
(t'l"l 4

Oxford University
Computing l.aboratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX, 3QD
Oxford (0865) 54141

.
Programming In 'occam'

A tourist guide to parallel programming

This note is intended. as an introduction to a style of
concurrent programming. The occam notation is
described in enough detail to make this presentation
self-contained.. There then follow descriptions of a
number of programs which make use of the novel
structures possible in occam programs.

Programming Research Group	 Geramt Jones

Technlcall1onograph PRG-13	 Oxford University Computing Laboratory

8-11, Keble Road

March I985	 Oxford OX13Qf)

® geralnt jones. 19B4. 1985

Programming Research Group,

8-11, Keble Road,

Oxford, OX13QO

£ xcept where other attributIon is made In the text, original work IS

the property of the author, who retainS all rtghts In such wor!.
!Yo paragraph of thIs publIcation may be reproduced, copIed or

transmitted save with Hritten permissIon or in accordance wdh the

provIsions of the Copyright Act 1.955 (as amended).

Inmos and occam are trademar!'s of the /!Y1105 Group of Compantes

digital is a trademark of the Olgdal £qulpment Corporation

Programming in occam 1

An introduction to occam 2
Processes that do notbing

Sequential processes

Parallel processes

Data declarations

Arrays

Process declarations

Loops and arrays of processes

Expressions

The representation of occam programs 12
Programming structures 13

Simple sequential processes

Simple parallel processes
Synchronization by control signals
Processes that evaluate expressions
Using parallelism as a lool for program modularity
Using parallelism to resolve structure clashes

Local time 26
Formatted input and output 28

Output routines

Input routines

Where once were only interrupts 32
Managing terminal input

Managing terminal output

Managing echoing

Configuration directives

Parallel matrix multiplication 38
Parallel sorting 42

Sorting strategy

Components of the sorter

Monitoring strategy

Component processes

Display management

Conway's game of 'Life' 53
The Life board

Observation and conlrol

Life

Huffman minimum redundancy coding 64
Representing a coding lree

Constructing a coding tree

Encoding and decoding using a coding tree

Adapting the code to tbe message

Loose ends 80
Codes of the programs 8 1

Input and output routines

Terminal interrupt management

Parallel matrix multiplier

Parallel sorter

Conway's game of life

Simple Huffman coder

Adaptive Huffman coder

Here, I saJ.J, J.Jas a genuine Innocent,

J.Jrding odds and ends of verse ahout odds

and ends of things, living quite out of the

J.Jorld in J.Jhich such things are usually

done, and x.noJ.Jlng no hetter (or rather no

J.Jorse) than to get his hoox. made hy the

appropriate craftsman and hawx. it around

like any other J.Jare.

Programming in occam

Over the past twenty years, theoretical computer scientists have expended a great deal of effort
on the study of concurrency and synchronization. A great many mechanisms have been suggested

for the laming of concurrency. such as semaphores, data monitors. condition queues, critical
regions, remote procedure calls and rendezvous, even the disciplined use of shared store. There
are. of course, at least as many programming language designs as there are programming
language designers.

At the same time, the problems needing solution have become more numerous and dirricull.
The management of concurrency used to be a task to be undertaken on the large scale: the
creation of new processes, and the synchronization and scheduling of their actions were once
necessarily expensive in comparison to the real work done. These are conditions that seem to
persist in the construction of operating systems and continent-wide communication networks,
where processes are consequently long-lived. and interact as infrequently as can be contrived.
Such are not the conditions experienced by programmers of multi-processor computers, where it
becomes feasible to create large numbers of ephemeral processes, and desirable that they
communicate frequently.

The occam language inherits the tradition of theoretical study, being more than reminiscent of
recent work on the mathematics of synchronization. It is intended by its devisers as the
<assembly code' of the lnmos transputer, a microprocessor designed to be used in relatively large
numbers to make a single machine, yet capable of managing a large number of concurrent tasks
within the one processor. The programmer is therefore encouraged to think of process creation,
and of synchronisation and scheduling operations, as being as cheap as any other <primitive'
actions. Even on a conventional processor, neither process creation nor scheduling need be any
more expensive than, say, procedure invocation. This startling scale of costs gives the
programmer much greater freedom of expression, and leads to an unaccustomed programming
style, which is the proper subject of this monograph.

It must be allowed that occam does have some compensating disadvantages: it shares many of
the practical difficulties of other assembly level programming notations, and is certainly not the
ideal means of expression for the programmer. Anyone who has used a modern programming
language will miss the assistance of type-checking, and feel confined by the absence of implicitly
handled recursion. The scope con~rol in occam is no better ~ha.n in <lr1y twenty year old

language, and the fixed format of occam source texts is disconcerting unless you are blessed
with a helpful text editor. Nevertheless, I know of no other programming notation that handles
concurrent execution of tasks with the facility of occam.

I begin with a Cook's tour of occam which is sufficient to understand the examples that
follow. A number of program fragments are then coded in occam and discussed in sufficient
detail to give a flavour of the language in familiar and unfamiliar contexts. Finally, there are
examples of real programs; tbey are, of course, not large programs but they were written as
genuine engineering solutions to problems.

An introduction to occam

As far as will COncern us here, an occam program is simply a process, which may have some
free identifiers that have specific meanings dependent on the computer on which the program is
to be run. A process describes some actions that are to be performed: that is, it is the
expression of an algorithm. Each process may be either a primitive process, or a composite
process consisting of a number of definitions and simpler component processes bound together
by process constructors. The structure of constructed processes is indicated by a fixed layout of

the source text. with each component appearing on a new line, slightly indented from the
keyword that introduced the whole construction.

Processes that do nothing
The simplest of the primitive processes is skip, which is the process that does nothing at all. In
many programming languages, you are obliged to write nothing (that is, not to write anything
at all) if you want 'nothing' done; you will see later that sRip serves as useful a purpose in
occam as that of zero in the decimal notation for numbers.

The process stop also does 'nothing', but unlike SRip it fails to terminate. You can think of
it as being what happens when something goes wrong, like a deadlock, or Some illegal machine
operation. Nothing can happen in a sequential process after it has stopped, but things can
happen in parallel with a stopped process. You might not expect to write the stop process
very often in your programs, but it is the rational thing to do when something unexpected
happens, because it ensures that the part of a network of processes that has failed is brought to
a standstill without affecting other processes, at least untit they come to depend on broken
part.

It is also useful to have stop around so as to be able to describe the effect of compound
processes that 'go wrong', for example by becoming deadlocked. A process is said to be
deadlocked if there is nothing which it is able to do next, but it has not finished properly.
Typically, a parallel program becomes deadlocked because each of its processes is waiting for
one of the others to do something.

Sequential processes
In programs which execute sequentially, the work is done by assigning values to variables, and
subsequently basing decisions on the values of those variables. The occam assignment has the
form

varlable := expressIon

Each expression has a value, as explained later, which is just a bit pattern of the size of a
'word' on your computer, and every variable is capable of storing a word sized bit pattern. Of
course, there are operators which treat these bit patterns as if they represented numbers, or truth
values, or characters, but no type difference is enforced by the language or its compilers.

A sequence of operations is described by writing them one under the other. under and slightly
indented from the keyword seq. The sequence executes by executing each of its components in
the order in which they are written. Of COurse, if there are no components at all, then the
sequence does nothing, and behaves just like SRip. Thus

seq
x'~ 3
y'~ x + I
x:= X + 6
z := X + 1

X ,= (y + 2) ~ 2

has the overall effect of setting each of the variables X. y, Z to 10, albeit in a somewhat

2 An introduction to occam

perverse way: first x is set to three, then ~ to seven more than x, then x is changed to nine, Z
is set to one more than it, and finally x is set to the average of ~ and Z, which is of course
also ten.

Decisions based on the values of variables are made by a conditional process. This construction
consists of the keyword IF written above a list of components, each slightly indented. Each
component is either another conditional nested within the first, or consists of an expression {the
condition) and, below the condition and a little further indented, a process. The whole
conditional executes by looking down the list of components, and the components of nested
conditionals, until a condition is found whose value is true, If one is found then the
corresponding process and only that process is executed, and the whole conditional terminates. It
is an error for no condition to evaluate to true, for example if there are no components, so the
conditional stops. As an example

If
n <0

sign -1
n = l.'J

sign := 0

n >0
sign :=

sets the value of the variable sign to one of minus one, zero, or plus one, according as the
variable n contains a negative, zero, or positive value.

Since it is defined that the textually first of the processes corresponding to a true condition is
selected, the process

if
n = 0

sIgn ;= 0
n .(0

sign := -1
truQ

sign :=

describes exactly the same effect as the former, but is much less clear. In general, it is good
style to use constraints that describe precisely the conditions under which a process is to be
executed.

Parallel processes
Just as a list of actions can be described as happening in a strict sequence, so in occam it is
possible to specify that each of a list of actions is to happen, without specifying an order in
which they must happen. Such a parallel composition is indicated hy writing the actions one
under the other, under and slightly indented from the keyword par. The parallel composition
executes by executing each of its components, until each has terminated. Of course, if there are
no components, the effect is the same as SRip, and if any of the components fails to terminate,
for example by stopping, then the composition cannot terminate. As an example

par
X'~ Y - \
Z := y + 1

sets the values of x and Z to be one less than, and one more than, respectively, the value of y.
There is, however, no guarantee that the assignments will not happen in the other order, or at
precisely the same moment. Because of this, for a parallel composition to be legal, none of its

An introduction to occam

components may change any variable which is used in any of the otber branches: it would be
wrong, for example, to try to write

par
x'~ y - 1

Z := X + <1

because X is used in the second component, but changed in the first component.
If such mutual interference is not allowed. how then are concurrent processes to communicate?

The answer is that they do so by input and output over channels. The output process

channel! expression

sends the value of tbe expression over the channel. Similarly, the input process

channel ? uariable

receives a value from the channel and stores it in the uariable. Each of these communications
waits for the otber. so that an output does not happen until the corresponding input happens,
and vice versa.

There is an abbreviation which is useful when complex data are to be transmitted, for example
where many streams of data are mUltiplexed along one channel, and some identification must be
sent with each item. A sequence of inputs (OT of outputs) along one channel may be written as a
single primitive process. separating the target variables (or expressions) by semicolons

channel'? uarlable.1; uariable.i!; '" variable.n

This has precisely the same meaning as

seq
channel? uariable.'
channel ? varlablel!

channel'? var"lable.n

In combination, an input and an output behave just like an assignment, except that the
expression and variable are in diFFerent, concurrently executing processes. In particular, the
assignment

uarlable ,= expressIon

is exactly the same as

par
channel! expression
channel? uariable

provided that it is legal to write the latter in the particular context. Just as there are rules
about the use or variables in concurrently executing processes, so also each end (that is the input
end and the output end) of a channel may be used only in one of the components of a par
construction,

Decisions may also be distributed across several processes. using an alternative, which is similar
to a conditional except in that the choice can depend on whether another process is perrorming
an output. An alternative is written with the keyword alt abov/;; a list or components, each or

4 An introduction to occam

which is either an alternative. or consists of a guard with below that a process which is
indented a little further. A guard may be an input process, or 5~ip, or either of these simple
guards preceded by an expression and an ampersand sign, as for example

alt
red.selected & red ? x

out I x
green.selected & green? x

out! X
not (red.selected or green.selected) & SlliP

out ! default.ualue

An alternative waits until there is a guard which is 'ready', An input guard becomes ready
when a corresponding output is possible; a 5~ip guard is always ready; and a guard preceded by
an expression can only become ready if both the value of the expression is true, and the process
part of the guard is ready. When some guard has become ready, one of the ready guards is
selected and executed, followed by the corresponding process. After this the alternative
terminates. At most one of the branches of an alternative is selected; if no guard ever becomes
ready (for example, if there are no components in the alternative) then the whole alternative is
deadlocked, like stop.

The example alternative above will aecept an input from either the red or the green channel,
provided that the value of the corresponding variable, red.selected or greel1..selected, is true. and
having accepted that input into the variable X. it then re-outputs the value down the channel
out. In case neither variable is true, only the third guard is ready, so the alternative sends the
deFault.ualue and then terminates.

Data declarations
Each name used in an occam program must be declared before it can be used,. There are
declarations which allow you to give names to constant values, to variables. and to channels.

Constant definitions do not introduce any new objects into the program, they serve merely to
give names to particular values. They are written with the keyword deF followed by some
definitions of the form

name = constant.expresslon

each definition separated from the next by a comma, and with a colon at the end. The effect is
to allow you to use the name in the process that follows, wherever you want to refer to the
value of the constant.expressiorl As an example, the declarations

clef red ~ 0, red.and.amber = \ green ~ 2, amber :l:
clef first.state = red, last.state ~ amber :

might appear in a traffic light controller. It would then be possible to test, for example,
whether

current.state = last.state

rather than comparing current.state for equality with ~ which would be somewhat more
obscure.

Variables. as has already been indicated, are capable of storing bit patterns of some fixed size.
They are declared by listing their names aher the keyword uar, above the process that will use
them. The names are separated by commas, and there is a colon at the end of the list. The
traffic light controller might well include, for example,

uar current.state, queue.size

An introduction to occam 5

Initially, a variable has no defined value, but once it has been set by an assignment or an
input, its value is the last value that was stored into it. The usual place to find variable
declarations is accordingly just before the keyword seq. Components of a sequence communicate
with each other by one cornponent leaving a value in a variable, and a later component reading
that value. The traffic light controller might begin

def first.state ~ red, last.state amber
uar current.state. queue.size :
seq

current.state := First.state
queue.size a1=

Channels are declared in the same way as variables, except that the keyword is chan.
Somewhere within the scope of each channel declaration there will be two conCUrrent processes,
one of which sends output to the channel, the other of which takes input from it. It is
therefore usual to find channel declarations immediately in front of par constructions.

Arrays
There is only one device for structuring data in occam: you may rnake one~dirnensional arrays of
constants, variables or channels. An array of variables is declared by giving a constant
expression in brackets after the name.

name[count]

This indicates that a nurnber, equal to the value of the count, of variables are to be declared,
which can be referred to by indexing the name of the array with expressions whose values range
from zero up to count-\. For exarnple, in the scope of the definition

uar a[137] :

there are declared 13, variables, called a[o], a[1], a[a], ... a[136J, each variable independent of the
others. Arrays of channels are similar.

An array of constants is called a table, and is denoted by an expression of tbe form

table [expression.zero, expression.one, expression.two, "" expression.n]

Table expressions can be used with deF declarations, or can appear to the left of an index, so
that the value of

table [expression.zero, express\on.one, expression.two, .. ,] [2J

is the same as the value of expresslon.two, for example.
In case the values of the components are always going to be in the range zero to 255, as for

example when the values represent characters, occam allows you to specify that the values are to
be packed one to a byte in the store of the rnachine. An array of byte variables is declared by
adding the keyword b~te after the opening bracket of the declarations; a byte table is denoted
by including the keyword bldte after the opening bracket of the denotation. A byte array of
constants or variables is indexed by putting the keyword byte after the opening bracket of the
index. For the present, the only reason for being concerned with byte arrays is that occam has
a convenient denotation for byte arrays of characters: a string, which is written as a sequence of
characters enclosed in double quotes.

'This is a string"

An introduction to occam 6

is a byte array, the first (zeroth) byte of which contains the length, and the subsequent bytes
contain the characters in sequence. This string represents the same array of constants as does

table [byte 16, 'T', 'h', 'j', '5', 'litS', 'j', 'S', 'lits', 'a', 'lits', 's', 'r, 'r', 'j', 'n', 'g']

A character denotes a constant bit-pattern like any other, corresponding to the ASCII code for
that character, and the sequences 'litS' represent the space character, that is 32. I could have
written this as a space between quotes, ", but the asterisk form is clearer, There are
asterisk-sequences for space (MS), carriage-return (MC), the newline character (Iil:n), the quote
characters (lit' and "I"), and of course for asterisk ("1M), which can be used either in character
(single) quotes, or as elements of a string. In the scope of the declaration

deF s = ''ThislitsisMsaMsstring'' :

(which is the same byte array as before) the value of s[byte 0] is 16, and the value of
s[byte 16J is 10;). which is the ASCII code of the character 'g',

Process declarations
Names may be given to whole processes by means of proc declarations, These are introduced by
a line of the form

proc name =

which is followed by the process to be called name, indented slightly, and terminated by a colon.
The effect is that anywhere in the process that follows the declaration you can write name to
mean the whole of the named process. (Of course, the named process is not in the scope of the
declaration, so it is not possible to invoke it from within itself.)

A named process may have a list of fomal parameters included after its name in the
declaration, The nature of each parameter is indicated by one of the keywords value, var, or
chan, meaning a value (run-time constant), variable, or channel. You may omit the keyword in
front of a second or subsequent parameter of a particular kind. Arrays should be indicated by
writing an empty pair or brackets afler lhe name or lhe array. The proccss is invoked by
putting a corresponding list of actual parameters after the name at the point of call. The effect
is the same as if the body of the named process had been written in place of the call, but with
the actual parameters substituted for the formal parameters. Thus, for example

proc assign.characterCvar x, value s[J, I)
x ,~ s[bllte I]

var ch :
seq

assign.characterCch, "This is a string", 13)

has the effect of assigning the code of 'r', that is the 13th character of the string, to the variable
ch, exactly as though the program had been written

var ch :
seq

ch "This is a string" [13]1=

Loops and arrays of processes

There are two kinds of loops in occam: unbounded while loops, and indexed, bounded for loops.

An introduction to occam 7

Unbounded loops are necessarily sequential in occam, but there are many forms of for loop
representing different forms of regular activity.

An unbounded loop is written with the keyword while, followed by an expression (the
condition), with a process (the body) below and slightly indented from it. It e.1:ecutes by testing
the value of the condition and then, provided that its value is true. executing the body. When
the body has terminated, the condition is re-tested. so that the body is executed a number of
times, in sequence. for as long as the condition remains true. The whole while loop terminates
when the condition is tested and found to be false. As an example, the process

seq
x:= 0

urn] ,~ !ley
while u[x] * !ley

x:= X + 1

sets x to be the index of the nrst variable in the array U which contains the value R8!d' by nrst
posting a sentinel at u[n].

A bounded loop may be thought of as being an array of processes. Loops can be made from
each of the alt. if. par and seq constructions. by putting a replicator of the form

name = [base for count]

after the keyword, and then writing a single component (of the kind appropriate to the
construction) below and slightly indented from the keyword. The base and count are
expressions, and the meaning of such a for loop is the same as that of a construction formed
from the same keyword ,followed by count copies of the component with the name taking on
the values base. base+l, '''. bas8+count-l in successive copies.

A for loop stands for a repetition of the constructor with which it is made. In the same way
that

'34'
I f(year)

~ear = 1280

stands for the addition of sixty-two values,

so too the seq-For loop

seq year ~ ["'80 for 6e]
celebrate.christmas(year)

stands for the sequential composition of sixty-two processes

seq
celebrate.chrls tmas(\280)
celebrate.christmas(128t)

celebrate.christmas(w·t)

Thus, seq-For loops are just like for loops in languages like algol or pascal; but that you 'may
not assign to the loop index. and it is not declared outside the body of the loop. The bodies of
par-For loops are executed concurrently, so such loops behave like arrays of parallel processes.
The conditional loop. iF-For, performs a bounded search. so for example the process

g An introduction to occam

seq
urn] .~ Rey
IF i ~ [0 For n + I]

U[I] ~ Rey
x:= i

has precisely the same effect as tbat of the while loop above. The same search can be done,

without the use of a sentinel, by writing

deF othen.L1lse = true, not.~ound = n
If

if i ~ [0 For n]
U[I] ~ Rey

x ,= i

otherwise
x .= not.Found

Here, x is set to not.Found precisely when there is no occurrence of the value Re~ in the array.
Now you should see the reason for allowing conditionals as components of conditionals, and
alternatives as components of alternatives!

Some dialects of occam allow you to construct For loops not only from constructed processes,
but also from the primitive assignments, inputs and oUtputs. An expression of the form

name [base For count]

is called a slice, and denotes all of the variables (or values)

name[base], name[base+l], ... name[base+count-I]

Slices may be assigned

destlnatlon[destinatiorlbase For covnt] source[source.base Fo r count]

or they may be communicated

par
channel? destination[destlnation.base For count]
channel I source[source.base For count]

In each case, both of the slices concerned must be of the same size, and the effect is to set each
of the count variables in destInation. from destinatlon.base upwards, to the values of the count
variables in source, again, counting from source.base upwards. Do not confuse slice
communications with the semicolon abbreviation for a sequence of communications: single slice
operations must match with other slice operations; the semicolon denotes a sequence of unrelated
communications.

There are, of course, also byte slices which are denoted by

name [byte base For count]

and which may be assigned or communicated into other byte slices.

Expressions
Every simple expression in occam denotes a bit pattern the size of the word on the computer
which is executing the program. There is no defined precedence between the various operators,

An introduction to occam 9

so parentheses are generally needed to disambiguate an expression with more than one operator.
The only exception to this rule is that associative operators do not need parentheses. All
expressions are built of operators, constants, variables, and indexed arrays, so that evaluating an
expression cannot possibly have a side-effect.

There are a number of operators that can best be explained by regarding each bit pattern as
the twos complement representation of an integer:

a + b is the sum of a and b
a - b is the difference of a and b
a x b is the product of a and b
a + b is the result of dividing a by b and rounding towards zero
a mod b is the remainder on dividing a by b
-a is a with its sign changed

The usual six relational operators:

a <b a <b a ~ b a> b a) b a * b

compare their operands as though they represented signed integers, and return one of the values
true or False, There is one other relational operator intended for comparing the values of a
clock which counts cyclically through all possible word sized bit-patterns: the expression

a after b

is true or False according as a would be reached sooner by successively incrementing b, ignoring
overflow, than by decr~enting it. (Almost half of all bit patterns are aFter any given
bit-pattern.)

The Boolean values can be manipulated by the f(Jllowing logical operators. Provided that each
of a and b is either true or False

a and b is true if both of a and b are true, and False otherwise
a or b is true if either of a and b is true, and False otherwise

is true if exactly one of a and b is true. and False otherwisea '" b
not a is true if a is False, and vice versa

The and and or operators evaluate their left argument first, and then the right argument. should
it be needed to decide the result. This means that, for example, bounds checks should precede
array accesses, thus

(0 < tl and (I <Size) and (a(i] ~ x)

Finally, there are some operators whose effect is most easily described by thinking of the
operands as bit patterns

a v b is the bit by bit or of a and b
a 1\ b is the bit by bit and of a and b

is the bit by bit modUlo two sum of a and ba '" b
not a is the ones (bit by bit) complement of a

a < b is the pattern a shifted left by b bits
a » b is the pattern a shifted right by b bits

The shift operators displace the pattern a by b number of bits, so that this many bits are lost
from one end of the pattern, and the same number of zero bits are shifted in at the other end
of the pattern.

to An introduction to occam

Some of the most useful applications of the bit-manipulation operators are in idioms which
achieve effects that in typed languages would use additional expression forms. Since the values
true and False are, respectively, a word of one-bits and a word of zero-bits

(x II true) x
(x II false) 0

(x V 0) x

This means that you can write conditional expressions, such as

the value of which is one of a, b, or c according as p is less than, equal to, or greater than q.
Again, there is nothing to stop you constructing bit patterns with the bit manipulators, and

then treating them as twos complement integers. The value of

(not 0) » I

is a word of one bits, excepting that the most significant bit, that is the sign bit, is zero; this
value is therefore the largest positive integer in the range that can be represented on your
particular machine, represented in a way that is independent of the word length of the machine.

not ((not 0) » t)

is a word of zero bits, excepting for a one in the sign bit, so is the most negative integer that
can be represented, Another construction which I will often use is

not ((not 0) (: logarithm)

which is the bit pattern in which the least significant logarithm numbel of bits are set. This is
useful for making masks, so that, for example, in the scope of

def control ~ not ((not 0) (: 5)

the value of

control 1\ 'G'

is seven, that is the character code normally known as 'control-G',

An introduction to occam 11

The representation of occam programs

This section describes the liberties that I have taken with the concrete synta;< of occam. You
will not need to read it to understand any of the rest of the document.

First of aB, so as to making programs more readable, I have used a number of special symbols

not in ISO-7 character sets. In the standard language, these are written using the following
sequences of characters:

(as less sign, equal sign <
) as greater sign. equal sign >
* as less sign, greater sign< >
"' as greater sign, less sign > <
A as / \ slash, backslash

V as \ / backslash, slash

<l: as < < less sign, twice

» as greater sign. twice > >
as minus sign, twice

== as colon, equal sign
X as asterisk•
+ as / slash
mod as \ backslash.both and as the double-quote character .both and as the single-quote character

I have written the keywords in bold face characters, whereas in the standard language they are
written using the same characters as are used for identifiers, and so are reserved words. In some
implementations of occam, the keywords are only reserved if written entirely in capitals, in
other implementations, case is not significant

The layout of programs is as described here, where 'slightly indented' is taken always to mean
'indented by a further two spaces'. Each line begins with an even number of spaces, two spaces
indented from the line to which it is subordinate. Layout within the line is at your discretion,
except that spaces are needed to punctuate sequences of letters and digits which might otherwise

be misinterpreted, for example to distinguish

d[byte 0 for 3J ,~ s[byte 0 for 3J

which is a slice assignment, from

d[byteofor3J ,~ s[byteofor3J

which is a simple assignment. Additionally. long lines may be broken in any place where there
is a sufficiently strong indication that the break is deliberate, such as after a comma in a list of
declarations, Or after an operator in an expression. Be warned that the language definition is
unlikely to agree with your idea of what constitutes a sufficiently strong indication! The
continuation line follows and must be indented at least as far as the first part of the line.
Blank lines are ignored.

The first authoritative reference on the occam notation and its representation is the

occam Programming Manual, (authors) INMOS Limited
Prentice/Hall International, 1984

which defines a dialect called proto-occam. This has been variously modified, for example by
recent occam programming system manuals, which] have followed. There are substantial
differences between this language and the proposed occam il.o.

12 The representation of occam programs

Programming structures

In the next few pages, the various pipes and joints of occam are demonstrated in some small
plumbing exercises, Although these examples may seem unrealistic or overly elaborate for their
siz.e, they are intended to show some practical programming techniques.

Simple sequential processes
It is almost traditional that the first program anyone writes in a new programming (anguage is

one that writes "Hello"> or some equally imaginative greeting, to the screen of their terminal. In

an occam em'ironment, the terminal screen is likely to be accessible as a channel: values output
to the channel being displayed on the screen as characters. A first, unexciting attempt at the
"Hello" program is

seq
terminal.screen ! 'H'
terminal.screen I 'e'
termina1.screen ! 'I'
terminal.screen ! 'I'
terminal.screen ! 'a'

Looking for ways to generalize the program, we would natural1y write a loop that outputs
each of the characters of an occam string, Recall that a string is a byte array. with the
number of characters being str\ng[byte oJ so that a program to write stri~ should behave like

seq
output I string[bl,jte ,]
outpot ! string[bl,jte ,]

output I string[bl,jte string[bl,jte 0]]

This is patently a candidate for a seq-For loop, which can be written

seq character.number ~ [, for str,ng[bl,jte oJ)
output I strlng[bl,jte character.number]

This process can now be pilckaged up as a named process, which corresponds to a procedure
in a language such as pascal, for writing the characters of a string to a channel

proc write.strtng(chan output, ualue string[J) =

- Output the characters of the string along the channel. output
seq character.number ~ [, for string[bl,jte 0]]

output I string[bl,jte character.number]

The line with the hyphen on it is a comment: these Ciln appear at the end of any line in an
occam program, even blank ones as here. Writing comments summarising the behaviour of
named processes is probably a good hilbit to cultivate.

At the Programming Research Group. people have come to expect the computer to greet them
with the shibboleth "Bootifrolo", This might be done by using wrlte.strlng. as follows

proc wrltestrlng(chan output. ualue strtng[]) ~

- Output the characters of the string along the channel output
seq character.number ~ [1 for string[bl,jte 0]]

output I string(byte character,number]

wr it e.str(ng(terminal.screen. "Booti froI0")

Programming structures 13

Simple parallel processes
The simplest thing that you can usefully want a process to be doing, at the same time as
another process is doing something else, is to copy data from one channel to another. This is

just a matter of repeatedly laking input from one channel, storing it in a local variable, and
tben sending the value of the variable along another channeL

uar local:
seq

source? local
sine I local

Why you might possibly want this done should be apparent: the local variable acts as a buffer
in the data stream passing along the two channels. This copying process can be packaged up as
a named process that can be used to buffer any unbounded data stream passing along a channel
between two processes

proe buffer(ehan source, sine)
while true

uar local:
seq

source? local
sin. I local

Now whereas the producer and the consumer process are tightly synchronized in a program
of the form

proc producer(chan output.stream) =

while true
var datum:
seq

... calculate a new datum
output.str~am I datum

proc consumer(chan input.stream)
while true

uar datum:
seq

input.stream ? datum
... calculate uSing the datum

chan data.stream :
par

producerCdatastream)
consumerCdata.stream)

with neither able to get ahead of the other, by adding a buffer

chan data.From.producer. data.to.consumer
par

produeer(datafrom.produeer)
buFFerCdataFrom.producer. data.to.consumer)
consumer(datato.consumer)

the two are slightly decoupled. The producer is now able to run up to one item of data ahead

Programming structures 14

of the consumer. ('Magic buffers' which would allow the consumer to run an item ahead of the
producer are a mite more difficult to implement, even in occam.)

More buffering is easily provided by inserting more buffers in the data path. in a structure
analogous to 'fatl-through' first-in-first-out stores. where each item of data is passed along a
chain until it reaches the last unoccupied location in the chain. Several items can be in
independent <free fall' at once if the buffer is fairly empty.

chan data.stream[number.of.buffers + 1] :
par

producer(datastream[0])

par index ~ [0 for number.of.buffers]
buffer(data.stream[index], data.stream[lndex + 1])

consumer(datastream[number.of·buffers])

There is, of course, nothing to stop you programming a buffer with an array of variables
governed by one process, just as in any conventional programming language.

Synchronization by control signals
You could try pUlling the buFFer process into the stream that goes to the terminal screen from
the "Bootifrolo" program

chan internal.stream :
par

wri te.s tringCinternal.s tream, MBootifrolo")
buFFerCinternal.stream, terminal.screen)

but this is not quite right. The buffer initially performs well, and copies all of the characters to
the screen. Eventually. however, all of the string has been sent, and the write.strlng process
terminates. This leaves the buFFer in a somewhat undignified state, trying to perform an input
on Internal.stream when there will never again be a corresponding output. The program is
deadlocked.

Some way is needed of lelling lhe buffer lhal il should not expc.ct any more input along its

source channel, and that it should accordingly terminate. The process

proc copy.characters(chan source, end.oF.source, SlnR.) =

- Copy characters from source to sinR
- Uo'ltll there IS a Signal on end.oF.source
var more.characters.expected :
seq

more.characters.expected := true
while more.characters.expected

var ch :
alt

source? ch
'InR J ch

end.of.source ? any
more.characters.expected := False

behaves just like the buFFer, copying from source to SlnR. except that it may also take input
from the channel end.oF.source. The keyword any just means that the actual value received is
immaterial. so it need not be stored in a variable. When an input signal is received on
end.oF.source. the variable more.characters.expected is set False. so the while loop terminates.

The right way of buffering the output of write.string is therefore to send its outpUt to a
copy.characters process, and to send a termination signal after the whole string has been sent.

Programming Structures IS

Since the value received as a termination signal is ignored, it does not maller what is sent:
outputting aTlbJ has the effect of sending something unspecified.

chan internal.stream, end.oF.internal.stream :

par

proc write.string(chan output, value stCing[]l
... Output the characters of the string along the channel output

seq

writestring(interna1.stream, "Bootifrol 0 ")

end.oF.internal.stream I any

proc cop,y.characters(chan source, end.of.source, SlnR) =

... COpy characters from source to SinR until a signal on end.oF.source
Cop!d.characters(internal.stream. end.of.internaLstream. termina1.screen)

The ". are not a part of the syntax of occam: they are just meant to save you lhe trouble of
re-reading the code that they save me the trouble of re-writing!

In the case of the cop!d.characters process, there is no need to use a signal on an extra
channel, because there is spare capacity on the source channel going in the right direction. You
could select some value, say

def end.of.stream ~ -,

which is not a possible character value, and send that after the last reat character of the message

def end.of.stream ~ -, ,

chan internal.stream :

par

proc wrlte.st:ring(chan output, value strlng[]) =

... Output the characters of the string along the channel output
seq

u,W1 te.s tringCinternal.stream. YBooti frolo")

interna1.stream I end.of·stream

proc cop!:J.characters(chan source. sinR.) ::::
- COpy characters from source to sinR until end.of.stream received
var more.characters.expected :
seq

more.characters.expected ,= true
while more.characters.expected

uar ch :

seq

source? ch
If

ch "* end.of.stream
slM I ch

ch = end.oFstream
more,characters.expected := false

cop!:J.charactersCinterna1.stream, terminal.screen)

Programming structures 16

In this particular case, there is little to choose between the two styles: the latter program may

be marginally more efficient.
In many cases there will be no convenient data-stream going in the right direction. The

example of a circular buffer implemented using an array of variables is of this kind. Assume

that the array is declared by

uar datum[slze]

and that the variables

uar reader, writer:

have values in the range zero to size-l, so that the oldest value to leave the buffer will be
found at datum[reader], and the next to enter the buffer will be written to datum[wrlter]. It
will be convenient to keep track of the number of unoccupied locations in the buffer by a
further variable

uar count:

whose value ranges from zero, for a full buffer, to size for an empty one.
There are two activities in which the buffer must be able to participate: provided that it is

not full, that is that count> 0, it must be possible to add another value to the buffer

seq
source? datum[wrlter]
writer := (writer + t) mod size
count 1= count - ,

and provided that count <size it must be possible for the oldest value to be read from the
buffer

seq
510R I datum[reader]
reader ,= (reader + 1) mod size
count := count + ,

The buffer must allow the producing and consuming processes to control its activity, selecting
between writing and reading, provided only that there is room to write, or something to read,
respectively. It is tempting to try writing

alt
count> l' & source? datum[wrlter]

seq
writer ,= (writer + 1) mod size
count ,= count - 1

count <size & sln~ I darum[reader]
seq

readEr 1= (reader + 1) mod size
crunt := count + 1

but output processes cannot be used to guard alternatives. The solution to this problem is to
have a control signal from the consuming process indicating that it is ready to accept an input
from Sink There is no need for the corresponding request before a write to the buffer, because
the input along source serves perfectly well in place of a control signal.

Programming structures 11

proc circular.bufferCchan source, request, SlnR) ~

Copy from source to sinR, buffering up to size Items.

- Po signal is required on request before each Item IS read.
uar reader, writer, count, datum[slze]
seq

reader := 0

wrIter '= D

count ,= size

while true

alt
count> 0 & source? datum[wrlter]

seq
writer := (writer + 1) mod sIze
count := count - 1

count <size & request '? any
seq

sinR ! datum[readerJ
reader ,= (reader + t) mod size
count ,= count + ,

It is the responsibility of the consumer, whenever it reads from the buffer. to perform two
communications in sequence

seq
requ8s t ! any
source'? ...

This burden can be removed by the consumer at the expense of an extra process. executing
concurrently with the circular buffer

proc muitiple.bufferCchan source, sinR) ~
- cOPY from source to slnR. buffenn9 up to 51Z,," + 1 ,terns.

chan request, data:
par

circular.bufferCsource, request, data)

while true
uar datum:
seq

request ! any
data? datum
51nR I datum

The resulting multiple.buFFer process has a beha... iour which is indistinguishable from that of a
chain of size+l single-item buFFer processes acting in parallel.

Processes that evaluate expressions
Suppose now that you have a need to calculate the parity of the characters that are being sent
to the terminal. (The parity of a character is an indication of whether there is an even or an
odd number of 'one' bils in the binary representation of its code,) In a language like pascal,
you might write a function to calculate the parity of a character which was given to it as a
parameter. but in occam (there being no '(unction's) the natural construction is a named process

proc calculate.parity(value ch, uar paflt!:J)

Programming structures 18

which returns the result by way of a uar parameter. A representation will be necessary for
parity values: the natural thing to do is to choose the truth values

def even = true, odd = not even:

In fact, the process will be independent of the actual bit pattern chosen to represent even.
Calculating the parity of ch involves considering each bit of ch: the simplest thing to do is to

take them one at a time in sequence. (Expert bit twiddlers may care to code an algorithm
logarithmic in the number of bits in the character.) The expression

ch 1\ (1 « bit.number)

is either zero or not according as the bit.number'th bit of ch, counting from zero at the least
significant end, is zero or not. The loop

seq bit.number ~ [0 for number.of.blts.ln,characterJ
if

(ch 1\ (1 « bit.number)) ~ 0

s~ip

(ch 1\ (I « bit.number)) " 0

parit~ := not parit~

complements the value of parit~ as often as there are 'one' bits in ch.]f parlt~ is initialized
to even, then its final value indicates the parity of ch.

seq
parit~ := even
seq bit.number ~ [0 for number.of.bits.ln.character]

if
(ch 1\ (, <: bit.number)) ~ 0

s~ip

(ch 1'\ (, ((bit.number)) ::/:. 0

parit~ ,= not parit~

Since. exclusive-or behaves like a conditional complement operation, the conditional process in
the middle of this seq-for loop can be abbreviated to a simple assignment which has the same
effect

parity .~ parity ffi ((ch 1\ (, « bit.number)) " 0)

and the whole can be packaged as a reasonable implementation of the named process
calculate.parlt~

def even = true, odd "'" not even:

proc ca1culate.parit~(ua'ue ch. uar parit~) =

~ Return the parity of ch In parit~

def number.oF.bits,Jn.character = 8 :
seq

parit~ ,= euen
seq blt.number ~ [0 for number.of.blts.ln.characterJ

parity .= parity ffi ((ch 1\ (, « blt.number)) " 0)

Programming structures 19

Using parallelism as a tool for program modularity
If for some reason you wanted to modify the write.string process so that it wrote only the
even parity characters from its argument, ignoring the rest, you could write

proc write.euen.parlty.string(chan output, ualue string[]) =
seq character.number ~ [, for strlng[byte 0]] uar parity:

seq
calculate.parity(string[byte character.number], parity)

if
paritb' = euen

output I string[byte character.rumber]
parity = odd

SRip

This process is perhaps a little specialized: it performs its task well enough, but there are no
recognizable separate components performing subtasks. which you might be able to use again in
other programs. The code for selecting characters according to their parity is mixed in with the
code for turning a string into a sequence of output processes. A more modular program might
use a process which splits a stream of characters into two streams according to their parities.

proc dluide.on.parity(chan source, end.of.source. euen.sinR, odd.slnR) ~

- Copy the even parity characters from source to euen.slnR, odd

~ parity characters to odd.sinR, until signalled on end.oF.source
uar more.characters.expected :
seq

more.characters.expected := true
while more.characters.expected

uar ch :

alt

source? ch
uar parit)d :
seq

calculate.parity(ch. parity)
If

parit)d = even
even.sinR I any

parity = odd
odd.slnR I any

end.oF.source ? any
more.characters.expected ,= False

This process is not specialized to the application in hand, but can be used to filter out the odd
or even parity character codes from any data stream. The unwanted stream must be discarded

proc consume(chan source, em.oFsource) =
uar more.characters.expected :
seq

more.characters.expected ,= true
while more.characters.expected

alt
source? any

SRip
end.oF.source ? any

more.characters.expected ,= False

Programming structures 20

Using diVide.onparit!::j the "Bootifrolo'" program might be written

proe write£tring(ehan output. ualue string[]) =

... Output the characters of string along the channel output

proe diuide.on.parity(ehan source, end.oF.source, euen.sIM, odd.SIM) ~

... Copy characters from source to euensinR or odd.sinR

proc consume(chan source, end.ofsource) =

discard characters from source. until end.of.source

chan both.parities, end.of.both.paritles. odd.parlty, end.of.odd.parlty

par

seq

write.string(both.parities, "Booting from Floppy")

end.of.both.parlties ! any

seq
diuide.on.par ity(both.pari ties, end.oF.both.parities, termlnalscreen, odd.parity)
end.of.odd.parity I any

consume(odd.parity. end.oF.odd.parity)

In this particular case, the gain in modularity may not seem adequate to justify the expense,
both in programming effort and execution time. The advantage is clearer in cases where the
program must perform a number of tasks each of which divides its input data into chunks, and
where the boundaries of these components do not coincide.

Using parallelism to resolve structure clash
A structure clash happens whenever a program must perform operations on data that must be
divided into mutually overlapping components. In a text processing program, for example, it
may prove necessary to do something to every line of a document, and something else to every
sentence. The natural way to code each of these tasks. individually, is to write programs whose
structure reflects the structure of the document. To perform an action on every line:

while ... there are mo~e l,nes

seq
read a line

process the line

and to perform an action on every sentence:

while ... there are more sentences

seq
read a sentence
process the sentence

Since sentences do not need to contain only complete lines. nor lines complete sentences, it is
impossible to combine these two programs into a single sequential program. The somewhat
unsatisfactory best that can be done in a sequential program is to treat the document as a
sequence of words, these being the largest common sub~components of both lines and sentences.

while ... there are more words

seq
read a word

if thiS completes a line process the line

if thiS completes a sentence process the sentence

Programming structures 2\

In a parallel program, the structure of both component processes can be retained by
performing the two divisions of the document concurrently

chan lines, sentences :
par

... copy the document to lines and sentences

whIle ... there IS more document

seq
read a line from lines
process the line

while ... there IS more document

seq
read a sentence from sentences
process the sentence

The simplest case of a structure clash arises from attempting to pack data into fixed sized
blocks that wiJl not accommodate an exact whole number of items. Il might be necessary, for
example, to pack a stream of characters into half -kilobyte blocks for transmission or storage on
a medium which accepts only such blocks. Consider first a case in which there is no structure
clash: the medium is represented as a channel that accepts only slice outputs of half a kilobyte,
and characters are represented by codes in the range from c to 255, so that a whole number of
characters exactly fiJI a block.

The way to perform actions sequentially on the components of an array of bytes declared by

var buffer[byte bytes.in.ablocR] :

is to use a sequential 'array' of .processes created by the constructor

seq byte.number = [0 for bytes.in.a.blocR]

so this packing might be done by a process of the form

proc pac'R.bh]tes.into.bloc'RsCchan bh]te.source, end.of.source, bloc'R.sin'R) :=

var more.bh]tes.expected :

seq

more.bh]tes.expected := true
while more.bh]tes.expected

var buffer[byte bytes.in.ablocR] :

seq

seq byte.number ~ [0 for bytes.in.ablocR]
alt

more.bytesExpected & byte.source ? buffer[byte byte.number]
SRip

more.b!::ltes.expected & end.of.source ? any
more.bh]tes.expected ,= False

not moreb!::ltes.expected & sRip
sRip

blocR.sin!< I buffer[byte 0 for bytes.ln.ablocR]

The branch of the alternative that does all the work is the first, that guarded by an input from
b!:Jte.source which inputs the next byte into the particular component of the buffer which is
being considered. Since the guard does all the work, there is nothing left to be done in the

Programming Structures 22

guarded process, so this is 5Rip. Notice the use of a 5Rip guard in the alternative inside this for
loop: the condition ensures that this guard is ready when and only when there are no more

bytes to be packed into the last block.
This process always sends a partly or completely empty block as its last output. The

sending of a completely empty block could be prevented by looking ahead for the next byte

def byteS.in.ablocR = 5'" :

proc pacR.bytes.into.blocRs(chan byte.source. end.ofsource, bloCRslnR) ~

- COpy data from byte.source to blocR.SlnR In complete blocks

- until there IS a signal on end.oF.source
uar next.byte :
alt

byte.source ? next.byte - Read ahead the first byte
uar more.b~tes.to.pacR :
seq

more.bytes.topacR ,~ true
while more.bytes.to.pacR

uar buffer[byte bytes.in.a.blocR + ,] :
seq

buffer[byt' 0] ,= next.byte
seq byte.number ~ [, for bytes.ln.ablocR]

alt
more.bytes.to.pacR & bytesource ? buffer[byt, byte.number]

ship
more.bb)tes.to.pacR & end.oF.source ? any

more.bytes.topacR ,= fals,
not more.bytes.to.pacR & sRip

ship
blocR.sinR ! buffer[byte D for bytes.na.blocR]
next.byte ,~ buffer[byt, bytes.in.a.blocR]

end.oF.source ? any - No bytes at all

Ship

Even so, in case the entire message does not exactly fill a whole number of blocks, it has to be
possible for a process that unpacks the characters from the blocks to deduce from those
characters that it has reached the actual end of the character stream before the end of the last
block.

Now consider the problem of trying to achieve a higher packing density, given that only
character codes less than 128 are going to be sent, so that seven bits will suffice rather than
eight. Seven bit values will not fit neatly into bytes, nor into half-kilobyte blocks. The problem
can, however, be decomposed into two simpler separate problems in which there is no structure
clash: turning seven bit character values into a sequence of bits, and packing a sequence of bits
into blocks,

The packing of bits into blocks can be done in almost exactly the same way as that suggested
for packing bytes into blocks, A byte can be considered to be an array of bits, indexed by
using the bit-pattern manipulating operations, The assignment

buffer[byt, byte.number] ,~ buffer[byte byte.number] f\ (not (, " blt.number))

sets the bit,number'th bit of the bb)te.number'th byte of buFFer to zero, whilst

buffer[byt, byte.number] ,= buffer[byte byte.number] V (, " blt.number)

Programming structures 23

sets that same bit to one, so the conditional

if
bit ~ 0

buffer[byte byte.number] ,= buffer[byte byte.number] to. (not (14: bit.number))
bit ~ 1

buffer[byte byte.number] ,~ buffer[byte byte.number] v (1 « blt.rumber)

stores the given bit in the blt.number'th bit or the byte.number'th byte or the buFFer. The
buffer is, in effect being treated as a two-dimensional array, and the process that packs the
buffer is a two-dimensional seq-For array or processes.

def bits.in.abyte ~ B, bytes.ina.blocR = 512 :

proe pacR.bits.into.blocRs(ehan bit.source, end.of.souree, bloeR.sine) =

- Copy data from blt.source to blocR.SlnR In complete blocks
- until there IS a signal on end.oF.source
uar next.bit :
alt

blt.source '? next.bIt - Read ahead the first bit
uar more.b\ts.to.pacR :
seq

more.bits.to.pacR ,= true
while more.b\ts.to.pacR

uar buffer[byte b[Jtes.in.abloeR] :
seq

seq byte.number ~ [0 for blts.in.abloeR]
if

more.bits.to.pacR
seq bit.number ~ [0 for bits.ina.byte]

If
more.bits.to.pacR

seq
if

next.blt = 0

buffer[byte b[Jte.number] buffer[byte b[Jte.number] to.
(not (1 « blt.number))

next.bit = 1

buffer[byte byte.number] ,~ buffer[byte byte.number] v
(1 « bit.number)

alt
blt.source '? next.bit

SRip
end.of.souree ? any

more.bits.topaeR ,~ false
not more.bits.to.pacR

sRip
not more.bits.to.paeR & sRlp

sRlp
bloeR.sinR ! buffer[byte 0 for bytes.in.abloeR]

end.oF.source '? an~ - No bits at all
sRip

Turning seven bit characters into a sequence or bits is also a simple task, since there is again

Programming structures 24

no structure clash. The value of the expression

(character» bit.number] 1\ I

is zero or one according to the value of the bit.number'th bit of the value of character, So the
character code can be treated as though it were an array of seven bits. The following process
turns a stream of characters into a stream of the bits which make up their codes, least
significant bit of the character first.

deF blts.ln.acharacter = / :

proc unpacR.bits.From.characters(chan char.source, end.oF.source. blt.slne] ~

- Copy characters from char.source to blt.sin\:!., a bit at a time
- until there is a Signal on end.oF.source
var more.characters,expected :
seq

more.characters.expected true1=

while more.characters.expected

var character:

alt

char.source'? character

seq bit.number = [0 For blts.in.acharacter]

bit.slne I (character» blt.number) 1\ 1

end.oF.source ? any

more.characters.expected False
1=

The task of packing seven bit characters into half-kilobyte blocks is now easily done by
performing each of these subtasks in parallel

deF bits.ln.a.character = /. bits.in.abyte ~ 6. bytes.in.ablocR ~ 3" :

proc pacR.characters.lnto.bloCRS(chan char.source, end.oF.source, bloc\:!..s!n\:!.) =

proc unpac\:!..bits.From.charactersCchan char.source, end.oF.source, blt.s\nR) =

... Send the bits of character codes from char.source along bit.sin\:!.

proc pacR.bits.lnto.blocRs(chan bit.source. end.oF.source, blocR.5inR] ~

, •. Pack bits from bit.source Into blocks sent along blocR.5inR

chan blt.stream. end.oF.blt.5tream :

par

seq
unpackbits.From.characters(char.source, end.oF.source, blt.stream)
end.oF.bit.5tream \ any

pacR.bits.lnto.blocRs(bit.stream. end.oF.blt.stream. blocR.sine)

Substantially the same program structure can dearly be used to turn the stream of blocks back
into a stream of seven bit character codes, since that is just another, similar packing problem.
The solution to each packing problem is of one of the three forms that I have shown here:
grouping small objects to make larger ones; dividing large objects to make small ones; or a
problem in which a structure clash requires that both the input data and the output data be
divided into common subcomponents.

Programming structures 25

Local time

There are many applications of programmed deviees where it is necessary for the program to be
able to refe.. to, or to measure, the passage of time: for example, in long-range communication,
the participants are usually prepared to wait for replies for a timited time only, before taking
action to recover from the loss of messages. To accommodate these needs, there are two

primitive processes by which occam programs may refer to the changing slale of a local clock.
I mention them here to complete the presentation, but they will hardly be used in the programs
which follow: you may want to pass by this section on a first reading.

The clock reading process

tIme? variable

sets the value of the variable to the current reading on the clock. This is a word-sized bit
pattern which changes at a uniform implementation-dependent rate with the passage of time, It
counts up cyclically through a set of values distributed through the whole range of bit patterns,
the most negative reading following after the most positive one, Notice that it is misleading for
this process to look like an input process: the sequence of characters time? is indivisible,
time is not a channel, nor are dock reading processes governed by the rules that control the
legal uses of channels: many concurrent processes may legally read the time from the same dock.

The clock delay process

time ? after expression

is another process that does nothing, like skip, except that it suspends execution, It does not
terminate until the reading on the clock has satisfied the condition

reading after expression

I have been careful with the wording of that last sentence: notice that there can be no guarantee
about the value of variable after the execution of

seq
time ? after expreSSion
time ? variable

As before, the sequence of characters time ? after is atomic, a delay is not an input
process, but it is allowed to stand in the place of an input process as a guard of an alternative.
Such a guard becomes ready as soon as the delay process may terminate.

The operator after is intended for the comparison of readings taken from the dock, Provided
that two times are separated by less than half the time that it takes for the clock to count
around the complete cycle of its readings, one time is after the other if readings taken from the
clock at those times are similarly related by after. The cycle time of the cl<ick depends on the
word size, on the amount by which the readine is incremented at each tick, and the frequency of
the clock ticks. Each of these depends on the particular implementation, and I will assume that
you can supply a definition

def second ~ ...

in any program that needs it, indicating by how much the reading changes in one second. (This
assumption will be unjustified if the clock cycle time is two seconds or less, as will be the case
for some proposed transputer devices.)

Any two readings being compared, either directly. or by the delay process, should be taken
from the same clock: the language does not guarantee any relationship between readings taken in

26 Local time

different branches of a par construct. Notionally. the clock is a register on a transputer, and
no connection is to be expected between that register and the registers of any other trans·puters
participating in the execution of a program. There is no mechanism in the language which
maintains a global time. and it is the programmer's responsibility to implement one if it is
needed. Similarly, if needed it is the programmer's task to provide a mechanism. using the clock,
for timing long periods (those in excess of half a clock cycle time).

There are three idioms that, in combination. encompass almost all uses of the clock. First of
all, to suspend execution for a fixed time, say ten seconds

uar started :
seq

time? started
time? after started + (10 X second)

This might happen as a once-only action in a program while starting or stopping some
mechanical peripheral device.

If an action is to be performed at regular intervals, say once every ten seconds. then

uar next.dead.line :
seq

time? next.dead.line
while ...

seq
next.dead.line ,= next.dead.line + (10 x second)
time? after next.dead.line
.•. perform action

will do this (provided that the action can be completed in under ten seconds!) Notice that each
deadline is set relative to the previous deadline. so as to avoid slippage.

Finally, using delay guards allows a program to limit the time for which it is prepared to
wait for input.

uar prompted. ch :
seq

wrlte.strlng(termlnal.screen, ·Yer wot? N)
time? prompted
alt

termlnal.Reyboard ? ch
to.program I ch

time? after prompted + (30 x second)
to.program 1 operator.asleep.or.dead

Provided that the input from the terminal.Reyboard arrives within thirty seconds of the clock
being read, the alternative will select its first guard. After that time, the other guard is ready
and the process is no longer obliged to wah for its input.

Local time 27

Formatted input and output

One of the things that you will probably miss in occam if you are used to programming in a
typed hjgh level language is the support for text input and output. There are usually either
predefined routines, or language constructs, which take your program's data, such as strings,
integers, floating point numbers, and translate them into sequences of characters for output to
terminals and printers. Similarly, there are usually routines provided for reading sequences of
digits, and interpreting them as numbers, and so on. Il is almost always possible for you to
write your own input and output routines. but those provided for you will usually do.

Since occam programs are, at least notionally, to run as 'stand alone' programs, there is no
standard operating system or run-time library of such support routines, and the input and
output translations must be performed by the program, Moreover, since there is no type
information in the program, no standard routine can <know' that you are interpreting a
particular bit-pallern as a character code, or as a signed integer, or perhaps as a floating point
number. This means that each program will need specific processes which translate those types
of value whose text representations are input and output by that program.

This section describes routines to be used by the programs described later.

Output routines
A process for outputting the characters of a string appeared earlier, in the 'Programming
structures'

proc writestrlng(chan output, value stnng[]) ~

- Wnte the characters of the strlng[] to the output
seq character.number ~ [, for string[byte 0]]

outP-Jt I strlng[byte character.number]

You will also probably need to output bit patterns as decimal numerals. If you have ever
written this routine before, there ought to be no difficulty, except that an occam process cannot
use recursion.

First of all, if tens is a power of ten then

'0' + ((n + tens) mod 10)

is the digit of that weight in the numeral representing the positive integer n. Notice that '0' is
just the character code for zero: in the addition it is treated as any other bit-pattern, The result
becomes a character again only if you choose to treat it as such by, for example, outputting it
to a terminal.

To output the whole numeral for n the digit calculation must be performed in sequence for
each power of ten not exceeding n, in decreasing order.

var tens:
seq

tens := 1
While (n + tens) > '0

tens := 10 X tens
while tens> 0

seq
outP-Jt I '0' + ((n + tens) mod \0)

tens := tens + 10

The division of tens by ten always gi ves an exact answer, excepting the final occasion, when
tens is one, and the result of the divison is zero. That process works for all positive n and, as
a special case, for zero.

Formatted input and output 28

It is tempting to try outputting negative numbers by first changing the sign, but this is
wrong, because changing the sign of the most negative number gives no defined result. Whatever
the effect, it cannot possibly give the right answer, since this is not a representable value. The
standard, if confusing, solution is to treat positive numbers as special cases which are best
output by making them negative, or equivalently, to change the sign of tens, so that the result
of dividing by tens is consistently negative.

proe write.slgned(ehan output, value n)
- Write a signed deCimal representation of n to the output
uar tens:
seq

if
n (0

seq
output I '-'
tens:= 1

n> 0

tens -1

while (n -<- tens) , (-10)
tens := 10 X tens

while tens 7' 0

seq
output ! '0' - ((n -<- tens) mod 10)
tens ,= tens -;- to

Notice that it is a matter of the definition of division and the mod operator in occam that
changing the sign either of tens or of n just changes the sign of the expression

((n -<- tens) mod 10)

None of the expressions in the process have results outside the range of representable integers:
for example, the result of the multiplication

\0 X tens

in the first loop is guaranteed, by the condition on the loop, to be no further from zero than is
n. so the multiplication gives the correct result. Similarly, the condition on that loop has to be
written in that way, because calculating, say

(- (n -<- tens)) >10

might involve negating the most negative number.
As a final sophistication to this process, you might want to send leading spaces so that the

numeral occupies a fixed number of character spaces. This would simplify the laying out of
columns of numbers. The simplest way of doing this is to count the digits whilst calculating the
value of tens.

proe writesigned(ehan output, value n, fleld,wldth) ~

Write a signed decimal representation of n to the output,
... right Justified to occupy Field.width character spaces

A coding of this process appears at the beginning of the appendix that contains the codes of
the programs.

Formatted input and output 29

Inpu t rou tines
Constructing a data object from its textual representation is slightly more difficult because, in
general, not all sequences of characters will be legal representations. For example, a process to
read a numeral might expect some spaces, perhaps a sign and some mOTe spaces, and then a
sequence of digits, followed by something else. If there are no digits, or if the number
represented is too large to be encoded as a bit-pattern, then an error has occurred. The
particular action to be taken to recover from an error depends on the circumstances of the
conversion: for example. whether the digits are being read from a terminal keyboard, or a
magnetic tape, whether tbe process is running on a deskwtop microcomputer or in aircraft
auto-pilot equipment. For a general purpose routine, I will settle for returning a Boolean
indication of whether the conversion was successful. (Other indications might be possible, for
example, a signal on a special channel for indicating errors.)

Ignoring, for the present, the matter of the sign, and the possibility of error, a sequence of
digits can be converted into a bit-pattern representing the same number by

uar ch :
seq

n:= 0

Input? ch
while CO' ~ ch) and (ch ~ '9')

seq
n ,= (10 X n) + (ch - '0')

input? ch

where the arithmetic is essentially similar to that in the output routine. As in that case, you
will have to be careful with the most negative integer: it will not do to read negative numerals
by reading the digits as if of a positive numeral and changing the sign of the result. The
simplest solution is to change the sign of each digit before aGCumulation, keeping n negative
throughout.

So as to check for overflow, the new value of n must be compared with either the most
positive, or the most negative, bit-pattern. being careful to keep all the arithmetic in the
expr~5ible range.

deF min ~ not ((not 0) » 1), max = (not 0) » 1 :

if
(sign = '+') and (n ~ ((max - (ch - '0')) + 10))

n ,= (10 X n) + (ch - '0')

(sign = '.'J and (((min + (ch - '0')) + 10) ~ nJ
n ,= (10 X nJ - (ch - '0')

otherWise
OR := False - an error has occurred

A possible solution to the problem of errors would be to omit the third branch of the
conditional entirely, so that the routine would become deadlocked in case of an overflow. The
general solution postpones the decision, giving the caller of the process the option of ignoring
the error, or acting on it in any way be chooses. including the option of stopping.

The appendix contains a routine complementary to the write.signed which has this
specification.

proc	 read.signed(chan Input, uar n, oR) =

Read an (optionally signed) deCimal numeral from the Input

returning the corresponding value in n, and true or False In

OR according as the conversion !-lorked or not

Formatted input and output 30

In many programming languages a routine like read.signed could only be used for conversion of
a numeral being read from a peripheral device. In pascal, for example, such a routine would be
reading from a file, but an entirely different routine would be needed to convert a numeral
stored in an array of characters. In occam. there is nothing to stop you doing this by putting

input and output routines together in parallel. The process

chan internal :
par

write.strtng(internal, "-moe")
read.signed(internal, n, oR)

sets n to -137. This might not look very useful for constant strings, but the same can be done
with variable arrays of characters. This means, for example, that it is easy to separate the
business of line construction, editing and echoing, when reading from a terminal, from whatever
data conversion you might want to perform on the input.

For completeness, the appendix also contains a coding of a line construction process suitable
for input from a vdu

proc read.1\ne(chan Re"board, screen, var s[]) ~

Construct a string In s[] from the printable characters

read from Re,yboard and echoed to screen. The string

finishes at a carriage return.

As it reads characters from the Re,yboard stream, this process packs them into the byte array s[]
and echoes them to the screen stream, allowing the usual sort of line editing. For example,
typing bacRSpace

seq

Re"board ? ch

if

(ch = bacRspace) and (s[bytl? oJ ') 0)

seq
screen 1 ba:Rspace ; 'fIIS' ; bacRspace
s[byte 0] :~ s[byte oj - 1

cancels the last character in the line, and removes its echo from the screen by writing a blank
space in its place.

Formatted input and output 31

Where once were only interrupts

It used to be that programmers only met concurrently executing processes if they had to code

interrupt routines, or to write code which shared store with interrupt routines. An interrupt is
a mechanism designed to make small amounts of processing power available at short nolice to

handle urgent tasks, when it would be unreasonably expensive to make that processing capability
permanently available. To this extent, it separates two concerns: an applications programmer
wanting to send characters to a lineprinter need only supply them to an interrupt handler; it is
the responsibility of the interrupt handler to transmit them to the printer at the precise times
that the printer indicates that it is ready for them. In this way, the programmer is relieved of
the burden of making frequent checks on the state of the printer, and the structure of his
program can be unaffected by the timing constraints imposed by the printer.

Interrupt routines are notoriously difficult to code and to use. In addition to assuming
responsibilities of meeting real-time deadlines, the interrupt routine must maintain the
programmer's illusion that the application program has exclusive use of the processor and store.
This imposes rigorous discipline on the use of registers. and of store locations, both to avoid
conflicts, and in the management of those shared variables by which program and interrupt
routine communicate. Moreover, the interrupt routine has usually to be programmed as a
'subroutine' (rather than a 'coroutine') invoked once by each interrupt. which means that any
state that is to persist from the handling of one interrupt to that of the next must be saved in
store and reconstructed at the next interrupt. To make matters worse, high level programming
languages are rarely able to offer convenient abstractions for coding interrupt handlers. which
are inherently machine-dependent, and it is usual for interrupt routines to be written in machine
code.

It is tempting to claim that the concurrently executed processes of occam are the right tools
for writing interrupt routines. To do so would be misleading: concurrent processes are right for
a task for which interrupt routines have always been inadequate! The task is in two parts: that
of writing code to meet real-time deadlines; and that of isolating their effects, so as to keep the
rest of the program simple.

In occam, sustaining the illusion that the application program has exclusive use of the
processor and store is easily done. since each and every process of every occam program
operates under this very illusion. The illusion is sufficiently strong that a programmer need.

never know whether or not any particular process is executed on its own dedicated processor.
Meeting real-time deadlines remains a problem that must be solved by ensuring that each

processor is fast enough, and that the code is short enough. Apart from this coneern with
urgency, an interrupt handler coded in occam can be written in exactly the same way as any
other process, and communicates with the application program in the same way as any other
processes communicate with each other.

Managing terminal input
To take a C0ncrete example. consider managing the traffic to and from a terminaL Every time a
key is struck at the keyboard, there will be a corresponding event (traditionally an interrupt) in
the computer, and some action must be taken to read information about the key before the next
key is struck. lest the information be lost. Quite often the action taken will be to store the
character corresponding to the key in a buffer, from which it will subsequently be read at the
leisure of the program which is consuming the terminal input. The capacity of the buffer
determines how many characters can be 'typed ahead' of the demand from the program.

In occam, an 'event in the computer' is represented hy a communication on a special channel.
Speeial channels are declared hy noting some implementation-dependent value (such as the store
address of the relevant peripheral controller) in the declaration,

chan ReystroRem at 32540 :

Programs use special channels just as they would use other channels, except that they use each

Where once were only interrupts 32

channel only for input, or only for output, with the other haJf of the communication being
performed by the peripheral controller.

In the case of the terminal example, it would be possible. every time a key was struck, for the

program to perform an input

RefjstroRe.in ? ch

so a reasonable interrupt handler might be

clrcular.buffer(RefjstroRe.ln, request, replfj)

using the circular buffer coded in the 'Programming structures' section. This process has the
disadvantage that, were the buffer to become full through the coincidence of a fast typist and a
slow program, the process would no longer be prepared to accept input from Re~stroRe.\n.

Since there is. fortunately, no mechanism built into current terminals to suspend the execution of
the typist while the computer is busy, this would mean that keystrokes made whilst the buffer
was full would be lost, without warning.

An improved scheme would be to code the interrupt handler in such a way that it was always
prepared to acknowledge the keystroke, and to take some remedial action in case there were no
room left in the buffer.

proc Refjboard.handler(chan request, SloR, error) =
Characters typed at the keyboard can be read from SlnR.

- A ~ignal l~ required on request before each item is read.
- If more than t~pe.ahead are typed-ahead. there is an error Signal.
chan RefjstroReS.ln at ... :
uar reader, writer, count
seq

reader := 0

wrIter := 0

count ,= tfjpe.ahead
var dacum[t8pe.ahead] ;
while true

alt
count =: 0 & Re~5troRe5.1n? an8

error! an8
count> t'l & Re~stroRes.\n? datum[writer]

seq
writer ,~ (writer + \) mod type.ahead
count := count - 1

count < tfjpe.ahead & request? any
seq

SloR I datum[readerJ
reader ,= (reader + .) mod type.ahead
count := count + I

This process signals on the error channel if an attempt is made to overfill the type-ahead
buffer; later, I will use this signal to ring the bell on the terminal.

Notice that the Re~board.handler is written in such a way that, provided
* the outputs to error and SinR are never delayed for more than a fixed time
* this process executes at a known rate within a known short time of becoming ready

then it is possible to put a bound on the length of time before the process next becomes ready
to accept an input from RehistroRe.in. Bounds of this kind are what you would need to
demonstrate that nO interrupts were lost.

Where once were only interrupts JJ

Managing terminal output
For the purpose of this example, suppose that the outgoing traffic to the terminal screen
consists of a sequence of bytes passing along the special channel screen.out to be displayed as
characters on a screen, or acted upon in some other way by the terminal. The terminal may then
become bUSy for some short time, before again being ready to accept output. The screen
handling process has to accept characters from the user's program, and to pass them on;
additionally, it must accept urgent error signals from the process handling the type-ahead
buffer, and send a 'hell' character to the terminal when an error is flagged.

def control ~ not ((not 0) « 5)

proc screen.handler(chan outgoing, error)
def bell.character = control A 'G' :

chan screen.out at ,.. :
while true

uar ch :
alt

outgoing ? ch
screen.out ! ch

error? any
screen.out I bell.character

It might appear that there are no timing constraints on the behaviour of the screen.handler,
but recall that the performance of the Reyboard.handler depends on its error signals not being
delayed unduly. As written. the error-guard in the screen.handler might indeed be delayed
indefinitely, even were it ,guaranteed that the screen.handler was executed immediately either of
the guards became ready. It might be that the process that sends characters along the outgoing
channel is able to send a new character in less time tban it takes the screen.handler to execute
the body of its while loop once. In that case. the outgoing-guard would always be ready every
time the alternative was executed, and since an alternative can choose anyone of the ready
guards, it is possible that the error-guard might be ignored indefinitely, even were it ready.
Notice, particularly. that this behaviour is not caused by my having written the outgoIng-guard

first: the order of the components of an alternative is immaterial to its meaning.
For just this reason some dialects (If occam have an additional construct(lr. pri alt, which

breaks the symmetry. (pri is to be read 'prioritized'!) The components of an asymmelric
alternative are the same as those of the symmetric construct, but the meaning differs in that
earlier components are treated more favourably than later ones. The alternative waits until one
of its guards is ready, then the earliest (nearest to the top of the paper) of the ready guards is
selected. Execution of the selected component is then the same as it would be in a symmetric
alternative. This means tbat if the screen..handler were re-written

proc screen.handler(chan outgOing, error)
d'f bell.character ~ control A 'G' :

chan screen.out at ... :
while true

uar ch :
pri alt

error? any
screen.out I bell.character

outgOing ? ch
screen.out I ch

then an error signal could not be delayed for longer that it takes to execute the body of the
while loop once. Discharging the responsibility to accept these signals in a fixed time reduces to

Where once were only interrupts 34

showing that
* the outputs to screen,out are never delayed for more than a fixed time
* this process executes at a known rate within a known short time of becoming ready

The first requirement is met by the terminal, by assumption; to the second I will return later.
Notice that there is no constraint on the timing of transactions on the outgoing channel; I am
bUilding a firewall around the terminal, beyond which meeting real-time deadlines will no longer
be a concern.

A particular program that uses the terminal may contain a large number of processes, each
needing to send characters to the terminal screen. Since the outgoing channel is now the only
way out to the terminal, and since only one process is able to send along that channel, a process
must be written to interleave the many output streams, and send the interleaving along outgoIng.

def release ~ -I :

proc output.multiplexer(chan from[], ualue width, chan outgoing) ~

while true

uar ch :

alt selected.process ~ [0 for width]

from[selected.process] ? ch

wh ile ch "* release

seq
outgoing I ch
from[selected.process] ? ch

This process interleaves messages from each of the From[...] channels, in an arbitrary order,
each message being terminated by the release value. The most interesting property of this
process. for present purposes. is that it is outside the firewall: there are no constraints on the
speed with which it executes. nor on the times at which other processes communicate with it.

Managing echoing
The time-dependency firewall is not yet complete: there remains the problem of reading from the
type-ahead buffer. Recall that. having i$~ued a request signal. lhe rea.der assumes a
responsibility to accept the reply from the sinh channel within a fixed time. This means that the
reader must be within the firewall. Here is a suitable process, which reads characters from the
type-ahead buffer, and to which 1 have given the job of 'echoing' the printable characters to the
terminal screen as they are read by the program using the keyboard input.

proe echo.handler(chan request, reply, echo, inward) ~

def enter = control 1\ 'M' :
wh ile true

uar eh :
seq

request I any
reply? ch
lnward I eh - Transmit character to user

if
C.s' (ch) and Cch ('-')

echo I eh Send viSible Input back to terminal screen

en = enter
echo \ release Release screen at end of line of Input

true
S~ip

The only timing constraint on this process is that it execute sufficiently rapidly that the input

Where once were only interrupts 35

from repl,y is accepted within a permissible time of the preceding request being accepted by the
Re~board.hand1E'r. There being no constraints on communication on the eU-IO and inward
channels, these may cross the firewall: the echo channel is to be one of the array From[] going
to the screen.multiplexer, and the inward channel can be used directly by the process that
consumes keyboard input.

Notice that the screen sharing strategy is implemented by an 'ordinary' process not subject to
any timing constraints. Since each line of echoed characters from the type-ahead buffer is sent
as a message to the screen as an indivisible message, there is no problem about input characters
being mixed in with output, but neither is there any need for the echo.handler to be concerned
with screen allocation.

If the program that used the terminal were written as a named process, user, then the whole
could be put together with the terminal handler

def type.ahead ~ "', control ~ not ((not 0) «5), rekase ~ -1

proe Reyboard.handler(ehan request. sin!<. error) ~

proe echo.handler(ehan request, reply. echo. inward)

proe output.multiplexer(ehan Frome], value width, chan outgoing)

proc screenhandler(chan outgOing, error) =

proc user(chan termina1.Re,yboard, termlnal.screen)

chan request. reply. error, outgOing. from.Reyboard
def from.eeho.handler = o. from.user = " number.of.outputs = 2

chan to.sereetinumber.of.outputs] :

par
Rehlboard.handlerCrequest. rep1hl. error) - .
echo.handler(reql£st. reply. to.screetifrom.echo.handler], from.Reyboard) - .
output.multlplexer(to.sereen, number.of.outputs. outgoing)
screenhandler(outgoing, error) - .
user(from.Reyboard. to.screetifrom.user])

Configuration directives
Ignoring, for the moment, the timing constraints imposed by the proper handling of the terminal
interrupts, checking the correctness of this program can be done in two parts. First of all, there
are properties of individual processes that can be checked in isolation from the other processes:
for example, that the echo.handler performs a cycle of four communications in a fixed order,
behaviour that is unaffected by the other processes. Secondly, there are some properties that are
inherently global, notably freedom from deadlock, which may depend on the behaviour of every
one of the processes.

The same is the case with the timing constraints: the argumt.nt thus far has been about each of
the component processes, more or less in isolation. Had I settled on a particular implementation
of occam on a particular computer, and on a particular set of terminal characteristics, then I
could have calculated the 'fixed times' within which actions must occur as so many seconds of
processor time, so much communication time, and so on. It remains, however, to be demonstrated
that there will always be sufficient processor time available when it is required.

One way of achieving this would be to dedicate a processor to the execution of each of the
five components of the program. Dialects of occam intended for writing such multi-processor
programs have a variant of the parallel constructor, placed par, for indicating such a division

36 Where once were only interrupts

of labour. Were this used in place of the par in the present program, then the processor
occupancy times calculated for the three starred processes would be actual elapsed times, each
independent of the processor loading of the other processes. In this particular case. such a
solution seems ex.cessive, since the tasks are each fairly simple, and the traffic is light. It would
be a more reasonable way of dealing with, say, the traffic to and from a fast disk, where a
whole transputer might be allocated to managing the large volumes of data, and the potentially
intricate calculations required to make efficient accesses to the disk.

More realistically, this particular program would probably be run on a single processor, say
one transputer. As it stands, in order to be able to guarantee sufficient speed of ex.ecution in
the starred processes, I must know details of the behaviour of the unstarred processes: for
example, that the user process does not require more than a known propertion of the
processor's time. This being unsatisfactory, there is another dialectal variant of par, one which
distinguishes more and less urgent tasks. As with asymmetric alternative the asymmetric parallel
construct, constructed with prl par, is made of the same components as the symmetric variant,
but differs in execution by favouring its earlier components. For example, the process

pri par
p
q
r

executes by the concurrent execution of its three components. but q can only execute when p is
prevented from doing so because it is waiting for a communication or has already terminated.
Similarly, r can only execute when both p and q are blocked, and execution of r will rapidly be
suspended should either of the higher priority processes become ready.

The asymmetric parallel constructor, if used. must be the outermost constructor of a
uni~processor program, or the outermost constructor of one of the branches of a placed parallel
construct. In occam programs to be executed on currently proposed transputers. asymmetric
parallel constructs can have no more than two components, corresponding to the two
process-queues in the transputer. For that machine. the right way to organize the terminal
handler would be

prl par
par - High Priority process

Reyboard.handlerCrequest, reply, error)
echo.handlerCrequest, reply, to.screen[from.echo.handler], from.Reyboard)
screenhandler(outgoing, error)

par - Low Priority process

outputmultiplexerCto.screen. rumber.of.outputs, outgoing)
userCfrom.Reyboard, toscreen[from.user])

Now it cannot matter what the user or outPJt.multlplexer processes do: if any of the urgent
processes is able to execute. then one of them will do so within a very short time. This latency
will be determined and guaranteed by the implementation, so again if I had a particular
implementation in mind, this would be known. The total waiting time. for any of the <interrupt'
processes, between becoming ready and beginning to execute, is bounded by the sum of one
lateney time and the sum of the longest execution time of each of the other interrupt processes.

That completes the analysis of the timing of the program. All that is needed in the case of a
particular implementation is to calculate the times, a matter of counting instructions, which task
could and should he delegated to the compiler. Substituting the figures for the waiting and
execution times allows a check to be made that the required response times are achieved.

Where once were only interrupts 37

Parallel matrix multiplication

In systems which manipulate and display geometrical data, one of the common routine tasks is
the application of linear transformations to the data. A system containing a representation of a
three·dimensional object may need to rotate or displace that representation so as to select a
point of view from which to project a two-dimensional picture of the object onto a terminal
screen, or a plotter. If the positions of tpe parts of the object are represented by a sequence of
Cartesian co-ordinates. then these rotations and displacements can be achieved by matrix
multiplication. For each point, with co-ordinates <x[o], x[l], x[E]) it is necessary to calculate the
corresponding transformed co-ordinates <yeo], yet], y[2]) given by

2

y[i] L (aD, j] x x[j]) + R[i]
~ 0

This requires nine multiplications and nine additions for each point in the representation of the
object.

If the transformation is being applied once to an object with a view to printing an image on
a slow, hard copy device such as a pen plotter. then the time taken to do the transformation is
probably not important, and it does not matter much how the matrix multiplication is
organized. On the other hand. if the image is being displayed on a cathode ray tube, and the
observer is allowed to change his point of view from the console, then speed is important.
Ideally, the transformation should be applied to every relevant point of the object as the
position of that point is required to refresh the display, so that observer sus the effect of a
change in the transformation as soon as possible.

If there are of the order of a thousand points in the representation of the image, then this
means something of the" order of a hundred thousand matrix multiplications in a second. For
practical purposes, this requires that special hardware be dedicated to performing the matrix
multiplications on a stream of co-ordinates on its way to the display. In such an arrangement,
the time taken to perform the nine individual multiplications will dominate the time taken by all
of the communications and additions involved. There is therefore an advantage in arranging that
as many as possible of the multiplications can happen at once.

A natural configuration of processors to perform this task is a square array, mimicking the
matrix a, one processor being responsible for each element of the matrix. and performing the
multiplication by that element.

nOR~b

sou~b

Parallel matrix multiplication 38

Successive values of each X co-ordinate are poured into the array from the top, passing down
along the north to south channels, and successive values of the transformed !::J co-ordinates
emerge from the east to west channels at the left of the array. In this diagram. each processor
is labelled with the parameter for which it takes responsibility. For simplicity, the
transformation is assumed to be constant: a mechanism for changing the parameter values might
involve a further array of channels at right angles to the plane of the array of processes
connecting each relevant processor to a controlling process.

Each mUltiplier cell has three tasks to perform during each complete matrix mUltiplication:
getting tbe next co-ordinate. x[j], from its nouhern neighbour and passing it on to its southern
neighbour; performing its own multiplication; getting a partial sum from its eastern neighbour,
adding its own contribution and passing the sum on to the west. These tasks can be performed
sequentially

var xj. aij.times.xj, !::Ji
while true

seq
seq

north? xj
south I xj

aij.tlmes.xj ,~ aij x xj

seq
east? !::Ii
west I yi + aij.times.xj

Because the condition on the loop is a constant true. this process never terminates; it repeatedly
performs the three tasks in strict sequence. Since this is a design for highly parallel hardware. it
should be worth extracting a little more parallelism

proc multlpHer(ualue alj, chan north, south, west, eastJ
var xJ, EttJ.tlmes.xj, !:::It:
seq

north? xj
while true

seq
par

south I xj
aij.tlmes.xj ,= alj x xj
east? !::Jl

par
west I yi + aiJ.tlmes.xj
mrth ? xj

Since different components of the multiplier would be used by each of the communications and
the arithmetic, the branches of the par constructs naturally execute simultaneously.

Notice that the multiplier process does not need to know where it is in the array - it is
independent of I and j. This means that the hardware could use nine identical circuits.

In order to complete the mUltiplier. a source of the R[i] offset values is needed along the
eastern border

proc offset(value Ri. chan west)
while true

west I Ri

Parallel matrix: multiplication 39

and a sink must be provided at the southern end of each column of multiRJ.iers to receive the
redundant x[j] from the southernmost multiplier processes

proc sirm(chan north) =
while true

north? any

Although the sinR does nothing with the values received, its input actions are necessary so that
the corresponding output can happen in its neighbouring multiplier. A row of SlnR processes
yields a simpler solution than one which involves two kinds of multiplIer process. one for the
north of the array. and another for the southernmost row.

Connecting these components to form the matrix multiplier is a matter of choosing an
enumeration for the channels. and using chan arrays. suitably indexed. One solution is

som:h

The a parameters have also been enumerated, so as to correspond to the elements of an occam
one-dimensional array. The channels connected to a typical multiplier process in this diagram are

nORc",SOac"," ')
'-<)XI +J

nORc"0ooC"(('))3x l+t +J

Parallel matrix multiplication 40

so the whole multiplier can be described by the program

defn~3'
uar a[n x nJ. R[n] ,

seq

-- initialise a and R

chan north.south[(n + 1) X n], east.west[n x (n + ,)] ,
par

par j = [0 For n] - producer of co-ordinates x[j]
producexj(j, north.south[j])

par the matrix multiPlier

par i = [0 for n]
offset(R[i], east.west[(n x n) + I])

par i ~ [0 for n]
par j ~ [0 for n]

mu1tiplier(a[(n x i) + jJ.
north.south [en x i) + j], north.south [en x (i + I)) + J],
east.west [I + (n x jn east.west [i + (n x CJ + ,))])

par j ~ [0 for n]
sinil(north.50uth[(n x n) + J]l

par 1 ~ [0 for n] - consumer of transformed co-ordinates
consume.lji(i, east.west[i])

It is the task of each producexj process to output successive values of the co-ordinate
corresponding to its first parameter. and that of each consume.~i process to input successive
values of the transformed co-ordinate.

By devising suitable definitions for the produce.xj and consume.l1i processes, this program can
be used on any occam implementation as a simulation of the parallel matrix multiplier hardware.
Of course, if It Is ~xecu~cd on a s;ngte p ..oces~or computer. then it will be very much slower
than a simpler sequential program, because of the additional work in communicating and
scheduling. On the special hardware for which it is designed, however. it would be very much
faster. Tbe longest data path from input to output is tbat traversed by x[a] on the way to
contributing to ~[2]. This path involves six communications, three additions, and a single
multiplication, all of which must happen in sequence. The program is designed on the
assumption that the time taken for the multiplication would dominate all others, under which
assumption it would be almost nine times faster than a sequential multiplier.

The matrix multiplier example appears in essentially this form in

Communicating Sequential Processes, C.A.R. Hoare

in Communications of the ACM, 21 (8), August J978, pp 666-677

Parallel matrix multiplication 41

Parallel sorting

Sorting is a candidate problem for parallel solution because many algorithrns have an element of
divide-and-conquer. That means the task is carried out by dividing it into some number of
smaller, simpler tasks each of which is repeatedly divided until only trivial tasks remain. Such a
strategy rapidly identifies independent parts of the original problem, which can be tackled
concurrently.

I make no claims for the sorting algorithm used here, beyond its simplicity. Although a
parallel sorting program is described, the subject is how to observe a parallel program in
operation. With small changes to the sorting program itself, its activity can be displayed on a
vdu screen, turning the program into a simulator of its own behaviour.

Sorting strategy
The program consists of a number of simple processes linked together in a tree shaped strUcture.
As in the case of the matrix multiplier, no process need ever know where it is in the tree: there
will be only two types of process: leaves, and internal nodes. Again. each process is independent
of the size of the problem. and need never store more than two values and some flags, no
matter how many values are being sorted. A bigger problem demands a bigger tree, but the
components are unchanged.

The strategy is to distribute the numbers upwards from the root of the tree, until they are
spread out. one to each leaf. Each process is then responsible for sending back to its parent the
sequence of numbers which it has received, but sorted into ascending order. For a leaf, the task
is simple, since its one number already constitutes a sequence in ascending order. Each internal
node, relying on the sorted subsequences that it will receive from its children, merges two
ascending sequences to generate its output sequence.

Each leaf process needs two-way communication with its parent,

proe leaf(ehan up. down) =

and each internal node needs six channels, two to provide two-way communication with its
parent, and two each to and from each of its children.

proe forR(ehan up. down, left.down, left.up, right.down, rlght.up)

For simplicity, the root process is treated as an internal node. with a virtual root process acting
as the parent of the root

proc driver(chan up.to.tree, down.From.tree) =

and acting as a driver to control the activity of the tree.
To connect these process. they have to be indexed, so as to correspond to linear arrays of

channels. For simplicity, I have made the program a complete balanced tree

def depth.of.tr., = 3 :

def number.of.leaves = , « depth.of.tree •
number.of.forRs = number.of.leaves - , •
number.oF.processes = number.oF,ForRs + nurnber.oF.leaves
number.oF.channels = number.oF.processes :

then. numbering the processes breadth-first. upwards from the root

42 Parallel sorting

def root ~ 0 •

first.forR ~ root.
first.leaf = flrst.forR + number.of.forRs :

the children of the internal node process i are indexed (2xi)+1 and (2XJ)+2. If channels indexed I
are used to connect process i to its parent, these same formulae will give the indexes of the
channels to and from the children of internal node process \.

chan up[number.of.channelsJ. down[number.of.channelsJ :
par

driuer(up[rootJ, down[rootJ)
par i = [first.forR for number.of.forRsJ

forR(up[lJ. down[iJ, dOWn[(2Xi)+1J. uP[(2Xi)+IJ. dOWn[(2Xi)+<]. Up[(2Xl)+2J)
par i = [first.leaf for number.of.leauesJ

leaf(up[iJ, down[iJ)

Components of the sorter
There are two phases of activity in the tree: first the sequent;e of numbers is distributed; then

sorted sequences are gathered and merged. Each component process passes through the same two
phases.

proc forR(chan up. down, left.down, left.up, right.down. right.up) ~

seq
forkdlstrlbute(up, left.up, rlght.up)
forkgather(down, left.down, rlght.down)

During the distribution phase, each internal node receives a sequence of numbers from its
parent. Notice that since a For" process knows neither where it is in the tree, nor how big the
tree is, it cannot know how many numbers to expect. Accordingly, the sequence is passed around
with each number preceded by a true value, and the last followed by a false value. Such a
sequence can be read by

uar more:
seq

up? more
whl1e more

uar next
up ? next; more

The simplest way of distributing the sequence amongst the children, without foreknowledge of

Parallel sorting 43

its length, is to send one·for-Ieft, one-far-right, alternately.

proe forR.distribute(ehan up, left.up, rlght.up) ~

def leftward = 0, rightward = not leftward:
var more, inclination:
seq

inclination ,= leftward
up? more
while more

var number:
seq

up ? number
if

inclination = leftward
left.up I true; number

inclination = rightward
right.up I true; number

up ? more
inclinatIon := not inclination

par
left.up I false
rlght.up I false

Notice that this process passes the guarantee of correctly interpolated true and False value.s on
to its children.

Since I assumed that the component processes would serve in an arbitrarily large tree. they
should not count the nornbers as they pass upwards. This means that during the merging phase
there are again sequences of unknown length to be read. and I will use a similar protocol.

In order to do the merging, preserving ordering, numbers must be compared, and this requires
that each merging process have at least two registers holding numbers. Since each child sends its
sequence in ascending order, the head of each sequence is the minimum of those to corne, so the
merging process compares the beads. passes on the smaller. and draws one more value from the

selected sequence. continuing until the sequences are exhausted.

proe forR.gather(ehan down, left.down, right.down) ~

var leftmore. left.mlnimum, rlghtmore, right.minimum

seq

par

left.down ? 1eft.more; leftminimum

right.down ? rlght.more; rightminimum

while left.more or rlght.more
If

leftmore and ((not right.more) or (leftminimum (right.minimum))
seq

down I true; leFt.minlmum

left.down ? leftmore; left.minimum

rlght.more and ((not leftmore) or (left.minimum >right.mlnimum))
seq

down I true; rightmlnimum

right.down '? rightmore; rightminimum

down I false; al1!J

Notice a final any sent downwards at the end of the sequence. which accounts for the parent
process being able to receive a pair of values, ... ,more, ... minlmum, even when the first is

Parallel sorting 44

False. This trick is simpler than making the parent's behaviour condilional on the first value,
and there is very little penalty since after sending down its false value there is nothing left for
the child process to do.

The driver process must generate and absorb sequences of numbers, stuffing and stripping the

protocol.

proe driverCehan up, down) =
seq

seq i ~ [0 for number.of.leavesl
var number:
seq

... think of a numbEr

Up ! true: number
up I false
seq i = [0 for number.of.leavesl

var number:
seq

down ? any; number
... do somEthing l-<ith thE numbEr

down ? any; any

The mIssmg code controls the behaviour of the whole program. It might, for example, read
numbers from the terminal keyboard, and write them back, in ascending order, to the terminal
screen.

Finally the leaF process must be designed to simulate the behaviour of an internal node that

only handles a sequence of one number

proe leafCchan up. down)
uar number:
seq

up ? any; number; any
down I true; number; fa15e: anbl

That completes the sorting program which, whilst it may look overcomplex for a single
processor implementation. would look better on an array of number.of.processes simple
processors. Notice. particularly. that once the numbers have started to emerge from the tree in
ascending order. each is available only one comparison time after its predecessor. The advantage
would be more obvious were the sorter managing more complex data. where the comparison time
might be very large.

Monitoring strategy
The program as it stands may be run on a single processor to simulate the activity of the ideal
multiprocessor implementation. By writing the missing code in the driver. you could observe
numbers going into and coming out of the tree, checking that the program sorts particular
sequences of numbers: That tells you nothing about what goes on inside the tree: just as in
spring, it might be edifying to be able to observe the activity up in the branches.

By analogy with the testing of electronic circuits. the idea is to probe the components of the
circuit, rather than just watching the signals that pass into and out of the terminals. There are
two techniques: breaking connections to measure the current flowing through them corresponds
to tapping the channels to watch the traffic; attaching probes to measure the potential at
various points corresponds to noting state changes in the processes.

In order to observe the traffic on a channel. a process must be added which duplicates the

traffic along a monitoring channel. something like

Parallel sorting 45

proc duplicate(chan source, sinR, copy) ~

while true
var datum:
seq

source ? datum
par

copy I datum
sinR I datum

This process can be inserted into a data stream passing along a channel

chan channel:
par

producer(channel)
consumer(channel)

allowing the data to be read by another process

chan channel.a, channel.b, test.data :
par

producer(channel.a)
duplicate(channel.a, channel.b, test.data)
consumer(channel.b)

monitor(test.data)

Of course, the observation is not perfect: it may affect the behaviour of the program. First of
all. the duplicate process acts as an additional buffer in the data stream. In this example it
cannot matter, but were there some other communication, possibly through a third party,
between the producer and consumer. it might matter that the output from the producer could
proceed, despite the corresponding demand not being made in the consumer. Secondly, the
duphcate process. as written. does not terminate, so unless it is used to observe an infinite data

stream, the program will eventually become deadlocked. even had it previously terminated
correctly.

In both of these ways you must be careful to design monitoring code that docs not interfere
excessively with the action being observed. In general, it is necessary for the behaviour of the
monitoring processes to depend on the data passing through them, and this in-stream technique
should be avoided if there are many data paths between pairs of processes in the program being
observed.

In order to make internal state visible, it is necessary to add code to the processes being
observed. Just as observing traffic involves adding new output processes in parallel with the
observed program. so observing state requires that new output processes be set in sequence with
the code being observed. In order to observe the changing value of a variable

proc p(...)
var x:
seq

x ,= e

c ? x

each assignment to that variable should be followed by an output process signalling the change

Parallel sorting 46

proc p(" .• chan test.data) ~

var x:
seq

seq
x:= e
test.data ! x

seq
c ? x
test.data I x

on a channel which passes out to the monitoring code. Again. the observation is invasive: you
must be aware that the observed process may be delayed by executing the new output processes.

In the example of the parallel sorter, I wi((use both types of monitoring: the explanation of
the behaviour of the merging is in terms of the sequences of values passing along channels, so
the traffic along the channels will be watched; the leaves are used as storage locations, so it is
appropriate to observe their state.

The result of adding this monitoring code is a number of channels emerging from the tree,
each carrying signals indicating the presence or absence of a number. Each will be treated
similarly, either to write a number to or to remove it from a position on the screen which will
represent the place in the program which is being watched. Since changes to the screen must be
made in sequence. it is appropriate to multiplex the test data from the lree. and process each
new test signal in sequence.

These decisions lead to the following, changed. program structure

def number.ofprobes ~ number.of.channels + number.of.1eaues :

chan	 up.a[number.of.channelsJ. down.a[number.of.channelsl.

up.b[number.of.chamelsl. down.b[numocr.of.channels].

probe[number.oF·probesl all.probes :

par

driver(up.a[rootl. down.b[rootJ)

par i ~ [first.forR for number.of·forRsJ
forR(up.b[i]. down.a[ll. down.b[(,xi)+,J. Up.a[(2XI)+,J. down.b[(,xl)+']. Up.a[(2XI)+,J)

par I = [fwst.1eaf for number.of.leauesl

leaf(up.b[ll. down.a[iJ. probe[number.of.channels + (I - flrsc.1eaf)J)

par i ~ [root for rumocr.of.channelsJ

monitor(up.a[iJ. down.a[il. up.b[i]. down.b[ll. probe[l])

multip1ex(probe. all.probes)

display(all.probes. termlna1.screen)

Each monitor process copies data from itsa channel~ to itsb channels, duplicating the
activity along the corresponding probe. Every leaF is modified to indicate its state with similar
messages. All of these messages are multiplexed onto a ~ingle channel, and then translated into
sequences of instructions to display the changing state of the program on the terminal screen.

Parallel sorting 47

Component processes
There are three types of message to be sent along the probe channels: messages indicating the
presence of a number, messages indicating the absence of a number, and a final termination
message. Each of these will be indicated by starting it with one of three values

def display.number ~ , dlsplay.empty ~ '. dlsplay.stop ~ 3 :

Sending an ex.plicit termination signal means that the behaviour of the tfee can be altered
without the monitoring code having to be changed.

To start with the leaF process, all that is needed is to indicate the arrival arid departure of the
stored number.

proe leafCehan up. dow~ probe) ~

uar number:
seq

up ? any; number

probe I display.number; number

up? any

down ! true; number

probe I display.empty

down I false; any

probe I display.stop

The monitor process must copy the sequences of numbers passing first up and then down the
tree using the correct protocol for each case. The necessary monitoring code is then just whal
you would need to record changes of state in this buffering processes

proe monltor(ehan up.a dowrta. up.b. dowrtb. probe) ~

seq

uar more:

seq

up.a ? more
while more

var number

seq

up.a '? number
probe I dlsplay.number; number
up.b I more; number
probe I display.empty
up.a'? more

up.b I more

var more, number

seq

down.a ? more; number

while more

seq
probe I d\5pla~.number; number
down.b 1 more; number
probe I display.empty
down.a ? more; number

dowrtb I false; any

probe I display.5top

The multiplex process simply gathers together all of the probe signals, tagging them with the

Parallel sorting 48

corresponding index number for later identification.

proe multiplex(ehan prober], all,probes) ~

uar more, more,from[number,of,probes] :
seq

more t= number .oF.probes
seq i ~ [0 for number.of,probes]

more,from[i] ,~ true
while more >0

uar instruction:
alt I ~ [0 for number.of,probes]

more,from[i] & probe[i] ? instruction
if

Instruction ::: displahJ.number
uar number:
seq

probert] ? number
all.probes ! instruction; I; number

instruction ~ dlsplay.empty
all.probes \ Instruction; :

Instruction = dlsp\ay.stop
seq

more.from[:] .= false
more := more - \

all.probes I dlsplay.stop

Once a displahJ.stop is received from a particular probe. no more signals are read from it. and
the whole multiplexer terminates when all probes have been shut off.

Display management
It remains only to translate the stream of probe messages into a stream of terminal screen
control messages. The first thing to do is to translate the probe numbers into positions on the
screen. This happens in two stages: first the numbers are translated into positions in a
terminal-independent space; then that space is mapped onto the terminal screen.

proc dlsplay(chan source, SIM) =
chan Internal :
par

lndependent(source, internal)
dependent(lnternal, sinll)

The terminal independent space has right-handed co-ordinates, with the leaves evenly spread
across the top, and the root at the middle of the bottom line.

depth.of·tree + ,
depth.of.tree + 1

depth.of·tree

x
X

x

x
X

x
X

x

x
X

x
X

x

x
X

x
X

x

x
x

, x x
x

t 2 3 4 5 6 7- ••• number.oF.leaues

Parallel sorting 49

Messages from probes with index less than number.oF.channels are from probes within the tree,
and those with higher i.ndices are from the leaves. The top line. representing the states of the
leaves, is clearly not a part of the pattern in the rest of the tree, so is dealt with differently.
For the channel probes. the simplest solution is to count up from the root. There are
((1 « llne) - t) probes represented on the bottom line lines of the display, so the right line for a
particular probe is the first for which its Index lies below this number. The right column is
calculated by discounting the ((1 « (line - 1)) - 1) probes displayed on the lower lines and
multiplying by a factor which accounts for the exponential separation of nodes at different
depths

proc maRe.cartesian(ualue index. uar X. y) =

if
If line ~ [1 for depth.of.tree + 1]

index <((1 « line) - 1)
uar c :
seq

c ,~ Index - ((1 « (line - 1)) - 1)

x ,= ((, x c) + 1) X (number.of.leaues » (line - 1))
y'~ line

mdex) cumber.of.channels
seq

x ,= (, x (Irdex - number.of.channels)) + 1

Y ,~ depth.of.tree + 2

The maRe.cartesian process translates a probe index into an X. y pair

1 <X <(, x number.of.channels) - 1 and 1 <Y <depth.of.tree + 1

The other terminal independent part of the translation is to turn the numbers into digits. All
the numbers are written in a fixed width field

proc Independent(chan source, SlnR) =

uar lnstructlon :
seq

source? instruction
while Instruction ¢ display.stop

seq
slnll I true
uar Irdex. X. y :
seq

so..Jrce '? index
malle.cartesianCindex. x. y)
sinll I X; Y

If
Instruction = dlsplay.number

uar number:
seq

source ? number
write.slgned(sinll, !"'Umber, field.wldth)

Instruotion ~ dlsplay£mpty
seq I ~ [0 for field.width]

sinR I 'MS'

source ? instruction
slnll I false

so Parallel sorting

The output from this process consists of a sequence of packets, each beginning with an X. ~

pair, followed by F"leld.width number of characters to be displayed there. Each packet is
preceded by a true value, and the whole sequence is terminated with a Fa'se.

If the terminal has cursor addressing, then the task is almost complete. Here, for example, is
the necessary terminal dependent part of the display process for a digital VT5Z terminal

def vlrtual.height ~ depth.of.tree + , vlrtual.width = (2 X number.of.!eaves) - , :

proc dependent(chan source, terminal) ~

- terminal dependent code for driving VTSZ

deF screeTLheight = 24. screeTLwidth = 80 :

def control = not ((not 0) « 5), escape = control 1\ r :

proc clear.screen(chan terminal) =

- clear screen sequence for a VTSZ

terminal] escape; 'H' ; escape; 'J'

pro," goto.xy(chan terminal, value x, y) =

- lefthanded co-ordinates, origin 0, 0 at top left

terminal ! escape: 'Y' ; ''''s' + ~ : '",s' + x

var more:
seq

clear.screen(terminal)

source ? more

while more

seq

uar x,. y :

seq

source? x; y
goto.xl:-ltermlnal. (x - ,) x (screen.width + virtual.width),

(virtual.helght - y) x (screen.h8lght + virtual.height))
seq I = [, for field.wldth]

uar ch :

seq

source? ch

terminal I ch

source ? more

goto.xy(terminal. 0, screen.height - 1)

The divison of work is such that, if it is at all reasonable to draw such pictures on a particular
terminal, the program can be modified to do so simply by writing the appropriate dependent
process. Even should the terminal not have full cursor control, but only the ability to move the
cursor in small steps, dependent can be made to keep track of the position of the curSor.

For the purpose of the simulator. the simplest coding of the driver process invents a random
sequence of numbers for input to the tree. A common way of generating an unpredictable
sequence of numbers is to use a linear feedback shift register with an uncontrolled initial state

def masR ~ not ((not 0) « 9) :

proc shift(var state) ~

seq i ~ [, for 9)
state ,~ ((state « ,) 1\ masR) v (((state» ,) .. (scate » B)) 1\ ,)

ParaBel sorting 51

An arbitrary initial state may be obtained by reading the real-time clock. Since the shih-register
will not change state if the initial state is all zeros, the time is v-ed with a one to guarantee a
non-zero intial state.

This coding of the driver pauses after injecting each number into the tree. and after removing
each number from the tree, so as to give you time to see what is happening. There is nothing
scientific about the choice of a one second pause: I adjusted it to get a good display from the
particular implementation that I was using.

proe driuer(ehan up. down)
seq

uar event. number

seq

time ? event

number'= Ceuent 1\ masR) V ,

seq i ~ [0 for number.of.!eaues]

seq

event ,= event + second
shlftCnumber)
up I true: number
time? after event

up I false

uar event:

seq

time? event

seq I ~ [0 for number.of.!eaues]

seq
event == event + second
down ? any: any
time ? after event

down ? any; any

The driver discards the result of the sort. because aU the information has already been displayed.

as it passes out of the root process.

Parallel sorting 52

Conway's game of 'Life'

Lest you be misled by the name. 'Life' is neither a competitive game between several players, nor
yet a solitaire game in which a player competes against the collusion between the rules and the
roll of the dice. The game is more a simulation, in which the evolution of a system is fUlly
determined by a set of rules.

To be precise, Life is played on an infinite square board: that means that there are a number
of squares, or 'cell's, each of which has four immediate neighbours and four diagonal neighbours,
in the fashion of a chess board. That the board is infinite means simply that every cell in which
you will be interested is one with a full complement of neighbours, so that you need never
worry about what happens at the edges. There will be only a finite number Of interesting cells
to think about at anyone time. Each cell may be in one of two states: occupied (alive) or
unoccupied (dead), and only finitely many will be alive at any time.

The rules describe the succession of states of each cell in terms of earlier states of that cell
and its eight near neighbours. Each cell passes through a sequence of generations. with the state
of the cell in the next generation being determined by its state in this generation, and by the
number of cells adjacent to it which are either alive or dead in this generation. If a cell is
currently alive, and if it has less than two live neighbours, it is deemed to die of loneliness, and
will be dead in the next generation, A live cell with two or three neighbours alive in the same
generation survives into the next generation, but if it has four or more contemporaries, it will
be dead from overcrowding by the next generation. A dead cell with exactly three live
neighbours in this generation will give birth and be alive in the next generation, otherwise it
will remain barren.

Notice that the rules determine the state of the whole board in the next generation in terms
of its state in the present generation. Moreover. the rules are expressed in purely local terms,
and the property of Life that makes it interesting is that these local rules can control the
evolution of global structures. A number of patterns of live cells are known to pass through
cycles of growth and decline, some are known to grow without limit, whilst others die out.

Although the rules of evolution are simple, applying them to a pattern large enough to be
interesting, for more than one or two generations, is a tedious business. Machine assistance
makes it possible to watch the long term development of substantial colonies, and Life was once
a popular way of consuming otherwise unused machine cycle~! More practically. a Life board is
a particularly simple and symmetrical example of a systolic cellular array. These are studied by
VLSI designers seeking algorithms with fast but simple implementations in highly parallel
hardware. A systolic array is characterized by the achievement of global co-operation through
many simultaneous calculations organized by local communications. Ideally, the components of
the array are, like the cells of a Life board. all of a few basic types, have a small finite amount
of state, and need never know where they are in the array,

The program described here is, as with the parallel sorter, a simulation in two parts: there is a
plane of parallel processes in which the cells of a Life board are represented, one cell to a
process; added to this is an essentially sequential mechanism for guiding and watching the
evolution of the colony. Perhaps it is worth pointing out at the outset that the resulting
program, run on a single processor, is far from the fastest way of playing Life. There are, for
example. a number of optimizations that require each process to have a more global view of the
state of the board, and naturally give rise to a sequential program. This program is here for
two reasons: firstly as an intricate example of the interconnection of processes, showing how to
separate this from the workings of the processes themselves; secondly, it is an example of a
general method of adding global synchronization to a loosely coupled system in order to observe
its behaviour.

The Life board
There is no problem in selecting a representation the board. Each cell of the board has a state,
so is represented by a process which administers the variable in which that state is stored. There
is no reason why each of these processes should not be identical. Each cell is distinguished only

Conway's game of 'Life' 53

by the particular eight other cells which are close enough to influence its state in the next
generation. The neighbours of a cell process are connected to it, each by a pair of channels, one
in each direction.

The first problem that arises is one of representing an infinite board on what must necessarily
be a finite array of processes. As suggested earlier. the requirement of an infinite board is made
so that the behaviour of a cell will not be influenced by its being at an edge of the board.
Unless a colony grows without limit, or moves en masse in some direction, a finite board will
do, since the evolution of a colony is unaffected by any amount of dead space around it.

One solution, and the one that I have adopted here, is to take a finite sized board and wrap
it around a torus, so that the cells on the top edge have neighbours on the bottom edge, and

2,0 0,0 IP 2,0 0,0

those on the right have neighbours on the left. There are now no edges to worry about. You
may think of this toroidal board in either of two ways. Looking at it as a flat board with
tricky edges, it correctly implements the rules of healthy living until one or more of the edge
cells gives birth, from which point on it is possible for things to go wrong, with miraculous
conceptions and unexplained deaths happening in ways not predicted by the rules. Another way
of thinking about it is that the toroidal board is behaving as if it were a fragment of a truly

infinite flat board on which the real finite colony that you can see is repeated, in the fashion of
a wallpaper pattern, at regular intervals in the horizontal and vertical directions. The boundary
effects are now explicable, since they are the effects (predicted by the rules) of a neighbouring
copy of the colony coming close enough to influence the visible part of the board.

To be more definite about the program, it consists of a rectangular array of cell processes

def array.wldth ~ '" , array.height

par x ~ [0 for array.width]
par y ~ [0 for array.height]

, .. process representing cell x, hl

The neighbours of cell X, hl are those indexed

((x ± 1) + array.width) mod array.width
((y ± ,) + array.height) mod array.height

with the mod operator taking care of the proximity of cells at the edges of the board. Notice
that the numerator of the mod operator has to be made positive, since in occam it is defined
that

((-1) mod w) (-1)

Conway's game of 'Life' 54

The next thing to decide is the arrangement of the channels connecting these processes. As in
the matrix multiplier example, it would be possible to allocate one channel array to account for
all of the data flowing in each compass direction. The result would be that each cell process
would be connected to eight individually named channels carrying data inwards, and eight
individually named channels carrying data outwards. This is to ignore the symmetry with which
the rules of living treat the neighbours of a process. A cell does not distinguish between its
neighbours according to their compass direction. but treats them uniformly. The symmetry
should be represented by a For loop in the cell processes. the body being executed eight times,
once for each neighbour. That suggests that an array of eight channels is needed. indexed by the

eight directions.
Since there are. in occam, neither channel variables nor channel pointers, the only neat solution

to this problem is to alIocate all of the channels from a single large array. Each cell then needs
to be told which eight subscripts it should use to select its incoming channels, and which eight
to select its outgoing ones.

deF radius:::: 1, - Df the 'sphere of Influence'
diameter :::: (2 X radius) + 1 ,

neighbours:::: (diameter x diameter) - 1 :

def number.of.cells ~ array.height x array.width
number .of.l\nRs = neighbours x number .of.cells

proe	 inltiallze(ualue X, y. uar In[]. out[])
initialize in[...] and out[.,.]

proe cell(ehan l,nR[]. ualue In[]. out[])
... cell U5'"9 linl1[In[...]] and linR[out[...]]

chan linR[number.of.linRs] :
par x = [0 for array.width]

par y = [0 for array.helght]
var in[neighboursJ, out[nelghbours] :
seq

initialize(x, y. in, out)
cell(linR, In, out)

Perhaps this is the place to note that I remain unsatisfied by this solution because of the
generality of the variable arrays \n[.. ,] and out[.. ,]. A mechanical checker. such as might be a
part of an occam compiler is unlikely to be able to verify that the cell makes only legal use of
the \inA channels, since the uses appear to be dynamically determined. A mechanically checkable
program would most probably have to recompute the subscripts at the point of use. It is
because the effort of recomputing complex subscript expressions would dominate all of the other
activity in the program that I have adopted this solution. (Carroll Morgan first showed me the
application of this indirection strategy in a Life program on which mine is based.)

The remainder of the board configuration is in the initialization of the indirection array. To
do this, an enumeration of the processes and the channels must be chosen, I have chosen to
count the processes in the usual way: along the rows then down the colums, from zero at
process X zero, !d zero in the top left

this.process ,= x + (array.wldth x y)

and to allocate the first eight channels to carry data out of the first process, the next eight out
of the next process, and so on. This, of course, accounts for all of the channels, exactly once,
since every channel is outward bound from some process.

Conway's game of <Life'	 SS

To settle on a particular enumeration of channels, the eight neighbours 9f a process must be
put in some order. I choose order of increasing direction as computed by the loop

seq delta.x = [-radius for diameter]
seq delta.y ~ [-radius for diameter]

uar direction:
seq

direction ,= deltax + (diameter x delta.y)
... consider neighbour x+delta.x hJ+deltahJ

which is (except at the top and left edges) the order of increasing process number. The
direction of a neighbour characterizes it, and lies in the range

- (neighbours + 2) direction + (neighbours + 2)

with the zero value corresponding to the cell at X. hJ itself. To fill an array with the neighbour
consecutive subscripts of outward going channels the non-zero values of direction must be
mapped onto consecutive indices for out, and a group of eight consecutive channel numbers

if
direction * Q

uar thls.lndex :
seq

this.index ,~ (neighbours + direction) mod (neighbours + ,)
out[thls.index] ,= this.lndex + (neighbours x this.process)

direction = Q

SRip

The value of this,tndex so constructed ranges from zero to neighbours-I, taking on each value
exactly once, in the course of a scan of the neighbours.

Now the question arises of which are the correct subscripts to use to select the incoming links.
Incoming links at this.process are. ir looked at rrom the other end. the outgoing links rrom the

neighbours of this.process. The simplest, brute force, solution to the problem of enumerating
them is to put yourself in the position of the processes at the other end of each channel, and to
ask which linR that process would be using to talk to thls.process. as one ofl,its neighbours. The
process at X. hJ is a neighbour of each of its own neighbours; in particular,it is the neighbour
in the -directIon direction of the process which is its neighbour in the directIon direction. (You
can see this because direction is linear in deltax and in delta.y.) This means that the inward
channel from the neighbour in the direction direction is the one that, at that other process
would be described as the outward channel in the -dIrectIon direction.

Conway's game of 'Life' 56

uar other.x, other.b). other.process. other.lndex :
seq

other.x := (x + deltax + arra!J.width) mod arra!J.wldth
other.y .= (y + delta.y + array.helght) mod array.height
other.process .~ other.x + (array.wldth x other.y)
other,index .~ (neighbours - direction) mod (neighbours + il
In[other.mdex] := other.index + (neighbours x other.process)

These fragments being gathered together, the configuration process is complete

proe initlalize(ualue X. y. uar in[]. out[]) =

- in',tlallze the link indirBctlOn arrays for the cell at x,hj

seq delta.x ~ [-radius for diameter]

seq delta.)J ~ [-radius for diameter]

uar direction :

seq

direction .~ delta.x + (diameter x delta.y)

if

direction '* Cl

uar index. process:

seq

process ,= x + (arra)J.width x y)

index := (neighbours + dIrection) mod (neighbours + 1)

out[index] .~ index + (neighbours x process)

process ,~ ((x + delta.x + array.width) mod array.width) +

(array.width x ((y + delta.y + array.height) mod array.height))
index .~ (neighbours - direction) mod (neighbours + ,)
In[index] ,~ index + (neighbours x process)

d\rection = 0

sRip

All of the tricky code being now dealt with, the code of the cell prOcess is relatively simple.

It records the state of the cell, that it is either dead or alive, and controls the evolution of the
state

def dead ~ e. aliue ~ not dead:

proc cell(chan HnR[J. ualue in[]. out[]) =

proc broadcast.presentstate(chan HoR[J. ualue out[J. state)
... tell neighbours about the state of thiS cell

proc calculate.next.state(chan linR[]. ualue In[]. state. uar ne"tstate) ~

... evolve In keeping /oJith the rules

uar state:
seq

state := ... - 5et en initial state

while true

uar next.state :

seq

par
broa::!cast.present.state(linl:l., out, state)
ca1culate.next.state(linl:l., it"\ state, next.state)

state := next.state

Conway's game of <Life' 57

I postpone the matter of the initial slale which determines the type of colony being watched.
In each generation, the cell musl learn the slale of each of its neighbours. so as to count up

lhe number of adjacent occupied cells.

proc calculate.next.state(chan Iln,,[], ualue Ir{]. state, uar next.state)
var count: - number of liVing neighbours

seq
uar state.of.nelghbour[nelghbours] ,
seq

par I ~ [0 fo r neighbours]
lln"[lr{l]] '? state,of,nelghbour[i]

count := 0

seq I ~ [0 for neighbours]
if

state.of.nelghbour[i] ~ aliue
count := count + 1

state.of.neighbour[i] ~ dead
s"ip

if
count <a

next.state dead death from isolation

count = a
next.state state this cell is stable

count = .3
next.state aliue - stable If alive, a birth if deed

count) .3
next.state := dead : - death from overcrol.-ldlng

Notice that although the input processes are written in a parallel for loop, the counting of live
neighbours has to be sequential, since the count variable may not be shared. Whilst the simplest
of mechanical checkers would be justified in drawing the programmer's attention to the shared
array state.oF.neighbour[... J, it is clear that no element of the array is shared.

There is a corresponding obligation on a cell to tell each of its neighbours about its own
current state

proc broadcast.present.state(chan lin,,[], ualue out[], state)
par I ~ [0 for neighbours]

Iin,,[out[I]J I state

Observation and control
As with the parallel sorter, having completed the highly parallel part of the program, I have
still to design a means for controlling and watching what happens. This task demands
substantially sequential code. since there is only one terminal keyboard and one terminal screen
involved. The observation will impose more synchronization on the array of cells: there is, so
far. nothing to prevent widely separated processes from working on as widely separated
generations, but the display should be capable of showing the state of one generation at a time,
across the whole of the board.

There are three intructions that the controlling process will need to issue to each cell on the
board: it may ask for the cell to assume a new state, so as to initialize, and subsequently edit,
the state of the board; it may instruct the cell to evolve for one generation; and it may tell the
cell process to terminate.

def set.state I. as"R.state c, terminate = .3

S8 Conway's game of <Life'

In response to instructions to evolve. the cell should yield up its new state. To carry these

messages, a channel is needed Into each cell. and one from each cell.

chan 1ii1R[number.of.lii1Rs], control[number.of.cells], sense[number.of.cens] :
par

controller(Re~board,screen, control, sense) - control process
par x = [0 for array.wldth]

par y ~ [0 for array.height]
uar ir{nelghbours], out[neighbours] :
seq

initialize(x, y, In, out)
cell(Iii1R, in, out, control[x + (array.width x y)]. sense[x + (array.wldth x y)])

The cell process must respect the instructions received on its control channel, thus

proc cell(chan linli[]. ualue ir{], out[], chan control, sense) ~

uar state, instruction:
seq

state := dead the whole board starts off dead
control? lnstruction
whne instruction '* terminate

seq
If

instructIon = set.state
control? state

instruction = aSRstate
uar next.state :
seq

par
broadcast.present.state(linli, out, state)
seq

ca1culate.nf>xt.stateClinR. in, state, next.state)
sense! (state '* next.state); next.state

state := next.state
control? InstructIon

At the end of each generation. the cell process sends not only its new state, but an indication of
whether the state has changed in this generation. This makes the task of the controlling process
simpler,

The controlling process is essentially sequential. Under the control of input from the terminal
keyboard, it can either modify the state of cells on the board by issuing set.state instructions

proc edit(chan lieyboard, screen, control[]) ~

... modify the colony on the board

or It IS able to drive the whole board through the evolution of a single generation by scanning
the board, issuing asR.state instructions, and reading back the new states.

proc generatlon(chan screen, control[], sense[], var active) =

... cause the colony on the board to move on a generation

The active parameter returns an indication of whether any changes have happened during the
generation: if a colony remains unchanged from one generation to the next, then it is stable, and
will never change again.

Conway's game of 'Life' 59

The normal activity of the controller>~ree.running, is to cause a sequence of invocations of
generation so that the colony is continually evolving. If the colony becomes stable, then the
controller becomes idle. Between any two generations. the keyboard has an opportunity to change
the activity

def idle ~ \ editing ~ " single,stepping ~ ,. free.running ~ c, terminated ~ 5 :

proe controller(ehan Reyboard, screen. control[], senseU) ~

uar actiuithj :

seq

aetluity ,~ idle

ini tialize,display(sereen)

while actiuithj =j:. terminated

seq

display.actiulty(screen. actiuithj)

uar ch :

prl alt

(actiuity '" editing) & Reyboard ? eh - provided nat editing type

if
(ch ~ 'q') or (eh ~ 'Q') Q to finish program

actiuithj := terminated
(eh ~ ',') or (eh ~ 'S') S to halt evolution

actiuity ,~ Idle
(ch ~ 'e') or (ch ~ 'E')

actiuithj := editing
(ch ~ 'r') or (ch ~ 'R') R to start evolutlCln

actiuithj := Free.running
otherwise or anything else to make

actiuity ,~ slngle.stepping Just one step of evolution

(actiuity ~ editing) & sRlp
seq

edltO~8hJboard, scr88n, control)
actiulty ,~ Idle

(actiuity ~ Free,running) or (actiuity ~ slngle.stepplng) & SRlp
var changing :
seq

gen8ratlon(screen. control, sense, changing)

If

(actiulty ~ single.stepping) or (not changing)

activity ,= idle

(actluity ~ free.running) and changing

sRip

dlsplay,actluity(screen. actlulty)

seq cell ~ [0 for number,of.celis]

control[cell] I terminate

clean.up,display(screen)

The alternative has to be asymmetric. becausc a sequence of calls to generation might otherwise
go on indefinitely without ever allowing pending keyboard input to be accepted.

The single.step activity, entered by typing almost anything on the kieyboard. causes an
evolution of precisely one generation. This makes it easier to follow the details of a history.
Notice that the code of the board is entirely unaffected by the detailed design of the single
stepping mechanism, or even the details of the editor.

Each cell starts an evolutionary advance in response to an a5R.state instruction, on its control

Conway's game of 'Life' 60

channel. Of course. it cannot complete the advance unless its neighbours are also on the move.

proe generation(ehan screen. control[]. sense[]. var active) =

seq

seq cell = [0 for number.of.cells]

control[cell] I ase.state

active .= false

seq cell = [0 for number.of.cells]

var changed, next.state :

seq

sense[cell] ? changed: next.state

If

changed
seq

displa!j.state(screen, cell mod arra!j.width, cell· + arra!j.width, next.state)
actlue ::::= true

not changed

SRip

One invocation of the process generatIon scans the whole array once. inviting each cell to
proceed with a single evolution. The new states are gathered, and any changes are notified on
the display.

To settle on the details of the display, the process dlspla~.state must be supplied. Assuming a
digItal VTSZ type terminal, and a Life board some tens on a side. I have mapped cells onto
contiguous screen locations, with the first cell at the top left

def control ~ not ((not 0) « 5), escape = control f\ '[' :

proc moue.cursor(chan screen, ualue x. ~) =

- move to column X of line ~ [of a VTSZ screen)

screen I escape ; 'Y' ; '.s· + ~ ; '.s' + X :

proc displa!j.state(ehan screen, value x, !j, state) ~

seq

moue.cursor(screen, x. ~)

If
state = aliue

screen I 'MM'

state = dead

screen I '.s'

A live cell shows as an asterisk. and a dead cell as a blank space.
To make the initial sereen consistent with the initial slate of the board. which is entirely dead,

it suffices to clear the screen

proe initialize.displa!j(chan screen) ~

screen I escape; 'H' : escape: 'J': - clear the screen (of a VTSZ)

and to clean up at the end of the program, the cursor is moved to the left of the line below
the image of the board

proe clean.up.displa!j(ehan screen) ~

moue.cursor(screen, 0, arra~.height)

Conway's game of <Life' 61

Assuming that there is some spare room on the screen to lhe right of the image of the board,
the activity of the controller can be displayed there

proe dlsplay.aetiuity(ehan screen, ualue aetluity) ~

seq
moue.cursor(screen, arra!::j.wldth + 1, arra!::j.height + 2)

if
aetiuity ~ Idle

wrlte.strlng(sereen, "Idle")

aetiuity ~ editing
Wrl te.str Ing(sereen, "Edi t")

aetluity ~ single.stepplng
wrlte.strlng(sereen, "Step")

actluity = Free.runnlng
write.strlng(screen, "Busy")

actiVity = terminated
wr ite.str ing(screen, "Done")

All that remains is to supply an editor. Here is a simple process that allows a cursor to be
moved around the board image. and allows the state of the cell under the cursor to be set

proe edlt(chan Reyboard. screen. cantrol[]) =

def left.Rey = etrl 1\ 'H', right.Rey ~ etrl 1\ 'L', up.Rey = etrl 1\ 'K',
down.Rey = etrI 1\ T, uproot.Rey ~ "s', plant.Rey ~ •••.

uar x. y. editing, eh :

seq

x := arra!::j.wldth + 2

Y .= array.helght + ,

editing .= true

while editing

seq
move.cursor(screen, x. !::j)
Reyboard ? eh

if

(eh ~ left.Rey) and (x >0)

x:= X - 1

(eh ~ rlght.Rey) and (x <(array.wldth - ,))

x '= x + t

(eh = up.Rey) and (y >0)

y'~ y -,
(eh ~ down.Rey) and (y <(array.helght - ,))

Y'~ Y + I

(eh ~ uproot.Rey) or (eh = plant.Rey)

uar state:
seq

state .= (dead 1\ (eh ~ uproot.Rey)) v (aliue 1\ (eh = plant.Rey))
control[x + (array.width x y)] I set.state; state
dlsplay.state(sereen, x. y. seate)

(eh = 'Q') or (eh ~ 'Q')

editing .= false

otherwise

sRlp

Conway's game of "Li(e' 62

• ••

Editing continues until a character 'Q' is typed. The cursor control keys move the cursor
vertically and horizontally over the board, the space bar kills the occupant of a cell, and the
asterisk key plants a new occupant. For simplieity, any other character, or an attempt to pass
over the boundary of the board image is ignored without complaint.

Life
A brief word seems to be in order about the game of life itself. life first became Widely
known through Martin Gardner's column 'Mathematical Games' in the Scientific American
magazine, in October 1970 (ppI20-123) and May 1971 (PP1l2-117). The former article explains the
rules, and introduces some of the jargon of the subject: for example, the speed of light, which is
one cell width per generation, the greatest rate at which information can pass across the board;
and the glider, a small, fixed size, moving colony

•
•

The glider is one of the small, simple colonies whose evolution is fUlly known: it moves aeross
the board in the direction in which it appears to be pointing, at a quarter of the speed of light,
passing through a fixed sequence of four distinct forms.

The second article describes more complicated examples, drawn from the readers' experience of
wasting both machine cycles and mathematical ingenuity. Here you will find the curiosities of
the subject: Garden of Eden colonies, which are ones that cannot possibly have come about as a
result of an evolutionary advance from a former state; the glider gun, a huge structure which
grows without limit, by firing an unending stream of gliders from one of it, extremities; and a
glider-gobbler whieh, although stable in itself, can also swallow a stream of gliders such as that
given off by the gun, to no ill effect. There are viruses, which disrupt regular structures, and
regular structures which can restore their symmetry after withstanding a virus attack.

Conway's game of 'life' 63

Huffman minimum redundancy coding

It has become usual to store data and transmit messages using fixed length codes such as ASCII.

The character set is represented by some number of codewords, each of the same length, which
in the case of ASCII is seven binary digits. The result is that it takes the same number of bits
to store, or the same bandwith to transmit, all messages witb the same number of characters. Of
course, if you know in advance that your message is in, say, English, then you know that it is
much less likely to contain letter 'z's than letter 'e's. This means that if you use a shorter

codeword to represent 'e' than 'z', you can expect to use less store, or bandwidth, for the
average message. I

In ASCII, the message 'easily' is encoded

e a y
, , CI (l , 0 1 1 1 CI (l 0 0 , 1 1 1 0 (l 1 1 1 t €I I a €I 1 1 t 0 1 1 0 €I t 1 1 1 0 0 1

requiring forty~two bits. whereas hy using a code which included the following representations

..
a 10 0 1..
 •e .. 1 0 1 0 ..
 11 €I €I 1.. 11 €I 1 0

y ... 1 0 1 1

the same message may can be encoded

e a y
€I 1001 1101eJ leJleJ 1100 1 €I 1 I

in only twenty-one bits. The codewords must be chosen in such a way that none is a prefix of
any of the others, so that there can be only one way of decoding a particular coded text,

In a classic paper, published in 1952. David Huffman described an algorithm ror choosing a
code that would minimize the expected length of a message, given that the probability of each
character were known, Essentially. his method decides the lengths of codewords, giving the
longest to the Jeast likely characters. It then remains only to create an arbitrary unambiguous
code with codewords of the right lengths.

The terminology of Huffman's paper is a little different from that in use today, as indicated
in the brackets, He uses the term <message' to mean an individual character. First of aU, the
ensemble [= character set] is sorted in decreasing order of probability:

[It is] necessary that the two least probable messages [= characters] have codes
[= codewords] of equal length ... [and that] there be only two of the messages
with coded length len) which are identical except for their last digits. The final
digits of these two codes will be one of the two binary 4igits. €I and 1. It will
be necessary to assign these two message codes to the nth,nd (n-t)st messages
[= two least probable characters] since at this point it is not known whether or
not other codes of length 1(n) exist. Once this has been done, these two
messages are equivalent to a single composite message. Its code (as yet
undetermined) will be the common prefixes of order l(n)-\ of these two
messages. Its probability will be the sum of the probabilities of the two
messages from which it was created. The ensemble containing this composite
message in the place of its two component messages will be called the first
auxiliary message ensemble.

This newly created ensemble contains one Jess message than the original. Its

Huffman minimum redundancy coding 64

members should be rearranged if necessary so that the messages are again
ordered according to their probabilities. It may be considered exactly as the
original ensemble was. •..

This procedure is applied again and again until the number of messages in
the most recently formed auxiliary ensemble is reduced to two. One of each of
the binary digits is assigned to each of these two composite messages. These
messages are then combined to form a single composite message with
probability unity, and the coding is complete. .. ,

Having now decided proper lengths of code for each message. the problem of
specifying the actual digits remains. Since the combining of messages into their
composites is similar to the successive confluences of trickles, rivulets, brooks,
and creeks into a final large river, the procedure thus far described might be
considered analogous to the placing of signs by a water-borne insect at each of
these junctions as he journeys downstream. .., the code we desire is that one
which the insect must remember in order to work his way back upstream.

A mcthod (or Ihc construction o(minimum-redundancy codcs. Dnid A. Huffman
in Prot I.R.E.. 40 (9). SepLember 19S2, pp 109lHIOI

Restated more prosaically, the final paragraph identifies the unambiguous set of codewords with
a (binary) tree. Each leaf of the tree corresponds to one of the characters. The depth of that
leaf, that is its distance from the root, is the length of that character's codeword. The digits of
the codeword are the 'address' of the leaf, that is a sequenee of :nstructions for getting to the
leaf from the root. say eJ for <go to the left' and 1 for <go to the right'.

Representing a coding tree
As usual, the task of representing a data structure in occam amounts to choosing an
enumeration for the component parts. so as to map the structure onto a linear array. The
structure in question this time is a binary tree similar to that in the sorting example, but this
tree may be severely imbalanced, and is of unpredictable depth. This means that the simple fixed
enumeration. with the children of node i being nodes (2xi)+1 and (2xi)+2, would be unreasonably
wasteful of store, so is unsuitable. A better representation. in th:s case, uses an array children[]
to record the index of the offspring of a node, so that the children of node i are indexed
chiidren[l] and children[I]H

If the root of the tree is taken to be the node indexed by zero

def root ~ • :

then, since the root is by definition not the child of any node,

children[node] root

can be used to signify that node is a leaf of the tree. In the case of the leaves. it will be
necessary to know to which character they correspond. This is most readily recorded in another
array of the same size as children[] in which the value of character[node] is the character
corresponding to the node, if it is a leaf.

The array chlldrer{] makes it easy to pass <upstream' from the root of the tree to the leaves.
In order to make the <downstream' journey as efficient, it will be useful to record the inverse of
chlldren[], in an array parente]. such that

parenti:children[node]] parent[ch'.Idren[node]+1] node

for each non·leaf mde, and the inverse of character[] in an array representatilJ8[], which
records the index of the leaf corresponding to each character.

It remains to be decided how big these. arrays must be. This, of course, depends on the size of
the character set being encoded. For the purposes of this example. the (unencoded) character set

Huffman minimum redundancy coding 65

will be signed. eight-bit significant values,

-"'S,ch<",S

This allows room for the normal seven-bit characters in the non-negative h1-tf range, and room
for another, negative, character set which can be used for control information, indicating such
things as the end of a message.

def bits.lf1.character = 8,
number.oF.characters = 1« bitsJn.character,
number.of.codes ~ number.of·characters,
charactermasR ~ not ((not 0) « bits.in.character)

The character.masR consists of bitS.in.character number of one bits, and is for mapping signed
characters onto non-negative array indexes, so that, for example,

ch character[representatlve[ch 1\ character.masR]]

Now if there are number.oF.codes leaves in a binary tree, then there will be one less than that
number of non-leaf nodes. so the total number of nodes is given by

def size.of.tree = (0 X number.of.codes) - 1 :

and the declarations of the arrays for representing the tree are

uar	 children[size.of.tree]. parent[size.of.tree],
character[slze.of.tree]. representatiue[number.of.characters] :

Constructing a coding tree
Huffman's algorithm proceeds in two stages. First the character set is sorted into descending
order of probability of the character's occurrence. Each of the characters will correspond to a
leaf of the tree, so you can think of this stage of the process as constructing number .oF.codes
number of leaves. These leaves will be sub-trees of the final coding tree. Since each is just a
leaf, they are disjoint. in the sense that they share no nodes with each other, and they are
maximal, in the sense tbat there is not yet any bigger tree of which any is a member.

The second stage of the algorithm repeatedly reduces the size of the collection of maximal
disjoint sub-trees, by combining the two lightest trees to make one new composite tree. By
'lightest' I mean of least weight where the weight of a leaf is the probability of the
corresponding character, and the weight of a larger tree is the sum of the weights of its leaves.
Notice that during this second stage, it is guaranteed that any pair of siblings - children of a
common parent - are already adjacent in descending order of weight.

This observation, which I take from to Robert Gallager

A prefix condition code is a code with the property that no codeword is a
prefix of any other codeword. A binary tree has the sibling property if each
node (except the root) has a sibling. and if the nodes of the tree can be
arranged in order of non-increasing probability with each node being adjacent
to its sibling. A binary prefix condition code is a Huffman code iff the code
tree has the sibling property.

variatlonJ on t Theme by Huffman, Robert G. Gallager
In IEEE TrAQJ. Informatlon Tbeor)', IT-24(6), 191i, pp 668·614

is in fact a non-algorithmic characterization of Huffman codes. It also shows that in the
representation chosen for the coding tree, which allocates adjacent elements of the arrays to
siblings, it is possible to keep the arrays sorted in descending order of weight. Gallager's proof

Huffman minimum redundancy coding 66

that this property holds is, essentially, an informal proof of correctness of Huffman's algorithm.
Keeping the arrays sorted by weight of node in this way simplifies the finding of the two

lightest sub·trees, and if the arrays are filled from the high-index, light, end towards the root,
then sub-trees once constructed need not be moved again.

I have divided the algorithm into three parts

proe construct.tree(ualue probability[]) ~

uar left.limit. right.limit, weight[size.of.tree] ,

proc construct.leaues ::::

... bUild the leaves of the tree

proc construct.other.nodes =

... jOin pairs of subtrees until only one tree remains

proc	 inuert.representatlon =

set parente] and representatiue[]

seq

left.limlt := size.oF·tree + ,

right.limit := slze.of·tree + ,

- left.limit ~ (size.of.tree + I) and (right.llmit - left.limit) ~ a

construct.leaues

- left.limlt ~ number.of.codes and (right.limit - left.limit) number .oF.codes

construct.other.nodes

- left.limit = root and (right.llmlt - left.limlt) ~ ,

lnuert.representation

Throughout, the collection of maximal disjoint sub-trees consists of those trees rooted at nodes
for which

left.limit node < right.limit

The initialization of the limits makes this collection empty. The process construct.leaues
introduces a new sub~tree into the collection for each of the characters of the character set,
setting its weight according to the probabllit!:::l of the character, maintaining the arrangement of
the leaves in descending order, so that

left.limit < I <J <slze.of.tree -9 weight[i] >weight[J]

The process construct.other.nodes combines the two lightest leaves, nearest to nght.llm1t,
introducing a new node with the combined weight of these two, adjusting the limits of the
collection, and filling in the shape of the tree in chlldreri]. Finally, the process
Inuert.representation constructs the arrays parente] and representatiue[].

Each of construct.leaues and construct.other.nodes repeatedly creates a new node of some
given weight, and inserts it into the right place between the limits to maintain the weight
ordering of the nodes. The determination of this right place, and the consequent adjustment of
the lighter nodes is done by

Huffman minimum redundancy coding 67

proe insert.new.node(uar new.node. ualue welght.of.new.node.
uar left.limit. ualue rlght.limit) ~

uar weight.limit :
seq

if
if node = [left.limit for right.limit - left.limlt]

weight[nodeJ ~ weight.of.new.node .
weight.limit ,~ node

true
weight.limlt ,= right.limit

seq node = [Ieft.limit for w8lght.limit - left.llm1tJ
seq

character[node - ,J ,= character[nodc]
children(node - lJ '~children(node]

weight[node -,J ,= weight[nodeJ
left.limit ,= left.limit - I

new.node ,~ weight.llmit - 1

weight[new.node] ,~ weight.of.new.node

Recall that the collection of maximal disjoint sub-trees of the coding tree so far constructed
consists of those rooted at nodes

left.limit node < right.limit

and that they are in descending order of weight. This means that the conditional sets the
welght.1imit so tbat

left.llmlt <node <welght.limit ... welght[node] >weight.afnew.node
welght.limit <node < right.limit ... weight.of.new.node >w8lght[node]

The sequential loop then displaces each of the heavier nodes one place to the left to make room
for the n~w.node. and the leFt.limlt of the collection is adjusted to (;ompensale. This shih does

not make it necessary to adjust any of the values in children[] because

node <weight.lImit node <right.limit

and the tree is so constructed that

(children(node] ~ root) or (children(node] >right.limit)

so that none of the nodes being moved is yet a child.
Using this process, lnsert.new.node. the process that creates the leaf nodes can be written

proc constru:::t.leaues =

def minimum.character ~ - (number.of.characters + .) :

seq ch = [mlnlmum.character for number.oF.characters]

uar new.node :
seq

Insert.new.node(new.node. probability[eh !\ character.mas!;], leftJimit, right.limit)
children(new.node] '~root

character[new.nodeJ ,~ ch

This inserts a new leaf into the collection, increasing the size of the collection by decreasing the
left.limit. The process to combine the leaves into a tree

Huffman minimum redundancy coding 68

proc construct.other.nodes :0=

while (right.limlt - left.limlt) " 1

uar new.node :

seq

right.limit .= right.limlt - ,
insertnew.node(new.node. Welght[right.llmltJ + weight[right.llmit+l].

left.limlt. rlght.limlt)
chlldren[new.nodeJ .~ right.limit

first removes the two lightest sub-trees from the collection, by decreasing nght.hmlt, then JOinS

them under a parent whose weight is the sum of their individual weights, Notice tha.t the
assignment to chHdren[new.node] maintains the property that there are no children to the left of
the right.limit, The process is complete when only one tree remains.

Inverting the representation of the tree is a simple task, which involves assigning to
representatl,ve[] the indexes of the leaf nodes, and to parentC] the indexes of the nodes that are
not leaves, thus

proc invert.representatlon =

seq node ~ [root for size.of.treeJ

if

children[nodeJ ~ root

representatlue[character[nodeJ 1\ charactermasRJ .= node

children[nodeJ " root

seq child = [children[node] for 'J

parent[childJ .~ node

Encoding and decoding using a coding tree
The encoding of any given character ch is the sequence of <go left' and 'go right' instructions
that Huffman's insect must follow to pass upstream from the root node to the representative
node of that character. It is easy enough to construct this code backwards, since floating
downstream involved passing from node to parent[node] in succession from the representative
node until the root is reached. The prolCe:!:;

.
seq

length .~ 0
node := representatlue[ch " character.masR]
while node =I- root

seq
encodlng[lengthJ .= node - children[parent[nooeJJ
length .~ length + 1

node .= parent[nodeJ

establishes the condition that

'rji.o(i(length node(il = (children[node[i+·.)] + encodlng[iJ)

where	 node((I) = representatlve[ch " charactermasRJ
node(\ength) = root

so that the encoding of ch can be transmitted in the right order by

seq i ~ [, for iengthJ
output I encodlng[length - i]

Huffman minimum redundancy coding 69

It remains only to decide how much room needs to be allocated to store the encodlng[] whilst
it is being constructed. Assume that you are decoding a Huffman encoded character. Before you
receive the first bit of the encoding, there are number.oF.codes possible codes that you might be
about to receive. Each hit that you receive divides the set of possible characters into two
non-empty sub-sets, those that are still possihle, those that are now precluded. This means that
at most number.oF.codes-l bits will suffice. In fact, in the worst case, this limit is achieved: if
each character is twice as prohable as the next most prohahle, then the Huffman codes are, in
decreasing order of prohahility

0, le, 110, 1110, 11111:1,

with the two least probable characters both having encodings number.oF.codes-l bits long. With
this knowledge, the encoding process is written

proe encode.eharacter(ehan output, ualue ch) ~

- Transmit the encoding of ch along output
deF size.oF.encodlng ~ number.of.codes - 1 :

uar encodlng[size.oF.encoding], length, node :
seq

length .= 0

node := representative[ch 1\ character.masR]
while node '" root

seq
encoding[length] .~ node - chlldren[parent[nodelJ
length .~ length + 1

node .= parent[node]
seq i ~ [1 For length]

output I encoding[length - i]

Decoding a stream of bits to determine the character consists of following the 'go left' and
'go right' instructions as they arrive, passing 'upstream' from the root node until a leaf is
reached. That leaf indicates the decoded character

proc decode.characterCchan input, var ch) =

uar node:
seq

node := root
while ehildren[node] '" root

uar bit:
seq

input? bit
node .~ ehildren[node] + bit

eh .~ eharacter[node]

I will assume that the probabilities of tbe characters are fixed in advance, say by considering
an average over many messages of the type to be sent.

deF probability ~ table[.. ,] : indexed by [0 For number.of.characters]

In order to keep all the arithmetic in integers, the probabilities should be scaled and rounded so
that the total of the 'probabilities'

L probabillty[eh]
ch

70 Huffman minimum redundancy coding

is a large integer. If it is possible to read the message through before sending it. then you can
count actual character frequencies. and produce an optimal Huffman code for the message. but
of course. you will have to transmit a description of the code with your message!

If one of the character codes is laid aside to indicate the end of the transmitted message, then

deF end.oF.message = -1 ,

proc copy.encodtng(chan source, end.oF.source, stoR) ~

- Read characters from source, sending their encodlngs along

- siM, until a signal IS received along end.oF.source.
uar more.characters.expected
seq

construct.tree(probabtltty)

more.characters.expected := true

while more.characters.expected

uar ch :
alt

source'? ch
encode.character(stoR, ch)

end.oF.source ? any
more.characters.expected := False

encode.character(sinR. end.oF.message)

will translate a stream of characters into a stream of bits representing their HUffman encodings,
and mark the end of the stream by sending the encoding of end.oFmessage. The corresponding
decoding process would be

proc cop!,!.decoding(chan source, stoR)
- Read a bit stream from source, decoding it into characters

- and send these along siM until end.oF.message is decoded
uar more.char acters.expected
"q

construct.treeCprobabtltt!,!)

more.characters.expected ,= true

while more.characters.expected

uar ch :
seq
decode.character(source, ch)
If

ch * end.of.message
stoR ! ch

ch = end.oF.message
more.characters.expected ,= False

These processes can be used at the opposite ends of a serial communications medium

proc copy.ouer.serJa1.medtum(chan source, end.oF.source, sinR) =

- COpy characters from source to siM until end.oF.source
chan serla1.medium :
par

cop,y.encoding(source. end.oF.source. seria1.medlum)
cop!,!.decodtng(serta1.medtum, SloR)

or a blocked medium. such as a magnetic tape. Here is a process for encoding a message and

Huffman minimum redundancy coding 71

packing it into blocks, using a component from the 'Programming structures' section,

proc encode.into.blocRs(chan source, end.oF.source, blocR.slnR) =
chan blt.stream, end.of.blt.stream :
par

seq
cOPhJ.encodlng(source, end.of.source, bitstream)
end.of.blt.stream I a"!!

pacRbitS.lnto.blocRs(bl t.st ream, end.ofb It.st ream, bIOCR,SI nlt)

Decoding the characters from the stream of blocks is a slightly trickier task, since the end of
the message is determined by the decoded data. The most elegant solution, as seems common in
parallel programs, involves a process that throws away unwanted information

proc dlscard(chan source, end.of.source) =

var more.expected :

seq

more.expected := true

while more.expected

alt

source 7 a~

S~lp

end.of.source '? a~

more.expected ,= false

This inputs successively from source, ignoring the values that it receives, until a signal is sent to
it on end,oF.source. With this, the process for decoding the bits in a stream of blocks can be
written

proc decode.from.blocRs(chan blocR.source, SinR) =

chan end.of.bloc~.source, blt.stream, end.of.blt.stream :
par

seq
unpacR.blts.from.blocRs(blocR.source, end.of.b1ocR.source, blt.stream)
end.of.b\t.stream I a~ - 'feed-for~ard'

seq

copy.decodlng(bit.stream, slnR)

par

discard(bit.stream, end.of.bit.stream)

end.of.blocR.source ! a~ - 'feed-back'

When cophJ.decoding decodes an end,of.message it terminates, causing a signal to be offered for
output on erd.of.blocR.stream, which is a feed-back path to the block unpacking process. At the
same time, discard is absorbing any bits that were left in the last block of the message. When
all of the bits of the last block have gone, unpacR.bits.from.blocRs accepts the end.of.blocR.5ource
signal, and terminates, causing an end.of.bit.stream signal to be sent to terminate the discard
process.

Adapting the code to the message
So far, I have accepted Huffman's assumption that the code is predetermined and remains fixed
throughout the transmission of a given message. This is reasonable in case the probability
distribution of the characters in the message is known in advance. or if the message can be read
through in advance. Gallager suggests an alternative encoding that tends in the long run towards

72 Huffman minimum redundancy coding

the fixed Huffman encoding, but which starts with no knowledge of the probability distribution
of the characters, and adapts the code as the message is being sent.

Each character is encoded with a Huffman code that would be Qptimal fQr a message
consisting Qf all thQse characters that have gQne before it. This encoding technique has the
startling prQperty that, since the decoder has already decoded the preceding characters, it can
deduce frQm the received message what code should be used to decode each character. There is
no longer a problem in communicating the code as well as the message!

As I have presented it, it might seem that Gallager's adaptive Huffman coder requires that a
new coding tree be constructed for each character of the transmitted and received message.
Fortunately, this is not the case: the accumulated character frequencies change liltle, so the shape
of the tree tends to settle down; successive trees are sufficiently similar that it is fairly easy to
construct each from its predecessor.

The idea is to write a process Increment.Frequenc,y(ch) which modifies the coding tree so as to
be consistent with a frequency distribution with Qne more occurrence of the character ch than
previously. The encoding process becomes

proe copi,!.encodlngCehan source, end.of.source. SlnR) ~

- Read characters from source, sending their encodlngs along

- Sin/:<., until a signal is received along end.oF.source.
var more.characters.expected :
seq

construct.tree

more.characters.expected := true

whl1e more.characters,expected

var ch :

alt

sourC8 '? ch

seq

encode.characterCsinR. ch)
Ircrement·frequenci,!Cch)

end.of.source ? ani,!
more.characters.expected ,= False

encode.character(sinR, end.oFmessag8)

and the corresponding decoding process would be

proe copi,I.decodlngCehan source. sinR)
- Read a bit stream from source, decoding It Into characters

- and send these along SinR until end.oFmessage IS decoded

uar more.characters.expected :
seq

construct.tree

more.characters.expected ,= true

while more.characters.expected

uar ch :
seq
decode.character(source, ch)
if

ch * end.oFmessage
seq

SlnR ! ch
lncrement·frequenci,!Cch)

ch = end.oF.message
more.characters.expected := False

Huffman minimum redundancy coding 73

To keep track of the accumulated frequencies, the weight[] must become a permanent pan of
the representation of the tree

uar weight[size.of.tree] :

In order to increment the recorded frequency of a character, it is necessary to increment the
weight of its representative leaf

var node:
seq

node ,~ representatlue[ch 1\ character.masR]
weight[node] ,~ welght[node] + 1

There are two ways in which this may have damaged the structure of the tree. First of all,
unless the tree has only the one node, the weight of the parent of node is no longer the sum of
the weights of its children: it will be necessary to increment the weights of the parent of the
node, and all of its ancestors up to the root

var node:
seq

node ,= representat1ue[ch 1\ character.masR]
while node" root

seq
welght[node] ,~ weight[node] +
node ,~ parent[node]

welght[root] ,~ weight[root] + \

Secondly, each time the weight of a node. be that the original leaf or one of its ancestors, is
increased there is a danger that the ordering of the weights may be upset. If this is the case
then it is time to reorganize the tree, and change the encoding.

Assuming that the tree is initially properly ordered, then the ordering will first fail when

welght[node-IJ welght[nodeJ

and the weight of node is about to be incremented. Now, the trees rooted at nodes of equal
weight must be disjoint trees, that is either the nodes are siblings, or they have ancestors which
are siblings. This follows from the fact that the weight of a node is always less than that of its
ancestors, and greater than that of its descendants, so another node with the same weight is
neither an ancestor nor a descendant.

To preserve the ordering on the nodes, you could try exchanging the trees rooted at node and
node-I, and then try to increment the weight of the light node in its new position. Since there
might be many nodes with the same weight, however, you would have to do this repeatedly,
shuffling the imminently overweight node leftwards in the tree.

while welght[node - IJ ~ welght[nodeJ
seq

5wap.trees(nocle, node - 1)
node := node - 1

An alternative solution is to look for the leftmost node of the given weight. and exchange with
that node, directly. The same argument about the weight of a node being less than that of its
ancestors shows that there is always a sequence of nodes for which

weight[(node - i) - 'J > weight[node - IJ welght[nodeJ

Huffman minimum redundancy coding 74

This leftmost node, indexed node - t, is identified, and the exchange performed, by

if 1 = [I for (node - root) - ,]

welght[(node - i) - ,] >weight[node]

seq

swap.trees(node, node - i)

node .= node - i

Having moved the node, it is possible to increment its weight, and that of each of its ancestors.

uar node:
seq

node := representative[ch 1\ character.masR]
while node ¢ root

if

weight[node -,] >welght[node]

seq
weight[node] .~ weight[node] + ,
node .= parent[node]

weight[node-,] = weight[node]
if i ~ [\ for (node - root) - ,]

weight[(node - i) - ,] >weight[node]
seq

swap.trees(node, node - 1)
node .~ node - i

weight[root] .~ weight[root] + I

The process for exchanging a pair of disjoint sub-trees is simply coded

proe swap,tree5(ualue i. j) ~

- Exchange disJoint sub-trees rooted at i and j

proe 5wap.word5(uar p, qJ ~

~ Exchange values stored In p and q
var t :
seq

t .~ P

p'= q

q .~ t

proe adJUst,off5prlng(ualue i) ~

~ Restore downstream pOinters to node I

if

chlldren(l] ~ root

representatiue[character[l] 1\ charactermasR] := 1

children[i] ¢ root
seq child ~ [children(i] for 2]

parent[child] .~ i

seq

5wap.word5(chlldren(l]. eh,ldren(J])

5wap.word5(eharacter[I], eharacter[j])

adjU5 t.off5prlng(i)

ad jU5t.off5pring(J)

Huffman minimum redundancy coding 75

First. the 'upstream' pointers, children[J and character[J, to the nodes are exchanged. then the
process adjust.oFFspring restores the 'downstream' pointers that are no longer correct. There is.
of course, no need to exchange the weights of the nodes, since they are known to be equal.

The only remaining problem is to decide the shape of the initial coding tree: what encoding
should be used to send the first character? The simplest solution would be to construct the
initial tree on the assumption that all characters are equally likely to turn up, that is

children[node] ~ root welght[node] ~ ,

This means that, to begin with, the code is a fixed length one, each character being encoded by
bits.in.character number of bits.

An alternative technique is to keep in the coding tree only representations of characters that
have actually been sent and received. Whenever a character is to be sent for the first time in
the message, the code of a special escape character is sent, followed by some standard
representation of the new character, say its ASCII code. A new leaf must then be added to the
tree to represent the new character.

In order to accommodate the escape character, the space allocated for the tree must be
enlarged

def number.of.codes ~ number.of.characters + , :

and, since the tree grows, some way must be found of recording that size. As each escape is the
representation of a character that has never occurred at all (you may not yet know which
character, but you do know this), it should be given a very low weight. This means that it is
reasonable to represent it by the rightmost (least likely) leaf of the tree. Doing this means that
a single variable

uar escape:

serves the purpose of recording which node represents the escape, and which is the rightmost
node of the tree.

Since the value of escape changes, it will not do as an initial value for representatiue[].
Define, instead,

def not.a.node ~ slze.of.tree :

then creating the initial tree is just a matter of making the escape leaf, and initializing the array
of representatives

proc construct.tree =

seq
escape := root
weight[escape] := t - minimum legal ~eight

childrer{escape] := root - It IS a leaf
seq ch ~ [0 for number.of.characters]

representatiue[ch] := not.a.node

Encoding using the new tree is substantially unchanged, excepting in that some provision must
he made for sending escaped characters. First of all, the encoding is potentially larger by the
blts.ln.character number of bits in the unencoded representation, so

def size.of.ercodlng = blts.in.character + Cnumber.of.codes - ,) :

The bits of the unencoded character representation can then be stored before the encoding of

Huffman minimum redundancy coding 76

escape, to be transmitted after it.

proe encode.character(ehan output, value ch) =
- Transmit the encoding of ch along output
def size.of.encoding = blts.ln.character + (number.of.codes - ,)
var encoding[size.oF.encodlng], length. node:
seq

if
representatiue[ch II character.masR] " not.a.node

seq
length ,~ 0

node ,= representatlve[ch II character.masR]
representatiue[ch II charactermasR] ~ not.a.node

seq
seq i ~ [0 for blts.in.character]

encoding[i] ;= (ch » i) 1\ 1 - i'th bit of unencoded ch
length ,~ blts.in.character
node := escape

while node .;0 root
seq

encodlng[length] ,= node - chlldreriparent[node]]
length ,= length + ,
node ,= parent[node]

seq I = [, for length]
output I encodlng[length - I]

The very first character to be sent will be escaped, and since the representative node for escape
is initially root the encoding of the escape will be the null sequence of bits. This means that
the first transmitted bit will be the first bit of the unencoded character representation.

Decoding is also as before, excepting that on receipt of the encoding of escape, the bits of the
unencoded escaped character must be read and the character reassembled

proc decode.character(chan Input, uar ch) =
- Receive an encoding along input and store the character In ch
uar node:
seq

node ;= root
while childrerinode] " root

uar bit
seq

Input? bit
node ,= childrerinode] + bit

If
node <escape

ch .~ character[node]
node = escape

uar bIt:
seq

Input? bit
ch ,~ - bit
seq I = [e for blts.in.character - ,]

seq
Input? bit
ch ,~ (ch 4: ,) v bit

Huffman minimum redundancy coding 77

The first bit of an escaped sequence is the sign bit of the character code, so the assignment

ch ,= - bit

extends the sign bit to the left, and the loop shifts the subsequent bits in from the right.
In order to increment the frequency of a character not yet in the tree, it is necessary to be

able to construct a new leaf to be the representative of the new character. This process divides
the escape leaf into two leaves and their parent, thus

proe create.leaFCuar new.leaF. ualue ch) =

- Extend the tree by fision of the escape leaf into two new leaves

var new.escape :
seq

rew.leaF .= escape + ,

new.escape := escape + 2

chl1dren[escape] ,= new.leaf - escape is the new parent

weight[rew.leaf] ,= •
children[new.leaf] ,= root
parent[new.leaf] ,= escape
character[new.leaf] ,= ch
representative[ch 1\ character.masR] ,= new.leaf

welght[new£sape] .= I

children[new.escape] := root

parent;[rew.escape] := escape

escape := new.escape

The new leaf has no weight when created, so does not affect the weights of its ancestors. Its
weight must be incremented just as for any other leaf

proe lncrement.frequency(value ch) =

var node:

seq

If
representatlue[ch /\ character.masR] "# not.anode

node ,= representatlue[ch " character.masR]
representatlue[ch /\ character.masR] = not.anode

create.leaf(node. ch)
whi le node "# root

If
welght[node -,] >weight[node]

seq
weight[node] ,= weight[node] + ,
node ,= parent[node]

welght[node -,] = weight[node]
If i = [, for (node - root) - ,]

welght[(node - I) - ,] >weight[node]
seq

swap.trees(node. node - I)
node ;= node - i

weight[root] .= welght[root] + ,

Huffman minimum redundancy coding 78

Notice that a brand new leaf having no weight, the data invariant - that no node has the same
weight as its parent - is breached by the escape node and its parent. In order to show that the
tree exchanging is correct, the statement of this invariant must be strengthened: no node,
excepting the escape node has the same weight as its parent. This is sufficient, because you will
never require to exchange with the degenerate tree rooted at escape,

That completes the adaptive coder. Notice that, since the processes cophl,encoding and
cophl.decoding have the same interfaces as the corresponding processes in the fixed-code coder,
they may be substituted into the example programs. There is no need to change the processes
that convey the bit stream from encoder to decoder.

Huffman minimum redundancy coding 79

Loose ends

If you have read what went before, then you may think that I have been trying to teU you
how to write concurrent programs. Be sure that others will always have different ways. There
are some decisions which it is my weakness to need to justify before closing.

Sequential or parallel?
Excepting for the parallel matrix multiplier. these programs were all written for
execution on a single processor computer. This has affected the design. for example, in
places where either seq or par would have done, I have tended to write the (ormer, in
the knowledge that it is 'cheaper' on such a machine.

Sequentially composed processes can rely on the state left behind by their predecessors,
and to write par would be to imply that you were not relying on such residual state.
Concurrently composed processes can rely on being able to communicate with their
contemporaries, and to write seq would be to imply that you were not using such
communications. If you required neither sequencing nor guaranteed contemporaneousness,
then the choice between seq and par could only be made on grounds of efficiency (or
whim).

By the skin of my conscience, I shall avoid making this into an argument for an
ambiguous constructor, which might be translated either into seq or into par as the
implementor would see fit - he being best able to judge relative efficiencies (and just as
capable of whimsey).

Folding
Experienced occam programmers who have used the tools provided by tnmos to
support occam programming, tools such as the occam programming system (ops), may
find my programs unexpectedly rich in proc declarations. The ops editor has a text
structuring capability called <folding' which, by rolling up a whole screenful of program
onto a single line of the terminal screen, allows you to consider the structure of a very
large piece of code a little at a time. ("What you see is what you are thinking about.")

The tendency is, when writing programs with a folding editor, to write proc bodies
in-line at the point of call, and to fold the text to keep it in manageable chunks. Given
the support tools, this is as good a way, if not a better one, of modularizing the code.
My excuse for using proc declarations here is that the technology of hierarchical
folding, althoug~ described in terms of a paper metaphor, is altogether less successful on
paper, and makes binding the book rather difficult.

Typing
Finally, there is the matter of data typing. Few self·respecting authors of tutorial
papers on programming style would now choose an untyped language like bcpl as their
vehicle. Looking back over the descriptions of programs here, there seems to be a great
deal of argument given over to the basic data types, such as arrays of bits, and trees.
Much, although not all, of this could be factored out by adopting some variable and
channel typing scheme from a sequential language, such as pascal My excuse for not
doing so is that the designers of occam, with laudable caution, have yet to make this
leap themselves, and I am loath to go before them. This matter is addressed in a
language christened, with originality, occam 2.0, to which I trust you will be able in
due course to adapt any good ideas which you may have found here.

A number of people have contributed to this monograph beside myself, although they may, not
all have been aware of doing so. I thank particularly: Tony Hoare for showing me the light;
Paul Fertig, Michael Goldsmith, and Bernard Sufrin for drawing my attention to those of its
failings which I was prepared to admit.

Loose ends 80

Codes of the

Input and output routines
Terminal interrupt management
Parallel matrix multiplier
Parallel sorter
Conway's game of life
Simple Huffman coder
Adaptive Huffman coder

programs

83

86

88

89

95

100

104

Input and output routines

proe write.string(ehan output, ualue string[J) =
- Wri te the characters of the string[] to the output
seq character.number ~ [, For strlng[byte oj]

output I string[byte character.numberJ

proe write.slgned(ehan output, ualue n, Field.wldth) =

- Write a signed decimal representation of n to the output,
- right Justified to occupy Field.width character spaces
uar tens, width: - tert'i ... 111 be a signed pOhler of ten

seq
if

n) 0

seq

tens :=-1

Width .~ 1 - count a minimum of one digit

n <0

seq
tens 1

Width e - count a sign and a minimum of one dl91t

while (n + tens) <(- '0) set tens 50 that 0 <(- (n + tens)) < 10
seq or, If n 0::: 0 then tens = ,

tens ,= to x tens

width .= width + ,

while Width <field.width - pad h1lth spaces to Fleld.width characters

seq

output I 'MS'

Width .~ width + I

IF - output a sign for negative n

n) 0

SRlp

n <0

output I',,'

while tens"" fI - output the digits of n, most significant first
seq

output I '0' - ((n + tens) mod 10)

tens := tens + lei

Codes: Input and output routines 83

proc read,slgned(chan Input, var n, oR) =
Read an (optionally signed) decimal numeral from the Input

returning the corresponding value In n, and true or False In

OR according as the converSIon "lorked or not

def min = not ((not 0) :t \J. max ~ (not 0) :t \ :

def otherWise ~ true :

uar ch, sign:
seq

input 1 ch

while ch = 'MS' - skip leading spaces

Input? ch

if

(ch = '+') or (sign = '-') - read a pOSSible sign

seq

sign .= ch

input? ch

(ch .,. '.') and (sign'" '.')
sign := '+'

whl1e ch = 'MS' - skip any spaces after the 519n

input 1 ch

n ,== 0

OR 1= ('0' (ch) and (ch ('9') - check for the presence of dIgits

while CO' (; ch) and (ch <'9') - and read a sequence of them
seq

If
(sign ~ '.') and (n <((max - (ch - '0')) + 10))

n .~ (" x n) + (ch - '0')
(sign = '.') and (((min + (ch - '0')) + \0) <n)

n '~ (" x n) - (ch - '0')
otherwise

OR := false number out of representable range
input? ch

Codes: Input and output routines 84

proc read.1ine(chan Reyboard, screen, uar s[]) ~

- Construct a string in s[] from the printable characters

read from R8hjboard and echoed to screen. The stnng
- finishes at a carnage return.

def control = not ((not 0) 4: 5).
otherwise = true,
bacRspace = control 1\ "H',

bell = control 1\ "G',

cancel = control 1\ 'U',
delete = not ((not 0) 4: I),

max.length = not ((not 0) « 8) :

seq
s[byte oj ,~ 0 - byte zero contains the length of the stnns

while s[byte s[byte 0]] of> 'MC'
uar ch :
Reyboard ? ch

If

eMS' <ch) and (ch <delete) and (s[byte oj <(max.length - I))

seq 'printable' characters ac.

screen I ch echoed

s[byte oj ,= s[byte oj + 1

s[byte s[byte oJJ ,= ch and added to the string
ch = 'Me

seq carnage return

s[byte oj ,~ s[byte oj + 1 is added to the string

s[byte s(byte oJJ ,= ch and terminates the loop

(ch = bacRspace) and (s[byte oj >0)

seq backspace
screen I bacRspace ; 'MS' ; bac'Rspace oven""rites the last character echoed
s[byt;e 0] := s[b;yte 0] - 1 and removes It from the string

ch = cancel
while s(byte oj >0 cancel

seq back-spaces over the whole line
screen I bacRspace ; 'MS' ; bacRspace
s(byte oj ,= s(byte oj - 1

otherWlse anything else IS an e"o,
screen I bell

Codes: Input and output routines BS

Terminal interrupt management

def t>;pe.ahead = "', control = not ((not 0) 4: 5), release = - 1 :

proc Re>;board.handler(ehan request, slnA. error) ~

Characters typed at the keyboard can be read from sir),.
- A signal is required on request before each item is read.

- If more than t,ype.ahead are typed-ahead, there IS an error
chan Re>;stroRes.in at ... :
uar reader, writer, count:
seq

reader ,= 0 index of next Item to be read from buffer
writer ,= 0 index of next free location In buffer
count .= t>;pe.ahead number of spare locations In buHer
var datum[t>;pe.ahead] :
while true

alt
count = 0 & Re>;stroRes.ln? any if something typed but no room

error I any then Signal an error
count> 0 & Re>;stroRes.ln ? datum[writer] - If somethln9 typed h'hen room

seq
writer .= (writer + 1) mod t>;pe.ahead then store It In the buHer
count := count - 1

count < t>;pe.ahead & request? any If somethln9 requested

seq
SinA I datum[,..eader] then read from the buffer
reader .~ (reader + 1) mod t>;pe.ahead
count 1= count + ,

proe echo.handler(ehan request. repI>;. echo, inward) =

deF enter = control A 'M' :
while true

var ch :
seq

request I any
repl>; ? ch
inward I ch - Transmit character to user

if
CMS' <ch) and (eh <'-')

echo I ch Send visible input back to terminal screen
ch = enter

echo I release Release screen at end of line of Input
true

SRlp

Codes: Terminal interrupt management 86

proc outputmultiplexer(chan from[], ualue width, chan outgoing) ~

while true
uar ch :
alt selected.process ~ [0 for width]

from[selected.process] ? ch take a message from any From channel

while ch " release ;;;.nd copy it to completion

seq

outgoing ! ch

from[selected.process] ? ch

pro' screen.handler(chan outgoing. error) ~

def ben,character ~ control f\ 'G' :
chan screen,Qut at ... :

while true

var ch :

pri alt

error? any signal errors by ringing the bell
screen.out I ben.character

outgoing ? ch and send on outgoing characters

screen.out I ch

proc userCchan termlnaLReyboard, termina1.screen) =

def from.echo.handler ~ o. from,user ~ \ number.of.outputs ~ , :
chan outgoIng, From.ReS/board. to.scf€€n[nurnber.oF.outputs] :

prl par

chan request, repl,y. error: - High priority process

par

Reyboard.handler(request. reply, error)

echo.handler(request, reply, to.screen[fromecho.handlerJ, from.Reyboard)

screen.handler(outgolng. error)

par - La.... Priority process

output.multiplexer(to.screen, number.oF.outputs. outgoing)
user(from.Reyboard. to.screen[from.user])

Codes: Terminal interrupt management 87

Parallel matrix multiplier

proe producexj(ualue j. chan south) = - north row: source of X values
while true

south I any

proe consume.yiCualue I, chan east) = - west column: sink for !::l values
while true

east? any

proe offset(ualue "i, chan west) = - east column: source of R offsets
while true

west I '"

proe multlplier(ualue alj. chan north. south. west. east) =
uar xJ, aiJ.tlmes.xJ, yl - middle: responsible for a values
seq

north? xJ

while true

seq
par

south I xj

alj.timesxj ,= aiJ x xj

east? yl

par

west I yl + aij.timesxJ

north? xJ

proe sinR(ehan north) = - south row: sink for unused outputs

while true
north? any

defn=3:
uar a(n x n], "[n]:
seq

-- Initialise a and R

chan northsouth[n x (n + Il]. east.west[n x (n + Il] :

par

par J = [0 for n]

preducexiJ. north.south[J])

par i = [0 for n]

0ffset("[i]. east.west[(n x nl + I])

par i = [0 for n]

par J = [0 for n]

multiplter(a((n x I) + J]'
north.south [en x il + J]. north.south [en x (i + I)) + D.
east.west [i + (n x Jl]. east.west [i + (n x CJ + I))] 1

par J = [0 for n]

slnR(north.south[(n x nl + J])

par 1 = [0 for n]

consume.yi(;. east.west[i])

Codes: Parallel matrix multiplier 88

Parallel sorter

proe forR.dlstribute(ehan up. left.up, right.up) ~

- share Qut a sequence of numbers 85 t~D sequences, to the left, to the n ght

def leftward = 0, rightward = not leftward :
uar more, inclination:
seq

Inclination .= leftward

up ? more

while more

uar number:

seq

up ? number
if

Inclination ~ leftward

left.up I true; number

Inclination = rightward
right.up I true; number

up'? more
inclination ;= not inc1lnatlon

par

left .up I false

right.up I false

proe forR.gather(ehan down, left.down, rlght.down) ~

- merge t~o ascending sequer,ces, from left and right, into one ascending sequence

var left.more, left.mlnlmum, rlght.more, rlght.mlnimum :

seq

par

left.down ? left.more; left.mlnlmum

right.down '? rlght.more; rlghrmlnlmum

while left.more or rlght.more

if

left.more and ((not right.more) or (left.minimum , rightmnimum))

seq

down I true; leFtmlnimum
left.down ? left.more; left.minimum

r;ght.more and ((not left.more) or (left.minimum) rlght.minimum))
seq

down I true; rlght.minlmum
rlght.down ? rlght.more; right.mlnlmum

down I false; any

proe forR(ehan up, down, left.down, left.up, right.down, right.up) ~

- actions for a medial node in the sorting tree

seq

forkdistribute(up, left.up, right.up)

forR.gather(down, left.down, right.down)

Codes: Parallel sorter 89

def displal).rumber = \ displal).emptl) = 2. diSplal).stop = 3 :

proe leaFCehan up. down, probe) ~

- actions for a terminal node in the sorting tree

uar number:
seq

up ? any: number expect a sequence of one number
probe I displal).number: number pass the number to the monitoring code

up? any
down I true: number return It 85 an ascending sequence

probe I displal).emptl) Indicating Its departure

down I False: any
probe I displal).stop

proe monitorCehan up.a, down.a, upb. downb. probe) =
- in-channel monitoring code, In the form of a buffer
seq

uar more:
seq - flist ",etch an up",ard-bound sequence of values

up.a ? more
while more

var m.mber :
seq

up.a ? number

probe I dlsplal).number: number

up.b I more: number

probe I display.emptl)

up.a '? more

up.b I more

var more, number :

seq - then watch a downward-bound sequence

down.a '? morej number

while more

seq

probe I displal).number: number

down.b I more; number
probe I displal).emptl)
down.a '? more: number

dOUJn.b I more; rumber

probe I dlsplay.stop

Codes: Parallel sorler

def	 depth.of.tree = 4 :

def	 number.of.1eaues = 1 <l: depth.of.tree •
number.of·forRs = number.of.1eaues - 1 •

number.oF.processes = number.of.forRs + number.of.1eaues •
number.of.channeIs = number.oF.processes I

number.of·probes = number.oF.channels + number.oF.1eav8s :

proc maRe.cartesian(ualue index, uar x. y) ~

-	 turn a probe Index into Cartesian co-ordinates In a terminal-Independent space

If

if line = [1 for depth.of.tree + 'J

index <((I « line) - t) - then probe is from a channel at this depth
uar c :
seq

c .~ Irdex - ((1 « (line - 1)) - 1)

X .~ ((2 X c) + 1) X (number.of.1eaues » (line - 1))

y'~ line

index) number.oF.channels - then probe IS from a leaf

seq

x ,~ (2 X (index - number.of.channels)) + ,

Y ,~ depth.of·tree + 2

def	 field.wldth ~ 3 :

proc Independent(chan source, sinR) =
uar	 Instruction:
seq

source ? instruction
while instruction '" dlsplay.stop

seq turn every probe Signal Into ...

sinR I true ... a true value
uar Index, X, y :
seq

source ? index
maRe.cartesian(irdex, x, y)
slnR I X; Y ... a co-ordlnate-palf

if and Field.width number of characters:

Instruction = dlsplay.number
uar number:
seq

source ? number
wrlte.signed(sinR. number. f,eld.width) - either a numeral

instruction = dlsplay.empty
seq	 I ~ [0 for field.width]

sink I '""5' - or that many blankS

source ? instruction
sinR	 I false

Cod~: Parallel sorter	 91

def uirtua1.height = depth.of.tree + \ uirtuai.width = (, x number.of.!eauesJ - 1 :

proc deperdent(chan source, termina1] =
- terminal dependent. code for driving a VT52

def screen.height = ", screen.wldth = 80 :

def control = not ((not 0) 0(5J, escape ~ control A l' :

proc clearscreenCchan termlna1] =

- clear screen sequence for a VT52

terminal I escape ; 'H' ; escape; T

proc gotoxy(chan terminal, ualue x, yJ =

- lefthanded co-ordinates. origin 0, 0 at top left.

terminal I escape: 'Y' ; 'MS' + ~ ; 'MS' + X

uar more:
seq

clearscreen(terminalJ

source ? more
while more

seq
uarx,y:
seq

source ? :x; ~

gotoxy(termina1. (x - 1J x (screen.width + uirtual.widthJ,
(uirtual.height - yJ x (screen.height + ulrtual.heightJJ

seq i = [1 for field,width]
uar ch :
seq

source? ch
terminal I ch

source ? more
gotoxy(terminal, 0, 5creen.helght - 1J

Codes: Parallel sorter 92

proe display(ehan source, sinR) ~

chan Internal:
par

independent(source, internal)
dependent(lnternal, SloR)

proe multlplex(ehan probe[], an.probes) ~

- sather all probe signals onto a single channel
var more, more.from[number.of.probes) :
seq

more .= number.of.probes

seq I ~ [0 for number.of.probes)

more.from[i) ,~ true

while more >0 --- while not all probes are dead

var instruction :

alt i = [0 for number.of.probes]

more.from[i) & probe[l] ? Instruction take a probe Instruction

if

Instruction = dlsplay.number If this is a number

var rumber :
seq

probe[i] ? number --- copy the number, and tag
an.probes I Instruction; I; number --- It I·.uth the probe number

instruction ~ display.empty if this IS a blank Instruction

an.probes ! instruction; i --- tag It with the probe number

instruction = display.stop if the probe IS dead
seq

more.from[l) .~ false then expect no more Signals from It

more := more - 1 and decrease the count of working ones
al1.probes I displa8.stop

Codes: Parallel sorter 93

proe	 driver(ehan up, down) =

def	 masR ~ not ((not 0) « 9) :

proe shift(var state) =

seq \ = [I for 9]
state ,= ((state « I) /I masR) v (((state» .) " (state :l> 6)) /I I)

seq
var event, number - first fill the tree
seq

tIme ? event
number ,= (event /I masR) v 1 - Initialize the random number

seq i = [D for number.of.leaves]
seq

elJent := event + second
shift(number) - pick a ne~ number

up ! true; number - send It into the tree
time? after event - and walt for a second before the next

up I false
var event: - then empty the tree

seq
time'? event
seq i = [0 for number.of.leaves]

seq
event := event + second
down ? any; any - take a number from the tree

time'? aFter event - once a second

down ? any; any

def	 root = 0 ,

flrst.forR = root ,
first.leaf = first.forR + rumber.of.forRs :

chan	 up.a(number,of.ehannels], dowrta(rumber.of.chamels],
up.b[number.of.channelsJ. down.b[number.of.channels],
probe[number.of.probesJ. all.probes :

par
driver(up.s[root], downb[root])

par I = [first.forR for rumber.of.forRs]
forR(up.b[I], dowr.a(i], down.b[(exi)+I]. up.a((exi)+I]. dowrtb[(exi)+e], up.s[(exi)+e])

par I = [first.1eaf for rumber.of.leaves]
leaf(up.bD]. dowrta(l]. probe[number.of.channels + (I - first.1eaf)])

par I = [root for number.of.channels]
monltor(up.a(i], dowrta(i], Up.b[i], dowrtb[I], probe(i])

multiplexCprobe, all.probes)

dlsplay(all.probes, termlnalscreen)

94	 Codes: Parallel sorter

Conway's game of 'Life'

def dead ~ 0, alive ~ not dead : - possible states of each cell

def radius ~ 1 , radius of the 'sphere of Influence'

diameter ~ (2 X radius) + 1 ,

neighbours ~ (diameter x diameter) - 1 : consequent number of neighbours of

proe ealeulate.nextstate(ehan linR[], value In[], state, var next.state) =
var count: - number of living neighbours
seq

var state.of,nelghbour[neighbours] :

seq

par I = [0 for neighbours] - receive present state from each neighbour

linR[in[lJ] ? state.of.nelghbour[l]
count := e
seq I ~ [0 for neighbours]

If

state.of.neighbour[l] = alive

count := count + 1 - and count the number alive this generation

state.of.nelghbour[l] = dead

'Rip

if

count < 2 if too fe~

next.state ,= dead this cell dies from Isolation
count = 2 If exactly tl./O

next.state := state this cell is stable
count = ;) If exactly three

next.state ,= alive this cell IS gives birth If dead

count> 3 If too many

next.state .= dead this cell dies from ovarcro~dln9

proe broadcast.present.state(ehan linin value out[], statel 0

- satisfy each neighbour's requirement to knol./ this cell's state

par I = [0 for neighbours]

IlnR[out[iJ] I state

Codes: Conway's game of <Life' 95

def setstate = \ asRstate ~ '. terminate = 3 :

proc cel1(chan llnR[]. value lri]' out[], chan control, sense) =
- calculate the state of a single cell On the board
var state, instrLK:tion :
seq

state ;= dead - the whDle board starts off dead

control'? instrLK:tion

while instruction '" terminate

seq

if - an instruction

instruction = set.state

control '? state accept a nel-! state

instrLKtion = asR.state
var next.state :
seq or calculate the next state

par

broadcast.present.state(linR. out. state)

seq

calculate.next,state(linR. in, state. rext.state)
sense J (state", next.state); next.state

announce this to the controller
state next.state and move on a generation1=

control '? Instruction

def array.width ~ 50. array.helght ~ '0 :
def number.of.cel1s ~ array.helght x array.wldth •

number.of.linRS = neighbours x rumber.of.cel1s :

proc lnitialize(ualue x,. hi, var in[]. out[]) =

- initIalIze the link mdlrect"lon arrays for the cell at x, hi
seq deltax ~ [-radius for diameter] offset of neighbour

seq deltay ~ [-radius for diameter] - In two dimensions

var direction :
seq

direction .~ deltax + (diameter x deltay) - -4 (direction iii; +4

If

direction '# C

var index, process :

seq

- select outgoing channel in thiS direction

process .~ x + (array.wldth x y)

index .~ (neighbours + direction) mod (neighbours + 1)

out[lndex] .= Index + (neighbours x process)

- and select the corresponding Incoming channel

process ,= ((x + deltax + array.width) mod array.width) +

(array.wldth x ((y + deltay + array.height) mod array.height))
Index .~ (relghbours - direction) mod (neighbours + 1)
1r{lndex] .~ Index + (neighbours x process)

direction = 111 - thiS cell IS not Its own neighbour

sRip

Codes: Conway's game of <Life" 96

def contt'o! ~ not ((not 0) «5). escape = control 1\ '[' :

proc move.cursor(chan screen, value x, hJ) =
- move to column X of 1ine hd (of a VT5Z)

screen , escape; 'Y'; 'MS' + h,j; 'lits' + X :

proc initiaHze.dlSplay(chan screen) ~

- cl8ar the screan (of a VTSZ)
screen! escape; 'H' ; escape: 'J' :

proe c\ean.up.disp!ay(ehan screen) ~

- move away from board
move.cursor(screen. E'l, arrah,j,helght)

proe display.state(chan screen, ualue X, y. state) =
--- display the state of one cell
seq

move,cursor(screen. x, 61)
if

state = alive - live cells show as an asterisk

screen I 'MM'

state = dead --- dead ones as a blank space

screen I 'MS'

proc ger>lratlon(chan screen, control[], sense[], uar actlue) ~

- cause the colony on the board to move on one seneration
seq

seq cell = [0 For number.oF.cells] invite each cell
control[eell] I as!l.state to make evolutionary progress

acthJ8 ,= False
seq cell ~ [0 For number.of.cells] for each cell on the board

var changed. I""i!xt.state :
seq

sense[cell] ? charged; next.state receive its ne~ state

iF
changed and cause It to be displayed

seq
dlSpla)d.state(screen. cell mod arrah).width. cen + arra)d.width. next.state)
active ,= true

not changed

SRip

Codes: Conway's game of 'Life' 97

proc edit(chan Reyboard, screer. cantrol[)) =
- modify the colony on the board

def ctrl ~ not ((not 0) «5), otherWise = true:
def left.Rey ~ ctrl 1\ 'R', rlghtRey = ctrl 1\ 'L',

upRey = ctrl 1\ 'K', down.Rey = ctrl 1\ T,

uproot.Rey = ·.s·, plant.Rey ~ .••. :

var X, y, editing, ch :

seq

x := array.width ..;- 2 - set co-ordinates of cursor to centre of board
y .~ array.height + 2

editing .~ true

while editing

seq
moue.cursor(screen. x. y)
Reyboard ? ch

if

(ch = leftRey) and (x >0)

x:= X -- ,

(ch ~ rightRey) and (x <(array.width - I))
x:= X + 1

(ch ~ up.Rey) and (y >0)

y'= y - I

(ch ~ down.Rey) and (y <(array.height - I))

y'= Y + \
(ch ~ uprootRey) or (ch = plant.Rey)

var state: - change state of the cell under the cursor
seq

state .~ (dead 1\ (ch ~ uprootRey)) v (alive 1\ (ch ~ plantRey))
control[x + (array.width x y)] I setstate; state
dlspla.y.state(screen. x. !cd. state) - keBplns the display In step

(ch = 'q') or (ch = 'Q')

editing .= false

otherWIse ignoring anything that IS not understood

sRlp

def idle = , editing ~ e, single.stepping ~ 30 free.running ~ 4, terminated = 5 :

proc d"lsplay.actiuity(chan screen. value actluiq:O = - display state of the controller
seq

moue.cursor(screen, array.width + 'I. arra,y,he\ght + a) - to the ""sht of the board

If

actiVity = idle

write.string(screen, 'dle")
activity ~ editing

write.string(screen, "Edit")
actiVity = single.stepping

writestrlng(screen, "Step")

activity := Free.running

wrtte.string(Screen, "BUSY")

actlvith/ = terminated

write.string(screen, '"Done")

98 Codes: Conway's game of "Life'

proc control1er(chan Reyboard, screen, control[], sense[]) ~

- control the activity of the colony on the board under direction from the keyboard
var actiuit!:j :
seq

actlulty ,= Idle

Inl t IaHze.dIsplay(screen)

while actilJit~ "* terminated

seq

dlsplay.actlvIty(screen, activity)

uar ch :
pri alt

(actiuithl "* editing) & R8yboard '? ch - provided not edlbng, typ,'ng

if
(ch ~ 'q') or (ch ~ 'Q') Q stops the program

activity ,= termInated
(ch = 's') or (ch = 'S') S stops the evolutionary process

activity ,~ Idle
(ch ~ 'e') or (ch = 'E') E Invokes the editor

activIty := editing
(ch ~ 'r') or (ch ~ 'R') R sets evolution In train

actiuity := Free.running
otherwise anything else causes evolution

activity ,~ slngle.stepplng for Just one (more) generation

(actiVity ~ editing) & sRip
seq

edit(Reyboard, screen, control)

activity ,~ idle

(actiVity ~ free.running) or
(activity ~ sIngle.stepplng) & SRip - If evolVing but nothing typed

uar changing :
seq

generat\on(screen, control, sense, changIng) - move on a generation

If

(actiVity = single.stepping) or (not changing)

activity ,~ idle

(activity ~ free.runnlng) and changing

sRip

dlsplay.actlvity(screen, activity)

seq cell = [0 for number.of.cel1s]

control[cel1] I terminate

clean.up.display(screen)

chan llnR[number.of.1inRs], control[number.of.cel1s]. sense[number.of.cel1s] ,
par

controller(R8!::jboard. screef\ control, sense) - control process

par x ~ [0 for array.wIdth] - bcacd

par y ~ [0 for array.helght]

uar ir{nelghbours], out[neighbours] ,

seq

Inltia!ize(x, y, In, out)
cel1(HnR, In, out, control[x + (array.width x y)], sense[x + (array.wldth x y)])

Codes: Conway's game of 'Life' 99

Simple Huffman coder

def	 bits.lncharacter = B.
number.oF.characters = 1"; blts.lncharacter.
number.oF.coces ~ number.oF.characters.
character.mas" ~ not ((not 0) .,; blts.incharacter) :

deF root = o. size.oF.tree = (e x number.oF.codes) - 1:

uar	 children[size.oF.treeJ. parent[size.oF.treeJ.
character[size.oF·treeJ. representatiue[number.oF.charactersJ :

proe insert.rew.node(uar newmde. ualue weight.oF.rew.node.
uar leFt.1imit. ualue righUlmit) =

uar weight.limit :
seq

IF

iF node ~ [leFt.1imlt For right.limit - leFt.1imit]

weight[nodeJ ~ weight.oF.new.node

welght.limit ,~ node

true
weight.1imit ,= rlght.1lmit

seq node ~ [IeFt.limit For weight.limit - leFt.1imltJ

seq

character[rode - 1] .= character[node]
chlldren[node - 1J .= ehlldrer(nodeJ

welght[node - ,J .~ welght[nodeJ

leFt.llmlt ,~ leFt.llmit - ,

neuJ.node .= welght.limlt - t

weight[rew.nodeJ ,= weight.oF.rew.noce

Codes: Simple Huffman coder 100

proe construct.tree(ualue probabillty[J) ~

uar left.limit, right.limit, weight[size.of.tree] ,

proc construct.1eaues =

- build the leaves of the tree

def minimum.character = - Cnumber.oF.characters + 2) :

seq eh = [minimum.character For number.oF.characters]

uar new.node :
seq

Insert.new.node(new.node, probability[ch 1\ character.masR], \eft.llmlt, right.llmit)
chlldren[new.node] '~root

character[new.node] ,~ ch

proc construct.other.nodes =

- JOin pairs of subtrees until Dnly one tree remains

while (right.limit - left.limit) " I

var new.node :
seq

right.llmlt ,~ right.limit - ,
Insert.new.node(new.node, weight[right.limlt] + weight[right.limit+I],

left.limit, rlght.limit)
chi'ldren[new.node] ,~ right

proc invert,representation =

- set parente] and representative[]

seq node ~ [root for size.of.tree]

if

children[node] ~ root

representatlue[character[node] A character.masR] := node

chl1drer{node] ;f:. root

seq child ~ [chlldren[node] for ,]

parent[child] ,~ node

seq
left.limit := size.oF·tree + ,
right.l\mlt := size.oF-tree + 1

- left.limit ~ (size.of.tree + ,) and (right.llmit - left.limit) ~ 0

construct.leaues

- left.1imlt ~ number,of.code and (right.limit - left.l,mit) ~ number.of.codes

construct.other .nodes

- left.limlt ~ root and (right.limit - left.lllnlt) ~ ,

lnuert.representation

Codes: Simple Huffman coder \01

proe encode£haracter(ehan OUtput, ualue ch) =
- Transmit the encoding of ch along output
deF size.oF.encodlng = number.oF.codes - , :
uar encodlng[slze.of£ncodlng], lergth, node :
seq

length .= 0

node .= representatiue[ch 1\ character.mask]
UJhile node oF root

seq
encodlrg[length] ,= node - chiidren[parent[nodeJ]
length .= length + ,
node .= parent[node]

seq I = [, for length]

output I encodlrg[lergth - i]

proe decode.character(ehan input, uar ch) =
uar node:
seq

node 1= root
UJhile chlldren[node] oF root

uar bit:
seq

Input? bit

node .= childrer(node] + bit

ch ,~ character[node]

Codes: Simple ,Huffman coder 102

def probability ~ table[...]: - ,ndexed by [0 for number.of.characters]

def end.of.message ~ -1 :

proc copy.encodingCchan source. end.of.source. sinR) ~

- Read characters fram source, sending their encodlnss alons
- sinR, until a Signal is received along end.oF.sQurce.
uar more.characters.expected :
seq

construct.tree(probability)

more.characters.expected := true

while more.characters.expected

uar ch :

alt

source'? ch
encode.character(sinR, ch)

end.of.source ? any

more.characters.expected := false

encode.character(sinR. end.oF.message)

proc copy.decoding(chan source. sin!<) ~

- Read a bit stream from source, decoding It Into characters

- and send these along S\nR until end.oF.message IS decoded
uar more.characters.expected :
seq

construct.tree(probability)

more.characters.expected ,= true

while more.characters.expected

uar ch :

seq

decocle.character(source. ch)

If

ch * end.oF.message

sin!< I ch

ch ~ erd.of.message

more.characters.expected := false

Codes: Simple Huffman coder 103

Adaptive Huffman code

deF	 bits.in.character ~ 8.
rumber.of.characters ~ 1 « bits.in.character.
number.of.codes = numberDf.characters + ;
character.masR = not ((not 0) « bits.in.character) :

deF	 root ~ 0 slzeDf.tree ~ (2 X number.of.codes) -; not.anode = size.of.tree. :

var	 escape. weight[sizeDf.treel.
chl1drer{sizeDf.treel. parent[slzeDf.treel.
character[slze.of.treel. representative[numberDf.characters1 :

proc construct.tree =
-	 Create 8 tree for the encodln9 Tn which every character IS escaped

seq
escape '=: root
welght[escapel '~1

children[escape] := root - it a leaf IS

seq ch ~ [0 For number.of.characters]

representative[chl ,~ not.anode

proe create.leaf(var new.leaf. value ch) ~

- Extend the tree by fision of the escape leaf mto two new leaves
uar new.escape :
seq

new.leaf := escape + ,

new.escape := escape + i!

childrer{escapel ,~ new.leaf - escape is the new parent

weight[new.leaf] ,= 0

childrer{new.leafl ,~ root

parent[new.leafl ,= escape

character[new.leafl '~ch

representative[ch 1\ character.masR] := new.leaF

weight[new.esapel .= 1

childrer{new.escapel .= root

parent[new.escapel ,= escape

escape := new.escape

Codes: Adaplive Huffman coder 104

proc 5wap-tree5(value I, J) ==
- Exchange disjoint sub-trees rooted at i and j

proc swap.words(uar p, q) ~

- Exchange values stored in p and q

uar t :

seq

t ,~ P

P ,= q

q ;;..;. t

proc adjust.offspring(ualue I) ~

- Restore downstream pointers to node

if

ehildren[IJ ~ root

representatlvE[character[i] 1\ charocter.masRJ := i

ehildrcn[iJ ~ root

seq child ~ [ehildren[iJ for 2J

parent[ehl1d] ,~ i

seq

swap.words(ehl1dren[;]. ehildren[jJ)

swao.words(eharaeter[i). eharaeter[jJ)

adjust .offspring(i)

adjust.offspringlj)

pree ircrement.frequenc~ua1ueeh) ~

- Acjust the weights of all relevant nodes to account for one more occurrence
- of the character ch, and adjust the !:ihCif.Je of the tree I f necessary
uar node
seq

if
representative[ch 1\ character.masR] ¢ not.anode

node := representative[ch 1\ charactermasR]

representatiue[ch 1\ character.masR] = notanode

ereate.leaf(node, eh)

while node =F root

If

weight[node-tJ >weight[nodeJ

seq

wEight[nodeJ ,= weight[nodeJ + t

node ,= parent[nooeJ

weight[node-tJ ~ weight[nodeJ

If i ~ [, for (node - root) - 'J

welght[(node - I) - IJ >weight[nodeJ

seq

swap.trees(node, node - i)

nodi? :=:: node - i

weight[rootJ ,~ weight[rootJ + t :

Codes: Adaptive Huffman coder

\-
105

proc errode.character(chan outp.Jt. ualue ch) ~

- Transmit the encoding of ch along output
def size.of.encoding = bits.ln.character + (number.of.codes - 1)
var en:odirg[slze.of.encoding], length, node:
seq

if
representatlve[ch 1\ character.masR] -;# not.anode

seq
length ,= 0
node ,= representat:ve[ch 1\ character.mas"]

representative[ch 1\ character.mas"] " not.anode
seq

seq I = [0 for blts.in.characterJ
encoding[l] := (ch » I) 1\ 1 - l'th bIt of unencoded ch

lergth ,= bitS.in.chara::ter
node ,= escape

while node 'f root
seq

encodmg[lengthJ ,~ node .. ehildrer{parent[nodeJJ
lergth .~ length + I

node .= parent[nodeJ
seq i = [, for lergth]

output I encoding[length - iJ

proe decode.eharacterCchan input, var eh) ~

- Recei e an encoding along input and store the corresponding character In ch

var node:
seq

node ,= root
while childrer(node] "" root

var bit:
seq

Input? bit
node ,= childrer{node] + bit

If

node <escape

eh '= character[node]

node = escape

uar bit:

seq

inp.Jt ? bit
ch ,= - bit
seq I ~ [, for bits.in.character - 'J

seq
input? bit
eh ,~ Ceh (, ,) v bie

\06 Codes: Adaptive Huffman coder

def end.of.message - I :

proc copy-.encodlngCchan source, end.oF.sQurce, SinR) =
Read a stream of characters from source, untIl signalled on end.oF·sQurce,
and transmit their encodlngs in sequence along sinR, follo~ed by that of
em.of.message. m~\ntalning throughout the enco~lng tree for the encoding
determined by the cumulative frequencies of the characters transmitted

uar more.characters.expected :
seq

construct.tree

more.characters.expected := true

while more.characters.expected

uar ch ;

alt

source? ch

seq

encode.character(sinR, eh)

increment·frequenc!J(eh)

end.of.souree ? an!J

more.characters.expected := false

encode.character(slnR, end.of.message)

proe copy.deeodlng(chan source, SlnR) ~

Read the encod,ngs of a stream of characters, up to and Including the

encoding of end.oF.message. from source and transmit the corresponding

characters along SlnR, maintaining the encoding tree for the encoding
determined by the cumulative -fregUl?nl::les o-f the characters received

uar more.characters.expected :
seq

construct.tree

more.characters.expected ;= true

whIle more.characters.expected

uar ch :

seq

decode.character(source, ch)

If

eh l' end.of.message

seq

sinR I ch

increment·frequenc!J(ch)

eh ~ end.of.message

more.characters.expected ,= False:

Codes: Adaptive Huffman coder 107

