
~L<10 (e1"1 I

LAWS OF PROGRAMMING

A TUTORIAL PAPER

by

C.A.R.Hoare, He Jifeng, LJ.Hayes,

C.C.Morgan, J. W.Sanders, I. H.&nensen,

J.M.Spivey, B.A.Sufrin, A. W.Roscoe

. ',,,..:: ':'IlY
::(J::i,;l£; . .[IOoratory

";!9' 800,oi"g "Iesearch Group-Library
i· 1 i I(eblf' 80ad
Oxf~ro O~:: 3QD
o»!n'd (OBli5) 54141

Technical Monograph PRG-45

May 1985

Oxford Univeniity Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

Copyright (C) 1985 C.A.R.Hoare, He Jifeng, I.J.Hayes,
C.C.Morgan, J. W.Sanders, I. H.S0rensen,
J.M.Spivey, B.A.Sufrin, A. W.Roscoe

Oxford University Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxfocd OXl3QD

England

L,.I,~5 [.> r:,IGCRh~lr'IHIC

A rUTDHI~L r~PER

c.~.~. Hoare, he :ifeng. I.J. Hayes, C.C. ~or~an.

J. Sanders, LH. Sorensen, J.r·:. Spivey. ~.I\. Sufrin. A.!~. Roscoe

Summar 'I

M comr:h:te set of algebraic laws is given for Uijkstra's nOn

deterrTlinistic ssquential programmin~ langua~e. Iteration and recursion

are explained in terms of Scottts domain theory as fixed points of

continuous functionals. A calculus analogous to weakast preconditions

is su~gesteQ as an Olio to deriving orograms from their specifications.

Warn~ng

In many programming languages use of these
laws of programming may lead to error. You
are advised to consult your language
definition and implementatlon manuals to
determine the circumstances in which their
use is valid.

£ONTENTS

I. lntroduc:t~on

1.1 The Language 4

1.2 Summary 8

1.3 EXdIllples 10

2. Algebraic: Laws 11

2.1 Nondeterminism 11

2.2 Condl-tional 13

2.3 Sequential Compositl-on 14

2.4 Assignment 16

2.5 Undefined expressions 18

2.6 Normal form 19

3. Domain properties 22

3.1 The ordering relation 22

3.2 Least upper bounds 25

3.3 Limits 29

3.4 lterat~on and rec:urs~on 30

4. Spec:ifl-c:ations 33

4.1 weakest prespec:ific:ation 34

4.2 Genera 1 inver se 38

5. Conclus~on 41

References 43

1. Introduction

Here are some of the familiar laws of arithmetic, \lJhich apply to

multiplication of real numbers.

(1)	 Multiplication is symmetric, or in symbols

"y y.x for all numbers x and y

It is conventional in quoting laws to omit the phrase "for all x and y

in the relevant set"

(2)	 Multiplication is associatlve, or in symbols

x,ll,(y J'. 2) (x)l. y)" z

It is conventional to omIt brackets for associative operators, and

write simply x x y J'. z

(3) Multiplication by 2erc always givas zero

o ll: X ~	 0

(4) Multiplication by 1 leaves a number uncnanged

, X]l(~	 x

(5)	 Division is the inverse of multiplIcation

y x (x(y) x provided y I: 0

If multiplication were not symmetric, we would also need a left quotient

operator \ I satisfying the hw

(y\x) x y x provided y I: 0

Another	 law relating mUltiplication and division is

2/(XlI.y) (,(x)/y provided y I: 0 and x F 0

2.

(6) ~lultiplication distributes through addition

(x + y)" :.: (x ;(z) + (y.x z)

It is usual for brackets to be omitted on the right hand side of this

equation, on the convention that a distributive operator binds tighter

than the operator through which it distributes.

If multiplication were not symmetric, we would distinguish

distri~ution to the left (described above) from distribution to the right

Zlf.{x+y) (z ... x) + (z .o:y)

An operator is distributive through another if it distributes both to

the left and to the right.

(7) rultiplication by a non-negative number is monotonic, in the sense

that it preserves ordering in its other operand, or in symbols

)(~y ~ X1I.Z 'YJl<Z provided z ~ 0

(B) Multiplication is continuous in the sense that it preserves the

limit of any convergent sequence of numbers

(11m x))I y :::: lim (x ll:Y) provided x converges.
n nn.., co n ,

(9) If we define

xny the lesser of x and Y

xoy the greater of x and y

then we have the following laws

xny :::: yllx

(Xl'\y)~z x~Z""y2.z•
(xvy)sz xSZ y:!'Z

x n (y "" z) (xny)lJ(XIlZ)
•

3,

Any m"lthematician or anginser will be intirrately familiar with all

lhese laws (and many more); and he will use them frequently and almO'5l

instinctively, without noticing he has done so. The applied

mathematician, scientist or engineer will also be familiar with many

relevant laws of nature. ~nd will use them explicitly to rirlo solutiors

for otherwise intractable problems. Ignorance of such laws w'Quld be

regarded as a disqualification from professional practice. What then are

the laws of programming, which provide the formal basis for the profession

of software engineerino;? Many programmers may be unable to quota ever a

single law. An unsympathetic observer might claim that programmers ars

such en undisciplined bunch that they would not obey such laws, even Lf

they knew them. Some computer scientists have despaired of finding

rational laws to govern conve'ltional procedural programming, and recorrmend

instead the use of functional programming LBacku~ or logic programming

ffowalsk[l.

In this paper, we shall substantiate a claim that conventional

procedural programs are mathematical expreasions, and that they are sJbject

to a set of laws as rich and elegant as those of any other branch of

mathematics, engineering, or natural science.

4.

'.1 The language

In order to formulate mathematical laws. it is necessary to introduce

some notation for describing programs. I shail use a notation (programming

lanQua~e) which is especially concise and suitable for its purpose, based

on the languaga introduced in L5ijkstr~. It has three kinds of primitive

commanc, and five methods of composing commands into larger commands

(programs).

(1) SKI P

The SKIP command is denoted II i execution of this command terminates

successfully, leaving everything unChanged.

(2) ,"ORT

The ABORT command is danoted ~; it places no constraint on the behaviour

or miSbehaviour of the executing mat:hine, which may do anything, or fail to

do anything; in particular, it may fail to terminate. Thus .L. represents

the bahaviour of a broken machine, or a program that has run wild. This is

certainly a repugnant program, but it plays an important role in the theory

and its application. A programmer has a duty not to write a program that

runs wild; in order to prove absence of this error, one nEeds a mathamatical

theory that includes its presence.

(3) Assignment

Let x be a list of distinct variables I and let [be e list of the same

number of expressions. The assignment

x;=[

is executed by evaluating all the expressions of E (with all variables

taking their most recently assigned values) and then assi gning the value

or each expression to the variable at the same position ifl the list x.

This is known as multiple or simultaneous assignment. We assume that

•
•

m

•
~

ro
."

0
c

•0	
~

0

~

D
	

1;-
~

"

L
~

"'

3
c	

ro
;;

~

ro	
." "

0 •
." "

--I<
-

0
•

T
I

L •
~

L

~
~

T

I
~

L

0	
~

"

~

0
~

	
11

c
~

~

E

~

0
•

~

C •
~

0

--v
-	

0
•

~

."
~

0 •

0
0	

0
0

U •
~

•E

E

;:;

T
I

.::.
0

L

•
0

;.
~

~

0

0
T

I
~

	
x

..
c

~
	

0
0

0
C

~

0

0
ro

•
•

~

"
"	

~

0
0

~
~

•
•	

0
."

..
~

0

0
0

0
C

	
~

~

~

0
~

•

~

0
0

~

., •
,;	

•
.,

.,
~

•	

."
."

0
."

0
~

0

n
L	

ro
~

~

0
~

•	

ro
ro

X

3
~

0

L
•

ro •
."

c
~

	
,

3
•

C

~

E

" ro
•0

L
E

ro

~

.::.
•

;:;
•

."
.~

m

0	
0

ro
ro

•
0

."
C

	
L

~

..
~•

0 0	

~

N

~

.,
•

., •
~

."
•

•	
3

~
~

T

I
~

~

C

0
ro	

~

C

~

0
C

C

	
•

0
C

L

0
C

•0

T
I

.,
E

E

0
..

ro
ro

L •	 ..
.,

.,
0

T
I

."
,;

0
ro

0
.,

."
0

L
•

0	
•

."
E

" 0

~

0
L

•
U

~

T

I
L

X

~

0
~

~

0
0

0
0

3
0"

" 0
0

C

U

0
0

U

0
L

•	
•

"
."

~
~

3

~
~

.,	

·
T

I
X

	
0

ro
c

0
~

0

0	
0

" 0
ro

E
.,

C

~

x
u

0 "
0

T
I

C

C
x

~

ro
a

ro
ro

0
0	

0
0

;:	
3

"
•

0
0

0	
0

~

0
0

~
~

" ~

c
5';.

.':
•

•
•

~

L • ,
~

T

I
0

U

T
I

ro
0	

0
I

."
•

c
"

0	
0

~

, ro
."

-
I
r

3ro
•

0
~

0

~
~

ro

u
., T

I
X

."

~

" 0
c

rn
0

n
~

."

T
I

~

0
~

~

•	
.....,..

0
"

•
~

0	

0
~

L

•	
ro

c
c.o

•u
•c

0
E

ro"	

•c
~

~

0
."ro

.,
~

• x

•
.,	

c
,

.,
~

.;;
~

•	

•
0

3
., •

E

T
I

., •
." "

~

'"
c

~

"
L 0

00
" 0

L

0
C

."

c
~

0

.::.
u

,
~

L •

" 0
0

~

ro
c0

n
~

"

ro
~

~

• 0
•

." ~
~

•~

c

~•0 0
~

L •
L U

3
~

~
	

0
u

~
~

ro

ro
L •

" 3	
• •

~

." ~
c

~

c
ro

."
~l

L •
~

~

c
ro

0
0

.::.
0

~
	

~

•
T

I
0

.,	
•

,
E

:;j

C

u•
•

D•
."ro

~

c
~

c
~

0
0

., C

" 0
0

0
~

~

c
0

ro
~

~

L
~

0

0
x

•
~

x

•
."

•
•

.;
." •

,
.;

0:
c

u
ro

0
0	

0
0

•
•

E
0

" ro
E

u
.,

.,
E

•
0

ro
0

~
~

L

ro
0

ro
0

~•
ro

•
~

., ~

~
~ •

ro
"

" 0
E

E

~

D

Q
	

~
~

Q

U

	
x

c
E

0
D

0

,
E

~

•

E
"

"
W

~

U

."

•
" ~

."
0

w
•

.,•
0	

ro
~

.,

0
" 0

0
., •

" 0
,

c
!\

"
.,•

0
0

~
~

L

u
ro

L
u	

0
c

0
c

0
0

~
•

ro"	
c

L
~

" 0

~

"0
., •

~

u
ro

L
,

" 0
T

I
,

0
,

0
."

~

~
~

~

ro
0

~
~

E

"
0

0
ro

0
c

0
~

~

ro
c

0
11

T
I

~
•

ro"
" ro

0	
0

0
~

" 0

~

ro
•

•
•

~
~

" ro

;;
."

"•	
•

0
~

" ro

."
L

0
C

•
~

•	

" 0
~

c

0"
~

,;-

" 0
~
j

0
•

0
L

., 0
C

C

~
~

0

~

a
0

~

L
C

T

I
n

~

0
0	

ro
.;

0
0

"
~

ro

."TI
E

~

U

0

I
~

" 0

•
,

"0
."

~
~

IT

T

I
C

., C

C

T

I
•

0
c

."
C

T

I
C

E

c

.,
•

~
	

"
c

•
•

c
.,

0
c

0
., 0

, •
•

0
c

,
E

.,

u
ro

0
0

m

ro
~

E

U

~

0

z
ro

ro
0

0
E

0
0

~

ro
T

I
•

•	
"

•
"

x
,

•
•

•0
0

••u
0

0
"

0
ro

L
••

0
0

~
~

•

0
~

ro

~
~

0

~

•
0

•
~

0	

" 0
ro

"	
"

"
~

	
L

x
,

~

0
•x

;;;
0

0
x

~

•x
~

•

0
, •

0	
ro

" ro
•

::-
0

0
~

ro

."·
c

3
0

.:::.
~

•

" 0·
~

5.

(7) Iteration

If P is a program and b is a Boolean expression, then (b*P) is a program.

It is executed by first evaluating bj if b is false, Bxecution

terminates successfully and nothing is changed. But if b is true, the

machine proceeds to execute P;(b.P). A mare conventional notation for

iteration is

while b do P
~ -

(8) Recursion

Let X be the name of a recUl'sively defined program, and let rex)

(containing occurrences of the name X) be a program defining its behaViour.

Then ,"x.r{x) is the program which behaves lIke rC,px.r(X))j i.e. all

recursive occurrences of the program name hava been replaced by the whole

recursive program. Of course, iteration is only a special case of

recursion

b*P = V.(p;X) {bt Il

Iterationissi!IJfJ1er and mDre familiar than general recursion, and so it is

worth treating seperately.

:Is an exarrple of the use I:lf these nDtations, here is a program which

computes the quotient q and remeinder r of division of non-negative x

by positive y. [t offers a choice of methods, one of whicrl terminates
when y = 0

q,r := O,x i r ~y*q,r := q+',f-y

U(q,r := x ... Y. x ~ y){.y # ot q:=O

This example illustrates a suggested order of precedence for program

combinators

binds tightest

:'"

•

fbt

U bi nds loosest

Normal arithmetic operators bind tightsst of all. But for the benefit

of a readar it is k~nder to insert at least some of the brackets, For

example

(q.r :'" D,x ; (r.a:y * (q,r := q+1, r-y)))

u«q,r := x -:- y. x rem. y) {y r- o*' q :"" 0)

The notations of our language can be deFined in terms of [.W. Dijkstra's

language of guarded commands

puo = l! true ~p atrue ~ 0 U

pi b to = b ---? p ab' -:,. 0 !i
J!.
",here

~
b is the negation of b

b • P ~ b ~p ad

Conversely guarded commands can be dafined in terms of the notations given

above, for example

if b----}opDc-:"QFi ((PUQ)4ctp){bt(Q{ct .>0)

~ b-7 p Dc-7 Qod (b_c)* (±!b~POc~QW

Thus our language is eFFectively the same as Dijkstra' Sj the only

reason For the slight change of notation is to replace the polyadic

notation of "guarded commancs"by binary inFix notations, which greatly

simpliFy the Formulation of algebraic laws.

1.2 Summary

The laws to be given in this paper apply not only to concrete programs,

expressed in the notations of the programming language described in

seetlOn 1.1; most of them apply also to program specifications, which

can be expressed in a considerably wider range of more powerFul notations.

Additional laws are given to assist in the stepwise development of designs

From specifications and programs from designs. In Fact, we shall study

a series of Four classes of object, where each class includes its

predecessor in the series, and obeys all or almost all the same laws.

(1) Finite programs are expressible in the notations of the

programming language, but excluding iteration and recursion. Laws For

finite programs are given in section 2. They are suff iciently powerful

to permit every finite program to be reduced to a simple normal form.

The deFinition of equality between normal forms extends in this way to all

finite programs.

(2) Concrete pro£rams are expressible in the Full programming

language, inclUding recursion.

(3) Abstract programs are expressad by means of programming

notations plus an additional operator for denotin£ a limit of a convergent

set of consistent programs. The relevant concepts and laws are those of

domain theory, and they are explained in section 3.

9.

Objects in the first three classes are called programs, and they

all satisfy all the laws of programming given in sections 2 and 3.

(4) The remaining class is that of specifications. This is the

most general class, because there is no restriction on the notations in

which they may be expressed. I~ny well-defined operator of mathematics

or logic may be freely used, including even negation. The laws which

apply to specificatiDns are useful in the step\IJise develOpment of

designs and programs to mest their specifications. The price of the

greater notational freedom of expression of specifications is that it :5

possible (<Jnd easy} to write specifications whi[;h cannot be satisFied by

enyorOgram.

The distinction between these classes may seem complicated; but i.n

fact it is as simple as familiar distinctions made between different

classes of number.

(1) Finite programs can be likened to rational numbers. Algebraic

laws permit all arithmetic expressions to be reduced to a ratio of co-~rime

integers, whose equality mey be easily established.

(2) Concrete programs are like algebraic real numbers, which are

definable within a restricted notational framework (as aolutions of

polynomial equations). They constitute a denumerable set.

(3) Abstract programs are like real numbers; they enjoy the

property that convergent sequences have a limit. For many purpoees (e.g.

calcUlus) real numbers are far more convenient to reason with than

algebraic ~umbers. T~ey form a non-denumerable set.

(4) Specifications may be likened to complex numbers, for which

more operators (e.g. square root) are total functions. The acceptance

10.

of imaQinary numbers may be diffIcult at first, because they cannot be

represented in the one-dimensional real COntinuum; nevertheless it

pays to use them in deFinItion, calculation and prooF, even when

the eventual anSwers must be real. In the same way, specifications are

useful (even necessary) in requirements analysis and program development,

even though they will never be executed by computer.

1.3 Examples

This paper shows many examples of the practical use of the quoted

laws; these B)(smples OCCur only in the proof of other laws.

1 t mIght seem preferable to report a case study in which the laws

had been used to assist in the development of a correct program of

substantial sIze. Unfortunately this is not possible: the tas~ of writing

a substantial program requires muc h deeper mathematics t han the elementary

algebra presented in this paper. You would not expect to illustrate the

laws of arithmetic by a case study in the design af a bridge. Like the

laws of arithmetic the laws of programming are braad and shallow: li~e

the grammatical laws of a foreign language! learn tham, learn to use them

without thinking, and then forget them.

11.

2. Algebraic laws

In this section we shall 9ive about thirty algebraic laws relatil1g

to finite programs, i.e., programs that do not contain iterations or

recursions, which wi 11 be treated in section 3. The laws arp. sufficiEntly

powerful to permit every finite program to be reduceo to a simple normal

form, which can be used to test whether any two such programs are equal.

\;Ie shall adopt the following conventiQns for the range of variables

P ,J ,R stii':lnd for programs

b,C,d stand for 800lean expressions

e, f, g stand for single expressions

E,r,G stand for lists of expressions

):.,y,z stand for lists of variables, Lo'here no variable

appears more than once in the combinad list x,y,z

furthermore, x is the same length as E, y the same length as r, and

z the same length as G.

2.1 Nondeterminism

Tha laws gove rning nondeterministic choice apply to all kinds of

choice.

(1) Clearly, it does not make any difference in what order such a

choice is offered: "milk or cream?" is tha same as "cream or milk?"

Puc Q vP symmetry

1 2.

(2) A choice between three alternatives (milk, cream. or brandy)

can be offered as first a choice between one alternative and the

other two, followed (if necessary) by a choice between the other two;

and it does not matter in whiCh way the choices are grouped

Pu(QVR) (p u..J) u R associativity

(3) A choice between one thing and itself (Hobson's choice) offers

no choice at all

PVP P idempatence

(4) The abort commano already allows completely arbitrary

behaviour, so an offer of further choice makes no difference to it

-'- V P ... zero .J,.

This lew is sometimes known as Sod I s law;* the left hand side describes

a machine that ~ go wrong (or can behave like p); the right hand side

might be taken to describe a machine that will go wrong. But the true

meaning of the law is actually worS8 than this: the machine will not

always go wrong - only when it is most disastrous for it to do sol

The abundance of empirical evidence for law (4) suggests that it should

be taken as the first law of computer programming ~urphJi7.

Choice between n alternatives can be expressed more briefly

by the indexed notation

U Pi PouP1 V ••• V P

i ~ n

n

This is purely a convenient abbreviation, and is not needed in a

programming language.

* 50d 1 s law statss "If it can go wron~ it will".

2.2 Conditional

For each given Boolean expression b the choice operator fb ~

specifies a choice betwean two alternatives writtan on each side of it.

The first two laws express most clearly the criterion for making this

choice, i.e., the truth or falsity of b

(1) P {""to. P

(2) pff,'se:tO • 0

Like V, the conditional is idempotent and associative

(,) pibtp ~ P
(4) P10+(0 fotR) (pfbtU)fbt R

Furthermora, it satisfies the less familiar lalils

(5) Pfoto ofti t P

where t1 is the negation of b

(6) P-10 fbt dt, (PfO+O){b+ (p1dtO)

where c,b> d is a conditional expression, giving value c if b is trUE!

and d if b is false

(7) Pfbf(Ofof R) P.fb+ R

Trese laws may be checked by considering the tlilO cases when b is trUE!

and when it is false. For example, law (7) states that the middle

oparand (J is not selected in either case.

Suppose OMe of the operands of a conditional offers a nondeterministic

choice betlileen P and O. Then it does not matter whether this choice ie

made before evaluation of the conditional, or afterwards, since the value

of the condition is not affected by the choice

(B) (PuO) 101R (P1 b t R)V(Qf b t R)

From this can be deduced a similar law for the right operand of1bt

14.

(9) Rtbt(PuJ) (Rt bP)U(Rt b 1-")

Proof LHS (p VJ) ttitR (prt:tR)V(J~ti+R) RhS

An operator that distributes like this through LJ is sale to be disjunctive.

Any operatioM that does not change ths value of the Boolean

expression b will distribute throuc:;h fbt. ,~n example is nonoeterminstic

choice. I t does not matter l..'hether the choice is exerciseo before or

after evaluation of b

(10) (P{b:tU)vR (PUR)tbt(UUR)

For the same reason, a conditional+cf distributes through another

conditional with a possibly different condition fbt.

(11) (P{b:tJ) *etR (PtefR)tb} (J -I.e}R)

Using these laws we can prove the theorem

(12) (ptetR)1bt(Ufd:tR) = (p.fbiuH.c1btdtR

P'cof RHS =«P{btuJ{etRJ{bt «PtbtJ)-td}R) by (6)

=«p+etRHbt(;1etR)){bt«P1d~R)1bt(;1diR))by (")

"" LHS by (7) and (L

2.3 Sequential Composition

(1) Sequential composition is 2ssccictiv8; to perForm three actions in

order, you can either perforl17 the first action followed by the other two

or the first two actions followed oy the third

P; (I];R) (p iJ);R associativity

15.

(2) To precede or fallow a program P by the command II which changes

nothing does not change the effect of the program P

(II jP) (p; II) unit 11"
(3) To precede Dr Follow a program P by the cDmmand ..L (which may do

anything whatsoever) results in a program that may do anything what3D8ver

it may even Dehave like p~

(.LjO) (p; J.) .L zero ..l-

The lew P; ..L "".l. states that we are not able to observe anything

that P d083 before P;..L reaches.l.. This law will not be true for a

language in which p can interact with its enlJironment, For example by input

and output.

(Il) A machine which selects between P and Q and then performs R when the

selected alternatllJE! terminates cannot be distinguished From one which

initially selects whether to perform P followed by R or Q followed by R.

(PuQ);R (PiR) U (QiR)

For the same reason, composition distributes rightward through u

Ri (P u ll) (RiP) U (fiiQ)

In summary. sequential composition is a disjunctiv8 operator.

(5) Evaluation of a condition is not affected by what happens afterwards.

so : distributes leftward through a CDnditiona1

IPfb}J);R Ip;R) ~bt C"R)

However does not distribute rightward through a conditional, so

in general it is not true that

R;IP{bt J) CROP) tbtCR;J)

Gn the left hdnd side b is evaluated after executing R, whereas

16.

an the right hand side it isevaluated beforeR; and in general, prior

execution of R can change the value of b.

2.G Assignment

It is a law of mathematics ':.hat the value of en expression is

unchanged when the variables it contains are replaced by their values.

If E(x) is a list of expressions, and F is a list of the values of the

variables x, than E(r) is a copy of in which every occurrence of each

variable of x is replaced by a copy of the expression occupying the

same position in the list r.

(1) This convention is used in the first law of assignment, which

permits merging of two succe55ive assignments to the same variables

(X:=E i x:=F(x)) (X:=F(E))

(2) The second law states that the assignment of the value of a variable

back to itself does not change anything

(x:=x) =	 II

(3) In fact such a vacuous assignment can bl? added to any other

assignment	 without changing its effect (raCE-II x and yare disjoint)

(x,y := E,y) (x ,= E)

(4) finally, the lists of variables and expressions may be sl..t:Jjected

to the same permutation Without changin~ the effect of the assignment

(x,y,z: :=	 [,f,G) '" (y,x,z: := F.E,G)

cordlary:	 (x.y == (y,x:= F.E):= [.n

17

These four laws togethBr are sufficient to reduce any sequen~a of

assignments to a single assignment. For example

x,y := F ,G ; y,z := H(x,y). J(x,y)

x,y,z := F ,G,z ; x,y,Z := X,H(X,y), J(x,y) by (3) (4)

x,y,z := F.H(F,G),J(r,G) by (1)

(5) Assignment distributes rightward through a conditional, changing

occurrences of the assigned variables in the condition

x,=E ; (p {b(x)ie) (x ,= E ; P)1b(E) ~ (x ,= E ; U)

(6) A conditional joining two assignments (to the same variables) may be

replaced by a single assignment of a conditional expression to the sarle

variables

(x ,= Etb~X ,= F) (x ,= (et'} F))

(7) The conditional distributes down to the individual components of a

list of expreSSions

(e,E) fb~ (f.F) (e{blfl,(Ef"}n

(6) Using these laws, we can eliminate conditionals from sequences of

assignments by driving them into the expressions. For example

x := E ; (x := F(x) -fb(x)f x := G(x))

x := (F(E) f"(E)~ G(E))

The following theorem will also be useful in reduction to normal forms

(9) (x " Efb::f.l.)'«x ,= F(x)){C(xlt ...) (x ,= F(E))fc(E)1"t f'bet ...

Pcoof LHS =(x " E ;l(x ,= ,(x)fc(x)}.l.)

t"t(-1-;(x ,= F(x)1'c(xl1'.l.))} 2,3 (5)

(x '~F(E)fc(E)j>.l.)f-b.j>.l. (5),(1),2.3(3)

RHS 2,2(6), 2,2(2)

18.

2.5 Undefined expressions

If the notations of the prograrMling language incluce expressions

which may be undefined for some lIalues of th8ir operands, then some

of lre laws quoted above need to be slightly weakened.. l.Je assume that

the language is sufficiently powerful that it is always possible to test

in advance whether evaluation of an expression is going to fail, and

that this test itself never fails. Thus for every list of expressions E

•there is a Boolean expression :i)E which gives the answer true in just

those circumstances that eveluation of E would be successful. ThuS, for

example

1J true J)False '" true

:l)(E+F) :IJE ,DF

J)(E/F) JjE .1)F , F t a

.l) (E tb-j. F) J)b .(a {biDF)

J)1JE true

NO\oI we stipulate that the effect of attempting to evaluate an

expression outside its domain is wholly arbitrary, so

(1) x	 := E =(.,=E1J1 q..l.)

(2) P1 b t o (P1b}O)fJlbt .1.

(3) P 1b~..l. P1b 1.2lb~ Fal"f .1.

In view	 of this, the following laws need alteration

(4) Pfbtp = piJ)bt..l.	 ,ee 2.2(3)

(5) (PfbtO)f'tR = «(P1,-j.R)fbt (Of'+R»)f3bt(.1.1,tR) ,ee 2.2(11

(6) (, ,= E ; ,,= F(') = (, ,= F(E) 1J:lE +..l.) ,ee 2.4(1)

(7)	 ,,= E I (x ,= F(X)tb(')1-' ,= 0('))

, ,= (F(E)fb(E);}G(E))f..llE}.J.. '" 2.4 (8)

* ~ is not assumed to bs a notatIon of the programmIng language.

Reasoning with unoEfineo expressions can be complicated and needs

some care. But there are 5150 some rel.Jards. For example, the fact

that the minimum of an empty sat is undefined permits axceptionally simple

formul .. tion of Oijkstra 1 s linear search theorem L5ijkstra P. 105-10g.

(8) (i : = 0; (B(i) * i : == i + 1)) (i :== min [ilb(i)"i~O})

2.6 Normal form

To illustrate the power of the laws givan so far, we can use them

to reduce every finite program of our language to a simple normal forr.!.

A finite program is a program which does not contain iteration or recursion.

Tn normal form a program looks like

E.)ht .L(i~n x := , ,

where b ==> .l)E for all i ~n.
i

uJithout loss of generality, \i,le can e,1sure that in this context

J)b == true

by raplacing b if necessary by

i b fJ)b ~ fal" > (see 2.5(3))

r, notable feature of the normal form is that the sequential composition

op8rator does not appear in it.

To sho\i,l how to reduce a program to normal form, it is sufficie,'1t to

show how each primitive command can be written in normal form and hou Bach

operator, \i,lhen appliEd to operands in normal form, yialds a result

expressibla in normal form. In section 2.4 we have shown how all

20.

assignments of a program can be adapted so that they a 11 have the same

list of	 variables on the leFt; so we can assume this has already bean

done.

(1) SKip

II =«x ,= x)+trce}.1.) 2.4(2) 2.2(1)

(2) Abort

.J.. == (J(:= x {false} ..L..) 2.2(2)

(3)	 Assignment

Ix ,= E) = (x ,= E {.:JE~.1.) 2.S(1)

(4)	 Nondeterminism

(Pfb:}.1-)	 U (0 {ct.1.)

(p u(O tct .1.)) fbi (.1. u(a tC t .J..)) 2.2(1)

(PuO) tct(P U.J..))tbt 2.2 (10) 2.1 (4)

«PUO)+C:j..1.)+b~ .1- 2.1(4)

(p UQ) fC fb *""e:j. .1- 2.2(6), 2.2(2)

Here, Pend Q stand for lists of assignments separated by U , so P vO is

just the uniOn of these two lists. The condition f c ib ~ false} is

equivalent to (c I\b). Since the operands arB normal forms, this is

everylLlhere defined and it implies that all expressions in P uQ ara also

defined.

(5)	 Conditional

(pi cj-.1-) t bi (0 {d t ...) (Pfb:j.Q){cfb} d:}-' 2.2(12)

If u x ,= E, and Q u x ,= F
i,n	 j" m j

then U U(. ,= E. fb:j.X ,= F)	 2.2(0)P fbt 0	 =
i"'nj,m ~ J

U U x ,= (E.f.b{F) 2.4(6)
i,njfm ~ J

Since l: ~ J) E. and d ~ dJr . it follo.:s that
, J

o tbt d ~ }J(Ei 4otFj) for all i and j

Thus the RHS of (5) is reducible to normal form.

(6) Sequ2ntial Composition

u x ,= E.)lb}'>'); ((U x ,= F(X))tO(x)t.!.)
ii: n ~ T j:!m J

can be r2duced (by distribution through u) to

u .U(x ,= E·t O}.!.); (x ,= F.(x)lc(x)t .!.))
i ~n J ~m ~ J T

U(x := F/E i) ~C(Ei H.b ~ False *' ...) by 2.4(9)i~n j !:m

No~ the method described in (4) above can be used to distribute the unions

into the conditional obtaining

U .LJ x := F .(E.))4(1\ o(E.)) J o~ False)~.>.
J ~ i~n ~ "t~ En H·m

~here the conjunction notetion /\ can b2 defined by induction

;\ c o
i o

i " a

1\ c. ("c.).f.c 1 false,t\ ~ n+1fH,n+l ~ ~~n

That completes the proof troat all fir'l'..L programs are reducible.

The importance of normal forms is that they provide a complete test

whether two finite programs are squalor unequal. nle t~o programs are

first reduced to normal formj if the normal forms are equal, so are the

programSj otherwise they are unequal.

Two normal forms (Ij x := oed (U x := Fjlfot.1.'ilfb1'.>.
i ~n jSm

are equal if and only if

b = c

and [vtot.>.I.:li~n. v = E,} = Hot.!.l:!j ~m. = Fj }W

where these equations must hold for all values of the variables contained in

the axpressians b, c, E and Fj.
i

22.

3. Domain properties

In trls section we introduce iteration and recursion, using the methods

of§cotY.

3.1 The [rcerin~ relation

As a prelimary we shell explore the properties of an ordering

relation 2. between proQrams.

DeFinition. P2Q ~ PuW p

This means that J is a more deterministic prOt;;ram than r-. Everything

thet Q can do, P may also do; and everything thet Q can fail to dO,

r may also Fail to do. 50 LJ is in all respects a more predictable

program and more controllable than p. In any circumstance where P

reliably serves some useful purpose. P may be replaced by U, in the

certainty that it will serve the same purpose. aut not vice-versa:

there may Je some purposes for which IJ is adequate, but For which P,

owing to lts greater nondeterminism, cannot be relied upon. Thl..Js P 20

means that For any purpose Q is better than r. or at least as good. In

future, l.IJe will use the comparative "better" by itselF, on the understanding

that it me3ns "better or at laast as good".

The Elation 2 is not a total ordering en programs, because it

is not trua For all p and cJ that P ~ U or 0 3 P; P may be better than Q

for some purposes and Q may be better than P For others. However, 2

is a partial order, in that it satisFies the FollOWing law9

(1) :J ? p (reF lexivi ty)

(2) P21..J"'..J2P~ P=I) (anti syrff11E'try)

(3) P2LJ "'Ll2H ::::::::;. P ~ R (transitivity)

These laws can be proved directly From the deFinition, together with

the laws for II

Proof (1) ~ = PuP	 (ioempotence of U)

(2) (~vO = p) (~up = J)==1o P = 1.I (symmetry of v)

(3) (~" 0 = P) U:i uH = ,J) (antecedent)

~	 PuR = (PuJ)uR (fi rst antecedent)

I-' u (..J \J C1) (associativity lJ)

PvJ (second antecedent)

P (tirst antecedent)

ThB aoort command .L. is the most nondeterministic of all programs,

the least predictaole, the least controllable; and in short. For all

purposes, it is the worst

(L.i) .l.. 2	 P

~roof -LlJP"" .1.

The machine that behaves either like P or like Q is in general worse

than both of them

(5) (PvJ) 2	 P A (p UQ) 2Q

Proof	 (p UL<)vP PV(JIJ~) (2ssociativity)

P u(PUQ)	 (symrr,etrYJ

(Pup)v~	 (associativity)

P \J J	 (ioe,;,ootel'cE')

In fact PuLl is the best program that has this property.. Any program R

which is orse than both P and U is also worse than P UQ, and vice-versa

(6) R='(Pv~) (ri:=!:p" R2';)

Proof	 LH5 ::::::::::::> R2P 8Y transLtivity from (5)

LHS ~ Ri2,W similarly

RH5 :::::::><RlJP = fl)"{r~\JJ = R) definition of '2

~ (RuP)U(RlJ";) = R\JR adoing the equations

==>R u(P\Jc.') R	 properties of u

~Lh'S	 definitIon of 2.

24.

If ~ '?oJ I this means that J is in all circumstances better than (or

at least as good as) P. It follo~s that wherever P appears within a

larger pro£ram, it can be replaced by ll. and the only consequence will

be to improve the larger program (or at least to leave it unChanged).

For example

(7) If P::?::) then P \.J H 2 Q iJ R

" (~;i1) ~ (C;;R)

" (R;P)~(R;iJ)

A (Ptot R) '" (Qib:j>R)

,(Rfo}P)"?(R1 b }Q)

"(b * P)2(b'* lJ)

In summary, the law quoted above states that all the operators of our

small programming language are monotonic, in the sense that they preserve

the '2 ordering of their operands. In fact, every operation that

distributes through U is also monotonic,

Theorem. If F ia any function from programs to programs,and For all

programs P and Q r(PUQ) = r(p)vr(iJ) then f is monotonic

Proof ~ ~:) .",..,.,. p v J = P defini tion '2.

~ F(PU J) = F(P) property of

F(P) u F(O) distrib f

==9 F(p)., F"I) defini tion ~

One lr:lportant fact about manotonicity is that every function oefined

from composition of monotonic functions is also monotonic. Since all the

operators of our programming language are monotonic, every program composed

by means 0: these operators is monotonic in each of its components. Thus

if any component is replaced by a possibly b8tter one, the effect can only

be to improve the program as a ",hole. If ttle new program is also more

efficient than the old, the benefits are increased.

:3.2 l.east upper bounds

'uJe have seen that p V,) is the best program ~ than both P and Q.

SuppoSe now that we want 2 program better than bott'"l P and J. In general,

there will be no such pragram. Consider the twa assignments

x : == acd x :== 2.

These programs are incompatible, and there is na program better for all

purposes than both. If you want x to be 1. the second will be no gOOd;

whereas if you want it to be 2, the first program will be totally

unsuitaole.

Let us now consider two nondeterministic programs

p == (x :== 1 v x :== 2 v x :== :3)

,) == (x :== 2 u x :== :3 \J x :== 4)

In this case there exists a program which is bstter than both, namely

x :== 2

In fact there exists a worst program that is better than thBm both; ano

we will denote this by p" Q

P" q (x :== 2 u x :== :3)

Two programs P and ~ arlO said to be compatible if they have a common

improvement; and then their worst common improvement is denoted P "0.
This fact is summarised in the law

(1) (P2R) " (; ?H) == (p" CI)2R

Corollary P :?,(p" J)" ~"J ~(Pnt.l) J. 1 (1)

26.

Tr,e Deerator f'I, ,,"herever it is d~fineG, is idempotent, symmetric

and associ2tive, and has unit ..L... 'Lrthermore (\ and tb t oistrlbute

through each other.

(2) PnP P

(:3) Pn::J '" wnP

(11) P n(~I\R) (P"Q)"R

(5) ..L.. "f" '" P

(6) pU(J n',,) (p vJ
1

) (\ (p U(.J2)	 provided that 0, and ~Z are,

competible

(7) (PnQ1)U(P"IJZ) P 11(L.J U 4)	 provided that P and t.J arB1 2 1
compatible, and P and l.J~ are

•
are compatible

(6)	 (o,n ',)tD}" (cJ1,fb~~),.,,(j2'fbfR) provided that 01 and LJ 2 are

compatible

In thE Following laws we abbrevi~te ux ,= E. by ,,~ (E i I ' " J
l*n .I. (J

Then we ha~e

(9) x:= E and x := F are compatible iff

1JE"9Jr~E=F.

FurthermorE in this case llJe have

(x '=C) f1 (x ,= F) = (x ,= E+1)Etx ,= F)

(10) x:e. [E 1i ~n} dnd x:€ fj)j ~ mJ are compatible ifF
i

!\J1' A I\JJF ==>;> (£Ei\i~ 01n {Fj\j ~c1 t ¢).
i~, .1 j ~ m J

("lore over in this case

("" L'i)i,O}) n ("<fJ\Hm}) = "E(£EJi$o}n {Fjlj~mHi~JJEi·l~;.2JFjt

(x,<[Eli~o))1 V J)r ~ (x,e:.[FIHm})).
1 "J~m J J

(11) Assume that b =9 J}r: and c ~:J)r. Then (x :::0 E)tbl.L and

(x :=' r)..fc::t..L. are compc,tible iff

(b A 0) =9 It.c) n fr} f ¢I.

In this case

II' '0 c) {boj. '-I (\ (I, '0 n+of.>.) (,,= Eofb" tl"=E!'tl"= FfOi.1.))

(12) In general if P = ()(:E[Ei\i~n\)ft::t.L ano Ci (x:€.[rj\~~~})~c~.!..

they are compatible iff

Ib .0) =9 IlE i!i, n} (\ iF j 1; Em) f ¢)

and in tr.is case

C, Q = l"Elt.Eili,n}" [Fj\hm}))tb,,}I("Et';!i.n}l{bt

(("'{F jl j ~ mIl }'+.I..) I

The ('j operator' gener'alises to ~ny fini La set of compatible programs

S = (PoJ ••••• Tl
Provided that there exists a program better than all of them, the laast

such program is denoteo ns

('Is -= PI'I..<,. ... "T provided 3R P~fJ U2R T:JR

It fol10",s t.hat

(13 I ('riP .. 5. P2R) nS:?R provided ()S is defined.

This rna; ell? proveo ~rom laLoi (1) by induction on the size of the set S.

28.

If P OInd ~ are compatible finite progr<:lJ"lS, then P 1"\':; can also be

expressed as a finite prcgr<lr.J; indeed it can lee reduced to narl'1~l form

oy use of the rules given above.

It is important to recognise that f'I is not a combinator of our

programrnirg language, and that r:: ('I..., is not strictly a program, even

if r ,Elnd '~ are compatible programs. For example, let P be a program

which assi;\ns an arbitrary ascending sequance of numbers to an array,

and let U be a program wrich subjects the array to an arbitrary permu

tation. Then P 1'\ J would be a program that satisfies both these

specifications, and consequently it Would sort the array into ascending

order. unfortunately, programmir19 is not so 1;l8sy. As in other branches

of engineering, it is not generally possible to make many different

aesigns, ~ach satisfying one requirement of a specification, and then

just merge tham into a single product satisfying all requirements.

On the contrary, the engineer has to satisfy all requirements in a

single design; and this is the main reason why designs and programs

get complicated.

But ro such problems arise with pure specifications, which may be

freely connected by the humble conjunction "and". So p/,\ Ll may be

regarded as an abstract program, or specification of a program, that

accomplishes whatever r accomplishes and Whatever ,J accomplishes, and

doesn't fail except when both P and ,"j would fail. Pn:::) (if it exists)

specifie~ a proguH:' which is for all purposes better than both f' and J.

3.3 Limits

Now suppDse So is a non-empty (possibly infinite; set, and for every pair of its

members S act ually contains a member Detter than both. Such a set

is said to be directed.

Cefinition. S is cirected means

\' ,. [1)'" \lP,L:.'t'.S. 3R"S. P~,R,,~j?R

[xamples of directed sets are

a set with only one memberl!'1
{',PvC} sinc" Pu[J;?P aM P u t.:I '2: p u I)

where P::!R",CJ:;?R{P,r:J.R}

If S is finite and directed, then clearly it contains a member which is

better tha" all the other members. and we haue

nS is defined

and IE.n!ii S

If S is directed but infinite, then it does not necessarily contain

a best member. Nevertheless. the set has a limit 11 S which as bafore

is the worst program better than all mambers of $. The set S is like a

convergent series of numbers. which tends to a limit which is nat a

member of tlie series. By selecting membaI's of the set it

is possible to apprOXimate erbilrarily close to its limit.

D,'18 interesting property of the limit of a directed set of programs

is that it is preserveD Dy all tre operators of our ~rogrammin; langua~e;

such operatD~s are therefore said to be continuous.

30.

(1) (1'\'1,0 = 1'1 (p, °Ip• ')
(2) (n'l{bt o = nfpfbtOJp"}
(3) (1'1'1,0 = l'I{p;q Ip«)
(4) o;(n,) = I'ILo;p Ip.,}
(5) b*(n,) = n tb*P Ip• ')

It is a fact about continuity that any composition of

continuous functions is also continuous. Let X stand for a program

and let f(X) be a program constructed solely by means of continuous

operators, and possibly containing occurrences of X. If S is directed,

it folloiIJ5 that

(6) F(n,) (\~(X) IX <s}

3.4 Iter~tion and recursion

Given a program P and a Boolean expression b we can de Fine by

induction an infinite Bet

{onl no,o}

where J ...

o

for all n~O(P,Qn) fbr II~n+1

from these definitions, it is clear that lJ is a program that behaves
n

like (b*r::} up to n iterations of the body P, but on the nth iteration

breaks, and can do anything (...L). Clearly therefore

For all nI n "2 "'n+1

(wnich can be proved formally by induction). Consequently, the set

f..lnln :?:.O} is directed; and by taking n large enough we can approximate

arbitrarily closely to the behaviour of the lOOp(b"'q. The loop itself

can be deFined as the limit of all its approximations

(1) b*P (\[Q"I"~D)

The same technique can be used to define a more genFOlral form of

recursion. Let X stand for the name of the recursive program which we

wish to oonstruct, and let r(x) define the intended behaviour cF the

program. 'within r(x), aach occurrence of X stands for e call Or! the

whole recursive program again. As before, we cen construot a series of

approximations to the behaviour of the recursive program

r
Q

(!.) "" ..L

F"+1 (0) = F(r"(u)) for all n ~O

Fn(J.) behaves correctly provided that the recursion depth does not

exceed n. 8ecause F is monotonic, and rO(J.) ~F 1 (..I.). it follows that

f1 n 1 r (.I.) ~ r + (..I.) For all n

Consequently {Fn(..L) I n ~ o} is a directed set, and we define the recursive

program (denoted by ~x.r(x)) as its limit

(2) pX.F(X) n[c"(~) I" >01
In accordance with the explanation given ebove, iteration is a special

case of recu rsion

(3) b*P }'X. (P,X)i-bt"

The most important Fact about a recursively defined program is

that each of thli recursive calls is equal to the whole progra'11 again.

or more Formally that fX, r(x) is a solution of the equation

x = Fix)

32.

Tris is statBd in thB law

(4) ~X. F(X) F(pX. F(X))

Cocollary b*P = (P;(b'*P)) 1b* II

Proof RHS = r(ntn(..L)ln~o]) by de f i nition of }J

n[F(Fn(~)) In ~o} by continuity of F

n 1
n({Fn+1(~) In>o}u l.L}) dBfini tion of r -t " 3.2(5

l)[rn(.L) In ~o} since FO(.L) =.L.

lHS dafini tion.

In general, there will be more than one solution of the Bquation

x = F(X). IndBed, for the equation X = X, absolutely every program is

a solution. But of all thB solutions, jJx.r(X) is the worst

(5) Y = F(Y) ~ pX.F(X) 2Y

P,oof. (y=F(Y))~ (.L~y),(Y=F(Y))

~ (F("') 2 F(Y)) , (Y = F(Y)) F monotonic

~ (F(-'-)"Y)

By ir,ductlon it follows that for any n ~o

Y = F(Y) ~ F(n)(~) "F(n)(y) A Y = F(n'ry)

....; F(n)(~)? Y

~ (nF(n)(~))" y 3.2(13)

as requirEj.

4. Specifications

",e have alreacy in passing introDuced two important concepts

(1) A specification or abstract program describes the intended behaviour

of a pror;ram, but it is not itself a program because it is expressed in

notations which are not permitted in the programming language

(2) A Concrete program P may be better than en abstract prograr:1 5; so

whenever you want a program that oehaves like 5, the concrete program p

will serve your purpose. In this casa, we cen say thet P setisfies the

specification 5, Dr in symbols

S'2P

Tt is the duty of the programmer, when given a specification ~, to find

a program P which satisfies 5, and to prove that it does so. The practical

purpose of the laws in this paper is to help in this task.

In tr,is section we shall introduce a calculus of specifications to

aid in the development of programs. Specifications do not hilve to be

executeo by machine, so there is no reason to Confine ourselves to the

notations of a particular programming language.. There is no reason to

insist even that all specific1'ltians must be satisfiilble. I\s an extreme

example, we introduce tr.e specification T , wi1ich cannot bp. satisfied

by any program whatsoever.

To accept the risk of askin~ the impossible has as its reward that

the n operator is defined on all specifications: wherever R and ~ arp.

inconsistent, the result of (R n 5) is T. rurthermore, if S is ~ set

of specifications, then

34.

('\5 is the speci fication which requires ill R in S to be satisfied

US is the specification which requires ~ R in 5 to be satlsfied.

The fact that these are limits of the sets is expressed

(1) T 2 \Js = VRt: s. T;?R

(2) nS ~ T " VR.5 R '!T

Specifications ObHy ",ithout qualification all the laws of 3.2.

The 2 orderinr; applies to specifications, just as it dOBS to programs,

but it can be intsrpreted in a new sense. If 5~T. this means that 5

is a more general Dr weaker specification, and easier to meet than T: any

program that satisfies T will serve for 5, but maybe more programs will

satisfy S. Thus ...l- is tha easiest specifiGstion, satisfied by tiny program,

and...,.. is the most difficult (impossible, in fact).

4.1 Weakest prespecification

Abstract programs may be constructed in terms of all the operators

available for concrete programs. For example s;r is a specification

satisfied oy a program that behaves like S; and when that terminates

successfully, it behaves lika T. This fact is extremely useful in the

top-down development of programs (also known as stepwise refinement).

Suppose, for example, that the original task is to construct a program

which meets the specification R. Perhaps we can think of a way to oecompose

this task into two simpler 5ubtasks specified by 5 andT. The correctness

of the decomposition can be proved by showing that

R?S;T

H'is proof should oe completed before embarking on aesign for the subtasks

5 and T. Then similar methods can be used to fine programs I=' and j which

sol\le these subtasks, i.e., such that

S2P

and T :a;..J

It follows immediately from monotonicity of sequ8ntial composition that

P;u is a program that will solve the original task 'el, i.e.?

R'2(P;Li)

Now suppose that il'l approaching the task R we can think of the

sacond of the two subtasks T, aut we do not know the first subtask. It

would be useful simply to calculete S from T and R. uJe ther8fofe define

the weakest pre specification T'R to be speci fication which rrust be met by

the first subprogram 5 in order that the composition (5;T) will accomplish

the original task ,1. This fact is el(pressed in symbols

(1) R~(T""'-R);T

(T"",-R) is a sort of left quotient of R by T; the divisor T can be

cancelled by postmultiplication, and the result will be the same as R or

be Uer.

Here are some el(amples of weakest prespecifications, where x is an

integer variable

(x:= 2 .. l()'\Jx := Il ... y) = (x := 2;0< y)

because (x := 2,,>(y i x := 2>(x) = (x : = Il ... y)

(x := 2;o.x)'(x:= 3) = T

since 3 is Qdo, and ca"not be the result of doublin an integer.c

(x := 2" x)"'-.(x :'" 3 v x := Il) (x ,= 2)

because (x:= 3 \II X := lj) 2' x := Il

= (x := 2; x:= 2 .. x)

The law given above ooes not uniquely define T""-I1. ,r;ut of all the

solutions for X in the inequality

n ;z(X; T)

the solution T'R is the easiest to acr,ieve. Thus if you want to find

such a solution, a necessary and sufficient condition is that the

solution should setisfy T'.~

(2)	 Il 2(X;T) ~ O"-R) 2X

Thus in dEveloping a sequential program to meet specification n.

there is ro loss of generality in taking T \.n as the speel fication of

the left cperand of sequential composition, qiven that T is the

specification of the right operand. That is why it is called the

weekest prespecification.

The specificetion P\.R, where P is a program, plays a role very

similar to Qijkstra's weakest precondition. It satisfies the analogue

of several of his healthiness Conditions.

In the following three laws, P must be a program.

(J) If you want to aCcomplish an impossible task, it is still impossible,

even with the help of P

P\T	 '" T

(4) If y~u want to accCKTlplish twc tasks with the help of P, you must

wri te a ptogram that accomplishes Doth of thiOm simulteneously

P '(P'1	 n H2) ("'R1) n (P'"2)

This	 distributive law extends to limits of arbitrary sets

p,",-lrh) n f'''-R I"O}

37.

(5) Finally, t::cnsider a set of specificatiorlS S {Rili~O} such

that

Ri +1 a. i\

Than p,\(U~) UhRil i~o1

The rollowing laws are very similar to the corresponaing laws for

weakest preconditions

(6) The program II changes nothing. Anything you want to achieve after II

must be achieved before

II'R = R

(7) If you want to achieve R ilIith the aid of P", Q, you must achieve it

with either of them

(PVO)'\R (P\R) n(J'\R)

(8) If you want to achieve R with the aid of (P;U), you must achieVE! (LJ\R)

with the aid of P

(P;O)\R P\(U,\R)

(9) The corresponding law (01 the conditional requiies a new operator on

specifications

(P1b~O)\R = (P'\Rlf".} ",\R)

where 5 fb' ~ T specifies a piogram as follo\lls: if b is true after

execution it has behaved in accordance with specification 5, and if b is

false afterwards, it has behalled in accordanCe with specification T.

Pfb ~ Q is not a program, even if P and tJ are; in fact it may not even

be implementab Ie: !:onsider the example

x := false {:t +x := true

38.

4.2 General invers"

The "'-.. operator hOls a dual / • ("i/S) is the weakest

specification of a pro~rom X suer that

R ?(S;X)

Its properties ere very similar to thosa of / , for l;ix8mple

(1 r-125i(R/3)

(2;. R 2(S;X) (F~/5)?X

.,.(J:-r/p if P is a program

(,; (Rl AR2J/P (lil/P)A(R2/P)

(~)H/ll = R

(6;1I/(PuO) " (II!P)A(R/~)

(1;,/(p,J)" (II!P)!'J

The 'Jeakest orespecihcalion and lne weakest postsu8ci fication are

in a sense the right and left inverses of sequential cor,lposilion. This

tYPF- of inverse can be given for any operator F wt1ich distributes through

arbitrary unions; it is defined as follows

(8)C-
1

IR; = U~\"2F(P)}

This is not an exact invarse of F, out it satisfies the law

(9) ""F(F-'(R))

Proof. ::HS F(U \P\ R"F(PI1) dp.f inition
-1

r

UtF(P) 1R"F(p)l F distributp5

~ R set theory

Since r- 1
(R) is th~ union of all solutions for X in the inequation

R~F(X), it must b8 the weakest (most general) solution

(10) R?r(x) ~ r-1 (0I)-;?X

Thr' cor.dition thc;-t F must distrioute thrDUjh u is esse,1tial to

_1
the existence of the inverse r • To sr-ot: this, consicer the

counterexample

rl.<) XiX

p x := x

Q x := -x

F	 is a function thi;lt may require rT,ore than one execution of its ')peran~.

'jhen applied	 to the nO~-deterministic choice of two programs P Dr ~, each

execution may make a different cl--oice. Consequently, r does not distribute,

as shown by the exafl'ple

r (p u J)	 (p ...olJ)i(p vJ) defini tion r

(p;p) ,-,(Pi:';) v (':'iP) v(JiJ) disjunctive;

(x:= Xi x:= x)u(x:", Xi x:= -x)

u	 (x := -Xi x := x) v(x := -xi x := -x)

)(:= x u x := -x

cut r(p)ur(,~)	 (x := Xi x:= x) v (x := -xi x ;= -x)

x := x

Since P?F(P) anc P2f(";), it follows that

':::y	 s;;t theoryU {x I' 2>(X)} 2 '"'

by (10) and	 the deFinition of r-\p) wa could conclu8e

r: : f (~ ~)

which is false. The contraDiction shOWS that r does not heve an inverse,

ever in the wea;" sensE' described by (10).

The i1vet5e F-'(R) (when it eXists) could be or assistance in

the top-oo~n development of a program to mP.et the specification R.

Suppose it is decioeD that the top-level structure of the program

is definec by F. Then it will be nece~5ary to calculate F-
1
(~) .:Inc

Lse it 85 :~e specification cf the co~~onent pro;ram X, in secure

kno~led;e :hat the final program F(A) will meet the original

speci fication R

n ?F(X)

Ln"ortunat2ly, the ;net roo ~08S not generalise to a strL!cture F with

two or mar? components; ano 50 it would be necessary to fix all but one

of the cor~on8nts before calculatin; the inverse.

5. Conclusi on

The la~s ~iver in this ~acer are intended to assist ~ro~ra7'8rs

in reasonin~ efff'ctively about their tas'..::s, inclucJinc; both tf-Je

development of prol;t'orT's that meet their specifications, and

optimis8ticn whare necessary by al~ebraic transformatiQr. rne c~sic

insight is that programs themselves, as '.!Jell as their specifications,

are mathem<.;tical expre9sions, afld can tf-Jerefore be used directly in

mathematical reasoning in Just the Si:'me '"ay as expressions cenoting

familiar mathematical concepts such as numbers. sets, functions, groups,

categorias, etc. Tt is also very convenient that programs and

specifications are treated together in a horlO;Eneous Fraffielolork; !:.f)e

main oistinction between them is that pr~grams are a subclass of

specification expr9ssed in such severely restricted notations th~t they

can be input, translated, and executed by a general-purpose storeo

program digital computer.

The exposition of this paper is seriously incomplete in two

important resp~cts, one theoretical and one practical. The theoretical

defect is that the laws are presented as selF-evident axioms cr

postulates, intended to commaro assent from thosp who alreaoy uncerstand

what the laws are about. ThOlt is the way the laws of arithmetic or

geometry are usually tau~,rlt in schools. Nevertheless, as Russell points

out, "The rr.etrod of postulation ras many aovant03;esi tfley arE' bF sa~e

as tha advantagf's r:Jf theft over hOnest toil" ffiuS~f'1..!.7. Russell loiled

hard Lo !;ive a df'finition of tt",e concept of a number in tP.rms cf 1:ore

primitive concepts such as sets, and then to oefiflP t~~ oper~t~o~s of

arithmetic, and finally to rrove that these dE'fifliticn~ satisfy the laws

t"at Ioe ["lev,,"!, o'">ubtE'c ir ::hc first placE'.

if v<; wf're' to errD·lrk en si01ilar toil in tre case of secuential

pro;;r"~"l 21d treir soecLfications, the r'?lf'vant 'Tlatherratical oef1nitions

can bt' fOf'fluiated wit~in the clo>i3icol theory of r",lations. This is

done in a :C'rT'panion pac:£r .Lhr1il(·€ and ~'!il. Tt->c f'xistef"'ce of such

oefinitiol'3, an8 tn2ir ,,5e L: ;:oreve the la["s e,"'u01era'Cec in this paDsr,

yields a v3luai:'le reassurance It-,,'lt the laILs are consistent. FurtherlTore,

it gives ~j(!iticr>al insight into thl' mathf'motics of proSramrning, and hOIli

it rlay be 3pplied in practic£'. In particular, it su~gests adcitional

useful l~'~:; anc it ast6oli"'hes thEll <;; ;ivp.C' set of lal~S are cSnlplpte

ill the sprse that SOrT'a lliice anc claarly defined subset of all truths

about pro~ra.m"'im; can be dl?ouce:d cirectly fro~ the laws, l:.li trout app"!al

to the possibly greater cOlllplr::xiti of U",e <',:rinition~. This could be a

~TPat co'~fcrt to the practisin~ ~.ro=rar:-r'er. w,o does not have to know

-.:r.e foun('~tions C'f tre sul::jec-c.. any T,ore t>-'en t"'e scierti~t has ~u K,OW

aDout rne cj<>rinition of redl nLJn()srs in terOTs cf JeoC'KiC'd cuts.

Thr SEOcond serious cf·floiercy Dr U",e p2iIJRr is the pr<:cticol one.

[ven aft"r n"arly -:;ne hundr~o laws E;iven il' tt->is pE.ppr, we are still a

long way "ro"l knowing no\,. to ar,)ly tr·Ec~ 8i:-ectly to tre oesil.:n of correct

and effiC1E'nt fJrOC;rar;s or, HIE' sCi"le r8uu.\.rE:u ~y nocern tecr"clor~y. P-·e

luay C1heao will be to Sain i~r;lctical e"pr·rienr.e in tt'1f; app liC<ition to

prot;;rammirQ of the kil'd ['f tn>lUlp.matics introduced in t.,is ('aper, i'll"'d to

contif"'ue :he searah fer D2E;Jl?r an.:J ma::e' sr:ecific: theore,.,s wnicr Ci'." he

used ,.,ore si~ply C" lirritpo but not too narrcc: ran;,"s ::Jf :Jrobie.,. Ihat

is the wa) that applied lll3therT';:ltics, as well as purf! mathematir.s, h",ve

'll8de such ·;rH<lt rro<;ress j 1'1 tr'f' l"st tu~ trcus3nd yf!are;. [f" 'Je follow

':rC!t exa-,de, pert->cps _e '~ay ~Iake fastsr p:'8gre~s. both in theoretical

reS'=3rcr ',-:: 1, i:s ordctic~.l a::;:J:ic'C'tio"",.

Reference'S

Ciackus. Can r-ro;ra:7lrning be lib~ratE'ej fr'lm ':.he vcn l'if'U'1lan styl1??

COITm ~m 21.8 (1978) pp. 613 - 641

E .1lJ.	 OiJkstra. :l. Discipline of Program"dng. Prer>tice Hall (197f).

C.;'.R. hoars and re, Jifeng • .:Jeakest Prespecificatiors.

Techn~cal Monograph PRG-44 (1985)

R."'.	 I'.owalski~ The relation between logic prolJra~l1Iino; <,.nd loc;ic

specification. Mathematical Lco;;ic ann ~rot;ra;"i1'1lirg L~ngual~e".

Prentice Hall (1985) pp~ 11-27.

x.x.	 Murphy. Private Communicatior>.

6.	 RusselL Introduction to I'lathematical Philo50phy. Allen and unwin

(191 g).

0.·:J.	 Scott,. Outline of a r'lathematical Theory of Computation.

Tachnical I"':onagraph PRC-2 (1970).

