
n?,\" (cry l-

THE CONSISTENCY OF 

THE CALCULUS OF TOTAL CORRECTNESS 

F~ 

COMMUNICATING PROCESSES 

by 

Zhou Chaochen 

Oxford University 
Cqrnputing Laboratory 
.,..rogrammlng Research Group-Ubrary 

~~r~e8~1 ~~g 
Oxford (0865) 54141

'~ 

Technical Monograph PRG-26 
February 1982 

Oxford'Uni~er5ity Computing laboratory,
 
Programming Research Group,
 
45, Banbury Road,
 
OXFORD. DX2 6PE 



ro
 
~

 
J 

T
 

-
. 

U
l 

-
.;

;
J

 
,.

..
 

;;
J 

III
 

-
. 

CO
 

<I
I 

r
t

•	
 

ro
c 

n
"
r
o

 
~
n

 
-
,
 

ti
l 

0 
J
~
~

 

~
~
n

 
~

	 
a 3 

a
u

 
~
c

 -. 
n ~

 

J 
-
.\

.0
 

ro
 

J 
..

. 
n 

ro
 

ro "
n ~

 
J a a ~

 
~

 



In [1) Roare 9:uggests a notation of assertions to 

describe the total correctness of communicating processes, 

and a calculus for preving it. But the question of the 

consistency of the calculus is left open in that paper. 

In this -pa-per "'e give an operational lIlodel of communicating 

processes and preBen~ tva variants of the calculus, ."hich 

are consistent with this model. One of them cannot deal 

with l!velock, ."hile ~he other one does. 



~
 

0 
n

r 
n 

~
 

a 
0 

~
 

,
.

• 
<

•
•

~
 

0 
0 

n
n 

0 
n

rr
 

n 
n

.:;; 
C

 
, 

C
 

0
• 

<: ~ 
~

 
c 

~ 
c 

n 
~

 
0

.
.

. 
o' 

,
0 • 

, 
+

 
;;;•

•
" 0 , 

5 ~ 0 



Introduction 

This paper proves the consistency of two versions of a calculus 

presented in [1J. This calculus deals with correctness formulas of the 

form (p sat R), ..,here P is a process and R an assertion. 

A process is constructed from a group of SUbprocesses, inter­

communicating on a network of named channels, and communicates with its 

environment by sending and receiving messages on named channels too. Each 

communication is denDted as a pair "c.m" ..,here "m" is the value of the 

message and "c" is "the name of the channel along which it passes. In [1;, 

past sequences and ready sets are introduced to describe the behaviour o! 

processes, where pas"t is a fini te sequence wf communications recording a:l 

communications in which a process has engaged ~ any given moment, and 

ready is a set of cDmmunications ..,hich a process is prepared to communicate 

at aliy given moment. The pairs of past and ready are used to -denote the 

states of processes. (s,X) is called a state of the process P, if P may 

engage in the communications of s, and if, just after doing s, P can 

accept any communica"tion in X. 

For example: 

(a) the only possible state of the inactive process STOP is (.;) ,¢). 

Because STOP never communicates at any moment, the possible record of it~ 

history is the empty sequence of communications, and the acceptable 

communications at any moment constitute an empty set as well. 

(b) If P first sends the message e on the channel c, then stops, 

Le. p:: cle ~ STOP. The possible state3 of Pare: 

(.; ), [c.e} ) -- the begirming state of P. At this moment, P 

has not engaged in any communication, but is prepared to communicate 

message e on channel c. 



2 

(o.e.¢) the state after P sends e on c. P will not 

accept any ~ore communication in future. 

(c)	 If P repeats the sending of message e on channel c for 

ever,	 i.e. P = ele ~ P. The possible states of Pare: 

« >.{c.e) -- the beg1rming etate of P. 

(c.e,(c.e}) -- the state a.fter the first sending of e on c. 

(<.c.e>n.(c.e}) -- the state after the nth sendiD8 of e on c, 

where an stands for .a""'a ........a 

n 

(d)	 If P first receives a message of M on channel c, or a 

message of N on the channel d, then stops, i.e. 

P = c?x:M ~ STOP Dd?y:N ~ STOP. The possible states of Pare: 

(<. >,c.M u.d.N) -- the beginning state of P. P 1s prepared 

to receive any message of M on charU"lel Ct or any message of N on 

channel d, where c.M = (c.xlx t M} 

(c.x.¢) -- the state after P receives the message x of M 

on the channel c. 

(d.y.¢) -- the state after P receives the message y of N 

on the channel d. 

The assertions for total correctness of processes sug&ested in 

[1J are the predicates of channel variables - "channelname.past" or 

"channelname.ready". "c.past" stands for a message sequence recording 

all messages passing along the channel c up to some moment. It can be 

obtained from "past" by cancelling all communications along the other 

channels, then dropping the channel naoe c to get a pure message 

sequence. 



3 

e.g. c.«coe)D):::E en 

and c.(c.e~ d.e2 ) = e, 

"c.ready" stands for the set of mesBaees 'Which are ready to be 

passed along the c~el c at aome moment, 

e.g.	 0.(0.11 '" d.N) M (e,ld). 

ThuB en assertion defines a set of sta.tes: 

state-set of R = (SIX)I R e/pas~ [X/readJl· 

For	 example I 

state-set of fa.lse '" ¢ 

state-set of true the universe of states 

• [<"X) I ":2:"' H~}. 

where	 2 is the set of all communications. 

Let P be a process end R be an assertion. Then P is said to satisfY R 

(abbreviated by P sat R) if the assertion R correctly describes the states of P, 

i.e.	 all the states of P constitute a subset of the state-set of R. 

For example, 

if P = c~e ---» P, then from (c) we can see 

Pill (c.ready = {el) •
 

It implies that P never stops, i.e. P is deadlock-free.
 

[1],[2] and [31 are recommended to the reader who is interested
 

in the capability of channel predicates for specifying the behaviour 

of processes. We sha~l not revie~ them here. 



4 

Actually the calculus in [1J is not concerned ....ith the unstable state 

of process. A process normally changes its states by takiGg communications 

....ith its environment. E.g. in the previous example (b), P changes its 

beginning state (<.), Lc. e}) to state (c. e ,¢) by passing value e on channel 

c to its environment. However, under certain circumstances a process 

i taeU .....i thout participation the environment can also change its states. 

This phenomenon is called internal transition. Internal transition 

emerges either from internal communications (communications on hidden 

channels) or from non-deterministic operators (say, nondeterministic union). 

The hidden channels of a process are only for the communications between 

its subprocesses, invisibly to the environment. The nondeterministic 

union of the processes P and Q. P ££ Q. behaves either like P or like 

Q,. but the choice between them is ....holly nondeterministic. and may be 

.IllB.de autonomously by the process, or by its implementor. So the choice 

cannot be influenced or even observed by the environment. In other vords 

(P.Q! Q) can transform itself autonomously ei ther to P or to Q. 

The internal transition may cause an unstable state. A state of 

a process is said to be unstable, if there is an internal transition 

vhich may happen at that moment. and an internal transition viII usually 

bring the process to a ne.... and different state. 

E.g. consider the beginning state of ((cle ~ p) ~ (dlm --7 Q). 

at vhich the procese may do internal choice, transforming itself to 

either (c!e --7 F) or (dl~ --7 Q). 

An unstable state may be unreliable. If the environment wants 

to communicate on c \lith the process ((c!e --+p) or (d!m --7 Q»). then 

sometimes it may succeed. but sometimes it may fail depending on which 

alternative has been chosen by the process. 



5 

Moreover, in most cases. the internal transition can take place 

at a very high speed, compared with the external communication. 

This is due to the high speed of modern electronics. So we can 

suppose that the unstable state is not only unreliable, but also 

evanescent. 

Thus it is claimed in [1J that the unstable states are not 

taken into account by the calculus. (p sat R) is interpreted more 

precisely as: "any stable state of P belongs to the state-set of R". 

Another problem which can be caused by internal transition is 

livelock. A process is said to bs live locked if after some moment 

during its evolution the process mB¥ engage in an infinite sequence 

of internal transitions, and ignore possible extsrnal co~ications 

completely. 'We usually 'Irish to prove absence of livelock. 

In the folloWing sections we shall give an operational model 

of communicating processes, and present formal definitions of the 

previous concepts such as stable state, livelock, etc. Then two 

calculi. Calculus- and Calculus+, ~ill be developed. Calculus- is 

simpler, but does not prove absence of livelock. Calculus+ is a 

little more complicated. but it has the ability to treat livelock. 

Both are consistent with the operational model in the sense that their 

rules are theorems in this model. 

1. Operational Model 

'We adopt nearly the same syntax of communicating processes as 

in [1J, which includes the constructs: output, input, nondeterministic 

union, alternation. channel renaming, parallelism, hiding and recursion. 

But, instead of the informal descriptions, ~e are taking a formal 



6 

syetem of the transitions of processes to be their semantics, known 

as operational semantics, which was proposed by Robin Milner to 

define the semantics of communicating systems in [4J. 

Trans! tion is a binary relation over processes. Transl tion 

results from an action taken by the process, An action may be 

observable (external communication ranging over ~ ), or it may be 

'UIlobservable (internal communication or internal choice). Let 

P and Q be processes. We use 

P~Q 

to denote "P is transformed to Q under the observable action c.m", 

where c.m 4,~ 

=d 
P~Q 

to denote "P transforms i taelf unobservably to Q" I where ""C is a 

special symbol not in ::[.. 

1, 1 STOP 

STOP is an inactive process, so STOP has no transi tioD. 

1.2 Output 

If P is a process and c.e £.,I., then (ele ~ p) is a process, 

which first outputs e on channel c and then behaves like F. We use 

the following axiom to define its semantics: 

(c:e ~ p) ....£.:..4.P 

This means that the only possible transitioa of (cle -:;. F) results 

from the communication c.e, and transforms (c:e ---:> F) to P. 



7 

1.3 Input 

Let p(x) be a process for each x in M. and let c.M be a 

subset of ~. Then (c?x:M ~ p(x» is a process, which first inputs 

any message x of M on channel c, and then behaves like p(x). 

Ths only axioms whicb its transitions obey are: 

(c?x:M ---+ p(x)) ~ p(x) (x < M). 

1.4 (Nondeterministic) Union 

If P and Q ars processes, (P.Q.!. Q) is a process which behaves 

ei ther liks P or like Q. The choice between them is autonomously 

made by tbe process itself. This statement can be axiomatised by 

(P.Q..!: Q) ~ P
 

and (P.Q..!: Q) ~ Q
 

'.5 Alternation 

Let p(x) and Q(y) be processes for each x in M and y in N. 

Lst c and d be distinct channel names, and let (c.Mud.N).£..:E.. 

Then (c?x:M ~ p(x) II d?y:N ~ Q(y» is a process which is 

preparsd to input either on channel c or channel d, and then behaves 

like p(x) or Q(y) rsspectively, where x stands for the message just 

input on channel c and y for the message just input on channel d. 

The axioms which define the possible transitions of alternation 

should be: 

(o?"M ~ p{x) IT d?y,N ~ q(y)) ~ p{x) (x< M) 

and (o?"M --4 p{x) IT d'y,N ~ q(y)) ~ q{y) (y< N) 



B 

1.6 Channel Renaming 

Let P be a process, and c be a channel, and let d be a channel 

B2! in P. Then P [d/~ is a process "hich behaves exactly like P, 

except that vhenever P usee channel c for communicating, P[d/J uses 

challI1el d instead. 

We adopt the reI loving inference rule to define the semantics 

of p[d/cJ. because the transition of p[d/J takes transitions of P 

to be its premiss. 

Let oJ.. be an action (external or internal), i.e. ol £2. v (-t"J, 
and let ch(.,I.,,) be the channel name of '" , 

0ch(c.m) '" df
 

and ch( -c) =
 df "t 

P ---4 ~ 
(ch("'),r. 0) 

P [";J -"'-> ~[";cl 

P ...£.:!4 ~ 
and 

P [";cl~ Q[";c1 

1.7 Parallelism 

Let A be the set of channel namee occurring in process p. and 

let E be the set of channel names occurring in process Q. Then 

(p 1~ qJ denotes a net....ork constructed from processes P and Q• ..,hich 

are connected to each other by common channels of A and E. Thus the 

actions taken by P on channels of {A f'I. B) must be synchronized vith 



9 

the corresponding a.ctions of Q. vhile the actions taken by P either 

internally or externally on channels (A-B) can still progress 

independently of Q. 

The actions of Q are similarly constrained. 

The inference rules for the semantics of (p l~Q) are: 

P ~P1 
'he 0<) C (A-B) u 1..-")

(PlJ,Q) ----'-+ (P,!.kQ) 

Q ~Q1 
'h(o<)<:(B-A) u["1:} 

(plkQ) ---"'-7 (pUQ,) 

P~P, , Q~Q1and 'he ~)C (A oB) 
(pl1Q) ----4 (p,HQ,) 

1.8 Riding 

Let b be a channel intended by process P for internal 

communication. Then (chan b in p) is a process in which all 

communications along channel b are invisible to the environment. 

It car. be formulated as follows: 

F~Q 'he 0<) ~ b
 
(chan b in p) ~ (chan b ~ Q)
 

P~Q 
and 

(chan b in P ~ (chan b in Q» 



10 

1 .9 Recurs! OD 

A single recursion is of the form of 

p ~ F(p) 

where p is a process variable and F(p) is an expression constructed 

by p and the previous eight operators. 'lie alae use the notation 

(pp.r) (the least fixed point of r) to denote the proceills defined by 

recursion p ~ rep). As is well known, pp.F must behave exactly like 

F(pp.F). The transitions of pp.F, since we have given the semantics 

of expreeeion J' with the structural rules (1.1)-(1.8), can be def1ned 

by the transitions of r(pp.F), Le. 

F(PP.F) -'4 Q 

)l.p.F ~Q 

E.g. (a) Expression rep) = (c!e ~ p) 

Since r(}lp.F);; (de ---? JlP.F) 

and (c:e ~ )Ip.F) ~ pp.r (1.2) 

therefore pp.r ~ pp.F (1.9 ) 

(b) Expression rep) = p. 

Since I(pp.I) '" pp.I t 

therefore by (1.9) }.Ip.I ~ Q iff pp.I ~ Q.. 

So we cannot derive any transition of pp.I by (1.9), and \lie 

cannot derive it by (1.1)-(1.8) either. Tt,us pp.I i13 an inactive 

process _ 

Le~ a ~utual re~ursicn t.~e the form 

p[iON] ~ F(p) 

where p and F are arrays. Then the arr~' of processes, PP[i:NJ.F. 

defined by tbe tlutual recursion obeys the (olloving lcl\'.rs: 



11 

(F(ppri'.] .F))[j) ~ Q 
(j ~.) 

(pp[i'.] .F)rj] ~ Q 

A formal deduction syetew for traneitions has been established by 

(1.1 )-(1.9) by which transitions of a ca:nplex process can be derived 

from the traneitiona of its slmple't" componente. A transition 

p ~ Q ie true iff it is a last line of a deduction in the system. 

A sequence of transi~ione (which ~ le~h n) generally takes the 

farm "', 01. 2 "',. ---!!..+ Pn 

""..L" ,.. 

PO~P1 ~P2~ '"
.,( 1 2'" "" 

We shall usually v.ri te it as Po n and introducePo 

a Dew inference rule for transition eequences: 

p--!!........:,.Q. Q~R

1.10 •

P~R 

where s and t are nonempty finite sequences of L \J ft.). 

2. Stable States 

We proceed to formally describe stable states of processes. A 

state of a pro:ees consists of an action sequence in which the 

process has been eng~d up to some moment in time, and an action 

set which the procees is prepared to take at eome given moment. 

Each action of a pro~ess is described by a transition. So an 

action sequence of a process corresponds to a transition sequence of 

the process, and an action set which a proceee is ready to take 

corresponds to a set of transitions of the process. In other words. 

let P be a process, let s be a (nonempty) finite sequence af ~lJ iLl. 



12 

and let X £ (~u {'r}). Then s is an action sequence of P iff 

3Q.P ---4 Q. and X is a ready set of P iff X '" t-'-13Q.F ~ Q) 
llut, as is well known, we are not concerned with the unobservable 

action "t in an action sequence. and we axe also not concerned vi th 

the unstable state at which a process can progress unobservably to 

another state. 

~e add tva axioms to the system for defining observable action 

Sequence. where P ~ Q means lip can be transformed to Q under the 

observable action sequence s (B~:I.*)". 

1.1' p~ p 

This axiom says that before P takes any action, P does not 

change. Thue the empty sequence can be used to record the obsarvable 

action sequence which a process has taken before it evolves. 

1.12 P -4 Q 

p s\~} Q 

where s\"t is obtainl'!d from s by cancelling "'C. This ru Ie implies 

that an observable action sequence is simply obtained frolll an action 

sequence by ignoring the unobservable action -,;. 

Now we can pre~isely define the stable state. 

Let P be a process, po denote the ready Get of P, and st(p) be 

the stable-state-set of P. Then 

pO • df (d/3Q.P ~ Q1, 
Oon' st(p) := df {(S,Q.°)/:l Q.P ~ Q & 1:( Q }. 



J3 

This definition is exactly a formulization of the fact that (s,X) 

is a stable state of P iff s is an observable action sequence of p. 

and after doing s, P can be stably prepared to take the actions X. 

We no... sho." that the stable state of a process can be calculated 

~ structural formulae. 

Lemma 1. 

(1) STOP ~ Q iff s=<> & Q=STOP 

(2) (ele ~ p) ~ Q iff B:: (.> &. Q = (c:e---7' p) 

~ " 5,
v ;;)13,' s:::c.e s1 & p~	 Q. 

(3)	 (,?..M~ p(x» ~ Q iff , =<) & Q = (,?..M-7 p(x) 

'1 
v	 3 x4:M,s" s ::::c.x"'s, & pex) ====='1 Q. 

(4)	 (PtlQ)~R iff s;<> &R=(PorQ)
 

v P~R v Q~R.
 

(5) (e?..M---7 p(x) Ud?y,N --+ Q(y)) ~ 0 

iff	 , = <) & 0 = (,?..M~ p(x) Dd?y,N ~ Q(y» 

3 ~ ( ) ".\I xE..M, yUi, 5" S =c.x 5, & P x ~ R 

v & Q(y) "s =d.y"S1 ~ R. 

" Id 1(6 ) pr~J ~Q iff 3p"s" p ~ P, & Q = P, Yc] 
&	 , = '11:'/,] 

0	 . ()* 3 ,tA,(7) (pliQ) ~ l.ff sE: AuB & P,.Q,' P~Pl 

atB" &o=(p,II«,),&Q~Q, 
A B 

."here (Au B)* stands fo£ the set of finite communication 

sequences alo:lg channels in AuB. and sr-Jl. for the sequence 

obtained from s by cancelling the communications not along 

chaIUlels in A. 



14 

• 3 ' .,(a) (~b.1n p) ~Q iff B"P,. 8=8,,\b &. P ==9' P, 

&. Q= (chan	 b in P1). 

where 8\b 1s obtained from s by cancelling the commu...ric­

atioDS on channel b. 

(9) (pp[i'NJ.F)(j] -4 Q iff (F(pp(i,N].F))[j] ~ Q (j.N), 

provid,d.,.., or (Q,.(pp[i,N].F[j]& Q" (F(pp[i,N].F))[jJ). 

proof. We only give a part of the proof for parallelism. 

(....,) Suppo., (pHQ) ~ N. 

The axioms from which this ma;j be derived are (1.11) and (1.12). 

Th,oc"",(1) .=<>&B=(P1J,Q) by (,.11). 

Let p1 = P and Q, ::: Q. 

Since <>IA = < '> and <>tB :::< > p OrA; P, and Q otB Q, 

by (,.11). 

Thus RES of (7) h~lds. 

case (2) 3.,. , = '0"t • (pHQ) --4 B by ('.12). 

We prove RES of (7) by induction on 8," 

When 9, = d. • (pl~Q) ~ R can be derived only by the rules 

io (,.7). 

Subcases: 

(a)	 B = (p,[[Q) • P~P, • ch(oL) <: (A-B) u ("J.

AB
 

Let ~ = Q.	 Since ce.tE = « > and alrA = ooI.\--C. 

P ~tA; P, by (1.12) and Q CIl~]) Q, by (1.11). 

So RES holds. 



IS 

(b) R: (pUQ,) • Q-4 'l, • ch(.) E (B-A)u fr)· 
Let P, = P. Then RES holds. 

(c)	 R: (p,llll,) • P ---'4 P, • Q---'4 Q, • ch(ol) <: (A nB) 
AB 
• , \. ,,~. .~B 

Since 01.1 A : oi,jB::: oJ. ::: J.\'C. P =====9 P, aIld Q~ ~ 

by (1.12) .. So RES holds. 

Nov for 5, = t ..... ....1... let (pUQ) ---4 T and T ~ R. 

•	 t~A t~ ..
Then t "t' ~(AvB) and 3P2t~. P= P2 &: Q'==7'~\
 

&: T '" (p2 11 ~.) by induction.
 

..	 
AB 

Fro"Q (p211~) ~ a, repeating	 (a.) (b) and (c), we can get P, and Q, 

such that 

p~p .L~B II
2 , • '" ~Q, •	 R: (p,

AB
Q,). 

Hence RES holds. 

Lemma 2. 

(,) (STOP)o: ¢. 

(2) (c!e ---.,. p)o: [e.e}. 
() (c?"K ---.,. p(x»)O : c.M. 

(4) (p or Q)o : (T}. 
(5) (e?"M --'> p(x) 0 d?y,H --'> Q(Y»o : e.M u d.H. 

(6) (p[~eJ)o: pO["IeJ. 
(7)	 (pHQ)o: (por. n QotB) u pot «A-B)u {1:})
 

u QOt«B-A)u{1:J)
 

where pOlA stands for the set obtained from pO by including 

only co!nlDUll.ications on channels in A. 



16 

(8)	 (chan b !B. p)o ': pO [iib]' 

(9)	 (pp[i,N].F)[j)o. (F(pp[i,N].F))[j])O (j'N). 

proof. We give the proof only for (7). 

(pHQ)O • t~1	 '3 N. (P!iQ) 4RJ by defini'ion. 

Since	 R can only be deriVed by the rules in ('.7), and(pl!Q) 4 

(a)	 C::l P,.P--'4P,) • eh(.,L)~(A-.)vt"t). 

iff	 al (, pO teA-B) V\."t}. (by definHion of pO) .. 

(b)	 ('l<l,.Q ~ Q,) • eh("'l E (B-A) v t"t} .
 

iff 01. e.. QO ~(B-A) u f~}. (by definition of QO)
 

(e)	 ('!P,,<I, P--'4P, • Q4<1,) • eh(ol)" (A~') 

iff	 <>l.£,porCAnB) &: d..EQoi(AnB). 

Le.	 01. if. (porA .... QotB), 

therefore (7) is proved. 

Theorems. 

2.'	 ,'(STOP) = [(<> .¢)}. 
2.2	 ,'(e!e ~p) = f« >,[c.e})} U {(e.e",x) I ("X) < "(P)}. 

2.3	 st(c'?x:}>I~P(x» = {«)tCoM)} u {Cc.x"'s,X){ xtM &: (s,X)€: 

"(P(x»)}. 

2.4	 step.2!. Q) = step) v st(Q). 

2.5	 ,'(eh,M ~ p(x)D d?y,N ~ Q(y))
 

= {( o,c.Mv d.N)}
 

v {(c.xAs,x) 1 x£M &: (s,X) £ st(P(x»~ 

u t(d.y'"X) I y<N • ("x) ~ s'(Q(y))} • 



2.6 ,t(p[~oJ) ~ ,t(P)[~oJ. 

2.7 ,t(PlJ.Q) =	 (XrAoYtB)vXr(A-B) u Y[(B-A»)«" 
I ,. (A vB)" & (,rA,X) ot(p) 

& (,[B,Y) .,t(Q)). 

2.8 ,t(ohan b 1!! P)	 = {('\b,X) I ("X) < ,t(p) & xt{b) = ¢ \. 

2.9 Vj<N, D. 't«pp[i,N].F)[j)) = ,t((F"(PPli,N].F))[;] ). 

proof. We give the proofs of (2.7) and (2.9). 

(2.7) (pHQ) ~ R	 iff 'dA UB)· & :!P"Q,. P orA; P, 

&	 Q~Q, & R = (p,IIQ,)
AB 

(by Le"".' (7»). 

and ~ 11)0 iff "(€oF, ° &: "'CE:Q., 0 (by Lelllllla 2 (7»."t£(P1 Q1 
- ­

AB
 

But ("RO) ~ st(pUQ) iff (pl1Q) ~ R & "< RO
 

(by def. of stable state) 

hence (s,RO) £ st(p11Q) iff there exists P1 and Q,1 such that 

S£(AuB)* &. p~ P1 &: Q~Q1 &: ~f;P1° &: "l:.£~O 

& R = (P,/IQ,), 
AB 

0	 0
Le. 5 €.(A vE)* &: (stA. P1 ) € step) &: (stB, Q1 ) l!. st(Q) 

&: R == (P1 1IQ,) (by def. of stable state) 
AB 

Moreover RO = (p,lk,)O = (p,OrAOQ,otB) v p,OI(A-B) u <l,°I(B-A) 
AB 

0
(since Lemma 2 (7) and ("'t~ P1 &: "'C.£Q1 0», the proof is completed. 



13 

(2.9) Let us just take the case of single recursion; 

Yn. ,t(pp.F) = ,t(Y'(pp.F» , 

which \ofe proVe from a stronger conclusion: pp.I' and yt(}lp.F) not 

only have the S&JDe stable states. but also have the aame unstable 

states. 

Let ast(p) be the Bet of all states (stable and unstable) of 

process P. 

"t(p) = <li t(',QO) Ip ~ Q). 

Then we can shov: 

(.) ..t(pp.F) = a,t(F(pp.F» by Lemma 1 (9) and LeID.ltla 2 (9); and 

(b) for a.ny process expression H(p) and processes P and Q, 

(aat(p) = "t(Q» ~ (..t(H(P) = "t(H(Q)), 

\/hich can be proved by routine induction on the structure of H• 

Thus ..t(pp.F) = ast(F(pp.F» by (a), 

'0 ..t(F(pp.F» = a,t(F2(pp.F» by (b), and '0 on. 

3. Calculus-

We no" present the \/eaker calculus. named Calculus-. in which 

live lock 1s not taken into account. Caiculus- is neacly the same as 

that given in [1] • lrith the exception of the inference rule for 

hiding. Recall that the assertion which we use to specify the behaviour 

of a process is a predicate with channel variables - "channelname.past" 

and "channelname.ready", ..,hich are intended to describe the stable 

states. 



'9 

Let P be a process, and let R be a channel predicate. 

Then "P satisfies R" means that all stable states of P satisfy R. 

Formally 

(p sat R) 
df' V("x) ~ ,t(p). R['/ pas~ LV""dY] (1- ) 

vhere e.s 1s a message sequence obtained from 8 by cancelling all 

communications not on channel c, and then droppiD& channel name c 

from the resulting sequence; and c.X 1s a message set obtained from 

X in the same way. 

In ....hat follo ....s	 R[l!/pasJ [X~eadJ is abbreviated as Rs,Xo 

We list the inference rules of Calculus- folloved by the proofs 

of their consistencYi i.e. every rule is a theorem under the 

interpretation (1-) of (p sat R). 

3.1	 STOP 

(STOP sat R)RO ,¢ 

proof. (STOP sat R) = V(s,X) E: step}. Ra,X (d'f. ) 

=V("X)E.1.«>,¢)} .R"X (2.1) 

=R- o,¢ 

3.2 Output 

e "c.past ]
& (p sat R i e . pastR<>~'t,,,ady1¢ [ 

== (ole ---j. F) sat R 

....here R<) [~readY] ¢ stands for 

f<> 'I[,J ll¢ / ] 
R ~as~ L~.readYJ L/ ready . 



20 

proof. RES	 ==V(e,X) E: et(c!e ~p) • Ra,X (de!') 

==1(,,» e (t( o{c.,P} v {(c.eA"x) I (s,X) .. st(P»)). Rs,X 
(2. 2) 

"" R { } & l/(s,X) • ,t(p). R , ><::>, c.e c.e 5, 

- ~el [e~,.p.stJ	 J 
= R",{ Vc.readY ¢ & (p ill R Ipast ) 

(';0" c.{c.el	 ' Gl and d. G·') , ¢ 

if d Fc, and	 c.(c.eAs) = ~c.s 

and	 d.(c.e"'s) '" d.s if d" c.) 

3.3	 Input 

Ix', .••st	 1 
R<)[M/c.readYJ¢ & "t/ :u.M. (p(x) sat R L fc.pastJ 

.=:(c?x:M ~ p(x» ~ R, 

provided R does not contain x as a .free variable. 

proof. Omitted. 

3.4	 Union 

(p sat R) 6. (Q sat R) .:!i51: (p or Q) sat R. 

proof. RES	 =\{(s,X) e: step Q!. Q). Re,X (def.) 

=V(s,x) £ (st(p) u st(Q». Rs,X (2.4) 

= (I/(s,X)< ,t(P).Rs,X) & (~(s.x) est{Q).R,,» 

~ (p sat R) & (Q sat R) (def. ) 



21 

3.5	 Alternation 

R<) ["to .reod] Et'doreSdJ ¢ 

[ x~oop.,t; 1
 
& \:jnM. p(x) ~ R copas:;
 

yAd.past1 1
 
& Vy(N. Q(y) sst R [ d.pa,stJ
 

=	 (c?x:M ~ p(x) U d?y:N ~ Q,(y» sat R, 

provided c~d and R does not contain x or y freely. 

proof. Omitted. 

3.6	 Renaming 

(p <at R r/d] ) ~ (p [d/~ ~ R) • 

prQvided that R does not mention c, and d does not occur in P. 

proof. Omitted. 

3.7	 Pa.rallelism 

If S only mentions channel names of A 

and R only mentions channel names of B. 

and An" = {c,. c2 •••• Cn} • then 

(p sat s) & (Q. sat R) ~(pHQ) sat 

n 

3 Xi' Yi · S [ 
Xv

CLready.J
n

& R[Yi/Ci.readY] ." 
1=1 1==1 1'= 1 

n 
& C .ready Xi f\	 Y1i

1==1 



22 

proof. LHS "",V("X) t,t(p). S X • 'V("Y) ",t(Q).R Y' (d'f. )
Sf	 B, 

'=9'{'[A,x) .,t(p). S X • ,<!(,\'B,Y) .. ,t(P).R Y s, s, 

(since Ss,X ~ SstA,X and Rstr ~ RstB,r 

by the assumptions of S and R) 

,*Vs, X, Y. (,rA,X) .,t(p) • (,tB,Y)< ,t(Q) 

~ 55 •X &. Rs,r 

~"s, X, Y, Z. (,tA,X) • ,t(p) • (,tB,Y) ",t(Q) 

• z. (xrAnYfB) u Xt(A-B) uyr(B-A) 

~ Ss,Z"Xr(A"B) &. Rs,Z"Yi(A"B) 

(,ino, (Z u Xt(A'B»tA • XfA, (Z,YI(A""»\B. yrB 

and Ss,X ~ Ss,XfA and Rs,Y =- Rs,Y!"B ) 

=;} "!"X,Y,Z. (stA,X) ",t(p) • (stB,Y) .. st(Q) 

• z •	 (xiA n YiB) u Xr(A-B) u yr(B-A) 

n fX. 1=+ 3 x.,r .. sL Jlcioready s,Z
1=1 ~ ~ 

Y1 l 
&. R [ ~ ci.readyJ S ,Z 

n 
!: (c .. ready = X. n Y.) s,Z 

1=1 ~ ~ ~ 

(let Xi = X r{ci\ Yi = Y\(cJand . i""',2 •...• n) 

(2.7)=9 RES 



2J 

3.6 Hiding 

(p oat R)-; (chan bin p) .u..t. 3b.past. RC'\.readJ 
Note. This proof rule Is simpler than the corresponding one in [1J. 
This is because we ignore I1velock here. 80 infinite chatter on the 

hidden channel b iL'l a.llo~d in this rule. 

proof. (p sat R) =VCs,X) l:. step)· Rs X, (d,f. ) 

~ y("x) ~ .t(p). 3b.,ast. R X 

" 
(let b.past b.,) 

~ 1I(.,x) ~ .t(p),.,. " • ~b ••flb} • ~ 

=9 3b'Pa.st.R~/b.readJ 6 
1

,X 

(since CoS = cos, provided c # b) 

~ RlIS (2. B) 

3.9 Recursion 

Let R be an assertion with channel names fa, ••• ,z) , and let 

*t s stand for the length of the sequence 5. Then 'We define Rtn as 

the same assertion of R if only the first (n-1) communications are 

considered: 

Rtn = df ("*'a.past + '0. + :#z.past ~ n) " R. 

Thus Ric ~ true and R ~ "n.Rin are al~s true for any 

assertion R. 

The inference rule for recursion is: 

(I/"n. ('I j'N. ,[j1 ~ R[,] tn) ~ ('lIj'N. F(p)[j] <at R[,)ln+'» 

~ I/j'N. (PP(i'N].F)[jl <at R[j] • 



24 

proof. ~e only prove the case of single recursion: 

('fp,n. p sat Rtn......:, rCp) sat Rln+1} ~ (pp.F sat R). 

Since Rio ~ true, (pP.F sat Rto) by the definition. 

Then (F(pp.F) sat Rt1) by the premiss (let p = pp.F and n:O). 

Hence for any n (~(pP.F) sat Rtn) by repeated use of the premiss. 

(2.9) ShO~9 that for any n st(pP,F) = at(~(pp.F». so 

(pP.F sat dn) holds for any n. Thus (PP.F sat Vn.Rrn) by the 

definition and (PP.F sat R) follo'lo's from R '" VDoR\n. 

Beside the rules (}.1)-(3.9), of course, 'We need the familiar 

inference rule; 

3.10 Consequence 

If (R ~ S) is a theorem. then so is
 

(p sat R) ~ (p sat S).
 

Jreai. Omitted; it fo110'lo'9 directly from the definition. 

The inference rules presented here are ~ complete than those 

in [1J, in the sense that more expressible truths can be proved. 

For examplsl the unprovable propoaition of [1] 

(cr.an b in pp. (b:D ~ p)) sat true 

becomes provable now. 



25 

But, mep..nwhile, Lor any assertion R 

(chaP b in )lp.(b!O ---.,. p» sat R 

can Wlfortunately also be proved. Since 

}'p.(bW -..:; p) sat b.ready f. ¢ 

can be derived by (recur&ion), then 

(ohaD b i..!l pp. (biO --> p)) oat ¢ I' ¢ by (hiding). 

Hence 

(chan b in pp. (b!O ~ p» sat R by (co~sequence). 

In other ...ards, the process (chan b in pp. (blO -7 p» can meet 

BDy assertion under the interpretation (1-). So the theorem 

p sat R deduced in Calculus- is only cond! tionally correct. The 

trouble here is that (1-) does not deal with livelock, and 

(chan b in }lp. (b!O ~ p» is livelock everyWhere. Th':Js its stable 

state set is empty. That is why it can meet any assertion. 

4.	 Liveness 

we n~ ... take up the question of livelock. A process gets into a 

livelock after some moment during its evolution, if from this moment 

the procesS may engage in an infinite sequence of internal transitions. 

This concept can be precisely described in the model as follo_s. 

Let P be a process. We first use trace(P) to denote all 

p05sible action sequences of P (both iin:te and infinite action 

sequences). 



26 

trace(P) df talaf:.<)&.Vii.[o •• ~aJ 3Pi.po::P .5: 

(lS)i+1)
(i.,.'lls==9 Pi P1+1)} , 

vhere (s)i atands for the ith action of s and ~ s '" 00 if a is 

an infinite sequence. 

Let s be a finite action sequence. and let T.,oP stand for an 

infinite sequence of -C. Then s-Coo € trace(P) means that P can take 

actions of s and after doing a P can engage in an infini te internal 

transition Sequence. Le. Pis livelocked after the moment of just 

finishing s. So if we use live(P) to mean IIp is live lock-free", then 

11v,(P) = <li -, 3s( (lur,,}l' s"C
oP

£ trace(P) • 

Suppose P ~ Q and "COD€. trace(Q). This implies that P can 

reach a state by doing 5 ...hich will never get stable by the internal 

transitions of P, even if ve are so patient as to wait for an 

&rbi trarily long time before further communication wi th it. So this 

is a state vhich is unreliable and cannot recover by itself. 

But if P is live and p~ Q. then'"t'OO'f trace(Q) by the 

definition of live(P). Thus even if P enters into an unstable state, 

sooner or later it ...ill be stable again, and perhaps sQQ~er, due to the 

bigh speed of internal transition. In other yards, if P is live, then 

:he communication vith its environment can be expected to go on 

reliably at any time. This reasoning is formalized as follovs. 

Theorem. Let P be a process and live(P). Then 

y s.('3P,.P ~p,) ==9 3Q. P, ~ Q • (s,Qo)<st(p). 



, ""_
proof. Suppose P ==7 P1" Since 51: ~ trace(P) by Hve(P), there 

"CD ,.. 0 
must exist n and Q. such that P, ~ Q and""C" lEQ.. Thus 

(SIQO) E: step) from	 the definition of step). 

As a prepara.tion ~"r Calculus+ ..e Do=ed rules to build livelock-free
 

processes.
 

The fact that Ql~ opera.tors except the hiding and recursion preserve liveness 

can be directly proved from the definition of l1veness. 

Theorems 

4.1 live (STOP) 

4.2 live(c:e ----;)0 p) == Hve(P) 

4.3 live(c?x:M ---7 pex)} == '!duM. l1ve(P{x» 

4.4 Hve{P.2E. Q) = Hve(P) & live{Q) 

4.5	 liv.(c?"M ~ p(x) 0 dey,. ---7 q(y»
 

'" VuH. liv,(P(x» • Vy<N. liv.(q(y»
 

4.6 11V.(P['7'o3) = liv.(P) 

4.7 11v.(P)' liv.(q) ~ 11v.(PlJq) 

proofs. Omitted. 

The hiding operator can preserve liveness under a certain 

assumption - the original process viII not be involved in infinite 

consecutive communications on the hidden channel. 

Let F be a process	 and let b be a channel. 

Then 

Iive
b

(p) dfl 33. P 4 Q &: Vi3ali . ch(o() , {b l ;;:} &: 

A , 

";1 ""-2 ••• E. trace(Q). 



28 

Theorem 

4.8	 liv€b(P) ~ live(chan b in p) 

proof.	 Since s T.
oo 

~ trace(chaJ'l b in P} 

iff there exists s,.....~.....~,. ••• in trace (p) such that 

, and Vi. Ch(ai...i)~~'"t.}.'1 t/bl 
We no~ must face the fact that a process defined by recursion 

is not always live. Can lie find a. syntactic restriction on recUrsion 

..-mch can guarantee the liveness of the defined process? The 

anSlier is pos1 tive. BOlorever there is a. variety of such restrictions, 

~d lie prefer here to pre5~Dt a simple but useful one. 

Let us first see sorne examples. 

(.)	 F(p) = ~ b in (b!, ~ pl. 

Since (bJe ~ pp.F) .....£:.4 pp.F by (1.2), 

chan b in (b:e ~ j-lp.F) ~ (ChM b in jJP.F) by (1.8). 

Then pp.P ~ (chan b in pp.F) by (1.9). 

Thus (chan b in pP.F) ~ chan b in (chan b in )-IP.F) 

and .c£~~ b !.!l ••• .£h!!! b ,!E; pp.E) ~ fChan b in ••• chan b in }lp.Fl 

~	 nt, 

by (1.8). 

So pp.F is not live. 

Th~ reason for it3 live lock is obviou~. b~cause ~p.F has not 

got any external channel. The only possible tran~ition of pp.F is 

internal, so if it is to progress any longer. it must be live locked. 



29 

Mo"r'eover why and hoy should '01'8 be concerned ....1th a process ....hich 

cannot communicate \1'1 th 1 ts environment? 

Thus it is suggested that the recursion which defines a live 

process must have exteznal channels. Let F be a recursion (single 

or mutual). Then the external channels of Faxe channels specifically 

for external communications, never hidden or renamed in F. 

xch(F) = df {c I c does not occur in the hiding operator of F as 

a hidden channel, nor in the renaming operator 

of F as a renamed ChBlUlel] • 

(b) F(p) " (e:e --'> p) 2!: P 

In this recursion, F has an external channel c. Eut pp.F is still 

not live. SinCe r(pp.F) ~ pp.F by (1.4), then 

pp.F ~ pp.F by (,.9). 

The trouble here is that one of the occurrences of p in F is 

not guarded by external channel c. 

Hence the restriction has to be strengthened by the further 

requirement that the recursion vhich ~e use to define process must 

be externally guarded. Precisely for single recursion p ~ F(p), we 

say that F(p) is externally guarded iff every occurrence of p in F(p) 

has an enclosing external guard, i.e. there exists G, Hi' and gi 

such that 

F(p) ~ G(g, ~ ",(pl ..... gn ~ Hn(p». 

where every gi is an input or output command on channel of xch(F). 



30 

The definition of the externally guarded mutual recursion can
 

be given in the following we:y.
 

:For recursion P[i:N] ~:F(p), we say that p[il 1s not externally 

guarded in F(p)[j] • if p[iJ occurs in F(p)[jl without an enclosing 

guard of :z:ch(F). 

Then F(p) is externally guarded iff there is no infinite 

seQ.uence P[i lJ. P [1 21. ... i such that for each j, p[ i j+11 is 

not externally guarded in F(p)[ijl (cf. p. 72, [4]). 

We end this section by giving a theorem tha.t the process defined 

by an externall;)' guarded recursion is live. The proof of the theorem 

15 only shown for single recursion. It holds for mutual recursion as 

well, 'but is more tedious. 

We first need four lelllDlas. They are mainly proved by structural 

Jnduction on the process expression, so 'We ...ill not give the details 

of the proofs. 

Let	 p ~:r(p) be a single recursion concerned. 

Lemma 1. For any natural number n and expression H, 

trace(H(pp.F)) trace (B("'(~p.F))). 

proof. (1) trace(pp.F) = trace(F(pp.F))	 by the definition of trace 
"'d (1.9) 

(2)	 B;y structural induction on expressions. w-e can prove 

'Vp,q,H.(trace(p) = trace(q)) ~ (trace(H(p}) tra,,(B(q))). 

Then the lemma follo~s (1) and (2) directly. 



31 

Lemma 2. If F(p) 1s erlernally guarded, then 

F(p) ~ H(p) iff F{q) --'!!......} H(q) 

for any P. q, cJ... and R. 

proof. Since rep) is externally guarded, F(p) must be of the form of 

G(g, ~H1(P)' •••• gn~Hn(p)), where gi (1::1, •.• , n) are 

guards. Then by making an induction on the structure of a, the 

lemma can be proved. 

Let inch(r) be the set of internal channels of F(p). i.e. 

{c I clnch(r) :: df occurs in a hiding operator of F as a hidden 

channel or in a renaming operator of F as a 

renamed Channel! . 

"­
Le= 3. If F(p) is externally guarded and F(p) ~H(p). then 

inch(F) 2: inch(H). 

proof. ]y the routine induction on the structure of G too, 

where F(p) =' a(g, ~E1(P), ••• , gn ----?> Hn(p))· 

One of the corollaries of this lemma which we shall use in the 

proof of the desired theorem is that,; 

" ~ if Ho(p) -----4-H1(p) -4 ... ~Hn(P) and \/l<.n. (Hi(p) 

is externally guarded), then Hn(Ho(p) is externally guarded. 

Tr~s is because the guards of every occurrence of p in Hn(Ho(p») 

are not less than the guards of the corresponding occurrence of p in 

Ho(p), and inch(H ) £ inch(H ) by the lemma. Thus we can prove the n o

conclusion from the hypothesis: Ho(p) is externally guarded. 



]2 

LellllDa. 4. If 

(1) F(p) ~H(p) 

(, ) F{p) is externally guarded. 

and (3) R(p) is externally unguarded, 

then 01. r '"'C • 

proof. Roughly speaking, since pep) is externally guarded, while 

H{p) ia not, an external communication must ba referred. 

The rigorous proof can be given by induction on the transition 

rul" (1.1)-(1.8). 

We Jlrove the theorem itself no..... 

Theorem 4.9 {single recursion) 

If P ~r{p) is externally guarded, 

and for any process p, live{p) ==='> live{F{p)), 

then live(pp.F). 

p:oof. Suppose ("","'oI.2 
A 

••• )€trace{pp.F). Let us prove that 

A ~ 00 
("'1 <>1. ••. ) cannot take""C as its tail.2 

1y leln!Ila 1. {cl.1 

~ 

~
~ 

... )E:trace(r(pp.p)). Say 

0(, ,I, -',. 
F(p,.F) -----'--7 H, (yp.F) -----"-7 B,(pp.F) -.., 

If all Hi (p) is guarded, then. by lemma 2. for any p 

" A ...... '"("', "S ... )~ tTaoe(F(p». So ("', "', ••. ) £tTace(F(STOP». 

But live{r(STOP)) by live(STOP) and live(p) ~ live(F(p)), 

A A 
therefore (../., ""2 ••. ) is as required. 



J; 

If ~k. ('Ii<k. Hi(p) is externa.lly guarded) &. (II:k(p) is not 

externally gua.rded), th.en o:(k ~ -,; by lelllllla 4. 

Furthermore 

« "- oJ.
F'(p) ~H,(F(P» ~ ----4 a.(F(p» (by lemma 2) 

Hi (F(p» (1'; k) are guarded (by lellIllla 3) 

~ '" and ("k+1 "\+, ... )£trace(a.(F(pp.F») (by lemma 1). 

dk+1 ("'k+' "' ..;.Say ( ( a. F pp.F ) ) ----""--? G, pp.F) ~ G,(pp.F) -----" ••• 

. ->( 0<, "-k+1 "'k+' ( "'k.,.
It imphe' r pp.F) ~ •.• ---"-'-7 G, (pp.F) ~ G, pp.F) ~ ... 

Then repeating the previous reasoning, we can get c:.I!m (m >k) such 

that ""\u ~ ~ • 

Hence in this way we can prove that V n 3 m. m>n &. ".l.m ~ "'t: 

~ ~ 00 
Le. (01., ~ ••• ) cannot take "'C as its tail. 

The version of Theorem 4.9 for mutual recursion should be 

Theorem 4.9 (mutual recursion). 

If P[i:NJ ~ pep) is externally guarded, 

and (Yj,N. livo(p[jJ» ~ (Vj'N. livo(F(p)[j]», 

then \fj'N. live«pp[i,N].F)(j]). 

We are now in a position to modify calculus- into celculuB+, which 

takes liveness into account. 



J~ 

5. CaleuIus+ 

In this calculuB (p sat R) has a stronger interpretation: 

(p sat R) :::df liv-e(P) & \j (s,X) E: step) • Rs,X (r+) . 

Under this interpretation, for any assertion R (p ~ R) implies 

live (p), and for no process P (p sat false) holds. It is because 

Theorem in 4 says that any liv-elock-free process after doing any 

o1leervable action sequence can get into a stable state. Meanwhile the 

empty sequence <:. "> is an observable action sequence of every process 

by (1.11). Thus the etable-state-set of a live process is always 

nonempty, Hence (p sat false) cannot hold for any P by ita 1nter­

pretation. 

So the calculus consistent with this interpretation can be 

expected to prove the livenes8 of process, and reject the ridiculous 

formula (p sat falae) as vell. 

Calculus+ is obtained from Calculus- by replacing (4.S) and (4.9) 

by the follo'oii.ng rules (5.S) and (5.9). But all the proofs for the 

consistency of the rules must use the interpretation (1+) instead. 

Rere we only list (5.S) and (5.9) with their consistency proofs. 



5.8	 Hiding 

Let f be a total f'unction from message strings to natural 

numbers, and let [c •.• ~. 1IO} be a finite set of channel names. 

Then 

(p	 sat (R &: '-b.past ~f(c.past•••• , z.past))) 

~ «.£ills b in p) sat 3b.past.R [~Ic.readY) ) 

proof. The only thing which we need to prove, given (3.8), is that: 

P sat'" b.past "f(c.past, ... , z.past) 

===9' live(chan b in F). 

:By (4.8), it will be enough for us to show 

P sat ~b.past ~ f(c.past, •••• z.past) 

::::9 live (p).
b

This last proposition can be proved by 

LHS ~ \lSl.(~ u[rJ)*. SE.trace(P) ~ (~b.s ~ f(c.s, •••• z.s)) 

(by Theorem in 4) 

~ liveb(p) (by deL of liveb(P)). 

5.9	 Recursion 

If p[i:NJ .e. F(p) is externally guarded. 

then (Vp,n. (Vj.N. prj] oat R[jlt n) =} (\Ij'''. F(P)[j] oat R[j1In+1)) 

=? Vj'N. (pP[i'NJ .F) [j] .at RG]. 

proof.	 We only need, by (3.9), to prnve that 

Vj(DJ.live«pP[i:N] .F)[j] ) is trUE Ul,aer these a.ntecedE-nt~. 



)6 

By (4.9), this can be reduced to sho;;oing 

(>j'N. Hve(p[;] » ~ (II;,N. live(F(p)[;) i). 

This proposition is true, because R[jlto '= true and 

b)' the definition of Pm R, live(p[j) ) ~ (prj] sat true). 

ThllS 

(Vj'N. live(p[;) » ~ (lIj'N. prj] .at R[jl[o) 

==9 (~J'N. F(p),j1 sat RI J1 [,) 

(by the antecedent) 

~ Vj<Jl. live(F(p)[j1 ) 

(by the def. of (p m R). 

5.10 Consequence 

If R ~	 8, then
 

(p oat R) ---? (p oat S).
 

6. Discussion 

'We have presented an operational model for tiolO variants of 

Hoare's calculus, but we still do not knoW" if there is a model for 

Hoare's calculus itself. The difficulty of finding that madel 

8eems to arise from that the predicate of past and ready variables is 

not able to describe the liveness of process, while the proof rule 

for recursion in Hoare's calculus has no antecedent to guarantee the 

Hveness of the process concerned. Sa in the desired model an infinite 

internal transition sequence should aliolays take a "stable" process as 

its limit. One of the possible candidates of that model can be found 

in [5J, but unfortunately it rejects infinite hiding. 



37 

Ackno~ledgements 

This paper results from the author's efforts to understand the 

calculus of Tony Boare. It is almost a cooperative ~ork ~ith him. 

The operational model 1-s strongly influenCed by Robin Milner's 

elegant work on commUILicating systems. Finally I am grateful for 

fruitful discussions w1-th and suggestions from, Steve Brookes, 

Bill Roscoe, Cliff Jones and Ernst-RUdiger Olderog. 



38 

RefErences 

[IJ G.A.H. Boare	 A Calculus for Total Correctness of Communicating 

Processes, Science of Computer Programming 1 

(1981) 49-)2. 

[2J Zhou Chaochen and C.A.R. Boare Partial Correctness of 

Communicating Sequential Processes, Proe. of the 

Second International Conference on Distributed 

Computing System, April 1981. 

[3]	 Zhou Chaachen and C.A.H. Hoare Partial Corree tnee8 of 

Communication Protocols, Protocol Testing ­

towards Proving?, INWG/NPL Workshop. May 1981. 

[4J Robin Milner	 A Calculus of Communicating Systems, Vol. 92
 

LNCS, 1980
 

[5J G.A.H. Hoare, S.D. Brookes and A.W. R08coe A Theory of 

Communicating Sequential Processes, Technical 

~b~ograph PRG-16, May 1981. 



OXFORD UNIVERSITY COMPUTING LABORATORY
 
PRoGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS
 

MARCH 1982
 

1 his IS a series 01 lechnic.al monographs on topiCS m the field of computation. 
Copies may be obfamed Irom the Programming Research Group. (Technical 
Monographs). 45 Banbury Road. Oxford. OX2 6PE. England Prices mclude surflllce 
postage. 

PRG·-2 Dana SCali 
(Jutlme ot B Mathemerical Theory of Computation 

f>nO·3 Dana Scott 
The Lallice ot Flo"" Diagrams 

PRG·-5 Dana Scott 
Dala Types as LaN/ces 

PRG-6 Dana Scott and Christopher Strachey 
Toward a Mathematicai Semantics for Computer Langueges 

PRG-7 Dana Scott 
Continuous Laftices 

PRG-a Joseph Stoy and Chnstopher Sirachey 
OS6 - an Experimental Operafing System 
for a Small Computer 

PRG-9 ChrislOpher Strachey and Joseph Stay 
The Text of QSPub 

PRG-10 ChriStopher Strachey 
The Vanetles ot ProgUJmming Language 

PRG-l1 Christopher Sirachsy and Christopher P Wadsworth 
ContInuations: A Malhamaticai Semantics 
for Handlmg Full Jumps 

PRG-l2 Peter Mosses 
The MlStttremBIICS/ SemantICS of Algo/ 60 

PRG-13 Raben Milne 
The Formal Semantics of Computer Languages 
and their Imp/emenlations 

PRG-14 Shan S. Kuo. Michael H. Linck and Sohrab Saadat 
A GUIde to CommunicaTing Sequenrial Processes 

PRG-IS Joseph Stay 
The Congruence of Two PrQgrammlng Language DefinitlQns 

PRG-16 C. A. R. Hoare. S D Brookes and A. W. Roscoe 
A Theory of Communicating Sequential Processes 

PRG-17 Andrew P Black 
Reporr Qn the Programming Notation 3R 



PAG-lB Elizabeth FIelding 
Thf' Speclr,catlon of Abstract Mappings 
and their Implamen/atlon as a+-rreas 

PRG -19 DaM Seoll 
Lec/ures on a Mathematical Theory of Computation 

PAG-20 ZhO~' Chao Ctlen and' C. A. R. Hoare 
PartIal Correctness of Communicating 
and Protocols 

Processes 

PRli-<,1 Bernard Sulnn 
Formal Specification of a Display Editor 

PRG-22 C. A. R Hoare 
A Model ror Communicating Sequential Processes 

PRG-23 C A. R Hoare 
A Calculus of Toral Correctness 
for Communscating Processes 

PRG-24 Bernard' Sulrin 
Reading Formal Speciflcarlons 

PRG"25 C B. Jones 
Developmenl Methods (or Computer Programs 
Including a Norion of Interference 

PAG-26 Zhou Chao Chen 
The ConSlslency of rhe Calculus 
for Communicating Processes 

of Total Correctness 


