
CAVIAR: A Case Study in Specification

by

Bill Flinn

Standa.rd Telecommunication Laboratories

Harlow, England

and

Ib Holm &6rensen

Programming Research Group

Oxford University Computing Laboratory

Oxford University r -.'
Wolisc.-'

Parks /-.. ,-,- ~ _1

Oxford OX 1 3\iu

Technical Monograph PRG·48

June 1985

Oxford University Computing Laboratory

Programming Research Group

8-11 Keble Road

Oxiord OXl 3QD
England

Copyright © 1985 Bill Flinn and Ib Holm &zIrensen

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

CAVIAR: A C..... Study In SpeciCk"tlon

Bill Flinn and Ib Holm &zIrenseD

Abotraot

This paper describes \he specification, wriUen in the specification language known as
Z, of a reasonably complex software eystem. Important features of the Z approach
which are highlighted. in this paper include the interleaving of mathematical ~xt with
infonnal prose, the creation of parametrised. specifications, and lUIe of the Zschema
calculus to construct descriptioDs of large systems from simpler components.

Copyrighl @ Bill FlinD and Ib Holm SOreDseD 26 Jul 85 1

3 CAVIAR

Contents

O. IntrodUdiOD

1. The Case Study

2. Identification or the Basil: Sets

3. The SUboyBteDl8 or CAVIAR

.... A General Resource-User System.

6. SpedaliBatioD or the General R-U System.
6.1 An R-U system where resources ean.Dot be ahared
6.2 An R-U system where each user may ()(::rnpy at mOilt one resource
6.3	 An R·U system where a user occupies

at most one Donsharable resource

6.4 The specification library

8. ClaBlllifieation .and Instantiation
6.1 Some Ia..... Cor CAVIAR
8.2 Matchina system with models
8.3 The hotel:reBeJ'Vation subsystem· HR-V
8.4 The trmuport resel'Vation subsystem· TR-V

7. The ~eeting Attendance Subsystem
7.1 A pool 87"1em

7.2 The meeting· visitor subsystem

4 CAVIAR

8. The Meeting Resource SubIJystems
8.1 A diary system
8.% The conference room booking subsystem
8.3 The dining room booking BubsY8tem
8.4 The vioilor pool • V·P
8.6 The t=onstrndiOD process

o. The Complete CAVIAR System
0.1 Combining subsystems to fonn the 8Y8tem state
0.2 OperatJODII OD CAVIAR

9.2.1 OperatiolUl which involve meetl:np only
9.2.2 Oper.tiOIUl which involve visitor. only
9.2.3 A genual visitor removal operation

10. Conduion

11. AdDowledgementa

12. Referent=es and Related Work

Appendix: Mathematical Notation

Appendix: Schema Notation

5 CAVIAR

O. Introduction

This paper presents a case study in system specification. The notation used to record
the system's properties is known as Z [1, 2, 31. Z is based on set theory, and its use as a.
specification language has been developed at the Progranuning Research Group at
Oxford University. Some important aspects of the Z approach are illustrated in this
paper.

As is well known, software development can be divided into several phasesj
requirements analysis, specification, design and implementation. Z can be applied in
both the specification and design phases; however, in tbis paper we will address the
specification phase only.

We view a specification as baving a two-fold purpose: firstly, to give a formal
(mathematical) system description which provides a basis from which to CODstruct a
design. Such a mathematical description is essential if we are to prove formally that a
design meets its specification. Secondly, to give an informal statement of the system's
properties, in order that the specification can be tested (validated) against the (usually
informal) statement of requirements. Thus the Z approach is to construct a
specification document which consists of a judicious mix of infonnal prose with
precise mathematical statements. The two parts of the document are complementary
in that the infonnal text can be viewed as commentary for the fonnal text. It can be
consulted to find out what aspects of the real world are being described and how it
relates to the infonnally stated requirements. The fonnal text on the other hand
provides the precise definition of the system and hence can be used to rellQlve any
ambiguities present in the informal text. A beneficial side effect for practitioners
writing such documents is that their understanding of the system in question is greatly
helped by the proceSll of constructing both the fonnal and the informal descriptions.

It is oiteD. the case that the process of abstraction used to construct a specification
results in structures which are more general than those acmally required (or the
sY3tern being considered. It is part of the Z approach to identify and desribe such
general structures. These descriptions can be placed in a specification library.
Particular cases of these general components can then be used later, either as part of
the current system or in subsequent projects.

This specification case study develops a number of general systems which are
subsequently constrained and combined to form the complete system description.

6 CAVIAR

1. The Case Study

This specification of a Computer Aided Visitor Information And Retrieval system
resulted from the a.nalysis of a manual system concerned with recording and retrieval
of data about arrangements for visitors and meetings at a large industrial site.

Standard Telecommunications Laboratories (U.K.) sponsored the study in order to
investigate tbe feasibility of converting to a computer based solution. or particular
concern were the interrelation of the stored information, the quality of the user

interface and the volume of data. which was required to be processed. The customer
provided as input to the study an informal requirements document. We attempt to
provide in this paper an outline of the steps involved in development of the eventual

formal specification. It is important to stress at the outset that we view the task of
constructing such a specification to be an iterative process, involving several attempts
at construction of a model for the system interspersed with frequent dialogues with

the customer to clarify details which are ambiguous or undefined in the initial
requirements document, ana frequent redrafting \.0 clarify the structure of the
document.

At an early stage in the analysis it became clear that the CAVlAR system consisted
of several highly independent subsysteIIlB. Each subsystem records important
relationships within the complete system and these separate subsystems are
themselves related accordillg to some simple rules. Most of the operations to be
provided in the user interface can be explained as functions which transform one

particular subsystem only, leaving the others invariant. These observation led to the
decision to first define the subsystems in isolation and then to describe the complete
system by combining the definitions of the subsystems. Once this decision had beell
taken, it a.lso became clear that each of the individual subsystems, when viewed at an
appropriate level of abstraction, was a particular instance of a general structure.

From tbis vantage point it was natural to specify each of the subsystems by "refining"

a specification which describes the underlying general system.

The process of analysiA as presented here begins with an identification of the sets
which appear to be important from the customer's point of view. Next the

relatiollsbips between these sets are investigated and a preliminary classification of
the subsystems follows. The third phase consists of developing an appropriate general
mathematical structure in which to place these subsystems. Various ways of
specialising (restricting) the general structure are then investigated and particular
subsystems are modelled by instantiation. Finally the subsystem models are
combined.

7 CAVlAR

2. IdenliCiution or the Basic Sets

We now present a brie[account of the existing system, emphasizing the important
concepts in boldface. Visitors come to the site to attend meetm.gB and/or consult
Company employees. A visitor may require a hotel reservation and/or trllDllport
reaervation. Each meeting is also required to take place in a designated morenmee
room, at a ceriain time. A meeting may require the use of a dining room for lunch,
OD a particular date. Booking a dining room requires lunch information including
the Dumber of pla.ces needed. Each conference room booking requires .ellsion
information about resources required for use in the meeting, e.g., viewgraphs,
projectors. The main operations required at the user interface can briefly be
described as fa.cilities for booking, changing and ca.ncelling the use of resources. We
list below the sets together with the names that we shall adopt for referring to them.

Set Name

Meetings M

Visitors V

Conference Rooms CR

Dining Rooms DR

Lunch Information LI

Session Infonnation 51

Hotel reservation HR

Transport reservation TR

The informal interpretation of these sets is straight forward and for the purpose of
this specification no further detail is necessary. Note that the question of modelling
time remains to be resolved; at this point we simply observe that hotel reservations
are made for particular dates l transport reservations are made for certain times on
particular dates, and conference room bookings are made for sessioDs on particular
dates. We shall not specify the term session further apart from noting that a date is
always associated with a sessionj it could. for example l denote complete mornings or

afternoons. or hourly or half-hourly intervals. depending on the wa.y confereQce rooms

are allocated.

B	 CAVIAR

The notion of time a.nd the rela.tionship between the different units of time used
within the system can be formalised by asserting the existence of t.hree sets as follows:

Date
Session

Time

together with two total functioDs

date~of-sess i on Sess i on -to Date

date-of-t j me Time -to Date.

3. The Subo)'lltems of CAVIAR

The first approach to a. mathema.tical model stems from the realisation that several of
the sets listed above can be viewed as resources aJ1d other seta viewed as users of

those re8ources. We can identify the following subsystems of CAVIAR in this
framework (i. e., Resource-User systeIIlB). Observe that in different subsystems the
same eet ma.y a.ppear in differing roles.

System Resources Usen

CR-M Conference rOOlll3 Meetings

DR-M Dining rooms Meetings

M-V Meetings Visitors

HR-V Hotel reservations Visitors

TR-V Transport reservations Visitors

Once we have made this mathematical abstraction it seems worthwhile to develop a
general theory of such resource-user systems for the following reasons:

1.	 A specification of such a general system would be more ul!leful as part of a
"specification libra.ry" than a specific instance of such a system. Re-usability is
much more likely to be achieved by having generic specifications available
which ca..n be instantiated to provide particular systems.

2. Particular	 subsystems of the general system can be constructed as special
cases of the general specification in various ways. This will amply repay care
and time spent on the general case. Furthennore, such instantiation may well
result In a. more compact implementation.

9 CAVIAR

4. A General Resource-Ueer Syetem

We consider a system parametrised over three sets;

[T, R, U I

Informally, T is to be thought of aa a. set of time sloes, R is a set of resources and U
is a set of users. We describe a general resource·user system as a function from T to
the set of relations between R and U. Thus we ha.ve a rather general framework: for
each time slot t E T, some users are occupying or uaing some resources. The set T

will later be U1stantiated with different sets in the variouB a.pplica.tions. Notice tha.t
considering relations between Rand U allowB us the possibility of a user occupying
several different resources simultaneously, a.e is shown infonna.Ily in the following
diagram:

l
T~,~:~ (,\~?1~!1
~~ \J ~
 ,.
: ~
. ~ V \V

FonnaUy, the structure we are describing is captured by a. function of type

T -+ (R <-+ U)

We shall now iDcorporate this into a scbema definition. ThiB Ilchema is parametrised
over the sets T, Rand U, and contains some useful ancillary concepls in addition to
the function ru above which will be useful in later analysis. In Z specifications it is
common to iDtroduce such derived components: as specifien of software we are
neither in the position of a pure mathematician looking for a particularly spane set of
concepls and axioms with which to define a mathematical structure, nor are we in the
position of an implementor trying to minimise storage. The component in-use, which
gives the set of resources in use at any point of time, will be useful in contexts where

10 CAVIAR

we are not concerned with the user component of the system state. The function
users, which gives the users occupying resources at a.ny point of time, will be used in
situatioDs where we do not require the information about resources, We also note that
there may be occasions when we wish to consider the set of inverse relations
generated by ru; we call this function ur.

R-U
ru T --+ (R ... U)

in-use T--+fR

users T -+ P U

ur T --+ (U ... R)

Vt, T •

in-use(t) = dom(ru(t» A

users(t) = rng(ru(t») A

ur(t) • (ru(t»)-1

The initial state of this system is defined by making ru(t) the empty relation for
each t.

In;t-R-U • [R-U I rng(ru) = { {)) I

Our first theorem proves that such an inital state is reasonable a.nd atlsures Ull of the
consistency of the definition of R-U.

Theorem 1.
I- 3 R-U • In i t -R-U

In the interests of readability we have not given proofs of theorems stated in this
paper.

We continue by defining the appropriate operations for this structure. The first step
is to identify commonalities. For our purposes, the operations that we wish to
consider on this structure are concerned with making a new booking, i. e., adding a
new pair (r. u) to an existing relation at some time t, cancelling an existing booking,

i. e' l removing such an (r. u) pair, or modifying in some other way the relation that
exists at some particular time. In fact we shall be a little more general and define a
class of operations on R-U which allows the image of a set of time values to be
altered. This is because we anticipate such operations as booking .a conference room

11 CAVIAR

for a. meeting whicb lasts for several time slots. Of course a booking which involves
only a single time slot is a particular case.

Thus we may summarise the common part of all the operations as follows. Their

description involves: a state before, R-U which introduces ru, in-use, users
and urj a state after, R-U' which introduces ru' I in-use', users and uri a set of
time values, t? which denotes an input. The operations always leave the function ru

unchanged except for times in t? Formally this is captured by

~R-U

R-U
R-U'
t? : P T

t? \1ru' t? \1 ru

We now have a successful booking operation defined as follows

R-U-Book --"

~R-U

r? R
u? : U

'tI t : t?
(r? u?) Ii! ru(t) f\

ru'(t) = ru(t) u { (r?,u?) }

Thus R-U-BQok inherits all the properties of l!.R-U. Furthennore, it takes two

additional (input) parameters r?: R and u?: U, and is constrained by a predicate which
imposes a requirement on the input parameters and also further relates the before
and after states.

12 CAVIAR

Notice that we ate making the predicate

'tJ t: t? • (r?u?) II! ru(t)

a pre~conditjon for a 8ucceesful booking. In fact, we can show that this condition is
sufficient for perfonning a successful booking, i. e" if we are in a valid system state
with the required input parameters of the correct type available and furthermore the
above condition holdB, then there exists a re8utting valid 8ystem elate which is related

to the starling state according to the R-U-Book schema. Formally, this is the content
of the following .result:

Theorem 2
R-U'" [t?: f T; r?: R; u?: U I 'lit: t? • (r?,u?) , ru(t) I
I
3 R-U' • R-U-Book

A successful cancellation operation may be defined via

R-U-Cencel
6R-U
r? R
u? : U

V t : t?
(r?, u?) e ru(t) A

ru'(t) = ru(t) - { (r?,u?) }

The pre-condition for 8uccessful cancellation is that the pair (r? u?) is related by
ru(t) for all time values tint?; i. e., the following tbeorem bolds.

Theorem 3
R-U A [t? : f T; r? R; u? U I V t, t? • (r?,u?) e ru(t) J

I
3 R-U' • R-U-Cancel

CAVIAR	 13

So far we have only specified successful operations; thus these descriptions are

incomplete. We could at this stage define robust operations by introducing

appropriate error recovery machinery. In the interests of simpUcity we shall not give a
general treatment of errorsj however we shall indicate in a later section how the
descriptions of the operations at the user interface caD be completed.

We shall define two further operations OD this structure. The first involves deleting a

resource and a.ll use of tbat resource. This is an operation to be treated with caution:

see Theorem 7 below.

R-U-De 1 -Res	 --"

6R-U
r? : R

'v' t	 : t?
r?	 Edam ru(t) "

ru' (t) = { r? } ~ ru(t)

Infonnally, this operation may be described a.s follows. Consider ea.ch element tint?

and the corresponding relation ru (t) in turn. All elements (r?, u) are to be removed

fromru(t).

Theorem ...

R-U " [t? : f T; r-? R I V t: t? • r-? e dom ru(t) I
~

3 R-U' • R-U-DeJ-Res

Corresponding to deleting a resource tbere is an operation wbicb, given a user va.lue

u?, deletes all pairs (r, u?) from tbe relatioDs a.ssociated with time values in t?

This is defined a.s follows:

R-U-De 1-User

~R-U

u? : U

V t	 : t?

u? e rng ru(t) "

ru'(t) = ru(t) ~ {u?}

14 CAVIAR

Theorem 6
R-U , It? , P T; u? , U I V I t? • u? E rng ru(t) l
I
3 R-U' • R-U-Del-User

So far we have listed theorems that a specifier is obliged to provej viz the result that.
t.he initial state satisfies the required definition (and therefore that the specification is
consistent) and the theorems that explicitly give the pre-conditions for each operation.

For the specifications that we shall develop from now on thelle theorems have been
omitted in the interests of brevity.

In addition to these obligatory results, there are other lIoptionaPt theorems that are a

consequence of the specification, and which often give insight into the structure being
developed.

Two such results for our system a.re as follows:

Theorem 6
R-U-Book • R-U-Cencel I- ru' -= ru.

Informa.lly, this theorem states that if we make a booking and follow it immediately by

a cancellation using the same input parameters, then the state of the system does not
change.

Theorem 7
R-U-De l-Res
I
in-use in-use. (Xt:t? • in-use(t) - { r? }) A

users users •
(At,t? users(t) - {u U I ur(t)l{u)) = {r?} })

This theorem makes precise the informal comment made earlier about the need for
caution with the R-U-De l-Res operation. This theorem shows that resources are
removed from the system structures, which we do expect, but furthermore the
operation can also remove existing users.

There is a similar result concerning the R-U-De I-User operation.

CAVIAR IS

&. Specialisation or the General R-U System

We shall now spedaUse the general R-U sysk!m into parlicular classes of the system.

These specialisa.tions are motivated by the observation that for some of the insta.nces
lis~ earlier, at any given time a. resource ma.y be rela.ted to only ODe user t or a. user
may occupy only one resource, or both.

6.1 All R~U system where ftlilOBree8 r..annot be shared

The first case we derme is the class where each resource may be utilised by a.t. moat

one user I but each user ma.y occupy several resources. We denote this system by
R>.U (where «)- is just a. character in the name) and define it fonnally by

R~U • [R-U I rng(ru) , R-<+U)

The initial sta.te of this system is given by the same condition as for Init-R-Uj thus

we have

Init-R~U" [R~U I rng(ru} = { {} })

All opera.tioos are described in terms of

t.R~U • R)U' R~U'

The operatioos on this system ma.y be defined as special cases of the general
opera.tions for R-U. We firsl cODsider lhe booking operalion.

R~U-Book .. t.R~U' [R-U-Book I V b t? • r? " dom ru('.) I

The qualifying predicate is included in indicale lhal there is a further pre-eondilion
for booking a resource in a R~U system.

We now have two parls to the pre-condilioD for lhis operalioDj firstly lhis qualifying

predicate, and secondly lhe pre-condilion arising from R-U-Book. In facl the former
implies the latter t all is easily checked..

The caDcellation operation is defined as follows:

R>'U-Cancel Q R-U-Cancel A 6R>.U

16 CAVlAR

On considering the two deletion operations defined for R-U, We observe that
R-U-De l-Res is equivalent to a cancellation in our present context, because the

resource is allsociated with only one user. We therefore need only the operation which

deletes a user.

R>'U-Del-User ~ R-U-Del-User A 6R>.U

5.2 Au R-U 8yatem where each UBer may occupy at most one :resource

The second case we define is the daM where each user may occupy at most one
resource but resources may be shared amongst users. We denote this system by R(U

and define it fonnally by

R~U • (R-U I rng(ur) 0 U~R)

The initial state of this system is also given by the predicate for In i t -R-U. We have

Init-R(U • [R(U I rng(ru) = { {} } I

The operations are described in terms of

6R(U • R~U A R~U

We now defiDe the booking operation for the system.

R(u-Book • 6R~U A [R-U-Book I V t t?· u? " cng ru(t))

As before, a qualifying predicate is needed and again a.a before the cODstraint given
here implies the earlier pre·condition for the general R-U-Book operation.

The cancellation operation is defined as follows:

R~U-Cencel Q R-U-Cencel A 6R<U

On considering the two deletion operations defined for R-U I we observe that this time
R-U-Del-User is equivalent to a cancellation in our present context, because a user

may be associated with only one resource. We therefore need only the operation which
deletes a resource.

R(U-Del-Res Q R-U-Del-Res A 6R(U

17 CAVIAR

6.3 AD. R-U II)'Stem where a user oeeupies at most ODe D0D8har.bJe rtIOurce

The third and last specialisation we define shares all the properties of the lIysteIIlB

defined in the preceding two sectioDs.1t is therefore defined as the conjunction of the
two schemas above. In this system each user may occupy at most one resource and
each resource may be occupied by at most one user. Formally we have

R:U • R)U A R(U

The initial state of this system is clearly defined by

1nit-R:U " [R:U I rng(ru) = { {} }

The operatioos OD this system are given by the conjunction of the operations defined
for each of the two earlier systems. For this system we require only the booking and
cancellation operatioDs. Thus we have

R:U-Book • R~U-Book 1\ R(U-Book.

R:U-Cancel S R>'U-Cencel R(U-Cancel1\

5.4 The spedfieatlon Ubrary

We have DOW constructed four specifications which might be considered to form the
nucleus of a specificatioD library for resource-user systems. We may summarise the
relatioDships between the four classes of system schematically as follows:

R-U -- Most ~enere 1
/ \ .

R~U • R(U

\ I
R:U --Host constrained

18 CAVIAR

6. ClaBsification and Instantiation

6.1 Some JIWS Cor CAVIAR

In this section, in order to illustrate the clarification process which took place during
requirements analysis, we list some observations about the CAVIAR system which
emerged during dialogue with the customer. We formalise the important constraints
as laws which need to be taken account into account in 'be development which
follows.

1. At any time a conference room is associated with only one meeting.

2. At any lime a meeting may be associated with more than oDe conference room.

Law 1 is reasonably obvious: it would be difficult to bold more tban one meeting in a
given room. Law 2 is not obvious: it was unclear from the inionnal description
whether or not a meeting could occupy more than one room. In fact tbe customer

believed initially that a meeting could only take up one room, but a counter-example
was found amongst the supporting documentation.

3. At any time a meeting is associated with only one dining room.

4. At any time participants from several meetings can occupy the same dining room.

These laws followed from the informal information provided that all visitors in a
particular meeting would go to lunch in the same dining room. It was further
established that all seats in a dining room were treated as indistinguishable, 50 further
meetings could be accommodated if enough seats were available. Further clarification
was necessary regarding lunch times: it transpired that there were "earlyD and "late!!

lunches; however this was handled by "doubling up" each dining room. For example,
a booking would be made for "DR 1, earlyD and this was a different dining room from

"DR I, late."

5. At any time a visitor is associated with only one meeting.

6. At any time a meeting may involve several visitors.

Law 5 had to be checked out with the customer.

19 CAVIAR

7. At any time a. hotel room is associated with only one visitor and vice versa.

8. At any time a. transport reserva.tion is associa.ted with only one visitor and vice
versa..

La.w 7 was na.tural, but la.w 8 was less 80. It was esta.blished that even if the transport
department decided to use a. minibus, a. separa.te transport reserva.tion would be issued
to each visitor.

6.2 Matching Elystem with models

In tbis section we first consider each CAVIAR subsystem in turn a.nd match it to the

a.ppropria.te model. In fad we ha.ve enough structure availa.ble to defIne two
subsystems directly a.nd we do tbis in the remainder of this section.

(1) We first consider the conference room - meeting system CR-M.

From laws 1 a.nd 2 we see that CR-M is an instance of the R~U subsystem.

(2) The dining room - meeting subsystem DR-N.

Applying laws 3 a.nd 4 we find that DR-M is an instance of R(U.

However this system does not contain any information about numbers of seats or the
lunch details, so we will need to extend this system later.

(3) The meeting - visito subsystem M-V .

From laws 5 and 6 M-V is an instance of R~U.

However we "have not documented the fad that meetings have to be created before
visitors can be attached to themj this will also be done later.

(4) The hotel reservation· visitor subsystem HR-V, and the transport reservation
visitor subsystem TR-V, both have the property that each resource is occupied by
only one user and vice versa. Therefore both these systems are instances ofR:U.

In fact this model is sufficient to define HR-V a.nd TR-V completely, by iD5lilntiation,
as we now show.

20 CAVIAR

6.3 The hotel:reservation subsystem - HR-V

We define HR-V a.a follows:

HR-V • R:UHR_V{Oate, HR, VI

This object is a decorated instance of the R':U schema, with its parameLer sets
instantiated by the sets Date, HR and V introduced in section 2. To be more explicit,
the definition above is shorthand for the following:

HR-V

rUHR_V Data -. (HR .. V)

in-useHR_V Date ~ P HR

usersHR_U : Date ~ P V

urHR-U : Dete ~ (V +4 HR)

rng(ruHR-V) \; HR-+tV 1\

rng(urHR_V) \; V"""HR 1\

(Vt, Oat e, "' HR •

rEi n-useHR_V (t) ... r E dom(ruHR_V(t») "
(Vt: Dete; u: V •

U E usersHR_U(t) ~ U E ran(ruHR_U(t») "

("'t: Date • UrHR-V(t) = (ruHR_V(t»-l)

Thus each component of the schema is given the decoration in the definition, and each
occurrence of the pa.rametrised sets is instantiated as shown above. From now on we
shall use such decoration without further comment.

The initial state of HR-V is given by

Init-HR-V • Ini t-R:UHR_V[Oate, HR, VI

and the operations are given by

Book-Hote l-Roomo ~ R:::U-BookHR_v[Date, HR, V]
and

Carlca l-Hote l-Roomo ~ R:::U-Cance 1HR_v[Date, HR, Vj

21 CAVIAR

8.4. The tr8J18port reservation subsystem - TR.V

This subsystem is essentia.lly the same as the HR-V subsystem except for the

parametriBation. The instances of the parameteI"8 are denoted respectively Time, TR
and V, where once again the seta TR and V are as in section 2. We shall not specify the

set Time further, except to repeat that it contains a Date component (see section 2).
Thus we have

TR-V 0 R:UTR_V[Time. TR. VI

with initial state given by

Init-TR-V Q Init-R:::;UTR_v{Time. TR.V]

and operatioDS given by

Book- Trensport o o R:U-BookTR_V[Time. TR. VJ
and

Cancal-Transport o S R=U-CancelTR_vITime. TR. vj

22 CAVlAR

7. The Meeting Attendanee Subsystem

We now turn our attention to what is necessary in order to complete a model for M-V.
Booking and cancelling operatioDS ha.ve been defined already but 80 far we have Dot

taken account of the fad that before bookings can be made the system bas lo ·create"
meetings. The question of exactly which objects are IIcurrently defined" at any
pa.rticular time is important be<:ause in several cases only those objeds known to the
system (i. e' l those objects that ha.ve been created but Dot yet destroyed) can book
resources, ele.

7.1 A poolsyatem

We can model this situation with a simple structure which we tenn a. Poo I. This
schema is parame\rised over the set T and an arbitrary set X. There are only two

operations to be defined; namely those that add an object to, and delete an object
(rom, the pool, over a specified time period.

FonnaUy we have

[T. X J

[Pool

elC i sts : T ~ P X i

I

with initial staLe given by

Init-Pool Q Pool I rng(exists) { {} } 1

For later use we define

=Pool Q [APoo! I Pool' Pool J

Given

l!.Pool 9 Pool It, Poll'

23 CAVIAR

The operatioDs are given by

Create
bPool
t? P T
x? : X

axists l = exists. (>.. t t? • exist9(t) u { x? })

and

Destroy ,

APeol
to PT
x? : X

ex j sts' exists. ().. t t? • exists(t) - { x? })

We could have included in the Create operation the pn!-condition that the object x?
not already exist for any of the times in t? However we make a delibera.te decision
here to omit this - ha.ving in mind the situa.tion where an object may already exist for
Borne of the times in t? and its existence needs to be extended to all of t? A similar
remark applies to the Destroy operation.

7'.2 The meeting ~ visitor subsystem

To CODstruct the model for the M-V system we combine the Poa I and R:<;U structures.

M-V
R,UM_V[Session,M, VI i

PoolM[Session,Mj

Vt iT·

in-useM_V(t) I: eXistsl1(t)

24 CAVIAR

Thus we have combined an M-V instance of an R~U system and a meeting
instantia.tion of a Pool system (with the parameter sets as shown). The predicate
assures that visi\ol'8 can only attend existing meetings.

The initial state is given by

Init-M-V Q rnit-R~Un_v[Ses5jon.M,Vl A Init-PoolnfSession,M)

We now den.ne the operations on M-V in terms of

6M-V ~ M-V A M-V'

The first operation is concerned with adding a visitor to a meeting.

Add-V i 5 i t or-t a-Meet j ngo Q

6M-V A =Pooln[Session,M] A R~U-Bookn_v[Session.M.Vl

When an operation is Ilpromoted" in this way, its new pre-<:ondition is determined as
follows: the lIald ll pre-<:onditioD (i. c., that arising from its definition) musL be
conjoined with a further predicate which arises from the new invaria.nt of the larger
sta.te. Here, for example, the pre-condition for the earlier booking opera.tion is given in
section 5.2: namely

V t t?M-V· u?n-v ~ rng(run_v(t»)

and this must be conjoined with

V t t?n-v· r?n-v e eXistsn(t).

This second predicate is a consequence of the M-V invariant.

Thus the complete pre-condition for the Add-V i sitor-to-Meet ing operation is
given by

V t t?n-v' u?M-V f rng(run_v(t» /I. r?n-v e existsn(t)

which states that the visitor (u?n-v) is not already attending a meeting at that time
and that the meeting he is going to attend actually exists.

25 CAVIAR

The second opera-tioD removes a. visitor from a meeting.

Remove-V i s i tor-from-Meet i ngo Q

AM-V 1\ sPooln[Session,M] 1\ R(U-Canceln_v[Session,M,V]

It is cuy to check that the pre-condition for the Remove-V i 5 i tor-from-Meet i ng
operation is simply the predicate which is inherited from the initial R-U-Cence 1
operatiODj namely

V t : t?n-v • (r?n-v. u?n-v) E rUn_v(t)

We now define the operatioDS which create and cancel meetings as follows:

Create-Meet i ngo Q

AM-V =R(Un_v[Session,M,V] Creeten[Session,Mj1\ 1\

For the creation there is no pre-condition.

Cancel-Meetingo i

AM-V
R(U-De l-ResM_v iSess ion, M, V]

OestroYt1[Sess ion, M]

t?t1 :::: t?t1-V 1\

x?t1 :::: r?t1-V

The pre-conditions for t:ancelling a meeting ariae from the original R-U-De l-Res

operation, i. e., that

V t : t?M-V • r?M-V E dom(ruM_V(t»

and secondly from the identifications required for the input parameteIll.

26 CAVIAR

8. The Meeting Resource Sube)'1JteD1B

We are len with the 8}'l!IteII18 CR-M and DR-M to define. We observe that both of these
have further information associated. with the resource-user relationship, 80 in order to
capture this facet in our model we introduce the concept of a diary system.

8.1 A diary ")'II"""
The diary is to record information about some elements of a set. We denote the eet in

question by X and the associated information by I x' For each t , the set of elements of
X for which we have information is defined as recorded (t). Once again this system
is dependent on time, T.

[T. X. Ix J
Diary

info T -+ (X Ix)

recorded T -+ f X

Vt T· re~orded(t) dom(info(t»

with initial state given by

Init-Diary s:i! Diary I rng(info) = { {)) J

The two operations to be defined. both involve a change oYer a particular time period.
Note that we are motivated to make this definition in order to maintain compatibility
with existing systems. Formally we define

lilliery Q Diary /\ Diery' /\ [t? f T J

Add
bDiery
x? X
i? : Ix

(V t : t? • x? f recorded(t»/\

info' = info. (~ t : t? • info(t) il {x? H i? })

i

27 CAVIAR

The complementary erasure operation would remove one element (and the
information associated with it) from i nfo(t). However we note that this is a special
case of the foUowing more powerful operation.

Erase
ADiary
x?:T-++fX

dom(x?) = t? II.

(V t : t? • x?(t) ~ recorded(t?» II.

info' = info • (~ t , t? • x?(t) ~ info(t»

8.2 The eonferen<e room booking BUboystem

We are now in a position to fully specify the subsystem CR-M, by inBtantiation as
follows:

CR-M -----,

R>'UcR_n[Session,CR,M) i

DiarYCR[Session,CR,SI}

i n-useCR_n = recordedCR

with initial state given by

Init-CR-M ~ Init-R~UCR_M[Se.sion.CR.Ml

II. Init-DiarYCR[Session,CR.SIj

It would be more correct to regard the session information 51 as being related to a
meeting rather than a conference room. The reason for associating 51 with conference
rooms is that it contains information which is issued to the deparlment supplying
equipment for meetings, and they are concerned with the venue rather than what is to
take place there.

28 CAVIAR

The operatiollS that we require for CR-M are given below. Information is recorded
a.bout each resource when it is booked, and muet be erased when a cancellation takes
place. The definitions use

llCR-M • CR-M , CR-M'

Book-Canf-Ro0"'o I
llCR-M
R>:U-BookCR_M[Sess ion, CR, Ml

AddeR [50ss ion, CR, 51]

t ?CR-M t?CR "
? = r. CR-M x?CR

Csncel-Conf-Roomso I

ACR-M

R)U-De l-UserCR_M[Sess i on, CR. M]
EraseCl;:! [Sess i on, CR. 51 I

t?CR-M = t?CR '"

(1ft: t?CR-M • x?CR(t) UreR-M(t) ({u?eR-MH)

The cancellation operation here deletes all conference rooms associated with a
particular meeting over the speciIled time period. This is the operation which is most
compatible with the Cancel-Meet ing opera.tion defined (or N-V. However, if
required, we could a.1so define the operation that cancels just one conference room ~

meeting pairing.

29 CAVIAR

8.3 The dining room bookiDg BUbo)'lltem

The final subsystem that we need to consider is DR-N.

The analysis so far does Dot take account of the fad that dining rooms have a finite
capacity. 80 we need to extend out model. We suppose that we have been given a
fundian

max-no DR N

which records this capacity and we record the number of seats in each dining room
which have been reserved already.

The DR-M system is defined formally as follows:

DR-M

R(UD.~M [Date, DR. M]

Di arYDR [Date, M. LI]

rsvd : T...... (DR ~ N)

usersOR_n = recordedOR A

(Vt:Date· dom(rsvd(t» = in-useOR_M(t) A

(Vr: in-useDR_t1(t) ~ rsvd(t)(r) :is; rnax-no(r»

Observe that in thiB case information is associated with each user I and therefore the
diary system ta.kes t1 as its ma.ln parameter. Dining rooms that are in use have a
number of seats reserved. and this number hall to be within the dining room's
capacity.

The initial state of DR-M is given by

Init-DR-M Sl Init-RKUoR_n(Date,OR,M] A Init-OiarYoR[Date,M.LI]

The two operations that we require for this structure are booking a (number of seats
in a) dining room and cancelling a lunch booking for a particular meeting. In normal
circumstances, a resource (dining room) will not be subject to being taken out of
service (although this occurrence is clearly easy to model if required).

30 CAVIAR

Both these operatioDS lea.ve rsvd unchanged for time values outside the period in
questiODj we make this pan of the operation invariant.

MlR-M ~

M,UDR_n[Oote, DR, M)

MlierYDR!Oote, M. L1]
aroount? : T -++ N

i

t?Dlj1-n ::: t?Dli! /I.

dom(alnOunt?) ::: t?OR-n 1\

t?oR-n ~ rsvd' = t ?D1~-n 4 rsvd

Book-D i n i ng-Roorna t

6DR-M

R'U-BookDR_n[Oote. DR, M]

AddDR !Dote. M. Ll]

X?Dli! ::: u?Dli!-n 1\

(Vt:t?Dli!_n •

rsvd(t)(r?Dli!_n) + amount?(t) (max-no(r?Ol:l_n) 1\

rsvd'(t) = rsvd(t)

• { r?Dli!-n rsvd(t)(r?DR_n) + amount?(t) }

Conce l-D i n i ng-Roorno ~

60R-M i

R,U-Conce I DR_n[Oote, DR, M)

EroseDRlOete, M, L1]

(Vt , t?DR-n •

"DR(t) = { u?DR-n } A

rsvd'(t) = rsvd(t)

• { r?OR-n H rsvd(t)(r?OR_n) - amount?(t) }

31 CAVIAR

8.4 The visitor pool • V.p

From the informal requirements we find that visitors must be -legitimate- before they
are a.llowed to attend meetings or have resources booked 011 their beh.lf. This
requirement is easily met by introducing a visitor Pool structure, with a.ctual
parameters Oat e and V. Thus we define V-P as

V-p 0 Poo lv[Dete, V]

with initia.l state given by

Init-V-P S Init-Poolv[Date,V]

The operations that we require on this structure are simply those of creation and
destruction of visitors. Formally we have

Create-V i s i toro Q Createv[Dete,V]
and

Destroy-V is itoro ~ Destroyv[Date. V]

8.6 The (:onstrnct.ion process

In this section we summarise the constructions we have used to build the individual
CAVIAR components.

In gections 7 and 8 we added pool and djary components to our basic library in
section S.4. We now have a library which consists of the 6 components R-U, R)U ,
R(U , R:U , Pool and Diary. We indicate in the following diagram how ea.ch
subsystem has been constructed using components from the library.

R-U

PoolD,~r~~<l>'\ .r

11/ /_, \
! \. RcU
/ \ \I' I,

i/\- \\ \
CR-M DR-M TR-V HR-V M-V V-P

32 CAVIAR

9. The Complete CAVIAR System

We have now achieved our first goal of specifying aU constituent subsystems of
CAVIAR. We have yet to combine the subsystems into a. coherent whole. This is now
a comparatively easy task, once we have observed a. few extra constraints.

9.1 Combining suboyslem8 to form the .,..tem ...te

We defIne the visitor part of tbe system 38 follows:

V-SYS
V-P
HR-V
TR-V

(Vd

IVt

Data
Time

usersHR_V(d)

usersTR_V(t)

,

I;;;

eXistsv(d)) 1\

eXistsv{date-of-time(t»

The invariant states that visitors that have hotel or transport reservations must be
known.

The meeting part of tbe system is defined by

-SYS --"

M-V
CR-M
DR-M

(Vs:Session • usersCR_n(S) I;;; existsM(s)) 1\

(Vd.Dete •

user-sOR_n(d) ,

U { s:Session I date-of-session(s) = d • eXistsn(s) }

The inrariant states that meetings which are occupying conference rooms or dining
rooms must be known to the system at that time.

CAVIAR 33

These two subsystems are now combined to form. the CAVIAR system.

CAVIAR
V-SYS
M-SYS

Vs Session· usersn_v(s) '- eXistsv(dete-of-session(s»

Informally, the invariant stales that all visitors who are attending meetings must. be
known to the system.

The initial. state of the system is given by the conjunction of all the initialisations. It is
easy to verify that this conjunction satisfies the invariant.

Init-CAVIAR Q Init-HR-V A Init-TR-V 1\ Init-M-V A

Init-CR-M A Init-DR-M A Init-V-P

9.2 Operations o. CAVIAR

The operatioDs on CAVIAR may be divided naturally into three groups.

9.%.1 Operationa which involve meetings only

These opera.tions a.re concerned with M-SYS only and leave V-SYS unchanged. We
denote this by

M-OP • ~CAVIAR A =V-SYS

where

~CAVIAR " CAVIAR A CAVIAR'

and
=V-SYS " [V-SYS A V-SYS' I V-SYS = V-SYS')

(Note: in the following similar definitions of =CR-M, =DR-M, etc. are omitted)

34 CAVIAR

The first operation is to construct a meeting

Create-Meeting Q M-OP ~ Creete-Meetingo A =CR-M A sDR-M

This operation has no pre-condition (there is no pre-condition for treat e-Meet i 090),
so it is total. The next operation is to cancel a meeting.

Cancel-Meet ingl I::::! M-OP'" Cancel-Meet ingo ,.. :::CR-H A :OR-M

We can deten:nine the pre·condition for this operation as follows: firat we establish the
constraint arising from the system invariant. The operation removes an element from
ex i st sn so this element cannot be a user in CR-M or DR-M during the period t?n.

FonnallYl we require that

V t t?M· r?n_v ft usersCR_n(t) U usersoR_n(date-of-session(t»

The second pan of the pre-condition arises from the earlier pre-<:ondition for

Cance l-Meet i 090' This is precisely

t?M = t?n-v ,.. x?n = r?n-v ,.. (Vt:t?n_u • r?n_u E dom(run_u(t»)).

We shall at this point fulfil the promise made in section 4.1: indicating how to define
the corresponding total operation. This is formed by the disjunct of the successful
operation with the schema which takes ae its qualifying predicate the negation of the
pre-condition established above.

Cancel-Meeting-Fail

'CAVIAR

t?n-u : P Session

t?n : P Session

x?n : M

r?n-u : M

(3t,t?n
r?n-u e usersCR_n{t) U usersOR_n{date-of-session{t)))

v t?n ~ t?n-u
v x?n ~ r?n_u

v (3t:t?n_u· r?n-u II! dom(run_u(t»))

35 CAVIAR

Cancel-Meeting e Cancel-Meetin91 v Cancel-Meeting-Fail

Informally, if the required pre-<:ondition (or the meeting cancellation is Dot sa.tisfied,
the system is unchanged. In practice we would require an appropriate error message

to be output.

For the sake of brevity, we shall present the remainder of the operations without
going through this process.

The next two operations add visitors to, and delete Viaitolll (rom, a meeting.

Add-Visi~or-to-Meeting Q

M-OP A Add-Visitor-to-Meetingo A =CR-M A =DR-M

Remove-V i s itor-from-Neet i n9 Q

M-DP A Remove-Visitor-from-Meetingo A =CR-M A =DR-M

The pre-conditionll (or these operations Me straightforward to determine in the usual

way a.nd we shall omit them and also those for the remaining operations.

The next two operations deal with conference rooms.

Book-Conf' -Room Q M-OP A :M-V A Book-Conf-Roomo A 'DR-M

Cancel-Conf-Room ~ M-OP A =M-V A Cancel-Conf-Ro0"'o A =DR-M

We now have the two operations concerning dining rooms.

Book-Dining-Room 9 M-OP A =M-V A =CR-M A Book-DJning-Roomo

Cancel-Dining-Room 9 M-op A =M-V A =CR-M A Cancel-Dining-Roomo

There is one final operation to be defined in this section: namely the cancellation of
both dining room and conference room(s) associated with a particular meeting. This is

not the conjunct of the two cancellation operations already given becau8e each of
these leaves the components it is not a.cting on (ixed. Hence we need il. different
operation defined by

Cance l-Meet ing-Arrangements ;a

M-OP A :M-V A Cencel-Conf-Ro0"'o A Cencel-Dining-Roo"'o

36	 CAVIAR

9.2.2 Oper.tiOllS which Involve vIaltors only

This section contains operatioDB which involve V-SYS only a.nd leave M-SYS
unchanged. We denote this group by

V-OP • dCAVIAR A =M-SYS

The first pair of operatioDA introduce visitors to and remove visitors from the visitor
system.

Cr-eate-Visitor ~ V-OP A Create-Visitoro A EHR-V A ::TR-V

Destroy-Visitor a V-OP A Destroy-Visitoro /I. =HR-V A ::TR-V

The Caviar invariant induces the following pre-eondition for tbe Destroy operation.

Vt t?v·)(?v	 • usersHR_V(t)

U U { t : date-of-time-1(t?v) • userSTR_V(t) }
U U { 9 : dete-of-session-1(t?vD • userst1_v(s) }

The two operations concerned with hotel rooms are as follows:

Book-Hotel-Room ~ V-op A =V-P A Book-Hotel-Rooma A =TR-V

Cencel-Hotel-Room Q V-OP A EV-P A C8ncel-Hotel-Roo~ A =TR-V

The two operatioDJl, concerned with transport re8enratioD8 are

Book-Transport ~ V-OP A =V-P A ='HR-V A Book-Transporto

Cancel-Transport Q V-OP A =V-P A =HR-V A Cancel-Transporto

i

9.2.3 A general vieltor removal operaUon

Finally we derme an operation which removes a visitor entirely from the &yIltem for a
particula.r Bet of dates.

Delete-Vi s ito"'"
ACAVIAR
=CR-M
=DR-M
Cence l-Hot e I-Roolno
Cence1-Trensport o
Remove-Vi 9 i tor-from-neet i ngo

Destoy-V i s i toro

x?V = u?HJ;!-V = u?TJ;!-V = u?M-V "

t?v = t ?HR-V "

t?TR-V = { d : t?Vi t : Time I dete-of-time(t) = d

" u?TJ;!-V e usersTJ;!_V(t) • t } "
t?n-v = { d : t?Vi S : Session I dete-of-session(s) = d

" u?n_v e usersn_v(s) • s }

10. Conclusion

This specification has created a conceptual model for the CAVlAR systml which
provides a precise description of the system staLe and ita exteriial interfac~, together
with an exact functional specification of every operation. The subtle
inter-relationships between constituent subsystems are described in the predicates
which constrain the combination of these subsystems, and these have been la.ken into
account in the specification of the operations. The system designer can now
concentrate on the important parts of the design task: namely selecting appropriate
data structures and algorithms, without ha.ving to be simultaneously concerned with
the complexity of subsysLem interactions. This refiecta the classical principle of
f'"eparation of concernf'".

It may be argued that a specification such as we have given above is along way from
an actual software product. Experience shows however that minimal effOr1 i8 required
to develop softwa.re once such a specification has been constructed. For example, in
the case of CAVIAR, a Pascal implementation was constructed direC'~ly and quickly
from the specification.

38	 CAViAR

11. Admowlodgements

A formal8pecification of CAVIAR was given in 1981 by J.·R. Abrial. This work was
carried out a~ the Programming Research Group at Oxford University in
collaboration with B. Sufrin, T. Clement and one of the co-authors. T. Clement
implemenled a prot.otype version of the specification on a ITT-2020 compuier in
UCSD Pascal. J.-R. Abrial's original specification document listed most of the
properties of the system that appear in this document, though the style of the
presentamo. the notation, and the conventions used in this paper have since been
developed by members of the Prognmming Research Group.

We would like to thank J.-R. Abrial for his original contribution, I. Hayes for editing
this paper and all tbose involved in helping with the project, particularly the
personnel in the Visitor Services Deparlment of STL, who willingly" provided the team
with information about the current manual system in operation at that time.

We would also like to thank Bernie Cohen, Tim Denvir and Tom Cox for their initial
effort in setting up this collaborative effort between STL and the PrognmmiDg
Research Group and their continuing interest.

12. Referenres and Related Work

1.	 Abria.l, J.·R. The specification language Z: Basic library. Oxford University
Programming Research Group internal report, (April19SO).

2.	 Morgan, C. C. SchemaB in Z: A preliminary reference manual. Oxford
University Programming Researc.b Group Distributed Computing Project
report, (Much 1984).

3.	 SUfrin, B. A., S!zirensen, I. H., Morgan, C. C., and Hayes, 1. J. Notes for a. Z
Handtx>ok. Oxford University Programming Research Group internal
reporl, (July 1985).

4.	 Morgan, C. C., and Sufrin l B. A. Specification of the UNIX file system. IEEE
Transactions on Software EngineeriDg, Vol. 10, No. Z, (Much 1984),
pp. 12S-142.

5.	 Hayes, 1. J. Specification Case Studies. Oxford University Programmi.ng
Research Group Monograph, PRG-46, (July 1985).

Z Reference Card

M.them.atieal Notation

Version 2.2

Programming Research Group
Oxford UniveJ"8ity

1. Definitions and dedU'.UaDB.
Let X,)(k be identifien and T, Tk sets.

LHS ~ RH5 Definition of LHS aB

synta.ctically equivalent to RHS.
x: T	 Declaration of x as type T.

xl: T1;)(z: Tz; _•. ; X n: Tn
List of dec1u-ations.

[A,8]

Xl>)(2' ... • xn : T
!Sl x1:T:)(2:T: ... : xn:T.
Introduction of generic sets.

2. Logie.

Let p. 0 be predica tes and 0 declarations.

true. fa he Logical constants.

- P Negation: tlnot P".

P 1\ 0 Conjunction: "'P and Oil.

p v Q Disjunction:"'P orO".

P ~ 0 Implication: "'P implies Oil or

"if P then C".
P .. 0 Equivalence: "'P is logically

equivalent to a".
v • , T • P

UniveJ"8al quantification:
"for aU x of type T, P holds".

3 x T· P
Existential quantification: "there
exists an)(of type T such that pl'.

3!x:T·Px
Unique existence: '"there exists a
unique X of type T such that pl'.
Q (3 x : T· P 1\x

"(3y' T I y~x • p.))

V xl:Tl:	 xz:Tz•... ; xn:T n • P
"For aU Xl of type T11

Xz of type T2,· .. , and
xn oC type Tn I P holds.

3 xl:Tl:	 xz:Tz; ... ; xn:T • P n
Simil"" to v.

3! xl:Tl; xz:Tz•... ; xn:T • Pn

Simil"" to V.
V 0 I P • 11 0 (V 0 • P ... 11).

3 0 I P • 11 • (3 0 • P , 11).

t 1 = t z Equality between terms.

t 1 ~ t z e ~(tl = t z).

3, Seta.

Let 5, T and X he sets; t. t k termsj P a

predicate and 0 declarations.

t e 5	 Set membeJ"8hip: lit, is an element
of 5D

•

t f 5 0-(te5).
5 • T Set inclusion:

• (V.,5·xeT).
5 c T Strict set inclusion:

0 5.T,5IT.

0 The empty set.
{ t,. t., t n } The set

containing tt. t z,.·· and tn'
{x,TIP}

The set containing exactly those
X of type T for which P holds.

(t 1• t z, ... , tn) Ordered n-tuple

of t 1> t z•... and tn'
T1 X Tz X ... X Tn Cartesian product:

the set of all a-tuples such that
the k th component is oC type Tk'

{ xl: Tl: xz:Tz : ... : xn:Tn I P}
The set of n-tuples

()Cl' xz•...• xn) with each
)Ck of type Tl< such that P holds.

{D I P 4 t} The set of t 's such that given
the declarations 0, P holds.

·39

{D • t} Q {D I true' t }.
P S Powerset: the set of all subsets

of S.
FS Set at fmite subsets of 5:

Q {T, PSI T is fmile }.
S n T Setintersedion: given S. T: P XI

Q{X'X I._SA._T}.
S u T Set union: given 5, T: P X,

Q {x:X I)(E 5 v)(E T }.

S - T	 Set difference: given S. T: P X,
Q {.,X I • _ S A X f T }.

n SS	 Distributed set intersection:
given SS, P (P X),
Q {"X I (VS'SS • x _ S)}.

u ss	 Distributed set union:
given SS, P (P Xl,
o {"X I (3S'SS • xES)}.

lSI Size (number of distinct
elements) of a. finite set

.S o 151.

4. Num.ben.

N	 Thf.! set of natural numbers
(non-negative integers).

N+ The set of strictly positive
na.tural numbers:
Q N - { 0	 }.

z The eel of integers (positive, zero
and negative).

m•• n The set of integers between m

a.nd n inclusive:
• { k,Z 1m, k A k , n }.

min 5	 Minimum of a set,S: f N.
min 5 e 5 A

('Ix : 5 •)(~ min 5),
max	 5 Maximum of a set,S: F N.

maxSeS A

(\Ix : 5 • x , max 5).

5. RelatlOlUl.

A relation is modelled by a set of ordered
pairs hence opera~rs defined for sets can
be used on relations.

Let XI Y, and Z be setsj x X. y y;
and R, X Y.

X H Y The set of relation8 from X to Y:

• P (X x V).
x R y)(is related by R to y:

• ('. y) _ R.
)(1-+ Y Q (x, y)

{)(lI-+Yl')(zl-+yz, ••.•)(nl-+Yn }

The relation
{ (Xl' y,), ...• (x" y,) }
relating Xl to Yl' .••• and
x n to Yn '

dam R The domain of a relation:
o {.,X I (3y'Y • x R y)}.

rng R The range of a relation:

• {y,Y I (3.,X ' x R y)}.
R1 I Rz Forward relational composition:

given R1: X...... Y; Rz: YHZ,
• { "X, z,Z I (3y'Y •

x R, yAy R, z)}.

R1 0 Rz Relational composition:

QRzIR t

R-1 Inverse of relation R:
o {y,V;.,X I xRy}.

i d X Identity function on the set X:
~ {x: X • X H X }.

Rk The relation R composed with
itself k times: given R : X H X,

1 RkRO Sl id X. Rk+ ~ 0 R.
R- Reflexive transitive closure:

• U {n' N • R' }.
R+ Non-reflexive transitive cl08ure:

g U {n: N+· Rn }.

R(S) Image: given 5: P X,
• {y,V I	 (3x ,S ' x R y)}.

5 <l R	 Domain restric'ion to 5:
given 5: P X,

• {xoX;y'Y I xES A x R y}.
5	 • R Domain sub'radion:

given 5: P X,

• (X - SI 4 R.
R t> T Range reetridion '0 T:

given T: P Y,

• {xoX;y;Y I x R y A yET}.
R • T	 Range subkadion of T:

given T: P Y,
.R~(Y-T).

R1 • Rz	 Overriding: given R1, R X.-.Y IIz
o (dom R, ~ R,) u Rz-

O. Punetlcma.

A function ill' a relation with the property
that for eat:h element in its domain there ill'
a unique elemen' in iLs range related to it.
As func'ions are relations all the operators
defined above for relations also apply to
(unctions.

X Y The ee' of partial functions from
X lo Y;

• {f; X Y I
(Vx: dom f •

(3!y; Y • x f y» }.
X --+ Y The set of tota.l functions from

X10 Y;
• {f; X..,Y I dom f = X }.

X >++ Y The set of one~to·one partial
functions from X to Y:
o {f; X ... Y I

(Yy;rngf'
(3'" X • x f y» }.

X >-+ Y The set of one·to~one total
functions from X to Y:
o{ f' X>ooY I domf = X}.

f t The function f applied to t.

(~ x ; X I P • t)

Lambda-abstraction:
the function that given an
argument x of type X such that P
holds 'he result is t.
o { xo X I P • x t }.

().X1 : Tti ... ; xn: Tn I P • t)

Q	 {xl: Tt' ; xn:Tn I P
(xl' , xn) t--+ t }.

7. Orden.

part i a l_order X
The set of partial orders on X.
o { R, X....X I Yx,y.z; X •

x R x "

x R y " y R x -. x=y "

xRY"yRz-'xRz

}.
total_order X

The set of total orden on X.
Q { R: part ial_order X

Vx,y: X

xRyvyRx

}.
monoton i c X <x

The set of functions from X to X
that are monotonic with respect
to the order <x on X.
'(f,X"'XI

x <, y ... f(x) <, f(y)
}.

- 41

8. SeqUeD.eeI.

seq X	 The Bet of sequences whose
elements are drawn from X:

• {A' N+-+>X I
dam A = I .. IAI }.

IAI The length of sequence A.

[]	 The emply seq nence O.
(s1' ...• sn]

Q {IH81_ .. , • nHBn }.

rB" ...• ',]-lb,•...• b.]
Concatenation:

Q	 (81.···. 8 n• ht •···• bill]'
[J -A = A- [] = A.

heBd A • MI).
lBst A • AIIAI).
te;] [xj-A • A.
front A-- (xl a A.

rev (a]_	 82' 8 n]

Revel8e:

Q [sn' ... • B2' ad,

rev [] = [I.

-- IAA	 Distributed concatenation:
givenAA : seq(seq(X»,
• AA(l)- ... -AA(IAAI).
-ill = [I.

lIAR	 Distributed relational
composition:
given AR : seq (X +-+ X).

• AR(l) AR(IARI),
./11 = id X.

d j s j Q j nt	 AS Pairwise disjoint:
given AS: seq (P X).
Q (V i.j : dam AS • i ~ j

... AS(i)	 n AS(j) =0).
AS oartjtjoos; S

Q	 disjoint AS
II U ren AS = S.

A In B	 Contiguous Bubsequence:

• (3C.0' seq X •
C-A -0 =B).

squBsh f Convert a function, f: N -t+ X,
inLe> a sequence by squashing its
doma.in.
squBsh {)- = [],
and if f; 0 lhen
squesh f =

[f(i) I - squBsh({i H f)

where i = min(dom f) e.g.
squBsh {Z......A. 27.....C. 4.....B}

= [A, B. C]
S 1 A Restrict the sequence A to those

items whose index is in the set S:

• SqUBS~(S 4 A)
A	 t T Restrict the ra.nge of the

sequence A to the set T:

• squBs~(A ~ T).

9. Ball'"

bag X	 The set of bag! whose elements
are drawn from X:
QX-t+N+

A bag is ~presented. by a

function tb at maps each element
in the bag onto its frequency of
occurrence in the bag.

[]	 The empty bag {}.

[x,. x2' .. .] The bagx n
containing xl' x2.··. and)(n
with the frequency they occur in
the list.

items s The bag 01 items conta.ined in
the sequence s:
So {)(:rn91 s .

x..... I{, ,dam s I s(i)=x}l
}

Z Rererenee Card
SeheD1a Notation

[For details see IISchemas in Z"]

Programming Research Group

Oxford Univenity

Schema defmition: a 8Chema groups together
some declaratioD8 of variables and a
predicaLe relating tbe3e variable8. There are
two ways of writing schemas: venicillly, for
example

5	 ,
x : N
y seq N

x < Iyl

or horioontillly, for the same example
5. [., N; y' seq N I x<lyl J.

Use in signatures after V. >... {... }, etc.:
(Y5 • y ~ [J) • (I.,N: y: seq N I

x<lyl •	 y~[J).

tup Ie 5	 The tuple formed of a schema's
variables.

pred 5	 The predic.1te pari of a schema:
e.g.pred 5 is x:r;; fyl.

Inclusion	 A schema. 5 may be included
within the declarations of a
schema T, in which case the
declarations of 5 are merged
with the other declarations of T
(variables declared in both 5 and
T must be the same type) and the
predicates of 5 and T are
conjoined _ e.g.

1------"
5
z : N

z < X
I1

is

x. Z : N
y : seq N

xiiilylAz<x

5 I P The schema 5 with P conjoined to
its predicate pari. e.g.
(5 I x>O) is
[x:N;y:seq N I x<lyIAx>Oj.

5 ; 0 The schema 5 with the
declarations 0 merged with the
declarations of 5. e.g.
(5 ; z : N) is
[x,z:N: y:seq N I x<lyl J

5 [ne"l/o1d] Renaming of components:
the schema 5 with the component
old renamed to ne"l in its
declaration and every free use of
that 0 1d within the predicate.
e.g.5[z/xJ is
I z:N: y:seq N I z < Iyl
and 5[y/x, x/yJ is
[y:N: .,seq N I y < Ixl

Decoration Decoration with subscript,
8upeI'llcript, prime, etc.;
systematic renaming of the
variables declared in the schema.
e.g. 5' is

[x':N: y':seq ~ I x"ly'l]

....5	 The schema 5 with its predicate

pari negated. e.g."S is
[.,N: y:seq N I -(x<lyl>J

5 A T	 The schema formed from
schemas 5 and T by merging
their declarations (see inclusion
above) and and'iDgtheir
predicatee. Given
T Q [x: N; z: f N I xEz],
5 A T is

• 43

x: N

!:I: seq N
z, PN

x III Iyl ,.,)(E 2

5 v T	 The Khema formed from

schemas 5 and T by merging
their declarations and or"mg their
predicates. e.g. 5 v T is

X : N
!:I : seq N
z , P N

x,lylvxE2

5 T The llChema formed from
schemas 5 and T by merging
their declarations and taking
pred S .. pred T as the
predicate. e.g. S ... T is similar

to 5 '" T and 5 v T except the
predicate conta..in.a an ~- rather
than an -,.,- or an 1Iy-,

5 ~ T The Khema lormed from
Bchemas 5 and T by merging
their declaraLiona and taking
pred 5 ~ pred T as the
predicate. e.g. 5 .. T the same

as S '" T with Il.c=t- in place of
the -",-.

5 \ (vl' vz•...• vn)
Hidmg: the schema 5 with the

variables vl' vz•...• and vn
hidden: the variables listed are
reIDoved from the declarations
and a.re existentially quantified in
the predicate. e.g, S \)(is

[y"eq N , (3"N ••<Iyl»)

A schema ma.y be specified
instead of aliBt of variables; in
this case the variables dedared in
that schema are hidden.

e.g. (S - T) \ S is

z , P N

(3 "' N; y' seq N •
)(, I yl ,.,)(E z)

5 t (vl'	 vz•..•• v n)

ProjecLion: The schema 5 with

any variables that do not occur

in the list vl" vz. . ..• v n
hidden: the variables removed
from the declaratioDII are
existentially quantified in the
predicate,

e.g. (S - T) t (" y) is

)(: N
y : seq	 N

(3 z , P N

.<Iyl-.ez)

The list of variables may be

replaced by a schema as lor
hiding; the variables declared in
the schema are used lor the
projection.

The following conventions are used for

variable names in those schemas which
represent operations:
undashed state before the operation,

dashed state a.:fter the operation,
ending in -or inputs to the operation, and
ending in -!" outputs from the operation.

The following schema operations only apply
~ schemas following the alxwe conventions.

pre S	 Precondition: aU the state after
components (dashed) and Ihe
outputs (ending in CI!") are
hidden. e.g. given

S	 I

x? S, 5'. y! : N

5' = S - x? " y! = 5

pre S is

x?, s:	 N

(3s".y!:N·
s' = 5-X? " y! = s)

pos t S Postcondition: this is similar ~

precondition except all the state
before cOlllponents (undashed)
and inputs (ending in ~") are
hidden.

S • T Overriding:
• (S , -pre T) v T.

e.g. given S above and

T I

x?, s, S' : N

S < x? A 5' = S

S • T is

x? s, 5'. y! N

(s' = 5-X? " y! S ,

-(3 s' , N •

s < x? " s' =s»
v (s < x? " 5' = 5)

The predicate cu be simplified:

x?, 5, 5', y! : N

(5' = 5-X? A y! = 5
AS)X?)

v

(S<X?"9'=5)

S , T	 Schema composition: if we
consider an intermediate state
that is both the fmal state of the
operation S and the initial state
of the operation T then the
composition of 5 and T is the
operation which relates the
inilial .Iale of S 10 Ihe fmaI
state of T through the
intermediate state. To form the
composition of 5 and T we take
the state after components of S
and the state before components
of T that have a basename'" in
common, rename ixlth to new
variables, take the schema Cland"
(,,) of the resulting schemas, and
hide the new varia.bles.
e.g.SITis

X?, s, s'. y! : N

(3 So ' N .
So = 5-X?" y! = 5 A

So < x? " 5' = 50)

... basename is the name with any decoration
(CI'", CI!", ~.,ek.) removed.

- 45

S» T	 Piping: this schema operation is
similar to schema compositionj
the difference is that rather than
identifying the state after
components of 5 with the state
before components of TI the
output components of 5 (ending
in -! -) are identified with the
input components of T (ending
in 157-) that have the same
basename.

