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Summary

A specification is a preditate describing all observations permitted
of the system specified. Specifications of complex systems can ke
constructed from spscifications of their companants by commectives
defineo in the pregicate calculus. A program ia just a predicate
sxpressed using only a restricted subset of such cannectives, codified as
a programming language. An implementation of the programming language is a
mechanism that will accept any predicate of the language, and then behave
as described by it, Given a propoaed model of ar implementatien it is
degirable to prova that every program expressible in the lanaguage is
cansistent 2nd complete with respect to the model; furtnermore, there
should be no program which logically implies all the athers. Thess points
are illustrated by the oesign of a very simpla programming languags,
deseribing the imteracticns of concurrent processes, It is suggested that
the design of a realistic programming language reguires, and is worthy of,

the skills of a methematical logician.
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SPECIFICATIONS, PROGRAMS
AND IMPLEMENTATIGNS

1. lntroducticnm

& yariable in a formula of applied matnematics stands for some
directly or indirectly observable value. The carrespondence between the
veriable and the obsarvation must De established informally by seme such
phrase as "Let x stand far the position (in metres) of a body at time t
(measured in secands), and let v stand for its velacity (in metres per
second }",

"Let coin stand for the number of coins inserted into a wending machine
up to a certain moment, and lat choc stand for the number af chocolates

it has dispensed".

The alphavet of a system is the set of variables denoting traose
ooservations which are af current intarest, The selection of a user.]
and relevant alphabet of observations is ane of the primgry character-
istics of a succeasruyl scientific theory., A gpecification aof a system S
is cefineu by 1ts alphabet =5 tagether with a precicate, uavally
containing variaoles from <5, which describes all possible observations
which may be made of the systam. An observation ascribas a value to
each variaole in the alphabet; a specification deacribes the observation
if the predicate evaluyates to true when each varianle is replaced by its

ascribed value. Wa wuse S itself to stand for the predicate.



Example 1.

ol LINEAR {_x,t,u}
LINEAR & 1€t €4 = x=vxt=3 & v=3
LINEAR specifies a body that moves at a constant speed of 3 metres per

saecond between time 1 and time 4. Some obsarvations described by this

apecificetion are tabulated below:

x t u
0 1 3
3 2 3
] 3 3
12 8} 17
14 5 12
J 5 0

The First three linzs make the consegquant af the specification true, and
the last three make the antecedent falae. When t is outside the specified
range, the specification is indetermipate: It specifies nothing at all

about the vaiues of x and v.

Example 2.
AROFIT = {choc € coin)

BUFFERT < {cain & choc+1)

M1 = AROFIT & BUFFER1

L YM1 = {coin,chuc}

The predicate PROFIT specifies that a vending maghine shall be profitable
in the sense that it never dispenses more chocolates than there have been
c2ins insertsd. BUFFER1 atatea that the machine will buffer amly ane
coin, so it is impossible to insert two coins and then extract two

chocaolatesa. 5ome possible observations are:



coin choc
0 0
1 8]
1 1

13 12

—

fy a bold abstraction, we now say that a system is fully defined
by the strongest specification which ogscribgs its every possible
behaviour. Thus two syskems are regarded as the same if their alprabets
are the same, and their specificationa are leogically squivslent, This is
reasonatla, fFor then there can be no cbservation of one of them which is
not alsc 3 poesiDle obgervation of the othar, and by tne principle of the

identity of indiscernibles, they should be regardsd as the same.

Let 5 be an arbitrary specification, and let A De the strongest
spacification of some actual system, and suppose that A logically implies
5, This means that every observation described Dy A is also described by
S. Thus we can claim tFat A is a corract implementation of the specafi-—
cation 5, The suggestion of this snd the previous paragraph is that
questions of equivalence and corcectness of systems can be treated sithin
Lhe tracitional framawork of msthematicel logic without requiring any
specialised axioms or proof rules. This suggestian is exolared in :he
next section by defining predicates which describe the benaviour of

systems camposea fram interacting concurrent processes,

2. Interacting Processes

We are interested in systems which sngage in certain observabls
events, such as the 1nsertion of ceins into a wvending machine, or
extraction of chocolates., VFor each event individually, at is possible ta
record how many times that event has occurred up to any given moment,

The alphacet of a process contains variaoles standing For thesg counts,
For examplo, the alphabet of a uvending machine may be declared as
dAyml 2 {ccin,chac}



2.1 No action
Let & be the alphebet [a,b,c, }
We define the predicata

zEnone(a=n=c=...=0)

]

u{IEHOR A

This {a the specification of a rather useless system, which never

does anything at all, so thet its event counts remain forever zero.

[+
Example ymo ZERD {cnin,choc}

Thia describgs tha behaviour of 8 broken vending machine. 1I%ts alphabet
indicates that it is equipped with the physical organs for accepting
coina and dispensing chocolates, but its pradicate states that it never

uses tham,

2.2 Arbitrary action
Wwa define the praedicate
CHAQS, 2 true
= CHADS, 2 A
This is a specification which places nec canstraint whatsoever on

the behaviocur of the spacified system, Evary system is correct in

accordance vith this specification.

Example

s’
VMBR £ ChADS {cnin,chac}

This machipe is even more badly broken thanm VMJ; i1t accepts coins and

dispenses chocolates with gay abandon.



2.3 First action

Let a €R

Let P(a) be a predicate with alphabet &

{ajp({a)) & ZERQ, v B >0 &P (a-1)

This specifiea a system which first engages in the ewvant counted
vy the variable "a", and then bahaves as apscified by P, On the first
ooservation, all the counts are zero;j on all subseguent observations,
the count of "a* is positivej furthermore, on reducing the count of
"a' by gne, we get an ohservatian described by P.

Example
Recall that M1 = (croc € coin € choc + 1)
S. (coin; choc; UM} & (coin = choc = O

v ctaoin >0 & (coin - 1 = choc = 0
v choc > 0 & cnoc = 1 £ coin - 1 € choc))

~puml

where we allow ; to be right associative.

Thuz UM1 spacifigs a machine that first accepts a coin, then dis-
pensas a chocolate, after which it behaves again like ¥M1, Such a
machine will alternmately accept coins and dispense chocolates for as

long as there is any call uvpon it to do so.

2,4 Recursion

Let P ge the rmame of a predicate, and let F{P)} be an expression
denoting a predicate, and possibly containing occurrences of P,
furthermore, let

AP = oF(P)

Thus the eguatian
pa ()
may te regarded as 2 recursive definicion of the predicate namac by P,

fraoblems of existence and uniguerness of this solution are postponad to

section 4,



Example

P

P {coin; choe; P)

P & (Eoir\, :hac}

We already kmow that a possible solution of this sguation 1s:2
P = VM = (chac £ coin & choe + 1)

In faet, this is the only solution, as will be shown in section 4,4.

2.5 Alternatives
Lat P and Q be specifications, with
AP = ol
wWe stipulate that ol{P v Q) = «A.

(P v 0) specifies a system which will behave like P or like Q (ar
like both), The choica between the altermatives is not determinea; it
may Le made by the enviranment within which this system is embedded, as

will be describaa in 2.6,

Example 1,

F & (choc; coiny P v eoinj choc; P)

This describes a vending machine which allows its customer to sample a
chocolate, and trusts him to pay after, The solution to the defining
aquation is:

P = (chec £ count+l & choc + 2)

Not surprisingly, the customer should pay for the privilege of using such

a machine, as in the mext example.

Examgle 2.
VM2 & coin; P

&= choc £ coin £ choc + 2

This machine allows its custamer to insert up to two coins before extract-

ing up to tup chocplates.

Exampla 3,
CUST @ (echoc; raejoice; CUST
w coin; chocji CUST

v kisswife; CUST)



This describes the behaviocur of a customer for the vending machine, Ha
is, af course, very willing to take a chocolate without paying, after
which he will @reatly rejoice. He is also willing to kiss his uife,
and whethar he dJdoes g0 depands on whaether shé toc ia willing. He is
also willing to pay for bis chocglate I{n the normel way, The unigue

solution of the equation is
CUST = {choc £ coin + rejoice + 1 &L choc + 2 & rejoice £ choc

Nota that the specificatiom of the customer does not preyent him
from engaging in the fcllowing seguences of actiona, since 1ln each
casa, it correctly describaes the values of the counts before and after

each eavept of the asequence;

coin, kisswifa, choc, ....

choc, rejoice, coin, coin, choc

The reason for these possibly uvnexpected seguences Is that our

specification larguage is too weak to cescribe such constraints as:

"he can't kiss his wife batween irsarting & coin and extracting
a chocolate”.

"he naever imserts two coins in 2 row".

The weakness of the specification language is 2 daliberate decisiaon
that we do not wish to observe the exact relative timing of ewvents;
thus we allow events to occur "gimultameausly”, in the sense that any
attempt to place them im order will lsad to a non—determinate resuit.
some further conseguences af t1is decision will become more apg=reit

later.

2,8 Concurrency
Let P and I be specifications with pisjoint alphabets, i,e.,
oAF m KF = {}
12 then stipulate that
d (P& 3} = ofP uoil.
(P & 5) describes a system composed from the two subsystems seoarately

described by F ang J, as they evolve together, E£ach event that occurs

is 1n the alpraoet af only ore af the components; and its occurrence



raquires participation of that component, leawing tha octher < omponent
unaffected, Each observation of the completa system splits uniquely
into two parts; the values of variables in ol P are described by P and
are not mentioned by 0; the value of variables in olQ are descrihed by
Q and are not mentioned in P. Thus the Full observation is exactly

described by (P&Q).

Now let us relax the restriction of disjointness of alphabets. UWe
stipulate tnat each event in the intersection of the two alphabets
requires simultaneous participation of both subsystams deacribed by P
and Q. Thus the count of evernts recorded by ane subsgystem must always
be thae sSams as tnat recorded for tha other subgystem; so each possible
value af this count must be described by both P and J, and therefcore by

(PaQ).

Example 1,
UM A PROFIT & BUFFERT

A simple wvesding machine can be conatructed from two concurremt subsystems,
one of whicn is profitable and the other refuses fto allow insertiam of
a secand cain until the Ffirst chocglate has been dispensed. Each event

that gccurs is an event in the life of both subsystems,

Example 2.

M2 & CUST & croc £ coin £choe + 2
& choc £coin + rejoice + 1 Lchoc + 2

& rejoice £ choc
& rejoice = 0 & choc € coin Lcroe + 1

v reloice = 1 g choc = coin

In this system, the customer can still kiss his wife at any time - that is
of PO concern to the vending machine. Tre cuystomer never ailows the ~umbar
of coins inserted to reach {choc +« 2) ano the vending machine never allows
the number of chocs to exceed the number of coins inserteo. It may
therefore seem surprising that the customer srould ever ~ave cause to
rgjoice. This can happen when the events coin and choc occur Simultaneously;
the vending nacnire cehaves as if the coin droopeu first; ctut tne

custaomer thinks that choc was dispensed first ang rejoices prematurely.



if we wish to sxeluda such strange happenings, we shall have to strengthen
our language for specifications, or use @ more complex compasition

operator than & ; these topics will be pursued in later seetions.

3. Example: tha Gining Philosophers

In ancient times, a wealthy philanthropist endowed a Collaege to
accommodate fFive eminent philasophers. Each philosopher bhad a room in
which he could engage in his professional activity of thinking; ctharae
was also a common dining room, furnishea with a circular tabla, surrounded
by fiue chairs, each labelled by tha name of the philosopher who waa to
Pbil

sit in it, The names of the philosophers were Philp, Fhil Phil
-

1 2! ki
Pnil, ang they were disposed 1n this order anticlockwise round the table.
To the laft of sach philosopher there was laid a goldan fork, and in the
centre a large powl af spaghetti, which was constantly replenished,

A philosopher was expected to spend most of his time thinking; but
when he felt hungrty, he went to the dining room, sat down in his own
chair, picked up his own Fork on his left, and plunged it into the
spaghetti, But asuch is the tangled nature of spaghetti that a sscond fork
is requireq to carry it tp the mouth, The philosopher therefore had also
to pick up the fork on his right. Wten he was finished he would put down
toth his farks, get up from his chair, and cantinue thinking, Of course,

a fork can be used by only aone philosopher at a time, IF the other
philosopher wants it, ha just has to wait uyntll the fork is availatla

again.

1.1 Alphabats

ke ahall now construct a mathematical model af this system. First

we must select the relevant sets af events, Ffor Dhili, the sat is defined:

,LPm'.li = {i sits down, 1 gets up,
i picks up fork i, i picks up fork (i¢9 1),
i puts down fork 1, i puts down Fark (i(¥)1)

where (+#y is agdition modulo 5.

Note that the alphabets of the philosophers are mutually disjoint,
There is no event in which they can agree to participate jointly, sc
there 13 no way whatsoever 1n which tnay can interact ar communicate with
aach gther -~ a realistic reflection of thne behaviour of ohiloscphers of

those gdays.
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The other actors in our little drama are the five forks, each of which
bears the same number as the philosopher who owns it. A fork is picked
up and put down either by this philesopher, or by his neighbour on the

other side, Its alphabet is defined

uLFor:ki & {i picks wp fork i, (i &1) picks v fork i,
i puts down fork i, {i¢& 1) puts down ferk i}

whers (2 denotes subtracticn modulo S.

Thus gach event except sitting down end getting up reguires partici-—

pation of exactly two adjecent actors, a philosopher and a fark,

3.2 Behaviour

Apart from thinking and eeting which we have chosen to ignore, tha

life of each philosopher is described:

PRil, @ (i sitsdown; i picksup fork ij i picks up fork (i (&1);
i puts down fork i; i puts down fork {i @T); i gets up
Phili)
&=3(1 sitsdown 2 i picks up fork 1 »
i picks up fork (1 (®1) > i puts down fork i 3
i puts down fork (i@ 1) % i gets uo >

{i sits down = 1))

The rile of a fork is a simple one; it is repeatedly picked up and

put down by one of its adjacent philoscphers:

FGrki 2 (i picks up fork i; 1 puts down fork i; Forki

v {(1©&1) picks up fork i3 (i &?1) puts down fock i Forki)

=i @ 1) picks up fork i = {i &) puts down fork 1

& i picks up fork i 3 i puts down fork i » ((i picks up fork 1) = 1)
V 1 picks up fFork i = i puts down fork i
& i @1 picks up fork i 3> (i &1} puts down fork 1 & ({{i 1) outs

down Fork i) = 1)

The bperaviour of the entire ccllege of philosophers is simaly the

conjunction of the behaviour of these components:
4 4
Collegs © ( & Phil.) & { & Fork.}
i=0 : i=0 1



3.3 0Oeadlock!

When this mathematical model nad bean constructed, it revealed
a gerioua danger. Suppose all the philosophers get hungry at about
the same time; they all =it down; they all pick ug thair own Ferks;
and they all reach out for the other Fork = which isn't there. In
this undignified situation, they will all assuredly atarve. Althaugh
each actor is capable of further action, there is no action wnhich

any pair of them can agree to do next.

R possible observation of this sad autcome {s

4
& 1 sitsdoawn = 1 picka up fork i = 137
i=0
@
& & 1 puts down Fork i = 1 puts down Fork (i (¥ 1)
i=0
= i picks up fork (i(®?1) = i getsup = 136

This ohservation is described by the specification of the College;
out there is ro way of adding upity to just ona of the counts so thst
this successor ocbservation is also described by the specification.
If we are not willing to sllow the simultanecus occurrence of aswveral

gvpnta in the LiFe of a single actor, rathing further cam hsppan.

3.4 9Deadlock averted

However, our aWmry does not end so Saoly. Unce the danger was
detected, there were suggasted many ways to avert it. for examplsa,
one of the philosophers cowld always piek up the wrong fork first - if
only they could have agreed whicnh ane 1t should bel The purchsse of a
gingle additional fork was rulad out fFor similar reasone, wheraas the

purchaass of five more forks was much too expensive.

The salution finally adopted was the appointment of a Footman,
wnoge duty it was to assist aach philosopher iInto and out af his

chair, His alprabet was gefingd:

4
o Footman = \J (i sits douwn, i gets up}
i=0

This footman was given secret instructions never to allow more than

four philosophers to be simultaneousaly seateg:

4
Footman £ 3> (i sits cown — i gets up) £ 4
i=0
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Lat Fj (for 0 £ j € 4) denote the behaviour of the footman with j
philosopheras ssated, Then

4
Fa e \f {1 gets ups F3)
i=0
4
{(for § =1,2,3) FJ. F= _\=/u (i geta up; Fj_.l v 1 sits downj; Fj+1)

4
F 4 V (1 aits down; F, )}
o] i=0 1

We need toprove that
4
F.— 2 (i sits down - i gets up) & 4-]
I g

and hance

Fu =:' Footman

This estaullshes that Fn is a correct implemantation of the behauviour

specified for the Footman,

The aedifying tale of the dining philosophers is due to Edager Ww.

0ijkstra; the fFootmam is due to Carsl Scholten.

a, Mathematical Proparties

A majct advantage of specifying complex systems in terms of some
familiar domain like the pradicate calculus is that the aperators enjoy
a number of alegant mathematical properties., Algsbraic properties are
thoss that can be expressed as simple sguations, or (in the case of predi-
cates) as aguivalances. Orderlng properties are thase which are expressed

as inequalities, or (im the case of predicates) 2a implicatione.

4.1 Algebreic propertises

{1) "&" ano "v" are assogciative, commutative, and idempotent.

(2) m™&", ard "v" and "c3" distribute through w.

However, bacause the operands of "v" must have the same alphabet, it is
not gemerally true that "u™ distributes through "&", Neverthaless any

predicate which uses anly "&" and "v" (and constants ZERO and CHAOS) can

be reduced to disjunctive normal farm, in which & is tha imnsrmost aperatar.
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The "&" operator may then be eliminated, using:

{3} IEHDA& ZERDB = ZEROAU

B
EHRDSA & CHRDSE = EHROSAUB
ZERUA & CHﬂDSE = ZERDAUB

We would now like to develop a normal Farm for predicstes con=
taining the prefixing operator "c;". Since prefixing diatributes
through "v", it i5 necessary only to ahow how it distributes through
ll&" .

{(4) (a3;P) & CHADOS, a;(P & CHAEISA)

(asP) & ZERO,

]

as(F & ZERQ,) if atha

= ZERDA ctherwise

(5] (aP) & (630} &> b3((a3p) 2 Q) if {ae a0

<=>5;(P & (b32)) if (a¥€ w0
& P

& a3(P & (03Q)) if [a € 4Q
v bi{(aip) & Q) {bé‘ “P

E=>a;(P & Q) if ae(spaag)

and a = b

This thecrem permits prefixing to be moved oputside "&" in all cases
except for (a;P) & (b;Q) when a,b € AP n e and {a £ b). 1n this case
gach operand is attempting an action which requires simultansous
oarticipation of the other, but they disagrees on which action it shall
ta. As a result, one mght expect that nothing can happen, and the
conjunction should reduce to 2ER0, But this fails to take into account

the possibility of simultaneous occurrence of svents; for example:
{a3b3;ZERQ) & (bza;ZER0D)

(e =5=0Va=b=1)
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IT we wigh to eliminate this possibility, we must iIntroducrse the restriction
that theg alphaoets af the two opperands of "&™ may have at most one guvant

in common,

Undet thig restriction, every expresaion can be reduced to a normal
farm in which "v" ig the oytermaost operator, and the "&" operator has baen

eliminated.

4,2 Ordering properties

The set of all predicates is partially ordered by the relation of
logical implication, which wae write " =="; this is shown by the follow-

ing familiar metathecremss

P= P
if Peowd Q and [ ==pp then P &>
if P=> Q0 and Q =—2>R then P =R

A function F is said to be monotonic if it "respecta™ the ordering

af its opsrand, i,s.

If B=> 0 tren F(RP)=2rF(Qq) for all P,d.

Tha definition extends to functions with many oparands, 1f they are mono-

tonic in sach of their operancs spparately, ®.Q.,

if P=3 0 then F{(P,R) =P F{Q,R)
and F{R,P) = F(R,Q) for all P,Qd,R.

Any operator that distributes through "v" is monotonic, sSo all the
operands «& have defined so fer enjoy thia property. Ffurthermora any
composition of monotanic aperators is also monotonic, so any Ffunction or
expresasion defined in terms of these operators will be mopotonic in all

its operands,

Thare is a good raasocn why oparators used in recursive definitions
shoyld be monatanic - it ensures the pxistence of a pradicate satisfying
8ach recursive definition. This assurence is given by the Tarski-Knaatasr
theorem, provided we accept the agssumptian that the space of predicates is
complete, A partial ordering is completa if every set 5 of predicates has

an infinite conjunction %S, such that {For any GQ):

Q =~»P for all P in S

if and anly if Q ﬁVS.



Tha limit points \;/5 are relatad to ordinary pradicates in much
the same way as the reals ara tc the ratiopals. Thay may be
uncountable in number, byt that should not be taken as a reason Por

danying their existence.

If there is more than ope sclution for a recursion equation, it is
necessary to declde which cne is meant. The ususl tachnique bate is to
tske the weakast soluticn, i,s. the disjunction of all possible
solytions. The Ffact that this is itself a solution is alse asautsd by

the Tarski-{paster thaorem,

4,3 Continuity

- 5
Let 5 {_n

Sm.‘l e 5, far all n.

n),D} be a countable set of predicates such that

Such an S is known as a chain, and its limit WS is written

¥n » 0. 5

n

IF ¢ is a monotonic Function of predicates, and S is a chain, then

{r(sn) | n U}

is also a chain, and has as limit

Yn. F(Sn) .

fAacayae F 1s monotonic, we have the implication:

F(¥n. Sn) =3 VYn. F(SH) For all chains S.

[f thig implication can be strengthered to squivalence, then F ia said

to be continuous.

A Function of several pradicates is continuous if it is continuous

in esch argumant Separately.

It is sasy toc sea that tha operators "c3™, "&" and "v" are con-
tinuous. It fallows that every Function of predicatsa defined in terms
af these apsrstors is also continuous. The main advantagaa of continuity

will emerge later; but hera wa note that continuity of a fFunctionf
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greatly simplifies the search far a solution to a recursion equation

of the forms

P = F(p).

Defime F°lirus) = true

Fnﬂ(true} = F(Fn(trua))

F(F{... F(true)))

n+l times.
Now the weaksst solution of the equation is
Yn. Fn(true)
proaf. (1) that it is a fixed point:
F{¥n FMtrue)) = Vn(Fn+1{trua)) by continuity

= true & Vn.Fn(true)

Vn.Fn(true)

(2) that it is the weakest fixed point:

Let P = F(R)}
o= FYm by induction
L.p = Ya T
==3¥h FM (trus) by monotonicity
Examp les
(1) P & 1(p) where I is the identity function.

In{true) &= true
L. PE YN, In(true)@ true
(2) Pl

Fn(true)@ true vQ v O v «ae v 0O
&= true
S PEdrTus
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(3) p@P&q

£ (trus) 4=y g
JoP=Q

(a) P = a;p where &P = {a,b}
Fi(trus) = (a=b=0va >0)
Fz(true)= (a=bes0va=1&hbh=0wva>1}
FMltrue) = (B =0 wvadn)

S P 4mdy VWn.(b=0Vayn)

& (b=0)

As shown by these examplee, the explicit solution of sach equation
raquires an induction to recast Fn(trua) as a predicate explicitly

caontaining n as a free wvariable.

4,4 Unigue aclutions

In all our examples of sections two and three, the solutiaons of
the recursive equations have been unique, [t is useful to recogmise
caaes of unique solution, because thay are simpler to reason about.
Consider the equatlgn

P = F(p).

F{p} {5 said to be guarded if it can be written in the form
a3G(P} v B3H(P) v ..., P G
where G(P), H{P) are gxpressed using anly the notaticns "c;" and ",

If F(P) is guarded, then the equation abowve has an unique solution.

Proof. @An expression is said to be guardes to depth ™1 if esch of
G(P), H(7), .... in formula {1} is guarded to depth n. Using

distributivity of "c;" such formyla can be written
ajhy ..3 GT(P) v c3dy .u.p HY(P) v ...

where the lgngth of each of the prefix sequencaes “c3dj...3" is

greater than n.



If F(P) is guarded, then Fn(P) is gquarded ta depth n, For any observ-
ation, we define its length as the sum of all the values ascribed to its
variables; thus the leagth is a caunt of the total number of evants that
have occurred, and is necessarily finite. If an ogbservaticn is of length
n, and a predicate Fn(P) is guarded to depth n, then one can determine
whethar the predicate describes the observation by merely looking at the

prefix sequances, independent of the value of P.

Now let

P =F{P) and Q= F(Q)

F7{Q) by inductian,

S P o= Fn(F') and 0

Consider an observation descritbed by P. Let its length be n, This
observatior is also described by Fn(P] and thereforae by Fn(u), which has
all the same prefixes of length n, Thua all observations described by P
are also gescribed by G, and vice versa, P and (Q are therefare sguivalent

as predicates.

5. Programming

As discussed in the introduction, a specification 1s an arbitrary
predicate describing all possible observations of same system. The task
af the scientist is to discover the strongest specification describing some
aspect of tre behaviour cof the natural universe. The task of the engineer
is different: he has tao construct some mechanism wpicn meets a specifi-
cation describing the needs of a potential user af the mechanism. The
gngineer's wuties would De much simplified if he had at his dlsposal a
stock of umiversal mechanisms, An universal mechanism is one that will
first accept the text of any oesired specification, and will then automat-—
ically tranmsform itself into a mechanism wnich behaves i1n accordance with
that specification, for as long as 1t is wanted. Such a marvellous
mechanism might be a bit expensive; and if 3o, it should have a switcn to
tutn it back 1nto a universal mechanlism wnen there -s no need for it to

continue to satisfy its currant specificatign.

For tre civil engineer or naval architect, an universal mechanism of
this kind 1s nothirg but a pipe-drezam. But for the computar programmer,
it is a reality whicn ne takes for granted - it is the stored program

gigital computer. The only problem is that the computer will rot accept



an arbitrary predicate as a gpecification; the predicata must se
wuritten in & highly restricted notation known as a programming
language. Such predicates are known as programs. 1ln ths remainder
of this paper we shall defina a program a8 a pradicate expressed
salely inm terms of the conatants and cperators iptroduced in
section 2 together with recuraion, Later, we shall considsr soma

further testricticoma on this motation.

S.17 PArpgramming mathodology

The task of the programmer is now clear. first, he must use his
pest judgement to formulate a specification of the desired produwct.
The specification should be expressed as a precicats, taking
advantage of the full power of the concepts and notations of logic
and mathematics to weep the formalisation simple and clear. Clarity
ia of the utmost concern, since a misungerstanding at this stage can
tave a severe impact on the auality aof the product. The programmer
now has to reformulate the specification as a program P, expressed in
the reatricteg notaticns of his programming language; ang this -ay
involve a jross expansior in the size of the text. Furthermore, he
must fimo a pragram that is adequately afficient when executad on a
mechanism af affordable capacity and speed. His task may be slightly
simplified by the fact that it is sufficient te find a program P that
merely i1mplies its specification 3; there is no need to achieve exact

equivalenca.

Thus tha task of programming is rather like that of finding an
axplicit gefinition of a function whnich satiasfies given differential
equations. Just as some aquationa have no explicit solutions, some
oredicates cannot be programmed because they are i1ncomputable or sven
incansistent, For sclubla equations, mathematicians have discavered
many technigues For finding and checking proposed sclutions, though
their application usually demands gome mathematical akill and insaght,
% collection of methods for constrycting a program to meet an

arbitrary spacification is known as a programming methodology.

5.2 Tap—doun development

Une rather obwious prooramming method is the techniqus of "too-

down development™ or "divide—and-conguer"; it is rather similar to

19,
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integration by parts, in that its injuolicious use can require solutien af
aubproblems mare difficult than the originral problem, Let S ba the

specification of the desired program. Then
(1) tet F(T,u) be an expression containing the predicates T and U, but
otheruise expressed wholly within the programming language.

(2} Prove that F(T,U) == S,
(3) Find sroqgrams P and 3 such that

P o— T

and Q =-9 u.

(4) The rssult you want is

F(n,q).

The validity of this method depends on the fact that all operators of the
programring language are monctonic. Its utility derives from tha Fact

that ¢ is proved correct before P ano J are programmed.

5.3 Introsuction of recursion

Orne of the most significant taaks of the gragrammer is to construct
correct loops or recursions, Suppose 5 is the specification which 1s
believed to require a recursively cefined pragram. Then the following

steps are racommended:

(1) Find an expression € which maps the observations of the alphabet

onto non—negative irtegers, This is krown as a "variant function”.

(2) Fing a pregram F(P), containing the predicate mame P, such that
F(SVE),n)ﬁ,(SVE > n)

whers n is a fresh variable.

Thus if the recursive call P estaplishes S in all circumstances when
€ £n, thenF(R) is better thamn P, in that it ansures 5 in the case when

£ = n+1 as uell.
{3) Then the program you want is defimeo racursively:

5 &r(p)



Prpaf. From atep 2, by an sasy induction
F(true)&=3F"(S v £ 3 0) =3 (5 vE >n) for all n

S (Yo.F™(erue)) = (5 wWn.E » n)

% S
Since F is expressead wholly in notations which are known tec be con-

n . ;
tinuous, Wn.F (true) is the weakeat solution of

- -

6. Implementation

The main motivetion for writing specificationa in a restrictive
nrogramming language is the existence af a universal mechanism that
will autamatically implement the program. In practice, such an
implementation 1s constructed from silicon chips, boards, wires, stc.,
together with lpagers, compilers, or interpreters for the given
programming language. 3ut For our present purposes, it is more con-
verient to construct an abstract Mathematical machime, passing through
a series of states; each state corresponds to a possible observation
described by the program ipitially given to the machine, Here is an
informal degscript:ion of the pehaviour of such a machine, 1nternded tc

model the actioms of an 1nteracting system:
(o) irout the specificatinon with given alphatet.

{1) Oeclare an 1nteger variable corresponging ta each event in the

alpnaoet, Initialise all these variables to zero.
(2} Repeat =re Pollouwing steps as lang as possible (or until switchse
of f):

(2.1) Ffar each variable in turn, sdd cne to its value, test 1if

the soecification is true, ang suotracc ame again,

(2.2 For all variables wnifh have passeg test (7.1), wait until
tre user/environment of the machanism has selected which of the
ayvents 1s to occur. !f no variable has psssea the test, this

walt will last farewver,

(Z.3) Add ane to the uvariable selacted in steo 7.2.

21,
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We assume that an observation of this machine can be made just before
gach iteration of the loop (2); at that time, the current valyuss of all

itas yariables ars agbservable,

6.1 Consistency

Clearly, this implementation does not correctly implement eveary
predicate; in fact the predicate "a » 3" is false immediately after
step (1). However, any predicate which is true after step (1) will remain
true Forsusr — that is the purpose of the tests of step (2.1). 53a, to
show that the implementation correctly implements every pragram, it
suffices to show that every progrem describea the observatiom when all

the counts are zero, i.e., that
ZERUA =P for all programs P with alpnabat A.

This can &e oroveo by structural ipouction on P, using the following
lsmmasg.
(1) ZEF{DA=#ZERDA
(2) ZERD, == CHAGS,
(3) zEHUJ=}(a;D)
(4) If L0, ===p P and ZCRD, =30

then ZERO, =g ]

(S) If ko, =3P ang IEROR =0

Lhen ZER0 . == P & 3
Al D

7

(6) If for all n ZERDA ﬁﬁ'n

then zero, =»Vn.p
n

The last clause 1s required to show that all programs defiped oy recursisn
are implien oy ZERC; this conclusion <epends also on continuity of all
the connectives of the programming language, a property which has alreaoy

been estaclishea in &.Z,

Thus w2 nave shown that the sroposed implementation worws correctly
for all oregrams expressec trme lamguage. This result may e reformulatec:
we have shown that the programming lanpguage is consistent with the given
madel imolsmentatior, in the sense that esvery soservation nroouced by tne

implementarion will e correctly cescribeo oy Lts program.
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6.2 Completenass

Suppose that a set I of ome or more correct implemenmtations has
been proposed for & given programming language, Let P be a program
submitted to these implementations. Now it may be that there is an
obsarvation described by P which can mever in fact occcur on any f the
implementationa. Thus the predicate P is not the strongest possible
gredicate describing the behaviour of its propased implementations.

In this csge, wa say the programming languege is incomplete with respact
to I, since it is not capable cof expressing ewvery true fact about I.
Incaompleteness is a serious fault, because it means that sgme correct
programs cannat be proved correct solely in terms of thair definition

ag predicates; their proof would reguire operatiopal reasoning baaed

on the implementations.

Unfortunately, our programming language is not tomplete with
respect to the implementation described abowve, 1n that implementatiaon,
each abservation except the firat (all zeroes) has a predecessor which
can be derived from it by subtracting unity from just one of its

component variables. Consider the specification
coin = choc.
This is satiafiad by the observation
coin = ehac = 5
but not by the obserwvation
coin = 4 & choc = 5
or by the only other predecessor apservation
coin = S & chog = 4,

Thus the specification describes an cbservation which can never be

reached by the iptanded implementation.

This would not matter i1f such a specification coulc never be
gxpresaed 3s a progrem, Unfortumatsly it can. Consider a silly
custamer of the wvending machine

SILLY A chocjcoin;SILLY

J. SILLY & VM1 &= (coim = choe)
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One solution to the prodlem would be to sxpand the set of impiementations
to allow any number of evermts to occur simultameously. Another solution
is to reatrict the praogramming language still Further, so that no
specification expressible as a program will describe an unreachable

observatior.

Let us attempt a solutiom of the second kind., A predicate is said
to e grounded if every described cbservatiom has a predecgssaor also
described oy it. Each observation therefore has a chain cof prececessors
reaching back to the initial zero observation. - The intendso implament-—
ation can follow this chain i1n the reverse dirsction, and can thos reach
any observation described Dy & grounded predicate, 50 ue need to reatriaot
our programing language in sucn a way that 1t cen exprass only grounded

predicates,

An effective restriction is the one introduced in section 4,1 to
obtain a normal form: forbid the use of the cperator "&" except when the
alphabets of its operands contain at most orme event 1n common. The fact
that all programs satisfying this restraction are grounoed is proved by

structural induction, based on the following lemmas:

(1) ZERDA ind CHAQS  are groundec.
(2) IF ® ad Q are grounced, so are {a;P) ano (Pv ).
(3) Furthermors, if size (olPa o) £ 1 then {Pi0} 1s grounaed,

(4) IFf foralln P is grounded ano P . =2 P

+1

then 'v'n.Dn is grounded.

Only thne last clause reqguires any subtlaty of proof. fConsidar an
odservation oescribed by Vn.Pn. The maximum possible number of its
predecessors is Finite (eogual to the size of the alphabet). Since Dn+1
logically imlies Dn, the set of predecessars {af the given observation)
described by 0n+1 is @ subset of “hosge described Dy Pn. These finite
subsets form a descenoing ctain, whose .ntersection is therefore non empty.

Furthermore this intersection Ls gescribea by Vn.ﬂn.

2.3 The excluded mniracle

In seciion 3.!' ue 2efinga the task af the cragrammer as the ois-

covery af aarogram ¢ wnich logically implies a given saecification 5.
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Now suppoae he cauld find a program P that logicaelly implies every other
program §, Thia P would be a mirmculous progrem, since it could be umed
to implemant avery implamantablae spacification, With such e program, he
would never nead any ather; and each of his tesks would ba triviel. An
axample of such a miraculous program would ba one thet expresses the

pradicate false,

Ln practice, we suspect that a programming languege in whith there
oxists a mireculous program would be unrealistic or uealess in some
other way; 1t would certainly ba unworthy of serious mathematical study.
Unfortunately, our little programming language {as proudly provsd in
saction 6.,1) contains tha miracle ZERDR. So we need to excluds this
canstant from the language; but we aleag peed to ansure that it can

never ba expressed in soma other way, for sxample:
{chociSILLY) & {coinjum1)
4= {(coip = chac = 0 v choe > 0 & coin € choc-1 € cain+1)
& (eoin = choc = 0 v coln >0 & choe £ coin-l £ chac+1)

= (eoin = ehoc = 0]

This problem can be solvad by imposing the same restriction on the
alphabets of the operands of & as has alrgady been recommended in 4.1
and 6,2, Then no program is egual to the miracle ZERDA. A proof of

this yees structural induyction based on tha lemmas,

{1) cHaos, £ ZERD,

(2) If P and Q are programs distinct frem ZERDA then so are (a:p}
and {F v Q), and (P& Q) provided size (ekPr Q) £ 1.

(3) IF for all n P # ZERD, and P_ e,.pn

then (Vn.Pn) # ZERD, .

The proof of the lzst clause uses the fact thet an observaticn has

only a finite number of possible successors.

Now we resad to prove that thers are no other miracles besidas
F.ERDA, which we have alraedy excluded. Unfortumately there is. I[f
the alphabet A contains only one event, then all exprassible programs
are egquivelent to CHRUSA. ye must therefors insist thet every alphebet
A contains at least twc variacles, say "a" and "b". Then there ete

at least two cifferent programs with elphabet A:
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]
o

P ®aP &< b
02 b0 &3 a=0

Furthermare tha only observetion they both describe is
(a2 b = Q) G ZEHD'q

But 9ince ue have shown that no program implies ZERDR, no program can
imply bothP and Q. Thus there is no program which implies ewvery other

program,

5.4 Computapility

The universal mechamism described abaove requires the ability to
determine the truth or Falsity of a predicate for an arbitrary wvalue of
its free wvariables., It is well known that for some predicates this is
impossible, we must therefore ersure that our programming languagse can

express cnly predicates which are in some sense computable.

In gemsral, the appropriate sense of computability seems to be that
the complemnt of the predicate ahould e recursive snumerabls. Thus if
an observation falsifies ths predicate, 1t will be possible to prove
that it does so. 5Such predicetes are said to be Falsifiablae. Agcording
to Karl Popper, falsifiavility is alsc a required property of all
sclemtific tmearies. In accordance with this definiticnm all our pragrams

are falsifisole:

(1) ZERD, and CHAC3, are falsifiable.

(2) IF P arg } are falsifiaole, then so are {(a;P), (Pvd) anc (P& 0).
(3) 1IF forall n, Dn is Falsifiable, then so is VH.PH.

Another vary cesirable property of a general purpose orogramming
languege is that its programs should be able to cpmpute every computable
Function. the usual method of proving this is to program in the language
a simulestior of some «mown unmiversal machime such as 2 Turing machine.
But our lamguage cannot co this; in fact the language can be implemented
on a finite state macrine. In a soecial purpese language, sucr 2 limit—
2tion may te an acvantage, if it permits a mecranical check against
certaln uncesiranle occurrences SWch as non—terminetion or deadlock. A
mare practical defect of ocur lamguage is that it cannot even describe the

simple examplas used to illustrate this paper, Tp spolue these cefects we
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would need to introduce more gperators amd perhaps variebles dencting

dif ferent kinds of observatiaon,

6,5 Contimuity again

The descriptiorm of an universal implementation of our language
esaentially regards each complete program as a predicate which tan be
testea. Im practice, pragrams are implemented in a structured feshion,
and the camplete implementation af a complex program is canatructed
from implementations of its parts, for exampla, a tast of {P v 0) ar
{f & Q) or {a;P) can be constructed from testa of P anmd 0O separately.

However, the position with recursively defined predicates is less clear.
Fallowing Scott, we identify en implementation of the precdicete
P 2Fr(r}

as the infinite sequence of "finite approximationsa™:

{Fn(true)l no u}

such that the desired program P is the universal quantificatior of the
seguences. MNaw Lif G i any cantinwous function of predicetes ta
pragicates, an implementatior af G{P) cap be constructad from the

Lmplementation af P, thus

{G(F”(m..a)){ Ny a} .

Hgcause G is comtinuous, this is an infinite seguence of finite approx-
imations to G{F)}. T7hus we have constructed an "implementation™ of G(P)

out of an implementation of A,

There remains one ocutstanding question. A programming lenguage
gaefired by the metbods cescribed in the previous sections is a notetion
for specifying falsifiable predicates., However, the set of observations
gengrated by amy mecranism must be recursiue enumerable. Since the
complament of a recursive enumerable set is not necessarily recursive
anumerable, there will in generel be abservations which cannot be
generated Dy a correct implementation, even though they are cescribed
Dy the program which is being implemented. Thua no general-~purpose
pragramming language can be complets in the senpse of §.2, The problem

is mpat ecute in the case of a non-terminating recursion

P2 1(p)
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According to our defipitlon
PHCHADSR .

However any "raasonable™ implamentation is likely to produce only the

all-zero observation, so that it will behava as if
D@%ZERDA .

Thus all observations (except one} fall into the gap betwsen what is
described by the program and what is actually garnerated by its implement-

atiaon.

I do noit know whether this problem has a salutlon, or even whather

it rneeds one,

7. Conclusion

The first step in the construction of a mechanism to meet some require-
ment is to cotaim a very good underatandirg of that requirement. This
understanding can ge formalised as a predicate describing all possible
acceptable thservations of the benawviour of the mechanism, Escause mis-—
underatandingy at this stage is soc dangsrous, a specification should be
short, simpls, and well-structured; and to this end it should take full
advantage of all available concepts and notations of mathematics and logic.
For effectiwe description of certain kinds of dypramic syatem, it is
convenient also to use certain concepts akin to those of computer programs;
and this reaqiires they be defined in terms of conventional predicates.
Even so, the construction of a successful specification requires ths same
fuman skills and inasighta as are characteristic of an applied mathematician

gr engineer,

The task of the programmer remains to finod some predicate, expregsed
only in the restricted notations of his‘p}:agramming language, which
logically imlies the specification, The reason for the restrictions is
to snable the program ts be run on some available implementation of the

language.

This wvisw of programs and their specifications is highly relevant for
the designer of a programming language, Firstly, he must have a wide
underatanding of the application area of his languaga, Based on this, he
should defims a range of concepts to assist in the specification of

programa witrin that area. These concepts should enjoy nice algetiraic
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properties, prefersbly admitting a simple normal form, If recyrsion
or repetition is required, then all the propositional connectivas

invglved shoguld be at leest mongtonic.

The designer should then define e class of model implementstions,
which will automatically conform tg a8 subclass of specifications
submitted to them, The implemantations should be a reasonable abstract-
ion of what can be built, pathaps in silicon, at accaptable cost. This
will require some restriction an the gqanerality of the notatiom uaed
in the specification, These restrictions should not be so severa that
they prohibit an exact description of tha behaviour of tha mocel
implemantations; but they should be severe anough to excluce tha
uniformly false praedicate, or any program which logically implies ali
ather progrsms, Finally, there ahould be some reasonably easy stapwisg
methog for demigning a program from its specification. A4ll these tasks
are considerably simplified if all the operators of the programming

languege are nat only monotgnic but oontinuous.

This accownt of the nature of programming and of programming
language desigm suggests that both activities require and degserve the

technigues ana skills of the mathematical lagician.
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