# SPEEIFICAT：ONS， <br> PROCRAMS <br> 2 NO <br> IMPLEMENTATIONS 

उy

二．$\therefore$ ．R．HOAFE

Technical nonogragh orG－29
June 1982
こxford uniuerきity Eomputing Lanolatory programming Research inroup 45 Janoury Roag jxforo 0x2 5Pこ


303397038－
(C) 1982 C.A.R. Hoare

Programming Research Group
Oxford University Camputing Labaratary
45 Banbury Road
Dxford $0 \times 2$ 6PE
United Kingdom


#### Abstract

A specification is a predicate describing all observations permitted of the system specified. Specifications of complex systems can be constructed from spacifications of their components by comnectives defined in the pradicate calculus. A program is just a predicate expressed using only a rastricted subset of such connectives, codified as a programming language. An implementation of the programming language is a mechanism that will accept any predicate of the language, and then behave as described by it. Given a proposed model of an implementation it is desirable to prove that every program expressible in the language is consistent and complete with respect to the model; furthermore, there should be no program which logically implies all the others. These points are illustrated by the dasign of a very simpla programming language, describing the interactions of concurrent processes. It is suggested that the design of a realigtic programming language requires, and is worthy of, the skills of a methematical logician.


Page

1. Introduction ..... 1
2. Interacting Processes ..... 3
2.1 No action ..... 4
2.2 Arbitrary Action ..... 0
2.3 First action ..... 5
2.4 Recursion ..... 5
2.5 Aiternatives ..... 6
2.5 Concurrency ..... 7
3. Example: the Oining Philosophers ..... 9
3.1 Alphabets ..... 9
3.2 Eehavious ..... 10
3.J Deadlock! ..... 11
3.4 Deadlock averted ..... 11
4. Mathematical Properties ..... 12
Q. 1 Algebraic properties ..... $\uparrow 2$
a. 2 Ordering oroperties ..... 14
a.j Continuity ..... 15
a.4 Unique solutions ..... $\uparrow 7$
5. Programming ..... 18
5.1 Programming methodology ..... 19
5.2 Top-down development ..... 19
5.3 Introduction of recursion ..... 20
6. Implementation ..... 21
6.: Consistency ..... 22
S. 2 こompleteness ..... 23
S.J The excluded miracle ..... 24
6.4 Computadility ..... 26
6.5 Continuity again ..... 27
7. Conclusion ..... 28
Acknowladgements ..... 29

## specifications, programs

1. Introduction

A variable in a formula of applied mathematics stands for same directiy or indirectly observable value. The correspondence between the veriable and the observation must be established informally by some such phrase as "Let $x$ stand for the position (in metres) of a body at time $t$ (measured in seconds), and let $\underline{v}$ stand for its velocity (in metres per second)".
"Let coin stand for the number of coins inserted into a vending machine up to a certain moment, and let choc stand for the number of ehocolates it has dispensed".
ihe alphaoet of a system is the set of variables denoting those otseryations which are af current intarest. The selection of a useril and relevant alphabet of observations is one of the primary characte:istics of a successful scientific theory. A soecrfication of a systen $S$ is defined by $1 t s$ alphabet $\alpha$ together with a predicate, usually cantaining variaoles from $\langle S$, which describes all possible observations wnich may be made of the systam. An observation ascribas a value to each variaole in the alphabet; a specification destribes the abservation if the predicate evaluates to true when each variable is replaced by its ascribed value. we use $S$ itself to stand for the predicate.
2.

Exampla 1.

$$
\begin{array}{ll}
\alpha \text { LINEAR } \triangle & \{x, t, v\} \\
\text { LINEAR } \triangleq & 1 \leqslant t \leqslant 4 \Longrightarrow x=v x t-3 ; v=3
\end{array}
$$

LINEAR specifies a body that moves at a constant speed of 3 metres per second between time 1 and time 4 . Some obsarvations described by this specificetion are tabulated below:

| $x$ | $t$ | $v$ |
| :---: | :---: | :---: |
| 0 | 1 | 3 |
| 3 | 2 | 3 |
| 6 | 3 | 3 |
| 12 | 0 | 97 |
| 14 | 5 | 12 |
| 0 | 5 | 0 |

The first three lines make the consequant of the specification true, and the last three make the antecedent false. when $t$ is outside the specified range, the specification is indeterminate: it specifies noting at all about the vaiues of $x$ and $v$.

Example 2.

$$
\begin{aligned}
& \text { PROFIT } \geqslant \text { (choc } \leqslant \text { coin) } \\
& \text { BUFFER1 } \triangleq \text { (coin } \leqslant \text { choc }+1) \\
& \text { UM1 } \geqslant \text { PROFIT \& BUFFER1 } \\
& \text { 人UM1 }=\{\text { EDin, choc }\}
\end{aligned}
$$

The predicate pROFIT specifies that a vending machine shall de profitable in the sense that it never dispenses more chocolates than there have been coins inserted. $\operatorname{BUFFER1}$ states that the machine will buffer only one coin, so it is impossible to insert two coins and then extract two chocalates. Some possible observations are:

| coin | choc |
| :---: | :---: |
| 0 | 0 |
| 1 | 0 |
| 1 | 1 |
| 13 | 12 |

Gy a bold abstraction, we now say that a system is fully defined by the strongest specification which describes its every possible behaviour. Thus two systems are regarded as the same if their alpabets are the same, and their specifications are logically equivalent. this is reasonatle, for chen there can be no observation of one of them which is not alsc a poss20le observation of the other, and by the frinciple of the identity of indiscernibles, they should be regarded as the same.

Let 5 be an arbitrary specification, and let $A$ be the strongest spacification of some actual system, and suppose that A logically implies S. This means that every ouservation described by $A$ is also described by 5. Thus we can claim trat $A$ is a corract implementation of the specдfication 5. The suggestion of this snd the previous paragraph is that questions of equivalence and corcectness of systems can be treated athin Che traoitional framawark of mstnematical logic without raquiring any specialised axioms or proof rulas. This suggestian is explored in the next section by definang predicates which describe the benaviour of systems composed from interacting concurrent processes.

## 2. Intaracting Processes

We are interested in systems which engage in certain observabls events, such as the insertion of coins i, ito a vending machine, or extraction of chocolates. For eacm event individually, $2 t$ is possibie to record mow many times that event has occurred up to any given moment. The alphadet of a process contains variaoles standing for these councs. For examplo, the alphabet of a vending machins may be declared as aumy $=\{$ coin, chac $\}$
4.
2.1 No action

Let $A$ be the alphabet $\{a, b, c, \ldots\}$
We depine the predicete
$Z E R O_{A} \triangleq(a=b=c=\ldots=0)$
$\alpha \operatorname{ZERO}_{A}$ ㅇ $A$

This is the specification of a rather useless system, which never does anything at all, so thet its event counts remain forever zero.

Example VMO - ZERD \{coin, choc $\}$
This describes the behaviour of broken vending machine. Its alphabet indicates that it is equipped with the physical argans for accepting coins and dispensing chocolates, but its pradicate states that it never uses them.

### 2.2 Arbitrary action

We define the predicate
CHAOS $_{\mathrm{A}} \triangleq$ true
$\alpha$ CHACS $_{2} \triangleq A$

This is a specification which places no constraint whatsoever on the behaviour of the specified system. Every system is correct in accordance 山ith this specification.

Examole
UMER $\cong$ CHAOS \{coin, choc\}

This maching is even more badly broken than UMO; it accepts coins and dispenses chocolatee with gay abandon.

```
2.3 First action
Let a \epsilon A
Lat P(a) be a predicate with alphabet A
(a;P(a)) 气 ZERG }V\mathrm{ (a>c & P (a-1)
This gpecifies a system which first engages in the event counted Dy the variable "a", and then behaves as spacified by \(p\). On the first ooservation, all the counts are zero; on all subsequent observations, the count of "a" is positive; furthermore, on reducing the count of "a" by one, we get an observation described by \(P\).
Example
Recall that UM1 \(\hat{人}\) (choc \(\leqslant\) coin \(\leqslant\) choc +1 )
\(\therefore\) (cain; choc ; VMI) \(\Leftrightarrow(\) coin \(=c h o c=0\)
```

```
    voin >0& (coin - 1 = chac = 0
```

    voin >0& (coin - 1 = chac = 0
                                    v choc > 0& cmoc - 1 \leqslant coin - 1 (choc))
                                    v choc > 0& cmoc - 1 \leqslant coin - 1 (choc))
                                    \LongleftrightarrowMM1
    ```
where we allow ; to be right assocıative.

Thus UMi specifies a machine that first accepts a coin, then dispenses a chocolate, after which it behaves again like uM1. Such a machine will alternately accept coins and dispense chocolates for as long as there is any call upon it to do so.

\subsection*{2.4 Recursion}

Let \(P\) be the name of a predicate, and let \(F(\rho)\) be an expression denoting a predicate, and possibly containing occurrences of \(p\). furthermore, let
\[
\alpha P=\alpha F(P)
\]

Thus the equation
\[
p \triangleq F(p)
\]
may \(\quad\) e regarded as a recursive definition of the predicate named by \(P\). Problems of existence and unigueness of this solution are postponed to \(\operatorname{sectian} 4\).
6.

\section*{Example}
\[
\begin{aligned}
p & \triangleq(\text { coin } ; \text { choc } ; p) \\
\alpha p & \triangleq\{\text { coin, choc }\}
\end{aligned}
\]

We alraady know that a possible solution of this equation \(1 s:\)
\[
P=V M 1 \Rightarrow(\text { chac } \leqslant \text { coin } \leqslant \text { choc }+1)
\]

In fact, this is the only solution, as will be shown in section 4.4.
2.5 Alternatives

Let \(\rho\) and \(Q\) be specifications, with
\[
\alpha \rho=\alpha 0
\]
we stipulate that \(\alpha(p \vee Q)=\alpha \rho\).
( \(\mathrm{P} \vee \mathrm{Q}\) ) specifigs a gystem which will behave like \(P\) or like \(Q\) (ar like both). The choica between the alternatives is not determined; it may be made by the enviranment within which this system is embedded, as will be describad in 2.6.

Example 1.
\[
P \triangleq(\text { choc; coin; } p \vee \text { coin; choc; } \rho)
\]

This describes a vending machine which allows its customer to sample a chocolate, and trusts him to pay apter. The solution to the defining equation is:
```

P=(choc \leqslant count+1\leqslantchoc + 2)

```

Not surprisingly, the customer should pay for the privilege of using such a machine, as in the next example.

Example 2.
```

VM2 今 coin; p
choc \leqslant coin \leqslant choc + 2

```

This machine allows its custamer ta insert up to two coins before extracting up to two chocolates.

Example 3.
```

CUST 备 (choc; rejoice; [UST
v coin; chac; CU5T
vkisswifa; CUST)

```

This describes the behaviour of a customer for the vending machine．He is，of course，wery willing to take a chocolate without paying，after which he will greatly rejoice．He is also willing to kiss his wife， and whe：her he Joes so depands on whether she too ia willing．He is also willing to pay for his chocalate in the normel way．The unique solution of the equation is
```

    CUST = (choc \leqslant coin + rejoice + 1 \leqslantchac + 2d rejoice \leqslantchoc)
    Note that the specification of the custames daes not prevent him
    from engaging in the fcllowing sequences of actions, since In each case，it correctly describes the values of the counts before and after each svent of the sequence：

```
```

coin, kisswife, choc, ....
choc, rejoice, coin, coin, choc

```

The reason for these possitly unexpected sequences is that our specification language is too weak to cescribe such constraints as：
＂he can＇t kiss his wife between lesarting a coin and extracting a chocolate＂．
＂he never inserts twa coing in a row＂．

The weakness of the specification language is a daliberate decision that we do not wish to observe the sxact relative timing of events； thus we allow events to occur＂93multaneausly＂，in the sense that any attempt to place them in order will laad to a non－determinate resuit． jome further conseauences of this decision will become more appanat later．

2．6 Concurrency
Let \(P\) and \(Q\) be specifications with disjoint alphabets，i．e．，
\[
\alpha F \cap \alpha \hat{u}=\{ \}
\]
se then stipulate that
\[
\alpha(F \& 7)=\alpha P \cup \alpha C
\]
（ p \＆5）describes a system composed from the two subsystems seoarately described by \(F\) and \(U\) ，as they evolve together．Each event that occurs is 10 the alpna⿱亠䒑日e of only one of the components；and its occurrence
requires participation of that component, leaving the other component unaffected. Each observation of the completa system splits uniquely into two parts; the values of variables in \(\alpha \rho\) are described by \(D\) and are not mentioned by \(Q\); the value of variables in \(\alpha 0\) are described by Q and are not mentioned in \(P\). Thus the full observation is exactly described by ( \(P s Q\) ).

Now let us relax the restriction of disjointness of alphabets. We stipulate that each event in the intersection of the two alphabets requires simultaneous participation of both subsystams deacribed by \(P\) and 0. Thus the count of events recorded by one subsystem must always De the same as that recorded for the other subsystem; so each possible value of this count must be described by both \(P\) and \(Q\), and therefore by ( \(P \& Q\) ).

Example 1.
VMA \(\triangle\) PRDFIT \& BUFFER1

A simple vending machine can be constructed from two concurrent subsystems, one of whicn is profitable and the other refuses to allow insertion of a second coln until the first chocalate has been dispensed. Each event that occurs is an event in the life of both subsystems.

Example 2.
UM2 \& CUST \(\Longleftrightarrow\) croc \(\leqslant\) coin \(\leqslant\) choc +2
a choc \(\leqslant\) coin + rejoice \(+\uparrow \leqslant\) choc +2
a rejoice \(\leqslant\) choc
\(\Longleftrightarrow\) rejoice \(=0 \&\) choc \(\leqslant\) coin \(\leqslant\) chac +1
\(\checkmark\) rajoice \(=1 \leqslant\) choc \(=\) coin
In this system, the customer can still kiss his wife at any time - that is of no concern to the vending machine. The customer never allows the humber of coins inserted to reach (choc +2 ) and the vending machine never allows the number of chocs to exceed the number of coins inserveo. It may therefore seem surprising that the customer shoule ever mave cause to rejoice. This can happen when the events cain and choc occur simultaneously; the vending macnire sehaves as if the coin drooped first; cut the customer thinks that chac was dispensed first and rejoices prematurely.
if we wish to exclude such strange happenings, we shall have to strengthen our language for specifications, or use a more complex composition operator than \& ; these topics will be pursued in later sectione.

\section*{3. Example: the Dinıng Philosophers}

In ancient times, a wealthy philanthropist endowed a College to accommodate five eminent philasophers. Each philosopher had a room in which he could engage in his professional activity of thinking; chare was also a common dining room, furnished with a circuler table, surrounded by five chairs, each labelled by the name of the philosopher who was to sit in it. The names of the philosophers were Phil \(l_{0}\), Phil, phil \(l_{2}\), Phil \(y_{3}\), Phila and they were disposed 10 this arder anticlockwise round the table. To the left of each philosopher there was laid a golden fork, and in the centra a large bowl of spaghetti, which was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he felt hungry, he went to the dining room, sat down in his own chair, picked up his own fork on his left, and piunged it into the spaghetti. But such is the tangled nature of spaghetti that a sacond fork is required to carry it to the mouth. The philosopher therefore had also to pick up the fork on his right. When he was finished he would put down toth his forks, get up from his chair, and continue thinking. Of course, a fork can be used by only one philosopher at a time. If the other philosopher wants it, he just has to wait until the fork is availebla again.

\section*{J. 1 Alphabets}

Lie shall now construct 3 mathematical model of this system. First wg must select the ralevant sats of events. For Phil \({ }_{i}\), the sat is defined:
\[
\begin{aligned}
\text { POnil }_{i}= & \left\{\begin{array}{l}
i \\
\text { sits down, } i \text { gets up, } \\
\\
\\
\\
\\
\\
\\
\end{array}\right\} \text { picks up fork } i, i \text { picks up fork }(i \leftrightarrow 1),
\end{aligned}
\]
where \((\oplus\) is addition modulo 5.
Note that the alphabets of the philosophers are mutually disjoint. There is no event in which they can agrea to participate jointly, sc there 1 g no way whatsoever 1 n which tnay can interact or communicata with each other ~ a realistic reflection of the behaviour of philosaphers of those days.
10.

The other actors in our little drame are the five forks, each of which bears the same number as the philosopher who owns it. A fork is picked up and put down either by this philosopher, or by his naighbour on the other side. Its alphabet is defined
\[
\begin{aligned}
& \alpha \text { fork }_{i} \triangleq\{i \text { picks up fork } i,(i \Theta 1) \text { picks up fork } i, \\
&i \text { puts down fork } i,(i \Theta 1) \text { puts down fork } i\}
\end{aligned}
\]
where \(\Theta\) denotes subtraction modulo 5.
Thus each event except sitting down end getting up requires participation of exactly two adjecent actors, a philosapher and a fork.

\subsection*{3.2 Behaviour}

Apart from thinking and eeting which we have chosen to ignore, the life of each philosopher is described:

            i puts down fork i; i puts down fork (i \(\oplus\) ) ; i gets up;
            Phil \({ }_{i}\) )
            \(\Longrightarrow\) (i sitsdown \(\geqslant\) i picks up fork \(i \geqslant\)
                \(i\) pleks up fark \((i(1) \geqslant i\) puts down fork \(i \geqslant\)
                i puts down fork (i \(( \pm) \geqslant i\) gets up \(\geqslant\)
                (i sits down - 1))

The rôle of a fork is a simple one; it is repeatedly picked up and put down by one of its adjacent philosophers:

Fark \({ }_{i} \triangleq\) (i picks up fork \(i\); \(i\) puts down fork \(i\); Fork \({ }_{i}\) \(\vee\) (i \(\Theta\) ) picks up fork \(i ;(i \Theta 1)\) puts down fork \(i ;\) fork \({ }_{i}\) )
\(\Longleftrightarrow(i \Theta 1)\) picks up fork \(i=(i \Theta 1)\) puts down fork 1
\& i picks up fork \(i \Rightarrow\) i puts down fork \(i \geqslant((i \operatorname{picks}\) up fork i) - \(\geqslant\) ) \(\forall\) i picks up fork \(i=i\) guts down fork \(i\)
\(\& i \Theta 1\) oicks up fork \(i \geqslant(i \Theta 1)\) puts down fork \(i \geqslant(() i \Theta 1)\) outs
down Fork i) - 7)

The Deraviour of the entire callege of philosophers is simoly the conjunction of the behaviaur of these camoonents:

\subsection*{3.3 Jeadlock:}

When this mathematical model had be日e constructed, it revaslad a serious danger. Suppose all the philosophers gat hungry at about the same time; they all sit down; they all pick up their own forks; and they all reach out for the other fork - which isn't there. In this undignified situation, they will all assuredly starve. Although each actor is capable of further action, there is no action which any pair of them cen agres to do next.

A possibla observation of this sad autcome is
\[
{\underset{y}{4}{ }_{i=0}^{4} \text { i sitsdown }=i \text { picks up fork } i=137}^{2}
\]
\& \(\mathbb{k}_{i=0}^{i} i\) puts down fork \(i=1\) puts down fork ( \(i \oplus 1\) )
\[
=i \text { picks up fork }\left(i \oplus{ }^{\prime}\right)=i \text { gets up }=136
\]

This abservation is described by the specification of the Colleqe; out there is no way of adding unity to jugt ona of the counts so that this successor observation is also described by the specification. If we are not willing to allow the simultaneous occurrence of several events in the life of a single actor, nathing further can hspoen.
3.4 Seadlock averted

However, our atory does not and so saoly. Once the danger was detected, there were suggasted many ways to avert it. For example, one of the philosophers could always pick up the wrong fork first - if only they could have agreed which one it ghould be! The purchsse of a single additional fork was rulad out for similar reasone, whereas the purchase of five more forks was much too expensive.

The solution finally adopted was the appointment of a Footman, wnose duty ir was to assist aach philosopher into and out of his chair. His alphabet was offined:
\[
\alpha \text { footman }=\bigcup_{i=0}^{4}\{i \text { sits down, i gets up }\}
\]

This footman was given secret instructions never to allow more than four philospohers to be simultaneously seated:
\[
\text { Footman } \triangleq \sum_{i=0}^{4}(i \text { sits down -i gets up }) \leqslant 4
\]
12.

Let \(F_{j}\) (for \(0 \leqslant j \leqslant 4\) ) denote the behaviour of the footman with \(j\) philasophers seated. Then
\[
\begin{aligned}
& F_{4} \triangleq \bigvee_{i=0}^{4}\left(1 \text { geta up; } F_{3}\right. \text { ) } \\
& \text { (for } j=1,2,3 \text { ) } F_{j} \triangleq V_{i=0}^{4} \text { (i gets up; } F_{j-1} \vee \text { l sits down; } F_{j+1} \text { ) } \\
& F_{0} \triangleq V_{i=0}^{4}\left(1 \text { sits down; } F_{q}\right. \text { ) }
\end{aligned}
\]

We need to prove that
\[
F_{j} \Longrightarrow \sum_{i}^{4}(i \text { sits down - i gets up }) \leqslant 4-j
\]
and hance
\[
F_{0} \Longrightarrow \text { Footman }
\]

This establlshes that \(F_{0}\) is a correct implementation of the behaviour specified for the Footman.

The edifying tale of the dining philosophers is due to Edsger w. Oijkstra; the Footman is due ta Carel Scholten.

\section*{4. Mathamatical Proparties}

A major advantage of specifying complex systems in terms of some familiar domain like the predicate calculus is that the operators enjoy a number of alegant mathomatical properties. Algebraic properties are those that can be expressed as simple squations, or (in the case of predicates) as aquivalances. Orderlng properties are those which are expressed as inequalities, or (in the case of predicates) as implicatione.

\subsection*{4.1 Algeoraic properties}
(1) "s" and "v" are assaciative, commutative, and idempotent.
(2) "\&", and "v" and "c;" distributa through v.

However, because the operands of "v" must have the same alphabet, it is not generally true that "v" distributes through "s". Nevertheless any predicate which uses only "s" and "v" (and constants ZERO and CHAOS) can be reduced to disjunctive normal form, in which \(\&\) is the innermost aperatar.

The " \(\&\) " operator may then be elimınated, using:
(3) \(\quad Z E R O_{A} \& Z E R O_{B}=Z E R O_{A \cup B}\)
\[
\begin{aligned}
\text { CHROS }_{A} \& \text { CHAOS }_{B} & =\text { CHAOS }_{A \cup B} \\
2 E R O_{A} \& \text { CHAOS }_{B} & =2 E R O_{A \cup B}
\end{aligned}
\]

We would now like to develop a normal form for predicstes containıng the prefixing operator "c;". Since prefixing distributes through "v", it is necessary only to show how it distributes through "\&".
(4) (a;p) \& CHAOS \(A=a ;\left(P \&\right.\) CMAOS \(\left._{A}\right)\)
\((a ; P) \& Z E R G_{A}=a ;\left(P \& Z E R O_{A}\right)\) if \(a \tilde{\epsilon}_{A}\)
\[
=2 C R D_{A} \text { otherwise }
\]
(5) \((a ; p) \&(b ; Q) \Longleftrightarrow b ;((a ; P) \& Q)\) if \(\left\{\begin{array}{l}a \in \alpha Q \\ b \widetilde{\boldsymbol{\epsilon}} \alpha P\end{array}\right.\)
\[
\begin{aligned}
& \Leftrightarrow a ;(P \&(b ; Q)) \text { if }\left\{\begin{array}{l}
a \tilde{\varepsilon} \alpha Q \\
b \in \alpha P
\end{array}\right. \\
& \Leftrightarrow a ;(P \&(b ; Q)) \text { if }\left\{\begin{array}{l}
a \tilde{\epsilon} \alpha Q \\
b \tilde{\epsilon} \alpha P
\end{array}\right. \\
& \forall b ;((a ; D) \& Q) \\
& \Leftrightarrow a ;(P \& Q) \quad \text { if } a \in(\alpha P \cap \alpha Q)
\end{aligned}
\]

This theorem permits prefixing to be moved outside "\&" in all cases except for \((a ; P) \&(b ; Q)\) when \(a, b \in \alpha P \cap \alpha Q\) and \((a \neq b)\). In this case each operand is attempting an action which requires simultaneous oarticipation of the other, but they disagres on which action it shall ba. As a result, one might expect that nothing can happen, and the conjunction should reauce to ZERO. But this fails to take into account the possibility of simultaneous occurrence of events; for examole:
\[
\begin{aligned}
& (a ; b ; Z E R O) \&(b ; a ; Z E R O) \\
& \Longleftrightarrow(a=b=0 \vee a=b=1)
\end{aligned}
\]

If we wish to eliminate this passibility, we must introduce the restriction that the alphacets of the two operands of "\&" may have at most one evant in common.

Undar this restriction, every expression can be reduced to a normal farm in which " \(v\) " is the outermost operator, and the "s" operetor has baen eliminated.

\subsection*{4.2 Ordering properties}

The get of all predicates is partially ordered by the relation of logical implication, which we write " \(\Longrightarrow\) "; this is shown by the following familiar metatheoreme:


A function \(F\) is said to be monotonic if it "respecta" the ordering of its operand, i.e.
\[
\text { If } p \Longrightarrow Q \text { then } F(P) \Longrightarrow F(Q) \text { for all } P, Q .
\]

The definition extends to functions with many oparands, 1 f they are monotonic in each of their operands spoarateiy, e.9.,
\[
\text { if } P \Longrightarrow Q \text { then } F(P, R) \Longrightarrow F(D, R)
\]
\[
\text { and } F(R, O) \Longrightarrow F(A, O) \text { for all } P, Q, R \text {. }
\]

Any operator that distributes through "v" is monotonic, so all the operands we have defined so fer enjoy this property. Furthermora any composition of monotanic aperators is also monotonic, so any function or expression defined in terms of these operators will be monotonac in all its operands.

Thare is a good reagon why operatorg used in recursive definitions should be manatanic - it ensures the 日xistence of a predicate setisfying each recursive definition. This assurance is given by the Tarski-knaster theorem, provided we accept the assumptian that the space of predicates is complete. A partial ordering is complata if evary set 5 of pradicatea has an infinita conjunction \(\forall S\), such that (for any 0 ):
```

Q\longrightarrowP for all P in S

```

The limit points \(\forall s\) are relatad to ordinary pradicates in much the same way as the reals ara to the rationals. Thay may be uncountable in number, but that should not be taken as a reason Por denying their existence.

If there is more than ons solution for a recursion equation, it is necessary to decide which one is meant. The ususl tachnique hars is to tske the weskest solution, i.e. the disjunction of all possible solutions. The fact that this is itself a solution is also assurgd by the Tarski-knaster thaorem.

\subsection*{4.3 Continuity}
\[
\begin{aligned}
& \text { Let } S=\left\{S_{n} \mid n \geqslant 0\right\} \text { be a countable get of predicates such that } \\
& S_{n+1} \Longrightarrow S_{n} \text { far all } n \text {. }
\end{aligned}
\]

Such an \(S\) is known as a chain, and its limit \(\forall S\) is written
\[
\forall n>0 . s_{n}
\]

If \(F\) is a monotonic function of predicates, and \(S\) is a chain, then
\[
\left\{f\left(s_{n}\right) \mid n>0\right\}
\]
is also a chain, and has as limit
\[
\forall n . F\left(S_{n}\right)
\]

Because \(F\) is monotonic, we have the imolication:
\[
F\left(\forall n . S_{n}\right) \Longrightarrow \forall n . F\left(S_{n}\right) \quad \text { for sll shains } S .
\]

If this implication can be strengthened to squivalence, then \(F\) is said to be continuous.

A function of several pradicates is continuous if it is continuous in esch argument separately.

It is easy to see that the operators " \(c ;\) ", "s" and "v" are continuous. It fallows that every function of predicates defined in terms of these aperstors is also continuous. The main advantagaa of continuity will emerge later; but here wa note that cantinuity of a function \(f\)
16.
greatly simplifies the search for a solution to a recursion equation of the form:
\[
p=F(p)
\]

Define \(F^{\text {o }}\) (irue \()=\) true
\[
\begin{aligned}
F^{\pi+1}(\text { true }) & =F\left(F^{n}(\text { true })\right) \\
& =\underbrace{F(F(\ldots F}_{n+1 \text { times } .}(\text { true })))
\end{aligned}
\]

Now the weakest solution of the equation is
\[
\forall n . F^{n}(t r u e)
\]

Proof. (1) that it is a fixed point:
\[
\begin{aligned}
F\left(\forall \cap F^{n}(\text { true })\right) & =\forall n\left(F^{n+1}(\text { true })\right) \text { by continuity } \\
& =\text { true } \& \forall n \cdot F^{n}(\text { true }) \\
& =\forall n \cdot F^{n}\left(t_{r u e}\right)
\end{aligned}
\]
(2) that it is the weakest fixed point:
\[
\begin{aligned}
\text { Let } p & =F(\rho) & \\
\therefore \rho & =F^{n}(\rho) & \text { by induction } \\
\therefore P & =\forall \cap F^{n}(\rho) & \\
& \Longrightarrow F^{n}(\text { true }) & \text { by monotonicity }
\end{aligned}
\]

Examples
(1) \(p \Delta I(p)\) where \(I\) is the identity function.
\(I^{n}(\) true \() \Longleftrightarrow\) true
\(\therefore P \Longleftrightarrow \forall\) n. \(I^{n}\) (true) \(\Longleftrightarrow\) true
(2) \(p \triangleq\left(P_{\vee} \downarrow\right)\)
\(F^{n}\) (true) \(\Longleftrightarrow\) true \(v\) Q \(\vee\) Q \(\ldots \vee Q\)
\(\Longleftrightarrow\) true
\(\therefore p \Longleftrightarrow\) true
```

(3) $p \Delta p \& \square$
$f^{n}($ true $) \longleftrightarrow 0$
$\therefore \square=0$
(4) $p=a ; p \quad$ where $\alpha p=\{a, b\}$
$f^{\uparrow}($ true $)=(a=b=0 \vee a>0)$
$F^{2}$ (true) $=(a=b=0 \vee a=\uparrow \& b=0 \vee a>1\}$
$F^{n}($ true $)=(0=0 \vee a \geqslant n)$
$\therefore p \leftrightarrow \forall n .(b=0 \vee a \geqslant n)$
$\Longleftrightarrow(D=0)$

```

As shown by these examplee, the explicit solution of each equation raquires an induction to recast \(F^{n}\) (true) as a predicate explicitly containing \(n\) as a free variable.

\subsection*{4.4 Unique solutions}

In all our examples of sections two and three, the solutions of the recursive equations have been unique. It is useful to recognise cases of unique solution, because they are simpler to reason about. Consider the equation
\[
p=F(P)
\]
\(F(p)\) is said to be guarded if it can be writton in the form
\[
\begin{equation*}
\mathbf{a ; G}(P) \vee b ; H(P) \vee \ldots . \tag{1}
\end{equation*}
\]
where \(G(P), H(P)\) are expressed using only the notations "c;" and " w ". If \(F(\rho)\) is guarded, then the equation above has an unique solution.
proof. An expression is said to be guarded to depth \(n+1\) if esech of \(G(p), H(p), \ldots . i^{\prime}\) formula (1) is quarded to depth n. Using distributıvity of "c;" such formula can be written
\[
a ; b ; \ldots ; G^{\prime}(p) \vee c ; d ; \ldots ; H^{\prime}(p) \vee \ldots
\]
where the length of each of the prefix sequences "c;d;...;" is greater than \(\pi\).

If \(F(P)\) is guarded, then \(F^{n}(P)\) is guarded ta depth \(n\). For any observation, we define its length as the sum of all the values ascribed to its variables; thus the length is a count of the total number of events that have oncurred, and is necessasily finite. If an observation is of length \(n\), and a pradicate \(F^{n}(p)\) is guarded to depth \(n\), then one can determine whether the predicate describes the observation by merely looking at the prefix sequances, independent of the value of \(p\).

Now let
\[
\begin{aligned}
\rho & =F(\rho) \text { and } Q \\
\therefore \quad P & =F(Q) \\
\therefore \quad F^{n}(\rho) \text { and } Q & =F^{n}(Q) \text { by induction. }
\end{aligned}
\]

Consider an abservation described by \(P\). Let its length be \(n\). This observation is also described by \(F^{n}(F)\) and therefore by \(F^{n}(Q)\), which has all the same prefixes of length \(n\). Thua all ooservations described by \(p\) are also described by \(Q\), and vice versa. \(D\) and \(Q\) are therefore equivalent as predicates.

\section*{5. Programming}

As discussed in the introduction, a specification is an arbitrary predicate describing all possible observations of some system. The task of the scientist is to discover the strongest specification describing some aspect of the behaviour of the natural unlverse. The task of the engineer is different: he has to construct some mechanism wnich meets a specification describing the needs of a potential user of the mechanism. The engineer's outies would be much simplified if he had at has disposal a stock of unduersal mechanisms. An universal mechanism is one chat will first accept the text of any oesired specification, and will then automatically transform itgelf into a mechanism which behaves in accordance wath that specification, for as long as it is wanted. Sucn a marvellous mechanism might be a bit expensive; and if so, it should have a switcn to turn it back into a universal mechan 2 mm when trere \(-s\) no need for it to continue to satıgiy its current specification.

For the civil engineer or naval architect, an universal mechanism of this kind ls nothing but a pipe-dream. But for the computar programmer, it is a reality whicn ne takes for granted - it is the stored program oigital computer. The only problem is that the computer will not accept
an arbitrary predicate as a specification; the predicata must de written in a highly restricted notation known as a programming laņ̧uge. Such predicatas are known as programs. In the remainder of this paper we shall depine a orggram as a pradicate expressed solely in terms of the constants and operators introduced in gection 2 together with recursion. Later, we shall consider some further restrictiona on this notation.

\subsection*{5.1 Programming methodology}

The task of the programmer is now clear. First, he must use his Dest iudgement to formulate a specification of the desired product. The specification should be expressed as a predicata, taking advantage of the full power of the concepts and notations of logic and mathematics to keep the formaligation simple and clear. Clafity is of the utmast concern, since a misungerstanding at this stage can have a severe impact on the ouality of the product. The programmer now has to reformulate the specification as a prooram \(P\), expressed in the restricted notations of his programming language; and this \(\quad\) ay involve a \(\ni\) goss expansior in the size of the text. Furthermore, ha must fino a program that is adequately efficient when executad \(n\) a mechanism of affordable capacity and speed. His task may de slightly simplified by the fact that it is sufficient to find a program \(p\) that merely 1 molies its specificarion \(\overline{5}\); there is no neso to achieve exart equivalence.

Thus tha task of programming is rather like that of finding an explicit definition of a function which satisfies given differential equations. Just as some aquations have no explicit solutions, some oredicates cannot be programmed because they are incomputanle or oven inconsistert. For solubla equations, mathematicians have discovered many tachniques for finding and chacking proposed solutions, though their application usually demands some mathematical akill and insight. 2 collection of methods for constructing a program to meet an arbitrary specification is known as a programming methodology.
```

5.2 Top-down development
One rather obvious prooramming method is the techiniqua of "too-
down development" or "बivide-and-conduer"; it is rather similar to

```
20.
integration by parts, in that its 1 njuoicious use can require solution of subproblems more difficult than the original problem. Let \(S\) ba the specification of the desired program. Then
(1) Let \(F(T, U)\) be an expression containing the predicates \(T\) and \(U\), but otherwise expressed wholly within the programming language.
(2) Prove that \(F(T, U) \rightarrow S\).
(3) Find programs \(p\) and \(a\) such that
\[
p \longrightarrow T
\]
and \(A \Rightarrow U\).
(4) The result you want is
\[
f(\rho, 0)
\]

The validity of this method depends on the fact that all operators of the progremminç language are monotonic. Its utılity derives fram the fact that \(F\) is proved correct before \(f\) and are orogrammed.
S. 3 Introduction of recursion

Une of the most significant tasks of the orogrammer is to construct correct loops or recursions. Suppose \(S\) is the specification which is believed to require a recursively defined program. Then the following steps are racommended:
(1) Find an expression \(\varepsilon\) which maps the observations of the alphabet onto non-negative integers. This is known as a "variant function".
(2) Find a program \(f(D)\), containing the predicate name \(P\), such that
\[
F(S \vee E \geqslant n) \Longrightarrow(S \vee E>n)
\]
where \(n\) is a fresh variable.
Thus if the recursive call pestadishes 5 in all circumstances when \(E \leqslant n\), then \(F(P)\) is better than \(D\), in that it gnsures \(S\) in the case when \(\varepsilon=n+1\) as yell.
(3) Then the program you want is defineo recursively:
\[
0 \triangleq F(\rho)
\]

Proof. From step 2, by an easy induction
\[
\begin{aligned}
& F^{n}(\underline{\text { true }}) \Longleftrightarrow F^{n}(S \vee E \geqslant 0) \Longrightarrow(S \vee E>n) \text { por all n } \\
& \therefore\left(\forall \cap . F^{n}(\underline{\text { true }})\right) \Longrightarrow(S \vee \forall n \cdot E>n) \\
& \Longleftrightarrow \Longrightarrow S
\end{aligned}
\]

Since \(F\) is expressed wholly in notations which are known to be continuous, \(\forall n . F^{n}\) (true) is the weakest solution of
\[
\rho \Delta F(\rho)
\]

\section*{6. Implementation}

The main motivetion for writing specifications in a restrictive orogramming language is the existence of a unlvergal mechanism that will automatically implement the program. In practice, such an 2mplementation \(1 s\) construcced from silicon chips, boards, wires, stc., tagether with loaders, comailers, or interpreters for the given programming language. But for our present purposes, it is more convenient to construct an abstracc mathematical machine, passing through a series of states; each state corresponds to a possible observation descrited by the program initially given to the machine. Here is an informal description of the behaviour of such 3 machine, 2 ntended to model the actions of an interacting system:
(0) input the specificatıon with given alphabet.
(1) Jeclare an integer variable corresponaing to each event in the alpnadet. Inatialise all these varlables to zero.
(2) Repear zne following steps as long as possible (or until switchad off):
(2.1) For each variable 10 turn, sod one to its value, test if the soecification is true, and suotract ane again.
(2.2) For all variables which have passed test (2.1), wait until the user/environment of the mechanism has selected which of the everits is to occur. If no variable nas psssed the test, this walt will last farever.


We assume that an observation of this machine can be made just before each iteration of the loop (2); at that time, the current values of all its variables are observable.

\subsection*{6.1 Consistency}

Clearly, this implementation does not carrectly implement every predicate; in pact the predicate "a \(>\) " is isalse immediately after step (1). However, any predicate which is true after step (1) will remain true forevar - that is the purpose of the tests of step (2.1). Sa, to show that the implementation corractly implements every program, it suffices to show that every program describes the observation when all the counts are zero, i.e., that
\[
Z E R O_{A} \Longrightarrow P \quad \text { for all programs } P \text { with alphatet } A \text {. }
\]

This can te proven by structural inauction on P, using the fallowing lammas.
(1) \(\mathrm{ZERO}_{A} \Longrightarrow \mathrm{ZERO}_{A}\)
(2) \(\mathrm{ZERO}_{A} \Longrightarrow\) CHAOS \(_{A}\)
(3) \(\quad Z E R O_{\lambda} \Longrightarrow(a ; p)\)
(4) If \(\quad 2 E R O_{A} \longrightarrow P\) and \(Z E R O_{A} \Longrightarrow D\)
then \(\mathrm{ZERO}_{\lambda} \Longrightarrow \mathrm{P}\)
(5) If \(2 \mathrm{EFO}_{A} \Longrightarrow P\) and \(\mathrm{ZERO}_{\mathrm{B}} \Longrightarrow \mathrm{Q}\) then \(2 E 20_{\text {du }} \Longrightarrow P\) a
(5) If for all \(\cap 2 E R O_{A} \Longrightarrow P_{n}\) then \(\mathrm{ZERO}_{\mathrm{H}} \Longrightarrow \forall \mathrm{OAP}_{n}\)

The last clause is required to show that all programs defined ay recursion are implied Jy ZERC; this conclusion cepenas also on continuity of all the connectivas of the programming language, a property which has already


Thus we nave shown that the sraposed implementation works correctly for all sregrams expresseo the language. This fesult nay je reformulatec: we have shown that the programming language is consistent with the given model imolementation, in the sense that every anservation proauced by tne implementarion will te correctly cescribed zy 1 ts prooram.

\subsection*{6.2 Complatanass}

Suppose that a set i of one or more correct implementations has been proposed for a given programming language. Let p be a program submitted to these implamentations. Now it may be that there is an observation described by \(p\) which can naver in fact oceur on any of the implementations. Thus the predicate \(P\) is not the stronqest possible predicate describing the behaviour of its proposed implementations. In this csse, we say the programming languege is incomplete with respact to I, since it is not capable of expressing every true pact about I. Incompleteness is a serious fault, because it means that some correct programs cannot be proved correct solely in terms of their definition as predicates; their proof would require operational reasoning based on the implementations.

Unfortunately, our programming language is not complete with respect to the implementation described above. ln that implementation, each abservation except the first (all zeroes) has a predecessor which can be derived from it by subtracting unity from just one of its component variables. Consider the specification
\[
\text { coin }=\text { choc. }
\]

This is satispiad by the observation
\[
\text { coin }=\text { chac }=5
\]

Dut not by the observation
\[
\operatorname{coin}=4 \& \text { choc }=5
\]
or by the only ather predecessar anservation
\[
\text { coin }=5 \& \text { choc }=4
\]

Thus the specification describes an observation which can never be reached by the intanded implementation.

This would not matter if such a specification could never be expressed as a pragram. Unfortunatsly it can. Consider a silly customer of the vending machine

\section*{SILLY \(\leq\) choc;coin;sILLY}
```

\thereforeSILLY \& UM1 \#(coin = choc)

```

One solution to the problem would be to expand the get of implementations to allow any number of events to occur simultaneously. Another solution is to restrict the programming language still further, so that no specification expressible as a program will describe an unreachable observatior.

Let us attempt a solution of the second kind. A predicate is said to be grounded if every described observation has a predecassor also described by it. Each observation therefore has a chain of predecessorg reaching back to the initial zero observation. . The intender implementation can follow this chain in the reverse direction, and can thus reach any observarion described by a grounded predicate. So we need to restriat our programning language in sucn a way that \(1 t\) can exprass only grounded predicates.

An effactive restriction is the one introduced in section 4.1 to obtain a normal form: forbid the use of the cperator "s" except when the alphabets of its operands contain at most one event in common. The fact that all programs satisfying this restriction are grounosd is proved by structural induction, based on the following lemmas:
(1) \(Z_{A}\) and CHAOS \({ }_{A}\) are groundec.
(2) If \(P\) and \(Q\) are grounded, so are \((a ; P)\) and ( \(P \vee[\) ).
(3) Furthermore, if size \((\alpha P \cap \alpha Q) \leqslant 1\) then (p\&0) is grounced.
(4) If for all \(n \quad p_{n}\) is grounded ano \(p_{n+1} \Longrightarrow P_{n}\)
then \(\forall\) o. \(\mathrm{D}_{\mathrm{n}}\) is grounded.

Only the last clause requires any suotlaty of proof. Eonsider an observation oescribed by \(\forall \mathrm{H}_{\mathrm{n}} \mathrm{F}_{\mathrm{n}}\). The maximum possible number of its predecessors is finite (eoual to the size of the alphabet). Since \({ }_{n+1}^{n+1}\) logically implies \(P_{n}\), the set of predecessars (of the given observation) described ty \(D_{n+1}\) is a subset of those described by \(P_{n}\). These finite subsets form a descenoing chain, whose intersection is therefore non empty. Furthermore this intersection is describea by \(\forall n .{ }_{n}\).
```

6.3 The excluded miracle
In sec:ion E.l यe gefineo the task of the sragraminer as the ois-
covery of a arogram f wnich logically implies a given saecification S.

```

Now suppoae he could find a program \(P\) that logiceliy implies gvary other program \(Q\). Thia \(P\) would be a miraculous progrem, since it could be used to implement evary implamantabla spacification. Uith such a program, he would never need any other; and each of his taska would be triviel. An axample of such a miraculous program would be one thet expreseses the predicate false.

In practica, we suspect that a programming language in which there exists a mireculous program would be unrealistic or vealess in some other way; it would certainly be unworthy of sarious mathamatical atudy. Unfortunately, our little programming language (as proudly provad in saction 6.1) contains the miracle \(2 E R D_{A}\). So we need to exclude this constant from the isnguage; but we aleo need to ensura that it can never be expressed in some other way, for example:

> (choc;SILLY) \& (coin;UM1)
```

$\Leftrightarrow$ (coin $=$ chac $=0 \vee$ choc $>0 \&$ coin $\leqslant$ choc- $\leqslant$ coin +1 )
$\&($ coin $=$ choc $=0 \vee \operatorname{coin}>0 \&$ choc $\leqslant \operatorname{coin}-1 \leqslant$ choc +1$)$
$\Longleftrightarrow($ coin $=$ choc $=0)$

```

This problem can be solvar by imposing the same restriction on the alphabets of the operands of \& as has already been recommended in 4.1 and 6.2. Then no program is equal to the miracle \(2 E R D_{A}\). A proof of this uess structural induction based on the lemmas.
(1) \(\operatorname{CHAOS}_{A} \neq Z E R O_{A}\)
(2) If \(P\) and \(Q\) are programs distinct frem \(Z E R D_{A}\) then so are (a; \(P\) ) and \((P \vee Q)\), and \((P \not P Q)\) provided size \((\alpha P \cap \alpha Q) \leqslant 1\).
(3) If por all \(n P_{n} \neq Z E R O_{A}\) and \(P_{n+1} \Longrightarrow P_{n}\)
then \(\left(\forall \cap_{0} P_{n}\right) \neq Z E R D_{A}\).
The proof of the last clause uses the fact thet an observation has only a finite number of possible successors.

Now wh megd to prove thet there are no other miracles besides ZERO \(D_{A}\), which we have alraedy excluded. Unfortunately there is. If the alphabet \(A\) contains only one event, then all expressiole programs are equivelent to CHAOS \({ }_{A}\). We must thergfore insist thet every alphebet A contains at least twe variables, say "a" and "b". Then thera are at least two oifferent programs with elphabet \(A\) :
```

P \& a;P \Longleftrightarrow b = 0
a\Delta b;0 \Longleftrightarrowa=0

```

Furthermore the only observetion they both describe is
\[
(a=b=Q) \longleftrightarrow \operatorname{ZERQ}_{A}
\]

But since we have shown that no program implies \(Z E R D_{A}\), no program can imply both \(P\) and \(Q\). Thus there is no program which implies every other program.

\subsection*{6.4 Computability}

The universal mechanism described abave requires the ability to determine the truth or falsity of a predicate for an aroitrary value of its free variables. It is woll known that for some predicates this is impossible. we must therefore ensure that our programming language can express cnly predicates which are in some sense computable.

In genaral, the appropriate sense of camputability seems to be that the complement of the predicate should oe recursive enumerable. Thus if an observation falsifies the predicate, \(2 t\) will be possible to prove that it dobs 90. Such predicetes are said to be falsifiablg. according to Karl Popper, falsifiavility is also a required property of all scientific :neories. In accordance with this definition all aur programs are falsifiaole:
(i) こERO and EHmOS are falsifiable.
(2) If \(p\) ard are falsifiaole, then sa are (a;P), (Pva) and ( \(P\) \& \(Q\) ).
(3) If for all \(n, F_{n}\) is falsifiable, then so is \(\forall \Pi_{0} F_{\square}\).

Another vary cesirable property of a general purpose orogramming languege is that its proçams should be able to cpmpute every computable function. ine usual method of proving this is to pragram in the language a simulatior of some known universal machine such as a ísring machine. But our language cannot co this; in fact the language can be implemented On a finite state macrine. In a soecial purpose lanquage, sucri a limitation may bean acvantage, if it permits a mecranical check against certain uncesirable occurrences guch as mon-terminetion or deadlock. A more practical defect of our language is that it annot even describe the simple examplas used to illustrate this paper. Tp solve trese cefects we
would need to introduce more aperators and perhaps variebles denoting different kinds of observation.

\subsection*{5.5 Continuity again}

The description of an universal implementation of our language esgentially regards each complete program as a predicate which can be tegted. In ptactice, programs are implemented in a structured feshion, and the complete implementation of a complex program is constructed from implementations of its parts, for example, a test of ( \(\rho \vee \mathrm{p}\) ) ar ( \(P \& Q\) ) or ( \(a ; P\) ) can be constructed from testa of \(p\) and \(Q\) separately. However, the position with recursively defined predicates is less clear.

Fallowing Scott, we identıfy en implementation of the predicete
\[
\rho \subseteq F(\rho)
\]
as the infinite sequence of "finite approximations":
\[
\left\{F^{n}(\text { true }) \mid n \geq 0\right\}
\]
guch that the desired program \(\rho\) is the univergal quantification of the sequencs. Now if \(G\) is any cantinuous function of predicetes ta prodicates, an implementation of \(G(P)\) can be constructed from the implementation of \(P\), thus
\[
\left\{G\left(F^{n}(\text { trus })\right) \mid n \geqslant 0\right\}
\]

Secause \(G\) is cantinuous, this is an infinite sequence of finite approximations to \(G(P)\). Thus we have constructed an "implementation" of \(G(P)\) out of an implamentation of \(p\).

Thers remains one outgtanding question. A programming lenguage dafined by the methods aescribed in the previous sections is a notetion for specifying falsifiabla oredicates. However, the set of observations generated by any mechanism must be recursiua enumerable. Since the complement of a recursive enumerabla sat is not necessarily recursive gnumerable, there will in generel be abservations which cannot be generated by a correct implementation, even though they are described Dy the program which is being implemented. Thus no general-purpose pragramming language can be complete in the sunse of 6.2. The problem is mogt ecute in the case of a non-terminating recursion
\[
p \triangleq I(p)
\]

According to our definitlon
\(\rho \rightleftarrows \mathrm{CHAOS}_{A}\).
However any "raasonable" implamentation is likely to produce only the all-zero observation, so that it will behava as if
\(0 \Longleftrightarrow \mathrm{ZERO}_{A}\).
Thus all observations (except one) fall into the gap between what is described by the program and what is actually ganerated by its implementation.

I do not know whether this problem has a solutlon, or even whather it naeds one.

\section*{7. Conclusion}

The first step in the construction of a mechanism to meet some requirement is to uotain a very good understanding of that requirement. This understanding can be formalised as a predicate describing all possible acceptade observations of the behaviour of the mechanism. Because misunderstanding at this stage is so dangsrous, a specification should be short, simple, and well-structured; and to this ond it should take full advantage of all available concepts and notations of mathematics and logic. For effective description of certain kinds of dynamic syatem, it is convenient also to use certain concepts akin to those of computer programs; and this reajires they be defined in terms of conventional predicates. Even so, the construction of a successful specification requires the same human skills and insights as are characteristic of an appliad mathematician or engineer.

The task of the programmer remains to find some predicate, expressed only in the restricted notations of his ptogramming languege, which logically imolies the specification. The reason for the restrictions is to enable the program to be run on some available implementation of the language.

This viaw of programs and thair specifications is highly relevant for the designer of a programming language. Firstly, he must have a wide underatanding of the application area of his languaga. Based on this, he should defins a range of concepts to assist in the specification of programs witrin that area. These concepts should anjoy nice algebraic
properties, preferably afmitting a simple normal form. If recursion ar repetition is required, then all the propasitional connectivas invalvad shauld be at leest monatanic.

The designer should then define a clase of model implementstions, which will automatically conform to a subclass of specificationt submitted to them. The implementations should be a reasonable abstraction of what can be built, perhaps in silicon, at accaptable cost. This ulll require some restriction on the generality of the notationa uesd in the specification. These restrictions should mot be so severe that they prohibit an exact Eegcription of the behaviour of the mocel implementations; but they should be severe enough to excluce the unipormiy false predicate, or any program which logically implies ali other progrsms. Finally, there should be some reasonably easy stepwise method for designing a program from its specification. All these tasks are considerably simplified if all the operators of the programming languege are nat only manatonic but oontinuaus.

This account of the nature of programming and of programming lenguage design suggests that both activities require and deserve the techniques ana skills of the mathematical logician.

Acknowledgembntg
The original iosa of equating a computer program with itg strongest specification is due to E.C.R. Hehner. The treatment of Communicating Systems was inspired by tha work of A.J.R.G. Milner. The techniqus of predicate transformers is due to E.W. Dijkstra. The development of specıfications as predicates together with their alphabetg is dus to J.-R. Abrial. The treatment of recursion by fixed points and continuity is oue to D.S. Scatt. valuaole and zontinuing mathamatical support has been provided by \(\bar{\varepsilon}\), R. Oldarag.

\section*{OXFORD UNIVERSITY COMPUTING LABORATORY \\ PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS}

JULY 1982

This is a serles of technical monographs on topics in the fleid of computation. Copies may be obtained from the Programming Research Group. Technical Monographsi. 45 Banbury Road. Oxford. OX2 6PE. England.
\begin{tabular}{|c|c|}
\hline PRG-2 & Dana Scolt
Outhine of a Mathematical Theory of Computation \\
\hline PRG-3 & \begin{tabular}{l}
Dana Scotl \\
The Lettice of Flow Diagrams
\end{tabular} \\
\hline PRG-5 & Dana Scott Data Types as Lattices \\
\hline PRG-6 & \begin{tabular}{l}
Dana Scort and Christopher Sirachey \\
Toward a Mathematical Semantics for Computer Langueges
\end{tabular} \\
\hline PRG-7 & Dana Scont Continuous Lartices \\
\hline PRG-8 & Joseph Sloy and Christopher Strachey OS6 - an Experimental Operaring System for a Small Compuret \\
\hline PRG-9 & Christopher Strachey and Joseph Stoy The Text of OSPuo \\
\hline PAG-10 & \begin{tabular}{l}
Christopher Stracney \\
The Varieties of Programming Language
\end{tabular} \\
\hline PRG-11 & Christopher Strachey and Christopner P. Wadsworth Continuations: A Mathematical Semantics for Handling Full Jumps \\
\hline PRG-12 & \begin{tabular}{l}
Peter Mosses \\
The Mathematical Semantics of Argol 60
\end{tabular} \\
\hline PRG-13 & \begin{tabular}{l}
Robert Mitne \\
The Formal Semanitics of Computer Languages sina their implementations
\end{tabular} \\
\hline PRG-14 & Shan S Kuo. Michael H. Linck and Sohrab Saadat A Guide to Communicating Sequential Processes \\
\hline PRG-15 & Joseph Stoy
The Congruence of Two Programming Language Deflnitions \\
\hline PRG-16 & C. A. A. Hoare. S. D. Brookes and A. W. Roscoe A Theory of Communiceting Sequential Processes \\
\hline PRG-17 & \begin{tabular}{l}
Andrew P. Black \\
Aeport on the Programming Notation 3R
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PAG-18 & \begin{tabular}{l}
Ellzabeth Fiatding \\
The Speciflcation of Abstract Mappings and their implementalion as \(8^{\text {thetrees }}\)
\end{tabular} \\
\hline PRG-19 & Dana Scott
Lectures on Mathematical Theory of Computation \\
\hline PRG-20 & Zhou Chao Chen and C. A. R. Hoare Partial Correcrness of Communlcating Processes and Protocols \\
\hline PRG-21 & \begin{tabular}{l}
Bernard Sutrin \\
Formal Specification of a Display Editor
\end{tabular} \\
\hline PFG-22 & \begin{tabular}{l}
C. A. A. Hoare \\
A Model for Communicating Sequential Processes
\end{tabular} \\
\hline PAG-23 & C. A. A. Hoare A Calcuius of Total Correciness for Communicating Processes \\
\hline PRG-24 & Bernard Sufrln Reeding Formal Spechications \\
\hline PRG-25 & \begin{tabular}{l}
C. B. Jones \\
Development Methods for Computer Programs inciuding a Notion of Interference
\end{tabular} \\
\hline PRG-26 & \begin{tabular}{l}
Zhou Chao Chen \\
The Consistency of the Calculus of Total Correctness for Communicsting Processes
\end{tabular} \\
\hline PAG-27 & C. A. A. Hoare Frogramming is an Enginearing Protession \\
\hline PRGG-28 & John Hughes Graph Reduction with Super-Combinarors \\
\hline PAG-29 & C. A A. Hoare
Specifications, Programs and imptementations \\
\hline PAG-30 & Alejandro Teruel Case Siudies in Specification. Four Games \\
\hline
\end{tabular}```

