
Tee,"mica! ""orGgr8oh PRG- 29

June 1982

JXforo university Ccmputing
rrogrammlr~ ~R~parcn Group
45 :3anbuty ,~030

JxForo I]X;; 5P:

SPE:rFrCAT:ONS,

PROGRAMS

''0

rr'lPl[ME",TA. TrONS

5y

:.'~.". HOARE:

.,,'" _.... ,--".----_.......'.........­
A:>C ~:,,) -.~;;'~.; ..~ J _".• '. D.:·~TE •

------~ f25 fEB 2002
~ _ __

i :~ -... -···'r~:----"Il
t

L-3DO~atory ~ <' - ..:
(\ r-" ~ '-t !i OXF0f4t.T)

I
j---­
I

I II~IIIIIIIIII
i 303387038·
1

~

m N n I o > " m

Summary

A speciFication is a predicate describing all observations permitted

of the system specified. Specifications of complex systems can be

constructed from specifications of their components by connective9

defined in the predicate calculus. A program is just a predicate

expressed using only a restricted subset of suCh connectives, codified as

a programming language. An implementatiun of the programming language is a

mechanism that will accept any predicate of the language, and then behave

as described by it. Given a prop0.ged model of an implementation it is

desirable to prove that every program expressible in the language 1.9

Consistent and complete with respect to the model; furthermore, there

should be no program Which logically implies all the others. These points

are illustrated by the design of a very simpla programfhing language,

describing the interactiuns of Cuncut't'ent processes. It is suggested that

the design of a realistic programming language rEquires, and is worthy of,

the skills of a methematical logician.

Contents

Page

1.	 Introduction

2.	 Interacting Processes

2.1 No action

2.2 Arbitrary Action

2.3 First action

2.4 Recursion

2.5 Alternatives

2.5 Concurrency

3.	 Example: the Dining Philosophers

3,1 Alphabets

3.2 Behaviour

3.~ DeadlocU

3.4 Deadlock averted

4.	 Mathematical Properties

4.1 Algebraic properties

4.2 Ordering properties

4.3 Continuity

4.4 Unique solutions

5.	 Pco~r8mming

5.1 Programming methodology

5.2 Top-oown development

5.J Introduction of recursion

6.	 Implementation

6.~ Consistency

6.2 ~ompleteness

6.J The excluded miracle

6.4 ComputaDility

6.5 Continuity again

7.	 Conclusion

ACKnolo/lBdgelllent9

3

4

4

5

5

6

7

9

9

10

11

11

12

12

14

15

17

18

19

19

20

21

22

23

24

26

27

28

29

1.

SPECIfICATIONS, PROGRAMS

AND IMPLEMENTATIONS

1. Introduction

A variable in a formula of applied mathematics gtands for some

directly or indirectlY observable value. The correspondence between the

variable C!lnd the observation must be established informally by 913me such

phrase as "Let!: stand for the position (in metres) of a body at tillle ~

(measured in secondS), and let::::. stand for its velocity (in metres per

second)".

"let coin stand for the number of coins inserted into a vending machine

up to a certain moment, and lqt ehoc stand for the number of chocolates

it has dispensed".

,he alphaoet of a system is the set or variables denoting tno.5e

ot;ser'Jations "'hich are of current inta[e~t. The selection of 3 useel

and relevant alphabet of observations is one of the primar'i character­

istics of a successful scientifi~ theory. A soec~fi~ation of a syste~ S

is definea by 1ts alphabet ~5 together with a preaicate, usually

c'Jntaining V3ri301es from ..(5, whiCh describes all poss1ble observations

ItInic'l may be made of the systam. An ob3ervation ascribas a value to

eacn variaole in the alphabet; a specification describes the observation

if the predicate evaluates to true ~hen each variable is replaced by Lts

ascribed value. We use 5 itself to stand for the predicate.

2.

[xamp 113 1.

01..	 LINEAR 9­ tx,t,,}

UN£AR ~ '~t~4~x vxt-J &: V 3

LINEAR speciFies a body that move::! at a constant speed of J metres per

5Bcond between time 1 and time 4. Some obsarvations described by this

speciFicetion are tabulated belollJ:

x t ,

0 1 3

3 2 3

5 3 3

12 0 17

" 5 12

0 5 0

The First three lin'3s make the conseQuant of the spec~Fication true, and

the last three make the antecedent false. When t is outside the spec~fied

range, the speciFication is indeterminate: it speciFies not'1ing at all

about the values of x and v.

Example 2.

PROF IT ~ (ehoc ~ coin)

BUFFER1 ~ (coin :;.. ChoC+')

VM1 ,;> PROFIT &: BurFERl

..)... VMl tI::Oin.ChQC}

The predicate PROFIT specifies that a vending machine shall De profitable

in the sense that it never dispenses more ct1ocolates than there have been

c::lins inserted. BUFFER1 states that tr,e machine ",ill buFFer only one

coin, 50 it is impossible to insert tlLlO cOIns and then extract two

chocolates. Some possible observations are:

coin

o

I choc

o

o

l

1) I 12

8y a bold abstraction, WB nol.lJ say that a system is (LIly defined

by the strongest specification which Describes its every possible

behaviour. Thus two systems are regarded as the same if their alp.labet~

are the same, and their speciFications are logically 8Quivslent. T/"lis is

reasonatle, For r.::hen there can be no observation of one of them wh~ch is

r1Dt a15c a P0099.1818 oOseruation of the other, and by the principle of the

identity of indiscernibles, they should be regarded as the same.

Let S be an arbitrary speciflcation, and let A be the stronge~t

sp8c~fication o~ some actual system. and suppose that A logically implies

S. This means that every otlservation described by A is also described by

S. Thus we can claim 'tt-at A is ~~ implBmentation of the spec~fi­

cation S. The suggestion of this snd the prevJ.ous paragraph is that

questions of equivalence and correctness of systems can be treated .oil thin

Ct"1e traoitional rramaworK of In5tnlilmaticel logic without requiring any

specialised axioms or proof rules. This suggestion is exolored in :ne

next section by definJ.ng predicates which describe the benaviour of

systems cOmPOSed from interacting concurrent ~roce5ses.

2. rnleractlnq Processes

We are interested in systems which engage in certain observable;

events, such as the ~nsertion of coins i~to a vending machine, or

.."traction of chocolates. ror eacn ellent individually. J.t is possible to

record how many times that event has occurred up to any given moment.

The alphaoet of a Drocess contains variaoles standing for: these CJUnts.

ror examplo. the alpnab~t of a vendJ.ng machine may be declared as

~Vl'1i ~ (coin,Chae}

4.

2. , No action

Let A be the alphabet la,b,c, ...}

We define the predicate

lERO ~ (a b :: C = '0. 0)
A

oJ. ZERO g A

A

This is the !!Ipecification of a rather useless system, which never

dOBS anything at all. so thet its e ent counts remain fore\lQr zero.

Example VI'IO Q. lERO {coin,CI'10c}

This describes the behaviour of 11 broken vending machine. I ts alphabet

indicates that it is equipped lIIith tile pllysical organs for accepting

eDina and 'dispensing chocolates, but its predicate state!! th.,.t it never

uses them,

2.2 Arbitralry action

We define the predicate

CHAO\ ~ true

",{CHAO\ ~ A

This i9 a specification lIIhich places no constraint whatsoever on

the behaviour of tha specified system. [....ary system is correct in

accordance lIith this specification.

Example

VI"IBR ~
CHAOS [COin,ChOC}

This machine is even more badly broken than Vl'lO; ~t accepts coins and

dispenses chocolatee lolith gay abandon.

2.3	 First action

let a E A

let P (a) be a predicate wit h alp habet A

(a;p(a))~Z[ROA v a>O&:P(a-1)

This 9peciFies a system which first engages in the event counted

Dy the varlable "a" I and then behaves as spscified by P. On the fir-st

oDservation. all th~ counts are zero; on all subsequent obger-vations,

the count of "a" is positive; furthermore, on reducing the count of

"a" by one, we get an Observation described by P.

Example

Recall thaI: VI'11 9- (cnoc ~ coin ~ choc + .,)

•• (coin; choc; V1'11) 4=;> (coin = choc = a

v coin > O&:(coin - 1 = chac = a
" choc > 0 &: cnac - 1 £. coin - , "choc))

~V["1

where \lie allow; to be rlght assocJ.ative.

Thus Vl"'1 specifies a machJ.ne that first accept9 a coin. then jlS­

penses a chocolate, after which it behaves again like \/1'1'. Such a

machine will alternately -'l.ccept coins and dispense chocolates for- ~s

long as there is a"'y call upon it to do so.

2.4	 Recursion

Let P be the ,.,ame of a oredicate, and let F(P) be an e:olpress.l.o~

denoting a predicate, and possibly containlng occurrences of p.

Furthermore, let

o(p, "'-F(P)

Thus the equation

p ~ r (p)

may Ge regarded as a recuTsive definil:ion of the predicate named by P.

Problems of e:olistence a,.,d uniaueness of this solution are postponed to

sect.lon i.I

6.

Example

p ~ (coin; choc; p)

cJ.P ~ (:01n. ChOC}

~1El already know that a possible solution of this equation 19:

P = VM' = (ehoe ~ coin "ehoe + 1)

In rect, this is the only solution. as will be shollJn in section 4.4.

2.5 Alt8~~tives

Let P and 0 be speci r"ications, ... i th

cJ..p :;; oi.Q

We stipulate that ol(p v Q)
 '" P.

(p v Q) specifies a system which lUill behave like P 0'[' like Q (or

like both), The choica betll/een the alternatives is not determined; it

may be mada by the environment lIJithin which this system is embedded, as

will be described i" 2.6.

Example f.

P £!o (chae; coin; P v coi,,; choe; P)

This describes a vending machine IoIhich allows its customer to sample a

chocolate. and trusts him to pay arter. The solution to the defining

equation is:

P = (ehoc $ count+1 ~ choc + 2)

Not surprisin9ly, the customer should pay fOT the privilege of usin9 such

a machine. ,,!I in the next example.

Example 2.

VM2 9 coin; P

~ choc ~ coin ~ choc + 2

This machine allollls its customer to insert up to tlllO coins before ext Tact­

ing up to tliJO chocolate.!!.

Example J.

CUST Q. (choc; rejoice; CUST

"" coin; choc; CUST

v kissllIife; CUST)

This describes the behaviour of a customer for the vending machil1e. He

ie, of course, ~ery willing to take a chocolate ~ithout paying, after

which he will greatly rejoice. He is al!lo ~illing to ki.ss hi~ llIife,

and lIlhe:her he does So depends on ~hether she too ia willing. He is

also "-lilling to pay for his chocolate in the normel way. The umque

solution of the equation is

CUST '" (choc ~ coin ... rejoice ... 1 ~ choc ... 2 &: rejoice ~ choc)

Note that the specification of the custome: does not prevent him

from engaging in the fcllo"-ling sequences of action!ll, !lince in each

Case. it correctly describes tne values of the cQunto before and after

each event of the sequence:

coin, kis5wife, choc, •.••

choc, rejoice, coin, coin, choc

The reason for these poss~uly wne~pected sequences is that our

specification language is too weak to cescribe such constraints as:

"he caf1' t kiss his wife between ~rsarting a coin and extracLng

a chocolate".

"he never inserts two coins in a ro~".

The weakness of the specificat:on language is a daliberate decision

that we do not iJJish to obsi;!rve the exact relative timing of events;

thus we allow events to occur "slmultaneously", in the sense that ~ny

attempt to place them in order will lead to a non-determinate resua.

30me furthor conseouences of t1is dec~sion w~ll become more aPr~~~,t

later.

2.6 Concurrency

Let P and Q be specifications witn oisjoint alphabets, i.e.,

""""'"=[1
:.I.e then stipulat~ that

cJ.(p &.]) '" oiP uoiC.

(p &. .~) describes a system composed from the two subsystems seoaretaly

described by ~ and J. as they evolve together. Each event that OCC'Jr9

ie 1('1 the alpnaClet of only one of the components; and its occurrence

requires participation of that component, leaving the other component

unaffected. Each observation of the completa system splits uniquely

into two parts; the values of variables in ooJ,.P are descrIbed by P and

are not mentioned by Q; the value of variables in olQ are described by

Q and are not mentioned in P. Thus the full observation is exactly

described by (P!Q).

Now let us relax the restriction of disjointness of alphabets. We

stipulate tnat each event in the intersection of the two alphabets

requires sill1ultaneous participation of both subsystams deatritled by p

and Q. Thus the count of events recorded by one subsystem iTlust al'<Jays

be the same as that recorded for the other subsystem; so each possible

value of thIS count must be described by both P and (], and therefore by

(P&a) •

Example 1.

\/M1 £:l: PROF:T &- BUFFERl

A simple vending machine can be constructed from tiliO concur,ent 3ubsystems,

one of whitn is profitable and the other refuses to allow insertion of

a second CClln until the first e/",ocolate has been dispensed. Eacl"1 event

that occurs is an event in the life of both subsystems.

Example 2.

\1M2 &: CUST ~ er.oc ~ coin ~ cnoc + ;:

a el"1oc ~ coin + rejoice + 1 ~ ehoe + 2

a rejoice "- choc

~ rejoice o &- choc "- coin ~choc + 1

" reJoice '" choe ~ coin

In this system, the customer can still kiss his iIIife at any time - that. is

of no conCf:it:l to the vending machine. T1",e customer never a1lol.ol8 t.he '"lumbar

of coins inserted to reach (ChOC + 2) and the vending machine never a110'<JS

the number of ehocs to exceed the number of coins inserc:eo. It 'llay

therefore seem surprising that the customer snoulC! everave cause to

reJoice. This can happen '<Jhen the events coin and choe occur simultaneously;

the vending nacnire oehaves as if the coin drooped first;~ut tnB

customer thinks that choe iIIas dispensed First and rejoices prematurely.

g.

if we wish to exclude such strange happenings, we shall have to strengthen

our language for specifications, or USB a more complex composition

operator tha'" 6: these topics ~ill be pursued in later seetion.e

3. Example: till;! DinJ.ng Philosophers

In ancient times, a wealthy philanthropist endowed a College to

accommodate fi e eminent philosophers. Each philosopher had a room in

which he c:ould engage in his professional activity of thinkingj !;hare

was also a common dining room, furnished UJith a circular tabla, Surrounded

by riue chairs, each labelled by the name of the philosopher who wae to

sit in it. The names of the philosophers were PhilO' Phil" Phil Phil),
2

,

Phil and they wsrs disposed J.n this ardsr anticlocklijise round the table. a
To the left of each philosopher there was laid a goldan fork, and in the

centre a large bowl of spaghetti. lijhich was constantly replenished.

A phi.losopher was expected to spend most of his time thinking; but

\.\JheM he felt hungry, he went to the dinJ.Mg room, sat down in his awn

chair, picked UD his O\.\Jn fork on his left, and plunged it into the

spaghetti, But such is the taMgled nature of spaghetti that a second fork

is required to carry it to the mouth. The philosopher therefore had also

to pick up the fork on his right. Wl1en he \.\Jas finisl1ed he would put down

ooth his forkS, get up from his chair, and continue thinking. Of course,

a fork can be usp.d oy oMly one philosopher at a time. If the other

philosopher wants it, he just has to lijait until the fork is availabla

again.

J.1 Alphabets

lile shall nOI... construct a mathematical model of this system. Fast

we must select the relevant sots of events. for Phil., the sat i9 aefined:,
alDhil. [i sits down, i gets up.,

i picks up fork i, i picks up fOrk (i G 1).

i puts dO\.\Jn fork J., i puts down fork (i G)')
]

where (£) is addition modulo 5.

Note that the alphabets of the philOSOphers are mutually disjolnt.

There is no event in \&Ihich they can agree to partJ.cipate joiMtly, .'IC

there J.s no way whatsoever J.n \&IhLCh tney can J.nteract or communicate with

aach other - a realistic reflection of ':.he beha,'iour of ;)hilosophers of

those days.

10.

The other actors in our little drama are the five forks" each of which

bears the same number as the philosopher who ollJns it. A fork is picked

up and put dOllln either by this philosopher, or by his neighbour on the

other side. Its alphabet is defined

""- Fork. ~ {i picks up fork i, (i 81) picks up fot'k i,

" i puts dmm Fork i, (iS1) puts dOllJn fork i)
where ~ denotes subtraction modulo 5.

Thus eaCh event except sitting down end getting up requires particl ­

pation of exactly two adjacent actors, a philosopher and a Fork.

3.2 8eha~iour

Apart From thinking and eating which we halle chosen to ignore, the

life of eech philosopher is described:

Phil oG (i sitsdown; i picksup fork i; i picks up fork (i (£)1);
i

i puts down fork 1; i puts down Fork (i (1); i gets up;

Phil)
i

~(i sitsdown ~ i picks up fork i ~

i plcks up fork ~ i puts down fork i
(i e') }

i puts down fork (i e 1); i gets up ~

(i sits do~n - 1))

The rJle of a ForK is a simple one; it is repeatedly picked up and

put down by one of its adjacent philosophers:

rork ~ (i picks up fork i; i puts down fork i; Fork
i i

v (i e 1) picks up Fork i; (i 12)') puts down fork i; Fork)
i

~(i e') picks up forK i : (i e 1) puts down fork 1

&: i picks up Fork i .) i puts dOllln fork i): ((i picks up fork i) - 1)

V i picks up fork i = i puts down Fork i

&: i 81 picks up fork i ~ (i61) puts down fork i ..) (((i (1) outs

do~n Pork i) - 1)

The Oera\l~our of the entire college of philosophers is si.moly l:he

conJunction of the bahal/iour of these components:

4 4
College ~ (&: Phil.) &: (&: Fork.)

i:O ~ i:O 1

3.3 Deadlock!

When this mathematical model had been constructed, it revBaled

a serious danger. Suppose all thE! philosophers get hungry et about

the samB tillle; they all sit dOloWnj they all pick up their Ololn fork!!;

and they all reach out for the other fork - which isn't there. In

this undignifisd situation, they lIjill all assuredly starve. Although

each actor is capable of further action, there is no action Which

any pair of them can agree to do next.

possible observation of this sed outcome is

4
&: i sitsdolljn i picks up fork i '"
 i""O

,
& &: i puts down fork i i puts dOlljn fork (i (1)

i""O

i picks wp fork (i B') i gets UP 136

This observation is described by the specification of the Colleglilj

bwt there is no way of adding wnity to just ona of the counts so that

this successor observation is also described by the specification.

If we are not willing to alloloW the simultaneous occurrence of several

events in the Ii Fe or a single actor, nothing f!Jrther can hsppen.

3.4 CJeadlock averted

However. our amry does not end so saoly. Once the danger was

detected, there were swggasted many loWays to avert it. For example,

one of the philosophers cOLlld alloWays pick WD the IoWrong fork first if

only they could have agreed which one 1t should bBl The purchsse of B

single additional fork loWas rulad out For similar reasone, whereas the

purchasp. of five more forks was much too expensive.

The solution finally adopted was the appointment of a Footman.

wnose duty it was to assist aach philosopher into and out of his

ct-'air. H::'s alprabet was oefined:

oo:Foot;nan = sits down, i gets up}.U (1
1=0

This footman was given secret 1nstructions never to allow more than

four philosophers to be simultaneously seated:
4

rootman ~ z: (i sits down - i gets up) ~ 4
i",O

12.

Let r. (for 0 ~ j " 4) denote the behaviour of the footman with j
J

philosophers seated. Then

4

r 4 ~ V (1 gate up; r 3)

i::D

4

(for j ::: 1,Z,3) r. i} V (i get!! up; r. 1 v 1 sits down; r . 1)
J 1::::0 J- J+

4

F .. V (i aits dawni r,)
o ­ 1:::0

We need to prove that
4

L (i sits down - i gets up)r j ===> " 4-j
i

and hence

r ~ Footman
o /

This establlshes that r a is a correct implementation of the behaviour

specil"ied for the Footman.

The edifying tale of the dining philosophers is due to Edsger W.

Oijkstra; the Footman is due to Carel Scholten.

4. l"Iathsrn8tical Proparties

A major advantage of specifying complex systems in termS of some

familiar dOMin like the predicate calculus is that the operators enjoy

a number af elegant mathematical properties. Algebraic properties are

those that can be expressed as simple squation9, or (in the case of predi­

cates) as aquivalances. OrderIng properties are those Iolhich are expressed

as inequalities, or (in the case of predicates) as implicatione.

4.1 Algebraic properties

(1) "&" anc "v" are associative, commutative, and idempotent.

(2) "&", and "v" and "Cj" distributa through v.

HOlo.lever, bacause the operands of "v" must have the same alphabet, it is

not generally true that "v" distributes through "&". Nevertheless any

predicate lo.Ihich uses only "&" and "v" (and constants ZERO and CHAOS) can

be reduced to diSJunctive normal l"orm, in which & is tha innsrmost operator.

13.

The "!" operator may then be elirnlnated, using:

(Jj lERO &: ZEROS lEROA u 8A

CHAOS &: CHAGS	 [HAOS A u 8A e

ZEAO &: CHAGS	 ZERO
A e	 AuB

We WOw td now like to develop a normal Form for predicates con­

tainlng the prefixing operator "c;". Since prefixing di~tributes

through "v", it is necessary only to sho.... ho it distributes through

"&".

(4) (aiP) &. CHAOS 21;{P &: CHAOS)
A A

(21;P) &: ZERO	 aj(P &: lERO) if 21(: A
A A

lERO otherwise
A

(5) (a;P) • (b;Q)	 ~ b;«a;p) • Q) if{a~olQ
b £ ... P

~ 21;(P &: (bjQ))	 if {a" "'-0
bE.elP

~ a;(P • (b;O)) if {a:oI.. Q

" bj«a;P) &: Q) bE -. P

4=:9 8;(P &. Q)	 if a E:(<ol.Pt'~)

and a :: b

This theorem permi.ts prefiXing to be moved outside "!" in all cases

except For (aiP) &: (biQ) hen a,b E. olP "''''0 and (a ~ b). ln this case

each operand is attempting an action which requires simultaneous

oarticipatior: of the other, but they disagree on which action it shall

ba. As a result, one m:tght expect that nothing can happen, and the

conjunction should reduce to ZERO. But this Fails to take into account

the possibility of simultaneous occurrence of events; For example:

(a;b;ZERO) & (b;a;lERO)

~ (a :::: tI :::: 0 " a :::: b .= 1)

14.

If lola wish to eliminate this >lOSSibility, 1018 must introduce the restriction

that the alphaOll'!ts of the two operands of "&en lIIay haIJ8 at most one evant

in commol'1,

Under this restriction, allery expression can be reduced to a normal

form in which "II" is the outermost operator, and the "&.11 operator has bean

eliminated.

4.2 Ordering properties

The set of 11111 predicates is palrtially ordered by the relation of

logical i~plication. which we write "~"i this is shawn by the follow­

ing familiar metatheoremB;

p~ p

if p....., q and Cl P then p~q

,f P ~ Q and q ~R then P ~ R

A function F is said to be monotonic if it "raspects" t""e ordering

of its opuand, i.e.

If p ~ q then F(P) ~F(Q) for all P,O.

The definition Bxtends to functions with many operands, 1f they are mono­

tonic in sach of their operands separately, e.g.,

I' p ~ Cl then F(P,R) F(iJ,R)

and F(R,P) ~ F(R,O) for all P,Q,R.

Any operator that distributes through "II" is monotonic, so all the

operands ,.e halle defined so fer enjoy this property. Furthermora any

composition of monotonic operators is also monotonic, so any function or

expreSsion defined in terms of these operators will be monoton~c in all

its operar'l::ls.

Therl is a good reason Why operators used in recursive definitions

should be monotonic - it ensures the existence of a predicate satisFying

each recursive definition. This assurance is given by the Tarski-Knaster

theorem, prol/ided \lie accept the assumption that the space of predicates is

complete. A partial ordering is completa iF ellery set S or predicatea hss

an infinite conjunction \Is, such that (for any 0):

o --+ p for all P in 5

if and only if ,~Vs.

15.

The limit points \Is are relatad to ordinary pt'adicates in much

the sallis way as the t'eals ara to the rationals. Thay may be

uncountable in number, but that should not be taken as it rBason For

denying thgir Bxistence.

I f there I.S more than Dna solution fot' it recursion equation, it is

necessary to decide which one is meant. The usual tachniquB hUB is to

take the ~eekest solution, i.e. the disjunction of all possible

solutions. The fact that this 19 itself a solution is aho assured by

the Tarski-j(nastsr thaorsm.

4.3 Continuity

Let S lSn J n~o] be acountable set of predicates such that

5 + 1,. Sn for all n.

n

Such an 5 is known as a chain, and its limit Ys is written

'TIn ::> O. S
n

If r is a monotonic function of predicates, and 5 is a chain, then

[F(Sn) In.) o}
is also a ~hain, and has as limit

"'n. F(Sn)

8e~ause F is monotonic, we have the impli~ation:

F(V n. Sn) ~ 'in. F(Sn) for sll c~alns S.

If this implil::ation can be strengthened to squivalenc:e, then F is aaid

to be continuous.

A function of several pradicates is continuous if it is continuous

in eech arQUIlIent separately.

It is easy to see that the operators "c;", "&" and "v" are con­

tinuous. It follOWS that every function of predicates defined in terms

of these operetors is also ~ontinuoue. The mai(1 advantagaa of continuity

will emerge later; but here lola note that continuity af ill function F

16.

greatly simDlifies the search for a solution to a recursion equation

of the form:

P ~	 F (p) •

Define rO(:rue) = true

fn+1(true)	 F(Fn(true))

F(F(••• F(t,ce)))

\" ...J

n+l	 times.

Now	 the weakest solution of the equation is

'.:in.	 rn(true)

Proof. (1) that it is a fixed point:

F("in fn(true))	 ~ n(Fn+'{true)) by continuity

true &: \In.rn(true)

\:In.rn{true)

(2) that it is	 the weakest fixed point:

Let	 P ~ F(P}

P fn(p} by induction~

P = Vn fn(p}

~~ fn(true) by monotonicity

Examples

(1)	 p"r(p) where I is the identity function.

InC true) ~ true

•• p~ "in. In(true)~ true

(2)	 p"(p,O)

n
r (true)4===? true v	 Q v Q v' ••• v q

~true

P~true

17.

(3)	 P ~ P &; Q

fn(trua) Q

p •	 Q

0(4)	 P '" a,P Iolhere ..p [a.b\
f'{true) = (8'" b == a va> 0)

f
2
(true) = (a = b == a va = 1 & b :: a va> ')

fn(true) = (0 = a "a ~ n)

p Vn.(b = 01/ a ?: n)

<=9 (b 0)0

As shololn by these examplee, the explicit solution of each equation

raquires an induction to recast fn(true) as a predicate explicitly

containing n as a free variable.

4.4	 Unique solutions

In all our examples of sections two and three, the solutions of

the recursive squatl-ons have been unique. It is useful to recognise

cases Of unique solution, because they are simpler to reason about.

Consider the equation

P	 F(P).0

f(P)	 is said to be guarded if it can be written in the form

B;G(P} v b;H(P) \I •••••	 (1)

where G(p). H{P) are expressed using only the notations "e;" and tl v".

If F(P) is guarded, then the equation abo~e has an unique SOlution.

Proof. An expression is said to be guarded to depth ['1+' if eech of

G(p). H(P), •••• in formula (1) is guarded to depth n. Using

distribut~~ity of "c;" such formula can be written

a;b;	 ••• ; G'(p) 'wi c;d; ••• j H'(P) 'wi

where the lengt.h of each of the preFix sequences "cjd; ••• ;" is

greater than n.

, 8.

If rep) is guarded, then fn(p) is guarded to depth n. For any observ­

ation, we define its length as the sum of all the values ascribed to its

variables; thus the length is a count of the total number of events that

have occurred. and is necessllIrily finite. If an observation is of length

n, and a pndicate rn(p) is guarded to depth n, then ons can determine

whether thll predicate describes the observation by merely looking at the

prefix s8quQnt:8S, independent of the value of P.

Now let

p F(P) and q e(a)

p rn(p) and a rn{Q) by induction.

Consider an observation described by P. Let its length be n. This

abservatior is also described by fn(p) and therefore by rn(i:l). which has

all the same preFixes of length n. Thua all aoservations described by P

are also described by Q, and vice versa. POInd Q are therefore equivalent

as predicates.

5. Programming

A!j discussed in the introduction, a specification ~s an arbitrary

predicate describing all possible observations of Selme system. The task

of the SCientist is to discover the strongest specification describing som~

aspect of tne behaviour of the natural un~verse. The task of the engineer

is different: he has to construct some mechanism wnicn meets a specifi­

cation descnbinQ the needs of a potential user of the mechani sm. The

engineer I s cuties would be much simp Ii fied if he had at h~s disposal a

stOCk of unHiersal mechanisms. An universal mechanisOl is one chat w~ll

first accept the text of any oesired spec~fication, and will then automat­

ically transfOrm itself il1to a meChanism wl1iCh behaves ~n accordanCe w~th

that .specif;.cation, for as long as ~t is ,,"'anted. Sucn a ~arvellous

mechanism mght be a bit expensive; and if so, it should have a switcn to

turn it back ~nto a universal mechan~sm wnen trere .:.s :10 l1eed for it to

continue to sat~sf'y its current specification.

ror tl1e civil engineer or naval arChitect, an unillersal mechanism of

th~s kind H nothing but a pipe-dream. But for the computar programmer,

it is a reality "'hicl1 l1e takes for granted - it is the stored program

digital Computer. The only problem is that the computer ",ill not accept

19.

an arbitrary predicate as a specification; the predicata must De

written in a highly restricted notatiOn kno~n as a programming

lani;uage. Such predicates are kno\«n as programs. In the remainder

of this paper we shall det'ina a orogram as a pradicate expressed

solely in terms of the constants and operators introduced in

section 2 together with recursion, later, we shall consider some

further restr~ctiona on this notation.

5.1 Programming methodology

The task of the programmer is now clear. First, he must use his

Dest ~udgement to formulate a specification of the desireo prODlJct.

The specification should ~e expressed as a predicate, taking

advantage of the full power of the concepts and notations of logic

and mathematics to keep the form"lis"tion simple and clear. Clarity

is :If the ut:nost concern, since a ,7lisunoerstanding "t this stage can

h"ve a severe impact on the Quality :IF the prODUCt. The programmer

now has to reformUlate the specification as a program P, expressed in

the restricteo notations of his programming language; ano this ":lay

involve a ;lross expansior in the size of the text. Furthermore, he

must fino a program that is adequately efFicient when executad 0,1 a

mechanism of 'lffordable cap "city ana speed. His task may be slightly

simpliFied by the fact that it is sufficient to find a program P :'hat

merely ~mplies its specification S; there is no need to achieve exact

equivalence.

Thus tha task of programming is rather like that of finding an

explicit oefinition of a function which satisFies given differential

equations. Just as some aquations have no explicit solutions, some

oredicates cannot be pro~rammed because they are ~ncomputa[)le or even

incansister:t. For solubla equations, mathematici"ns have d~scavered

many ':echn~ques for finding and checking prop098d solutions, though

their application usually demands some mathematical akill and it'lSlgt'lt.

~ collection of methods for constructing a program to meet an

arbitrary speclFication is known as a programming methodology.

5.2 Top-down development

One rather obvious programming method is the technique of "too­

down development" or "divide-and-conouer"; it is rather s~milar to

20.

integration by parts, in that its J.njuoiciows use can require solution of

subproblems mare diFFicult than the original problem. Let S ba the

specification of the desired program. Then

(1) Let F(T,U) be an expression containing the predicates T and U, but

othElriIJise expressed Wholly '~ithin the ~rogramming language.

(2) Prove that F(T,U) -.,5.

(J) Find ~rograms P and Cl such that

P ~T

and Q ~ u.

(4)	 The result yow want is

F (PI J).

The validity of this method depends on the fact that all operators of the

prD9rammin~ language are monotonic. Its utJ.lity derives from the fact

that F is proved correct before P and Q are programmed.

5.3 Introduction of recursion

One of the most significant tasks of the orogrammer is to construct

correct loops or recursions. Suppose S is the speciFication which ~s

believed to require a recursively ceFined program. Then the following

steps are recommended:

(1) Find M1 eApression E which maps the observations of the alphabet

onto non-negative integers. This is known as a "variant Function".

(2) find a program	 F(P), containing the predicate name P, such that

F(S v [)} n) ===9 (5"'[> n)

where n is a Fresh variable.

Thus if the recursive call P est"Dlishes 5 in all circumstances ,~hen

E ~n, then F(P) is better than P, in that it ensures 5 in the case when

E "" n+1 as JJell.

(3) Then the program you want is defineo recursively:

o ~F(P)

21.

Proof. From step 2, by an e8sy induction

rnc~.!.~)~rn(S v t ~ 0) ~ (S \J [>n) I'or all n

(Vn.rn(true)) ~ (S vVn.E> n)

~s

Since F i!J expressea wholly in notations \>Ihich are known to be con­

tinuous, Vn.r{1(true) is the weakest solution of

p ~ F(P)

6. Implementation

The mai" motivetion For writing speciFications in a restrictive

orogramming l.anguage is the existence of a unJ.versal mechanism that

will automatically implement the program. In practice, such an

lmplementation 15 construCted from silicon chips, boards, wires, etc.,

together '.<lith loaaers, comoilers, or interpreters ror the given

programming language. aut For our present purposes, it is more con­

ver-ient to construct an abstraCt mathematical maChine, passing through

a series of s'ta't8s; each state corresponds to a possible observation

described ':Jy the program initially given to the machine. Here is an

inFormal descriptlon of the behaviour of such 3 maChine, 1ntendea to

model the actlQns of an 1nLeracting system:

(0) Input the specificatlClrl ",lth given alphabet.

(1) Jeclare an IntE:!qer vari3ble corresponaing to each event in the

alpnao8t. In~tialise all these varlables to zero.

(2) RepeaL ,:ne following SLSP9 as long as possible (or until switche(j

ofF) :

(2.1) 'or each variable 11"1 turn, sdd one to its value, test If

the soecification is true, and suotracc .:Ine again.

(;;:.:) F;:Ir all vanables wnich have passea test (2.1), wait until

C,-,e user/environmenL of the mschan1sm has selected whlCh of the

events IS Lo occur. ! F no variable has psssed the test, this

walL ""ill last forever.

(2.3) add one to Lhe ~ariable selacted in ~tea 2.2.

22.

We assume that an observation of this ma,=hine can be made just before

each iteration of the loop (2)j at that time, the current values of all

its variables arB obsl3rvab!e.

5.' Consi~tency

Clearly, this implementation does not correctly implement every

predicate; in fact the predicate "e >3" is false immediately after

step (1). However, any precjicate which is true after step (1) will remain

true foravat' - that is the purpose of the tests of step (2.1). So, to

.!IIhow that the implementation corrlElctly implements avery program, it

9uffices to show that every program describes the observation when all

the counts are zero, i,e., that

ZERO ::::::::a,. P for all programs P with alphabet A.
A

This can t€ ;:Jrov8o by structural inDuction on P, -.Ising tr.e fallowing

lemmas.

(1) ZERO,), ==, ZERO,),

(2) ZERO
A
~ CHAOS

A

(3) ZERO,), ===}l (a;P)

(4) If ZERO
A

......,. P and ZERO
A
~ 0

then ZERO,; ~ P v'J

(5) IfZOOC\===}P and ZEROa ====7'Q

t/"lEn Zt::W", IJ a ~ P &

(5) If for all n ZERO
A

=9 Pn

then ZERO
A
~\jn.p

n

The last cLause ~s required to sholl.' that all programs defined ~y recurs~on

are impliea ":Jy ZERO; tris conclusion sepends also on continui ty of all

the connectives of t:-'e programming language, a property '.lJhich has alreadY

~een estaD:isheo 1n t..~.

n-,us '~e have ahown that the ::roposed implementation workS correctly

for all :Jr~;lrams expresseo tne language. Tris result 'lay :,s refor'llulatec:

",e have shown that the programming language is consistent with the given

model imo!e;nentatiOl"', in the sen.ge that every :)oservation aroouced by tne

implementation will be correctly cescribed ~y ~ts program.

•
•

•
•

•
•

•
•

•
•

N

'"

"
•

• U

C
£

£
0

-
~

C

"D

0

U

~

U

0

•

•
•

•
;1

E
C

~

•
~

~
~

~

~

•
~

E

D

£
~

D •

•
~

• "

D
 0; ·0

~

"5
0

c
~

c

•
D •

~

C
0

~
~

0

U

~

" 0
~

~

0
0

D

~

C
""

C
• "" ~

""
"" ,

•E

"
~

" 0-
•

•
0

-
"" ,

•
•

••
""

•>
"

~

e
C

~

"
C

C

~

0
0

~

0
-

U

0
•C

""

~ •
•

"D • ""
•

•
~

•>

""•

~

£
0

U

E
C

~

C

e •
•

"
•

~

•
U •

C

•
D

~

~

C

U
•

•
•

•
" •

0
-

""
•

E

~

"
~

£ •

•
E

~

•

0
•

0
u

~

"
0

-
U

0

-
£ •

~

"
0

"
0

U •
~

£

U

E
0

~
~

u

~

£
0

0
-
~

~

0
~

Z

U

u
~

e
"

0
•c

~

•
•0

C

~ •
~

U

C

0
0

C

"
~

£

C
0

""
D • ~

~ " "
•

C

~

•

",
U

U

~

0
~

~

e
~

•E

""~

•

c
-;;

u
~

~ •
~

0 ••

•
• "

••E
•

0
0

C

~

"
0

,;
0

-
""

"
•

m

.;
0

£
•

~
 •e

c
0

>

~

~

"
""

~

"
"" ~

•U

C

~

U
"

•~

•
•0

-
•

•
C

""

0
>

~

~

0"
•0

~

"
~

C

" 0
~

"

C
0

•~

0
•0

•u
0

;<
•U

~

U

~

•

•
D

t-

m

u
"j

u "
•>

C

"",
• "

•
•

~

•
"

•
•0

m

• "
~

"

0
0

"" U
~

m

C

>

~

0C

"" C

0
~

~

""C
~

£

"
•

•
""

•
~

"

C

U
"

0
U"

U
•>

U

•
•0

""
"" 0

0"
~

~

C •
0

""
~ •

•
•U

•

" 0
m

~

U

U

D •
C

~

C

e
~

~

•
~

0

~

D •
~

~

•0
-

0
a

~

• "
~

0

0
•

~

"" 0
~

c

c
0

~

0
-

D •
0

c
£

C
£

u
~

•

c
" x

•
"

•
•

u
0

u
~

0 •

m
c

~

"
•

~

•
0

m
u

£
"

""E
•

•U

•
0

•
u "

C

"

"
"j

•
~

a

•
•c

U

C

U

E

~
~

£

~

0
E

"

""
•

U
""

u
t

0
£

0
E

~

~

U

~

E

~

m

C

0
0

£
•C

•
u

"" u
0

0
0

" E

U •
•

•
c

>

c "
c

" 0
c

~

u
0

0 "
~

"

£
•

"">
•

~

•
0

m

;< "
~

"

~
~

D

 ••
•E

•
•C

"
""

•
" ~

"
3

C

D

"
""0

"
""0

a
0

~

0"
~

~

::

,
0

-
£

0
~ •

0
0

0
u •

u
u

u
u

~ •
~

£

<11
0

" 0
c

"
•

D

•
"U

~

"" 0

~

•
•

D
 ••

U •••
""U"

0
-

"
C

""U

"~

0

-
D

" 0-

m

0
0

~

£
""

0
c

E

~
~

C

•E

£ •

0
-

0
U

0

" 0
m

~

~

•c
0

u •
•

"
•E

~

~

~
~

~

D

0

u
~

~
•

•
•

•
•

""
"

,;
~

>

c

~
~

•>

D

£

£
•U

""
" 0

~

u
~

•

u
~

~

0
~

~

"
0

0"
0

-
~

Z

" 0

c
c

,n
~

U

•
~

•

0
•

•
•

•
,n

0
E

0

E
••

"""
E

•

£
~

0

••
" 0

-
"

c0
•

""
~

>

"D

c

•
"

'"
u

u
D

~

C

e
~

c

•
• ""

" C
•

•
""•

"j
~ •

x
0

D

"•
£ "•

""""
~ •

0
0 ~

"

£
~

0

~

D

~

E
•

""
"

•
•

•
D •

~

•
~

••
"D

D

 •
•U

C

C

•
•

" 0
••

U"
" ..

"..
•

C

'-
D

0

0
0

-
>

L •

"-
L •

m

•3
""

~

C

~ • ""
0

"
m

•

"
"" ~

"
u

"
•c

~

•c
u

~

0
"

"D

"" L
~

~

£ •
U

U •
0

" •
••

C

•E
C •

£ •
"" ~

""
£ •

~

"" U
£ •

0
•

~

~

•
0

"j
.;

""
C

•

0
~

•>

" m

•

~

c
~

0

•
• •

••
~

c

u •
•

•
•c

•
~ •

~ •
~

•>

>

""
0

•0
-

3
m •

~

~

0
0

u
u

0
-

0
""

~
~

0

0
-

0
-

0
U

"~

~ •
•u

C

~

•

•
E

" 0

~

"
"

~

"•
D

•

D

U
E

0

0
•

~

c
~ •

"~
~

••

u •
C

•
£ •

•
0

0
~

E

U

D

~

~

•
•

c
~

~

£ •
£

•
0

-
•

e •
•u

•
"•

"
~

0

•
•

0
U

~

"

•
• "

u
~

~

>

0
u

C

~

E

"
~

""

E

•
•

£ •
D •

0
"

C

~

£ •
•

c
E

"

~ •
"""D

Z

0

" ~
" 0

~

•0
L

0
U

•

2
D

N

D

••

0
-

0
u

•
~

•

"
U

C

E

0
0

-
m

••
0

D

e
•

,';
,';

•
c

••
m

0

"" £
0

£
•

X

0
~

D

•

0
""

0
-
"

2
" 0

-
m

0

"
•

•u
u

~

n
0"

~

•"
•

u

'".

One solution to the problem would be to Bxpand the sat of implementations

to allOIlJ an'f number of events to OCCur simultaneously. Another solution

is to restrict the programming language still further, 50 that no

speei ficati~n expressible as a program will describe an unre03chabla

observatior.

Let us attempt a solution of the second kind. A predicate is said

to be grounded if every described observation has a predst:BsSOI' also

described by it. Each observation therefore has a chain of preo8~8s90r9

reaChing back to the initial zero observation •. The intendeD implement­

ation can fallow this chain J.n the reverse dirst:tion, and can thuS reach

any observation described by a grounded predicate. 50 1iJ8 need to restriClt

our programning language in sucn a way that 1 t can expr8SS anl y grounded

predicates.

An effsctive restriction is the one introduced in section 4.1 to

obtain a normal form: forbid the use of the cperator ".I<" excBpt 1lll"1en the

alphabets of its operands contain at most one event 1n common. The fact

that all programs satiSFying this restrJ.ction are grounoed is proved by

structurallnduction, based on the follollling lemmas:

(1) ZERO
A

and CHAOS ... are groundec.

(2) If Paid Q are grounded, so are (a;P) and (Pv 0).

(3) Furthermore, if si2.e ("",p/,\ ciq)!; 1 then (P&O) 1S ~rounGed.

(Li) If for all n P
n

is .~rounded ano P
n+1
~ P

"n

then I,Jn.P n is grounded.

Only tne last clause requires any subtlaty of prooF. Consider an

observation oescribed tly Vn.P. The r"1aximum possible number of its
n

predeCBSSOI'S is Finite (eoual to the size of the alphabet). Since P n+1

logically implies Pn' the set of predecessors (of the given observation)

described by o is a subset of ~hose described by P ' These Fini te
n+1 n

subsets foI'''1 a descenoin~ c~ain, lllhose ~nterseccion is therefore no~ empty.

Furthermore thlS lntersection is oescribeo Lly Vn.P n'

is.3 The excluded -"iracle

In section :. ~ .. e ,,::eFineo the task 'Jf the crogram.1ler as the ois­

covery of a :Jrogram P '..tnic:' logically implies a given soecification S.

25.

NOlll suppose he CQuld find a program P that logically implies ellery other

program Q. This P would be a miraculous program, since it caulo be used

to implement every imp lamentable specification. With SUCh e program, he

would never nsed any other; and eBch of his taska would be trilJiel. An

example of such a miraculous program would be on8 that expresses the

predicate false.

In practi.cB. we suspect that a programming lenguBge in whiCh there

exists a miraculous program ""auld be unrealistic or useless in some

other way; 1 t would certainly be umoorthy of serious mathematical study.

Unfortunately, our little programming language (as prOUdly prov80 in

sBction 5.1) contains the miracle ZERO So ""e need to exclude thisA,

canstant from the lenguage; but lIle aleo need to ensure thet it cen

never be expressed in some other way, for example:

(choc;SILLY) &: (coin;VM1)

~ (coin"" chOC = 0 v choc > 0 &. coin' choc-1 "coin+1)

• (coin'" choc = ° v coin) 0 &: choc , coin-l ",choc+1)

(coin = choc = Q)~

This problem can be solved by imposing the same restriction on the

alphabets of the operands of &: a~ has already been recommended in 4.1

and 5.2. Then no program is equal to the mirae lie ZERO A' A proof 0 f

this uees structural im:luction based on the lemmas.

(1) CHAOSA " lEROA

(2) If P and q are programs distinct frcm ZERO then so are (a;P)
A

and (p v q), and (P&: q) prOvided size (,J.,P,", ."i,Q) ~ 1.

(3) If for all n Pn" lERO and Pn+1 ~PnA

then ('in.P) "lERD

n A

The proof of the Lest clause uses the fact thet an observation has

only a finite number of possible successors.

Naill we need to prove thet there are no other miracles besides

lERO lIIhich we have alraady excluded. Unfortunately there is. If
A

,

the alphabet A containl!l only one event, then all expressible programs

are equivelent to CHAOS~. !.LIe must trlerefore insist thet every alphebet

~ contains at least tlllC variables, say "a" and "b". Then there e:8

at lea9t tlIIO oifferent programs with elphabet A:

26.

p 4 ajP ~ b '" 0

o ~ b;O ~ a=. a

Fucthermare the only observation they both describe is

(8 = b::: Q) ZERO
A

But since ~e have shown that no program implies ZERD At no program can

imply both P and Q. Thus there is no program which implies eV8iy otheL

program.

6.4. Computability

The un-ivarsal mechanism described above requires the ability to

determine the truth or Falsity of a predicate for an arbitrary value of

its Free variables. It is wall known that for some predicates this is

impossible. We must thereFore ensure that our programming language can

express cnly predicates which are in some sense compu~able.

In geoeral, the appropriate sense of computability se:ems to be that

the complement of the predicate Should tle recursive enumerable. Thus iF

an observation FalsiFies ths predicate, l.t will be possible to prove

that it doss so. Such predicetes are said to be Falsifiable. ,J,ccording

to Karl Popper, falsifiaoility is also a required property of all

scientific ',"eories. In accordance with this definition all our ;Jr~~rams

are Falsifi~ole:

("I) ZER0,J, ~nd CHhCS..\ are FalsiFiable.

(2) If Pard J are falsiFiaole, then so are (aiP), (PvCJ) and (P&. Q).

(3) If for all n, P is FalsiFiable, then so is Vn.P •
n n

c<nother vary cesirable property of a general purpos~ orogramming

languege is t~at its pro~rams should be able to cpmpute every computable

function. The usual method of proving this is to program in the language

a simulatior of some ><nown universal machine such as 2. ':..ring machine.

aut our langJage cannot co this; in fact the language can be implemented

on a Finite state ;nacrine. In a soecial purppse language, suer, a limit­

ation ""ay ce an acvantage, if it permits a mecr-,anical check against

certain unCesiraole occurrences such as non-terminetion or deadlOCk. Po

more practical defect of our language ~s that it cannot even describe ~he

simple examplas used to illustrate this paper. Tp solue trese deFects we

27.

would need to introduce more operators and perhaps variables denoting

different kinds of observation.

6.5 Continuity again

The descriptio!"' of an universal implementation of our language

essentially regards each complete program as iii. predicate which ~an be

tested. In practice, programs are implemented in a structured fashion,

and the complete implementation of a complex program is constructed

from implementations of its parts, for e~ample, a test of (p ~ 0) or

(p j, el) or (a;P) can be constructed from testa of P and 0 sepantely.

However, the position with recursively defined predicates is le,g clear.

Following Scott, lue ident~fy en implementation of the predicate

p ~ r(p)

as the infinite sequence of "finite apprOXimations":

ten(t,ce) In} o}
SUCh that the desired program P is the unillersal Quanti fication of the

seqUl:mcs. Now iF G is any continuous function of predicetes to

prsdicates, an implementation of C(P) can be constructed from the

implementation of P, thus

[G{Fn(true) In) o}.
gecause G is continuou5l, this is an infinite sequence of finite approx­

imatio,",s to G{p). Thus UJe hSlle constructed an "implementation" of G(p)

out of an implementation of p.

There remains one outstanding qUBstion. A programming len9uage

defined by the methods oescritled in the prellious sections is a notetion

for specifyiniO falsifiable predicates. HOUJeller, the set of obser\llltions

generated by any meChanism must be recursiliit enumerable. Since the

complement of a recursille enumerable set is not necesssrily recursive

enumerable, there UJill in generel be observations which cannot be

generated by a correct implementation, even though they are cescribed

Dy the program which is being implemented. Thus no general-purpme

programming language can be complete in the Sense of 6.2. The problem

is m05lt ecute in the case of a non-terminatil"lg recursion

p ~ I (p)

28.

Accardin!; to our deFinitlon

P~CHAOSA

However any "rsasonable" implementation is likely to produce only the

all-zero Ob&er~ation, 50 that it will behave as if

P~lEROA •

Thus ~ observations (except one) fall into the gap betll/een what is

described by the program and lIIhat is actually ganerated by its implement­

ation.

do not know lIIhether this problem has a solutIon, or even whather

it needs one,

7. Conclusion

The fint step in the construction of' a mechanism to meet some require­

ment is to Dotain a very good understanding of that requirement. This

understanding can be formalised as a predicate describing all possible

acceptable observations of the behaviour of the mechanism. Because mis­

understandin:;j at this stage i91 910 dangsrous, a specification should be

91hort, 91imple, and well-structured; and to this end it should take full

advantage of all avaiLabLe concepts and notations of mathematics and logic.

For effective description of certain kinds of dynamic sy9ltem, it is

convenient also to use certain concepts akin to those of computer programs;

and this reoJires they be defined in terms or conlJentional predicates.

(ven so, the construction of a successful specification requires the same

human skills and insights as are characteristic of an applied mathematician

or engineer.

The ta5K of the programmer remains to find some predicate, expressed

only in the restricted notations of his ptogramming language, which

logically imDlies the specification. The reason for the restrictiOnS is

to enable thB program to be run on some available implementation of the

language.

This view of programs and their specifications is highly relevant for

the designer of a programming language. Firstly, he must have a wide

undBrstandin~ of the application area of his Languaga. Based on this, he

should defin~ a range of concepts to assist in the specification of

programs wiUin that area. These concepts should enjoy nice algebraic

29.

properties, preferably admitting a simple normal form. If recursion

or repetition is required, then all the propositional connectl\1li1s

involved should be at least monotonic.

The designer should then define e class of model impillilmentstions,

~hich ~ill automatically conform to a subclass of specification!

submitted to them. The implementations should be a reasonable abstract­

ion at" what can be built, perhaps in silicon, at acceptable cosl. This

will require some restriction on the generality of the notation! ueed

in the specification. These restrictions should not be 90 severe that

they prohibit an exact description of the behaviour of the macel

impiementations; but they should be severe enough to excluce the

unirormiy false predicate, or any program \&Ihich logically implies ali

other progrsms. Finally, there should be some reasonably easy step~isEi

method ror deeigning a program from its specification. All thes9 tasks

are considerably simplified if all the operators of the pr09ramming

languege are nat only monotonic but oontinuous.

This account of the nature of programming and of pr09ramminq

language design suggests that both actillities require and deserlle the

':.echniques ana skills of the mathematical logician.

~Ckno\&lledgement s

The original ioea of equating a computer program with its strongest

specirication is due to <:.C •.~. Hehner. The treatment of Communicating

Systems \&las inspired by the work of A.J.,'i.G. l'1ilner. The techniQus of

Predicate transformers is due to E.w. Oijkstra. The dellelopment of

specl.fications as predicates together with their alphabets is due to

J.-fL Abrial. The treatment of recursion by fixed points and continUity

is oue to 0.5. Scott. Valuaole and Ciontinuing mathematical support has

been pro\Jided by [.-fl. 01d8rog.

OXFORD UNIVERSITY COMPUTING LABORATORY

PROGRAMMING RESEARCH GROUP TECHNiCAl MONOGRAPHS

JULY 1982

This is a series of technIcal monographs on topics In the field of computation.
Copfe~ may tie obtained 'rom the Programming ResearCh Group. (TechnIcal
Monographs). 45 Banbury Aoad. Oxford. OX2 6PE. England.

PRG-2 Dana Scott

Outline of " MathemtJt/cal Theory of Computallon

PRG-3 Dana Scan
The LIIttice of Flow Diagr"ms

PRG-5 Dana Scan

Oat" Types "" L"trices

PRG-6 Dana Scorl and Christopher Slrachey
Toward a Mathematical SemtJntics tor Computer Langueges

PRG-7 Dana SCOrl
Continuous Lan/ce3

PRG-8 JOseph SIOy and Chrislopher Strachey

OS6 - an EAperimenrlJl Operaring System

tor a Small Computer

PRG-9 Christopher Slrachey and Joseph Stoy
The Text of OSPub

PRG-10 Chrjslopner Slracney
Tne V"netle" ot Programming Language

PRG-l1 ChrislOpher StrlJchey and ChriSlopner P. Wadsworth
Contfnuarlons~ A MarhematictJl Semantic.s
for HandJing Full Jumps

PRG-12 Peter Mosses
The M"themar'cal Semantfc.s of Algol 60

PRG-13 Raben Milne
The Formal Semanrlc3 of Computer ~anguage.s

,Jna rheir ImpiementlHlon3

PAG-14 Shan S Kuo MiChael H. LinCk and Sohrab Saadar
A Guide to Communicating Sequential Proces3e3

PAG-15 Joseph Stay
The Congruence of Two ProgrtJmmlng Language Definitions

PRG-16 C. A. A. Hoare. S. D. Brookes and A. W. Roscoe
A Theory of Communiceting Sequential Processes

PRG-17 Andrew P. Black
Report on th" Programming Notatfon 3R

PAG-18 Ellzabelh Fielding
Th. SpecitlctJtlon 01 Ab$rract MlIpp;ng$
/Jna their ImplementtJrlon a$ BT-rree$

PAG-19 Dana Scott·
Leclure$ on I MtJrhemeUcaf Theory ot Computllt/on

PAG-20 ZhOtl Chao Chen and C. A. R Hoare
PtJrt/al Correcrne$$ ot Communicating Procfl$$fI$
ana ProtOCOI$

PRG-21 Bernard Sutrin
Formlll SpecUiClIrJon 01 tJ DI$play EdItor

PAG-22 C. A. A. Hoare
A Model lor Communicating Sequentilll PrOCfI$$fI$

PAG-23 C. A. A. Hoare
A Calculu$ of Total CorreCfne$$
lor Communicating Proceues

PAG-24 Bernard Sulrln
Reeding Form", SpecJlictJrion~

PAG-25 C. B. .Jones
De.,elopment Method$ lor Computer ProgrtJm$
including a Norlon 01 Interference

PAG-26 Zhou Chao Chen
rhe Cons;$tency 01 tne ClIlculu$ of Toral Correctne~~

for Communicating PrOCe$~e$

PAG-27 C. A. A. Hoare
Frogramming 1$ an EngIneering ProlflS$ion

PAG-Z8 John Hughes
Graph Reduct(on ""th Super-CombintJrors

PAG-29 C. A A. Hoare
SPflCification$. Programs and ImplementtJtions

PAG-30 Alelandro Teruel
Case Sfudles In Specification. Four Games

