%2

(49 cry 2

THE CONSISTENRCY OF
THE CALCULUS DF TOTAL CORRECTHNESS
FOR
COMMUNICATING PROCESSES

by

Zhow Chaochen

Oxtord University
Computing Laboratory
Programming Research Group-Library
8-11 Keble Road
Oxiord OX1 3QD
Oxdord (0865) 54141

)

Technical Monograph PRG-26
February 1982

Oxford Uniwersity Computing Labaratory,
Programming Research Group,

45, Banbury Road,

O0XFORD. 0X2 6PE

1982 by Zhou Chaochen

Institute of Computing Technology,
Chinese Academy of Sciences,
Peking, China.

In [1] Hoare suggeets a notation of assertions to
describe the total correctness of communicating processes,
and a calculus for proving it. But the guestion of the
consistency of the calculus ie left open in that paper.

In this paper we give an operational model of communicating
processes and present two variants of the calculus, which
are consistent with this model. One of them cannot deal

with 1livelock, while the other one does.

Introduction
Operational
Stable Sates
Calculus -
Liveness
Calculus +
Discussion

References

Hodel

Contents

25
34
36
38

Introduction

This paper proves the consistency of twe versions of a calculus
presented in [1] . This calculus deals with correctness formulas of the

form (P sat R), where P is a process and R apn assertion.

A process is comstructed from a group of subprocesses, inter-
compunicating on a network of named channels, and communicates with its
environnent by sending and receiving messages on named channels too. Each
communication is dencted as a pair "c.m" where "m" is the value of the
message and "c" is the name of the channel aleng which it passes. 1In [1?,
past seguences and ready sets are introduced to describe the behaviour of
processes, where past is a finite sequence of communicaticns recording all
communications in which a process bas engaged up tc any given moment, and
ready is a set of communications which a process is prepared to communicite
at any given moment. The paire of past and ready are used to dencte the
states of processes. (s,X) is called a state of the process P, if P may
engage in the communications of g, and if, juet after doing s, F can

accept any communication in X.

For example:

(a) the only possible state of the inactive process STOF is { <> ,f.
Because S5TOP never communicates at any moment, the pogsible record of ity
history is the empty 9equence of communications, and the acceptable

commuriicationg at any moment constitute an empiy aet as well,

{(b) If P firet sends the meseage e on the channel ¢, then stopa,

i.e. P = cle —> STOP. The poepible states of P are:

(<>,{cce}) —— the begiming state of P, At this moment, P
has not engaged in any communication, but is prepared to communicate

message e oh channel ¢.

the state after P sends e on c, P will not

(c'elﬁ)

accept any more commnication in future.

{c) If P repeats the sending of message e on channel c for

ever, i.e. F = cle —>» P. The possible states of P are:

(¢ >,(c.e}) —— the beginning etate of P.
{c.e,{c.e}) — the state after the first sending of e on c.
(cc.e)n,(c.e}) —— the astate after the nth sending of e on ¢,

n
where a" stands for a®a ..."a .
e —
n

(d) If P first receives a message of M on chamnel ¢, or a
message of N on the channel d, then stops, i.e.
P = c?x:M —> 5TOP [| d%y:N —3 STOP. The possible states of P are:
{(¢>,c.¥ ud.N} — the beginning state of P, F is prepared
to receive any message of M on channel ¢, or any message of N cn
channel d, where c.M = {c.xlxt}i}
(e.x,#) — the state after P receives the message x of M
on the chamnel c,
(d.y,B) —— the state after P receives the message y of N

on the chennel d.

The assertiona for total correctness ¢f processes suggested in
[‘L] are the predicates of chamnel variables - "channelname.past™ or
"channelname.ready”. "“c.past" stands for a message sequence recording
all messages passing aleng the channel ¢ up to some moment. It can be
obtained from "past" by cancelling all communications along the other
channels, then dropping the chennel name ¢ to get a pure message

sequence,

n
e.g. c.cc,e”) = &

- =
and c.(c.e‘l d.ez) = e .

"g,ready" stande for the set of meesages which are ready to be

pasged along the channel ¢ at some moment,
e.8. c.(c.M ud.N) =M (cpd).

Thus an aspertion defines a set of gtates:

state—set of R = {_(B,X)l R [S/past] [X/readﬂ}-

For example,
state-pet of false = @

gtate~set of true = the universe of atates

- {(s,x) seSax EZ}-

where 2 is the set of all communications.

Let P be a process and R be an assertion. Then P is said to gatisfy R
(abbreviated by P sat H) if the aggertion R correctly describea the states of P,

i.e. all the states of P constitute a subset of the ptate-set of R,
For example,

if P = cle —>» P, then fromx (c) we can see

P sat (c.ready ={e}) .
It implies that P never stops, i.e. P is deadlock-free.

[1],{23 and [}] are recommended to the reader who is interested
in the capability of channel predicates for specifying the behaviour

of processes, We shall not review them here.

Lctually the calculus in [1__] is not concerned with the unstable state
of process. A process normally changes i1ta states by iaking communications
with its environment. E.g. in the previous example (b), P changes its
beginning state ((7.%.9‘}) to state (e.e,@) by passing value e on channel
¢ to its environment. However, under certain circumstances a process
itself, without participation the environment can alsc change its states.

This phencmencn is called internal transition., Internal transition

elerges either from internal commmnications (communicatiens on hidden
chamnels) or from non—deterministic operators {say, nendeterministic union).
The hidden channels of a process are only for the communications between
its subprocesses, invisibly to the environment. The nondeterministic

union of the processes P and @, P or Q, behaves either 1like P or like

Q, tut the chkwoice between them is wholly nondeterministic, and may be

made autonomously by the process, or by its implementor. 5o the cheoice
cannot be influenced or even observed by the enviromment. In other words

(P or Q) can transform itself autonomously either to F or to Q.

The internal tranasition may cause an unastable state. A state of
a8 process ie said to be unstable, if there is an internal transition
which may happen at that moment, and an internal transition will usually

btring the process to a new and different state.

E.g. conaider the begirming state of {(cle — P) or (d!lm —> q)),
at which the procese may do internal choice, tranaforming itself to

elther (cle —> F) or (dlw —3 Q).

An unstable state may be unreliable. If the environment wants
to communicate on ¢ with the process ({cle —P) or (d!m —> g}), then
sometimes it may succeed, but sometimes it may fail depending on which

alternative has been chosen by the process.

Moregver, in most cases, the internal transitien can take place
at a very high speed, compared with the external communication,
This is due to the high gpeed of modern: electronics. So we can
suppose that the unstable state is not only unreliable, but aleso

evanescent.

Thus it is claimed in [1] that the unstable statea are not
taken intg account by the calculus. (P sat R} is interpreted more

precisely as: "any atable state of P belongs to the state-set of R".

Another problem which can be caused by internal transition is
livelock. A process i3 said t¢ ba livelocked if after some moment
during its evolution the procese may engage in an infinite sequence
of interral transitions, and ignore possible external communjications

completely. We usually wish to prove absence of livelock.

In the following secticas we shall give an operational model
of communicating processes, and present formal definitions of the
previous concepts such as stable state, livelock, etc. Then two
caleculi, Calculus- and Calculus+, will be developed. Calculus- is
pimpler, but does not prove abeence of livelock. Calculus+ is a
little more complicated, but it has the ability to treat livelock,
Both are consistent with the operational model in the sense that their

rules are theorems in this model.

1. Operational Mpdel

We adopt nearly the same syntax of ccmmunicating processes as
in [1], which includes the constructg: output, input, nendeterministic
union, alternation, channel renaming, parallelism, hiding and recursion,

But, instead of the informal descriptions, we are taking a formal

oystem of the transitions of processes to be their semantics, kmown
ap operational semmntica, which was proposed by Robin Milner to

define the pemantics of communicating systems in [4].

Transition le a bipary relation over processes, Transition
regulte from an action taken by the procese, An action may be
observable (external communication ranging over &), or it may be
unobservable (internal communication or internal choice). Let

P and g be processee, We use

ta dencte "P is transformed to § under the obeervable acticon c¢.m",

vhere c.m€X

and
PL;Q

to denote "P transforms jtself unobservably to Q", where T is a

special symbol mot in 3_ .

1.1 STGP

STCP is an inactive process, so STOP has no transition,

1.2 Qutput
If P is a process and c.e €%, then (c!le —3 P) is & process,
which first outputs e on channel ¢ and then behaves like F. We use

the following axiom to define its semantics:
(cle —»P) S2f5p |

This means that the only possible transitioa of {cle —> F) results

from the communication c.e, and transforms (ele —>F) <o P.

1.3 Input
Let P(x) be a procees for each x in M, and let c.M be a
subset of Z . Then (c?x:M —> P(x)}) is a process, which first inputs

any message x of M on channel ¢, and then behaves like P(x).
Ths only axioms whicb its transitions obey are:
(c?x:M — P(x)) LeX, P(x} (x & M).

1.4 {Nondeterministic) Union
If P and § ars processes, (P or @) is a process which behaves
elther liks F or like {. The choice between them is autonomously

made by tbe process I1tsmelf. This statement can be axiomatised by

(Porq)—T%> p,

and (Poxr g) —=» q.

1.5 Alternation
Let P(x) and g(y) be processes for each x in M and y in N.

Lat c and 4 be distinct channel names, and let (c.Hud.N)E_Z.

Then (c?x:M —» P{x) [] a?y:% —> (¥)) ie a procees which is
preparsd to input either on channel ¢ or channel 4, and then behaves
like P(x) or g(y) respectively, where x stands for the message just

input on chamnel ¢ and y for the message Just input on channel d.
The axioms which define the possible transitions of alternmation
ghould be:
(crxsM —> F(x} [[da7y:h — g(y)) =5 p{x) (xem)

and (c7xsM —> B(x)[] a7y:¥ —> q(y)) == q(y) (yeH) .

1.6 Channel Renaming

Let P be a process, and ¢ be s channel, and let d be a channel
not in P, Then P[d/a is a proceas which behaves exactly 1like P,
except that whenever P usee chamnel ¢ for communicating, P[d/a uses

channel d instead,

We adopt the following inference rule to define the semantics
of P[d/c:], because the transition of E[d/r] tokes transitiona of P

to be {ts premiss.

Let o be an action (external or intermal}, i.e. dczu{f},

and let ch(e) be the channel name of of :

chic.m) ar °

LN

and ch(T) af

P 25 g

p[V] = o[%]

(ch(&) £ <)

P C.m] Q

wad P [d/c] 48, ¢ [d/c-l

1.7 Parallelism

Let &4 be the set of channel namee occurring in process P, and
let B be the set of chamnel names occurring in process Q. Then
(p J\éq) denotes a network constructed from processes P and Q, which
are connected to each other by common channels of A and B, Thus the

actions taken by P on channels of {A n B) oust be synchronized with

the corresponding &ctions of Q, while the actions taken by P either
internally or extexrnally on channels (A-B)} can still progress

independently of Q.
The actions of @ are similarly c¢onstrained.

The inference rules for the semantics of (P JUBQ) are:

P _5‘_) Py
(PH;Q} =, (P1£IBQ) ch{ot}€ (4-B) v t\‘.} ’

R

ch(al)€{B-a) 0iT
(rike) 25 (#lla)))

P—=>p , @=B>q,

ellay = ¢p g shl@)e (hak)
LB 1381

1.8 Hiding
Let b be a channel intended by process P for internal
compunication. Then (cha.n b in P) is a process in which all

communicaticne along channel b are invisible to the environment,

It can be formulated as follows:

{chan b in P} %> (chan b in §)

ch{) £ Db ,

P b.m; a

znd T
{chan b in P ——> {chan © in @))

1.9 Recuralon

4 alngle recursion is of the form of

p & Fp) ,
where p is a process variable and F{p} is an expression constructed
by p and the previous eight pperators. We aleao use the notation
{pp.F) (the least fixed point of F) to dencte the proceas defined by
recursion p @ F(p). 4s is well known, pp.F must behave exactly like
F{pp.F}. The transitions of pp.F, since we have given the semantics
of expression F with the structural rules (1.1)-(1.8), can be defined

by the transiticns of F(pp.F), i.e.

Flypp. F) =23 ¢
pp.P =3 Q

E.g. (a) Expression F(p) = {cle — p) .

Since F{pp.F} = (cle —> pp.F)

and (cle —> pp.F) &5 pp P (1.2) ,
therefore pp.F ':'—")pp.r {(1.9) .

(b) Expression I{p) = p.
Since I(pp.I) = pp.I,

therefore by (1.9) pp.I1 23 g iff pp.I —£> g,

So we cannot derive any transition of up.I by (1.9}, and we
cannot derive it by (1.1)-(1.8) either. Thus pp.l is an inactive

process-

Let a mutual recursicn take the form
p[i:fl 2 F(p)

where p and F are arrays. Then the array of proceusses, }:p[i:ﬁ].}‘,

defined by the mutual recursion obeys the followlng laws:

(F(pp[1:8]) . #))[5] 2> ¢
(pr[i:) . P[] —>q

(yex) .

A formal deduction syetem for traneitions haa been established by
(1.1)=(1.9} by which transitions of a complex process can be derived
from the traneitioms of 1ts simpler comporente. A transition
P ;) Q ie true iff it is a last line of a deduction in the system.

A sequence of transitione (which has length n) genarally takes the

form ol ol ol ol
Pg—1yp; —23 P —2> ... —Bsp_
o 1".,(; P
We shall usually write it as Py — = n, Py and introduce

a new inference rule for transition eequences:

1.10 P—=2>q, ¢—>n

A
Ps_t)R

where s and t are nonempty finite sequences of 2 u {t},

2. Stable States

We proceed to forumally describe stable states of processes. A
state of a procees consists of an action sequence in which the
process has been engaged up to scme moment in time, and an action

set which the procees is prepared tc take at gome given moment,

Each action of a process is described by a transition., So an
acticn sequence of a process correspends tc a transition sequence of
the process, and an action set which a proceee is ready to take
corresponds to a set of transitions of the process. In sther words,

let P be a process, let s be a(nonempty) finite sequence of =2.u {"E},

and let X £(3 u{‘l.'}). Then a 1a an action sequence of P iff
BQ.P —E2.5 3, and X is a ready mset of P 1ff X = {ﬂl Ja.P =, Q}.
But, as is well known, we are not concerned with the unobservable
action T in an action sequence, and we are also not concerned with
the unstable state at which a process can progress unobservably to

angther state.

We add two axioms to the system for defining observable action
sequence, where P é} Q means "F can he iransformed to Q under the

*
observable action sequence s (B€X)",

1.1 p

This axiom says that before P takes any action, P does not
change, Thue the empty sequence can be used to record the obsesrvable
action sequence which a process has taken before it evolves.

nizp—= g
NT

P===q
where s\T is obtainsd [rom s by cancelling ¥ . This rule implies
that an observable action sequence is simply obtained from an action

sequence by ignoring the unobgervable agtion "¢,
Now we can precisely define the stable state.

Let P be a process, P° dencte the ready set of P, and st{F) be

the stable-state-set of P, Then
0 -
2 =, {a] 302> a},

and st(P) = ,; [(s.ff)l Jo.rs g TF QO} .

Thie definition is exactly a formulization of the fact that (s,X)
is a stable state of P iff 8 is an observable action sequence of P,

and after doing s, P can be stabtly prepared to take the actions X.

We now ghow that the stable state of a process can be calculated

by structural formulas.

Lemma 1.
(1) STOP =2 Q iff 5=<> & @=5TOP
(2) (ete—»P) == Qiff s=<> & q = (cle—>P)
v 351. :a'—-c.e"\s,| & Pé Q.
(3) (c7x:sM—> P(x)) =22 Q iff s=<> & Q = (c2x:M —> P(x))
v 3 xeM,=,. @ =c.x“s1 & P(x) ; Q.
(4) (Por@)=2%R iff 8=<¢> &R = (P or Q)
v P=3R v q =38
(5) (erx:m—>p(x) | a2v:N — q(y)) = &
Aff 3=¢> & R = (e7x:M —> P(x) [} a27:8 — (y)
v dxed, ye, .. s =c.x%, & P(x) 5_—1}11
v s.=d..)l"'\s1 & qly) ;}R.
(6) P[d/J =5q irr Jp,e,. P E;=1‘~,. P& q P1[d/c]
8= 51[%] .

(1) (P‘uq) ==y & ifr se(AuB) & 3r,,q,- Pi%

k]

F,

&Q%Q‘l & R=(P1LLQ_I},

*
where (Au B} stands for the set of finite communieation
sequences along chammels in AvuB, and sf'4 for the sequence
obtained from s by cancelling the communications not along

chamnels in A,

(8) (chen b in P) —Zs@ iff 331,1?1. 9-—-s1\b&PB§1, P,

& Q= (chan b in P1),
where s\b is cobtained from 3 by cancelling the communic-
ations on channel b.

(9) (pofs:F).F)(5] === @ irf (P(ppli:F].ED)5) == @ (3eM),
provided s # <> or {QA(pplisf].PI) & o # (P(pp[1:8].F))[3]).
proof. We only give a part of the proof for parallelism.
(==p) Suppose (PLLQ) =E5 R,

The axioms from which this may be derived are (1,11) and (1.12).
Then case (1) B8 =¢> & R=(Pﬂq) by (1.11).

Let P, = F and @, = Q.

ol
Since <3[4 =<> and <38 =¢> 1>%P,h ana g 2=

by (1.11).

4,

Thus RHS of {7) holds.

case (2) 331. B = s,l\‘t & (P}{%Q) l) R by (1.12).

We prove RHS of (7) by induction on 8y

s
When &, = o, (PAAQ) —13 R can be derivea only by the rules
in {1.7).
Subcases:
() B=(plla) & P—“—)P1 & on(el) € (4-B) o {r}
AR

Let Q, = Q. Since «fB=<> and «fa = o\%T,

o
PA‘;- P, by {1.12) and Qﬂ)% by (1.11).

So RHS holds.

() r=(pla) & 2> q & on(d) € (3a)y {1

Let P_| = PF. Then RHS holda.

(e) r=(rlle,) & P25p & ¢—23q & onl«) € (anB).
AB

since alA = aIB = o = a\T, P‘=“-} P, and g ==Ly g

vy {1.12). So RES holds.

Now for s, = t e, let (PHQ} —t 3 7 andar—33,

Then t\T € (AuB)" and 3P,,q,. P tha P, & Q%%

& T = (ng%) by industion,

Frea (P2| IQQ) —= 3 R, repeating (a) (1) and {c), we can get P, and G
AB

1

such that

E, “L—_—“}P,I & Qgi—h_;q,‘ & R=(P1L|30_1).

Hence RHS holds,

Lemma 2.

(1) (stoR)® = g.

(@) (cte =2 P)° = feue.

(1) (e?x:M —> p(x))° = c.M,

(&) (Por)= {1}

(5) (em:M—>B{x) [] a%yiN —>g(3))° = c.Mu 4N

©) [%1° = %]

(M e = @ a8 v 2T (-B)u {Th
v ey,

vhere PorA stands for the set obtained from P° Yy including

only commnications on channels in A,

(8) (chanvin®)° = P°[%].
(9) ((upltad). B [300° = ((F(pe[i:8).F)[50)° (jen).,

proof. We give the proof only for (7).

el = f«

Since (PA.'!Q) =3 R can only be derived by the rules in {1.7), and

3rR. (PJHEQ) —“—)R} by definition,

{(a) (‘-_\P.l.Pi)P‘) & ch(at)e(A-B)u{t].

iff o€ F° T(A-n)u{t}. (by definition of F°).

(®) {Jo.0-2>q) & cn(e) € (B-1)u {T]-

irf ot e g M(B-a)y {t} (by definition of Q%)

(c) (I, P-2>P 2 @—>q) & ch(el) € (AnB)
iff we PPl(aas) & weg®T(ann,

i.e. e (P°ta ngQ®ln),

therefore (7) is proved.

Theorems.
2.1 at{STQP) = {(o.ﬁ)}.
2,2 st{ele —>P) = {(c >.[c.e})} %) {(c.e‘s,x)J (s,X) € st(?)}.
2,3 at{cto:M —> P{x)) = {(<>.C.M)} u {(c.x"s.x)f xeM & {s,X)e
st(p(x))].
2.4 ot{P or Q) = st{P) v st(q).
2.5 stlet:M —> P{x}[] a2y:8 —> Q(y))
= {(<>.C.Mu a.M)}
v{ex®s,x)] xex & (s0) ¢ at(P(x))}

u{(d-y"sﬁf” yER & (s,0) « st(ayD} .

2.6 st(P[d/r_.]) = at(P)[dn] .
2,7 at(PﬂaQ) = {_(s, (xfa nttB) u X[(8-B) v TR(B-2))
| se(a uB)* & (sfa,x) est(p)
& (eB,Y) cst(Q}} .
2.6 st(chan b in P) = {(s\b,x) | (s,%) € st(?) & X[(b} = ﬁ} .
2.3 Ysen, n. ot({pp[i:¥).F}3]} = ot ((F(ppli:N].F))L5]).

proof. We give the proofs of (2.7) mna (2.9).

(2.7) (PLLQ)% R iff ee(avB)” & I¢,.q,. p alas ’,

ta=tlq ar=(rlq,)
AB

(by Lemma 1 (7}).

and TE(p,)]0)° 11f v€R° & ©€Q° (by Lemma 2 (7)).
AB

But (s,k°) € st(puq) iff (pgq) =% R & ver’

(by def. of stable state)

hence (s,Ro) € St(P.!A‘BQ) iff +there exists P, and Q1 such that

1

» -~ ~
se{AvB) & p% P, & QBT=B>Q1 &tep1° & ':Q;Q‘]o

&R = (P1LLQ1),

tee. se(avB)’ & (fh, 2% e st(B) & (sfB, @,°) €st(a)
&R = (P1|]Q1) (by def. of stable state)
AB
Moreover R° = (Pd}IBQ,I)" = (P1°FA nQ1°fE) v P1°[‘(A-B) v q,° T (1)

since Lemma 2 (7) and 'IIE 7 a tZQ 0) , the proof is completed.
1 1

13

(2.9) Let us just take the case of single recursion;

Vo at(up.F) = s‘t(Fn(FP-F)) ’

whizh we prove [rom a stronger conclusion: pp.F apd ¥ (up.F) not
only have the same stable states, but also have the same unstable

etates.

Let ast{P) be the set of all atates (stable and unatable) of

process P.
ast(P) = .o {(S.Qo) lP == Q} .

Then we caen show:

() ast{pp.F) = ast(F(pp.F)) by Lemma 1 (9) and Lemma 2 (9); and

{v) for any process expression H{p} and processes P and Q,
{ast{P) = ast{Q)) => (ast{E(F)) = ast(B(Q))),

vhich cen be proved by routine induction on the etructure of H.

Thus ast{pp.F) = ast(P(pp.F)) by (a),

30 ast{F(pp.F)) = as‘c{Fz(pp.F)) by (b), and so on.

3. Calculus-

We now present the weaker calculus, named Calculus—, in which
livelcck is not taken into account. Calculus— is nearly the same as
that given in [1] , with the exception of the inference rule for
hiding. Recall that the asaertion which we use to specify the behaviour
of a process is a predicate with channel variables - "“channelname.past®
and "channpelname,ready™, which are intended to describe the stable

states.

13

Let F be a process, and let R be a channel predicate.
Then "P satiesfies R" means that all stable atates of P satisfy R.

Formally
(P sat B) = 5o W(s,X) est(P). R[B/pasa [x/read)] _— (1-)

vhere c.s 18 a message segquence obtained from a by cancelling all

commnications not on channel ¢, and then dropping channel name c

from the resulting sequence; and c,X is a message set cbtained from

X in the same way.

] X - :
In what follows R[éas'l} |-_/read)] ia abbreviated as Rs,X.

We list the inference rules of Calculus— followed by the proofs
of their consistency; i.e. every rule is a theorem under the

interpretation (I-) of (P eat R).

3.1 STOP
H()‘Fj = (STOP sat R)
proof, (STOP sat R} = \Jf(s,X) € st{P). Rs,X (def.)
= V(S.X)e{(-c.:a,ﬂ)} .Rs,X {2.1)
=R, 4
3.2 Output

Rc>EEZ:Iead)]¢ & (P sat R [e*c.past/c-past])

== (cle —> F) sat R

where R, [{%ready] 7 gtands for
R EZBSJ [_[?c.read:,] J:ﬁ/ready] .

20

proof. RES =W a,x) € at{cle —>P) . Re,X (def.)

=Ye,1) € ({(e} v {(ene™e,n) l (s,%) & st(P)]). Rs,x
(2.2)

= Ry fend) & V(s,X) € st(P). B, g x

~ . S‘t
= R<£{B}/c.ready]¢ & (P aat R [e crpe /p&st)

{aince L{c.e} = i_e] angd d.{c.e} =g

if 4 #£ ¢, and c.(e.e™s) = &te.s

and d.(c.e’\s) = d.s if dgec.)

33 Input

R()[H/cmady]ﬁ & Vxet. (P(x) sat ® [x“c.past/c-past])

=(c?x:M —> P(x}} sat &,

rrovided R does not contain x as a free variable.

procf. Omitted.

3.4 Union

(psat R) & (q sat R) == (P or q) sat R.

proof. rES ==Y{s,x) ¢ st(P or q). Rs,X (def.)
=i(s,x) e (st(P) u st(Q)). Rs,X (2.4)
(f{s,X)e st(P).Rs,X) & (¥(s,x) est(Q).Rs,X)

(P sat R) & (g sat R) (def.}

3.5 Alternation

RO[WC _readJ E‘f d.read;l p

x“c.past/
& VxeM. P{x) zat R c.past

"4, past
& Vyew. o(y) gat R [J’ = {‘J.paat-]
= (c?x:M—> P(x)]] d?y:R —> g(y)) eat R,

provided c#d and R does not contain x or y freely.

proof. Omiltted.

3.6 Renaming

(PLatRE“/d]) =(P[d/c:l sat R) ,

preovided that R does not mention ¢, and d does not occur in P,

proof. Omitted.

3,7 Parallelism
If S only mentions channel names of A
and R only mentions channel names of B,

and AnB = SLC1’ Cy sees cn} , then

(F sat §) & {Q sat R) %(P‘LLQ) sat

e

n
if.' c..ready = Xi n Yi

n
Xl‘/ YJ-_/
; X, Y. 8 ®i.ready " &R ci.ready

48

i=1

21

22
proof. LES ==Ws,X) ¢st(F). Sex & Y(s,1) eat(Q).RB',I. (def.)

—=¥sla,X) eat(P). s, x & V(iB,1) est(P)E_,

(since 5 and R

5, X = Zata,x s, ¥ = Parp,Y

by the assumptions of § and R)
= Vs, X, Y. (sFa,x) cat(®) & (sIB,1)est(q)
= S, x ¥ Roy
=3¥s, x, ¥, 2. (eT4,%) € 8t(?) & (s1B,1) « 5t{Q)
&2 = (xTanylB) u xT(A-B) v tl(B-n)
=> 55, 20xF(aaB) & Ba, 2.7 (4nB)
(simce (2 u xP(anBYla = xta, (Zurf(aeB))T2 = tiB
end S, =5, xyp 3¢ B y=T, ytp)
= ¥a,x,7,2. (sFA,X) €et(P) & (stB,¥) est(qQ)
& 2 = (xTa » ¥YUB) w XT(a-B) o YT(B-A)

n X,
= 3% s[Vci.ready—_l 5,2
iz

Y.
1,
& R[/Ci.ready] 8,2

n
f (ci.ready = xin‘[i) 6,2

i=1

(1et Xi = xr{ci‘l(and ¥, = Yr(cj} , 1=1,2,...,1n)

— &ES (2.7)

23

5.8 BHiding y
(P sat R) =% (chan b in P) gat Jb.past, R [/b.rea.dg

Note. This proof rule is simpler than the correspending one in [1].
This is because we ignore livelock here, so infinite chatter on the

hidden channel b is allowed in this rule.

proof. [P sat R) = W(e,X) €st(F). Rs,I (def.)
= V(s,x) € 5t{P). Ju.past. RB,X (let b.past = b.s)
=> V(s.x) € at(P),0,. &, = b & X[{6} =9
= Hb-Pa&t-R[!D/b.read:r] 5. X

(since c.8 = c,5, provided ¢ £ b)

1

—> &u§ (2.8)

3.9 Recursion

Let R be an assertion with channel names {a,...,z y and let
3 s gtand for the length of the sequence s, Then we define RTn as
the same asgertion of R if only the first (n-1) communications are

considered:

An = ar (#ra,past + ..., +=kz_past > n) y B.

Thus Rro = true and R = Vn.Hrn are always true for any

asserticn R.

The inference rule for recursion is:
(Vpon. (V3en. pl3] sat B3] Tn) = (Wen. P(p)T5] sat B[1]}n+1))

=3 Vjex. (pplisN}.F)05] sat R(5] .

24

proof. We only prove the case of single recursion:

{(¥p.n. p sat Rln =3 F(p) sat Rlor1) =5 (pp.F sat R).

Since Rfo = true, {pp.F sat Blo) by the definitionm,

Then (F(pp.F) eat BF1) by the premiss (let p = pp.F and n=0).

Eence for any n (I‘n(pp.F) sat R'n) by repeated use of the premiss.

{2.9) shows that for any n S‘t(}lp.F) = St(Fn(}lp.F)), S0
(pr.F sat Bln) holds for any n. Thus (pp.F sat ¥n.2ln) by the

definttion and (pp.F gat R} follows from & = Vn.Eln.

Beside the rules (3.1)=(3.9}, of course, we need the familiar

inference rule:

3,10 Consequence

If (R %S) is a theorem, then so is

(P sat A) = (P sat 5).
jroof. COmitted; it follows directly from the definitien.
The inference rules presented here are more complete than those

in [1], in the sense that more expressible trutha can be proved.

For exampls, the unprovable propeaition of [1]
(chan b in pp.(p!0 —> p)) sat true

beccmes provable now.

But, mesnwhile, for any assertion R
(chan ® in pp.(b!0 —¥ p}) sat R
can unforiunately also te proved. BSince
pp.{b20 —> p) sat b.ready £ ¢
can be derived by (recursion), then

{chan b in pp. (b10—> p)) sat § # ¢ by (niding).

HBence

(chan b in pp. (bIO — p)) sat R by {consequence).

In ather words, the process (ghan b in PP- (b0 —> p}) can meet

any aasertion under the interpretation (I-). BSo the theorem

P gat B deduced in Calculus— is only conditionally correct. The
trouble here is that (I-) does not deal with livelock, and

(chan b in pp. (bIC —> p)) is livelock everywhere. Thus its stable

state get is empty. That is why it can meet any assertion.

4. Liveness

We now take up the question of livelock, A process gets into a
livelock after some moment during its eveolution, if from this moment
the process may engage in an infinite seguence of internal transitions.

This concept can be precisely described in the model as follows.

Let P be a process, We first use trace(F) to denote all
peszitle action sequences of P {both finite and infinite action

SEQUBHCES) .

25

Iy
[

s#()&Vié{o..#s} Jpi. Po=F &

(s)i+1
(1 £ s =>F, —_— piﬂ)} .

trace(P) = ar {s

where (s)i stands for the ith action of s and ¥ s =90 if s is

an 1nfinite sequence.

Let s be a finite action sequence, and let T,@ atand for an
infinite sequence of T . Then st ¢ trace(P) means that P can take
actions of 5 and after deing s F can engage in an infinite internal
transition asequence, i.e. P is livelocked after the mement of just

finishing s. So if we use live{P) to mean "P is livelock-free", then
* o
live(P) = ar Esc(Zu{t}) . sC € trace(P) .

Suppose P =2 Q and ‘cooc trace(Q). This implies that P cen
reach a state by doing s which will never get stable by ths internal
transitions of P, even if we are sc patient as to wait for an
arbitrarily long time before further communication with it. Sc this

is a state which is unreliable and cannot recover by itself.

But if P is live and P —23 g, then 'Cw'é trace{q) by the
definition of live(P). Thus even if P enters into an unstable state,
sooner or later it will be stable again, and perhaps sooner, due to the
bigh speed of intermnal transition. In other words, if P is live, then
the communication with its environment can be expected to go on

reliably at any time. This reasoning is formalized as follows,
Theorem. Let P be a pracess and live{P). Then

Ve (3p.p=23P) =3 Ja. P, 2> q & (s, est(p).

ol ..
proef. Suppose P % P;. Since 3T € trace(P) by live(F}, there
n
must exist n and Q such that F, I Q and tZQO. Thus

(5,9°) € et(F) from the delfinition of st{F),

As a preparation I.r Calculust we need rules to build livelock-free

processes,

The fact that all operators except the hiding and recursion preserve liveness

can be directly proved from the definition of liveness.

Theorems
4,1 live(STOF)
4.2 live(cle —>P) = 1live(P)
4.3 live(c?x:M —> P(x)) == ¥YreM, live(P(x))
4.4 live(P cr Q) = live(P) & live(q)
4.5 lve(c?x:M —3 B(x) [a2y:8 — q(y))
= VxeM, Live(P(x)) & VyeN. Llive(q(y))
4.6 live(P[d/c]) = live(P)
4.7 live(P} & live(q) =3 11ve(P“q)

prools, Omitted.

The hiding operatcr can preserve livepess under a certain
asgumption = the original process will not be involved in infinite

consecutive communications on the hidden channel.
Let P be a process and let b be a channel.

Then

live, (F) = ;1 Js. P23 ¢ & Vi3..ti. oh(t,) ¢ {b,-r. &

A A
oy oy een € trace(q).

28

Theoren

4.8 live, (P} ==% Llive(chan b in P)

procf, Since sT - e trace(chan b in P)

iff there exists 51"-11’;(2'\ «es in trace (P) such that

51[‘/1,] = s and ¥i. ch(-Li)g{P;t}.

We now must face the fact that a process defined by recursion
is not always live. Can we find a syntactic restriction on recursion
which can guarantee the livenesa of the defined procees? Ths
answer is posltive. BHowever there is a variety of such restrictions,

ard wve prefer here to present a simple but useful one.
Let us first see some examples,

(a] F(p) = chan v in (ble —>p).

Since (ble —> PP'F) ii)Pp.F vy (1.2),
chan b in {ble = pp.F) ~=—> (chan b in pp.F) by (1.8).
Then pp.F —=3> (chan b in }Jp.F) vy (1.9).

Thus {chan b in pp.F) ~L % chap b in (chan b in pp.F)

and (chon b in ... chan b in pp.F) —=> (ghan b in ... chea b in pp.F)
L

n n11
by (1.8).
So yp.F is not live.

The reason for its livelock is obvious, bacause up.F has not
got any external channel. The anly possible transition of pp.F ia

internal, so if it is to progress any longer, it must bs livelocked.

Moreover why and how should we be concerned with a process which

cannot communicate with its environment?

Thus it is suggested that the recursion which defines a live
process must have extermal channels., Let F be a recursion (single
or mutual)., Then the external channels of F are channels specifically

for external communications, never hidden or renamed in F.

¢ does not cccur in the hiding operator of F as

xch(F) = af {c

a hidden channel, nor in the renaming cperator

of F as a renamed chamel] .

(v} F(p) = (cle—>p)oryp

In this recursion, F has an external chaennel c. But PP.F is still
not live. Since F{pp.F) —=— pp.F by (1.4), then

pr.F —— pp.P by (1.9).

The trouble here is that one of the occurrences of p in F is

- not guarded by external channel c.

Hence the restrietion has to be sirengthened by the further
requirement that the recursion which we use to define process must

be externaily guarded. Precisely for single recursion p & F(p), we

say that F{p) is externally guarded iff every occurrence of p in F(p)
has an enclosing external guard, i.e. there exists G, Hi, and g;
such that

F(p) = 6(g, — B, {p)s ..., g, —>E_(p}),

where every g is an input or output command on channel of xch(F).

30

The definition of the extermally guerded mutual recursion can

be given in the following way.

FoT recursion p[i:ha AF(p), we say that p[f] 1s not externally
guarded in F{p)[3] , if p[i] oceurs in F{p)[j) without an enclosing

guard of xch{F).

Then F(p} is externally guarded iff there is no infinite

Sequence p[i.'], p[ia-l, +sa 5 Buch that for each j, p[in] ia

not externally guarded in F(p)[ij]. (cfe po 72, [4]).

We end this section by giving a thecrem that the process defined
by an externally guarded recursiom is live. The proof of the theorem
15 only shown for single recursion. It holds for mutual recursion as

well, dbut is more tediocus.

We first need four lemmas, They are mainly proved by structural
inducticn on the process expression, so we will not give the details

of the proofe.
Let 3 2 F(p) de a single recursion concerned.

lemma 1. For any natural number n and expressicn H,

trace(H(}Jp.F)) = trace (H(Fn().lp.F})).

il

preof. (1) trace(pp.F) = trace(F(up.F}) by the definition of trace

and (1.9)
(2) By structural induction on expressions, we can prove

¥ p,q,H. (trace(p) = trace(q)) => (trace(H(p)) = trace(d(q)}}).

Then the lemma follows (1) and (2) directly.

Lemma 2. If F(p) is externally guarded, then
-d,
F(p) —=>8(p) irr ®aq) —*>8(q) ,

for any p, q, & and H.

proof. Since F(p} is externally guarded, F(p) must ba of the form of
5(81 éﬂ‘l(p). ey gn—-éﬁn(p)), where & (i=1, +.., §n) are
guards, Then by making an induction on the structure of G, the

lemma can be proved,

Let tnch(F) be the set of internal channels of F(p), i.e.

inch{F) = af {c

c occurs in a hiding operator of F as a hidden

channel or in a renaming operator of F as a

renamed channel }

'S
Lemma 3. If F(p) is externally guarded and F(p) ——>H(p), then
inch{F) 2 inch(H).

proof. By the routine induction on the structure of G too,

vhere F(p) = C-(g1 —)H1(p), ceey B Hn{p)).

One of the cercllaries of this lemma which we shall use in the

proof of the desired thecrem is that:
*4 %2 =l n v
if B (p) — > H(p) —> ... = >E{p} and Vi (E, (p)

is externally guarded), then Hn(Ho(p)) is externally guarded,

Tris i5 because the guards of every occurrence of p in Hn(Ho{p))
are not less than the guards of the corresponding occurrence of p in
Ro(p), and inch(Hn) c inch(Ho) by the lemma, Thus we can prove the

conclusion from the hypothesis: Hu(p) is externally guarded.

31

3

Lemma 4, If
(1) F(p) —=>=(p) ,
(2) P(p) is externally guarded,

and {3) H(p) is externally unguarded,
then olf T,

preof, Roughly speaking, since F{p) is externally guarded, while

H{p) is not, an external communication must bs referred.

The rigocrcus preoefl can be given by induction on the transition

rules (1.1)~(1.8).
We prove the theorem {tsell now,

Theoren 4.9 {single recursion)
If p €F(p) is externally guarded,
and for any process p, live(p) == live(F(p}),
then live(pp.F).

proof. Suppose { 41A,12A ...) e trace(pp.F). Let us prove that

~

= o]
2 ...) cannct take T as ite tail.

(CI!
Py lemma 1, { et:d;...}e trace{F(pp.F)). Say
of ol of
F(pp.F) —1} H1()JP.F) —2> B, (pp.F) — ...

If all Hi(p) is guarded, then, by lemma 2, for any p

(e(,?u(; «ou)€ trace(F(p)). So (o{?ot; ..) €trace(F(STOFR)).

But live(F(STOF)) by live(STCP) and live(p) = live{F(p)},

A A
therefore (u-t,l oy +.x) is as required.

If Jk. (Yick, Hi(p) is externally guarded)} & (Hk(p) is not

externally guarded}, then o, £ T by lemua 4.

Furthermore “
7 (p) i}'0511(1'(13)) ﬁ> —kwk(r(p)) (by lemma 2)

Hi(F(p)) (i€ X) are guarded (by lemma 3)

end (e, s eee)etrace(® (Kpp.F))) (by lemma 1).

o v o
sy A (F(peE)) =2 6, (pp.F) —5 G, (ppor) B L.

oL = o wl
It fmplies Fa(Pp.F) —ly G, (pp.F) —ﬁ%Gz(Pp.F) il

Then repeating the previous reasoning, we can get cﬂm (m>k) such

that <, £ T .

Hence in this way we ¢an prove that ¥n dm, m>n & * # Ty

~on o
i.e. (921 ol «v.} cannot take T as its tail.

The version of Theorem 4.9 for mutual recursion should be

Theorem 4.9 (mutuval recursion).

1f 7 i:N] A F(p) is externally guarded,

and (VieN. live(p[3])) => (Vien. 1ive(#(p)L51)},
then YjeN, live{(Pp[i:NJ.F)[.ﬂ).

We are now in a position to modify caleulus- into celeulus+, which

takes liveness into account.

9. Calculus+
In this caleulus (P sat R) has a stronger interpretation:

(P eat R) =, live(F) & Y (s,X) ¢ st(F) . By x eee (1) .

Under this interpretation, for any assertion R (P sat R) implies
live (P), and for no process P (P sat false) holds. It is beeause
Theorem in 4 says that any livelock-free process after doing any
obgervable action sequence can get into a stable state. Meanwhile the
empty sequence <% is an observable action sequence of every process
by (1.11). Thus the stable-state-set of a live procesas ig always
nonempty., Hence (P sat false) cannot hold for any P by its inter-

pretation.

So the calculue consistent with this interpretation can be
expected to preve the liveness of process, and reject the ridiculous

formula (P gat falae) as well.

Calculus+ is obtained from Calculus- by replacing (4.8) and (4.9)
by the following rules (5.8) and (5.9}. But all the proofs for the
consiatency of the rules must use the interpretation (I,) instead.

Pere we cnly list {5.8) and (5.9) with their consistency proofs.

5.8 Hiding

Let I be a total function from message strings to natural
numbers, and let {c, ey Z be a finite set of channel names.
Then

(P sat (R & a¥ b.past £ f(c.paat, ..., z.past)))
=3 ({chan ® in P) sat Jb.past.R [ﬁ/b_ready]) .

proof. The only thing which we need to prove, given (3.8), is that:
‘P sat #b.past € f{c.past, ..., z.past)
= 1live(chan b in F).
By (4.8), it will be enough for us to show
P gat #b.past € f(c.past, ..., z.past)
= liveb(P).
This last proposition can be proved by

LHS =5 Yse(3 u{‘t‘})*. s €trace(E) % (#v.s € r(c.s, vv., 2.8))

(by Theorem in 4)

= live, (B) (by def, of live,(P)).

5.% Recursion
If p[i:N] & F(p) is externally guarded,
then (Vp,n. (VjeN. p[i] sat R[j]‘-n) = (¥jen. F{p)(;i) saz H[‘]‘]Tnﬂ))

= V. (Pp[izN] Fr[a) sas rls) .

proof. We only need, by (3.9), to prove that

Vj(N.live((Fp[i:N] .F)[j]) is true unger these antecedente.

By (4.9), this can be reduced to showing
(¥jeN, 11ve(plf)) == (¥jeN. live(F(p)[3])).

This proposition is true, because Rfj‘l T0 = true and
by the definition of P sat R, live(plj]) == (p[j] sat true),
Thas

(V3eN. Live(p(j])) == (¥sen. plsd sat rU;1T,)

= (Yjen. F(p)(5] sat nl1 o)

Id

(by the antecedent)

= VY. live(F(p)[;1)

(by the def. of (F sat R)}}.

5,10 Consequence

If R ==Y §, then
(P sat R) ===d (P gat).

6. Discusaion

We have presented an operational model for two wvariants of
Hoare's calculus, btut we still do not lmow if there is a model for
Hoare's calculus itself, The difficulty of finding that model
geems to arige from that the predicate of past and ready variables is
not able to describe the liveness of process, while the proof rule
for recursionm in Hoare's calculus has no antecedent %o guarantee the
liveness of the process concerned. 8c in the desired nodel an infinite
internal transition seguence should always take a "stable” process as
ita limit. Omne of the possible candidates of that model can be found

in [57, tut unfortunately it rejects infinite hiding.

Acknowledgements

This paper results from the author's efforts to understand the
caleulus of Teny Hpare. It is alwmest a cooperative work with him.
The cperational model is strongly influenced by Robin Milner’s
elegant work on communicating systems. Finally I am grateful for
fruitful discussicns with and suggestions from, Steve Brookes,

Bill Roscoe, Cliff Jones and Ernst-Rlidiger Olderog.

37

33

Relerences

]

(1]

bl

C.A.R. Hoare & Calculus for Total Correctness of Communicating
Processes, Science of Computer Programming 1

(1981) 45-72.

Zhcu Chaochen and C.A.R. Hoare Partial Correctrness of
Communicating Sequential Processes, Proc, of the
Second Internetional Conference on Diatrituted

Computing System, April 1581,

Zhou Chaachen and C.A.R. Hoare Partial Correctneass of
Comminication Protocols, Protocel Testing -

towards Proving?, INWG/NPL Workshop. May 1381,

Robin Milner A Calculus of Communicating Systems, Vol. 92

LNCS, 1980

C.A.R. Hoare, S.D, Brookes and A.W. Roacoe A Theory cof
Communiceting Sequential Processes, Technical

Monograph PRG-16, May 1981.

OXFORD WLINIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS

MARCH 1982

This 15 a series o! technical monographs on 1opics 0 1he held of computation.
Coples may beé obtaned Irom the Programming Research Group. (Technical
Monographs). 45 Banbury RAoad. Oxlord. OX2 6PE. England. Prices include surface
postage.

PRG-2 Dana Scott
CGutiine of & Mathematical Theory of Computation

rAG- 3 Dana Scott
The Lamice o! Fiow QOiagrams

PRG35 Dana Scou
Data Trpes as Laltices

PRG-6 lana Scolt and Christopher Sirachey
Toward & Mathamaticgl Semantics for Computer Langueges

PRG-7 Dana Scort
Continuvous Latltices

PRG-8 Joseph Stoy and Chnstopher Sirachey
Q86 - an Eaperimental Oparating System
for a Small Compular

PRG-9 Christopher Stirachey ang Joseph Stoy
Tha Text of QS5FPub

PRG-10 Chrisiopher Sirgchey
The Vvarreties of Programming Language

PRG-11 Chrislgpher Strachey and Christopher P Wadsworth
Continualions: A Mathamatical Semantics
for Handling Full Jumps

PRG-12 Pegter Mosses
The Mathematical Semantics of Algol 60

PRG-13 Robert Miine
The Formai Semantics of Computer Languages
and their impiementations

PRG-14 Shan S. Kuo. Michasl H. Linck ang Sohrab Saadat
A Guwde to Commupicaling Sequential Processes

PRG-15 Joseph Stoy
The Congruence of Twao Programming Language Definitlons

PRG-16 C. & R. Hoare. S D Brookes and A. W. Hoscoe
A Theory of Communicating Sequentigl Processes

PRG-17 Andrew P Black
ARepoft an the Programming Notation JR

PRAG- 13

PRG-19

PRAG-20

PRG-21

PRG-Z22

PRG-23

PRG-24

PRG-235

PRG-26

Elizabelh Fielding
The Specificatior af Abstract Mappings
and their impiementation as BY-trees

Dana Scon
iectures an a Mathematical Theory of Computation

Znou Chao Chen and C. A. R. Hoare
Partial Correctness of Communrcating Processes
and Protocols

Bernarg Sulnn
Formal! Speciticatron ot a Display Editor

C. A, R Hoare
A Model! tor Communicating Sequential Processes

C A. R Hoare
A Calcuius of Total Correctness
for Communicating Frocesses

Bernargd Sutrin
Reading Formal Specilications

G B. Jones
Davelopmant Methods for Computer Praograms
tncluding a Nation of Interference

Zhou Chao Chen
The Consistancy of the Celculus of Tatg! Correctness
tor Communicating Processes

