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Summar 'I 

M comr:h:te set of algebraic laws is given for Uijkstra's nOn

deterrTlinistic ssquential programmin~ langua~e. Iteration and recursion 

are explained in terms of Scottts domain theory as fixed points of 

continuous functionals. A calculus analogous to weakast preconditions 

is su~gesteQ as an Olio to deriving orograms from their specifications. 

Warn~ng 

In many programming languages use of these 
laws of programming may lead to error. You 
are advised to consult your language 
definition and implementatlon manuals to 
determine the circumstances in which their 
use is valid. 
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1. Introduction 

Here are some of the familiar laws of arithmetic, \lJhich apply to 

multiplication of real numbers. 

(1)	 Multiplication is symmetric, or in symbols 

"y y.x for all numbers x and y 

It is conventional in quoting laws to omit the phrase "for all x and y 

in the relevant set" 

(2)	 Multiplication is associatlve, or in symbols 

x,ll,(y J'. 2) (x)l. y)" z 

It is conventional to omIt brackets for associative operators, and 

write simply x x y J'. z 

(3) Multiplication by 2erc always givas zero 

o ll: X ~	 0 

(4) Multiplication by 1 leaves a number uncnanged 

, X]l( ~	 x 

(5)	 Division is the inverse of multiplIcation 

y x (x(y) x provided y I: 0 

If multiplication were not symmetric, we would also need a left quotient 

operator \ I satisfying the hw 

(y\x) x y x provided y I: 0 

Another	 law relating mUltiplication and division is 

2/(XlI.y) (,(x )/y provided y I: 0 and x F 0 
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(6) ~lultiplication distributes through addition 

(x + y)" :.: (x ;(z) + (y.x z) 

It is usual for brackets to be omitted on the right hand side of this 

equation, on the convention that a distributive operator binds tighter 

than the operator through which it distributes. 

If multiplication were not symmetric, we would distinguish 

distri~ution to the left (described above) from distribution to the right 

Zlf.{x+y) (z ... x) + (z .o:y) 

An operator is distributive through another if it distributes both to 

the left and to the right. 

(7) rultiplication by a non-negative number is monotonic, in the sense 

that it preserves ordering in its other operand, or in symbols 

)(~y ~ X1I.Z 'YJl<Z provided z ~ 0 

(B) Multiplication is continuous in the sense that it preserves the 

limit of any convergent sequence of numbers 

(11m x ) )I y :::: lim (x ll:Y) provided x converges.
n nn.., co n , .... 

(9) If we define 

xny the lesser of x and Y
 

xoy the greater of x and y
 

then we have the following laws 

xny :::: yllx 

(Xl'\y)~z x~Z""y2.z• 
(xvy)sz xSZ .... y:!'Z
 

x n (y "" z) (xny)lJ(XIlZ)
• 
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Any m"lthematician or anginser will be intirrately familiar with all 

lhese laws (and many more); and he will use them frequently and almO'5l 

instinctively, without noticing he has done so. The applied 

mathematician, scientist or engineer will also be familiar with many 

relevant laws of nature. ~nd will use them explicitly to rirlo solutiors 

for otherwise intractable problems. Ignorance of such laws w'Quld be 

regarded as a disqualification from professional practice. What then are 

the laws of programming, which provide the formal basis for the profession 

of software engineerino;? Many programmers may be unable to quota ever a 

single law. An unsympathetic observer might claim that programmers ars 

such en undisciplined bunch that they would not obey such laws, even Lf 

they knew them. Some computer scientists have despaired of finding 

rational laws to govern conve'ltional procedural programming, and recorrmend 

instead the use of functional programming LBacku~ or logic programming 

ffowalsk[l. 

In this paper, we shall substantiate a claim that conventional 

procedural programs are mathematical expreasions, and that they are sJbject 

to a set of laws as rich and elegant as those of any other branch of 

mathematics, engineering, or natural science. 



4. 

'.1 The language 

In order to formulate mathematical laws. it is necessary to introduce 

some notation for describing programs. I shail use a notation (programming 

lanQua~e) which is especially concise and suitable for its purpose, based 

on the languaga introduced in L5ijkstr~. It has three kinds of primitive 

commanc, and five methods of composing commands into larger commands 

(programs). 

(1) SKI P
 

The SKIP command is denoted II i execution of this command terminates
 

successfully, leaving everything unChanged.
 

(2) ,"ORT 

The ABORT command is danoted ~; it places no constraint on the behaviour 

or miSbehaviour of the executing mat:hine, which may do anything, or fail to 

do anything; in particular, it may fail to terminate. Thus .L. represents 

the bahaviour of a broken machine, or a program that has run wild. This is 

certainly a repugnant program, but it plays an important role in the theory 

and its application. A programmer has a duty not to write a program that 

runs wild; in order to prove absence of this error, one nEeds a mathamatical 

theory that includes its presence. 

(3) Assignment
 

Let x be a list of distinct variables I and let [ be e list of the same
 

number of expressions. The assignment
 

x;=[ 

is executed by evaluating all the expressions of E (with all variables
 

taking their most recently assigned values) and then assi gning the value
 

or each expression to the variable at the same position ifl the list x.
 

This is known as multiple or simultaneous assignment. We assume that
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(7) Iteration 

If P is a program and b is a Boolean expression, then (b*P) is a program. 

It is executed by first evaluating bj if b is false, Bxecution 

terminates successfully and nothing is changed. But if b is true, the 

machine proceeds to execute P;(b.P). A mare conventional notation for 

iteration is 

while b do P 
~ -

(8) Recursion 

Let X be the name of a recUl'sively defined program, and let rex) 

(containing occurrences of the name X) be a program defining its behaViour. 

Then ,"x.r{x) is the program which behaves lIke rC,px.r(X))j i.e. all 

recursive occurrences of the program name hava been replaced by the whole 

recursive program. Of course, iteration is only a special case of 

recursion 

b*P = V.(p;X) {bt Il 

Iterationissi!IJfJ1er and mDre familiar than general recursion, and so it is 

worth treating seperately. 

:Is an exarrple of the use I:lf these nDtations, here is a program which 

computes the quotient q and remeinder r of division of non-negative x 

by positive y. [t offers a choice of methods, one of whicrl terminates 
when y = 0 

q,r := O,x i r ~y*q,r := q+',f-y 

U(q,r := x ... Y. x ~ y){.y # ot q:=O 



This example illustrates a suggested order of precedence for program 

combinators 

binds tightest
 

:'"
 

• 

fbt
 

U bi nds loosest
 

Normal arithmetic operators bind tightsst of all. But for the benefit 

of a readar it is k~nder to insert at least some of the brackets, For 

example 

(q.r :'" D,x ; (r.a:y * (q,r := q+1, r-y)))
 

u«q,r := x -:- y. x rem. y) {y r- o*' q :"" 0)
 

The notations of our language can be deFined in terms of [.W. Dijkstra's 

language of guarded commands 

puo = l! true ~p atrue ~ 0 U
 

pi b to = b ---? p ab' -:,. 0 !i
J!. 
",here 

~ 
b is the negation of b 

b • P ~ b ~p ad 

Conversely guarded commands can be dafined in terms of the notations given 

above, for example 

if b----}opDc-:"QFi ((PUQ)4ctp){bt(Q{ct .>0)
 

~ b-7 p Dc-7 Qod (b_c)* (±!b~POc~QW
 



Thus our language is eFFectively the same as Dijkstra' Sj the only 

reason For the slight change of notation is to replace the polyadic 

notation of "guarded commancs"by binary inFix notations, which greatly 

simpliFy the Formulation of algebraic laws. 

1.2 Summary 

The laws to be given in this paper apply not only to concrete programs, 

expressed in the notations of the programming language described in 

seetlOn 1.1; most of them apply also to program specifications, which 

can be expressed in a considerably wider range of more powerFul notations. 

Additional laws are given to assist in the stepwise development of designs 

From specifications and programs from designs. In Fact, we shall study 

a series of Four classes of object, where each class includes its 

predecessor in the series, and obeys all or almost all the same laws. 

(1) Finite programs are expressible in the notations of the 

programming language, but excluding iteration and recursion. Laws For 

finite programs are given in section 2. They are suff iciently powerful 

to permit every finite program to be reduced to a simple normal form. 

The deFinition of equality between normal forms extends in this way to all 

finite programs. 

(2) Concrete pro£rams are expressible in the Full programming 

language, inclUding recursion. 

(3) Abstract programs are expressad by means of programming 

notations plus an additional operator for denotin£ a limit of a convergent 

set of consistent programs. The relevant concepts and laws are those of 

domain theory, and they are explained in section 3. 



9. 

Objects in the first three classes are called programs, and they 

all satisfy all the laws of programming given in sections 2 and 3. 

(4) The remaining class is that of specifications. This is the 

most general class, because there is no restriction on the notations in 

which they may be expressed. I~ny well-defined operator of mathematics 

or logic may be freely used, including even negation. The laws which 

apply to specificatiDns are useful in the step\IJise develOpment of 

designs and programs to mest their specifications. The price of the 

greater notational freedom of expression of specifications is that it :5 

possible (<Jnd easy} to write specifications whi[;h cannot be satisFied by 

enyorOgram. 

The distinction between these classes may seem complicated; but i.n 

fact it is as simple as familiar distinctions made between different 

classes of number. 

(1) Finite programs can be likened to rational numbers. Algebraic 

laws permit all arithmetic expressions to be reduced to a ratio of co-~rime 

integers, whose equality mey be easily established. 

(2) Concrete programs are like algebraic real numbers, which are 

definable within a restricted notational framework (as aolutions of 

polynomial equations). They constitute a denumerable set. 

(3) Abstract programs are like real numbers; they enjoy the 

property that convergent sequences have a limit. For many purpoees (e.g. 

calcUlus) real numbers are far more convenient to reason with than 

algebraic ~umbers. T~ey form a non-denumerable set. 

(4) Specifications may be likened to complex numbers, for which 

more operators (e.g. square root) are total functions. The acceptance 
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of imaQinary numbers may be diffIcult at first, because they cannot be 

represented in the one-dimensional real COntinuum; nevertheless it 

pays to use them in deFinItion, calculation and prooF, even when 

the eventual anSwers must be real. In the same way, specifications are 

useful (even necessary) in requirements analysis and program development, 

even though they will never be executed by computer. 

1.3 Examples 

This paper shows many examples of the practical use of the quoted
 

laws; these B)(smples OCCur only in the proof of other laws.
 

1 t mIght seem preferable to report a case study in which the laws 

had been used to assist in the development of a correct program of 

substantial sIze. Unfortunately this is not possible: the tas~ of writing 

a substantial program requires muc h deeper mathematics t han the elementary 

algebra presented in this paper. You would not expect to illustrate the 

laws of arithmetic by a case study in the design af a bridge. Like the 

laws of arithmetic the laws of programming are braad and shallow: li~e 

the grammatical laws of a foreign language! learn tham, learn to use them 

without thinking, and then forget them. 



11. 

2. Algebraic laws 

In this section we shall 9ive about thirty algebraic laws relatil1g 

to finite programs, i.e., programs that do not contain iterations or 

recursions, which wi 11 be treated in section 3. The laws arp. sufficiEntly 

powerful to permit every finite program to be reduceo to a simple normal 

form, which can be used to test whether any two such programs are equal. 

\;Ie shall adopt the following conventiQns for the range of variables 

P ,J ,R stii':lnd for programs 

b,C,d stand for 800lean expressions 

e, f, g stand for single expressions 

E,r,G stand for lists of expressions 

):.,y,z stand for lists of variables, Lo'here no variable 

appears more than once in the combinad list x,y,z 

furthermore, x is the same length as E, y the same length as r, and 

z the same length as G. 

2.1 Nondeterminism 

Tha laws gove rning nondeterministic choice apply to all kinds of 

choice. 

(1) Clearly, it does not make any difference in what order such a 

choice is offered: "milk or cream?" is tha same as "cream or milk?" 

Puc Q vP symmetry 
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(2) A choice between three alternatives (milk, cream. or brandy) 

can be offered as first a choice between one alternative and the 

other two, followed (if necessary) by a choice between the other two; 

and it does not matter in whiCh way the choices are grouped 

Pu(QVR) (p u..J) u R associativity 

(3) A choice between one thing and itself (Hobson's choice) offers 

no choice at all 

PVP P idempatence 

(4) The abort commano already allows completely arbitrary 

behaviour, so an offer of further choice makes no difference to it 

-'- V P ... zero .J,. 

This lew is sometimes known as Sod I s law;* the left hand side describes 

a machine that ~ go wrong (or can behave like p); the right hand side 

might be taken to describe a machine that will go wrong. But the true 

meaning of the law is actually worS8 than this: the machine will not 

always go wrong - only when it is most disastrous for it to do sol 

The abundance of empirical evidence for law (4) suggests that it should 

be taken as the first law of computer programming ~urphJi7. 

Choice between n alternatives can be expressed more briefly 

by the indexed notation 

U Pi PouP1 V ••• V P
 
i ~ n

n
 

This is purely a convenient abbreviation, and is not needed in a 

programming language. 

* 50d 1 s law statss "If it can go wron~ it will". 



2.2 Conditional 

For each given Boolean expression b the choice operator fb ~ 

specifies a choice betwean two alternatives writtan on each side of it. 

The first two laws express most clearly the criterion for making this 

choice, i.e., the truth or falsity of b 

(1) P {""to. P 

(2) pff,'se:tO • 0 

Like V, the conditional is idempotent and associative 

(,) pibtp ~ P 
(4) P10+(0 fotR) (pfbtU)fbt R 

Furthermora, it satisfies the less familiar lalils 

(5) Pfoto ofti t P 

where t1 is the negation of b 

(6) P-10 fbt dt, (PfO+O){b+ (p1dtO) 

where c,b> d is a conditional expression, giving value c if b is trUE! 

and d if b is false 

(7) Pfbf(Ofof R) P.fb+ R 

Trese laws may be checked by considering the tlilO cases when b is trUE! 

and when it is false. For example, law (7) states that the middle 

oparand (J is not selected in either case. 

Suppose OMe of the operands of a conditional offers a nondeterministic 

choice betlileen P and O. Then it does not matter whether this choice ie 

made before evaluation of the conditional, or afterwards, since the value 

of the condition is not affected by the choice 

(B) (PuO) 101R (P1 b t R)V(Qf b t R) 

From this can be deduced a similar law for the right operand of1bt 
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(9) Rtbt(PuJ) (Rt bP)U(Rt b 1-") 

Proof LHS (p VJ) ttitR (prt:tR)V(J~ti+R) RhS 

An operator that distributes like this through LJ is sale to be disjunctive. 

Any operatioM that does not change ths value of the Boolean 

expression b will distribute throuc:;h fbt. ,~n example is nonoeterminstic 

choice. I t does not matter l..'hether the choice is exerciseo before or 

after evaluation of b 

(10) (P{b:tU)vR (PUR)tbt(UUR) 

For the same reason, a conditional+cf distributes through another 

conditional with a possibly different condition fbt. 

(11) (P{b:tJ) *etR (PtefR)tb} (J -I.e}R)
 

Using these laws we can prove the theorem
 

(12) (ptetR)1bt(Ufd:tR) = (p.fbiuH.c1btdtR 

P'cof RHS =«P{btuJ{etRJ{bt «PtbtJ)-td}R) by (6) 

=«p+etRHbt(;1etR)){bt«P1d~R)1bt(;1diR))by (") 

"" LHS by (7) and (L 

2.3 Sequential Composition 

(1) Sequential composition is 2ssccictiv8; to perForm three actions in 

order, you can either perforl17 the first action followed by the other two 

or the first two actions followed oy the third 

P; (I];R) (p iJ);R associativity 
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(2) To precede or fallow a program P by the command II which changes 

nothing does not change the effect of the program P 

(II jP) (p; II) unit 11" 
(3) To precede Dr Follow a program P by the cDmmand ..L (which may do 

anything whatsoever) results in a program that may do anything what3D8ver 

it may even Dehave like p~ 

(.LjO) (p; J.) .L zero ..l-

The lew P; ..L "".l. states that we are not able to observe anything 

that P d083 before P;..L reaches.l.. This law will not be true for a 

language in which p can interact with its enlJironment, For example by input 

and output. 

(Il) A machine which selects between P and Q and then performs R when the 

selected alternatllJE! terminates cannot be distinguished From one which 

initially selects whether to perform P followed by R or Q followed by R. 

(PuQ);R (PiR) U (QiR) 

For the same reason, composition distributes rightward through u 

Ri (P u ll) (RiP) U (fiiQ) 

In summary. sequential composition is a disjunctiv8 operator. 

(5) Evaluation of a condition is not affected by what happens afterwards. 

so : distributes leftward through a CDnditiona1 

IPfb}J);R Ip;R) ~bt C"R) 

However does not distribute rightward through a conditional, so 

in general it is not true that 

R;IP{bt J ) CROP) tbtCR;J) 

Gn the left hdnd side b is evaluated after executing R, whereas 
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an the right hand side it isevaluated beforeR; and in general, prior 

execution of R can change the value of b. 

2.G Assignment 

It is a law of mathematics ':.hat the value of en expression is 

unchanged when the variables it contains are replaced by their values. 

If E(x) is a list of expressions, and F is a list of the values of the 

variables x, than E(r) is a copy of in which every occurrence of each 

variable of x is replaced by a copy of the expression occupying the 

same position in the list r. 

(1) This convention is used in the first law of assignment, which 

permits merging of two succe55ive assignments to the same variables 

(X:=E i x:=F(x)) (X:=F(E)) 

(2) The second law states that the assignment of the value of a variable 

back to itself does not change anything 

(x:=x) =	 II 

(3) In fact such a vacuous assignment can bl? added to any other 

assignment	 without changing its effect (raCE-II x and yare disjoint) 

(x,y := E,y) (x ,= E) 

(4) finally, the lists of variables and expressions may be sl..t:Jjected 

to the same permutation Without changin~ the effect of the assignment 

(x,y,z: :=	 [,f,G) '" (y,x,z: := F.E,G) 

cordlary:	 (x.y == (y,x:= F.E):= [.n 
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These four laws togethBr are sufficient to reduce any sequen~a of 

assignments to a single assignment. For example 

x,y := F ,G ; y,z := H(x,y). J(x,y)
 

x,y,z := F ,G,z ; x,y,Z := X,H(X,y), J(x,y) by (3) (4)
 

x,y,z := F.H(F,G),J(r,G) by (1 )
 

(5) Assignment distributes rightward through a conditional, changing 

occurrences of the assigned variables in the condition 

x,=E ; (p {b(x)ie) (x ,= E ; P)1b(E) ~ (x ,= E ; U) 

(6) A conditional joining two assignments (to the same variables) may be 

replaced by a single assignment of a conditional expression to the sarle 

variables 

(x ,= Etb~X ,= F) (x ,= (et'} F)) 

(7) The conditional distributes down to the individual components of a 

list of expreSSions 

(e,E) fb~ (f.F) (e{blfl,(Ef"}n 

(6) Using these laws, we can eliminate conditionals from sequences of 

assignments by driving them into the expressions. For example 

x := E ; (x := F(x) -fb(x)f x := G(x)) 

x := (F(E) f"(E)~ G(E)) 

The following theorem will also be useful in reduction to normal forms 

(9) (x " Efb::f.l.)'«x ,= F(x)){C(xlt ... ) (x ,= F(E))fc(E)1"t f'bet ... 

Pcoof LHS =(x " E ;l(x ,= ,(x)fc(x)}.l.) 

t"t(-1-;(x ,= F(x)1'c(xl1'.l.))} 2,3 (5 ) 

(x '~F(E)fc(E)j>.l.)f-b.j>.l. (5),(1),2.3(3) 

RHS 2,2(6), 2,2(2) 
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2.5 Undefined expressions 

If the notations of the prograrMling language incluce expressions
 

which may be undefined for some lIalues of th8ir operands, then some
 

of lre laws quoted above need to be slightly weakened.. l.Je assume that
 

the language is sufficiently powerful that it is always possible to test
 

in advance whether evaluation of an expression is going to fail, and
 

that this test itself never fails. Thus for every list of expressions E
 

•there is a Boolean expression :i)E which gives the answer true in just
 

those circumstances that eveluation of E would be successful. ThuS, for
 

example
 

1J true J)False '" true
 

:l)(E+F) :IJE ,DF
 

J)(E/F) JjE .1)F , F t a
 

.l) (E tb-j. F) J)b .(a {biDF)
 

J)1JE true
 

NO\oI we stipulate that the effect of attempting to evaluate an
 

expression outside its domain is wholly arbitrary, so
 

(1 ) x	 := E =(.,=E1J1 q..l.) 

(2) P1 b t o (P1b}O)fJlbt .1. 

(3) P 1b~..l. P1b 1.2lb~ Fal"f .1. 

In view	 of this, the following laws need alteration 

(4) Pfbtp = piJ)bt..l.	 ,ee 2.2(3) 

(5) (PfbtO)f'tR = «(P1,-j.R)fbt (Of'+R»)f3bt(.1.1,tR) ,ee 2.2(11 

(6) (, ,= E ; ,,= F(') = (, ,= F(E) 1J:lE +..l.) ,ee 2.4(1) 

(7)	 ,,= E I (x ,= F(X)tb(')1-' ,= 0(')) 

, ,= (F(E)fb(E);}G(E))f..llE}.J.. '" 2.4 (8) 

* ~ is not assumed to bs a notatIon of the programmIng language. 



Reasoning with unoEfineo expressions can be complicated and needs 

some care. But there are 5150 some rel.Jards. For example, the fact 

that the minimum of an empty sat is undefined permits axceptionally simple 

formul .. tion of Oijkstra 1 s linear search theorem L5ijkstra P. 105-10g. 

(8 ) (i : = 0; (B( i) * i : == i + 1 ) ) (i :== min [ilb(i)"i~O}) 

2.6 Normal form 

To illustrate the power of the laws givan so far, we can use them 

to reduce every finite program of our language to a simple normal forr.!. 

A finite program is a program which does not contain iteration or recursion. 

Tn normal form a program looks like 

E.)ht .L(i~n x := , , 

where b ==> .l)E for all i ~n.
i 

uJithout loss of generality, \i,le can e,1sure that in this context 

J)b == true 

by raplacing b if necessary by 

i b fJ)b ~ fal" > (see 2.5(3)) 

r, notable feature of the normal form is that the sequential composition 

op8rator does not appear in it. 

To sho\i,l how to reduce a program to normal form, it is sufficie,'1t to 

show how each primitive command can be written in normal form and hou Bach 

operator, \i,lhen appliEd to operands in normal form, yialds a result 

expressibla in normal form. In section 2.4 we have shown how all 



20. 

assignments of a program can be adapted so that they a 11 have the same 

list of	 variables on the leFt; so we can assume this has already bean 

done. 

(1 ) SKip
 

II =«x ,= x)+trce}.1.) 2.4(2) 2.2(1)
 

(2 ) Abort
 

.J.. == (J( := x {false} ..L..) 2.2(2)
 

(3)	 Assignment
 

Ix ,= E) = (x ,= E {.:JE~.1.) 2.S( 1 )
 

(4)	 Nondeterminism 

(Pfb:}.1-)	 U (0 {ct.1.) 

(p u(O tct .1.)) fbi (.1. u(a tC t .J..)) 2.2(1 ) 

(PuO) tct(P U.J..))tbt .... 2.2 (10) 2.1 (4) 

«PUO)+C:j..1.)+b~ .1- 2.1(4) 

(p UQ) fC fb *""e:j. .1- 2.2(6), 2.2(2) 

Here, Pend Q stand for lists of assignments separated by U , so P vO is
 

just the uniOn of these two lists. The condition f c ib ~ false} is
 

equivalent to (c I\b). Since the operands arB normal forms, this is
 

everylLlhere defined and it implies that all expressions in P uQ ara also
 

defined.
 

(5)	 Conditional
 

(pi cj-.1-) t bi (0 {d t ...) (Pfb:j.Q){cfb} d:}-'  2.2(12) 

If u x ,= E, and Q u x ,= F 
i,n	 j" m j 

then U U(. ,= E. fb:j.X ,= F)	 2.2(0)P fbt 0	 = 
i"'nj,m ~ J 

U U x ,= (E.f.b{F) 2.4(6) 
i,njfm ~ J 



Since l: ~ J) E. and d ~ dJr . it follo.:s that 
, J 

o tbt d ~ }J(Ei 4otFj) for all i and j 

Thus the RHS of (5) is reducible to normal form. 

(6) Sequ2ntial Composition 

u x ,= E.)lb}'>'); (( U x ,= F(X))tO(x)t.!.) 
ii: n ~ T j:!m J 

can be r2duced (by distribution through u) to 

u .U(x ,= E·t O}.!.); (x ,= F.(x)lc(x)t .!.)) 
i ~n J ~m ~ J T 

U(x := F/E i ) ~C(Ei H.b ~ False *' ... ) by 2.4(9)i~n j !:m 

No~ the method described in (4) above can be used to distribute the unions 

into the conditional obtaining 

U .LJ x := F .(E. ))4( 1\ o(E.)) J o~ False)~.>. 
J ~ i~n ~ "t~ En H·m 

~here the conjunction notetion /\ can b2 defined by induction 

;\ c o
i o 

i " a 

1\ c. ( "c.).f.c 1 false,t\ ~ n+1fH,n+l ~ ~~n 

That completes the proof troat all fir'l'..L programs are reducible. 

The importance of normal forms is that they provide a complete test 

whether two finite programs are squalor unequal. nle t~o programs are 

first reduced to normal formj if the normal forms are equal, so are the 

programSj otherwise they are unequal. 

Two normal forms ( Ij x := oed (U x := Fjlfot.1.'ilfb1'.>. 
i ~n jSm 

are equal if and only if 

b = c 

and [vtot.>.I.:li~n. v = E,} = Hot.!.l:!j ~m. = Fj }W 

where these equations must hold for all values of the variables contained in 

the axpressians b, c, E and Fj.
i 
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3. Domain properties 

In trls section we introduce iteration and recursion, using the methods 

of§cotY. 

3.1 The [rcerin~ relation 

As a prelimary we shell explore the properties of an ordering
 

relation 2. between proQrams.
 

DeFinition. P2Q ~ PuW p 

This means that J is a more deterministic prOt;;ram than r-. Everything 

thet Q can do, P may also do; and everything thet Q can fail to dO, 

r may also Fail to do. 50 LJ is in all respects a more predictable 

program and more controllable than p. In any circumstance where P 

reliably serves some useful purpose. P may be replaced by U, in the 

certainty that it will serve the same purpose. aut not vice-versa: 

there may Je some purposes for which IJ is adequate, but For which P, 

owing to lts greater nondeterminism, cannot be relied upon. Thl..Js P 20 

means that For any purpose Q is better than r. or at least as good. In 

future, l.IJe will use the comparative "better" by itselF, on the understanding 

that it me3ns "better or at laast as good". 

The Elation 2 is not a total ordering en programs, because it 

is not trua For all p and cJ that P ~ U or 0 3 P; P may be better than Q 

for some purposes and Q may be better than P For others. However, 2

is a partial order, in that it satisFies the FollOWing law9 

( 1 ) :J ? p (reF lexivi ty) 

(2 ) P21..J"'..J2P~ P=I) (anti syrff11E'try) 

(3) P2LJ "'Ll2H ::::::::;. P ~ R (transitivity) 

These laws can be proved directly From the deFinition, together with
 

the laws for II
 



Proof (1 ) ~ = PuP	 (ioempotence of U) 

(2) (~vO = p) .... (~up = J)==1o P = 1.I (symmetry of v ) 

(3) (~" 0 = P) .... U:i uH = ,J) (antecedent) 

~	 PuR = (PuJ)uR (fi rst antecedent) 

I-' u (..J \J C1) (associativity lJ ) 

PvJ (second antecedent) 

P (tirst antecedent) 

ThB aoort command .L. is the most nondeterministic of all programs, 

the least predictaole, the least controllable; and in short. For all 

purposes, it is the worst 

(L.i) .l.. 2	 P 

~roof -LlJP"" .1. 

The machine that behaves either like P or like Q is in general worse 

than both of them 

(5) (PvJ) 2	 P A (p UQ) 2Q 

Proof	 (p UL<)vP PV(JIJ~) (2ssociativity) 

P u(PUQ)	 (symrr,etrYJ 

(Pup)v~	 (associativity) 

P \J J	 (ioe,;,ootel'cE' ) 

In fact PuLl is the best program that has this property.. Any program R 

which is .... orse than both P and U is also worse than P UQ, and vice-versa 

(6 ) R='(Pv~) (ri:=!:p" R2';) 

Proof	 LH5 ::::::::::::> R2P 8Y transLtivity from (5) 

LHS ~ Ri2,W similarly 

RH5 :::::::><RlJP = fl)"{r~\JJ = R) definition of '2 

~ (RuP)U(RlJ";) = R\JR adoing the equations 

==>R u(P\Jc.') R	 properties of u 

~Lh'S	 definitIon of 2. 
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If ~ '?oJ I this means that J is in all circumstances better than (or 

at least as good as) P. It follo~s that wherever P appears within a 

larger pro£ram, it can be replaced by ll. and the only consequence will 

be to improve the larger program (or at least to leave it unChanged). 

For example 

(7) If P::?::) then P \.J H 2 Q iJ R 

" (~;i1) ~ (C;;R) 

" (R;P)~(R;iJ) 

A (Ptot R) '" (Qib:j>R) 

,(Rfo}P)"?(R1 b }Q) 

"(b * P)2(b'* lJ) 

In summary, the law quoted above states that all the operators of our 

small programming language are monotonic, in the sense that they preserve 

the '2 ordering of their operands. In fact, every operation that 

distributes through U is also monotonic, 

Theorem. If F ia any function from programs to programs,and For all 

programs P and Q r(PUQ) = r(p)vr(iJ) then f is monotonic 

Proof ~ ~:) .",..,.,. p v J = P defini tion '2. 

~ F(PU J) = F(P) property of 

F(P) u F(O) distrib f 

==9 F(p)., F"I) defini tion ~ 

One lr:lportant fact about manotonicity is that every function oefined 

from composition of monotonic functions is also monotonic. Since all the 

operators of our programming language are monotonic, every program composed 

by means 0: these operators is monotonic in each of its components. Thus 

if any component is replaced by a possibly b8tter one, the effect can only 

be to improve the program as a ",hole. If ttle new program is also more 

efficient than the old, the benefits are increased. 



:3.2 l.east upper bounds 

'uJe have seen that p V,) is the best program ~ than both P and Q. 

SuppoSe now that we want 2 program better than bott'"l P and J. In general, 

there will be no such pragram. Consider the twa assignments 

x : == acd x :== 2. 

These programs are incompatible, and there is na program better for all 

purposes than both. If you want x to be 1. the second will be no gOOd; 

whereas if you want it to be 2, the first program will be totally 

unsuitaole. 

Let us now consider two nondeterministic programs 

p == (x :== 1 v x :== 2 v x :== :3)
 

,) == (x :== 2 u x :== :3 \J x :== 4)
 

In this case there exists a program which is bstter than both, namely 

x :== 2 

In fact there exists a worst program that is better than thBm both; ano 

we will denote this by p" Q 

P" q (x :== 2 u x :== :3) 

Two programs P and ~ arlO said to be compatible if they have a common 

improvement; and then their worst common improvement is denoted P "0. 
This fact is summarised in the law 

(1) (P2R) " (; ?H) == (p" CI)2R 

Corollary P :?,(p" J)" ~"J ~(Pnt.l) J. 1 (1 ) 
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Tr,e Deerator f'I, ,,"herever it is d~fineG, is idempotent, symmetric 

and associ2tive, and has unit ..L... 'Lrthermore (\ and tb t oistrlbute 

through each other. 

(2) PnP P
 

(:3) Pn::J '" wnP
 

(11) P n(~I\R) (P"Q)"R 

(5) ..L.. "f" '" P 

(6) pU(J n',,) (p vJ
1 

) (\ (p U(.J2)	 provided that 0, and ~Z are,
 

competible
 

(7) (PnQ1)U(P"IJZ) P 11(L.J U 4 )	 provided that P and t.J arB1 2 1 
compatible, and P and l.J~ are

• 
are compatible 

(6)	 (o,n ',)tD}" (cJ1,fb~~),.,,(j2'fbfR) provided that 01 and LJ 2 are 

compatible 

In thE Following laws we abbrevi~te ux ,= E. by ,,~ (E i I ' " J 
l*n .I. ( J 

Then we ha~e 

(9) x:= E and x := F are compatible iff 

1JE"9Jr~E=F. 

FurthermorE in this case llJe have 

(x '=C) f1 (x ,= F) = (x ,= E+1)Etx ,= F) 

(10) x:e. [E 1i ~n} dnd x:€ fj)j ~ mJ are compatible ifF
i 

!\J1' A I\JJF ==>;> (£Ei\i~ 01n {Fj\j ~c1 t ¢). 
i~, .1 j ~ m J 

("lore over in this case 

("" L'i)i,O}) n ("<fJ\Hm}) = "E(£EJi$o}n {Fjlj~mHi~JJEi·l~;.2JFjt 

(x,<[Eli~o))1 V J)r ~ (x,e:.[FIHm})). 
1 "J~m J J 



(11) Assume that b =9 J}r: and c ~:J)r. Then (x :::0 E)tbl.L and 

(x :=' r)..fc::t..L. are compc,tible iff 

(b A 0) =9 It.c) n fr} f ¢I. 

In this case 

II' '0 c) {boj. '-I (\ (I, '0 n+of.>.) (,,= Eofb" tl"=E!'tl"= FfOi.1.)) 

(12) In general if P = ()(:E[Ei\i~n\)ft::t.L ano Ci (x:€.[rj\~~~})~c~.!.. 

they are compatible iff 

Ib .0) =9 IlE i!i, n} (\ iF j 1; Em) f ¢) 

and in tr.is case 

C, Q = l"Elt.Eili,n}" [Fj\hm}))tb,,}I("Et';!i.n}l{bt
 
(("'{F jl j ~ mIl }'+.I..) I
 

The ('j operator' gener'alises to ~ny fini La set of compatible programs 

S = (PoJ ••••• Tl 
Provided that there exists a program better than all of them, the laast 

such program is denoteo ns 

('Is -= PI'I..<,. ... "T provided 3R P~fJ .... U2R .......... T:JR 

It fol10",s t.hat 

(13 I ('riP .. 5. P2R) nS:?R provided ()S is defined. 

This rna; ell? proveo ~rom laLoi (1) by induction on the size of the set S. 
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If P OInd ~ are compatible finite progr<:lJ"lS, then P 1"\':; can also be 

expressed as a finite prcgr<lr.J; indeed it can lee reduced to narl'1~l form 

oy use of the rules given above. 

It is important to recognise that f'I is not a combinator of our 

programrnirg language, and that r:: ('I..., is not strictly a program, even 

if r ,Elnd '~ are compatible programs. For example, let P be a program 

which assi;\ns an arbitrary ascending sequance of numbers to an array, 

and let U be a program wrich subjects the array to an arbitrary permu

tation. Then P 1'\ J would be a program that satisfies both these 

specifications, and consequently it Would sort the array into ascending 

order. unfortunately, programmir19 is not so 1;l8sy. As in other branches 

of engineering, it is not generally possible to make many different 

aesigns, ~ach satisfying one requirement of a specification, and then 

just merge tham into a single product satisfying all requirements. 

On the contrary, the engineer has to satisfy all requirements in a 

single design; and this is the main reason why designs and programs 

get complicated. 

But ro such problems arise with pure specifications, which may be 

freely connected by the humble conjunction "and". So p/,\ Ll may be 

regarded as an abstract program, or specification of a program, that 

accomplishes whatever r accomplishes and Whatever ,J accomplishes, and 

doesn't fail except when both P and ,"j would fail. Pn:::) (if it exists) 

specifie~ a proguH:' which is for all purposes better than both f' and J. 



3.3 Limits 

Now suppDse So is a non-empty (possibly infinite; set, and for every pair of its 

members S act ually contains a member Detter than both. Such a set 

is said to be directed. 

Cefinition. S is cirected means 

\' ,. [1)'" \lP,L:.'t'.S. 3R"S. P~,R,,~j?R 

[xamples of directed sets are 

a set with only one memberl!'1 
{',PvC} sinc" Pu[J;?P aM P u t.:I '2: p u I) 

where P::!R",CJ:;?R{P,r:J.R} 

If S is finite and directed, then clearly it contains a member which is 

better tha" all the other members. and we haue 

nS is defined 

and IE.n!ii S 

If S is directed but infinite, then it does not necessarily contain 

a best member. Nevertheless. the set has a limit 11 S which as bafore 

is the worst program better than all mambers of $. The set S is like a 

convergent series of numbers. which tends to a limit which is nat a 

member of tlie series. By selecting membaI's of the set it 

is possible to apprOXimate erbilrarily close to its limit. 

D,'18 interesting property of the limit of a directed set of programs 

is that it is preserveD Dy all tre operators of our ~rogrammin; langua~e; 

such operatD~s are therefore said to be continuous. 
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(1 ) (1'\'1,0 = 1'1 (p, °Ip• ') 
(2 ) (n'l{bt o = nfpfbtOJp"} 
( 3) (1'1'1,0 = l'I{p;q Ip«) 
(4 ) o;(n,) = I'ILo;p Ip.,} 
(5 ) b*(n,) = n tb*P Ip• ') 

It is a fact about continuity that any composition of 

continuous functions is also continuous. Let X stand for a program 

and let f(X) be a program constructed solely by means of continuous 

operators, and possibly containing occurrences of X. If S is directed, 

it folloiIJ5 that 

(6) F(n,) (\~(X) IX <s} 

3.4 Iter~tion and recursion 

Given a program P and a Boolean expression b we can de Fine by
 

induction an infinite Bet
 

{onl no,o}
 
where J ...
 

o 

for all n~O(P,Qn) fbr II~n+1 

from these definitions, it is clear that lJ is a program that behaves 
n 

like (b*r::} up to n iterations of the body P, but on the nth iteration 

breaks, and can do anything (...L). Clearly therefore 

For all nI n "2 "'n+1 

(wnich can be proved formally by induction). Consequently, the set 

f..lnln :?:.O} is directed; and by taking n large enough we can approximate 



arbitrarily closely to the behaviour of the lOOp(b"'q. The loop itself 

can be deFined as the limit of all its approximations 

(1) b*P (\[Q"I"~D) 

The same technique can be used to define a more genFOlral form of 

recursion. Let X stand for the name of the recursive program which we 

wish to oonstruct, and let r(x) define the intended behaviour cF the 

program. 'within r(x), aach occurrence of X stands for e call Or! the 

whole recursive program again. As before, we cen construot a series of 

approximations to the behaviour of the recursive program 

r 
Q 

(!.) "" ..L 

F"+1 (0) = F(r"(u)) for all n ~O 

Fn(J.) behaves correctly provided that the recursion depth does not 

exceed n. 8ecause F is monotonic, and rO(J.) ~F 1 (..I.). it follows that 

f1 n 1 r (.I.) ~ r + (..I.) For all n 

Consequently {Fn(..L) I n ~ o} is a directed set, and we define the recursive 

program (denoted by ~x.r(x)) as its limit 

(2) pX.F(X) n[c"(~) I" >01 
In accordance with the explanation given ebove, iteration is a special 

case of recu rsion 

(3) b*P }'X. (P,X)i-bt" 

The most important Fact about a recursively defined program is 

that each of thli recursive calls is equal to the whole progra'11 again. 

or more Formally that fX, r(x) is a solution of the equation 

x = Fix) 
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Tris is statBd in thB law 

(4) ~X. F(X) F(pX. F(X))
 

Cocollary b*P = (P;(b'*P)) 1b* II
 

Proof RHS = r(ntn(..L)ln~o]) by de f i nition of }J
 

n[F(Fn(~)) In ~o} by continuity of F 

n 1
n({Fn+1(~) In>o}u l.L}) dBfini tion of r -t " 3.2(5 

l)[rn(.L) In ~o} since FO(.L) =.L. 

lHS dafini tion. 

In general, there will be more than one solution of the Bquation
 

x = F(X). IndBed, for the equation X = X, absolutely every program is
 

a solution. But of all thB solutions, jJx.r(X) is the worst
 

(5) Y = F(Y) ~ pX.F(X) 2Y 

P,oof. (y=F(Y))~ (.L~y),(Y=F(Y)) 

~ (F("') 2 F(Y)) , (Y = F(Y)) F monotonic 

~ (F(-'-)"Y) 

By ir,ductlon it follows that for any n ~o 

Y = F(Y) ~ F(n)(~) "F(n)(y) A Y = F(n'ry)
 

....; F(n)(~)? Y
 

~ (nF(n)(~))" y 3.2(13)
 

as requirEj.
 



4. Specifications 

",e have alreacy in passing introDuced two important concepts 

(1) A specification or abstract program describes the intended behaviour 

of a pror;ram, but it is not itself a program because it is expressed in 

notations which are not permitted in the programming language 

(2) A Concrete program P may be better than en abstract prograr:1 5; so 

whenever you want a program that oehaves like 5, the concrete program p 

will serve your purpose. In this casa, we cen say thet P setisfies the 

specification 5, Dr in symbols 

S'2P 

Tt is the duty of the programmer, when given a specification ~, to find 

a program P which satisfies 5, and to prove that it does so. The practical 

purpose of the laws in this paper is to help in this task. 

In tr,is section we shall introduce a calculus of specifications to 

aid in the development of programs. Specifications do not hilve to be 

executeo by machine, so there is no reason to Confine ourselves to the 

notations of a particular programming language.. There is no reason to 

insist even that all specific1'ltians must be satisfiilble. I\s an extreme 

example, we introduce tr.e specification T , wi1ich cannot bp. satisfied 

by any program whatsoever. 

To accept the risk of askin~ the impossible has as its reward that 

the n operator is defined on all specifications: wherever R and ~ arp. 

inconsistent, the result of (R n 5) is T. rurthermore, if S is ~ set 

of specifications, then 
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('\5 is the speci fication which requires ill R in S to be satisfied 

US is the specification which requires ~ R in 5 to be satlsfied. 

The fact that these are limits of the sets is expressed 

(1) T 2 \Js = VRt: s. T;?R 

(2) nS ~ T " VR.5 R '!T
 

Specifications ObHy ",ithout qualification all the laws of 3.2.
 

The 2 orderinr; applies to specifications, just as it dOBS to programs, 

but it can be intsrpreted in a new sense. If 5~T. this means that 5 

is a more general Dr weaker specification, and easier to meet than T: any 

program that satisfies T will serve for 5, but maybe more programs will 

satisfy S. Thus ...l- is tha easiest specifiGstion, satisfied by tiny program, 

and...,.. is the most difficult (impossible, in fact). 

4.1 Weakest prespecification 

Abstract programs may be constructed in terms of all the operators 

available for concrete programs. For example s;r is a specification 

satisfied oy a program that behaves like S; and when that terminates 

successfully, it behaves lika T. This fact is extremely useful in the 

top-down development of programs (also known as stepwise refinement). 

Suppose, for example, that the original task is to construct a program 

which meets the specification R. Perhaps we can think of a way to oecompose 

this task into two simpler 5ubtasks specified by 5 andT. The correctness 

of the decomposition can be proved by showing that 

R?S;T 

H'is proof should oe completed before embarking on aesign for the subtasks 

5 and T. Then similar methods can be used to fine programs I=' and j which 



sol\le these subtasks, i.e., such that 

S2P
 

and T :a;..J
 

It follows immediately from monotonicity of sequ8ntial composition that 

P;u is a program that will solve the original task 'el, i.e.? 

R'2(P;Li) 

Now suppose that il'l approaching the task R we can think of the 

sacond of the two subtasks T, aut we do not know the first subtask. It 

would be useful simply to calculete S from T and R. uJe ther8fofe define 

the weakest pre specification T'R to be speci fication which rrust be met by 

the first subprogram 5 in order that the composition (5;T) will accomplish 

the original task ,1. This fact is el(pressed in symbols 

(1) R~(T""'-R);T 

(T"",-R) is a sort of left quotient of R by T; the divisor T can be 

cancelled by postmultiplication, and the result will be the same as R or 

be Uer. 

Here are some el(amples of weakest prespecifications, where x is an 

integer variable 

(x:= 2 .. l()'\Jx := Il ... y) = (x := 2;0< y) 

because (x := 2,,>( y i x := 2>( x) = (x : = Il ... y) 

(x := 2;o.x)'(x:= 3) = T 

since 3 is Qdo, and ca"not be the result of doublin an integer.c 

(x := 2" x)"'-.(x :'" 3 v x := Il) (x ,= 2)
 

because (x:= 3 \II X := lj) 2' x := Il
 

= (x := 2; x:= 2 .. x)
 

The law given above ooes not uniquely define T""-I1. ,r;ut of all the 



solutions for X in the inequality 

n ;z(X; T) 

the solution T'R is the easiest to acr,ieve. Thus if you want to find 

such a solution, a necessary and sufficient condition is that the 

solution should setisfy T'.~ 

(2)	 Il 2(X;T) ~ O"-R) 2X 

Thus in dEveloping a sequential program to meet specification n. 

there is ro loss of generality in taking T \.n as the speel fication of 

the left cperand of sequential composition, qiven that T is the 

specification of the right operand. That is why it is called the 

weekest prespecification. 

The specificetion P\.R, where P is a program, plays a role very 

similar to Qijkstra's weakest precondition. It satisfies the analogue 

of several of his healthiness Conditions. 

In the following three laws, P must be a program. 

(J) If you want to aCcomplish an impossible task, it is still impossible, 

even with the help of P 

P\T	 '" T 

(4) If y~u want to accCKTlplish twc tasks with the help of P, you must 

wri te a ptogram that accomplishes Doth of thiOm simulteneously 

P '(P'1	 n H2) ("'R1) n (P'"2) 

This	 distributive law extends to limits of arbitrary sets 

p,",-lrh) n f'''-R I"O} 
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(5) Finally, t::cnsider a set of specificatiorlS S {Rili~O} such 

that 

Ri +1 a. i\ 

Than p,\(U~) UhRil i~o1 

The rollowing laws are very similar to the corresponaing laws for 

weakest preconditions 

(6) The program II changes nothing. Anything you want to achieve after II 

must be achieved before 

II'R = R 

(7) If you want to achieve R ilIith the aid of P", Q, you must achieve it 

with either of them 

(PVO)'\R (P\R) n(J'\R) 

(8) If you want to achieve R with the aid of (P;U), you must achieVE! (LJ\R) 

with the aid of P 

(P;O)\R P\(U,\R) 

(9) The corresponding law (01 the conditional requiies a new operator on 

specifications 

(P1b~O)\R = (P'\Rlf".} ",\R) 

where 5 fb' ~ T specifies a piogram as follo\lls: if b is true after 

execution it has behaved in accordance with specification 5, and if b is 

false afterwards, it has behalled in accordanCe with specification T. 

Pfb ~ Q is not a program, even if P and tJ are; in fact it may not even 

be implementab Ie: !:onsider the example 

x := false {:t +x := true 
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4.2 General invers" 

The "'-.. operator hOls a dual / • ("i/S) is the weakest 

specification of a pro~rom X suer that 

R ?(S;X) 

Its properties ere very similar to thosa of / , for l;ix8mple 

(1 r-125i(R/3) 

(2;. R 2(S;X) (F~/5)?X 

.,.(J:-r/p if P is a program 

(,; (Rl AR2J/P (lil/P)A(R2/P)
 

(~)H/ll = R
 

(6;1I/(PuO) " (II!P)A(R/~)
 

(1;,/(p,J)" (II!P)!'J 

The 'Jeakest orespecihcalion and lne weakest postsu8ci fication are 

in a sense the right and left inverses of sequential cor,lposilion. This 

tYPF- of inverse can be given for any operator F wt1ich distributes through 

arbitrary unions; it is defined as follows 

(8)C-
1 

IR; = U~\"2F(P)} 

This is not an exact invarse of F, out it satisfies the law 

(9) ""F(F-'(R)) 

Proof. ::HS F(U \P\ R"F(PI1) dp.f inition 
-1 

r 

UtF(P) 1R"F(p)l F distributp5 

~ R set theory 



Since r- 1 
(R) is th~ union of all solutions for X in the inequation 

R~F(X), it must b8 the weakest (most general) solution 

(10) R?r(x) ~ r-1 (0I)-;?X 

Thr' cor.dition thc;-t F must distrioute thrDUjh u is esse,1tial to 

_1 
the existence of the inverse r • To sr-ot: this, consicer the 

counterexample 

rl.<) XiX 

p x := x
 

Q x := -x
 

F	 is a function thi;lt may require rT,ore than one execution of its ')peran~. 

'jhen applied	 to the nO~-deterministic choice of two programs P Dr ~, each 

execution may make a different cl--oice. Consequently, r does not distribute, 

as shown by the exafl'ple 

r (p u J)	 (p ...olJ)i(p vJ) defini tion r 

(p;p) ,-,(Pi:';) v (':'iP) v(JiJ) disjunctive; 

(x:= Xi x:= x)u(x:", Xi x:= -x) 

u	 (x := -Xi x := x) v(x := -xi x := -x) 

)( := x u x := -x 

cut r(p)ur(,~)	 (x := Xi x:= x) v (x := -xi x ;= -x) 

x := x 

Since P?F(P) anc P2f(";), it follows that 

':::y	 s;;t theoryU {x I' 2>(X)} 2 '"' 

by (10) and	 the deFinition of r-\p) wa could conclu8e 

r: : f (~ .... ~) 

which is false. The contraDiction shOWS that r does not heve an inverse, 

ever in the wea;" sensE' described by (10). 



The i1vet5e F-'(R) (when it eXists) could be or assistance in 

the top-oo~n development of a program to mP.et the specification R. 

Suppose it is decioeD that the top-level structure of the program 

is definec by F. Then it will be nece~5ary to calculate F-
1 
(~) .:Inc 

Lse it 85 :~e specification cf the co~~onent pro;ram X, in secure 

kno~led;e :hat the final program F(A) will meet the original 

speci fication R 

n ?F(X) 

Ln"ortunat2ly, the ;net roo ~08S not generalise to a strL!cture F with 

two or mar? components; ano 50 it would be necessary to fix all but one 

of the cor~on8nts before calculatin; the inverse. 



5. Conclusi on 

The la~s ~iver in this ~acer are intended to assist ~ro~ra7'8rs 

in reasonin~ efff'ctively about their tas'..::s, inclucJinc; both tf-Je 

development of prol;t'orT's that meet their specifications, and 

optimis8ticn whare necessary by al~ebraic transformatiQr. rne c~sic 

insight is that programs themselves, as '.!Jell as their specifications, 

are mathem<.;tical expre9sions, afld can tf-Jerefore be used directly in 

mathematical reasoning in Just the Si:'me '"ay as expressions cenoting 

familiar mathematical concepts such as numbers. sets, functions, groups, 

categorias, etc. Tt is also very convenient that programs and 

specifications are treated together in a horlO;Eneous Fraffielolork; !:.f)e 

main oistinction between them is that pr~grams are a subclass of 

specification expr9ssed in such severely restricted notations th~t they 

can be input, translated, and executed by a general-purpose storeo

program digital computer. 

The exposition of this paper is seriously incomplete in two 

important resp~cts, one theoretical and one practical. The theoretical 

defect is that the laws are presented as selF-evident axioms cr 

postulates, intended to commaro assent from thosp who alreaoy uncerstand 

what the laws are about. ThOlt is the way the laws of arithmetic or 

geometry are usually tau~,rlt in schools. Nevertheless, as Russell points 

out, "The rr.etrod of postulation ras many aovant03;esi tfley arE' bF sa~e 

as tha advantagf's r:Jf theft over hOnest toil" ffiuS~f'1..!.7. Russell loiled 

hard Lo !;ive a df'finition of tt",e concept of a number in tP.rms cf 1:ore 

primitive concepts such as sets, and then to oefiflP t~~ oper~t~o~s of 

arithmetic, and finally to rrove that these dE'fifliticn~ satisfy the laws 

t"at Ioe ["lev,,"!, o'">ubtE'c ir ::hc first placE'. 



if v<; wf're' to errD·lrk en si01ilar toil in tre case of secuential 

pro;;r"~"l 21d treir soecLfications, the r'?lf'vant 'Tlatherratical oef1nitions 

can bt' fOf'fluiated wit~in the clo>i3icol theory of r",lations. This is 

done in a :C'rT'panion pac:£r .Lhr1il(·€ and ~'!il. Tt->c f'xistef"'ce of such 

oefinitiol'3, an8 tn2ir ,,5e L: ;:oreve the la["s e,"'u01era'Cec in this paDsr, 

yields a v3luai:'le reassurance It-,,'lt the laILs are consistent. FurtherlTore, 

it gives ~j(!iticr>al insight into thl' mathf'motics of proSramrning, and hOIli 

it rlay be 3pplied in practic£'. In particular, it su~gests adcitional 

useful l~'~:; anc it ast6oli"'hes thEll <;; ;ivp.C' set of lal~S are cSnlplpte 

ill the sprse that SOrT'a lliice anc claarly defined subset of all truths 

about pro~ra.m"'im; can be dl?ouce:d cirectly fro~ the laws, l:.li trout app"!al 

to the possibly greater cOlllplr::xiti of U",e <',:rinition~. This could be a 

~TPat co'~fcrt to the practisin~ ~.ro=rar:-r'er. w,o does not have to know 

-.:r.e foun('~tions C'f tre sul::jec-c.. any T,ore t>-'en t"'e scierti~t has ~u K,OW 

aDout rne cj<>rinition of redl nLJn()srs in terOTs cf JeoC'KiC'd cuts. 

Thr SEOcond serious cf·floiercy Dr U",e p2iIJRr is the pr<:cticol one. 

[ven aft"r n"arly -:;ne hundr~o laws E;iven il' tt->is pE.ppr, we are still a 

long way "ro"l knowing no\,. to ar,)ly tr·Ec~ 8i:-ectly to tre oesil.:n of correct 

and effiC1E'nt fJrOC;rar;s or, HIE' sCi"le r8uu.\.rE:u ~y nocern tecr"clor~y. P-·e 

luay C1heao will be to Sain i~r;lctical e"pr·rienr.e in tt'1f; app liC<ition to 

prot;;rammirQ of the kil'd ['f tn>lUlp.matics introduced in t.,is ('aper, i'll"'d to 

contif"'ue :he searah fer D2E;Jl?r an.:J ma::e' sr:ecific: theore,.,s wnicr Ci'." he 

used ,.,ore si~ply C" lirritpo but not too narrcc: ran;,"s ::Jf :Jrobie.,. Ihat 

is the wa) that applied lll3therT';:ltics, as well as purf! mathematir.s, h",ve 

'll8de such ·;rH<lt rro<;ress j 1'1 tr'f' l"st tu~ trcus3nd yf!are;. [f" 'Je follow 

':rC!t exa-,de, pert->cps _e '~ay ~Iake fastsr p:'8gre~s. both in theoretical 

reS'=3rcr ',-:: 1, i:s ordctic~.l a::;:J:ic'C'tio"",. 
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