x]

,I up? timeout Q[n,xJ j

WOISC 1', left?OISC-+up!reset-+S

I left7SARM up! reset S

Ileft?y: A-{DISC,SARM}-+WDISC

lup? timeout left!RD -+ up~ set +WO I SCi

T IMER p!.. up?set + (up? reset -. TIMER I up! t i meOu t+T IMER) ;

SECONDARY 6 (chan up;TIMERIIS),
- -- XV

where X ={up} and Y ={up,left,right}.

This protocol cannot guarantee that all the
messages from the user can reach the system over
a medium which may lose messages. This is because
the loss of OM may cause the retransmission of
SARM, and SECONDARY cannot recognise if this SARM
is a new initializing signal or a retransmitted
one. However, the data messages from file system
to user are our main concern here, and this protocol
can guarantee the correct data transmission over
certain unrel iable mediums as well.

So the overall specification of the protocol
can be given as left~DATA:':righttOATA.

The specifications of PRIMARY and SECONDARY can be

formuliJted in the following way:

Let the predicate Sl specify the sequences along

the channe 1 "r i gh t" of PR 1MARY and 1et funct ion

f pick up the ordered data messages from the

sequences. Then the specification of PRIMARY can

be desc ri bed as

PRIM(left,right)= df Sl(rightl&left~DATA";f(right).

Let the predicate S2 specify the sequences a long

the channel "left" of SECONDARY. Then the

specification of SECONOARY is

SEC D(I ef t, r 19h t) =df S2 (Ieft)5 f (1 ef t)., right rDATA.

Thus wic{PRIM, left~DATMrighttDATA, SEeD)

= '!fzl ,z2 . SI (Ieft)&z tDATA.,;t(Iefd
5S~ (right)& f(right)sz2 tDATA

.. zl fDATA!Z2 tOATA

This level is intended to work above the lower

levels which may delect the errors caused by an

unreliable medium. This intention can be checked

as follows:

Let us define predicate LOSS(left,right) similarly

to Section 2. i.e. cancelling some messages of

A from "lefdA" and some of M from "righdM" can

form s1 and s2 such that sl'=right~A&lefttM=s2

Then we can prcwe

LOSS=-... i c{PR I1'1,1 efdDATA! right ~DATA, SEeD) .

Le.

LOSS (1 eft, ri ght) &Sl (1 e ft) &S2 (ri ght}=>"

f(left)5f(right)

3.2. Levell.

This level realizes the transformatIon between a

message and its binary code according to HOLe

syntax. When receiving a message from level 2,

level I transforms it into a bi t stream wi th

separators "start" and "end", then sends it to

level O. Conversely, when receiving a <start, bi t

stream, end> from level 0, level 1 transforms it

into the corresponding message, and passes it to

level 2. I f the received bi t stream ends wi th

the separator "error" (i .e. there is some error

in this stream which has been detected by level 0)

or no meaningful message corresponds to this bit

stream, then this bit stream will be cancelled

by this level.

For distinguishing between signals in different

directions we use "start", "0", "1", "end", and

"error" for signals from left to right, and

"start'I", "(]", "l'P, "end '''and "error '''for signals

from right to left.

The CSP processes INTERFACEL and INTERFACER of

this level are not presented here. since they just

11

do some rou tine cod i ng and decod i ng.

Let decod be the function transforming the meanin<:;
ful bit streams into messages according to HJLC
syntax, and error streams, meaningless streams or
incomplete streams into the empty sequenCe.

Then the specifications of INTERFAC£L and

I NT£RFAC£R are:

INTL (I eft, r i ghtJ"df IefttA2:decod (r ight ~A)

& left~$decod(rightt'H),

and INTR(left,right}=df decod(lefttA)uighdA

& decod(lefdM)sright~M.

In).1. we have shown that given PRIMARY
and SECONDARY as the outer level, and lefttDATA
righttOATA as the overall specification, if the
inner level satisfies the specification LOSS, then
the whole protocol can satisfy the overall
specification.

Now let us take LOSS as the overall
specification of levelland INTERFACEL and
INTERFACER as the outer level, and then look for
an appropriate specification for the inner level
(leve I 0) .

Since wic(INTL.LOSS,INTR)

\Jzl ,z2' (z 1 tA2:decod (left tAl

& zl ~M5decod(left~M)

&decod (r j ght tAhz2 ~A

&decod (r ig ht ~M)sz2 ~M)

=" LOSS(zl,z2)

::: LOSS (decod (1 ef t ~A) • decod (ri ght tA»

&LOSS (decod (I eft ~M) ,decod (r i gh t ~M»

=LOS S (decod (I eft) • deeod (r i ght)) .

Let ERROR be a predicate to describe that
there are some detected transmission errors.
ERROR (left,right) ooids if and only if there are
sequences sl and Sz obtained from "left~A " and
"right~M" respectively by changing some bit
streams to error streams, i.e. changing the end
separator to "error", and Stream body as well,
such that sl2:right~A and left~M$s2'

Then we can prove

ERROR(left, r i9ht)-LOSS (decod (left) ,decod (ri ght))

~ic(/NTL,LOSS, INTR).

Thus we will take ERROR as the specification of
level 0; ·I.e. if level a can detect transmission
errors, then the whole protocol works.

).). Le- ... el O.

3.).1. CRC 8ublevel.

Both CRC gene rat ion and check can be rea I i zed

by shift register. The HDLC generating

16 12

polynomial p(x) is x +x +x5' +1. and the shift
register for p(x) is:

This shift register can be simulated in CSP as
follows.

Let p:::O)106 1041 , where an stand for n consecutive
a l s. Let t1 (s) be the sequence obtained from s
by cancelling its first bit - hd(s).

CRCGEN!:.. left7start->right~start""SHIFT[016J;
SHIFT[x:{O,1Pl]!:.. left7y:(0.1l.... right~y

.... .i..!.hd(x):::1 therSHIFT[tl{xfyQp]

elseSHIFT[tl(xfy]

11eft7end->CRC[x] ;

CRC[x;(O,ll'l tl if x=<> then right:end->CRCGEN

else right~hd(x)-+CRC[tl(x)l.

CRCCHECK /:; rl9ht7start' ~left~5tart'''''SH\FTER[<~,c,,];

SHIFTER[x:[O', I' }*,y:{O', l' }:,]/:; right1z:{o' ,I'}

-'.i..!.) eng th (x)$15'thenS~1FTER [x"z, y" z)

else left~hd(x)

~.i..!.hd (y)::: I' ~SHI FTER[t 1(xl"z, t1 (ytzf£J p]
--elseSHIFTER[tl(xY'z, tl(yf\z]

I right1end'->CHECKI,y];

CHECK[y: {O' , r ' }:\]Jd..!..!.Y::: 0' 16 t henl ef t ~ end' .C!'lCC HECK

else 1eft ~ er ror '.~CRCCHECK;

CRCL ~ CRCGENII ICRCCHECK

CRCR is simi lar to CRCL, but exchanging
"left" and "right", and {start,D, 1 ,end,error} and
{ s ta r t ' • a ' , 1 ' ,end' ,e r ror ' J •

Let ere be the funct ion on bi tstreams
defined as follows: if a bit stream with checksum
is divisible by p(x), then its corresponding
value is the stream itself; if not divisible, then
the value is the stream ended by separator "error"
(or "error"'); if the stream is incomplete, then its
value is the empty sequence.

Let crc' be the function defined in the

same ...ay as ere. except that the value of

incomplete stream is the incomplete stream it5elf~

22

Let DIViSiBLE be a predicate. DIVISIBLE (sliff
all the complete streams in saredivisible by p(;I().

Then the specification of CRCL and CRCR are:

RL=df\eft~A~crc(rightrA) & DIVISIBLE(righdA)

& left~l'bcrc'(right~l1)

RR df ere' (lefttA)?:righdA

G crc(lefttl1)5righttH G DIVISrBLE(lefttM).

Now we define a predicate to describe a burst of

errors of length less than 17 in a frame; then

we can prcve that it imp1 ies the weakest inner

condition wic(RL. ERROR, RR).

BURST(left,right) holds iff by adding

(modulo 2) bi t streams of length less than 17 to

the frames (complete or incomplete) of "lefttA"

and "rightrM", we can obtain sl and s2 such that

s,HighdA and lefttMs:s2'

Since the burst errors less than 17 can be

detected by CRC checksum of p(;I() , we can prove

BURST:Owic(RL, ERROR, RR)

3.3.2. Transparency sublevel.

This sublevel is responsible for inserting

a redundant zero after five consecutive ones

before transmitting frames, and removing the

redundant zeros after receiving frames, for nhe

sake of distinguishing the frame 'oedy from the

frame flag (01 60).

INSERT Q. left?!;tart+right~start-+CDUNT[O];

COUNT [;I(:NN] Q..i..!.. ;1(=5 then right~O-O(OUNT[O]

else (I ef t1 D-+r i ght ~ Q+COUNT [0]

[leftl1+right! l+COUNT[;I(+l]

11 e ftl end+r I gh t~ e nd+ INSERl)

REHOVEQ.r ight1s tart' +1 e ft ~ s ta rt '+COUtHl/ OJ ;

COUNT 1[;I(: NN1~ ri gh tl1' +1 eft ~ 1 '+COUNTI [;1(+ 11

Iright10'-+ii ;I(~5 then COUNT1[0]

else left!O'+COUNTI[O]

I right1end'+left!end'+REHOVE;

TRANSPARENCY ~ INSERT]] IREMOVE.

Simi'larly we can present TRANSPARENCYR.

Let redund be the function which cancel s

redundant zeros from bi t streams. Then the

specifications of this level can be given as

TRANPL (I eft. rIght) =df 1ef t ~A;o redund (r igh t ~A)

& leftrHs:redund(righttH)

,,'
TRANPR (lef t, ri ght)= df redund (Ief t jA)?: right rA

& redund(lefttH)srighttH

3.3.3 Frame sublevel.

This level is to transform the separators
"start" and "end" into the HOLC frame flag

«(1160) and vice vena.

FRAHE fj left1start+right~0+(right!1)6+right~0+PA55;
PASS fj lefth:10,IJ+right!;I(+PASS

-11 ef t7end+ri ght! O+(r j gh t ~ 1) 6+r ight ~ O+FRAHE!

OEFRAME fj righthdO' ,1 '}+J.!. ;1(=0'

then FLAG[O]

el se OEFRAHE;

FLAG[;I(:NN]Ll l'ight7I'-+fLAG[;I(+l]

!rightl0'+.!..!.. ;1(=6 then left!start'+BUF!tc:>j

else DEFRAME

BUF8[;I(:(D' ,1' }"']~.i..!.)(=0' 1 ,6 0 ,

then left~end'+DEFRAHE

else (rlght1y:(O'1')

+ .i..!.length(;I():S7 thenBUF8[x"y]

el selef t! hd (x)+BUF8[t 1(x)"y]

FRAMEL ~ FRAME III OEFRAME

FRAHER can be given simlarly.

Let fram be the function on bit streams which
transforms the odd slag 0160 into the separator
"start" and the even one into "end", and cancel s
the unframed bit streams.

Then the specifications for this sublevel will be:

FL {I ef t, right} =df left jA?:f ra m(ri ght tAl

& lefdM:o:;fram{righqHl

,,'
FR(left, ri ght) =df fram (left tAl?:r ighttA

& fram{lefdM}Srightt'H

3.~. Medium.

Now we are simulating a medium of possible
burst errors, the length of which is less than 17.
At first let us check if the protocol can to I era te
it.

Unfortunately, it is not true in the case

that burst errors produce or destroy frame flags.

Suppose we have data 103 10 6104 108 . Its CRC
checksum is 016 So the framed bi t stream for this
da ta is

016103106104108 01 60
-~I

data CRe flag

Thus if a burst of error of length 16 happens on
the last 16 bi ts, and changes the bi t stream to

er ror

01 60 10310610~ 0808 01 601 8
~

flag wrong CRC flag
data

then a wrong, but undetectable data, 10310
6

10
4

1,
reaches the destination.

So we sirrulate a medium, which may cause burst
errors, but never produce or destroy frame flags
in the following way. We plant a new level between
CRC level and TRANPARENCY level; it consists of
two processes: one may cause a burst of error for
transmission from left to right, and the other one
for right to left.

WIRE~left1start~right~start~WIRE

I left1y:{0.1}~(right~y~WIRElright~y@ 1 ~
ERROR [1]1

Ileft1end~right~end~ WIRE;

ERROR[K:NN1~ left1y;fO,1J~i!. x<;15

then (r;9htlO+E:RROR[x+l]

Iri ght ~l~ERROR[x+1])

else right~"'ERROR[x]

11 e ft1end~r i ght ~ end+W I RE;

PASS ~ right1x:M~left~x+PASS;

MEDIUML ~ WIREllIPAss.

MEDIUMR is similar to MEOIUML

The specification of them are:

ML(left,right)=df BURST (I eft lA, right ~A)

."

& left~M.,right~M.

MR(left,right)=df \eft~A~right~A

& BURST(lefdM,right~M).

Let BUfF(ref t, right) =df I eft ~A~r i ght ~A

& left~M";r;ghtt'M.

Then we can see

BUff" wic (ML, BURST ,MR).

].5. Partial Correctness of the Protocol.

Let us define the whole protocol as follows:

PROTOCOL~PRIHARYO'NTERFACELOCRCLOMED'UML

OTRANSPARENCYLoFRAMELoFRAMERoTRANSPARENCYR

OMEDIUMR~CRCRQINTERFACE~SECONDARY.

Since TRANSPARENCYLOFRAMEL¢FRAMEROTRANSPARENCYR

sat BUFF can be proved from the specifications of

the elements by the proof rule of composition, we

have rough Iy shown that

PROTOCOL sat leftiOATA~right~DATA

can be establ ished by the theorem in Section 2,

Acknow Iedgement.

Thanks are due to Steve Brookes and
Alastair Tocher for assistance in preparation
of this paper.

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

JUNE 19B1

This Is a series of technical monographs on 10pics In the field of computation.
Copies may
Monographs).

PRG-l

PRG-2

PRG-3

PRG-4

PRG-S

PRG-fi

PRG-7

PRG-8

PRG-9

PRG-IO

PRG-ll

PRG-12

PRG-13

PAG-14

PRG-IS

PRG-16

PRG-17

PRG-18

PRG-19

PRG-20

PRG-21

PRG-22

PRG-23

PRG-24

be Obtained from Ihe Programming Research Group. (Technical
45 Banbury Road. Oxford. OX2 6PE. England.

(out of print!

Dana Scott
Outline of a Mathematical Theory of Computation

Dana Scott
The Lattice of Flow Diagrams

(cancelled)

Dana Scott
Data Types as Lattices

Dana Scott and Christopher Strachey
Toward 8 Mathematical S9mantlcs for Computer Languages

Dana Scott
ContInuous Lattices

Joseph Stoy and Christopher Slrachey
056 - an Experimental Operating System for a Small Computer

Christopher Slrachey and Joseph Stoy
The Text of OSPub

Christopher Slrachey
The Varieties of Programming Language

Christopher Slrachey and Chrlslopher P. Wadsworth
Continuations: A Mathematical Semantics for Handling Full Jumps

Peler Mosses
The Mathematical Semantics of Algol 60

Robert Milne
The Formal Semantics of Computer Languages

and their Implementations

Shan S. KUO. Michael H. Linck and Sohrab Saadat
A Guide to Communicating Sequential Processes

Joseph Stay
The Congruence of Two Programming Language Definitions

C. A. R. Hoare. S. D. BrOOkes and A. W. Roscoe
A Theory of Communicating Sequential Proc9sses

Andrew P. Black
Report on the Programming Notation 3R

Elizabeth Fielding
The Specification of Abstract Mappings
and their Implementation as at-trees

Dana ScOIl
LectufflS on a Mathematlcsl Theory of Computation

Zhou Chao Chen and C. A. R. Hoare
Partial Correctness of Communicating Processes and Protocols

Bernard Sufr'n
Formal Speclflca/ion of a Display Editor

C. A. R. Hoare
A Model for Communicating Sequentlaf Proce.ss8s

C. A. R. Hoare
A Calculus of Total Correctness for Communicating Processes

Bernard Sulrln
Reading Formal Specifications

