
'b 3(]~ (ON L

THE DISTRIBUTED COMPUTING SOFTWARE PROJECT

by

Roger GimsOD
Carroll Morgan

Oxford Ur!l\lerstty
Computing Laboratory
Programming Re$earch Group-Library
8-11 Keble Road
Oxford OX1 3QD
Oxford (08B5) 54141

Technical Monogra.ph PRG-SO

July 1985

Oxford University Computing La.bora.tory
Progra.mming Resea.rch Group

8-11 Keble Roa.d
Oxford OX1 3QD
Engla.nd

CopyrigM @ 1984 Peter Peregrinus Ltd. for chapter entitled
The Role of Mathematical Specifications

Copyright @ 1985 Roger GirnBon, Carroll Morgan

Oxford University Computing Laboratory

Programming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

Introduction

Work on the Distributed Computing Softwa.re Project began at Oxford University
Programming Research Group in 1982. The goal of the project is to construct and
publish the specification of a loosely·coupled distributed operating system, based on
the model of autonomous clients having access to a number of shared services.

A fundamental objective of the project is to make use of mathematical techniques of
program specification to assist the design, development and presentation of distributed
system services.

In this monograph we present some of the results of the first stage of the projEd.

In the first chapter we include a paper which gives an overview of the use of
mathematics in system design, and its application to the specuication of an example
file service. It illustrates how abstraction from details of implementation can allow the
exploration of novel system designs.

The following chapters contain the user documentation for some of the services which
have been implemen ted to date. They ilIu8trate how it has been possible to make use
of mathematical tecnniques to provide precise manuals for users of the services.

The project is funded by a grant from the Science and Engineering Research Council.

3

Contents

Chapter 1 The Role of Mathematical Specifications 5

Chapter 2 Authentication of User Names 25

Chapter 3 Time Service· User Manual 29

Chapter 4 Reservation Service - User Manual 35

Chapter 5 Block Storage Service· User Manual 51

5

Chapter 1

The Role of Mathematical SpeciCicatioBll

1.1 Introduction

1.2 A first example

1.3 The first compromises

1.4 A compromise avoided

1.5 Modula.rity and composition of services

1.6 Experience 80 fa.r

1.7 Future plans

1.8 Glossa.ry of symbols

1.9 References

This cha.pter appeared in the book llDistributed Computing Systems
Programme" (ed. D.A.Duce), published by Peter Peregrinu8 Ltd. 1984,
under the title "Ease of use through proper specification",

6 The Distributed Computing Software Project

1.1 Introd:nrlioD

The aim of the Distributed Computing Software Project is to explore the n~w

possibilities of distributed operating system design which have been made possible by
the low cost of distributed processing hardware. The mathematical techniques of
program specification and development playa crucial pa.rt in this aim because:

we ca.n use mathematkal specj[jcaHons to explore designs motivated purely by
eaae-of-use rather than by ea.se-of-implementation (since specification allows
abstraction from implementation constraints);

we will have a precise notation in which such designs can be reliably
communicated to others l and which will assist the discovery and discussion of the
designs' implications;

it will be possible to present the specifications directly in the user manuals of the
distributed operating sYlitem l thus increasing their precision while decreasing
their size; and

we will be able to use the mathematical techniques of refinement to produce
implementations which are highly likely to satisfy their specifica.tions (and hence
also will be accurately described by their user manuals).

]t is eepecially important that those benefits should be realised in the construction of a
distributed operating system - because distributed operating systems Dff~r the rare
opportuDity for the user to control the system, rather than vice versa. The high
bandwidth of current local area networks allows an effici~nt modula.rity; for example,
a structure consisting of largely autonomous services and clients is entirely feasible. In
such a system l the choice between (rival) services, and the manner in which they are
usedJ would be entirely up to the clients. This is the basis of the open systems
approach: provided services are well-specified, clients are free to make use of them in
whatevermaJ:lner is consistent with their specification.

7 The role of mathematical specifications

1.2 A first exam.ple

One of the most visible parts of any operating system is its file system. Even today,
the design of these range in quality from excellent to horrific. But others of course
may think instead that they range from horrific to excellent: the features one user
cannot do without, another may abhor. It is through such features that an operating
system controls (even the thoughts of) its clients, and this is exactly what we hope to
avoid.

A file servjce in a distributed operating system is there to be shared by as many
clients as possible. To achieve this, it must be unopinionated: it must have so few

features that there is nothing anyone could object to. It is only in the context of
specification that we can propose such a radical design; any less abstract context
introduces efficiency constra.in~s. Some of these, of course, will have La be met
eventually, but perhaps not all of the ones that might conventionally be presumed.
We must not introduce such constraints simply because we could not express ourselves
without them: first we state what we would like - then we can compromise.

As an example, let us consider the simplest file system design. one could imagine. We
describe it as a partial function «f i les tt from the set "NAME'" of file names to the set
"'F!LE" of all possible files; and we say nothing about the structure of the sets NAME
and FILE themselves:

files: NAME ~ FILE

The mathematical notation above introduces the variable f i Ies, and gives its type as
NAME -++ FILE. The English text states that this variable is to describe the file system.
Our style of mathematical specification is an example of the Z specification technique,
and we will continue to use it below. It is not possible for us to explain Z itself in any
detail in this document, but we hope its flavour will be evident; and in any case the
bulk of the meaning will be conveyed by the English. Sufrin [81 and Morgan [3,4J
together give an introduction to Z. A glossary of the mathematical symbols used is
provided at the end of this chapter.

We propose two operations only on the file system: Stor-eF i 1e stores a (whole) file,
and Retr j eveF i Ie (destructively) retrieves it.

8 The Distributed Computing Software Project

StoreFi le

Let f i 1es be the state of the file system before the operation, and let f I 1es' be tbe
state afteTWil.rds. Let f i 1e? be the file to be stored, and let name! be some filename,

chosen by tae filesystem, which will refer to the newly stored file (we conventionally
use words ellding in ? for inputs, and in ! for outputs). That is, given

files, files': NAME'" FILE

file? FILE

name! NAME

the effect of StoreF i Ie iI to choose a new name, which is not currently in use

nama! f! dom files

and to update the partial function by overriding its current value, so that after tbe

operation it mapa the new name to the newly-stored file

files' = files 61 [name! t--+ file?]

(We notice as an immediate advantage of our abstraction that we have given the
implementor the freedom to store identical but differently named files using sbared or
separate s~orage, as he chooses.)

RetrieveFjle

Let f i 1es be the state of the file system before the operation, and let f i 1es' be ~be

state afterwards. Let name? be the name of the file to be retrieved, and let f i 1e! be

the file itself. That is, given

files, files': NAME'" FILE
name? NAME
fll e! FILE

the eUed of Retr i eveF i le is to return the named file to tbe client

fi 1e! = f I 1es (name?)

9 The role of mathematical specifications

provided it exists

name? e dom f i 1es

and to remove the name (and hence the file) from the partial function which
represents the file system

fi les' = fi les \ {name?}

The description above is 1I0 f course" not feasible with toda.y's technology - which is a
pity. It would be too impractical to have to retrieve a whole large me if we wished,
say, just to rea.d one small piece of it. But how wonderful it would be if a file system
could be so simple! At least we were able to describe it.

1.3 The rint compromises

The best we can do with our simple file system is to use it as the basis for a
development of a more practical design - and the description above provides a. context
into which the necessary compromises can be introduced. Here are some of them (in
no particular order):

Compromise	 ~

It must be possible to read the	 The communication medium is
file without deleting it.	 not entirely reliable a

breakdown during retrieval could
destroy the file without returning
its contents.

Clients must be prevented from Mistakes are inevita.ble - even
destroying the files of others honest clients could accidentally
(remember, a file can't be destroy other clients' files.
updated).

Files must be given a limited Any implementation of the file
lifetime, and clients must be system, however ca.pacious, will
charged for their storage. still be finite.

10 The Distributed Computinl!: Software Project

We introduce these compromises in a revised design (again using the notatIon of Z).
First, we na.m~ three new sets

CLlENf - the set of client identifications,

TIME - the set of instants (e.g. seconds from 1st January 1980 - but we
need not be specifk here),

COST - the set of costs (e.g. pence).

The definition of a file is extended to include the identification of its owner, and its
time of creation and (eventual) expiry. DATA is a fourth new set which contains all the
possible values a client could store in a file (its contents). We will collect these
attributes in a schema FILE, and state at the same time that in any file, the creation
time must precede the expiry time:

The schema FS below describes the state of the file storage system itself:

FS -----,

I fi leS' NAME -+> FILE:

and the schema M'S describes the general aspects of any operation on it:

~S I

fi les, fi les': NAME ~ FILE
_ho CLIENT
when TIME

The role of mathematical specifications 11

who is the identity of the client performing the operation, and when is the time at
which it is performed. We can abbreviate b.FS (without changing its meaning) by
building it from the schema FS instead of directly from the variable f i I es;

AFS

FS
FS'
"ho , CLIENT

I when: TIME

StoreF i 1e

The (revised) StoreF i 1e operation we will present as a schema including the
variables f i IeSt f i Ies' , I-lho, and when (supplied by AFS), as well as the data to be
stored (contents?), the expiry time (expires?), the new na.me chosen by the service
(name!), a.nd the charge made in advance (cost!):

StoreF i1e' --"

AFS
contents?: DATA
e><p i res? TIME
name! NAME
cost! COST

(3FILE' .
ol-lner "ho
creeted' :; when
expires :; expires?
contents' :; contents?

name! f dam files

files' = files. [neme! 1-+ FILE')

cost l = Tariff (FILE'))

l2 The Distributed Computing Software Project

A new file FILE' is constructed which is owned by the client storing it, which records
its creation time as the time it was stored, which will expire at the time the client
specified (then becoming inaccessible), and whose contents the cHent suppLies.

A new name name! is chosen, not currently in use, and the file is stored under that
name. The charge made is some function Tar i ff of the file (hence of its owner,
creation and expiry times, and contents). Here is a possible definition of Tariff
(which depends in turn on sOme function Size):

Tariff = (>..FILE. (expires - created) * Size(contents))

ReadEi le

The ReadFile operation returns the expiry time and the contents of the file stored
under a given name. Its parameters are the name of the file to be returned (name?),
when it will expire (exp ires!), and its contents (content s!):

ReadFi le' ~1

6FS
name? NAME
exp ires! TIME
contents!: DATA

FS' = FS

(3FILE.
FILE = files (name?)
expires > ~hen

expires! = expires
contents! = contents)

l I

ReadF i 1e does not change the state of the service. The map f i 1es is applied to the
name, to determine the file's value FILE, which must not Dave expired. Its expiry time
and contents are returned.

The role of mathematical specifica~ions 13

De 1eteE i 19

The DeleteEi le operation removes a file from the service. A rebate is offered as an
incentive to deletion before expiry. name? is the na.me of the file to be deleted, and
cost! is the (possibly negative) charge made for doing so (we a.8sume negation Ol_~ is
defined on COST):

Del eteF i le -,
AFS I

name?: WAME
cost!: COST

(3F1LE.

FILE fi les (name?)
expires> when
owner who
fi les' f i I es \ {name?}
cost! - Rebate (FILE. when»

The map f i 1es is applied to the name, to determine the file's value FILE, which must
not have expired. It must be owned by the deleting client. The file's name name?
(and hence th€ file itself) are removed from the partial function which represents the
stored fil€s, and the cost is determined by a function Rebate of the file a.nd its
deletion time. H€re is a possible definition of Rebate:

Rebate = (XFILE; looIhen: TIME. (expires - when) * Size(contents)

Naturally, there are other compromises which could be made, in addition to or instea.d
of those above. In the next section, however, we discuss a compromise which we
suggest should not be made.

14 The Distributed Computing Software Project

1.4. A compromise avoid~d

One glaring inefficiency remains in our proposal: that we must transfer whole files at
once. Ma.ny clients will not have time or the resources (e.g. local memory) to do this.
But here we will not compromise by modifying our file storage service to cater for this
inefficiency - rather we insist that the business of the file storage service will be file
storage exclusively. Partial examination and updating will be the business of a file
updating service.

To propose a service which treats the contents of files as having structure, we must
propose a structure. The proposal we make is the very simple view tha.t the contents
of a file is 11. sequence of pieces. (Sequences are functions from the na.tural numbers N
to their base type, and begin at index 1.) We do not wish to say what a piece is,

however, for this description.

OA1A ~

I seq PIECE:

The file updating service in fact has no state; all its work is done in the calculation of
its output! from its inputs. Its two operations are ReadData and UpdateData.

ReadData

ReadData takes the contents of a file contents?, a starting position start?, and a
number of pieces to be read number?, and returns the data pieces! at that position
within content s? (ltp ieces! is the length of the sequence pieces!, and
1 .. apieces! istheset{;: N 11 \(i 'S: Itpieces!}.)

The role of mathematical specifications 15

ReadDate' -"

contents?: DATA
star-t?,
number? N
pieces! DATA

apieces! = min (number?, (acontents? - start?»

(Vi: l..apieces!. pieces!(i) = contents?(i + start?))

The length of the data returned is equal to the number of pieces requested, if possible;
otherwise, it is a.a la.rge as the length of contents? will allow. The jth piece of
pieces! returned is equal to the (i +stert?)th piece of contents?

UpdateD8te

UpdateData takes the contents of a file contents?, a position start?, a.nd some
data pieces?, and returns an updated contents contents!.

Upd.leD.t. ~

contents?, I

contents! DATA
start? N
pieces? DATA

acontents! = max (acontents?, (start? + apieces?))
start? ~ .contents?

(Vi: 1..•contents!.
(i - start?) E 1..•pieces?
~ contents!(i) = pleces?(i - start?)

(i - start?) e 1..•pieces?
~ contents!(i) = contents?(i))

16 The Distributed Computing Software Project

The length of the new contents is equal to its original length, unless an extension was
necessary to accommodate the new data; however, the new data must begin within the
original conlents or immediately at its end. The ith piece of cont ents! is equal to
the (i -start?) th piece of pieces?, if this is defined; otherwise, it is equal to the i th

piece of contents?

Our proposa.l is of course only one of the maDy possible (for a different proposal, see

the definiti()n of these operatioDs in Morgan and Sufrin [5]). We could, of course,
propose several updat.ing services, each providing its own set of facilities. Moreover,
the original operations which transferred whole files would still be available to those

clients able to use them (see figure 1.1).

The role of ma'hem...ucaJ .pecific...\ioQl 17

Whol.
f 11••
Tr...r.,.r.d

LJpd.tin9
Servic. $I:

PIKn
Tr...r.,.r.d

Cl ••nt Z

Figure 1.1 Separate updaHDg and a'ofaie terv;ce.

••
•

., ~
"

~
 ... ~

8 <T
 •6"
 •" 'R • S" ..
 ~ •" S- Ol '" • ~

 ~" •

.

:;
'~
~

. ,.

, • .. ~

~
 .. '
- •• '
n

•• ~.

~
 , • ~

~
~
'
"

,-
"

•
_

D

, . ~III"

~
 , • D.

8 , • ~ N

~ ..
 :;l • " !\: ,"
 •<T " "

~

8 i! S ..
 ~ ~
 if ~ "[

The role of mathematical specifications 19

1.6 Modularity and eomposition or 8ervices

The structure we have presented above separates the issues of how files should be
stored from bow they should be manipulated. As a result, we have offered the user an
unusual freedom of choice· he can read just one piece of a file, or he can treat a file as
a single object (with the corresponding conceptual simplification; Stoy and Strachey [7]
for example allow this in their operating system 086).

Still, it is likely that a further compromise will be necessary: for large files, the time
taken to traosfer the file between the two s.ervices (storage and updating) may not be
tolerable. We solve this not by changing our design, but by an engineering decision:
for applications that require it, we will provide the two services together in ODe box t

and the transfers will be internal to it (see figure 1.2). Its specification we construct by
combining the material already available.

StoreFile, ReadFile, and DeleteFile will be available as before. However, we
introduce two new operations, ReadStoredF i 1e and UpdateStoredF i le, whos.e
specifications will be formed by composing the specifications given above. (The
schema composition operator il J", used for this, is defined in [3]. Here, we will explain
it informally.)

ReadStoredF i J e

Reading a stored file is performed by first reading the whole file with Readf i 1e I and
then reading the required portion of its contents using ReadData. In Z we write this

ReadStoredFi Ie Q ReadFi 1e J ReadData

U we were to expand this definition of ReadStoredF i la, the result would be as
oelow:

20 The Distributed Computing Software Project

ReadStoredF i 1e
6FS
name? NAME
start?•
number? N

exp ires!: TIME
pieces! : DATA

FS' = FS

(3FILE.
FILE = files (name?)

exp ires > when

expires! = expires

II-pieces! = min (number?, (II-contents - start?»
(Vi: 1.. II-pieces!.

pieces!(i) ~ contents(i + start?»)

ReadStoredF i le takes a file name name?, a starling position st art? I and a number
of piece8 number?, a.nd returns the expiry time of the file exp ires! , and the data.
pieces! found at the position specified. (exjJ ires! is returned by ReadStoredF i 1e
because ReadF i Ie returns it; we could have dropped this extra output, but choose not
to introduce the Z notation for doing so.)

UpdateStoredF i 1e

The complementary operation UpdeteStoredF i 1e is a more difficult composition,
smce we must accumulate the costs of the component operatioDs, and we must ensure
the upda\.ed file is (re-)stored under its original name. For the sake of honesty, we will
give the definition, but we will not expand it:

The role of mathematical specifications 21

UpdateStoredF i 1e Q

ReadF j 1e I
DeleteFile ldcost!/cost~l I
UpdateData I
StoreFile [name?/narne!. scost!/cost!] I
(dcost? scost?, cost!: COST I cost! = dcost? + scost?)

UpdateStoredF i I e first reads the whole file, then deletes it, then updates it, and
then stores its new value under its original name. Finally, it presents as its overall cost
the sum of the two charges made by De leteF i 1e (which may well be negative) and
StoreF i Ie.

What we have done is to compose two simple but infeasible operations to produce a
more complicated but feasible one (rather like the use of complex numbers in
electrical engineering, for example). Naturally, the implementor need not transfer
whole files back and forth within his black box on every read and update operation
but nevertheless the updating and storage service provided by the box musl behave as
if he does: that is, it must hehave as we have specified. Our decomposition was chosen
for economy of concept; the implementor's must be chosen for economy of time and
equipment, and the whole range of engineering techniques are available to him to do
so (caches, update-in-place, etc.).

1.6 Experience BO far

While the project has followed the general principles above, it has in fact adapted to
constraints in different ways. Its storage service, which we have implemented in
prototype, stores blocks of a fixed size (.ather like the service described by Biekert
and Janssen[lJ). This distinguishes it as a "'universal" storage service from, say, the one
Implemen·~ed a.t Cambridge (described by Needham and Herbert[6J). Organisation of
blocks into files, the keeping of directories, etc. is done by software in the clients' own
machines (for example, using a "'File Package" as described by Gimson [2]). This
allows clients freedom in the choice of what file structure they build, but of course
ma.kes the sharing of files more difficult. If one package should become popular,
however, it could be placed in a machine of its own, and so become a service.

22 The Distributed Computing Software Project

There are IDany aspects of the project that it has not been possible to cover. For
example, the specification of the errors that may occur in use is an essential part of
the full specification of a service. We include such details in the user manuals of the
services we have implemented. The manuals follow the style of specification presented
here, combining formal text and English narrative to give a precise yet easily
understandable description of the user interface to a service.

So far, the pressure of simplicity in our mathematical descriptions haa kept the designs
correspondingly simple. At present, they are perhaps too much 80j but by using
mathematicaJ specification techniques we have built basic services which genuinely are
simple. And that is where one must begin.

1.7 Futu:e pl8Jl8

The styleB of specification, and of presentation of user manuals, has to some extent
been developed in parallel with the software to which they have been applied. These
styles are now more stable, and further services will be specified I designed, and
implemented in the same way.

The goal of the project is to produce a suite of designs from which implementations
can be built on a variety of machines. Each design will be documented, in a
mathematical style I both for the user and for the implementor. Th us the primary goal
is to conslruct a distributed system on paper.

For a paper construction to have any value, the designs proposed in it must be widely
applicabJe, and genuinely useful. Machine-independent techniques of description will
take care of the first requirement. To ensure that the second is met, prototype
implementations must be cODstructed of each of the designs, and experience must be
gained of their use.

The role of mathematical specifications 23

1.8 GJOSBIUy or .ymbols

e

~

3
V

•
N

m.• n

{s i 9 I pred}

A -++ B

[......b)

f(x)

dom

/

\

•

"is an element of"
"is not an element of"

"'there exists"
CIfor all"

"is syntactically equivalent to"

The Bet of natural numbers (non·negative integers)

The set of natural numbers between m and n inclusive

m.. n • {k, N 1m' k , n}

The set of s i 9 such that pred

The set of pa.rtial functions from A to B

The function {(a, b)} which takes a tab

The function f applied to x

The domain of a relation (or function)
for f: A~B,

dom f • {a' A I (3 b' B . b = f(o»}

Domain restriction
for f: A~B; A fj; A,
f / ~ • {(a,b)' f I a e ~

Domain co-restriction
for f: A~B; A fj; A,
f \ ~ • {(a, b), f I a ~ ~

Functional overriding
for f. g: A~B,

f • 9 • (f \ dom g) U 9

24	 The Distributed Computing &ftw:ue Project

seq A The set of sequences whose elements are drawn from A
seq A sa {s: N ~ A I (3n: N . dom s = 1.. n)}

Os The length of sequence s
doms=l .. as

[ne"fold] Schema variable renaming
I Schema forward composition

1.9	 Referenees

11]	 Biekert, R., and Janssen, B., 1983, "The implementation of a. file system for the
open distributed operating system Amoeba", Ipfonnatica. Rapport Ytik
Unjveraitjet Aweterdam.

[2)	 Gimson, R. B., 1983, "A File Package· User Manual"', Distributed CoooPytjni
~ WorkiOli £aw, Prognwmjng ResejlTCb ~ QxfQrd University

[3]	 Morgan, C. C., 1984, "Schemas in Z - a preliminary reference manual",
Distributed Computing ~ WorkiOli £aw, Programmipi Research ~

.QlWnl University

[4)	 Morgan, C. C., 1984, "Schemas in Z - an example", Distributed Computing
.emm Working £aw, Programming Research!Jr2.u.I4.Qx..{2I:d Unjyemitv

/51	 Morgan, C. C., and Sufrin, B., 19841 "Specification of the Unix File System"',

m.E.E T!:lIIa. SoU. w.. Mm.ll ~

[6J	 Needham, R., and Herbert, A., 1982, liThe Ca.mbridge file service", in liThe
Cambridge Distributed Computing System"', Addison-Wesley, 41-63

[7]	 Stoy, J. E., and Strachey, C., 1972, "086 • An operating system for a small
computer", ~ L l.5., 2, 195-203

[8]	 Sufrin, B., 1983, "Mathematics for syetem 8pecification",.l&c..lu.rt. ~ 1983-}984

Programming Research ~.D.xi2I.d. University

25

Chapter 2

Authentication of User Names

2.1 Nicknames and usemames
2.2 Authentication
2.3 Guest user

26 The Distrihuted Computing Software Project

2.1 Nicknames and useruames

As a short-term measure, a very simple scheme has been chosen to make it difficult for
one client to impenonate another.

Each registered client has a nickname and a username. Nicknames are allocated
from a set Nickname, and the allocation is public. that is, it is common for clients to
know each othen' nicknames. It is expected that nicknames will change only rarely, if
at all.

Usernames are allocated privately, from a set User; a client should not reveal his
username to anyone else. Since usernames may become compromised (known by too
many people) or forgotten (known by too few!), it might be necessary to change a
client's username from time to time.

2.2 Authentication

Authentication is achieved by the existence of a (secret) partial function

GetNickname User ~ Nickname

1hich gives for any username the nickname of the client who should be its sale
possessor. Since the set User of usernames has been made very large, and the set

dam GetNlckneme

of authentic Ulllername8 has been made a relatively small part of it, it will be hard for
clientlll to guesa the usernames of othen. Services therefore may use the function
Get Nickname to authenticate their clients; they might reject requests for which

cl ient? ~ dam CetNickname

Authentication of user names 7:1

2.3 Cueat tl8er

There is a guest username GuestUser which some 8Elrvices might recognise as "
special case. This username is public, and is expected to be used by clients
temporarily without" private Uflername of their own. It is guara.nteed that the guest
U8ername is not the authentic usernaroe of any client

GuestUser E User - dom GetNickname

Oxford University
Co!npLiting UJtlOralory
Programming Research Group-library
8-11 Keble Road
Oxford OX"! 3QD
Oxfnr~ IO"~~! .54141

I

I

I

•

)
" •

't:
~

.,
.2
i!

.S $ ~

"t:
I

€"
~

~
-
e
"
@
~

~ -
.

,~ .H
&. ~;;
~

0...

to
~
~

<J
...
C
I
~

~

 t3
]

I
.§

~
~
i
l

!-<

"''''::;:
j

~

Eo<
..

:
;
~
;
$

I I I I I

30 The Distributed Computing Software Project

3.1 Time service operation

The time service provides only one user operation, GetTime, which returns the
current time

hI seconds since 00:00:00 1 January 1980.

The description of the operation has three sections, titled Abstract, DefinitioD and
Reporio.

The Abstn.ct section gives a procedure heading for the operation, with formal
parameten, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language must be obvious and direct.

Each formal parameter is given a name ending with ehher ? or! Those ending with
? are inputs, and those ending with ! are outputs.

The Definition section defines the meaning of the operation.

The RelXlr1s section lists the possible (success or fa.ilure reporting) values which the
report! format parameter can assume. Reports are discussed in more detail in
section 3.2.

Time service user ma.nual 31

GETTIME

Abstract

GetTime (cl ient?; User;

now! Time;

cost! Money;
report ~ : Report)

Definition

The current time now! is returned, measured in seconds from 00:00:00 1st January
1980. The cost cost! is fixed. The client's username cl ient? must be a.uthentic (see
Chapter 2).

cl ient? Edam GetNickname

Reports

Success
Serv i ceError

32 The D~tributed Computing Software Project

3.2 Enor reports

The report parameter report! indicates whether the operation succeeded or failed.

The value Success indicates the operation succeeded.

The value Serv j ceError indicates the operation failed; in this case, no reliance

should be placed on any other value9 returned. Possible reasons for this report are:

The service isn It running

There was a communication error

Time service user manual 33

3.3 UCSD Pascal intedece

UNIT TI;

INTERFACE {UNIT TI 2S-Nov-S3}

{T i me Serv i ce - UCSD-Pasca 1 Interface}

USES {$U SVTYPES.CODE} SV_Types;

TYPE
TI_Repart (II_Success, II_ServiceError)i

PROCEDURE TI_GetTime (InCllent SV _User;
VAR Out NOH SV_Timei
VAR OutCast SV _Maney;

VAR OutReport TI_Repart) ;

{return current time}

34 The Distributed Computing Software Project

3.4 Modula-2 iDterface

DEFINITION MODULE TI: (* Roger Gimson 22-Feb-84 *)

(* Time Service - Modula-2 Interface *)

FROM SVT~pes IMPORT User, Time, Honey:

EXPORT QUALIFIED Report, Get Time:

TYPE
Report (Success,

Serv iceError) ;

PROCEDURE GetTime (InCl ient User;

VAt{ OutNolool Time;

VAR Out Cost Money;

VAR OutReport Report);

(* return current time *)

END TI.

35

Chapter 4

Reservation Service· User Mauual

4.1 Introduction

4.2	 Reservation service operations
Reserve
SetShutdoWD
Scavenge

4.3 Error reports
4.4 UCSD Pascal interface
4.5 Modula-2 interfa.ce

36 The Distributed Computing Software Project

4.1 mtroduetioD

The distributed operating system at the Programming Research Group is made up of
various services which are largely independent. In particular, it's possible that one
service CaD be turned on or turned off while other services and clients continue to run.

When a service is turned off (sbutdown), there should not be any client who is at that
moment iDvolved in some series of interactions with it· because interruption of such a
series could be quite inconvenient (for the client). If these series (or transactions) can
be recognised by the service, it is possible to avoid this inconvenience as follows.

Shutdown procedure:
1.	 The operator requests shutdown of the service.
2.	 The service rejects any attempt to begin a new transaction, but allows

current transactions to continue.
3.	 When all transactions have completed, the service notifies the operator that

shutdown is complete.

However, there are some problems; for example, a client might himself fail to
complete a transaction (presumably due to accidental failure of his own software). If

this happened, the service would never shutdown. A more serious problem is that for
some services (e.g. the block storage service) there is no recognisable transaction
structure, and so the above scheme cannot be used at all. We solve both problems
with an iDdependent Reservation Service.

The reservation service does not interact at all with the service it reserves; it interacts
only with its own clients, and with the operator. It allows clients to state when, and
for how long, they would like to use the reserved service, and it allows the operator to
state a sbutdown time beyond which all reservations are to be rejected. It becomes
the clients' responsibility to protect themselves from sudden shutdown of the service
(by making reservations), and the operator's responsjbiHty to turn off the service only
after the shutdown time (which he may set). Thus a shutdown can be unexpected only
by those clients who have made no reservation.

A typical use of the reservation service would be for clients to include a reservation
request at the start of every program using the reserved service. The duration of the
reservation should be long enough to allow the program to complete, but short enough
to allow the operator to make a reasonably spontaneous decision to shutdown.

Reservation service user manual 37

The state of the reservation service has two components:

expires	 a map from clients' nicknames (their public identitie! - see

Chapter 2) to the time at which their current reservation expires

shutdot-ln	 the shutdown time most recently set by the operator.

RS ,

exp ires Nickname ~ TIme

shutdown: Time

Each operation requested by clients includes the three values:

cl ient? the username of the client
cost! the cost of the operation
report! a report indicating whether the operation succeeded or failed.

6RS
RS
RS'

cl ient? User
nickname: Nickname

cost .1 Money
report! Report

cl ient? e dom GetNickneme
nickname GetNickname (cl ient?)

The username c 1 i ent? is supplied by the user; it is his private username (as distinct
from his public nickname). cl ient? must be authentic (cl ient? e dom
GetN r ckname) if the service is not to ignore the request.

The client's nickname is calculated by the service. cost! and report! are returned
to the user by the service.

38 The Distributed Computing Software Project

4..2 Reeervation service operatiu.l1S

Three operations are degcribed in this section; Reserve, which is requested by clients I

SetSbutdoWD.) which is requested by the operator, and Scavenge, which is performed
by the service itself (at its discretion). The latter two operations are included here only
as an aid to the reader's intuition.

The description of each operation can have up to four eections, titled AblItraet,
Definition, External Calls and Reports.

The Abstra.ct sectjon gives a procedure heading for the operation, with fonnal
parameters, as it might appear in some programming language. The correspondence
between this procedure heading and an implementation of it in some real programming
language must be obvious and direct.

Each formal parameter is given a name ending with either? or! Those ending with
? are inpul.s, and those ending with ! are outputs.

A short de5Cription may accompany the procedure heading.

The Definition section mathematically defines the operation, by giving a schema which
includes as a component every fonnal parameter of the procedure heading; within the
schema also appear subschema(s) whose components include the service state before
and after the operation (this can be more (RS, RS') or less (.6.RS) explicit). Any other
components appearing in the schema are either local to the operation (that is,
temporary) or represent values exchanged with other services (invisibly to the client).

Only the fonnal parameters of the procedure heading are exchanged directly between
client and service.

A short description may accompany the schema.

The External Calls section lists the calls this service may make on other services, in
order to complete the requested operation. These appear as procedure calls which
match the procedure headings given in the description of the operation called. (These
are found in the user manual for the called service.) The correspondence between
formal and actual parameters is positional, with missing (i.e. irrelevant) actual
parameters indicated by commas.

Reservation service user manual 39

The Reports section lists the possible (success Or failure reporting) values which the
report! formal panroe~r can assume. If such a. value is followed by a component in
pa.rentheses and/or a predicate , it is to suggest that the reported value would occur
because tha.t component satisfied the predicate. The component and predica.te are
therefore a hint to the cause of the repor1.

Reports are discussed in more detail in section 4.3.

40 The Distributed Computing &ftware Project

RESERVE

Abstract

Reserve (client? User;
interval?: Interva 1;
unt i 1 ! Time;
cost! Money;
report! Report)

A reservation it! made for a period of i nterva l? sc<;onds. unt i I! returns the expiry
time of the new reservation.

A client can cancel his reservation by ma.king a new reservation in which i nterva17
is zero; see Scavenge below.

Definition

Reserve
~RS

interval?: Inter~al

unt i 1 !.
now Time

unt i 1! now ... jnter~aJ?

unt i 1 ! ~ shutdown

exp ires' expires. [nickname 1-+ unti l!]
shutdown' shutdown

cost! = 20

The reservation must expire before the shutdown time. The current time now is

obtained from the lime service (see Chapter 3).

Reservation service user ma.nual 41

External Calls

Time Service

GetTime (,now,.Success)

now is obtained by a successful call of GetTime. It is measured in
seconds from 00:00:00 1st Ja.nuary 1980.

Reports

Success

ServiceError

NotAvailable shutdown < now + inte, val? -
 shutdown: until!

TooManyUsers lexpires = Capacity -

42 The Distribute<! Computing Software Projed

SETSHUTDOWN

Abotrad

SetShutdown (shutdown? : Timej
threatens!: Boolean)

The operator may set a new shutdown time. Be is informed. if the new time threatens
existing reservations; if it does, it is his responsibility to negotiate with the clients
affected.

Definition

SetShut down

RS

is'

shutdown? Time

threatens!: Boolean

shutdown' shutdown?

threatens! ~ (3exp iry: ran expires. expiry> shutdown')

expires' =expires

The shutdown time is changed to the new value regardless of exjstj.ng reservatjonB.
Reservations are unaffected.

Reservation service user ma.nual 43

SCAVENGE

Abotrad

Scavenge()

Tbe service can at any tiDle remove reservations whose expiry t.ime is in the past. This
is in fact tbe only way in which reservations are removed (by client, operator or
service).

nef"mitiOll

Scavenge
RS
RS'
no~: Time

shutdo~n' = shutdo~n

expires' ~ expires

(Vremoved: dom expires. removed. dom expires
=> expires(removed) ~ no~)

Scavenge does not change tbe shutdown time.

Scavenge can remove reservations, but it never makes new ones. A reservation is
removed only if its expiry time is in the past.

44 The Distributed Computing SoHware Project

Extemal Calls

Time Service

GetTime (.no~ •• Success)

no'l is obtained by a successful call of GetTime. It is measured in
seconds from 00:00:00 f·t January 1980.

Reservation service user manual 45

4.3 Error reporta

The report! parameter of each operation indicates either that tha oper:'i.tion
succeeded or suggests why it failedj in most cases, failure leaves the service uncha.nged.

An operation can return only the report values listed in the Reports section of its
description. If it returns the value Success, it must satisfy its defining schema. If it
returiJa any other value, it must satisfy instead the appropriate schema below.

ServieeError

ServiceError i

RS
RS'

report! ServiceError

Serv i ceError indicates an unexpected failure, which might not be the client's fault.
Theae a.re typical causes:

Service not running

Network (hardware or protocol) failure
Service hardware fault
Service software error

O,foro University
Co"'ruting Laboratory
Programming Research Group-Library
8-11 Kebfe Road
O,foro OX1 30D
Oxforo (ORR5) 54141

46 The Distributed Computing Software Project

NotAvailable

NotAva i 1ab 1e
IlRS
interval?: Interval

unt i 1 !.

nOI-l Ii me

report! ~ NotAvailable

shutdol-ln < nOI-l + interval?
until! =shutdol-ln

RS' = RS

If the reservation cannot be made due kl early shutdown, the shutdown time itself is

returned in unt j 1 ! •

nOI-l is obtained. from the time service.

Reservation service user manual 47

TooManyUsen

TooManyUsers I

bRS
now: Time

report! = TooManyUsers

.expires = Capacity

nickname f dom expires

RS' = RS

The service has finite capacity Capac i ty for recording reservations; this report occurs
when that ca.pacity would be exceeded. The report cannot occur if the client haa a
reservation (since it is overwritten by the new one).

noi04 is obtained from the time service.

Clients who can't themselveB make reservations might be able to rely temporarily on
the reBervations of others.

48 The Distributed Computing Software Project

4.4 UCSD Pasea.l interface

UNIT RI;

INTERFACE {UNIT RJ 28-Nov-83}

{Reservation Service UCSD-Pascal Interface}

USES {$U SVTYPES. COOE} SV _Types;

TYPE

RIYeport (RI_Success, RI_ServiceError, RI_NotAvailable,
RI_TooManyUsers);

PROCEDURE RI_Reserve (InCl lent SV_User;

Inlnterval SV_Interva 1 ;
VAR OutUnt j 1 SV_Time;

VAR Out Cost SV _Money;

VAR OutReport RI_Report) ;

{reserve use of the service for Inlnterval. terminat ing at
OutUnt i 1, otherw ise return the time at wh I ch the serv ica
becomes unava i 1eb 1e in OutUnt i I}

Reservation service user manual 49

4..5 Modnla-2 interface

DEFINITION MODULE RI; (. Roger Gimson 22-Feb-84.)

(*	 ReservatIon Service Modula-2 Interface *)

FROM SVTypes IMPORT User. Time, Interval, Money;

EXPORT QUALIFIED Report. Reserve;

TYPE
Report (Success,

Serv IceError,

NotAvai lable,

TooManyUsers) ;

PROCEDURE Reserve (InC! lent User;
Inlnterval Interval;

VAR OutLimit Time;
VAR OutCast Money;
VAR OutReport Report);

(*	 reserve use of the service for InInterval, terminating at

OutLimit. other~jse return the time at ~hich the service

becomes unavailable in OutLimit *)

END RI.

51

Cha.pter 5

Block Storage Serviee - UBer M8.Ilual

5.1 Introduction
5.2 Accountjng
5.3 Security

5.4	 Storage service operatjoDs

Submit

Read
Status
Destroy

Replace
Extend
BlockNa.mes
BlockCount

&a.venge

5.5 Error reports
5.6 UCSD Pasca.l interfa.ce

5.7 ModuJa.-2 interface

52 The Distributed Computing Software Project

6.1 IntrodUctioD

The block storage service stores blocks on behalf of its clients. A client may submit
some data

data: Data

which the service will store within a block

Block
owner Nickname
created: Time
exp ires: Time
data Data

As well a:l containing the client's data, the block records as its owner the nickname
(see Chapler 2) of the client who submitted it, and it record:i the time of its creation.
Whenever a block is created, a lifetime must be given by the client; it is the number
of seconds for which the service i8 obliged to :itore the block. After its lifetime, a block
is said to ilave expired, and can be discarded by the service without notification of the
client. A name will be issued by the service when the block is crea.ted

name: Name

which becomes the client's reference to the block. Any subsequent operations on the

block will require this name.

The service contains a mapping from block names to blocks; it contains also a finite set
of new block names which it has not yet issued. When a new name is issued, it is taken
from thiB set.

SS
blocks
newnames:

Name
F Nam

-++

e
Block

=newnames n dam blocks {}
Nul1Name e newnames

Block storage service user manual 53

The service guarantees never to issue the special name Null Name; this name can
therefore be used by clients' applications to indicate "no block" (similarly to the use of
the nj) pointer in a programming language).

There are eight operations the client may ask the service to perform:

Submit create a new block and store it.

Read read the data of a stored block.

Status obtain the complete status of a stored block.

Destroy remove a stored block from the service.

Replace replace one stored block with another.

Extend change the lifetime of a block.

BlockNames - obtain the names of blocks currently owned
by the cHen t.

BlockCount - obtain the number of blocks currently owned
by the client.

There is also a &avenge operation which the service may perfonn at any time: it can't,
however, be requested by clients:

&avenge remove an expired block.

Every operation the service can perform for a client must receive the client's
identification as input, and it must provide the cost and a report as output; normally,
the report will be Success:

cl ient?: User

cost! Money
report! : Report

54 The Distributed C-ompnting &ftware Project

The client's username must be authentic (see Chapter 2) ; if it is, he will have a
nickname:

nickname: Nickname

nickname = GetNickneme (cl ient?)

During an operation, the service can ask the time service (Chapter 3) for the current
time:

now?: Time

Finally, any name issued by an operation is removed from the set of new names, and
so can never be issued again:

newnames' = newnames - dom blocks'

This schema describes these general aspects of operations on the storage service.

~SI

IS
IS'

cl ient? User
now? Time

nickname Nickname

cost! Money

report! Report

nickname =GetNickname (cl ient?)

newnames' newnames - dam blocks'

Block storage service user manual 55

6.2 Accounting

Each client will be responsible for the expense of his using the service.

Cosu,

Every operation haa a cost, which may have two components. One is the expense of
performing the operation itself:

SubmitCost

ReadCost

StatusCost

DestroyCost

ReplaceCost

ExtendCost

BlockNamesCost

BlockCountCost

The other, if present l is related to the service requested by the .operation. For
example, the submit operation charges in advance for the storage of the block
submitted, and the destroy operation may give a. rebate (negative expense) if the block
is destroyed before its expiry time.

The expense of storing a. block is determined by applying a tariff function to the
block's creation and destruction times. This is a typical briff function:

Tariff (created, destroyed) =

if destroyed" created	 then destroyed ~ created
else 0

Accounting policy

The values of SubmitCost etc. and of the tariff function may be varied; their prec:.se
values at any time will be published separately. Expenditure will be recorded in a log,
and clients will be expected to observe any limits placed upon them.

56 Tbe Distributed Computing Software Project

6.3 Security

The service provides limited security in two areas; in botb cases it depends on certain
values being cbosen from such a large set tbat they are hard to guess.

A client may Dot access a block unless he knows its name, and block names a.re bard
to guess. The Dame of any block is initially known only to its creator; tbe service will
never tell any client the name of a block be doesn't own.

Blocks may be replaced or destroyed only by their owners, and user names are bard to
guess (see Chapter 2).

Block storage service user manual 57

5.4 Storage service operations

On the following pages appear descriptions of the storage service operations. Each
description has three Bections, titled AbstJ'ad, Definition and Reports.

The Abstract section gives a procedure heading for the operation, with fonnal
parameters l as it might appear in a programming language. The correspondence

between this procedure l and an implementation of it in a real programming language,

must be obvious and direct.

Each formal parameter is given a name ending with either? or Those ending with

? are inputs, and those ending with ! are outputs.

A short. descrlption accompanies the procedure heading.

The Definition section mathematically defines the operation, by giving a schema which
includes as a component every fonnat parameter of the procedure heading; within the
schema also appears a subschema (655) whose components include the service state
before (55) and after (55') the operation. Any other components appearing in the

schema are local to the operation (that is, temporary) and may assume any values

consistent with the predicates.

The client is directly aware only of the components which are fonnal parameters of

the procedure heading.

A short. description accompa.nies the schema.

The Reports section lists the possible (success or failure reporting) values which the
report! fannal parameter may assume. If such a value is followed by a predicate, it

is to suggest that the value would occur only if the predicate were true. The predicate

;.; therefore a hint to the cause of the report.

Section 5.5 discusses report values in more detail by giving a mathemaLical definition

of each of their occurrences.

58 The D~lributed Computing &lftwa.re Project

SUBMIT

Absb'act

Submit (cl ient? User;

1ifet ime?: Time;
data? Data;

name! Name;

cost! Mone!J;
report! Report)

A block is formed from the 1 ifet ime? and data? values given, and iii stored by the
service under the new name name! . The <:oat indudes the expense of storing the blo<:k
until ita expiry time.

Block storage service user manua.l 59

Definition

Subm it
6SS

Block'

1 ifet i me?: Time

data? Data

name! Name

owner nickname

created' now?

expires' created' + 1ifetime?

data" data?

name! E neHnames

blocks' ~ blocks e [name! ~ Block']

cost! = SubmitCost + Tariff (created', expires')

The owner of the block is the client submitting it.

A new name is chosen which has never before been issued, and the new block is stored
under that name.

Reports

Success

ServiceError

NoSpace >=> tJblocks StorageCapacity

60 The DiBtributed Computing Software Project

READ

Abstraci

Read (c1 ient?: User;

name? Name;

data! Data:

cost! Money;
report!: Report)

The da.ta. is returned for the block stored under name?

Block storage service user manual 61

Dermition

Read
ASS
Block
name?: Name
data!: Data

55' = 55

Block blocks name?
data! data

cost! ReadCost

The service is unchanged by this operation.

Reports

Success

Serv i ceError

.,.NoSuchB lock name? ~ dam blocks

62 The Distributed Computing Software Project

STATUS

Abstract

Status (cl ient? : User;

name? Name;

owner! , Nickname:
created 1: Time:
exp ires! : Time:

cost! t'hney;
report! Report)

The status is returned of the block stored under name?

Block storage service user manual 63

Definition

Status
~SS

Block
name? Name
owner! Nickname
created! : Time
exp ires! : Tima

SS' = SS

Block = blocks name?

owner! = owner
created! = created
expires! = expires

cost! = StatusCost

The service is unchanged by this operation.

Reporta

Success

Serv i ceError

.,.NoSuchB lock name? f dam blocks

64 The Dislributed Computing &lftware Project

DESTROY

Abst:raet

Destroy (client?: User;

name? Name;

cost! Money;
report~: Report)

The block 6~ored under name? is removed from the service; there may be a rebate if it
is destroyed before its expiry time.

Block storage service user manual 65

Derinition

Destroy
655

Block

name?: Name

Block = blocks name?
Ololner = nickname

blocks' = blocks \ {name?}

cost! = DestroyCost - Tariff (created, expires)
+ Tariff (created. nolol?)

A block may be destroyed only by its owner.

Reports

Success

Serv i ceError

NotOl-lner => Ololner # nickname
NoSuchBlock ... name? f dom blocks

66 The Dis\ribu\ed Compu\ing Software Project

REPllCE

Abotract

Replace (client?: User;

name? Name;
data? Data;

neme! Name;

cost! Money;
report!: Report)

The date pari of the block s\.ored under neme? is replaced by dat a? Tbe block is
given a new name.

Block storage service user manuill 67

Definition

Replace
ass
Block
Block'
name?: Name
date?: Data
name!: Name

Block = blocks name?
o...ner = nickname

o...ner o...ner
creat ed' no...?
e)(p ires = expires
data' data?

name! e ne ...names
blocks' blocks \ {name?} e [name! ~ Block'J

cost! ReplaceCost - Tariff (created, expires)
+ Tariff (created, no...?)
+ Tariff (created', expires')

A block may be replaced only by its owner. The new block contains the Dew data, and
its creation time is the time of the replace operation. Its owner and expiry are taken
from the old block.
A new name is chosen which has never before been issued, and the new block is stored
under t.hat. name.

Reporta
Success
ServiceError

NotO...ner ... o~ner ~ nickname
NoSuchBlock ... name? f dom blocks

68 The Distributed Computing Software Project

EXTEND

Abstract

Extend (cl ient? : Userj

name? Name:
1 ifetime?: Time

cost! : Money;
report! Report)

The expiry time of the block stored under name? is changed to nOI-4? + 1 ifetime?j
there may be a rebate if its new expiry time is earlier than before.

Block storage service user ma.nua.1 69

Definition

Extend --,

655
Block
Block'
name? : Name
1 ifetime?: Tima

Block = blocks name?

owner = nickname

owner owner
created' = created
exp ires' now? + 1 ifetime?
data' ::' deta

blocks' = blocks. [name? ~ Block'}

cost! =ExtendCost - Tariff (created expires)
+ Tariff (created', expires')

A block ma.y be extended only by its owner.

Reports

Success

ServiceError

NoSuchB lock ... name? f dom blocks
NotOwner ... owner ~ nickname

70 The Distributed Computing Softwaxe Project

BLOCKNAMES

Abstract

BlockNames (cl ient? User;

key? Key;
count? , N

key! : Key;
nameset!: F Name

cost! Money;
report! Report)

B1ockNames returns a (finite) set of names of blocks owned by the client.

Since a client may own many blocks, it may not be practicaJ in a single operation to
return all of their names:

1allnames blocks-1 0 ownar- ({nickname})

The opera.tion BIockNames therefore returns only a part of all names, and repeated
ca.lls of it ma.y be necessary to construct ell nemes as the union of the parts returned.

To construct allnames , the client first calls BlockNamas with a special key
Start Key:

BlockNames I key? = StartKay

Block storage service user manual 71

He then continues to call B1 ockNames repeatedly, supplying as the new key (key?) in
each case the key (key!) returned by the previous call. The following is an example of
the ith call:

B1ockNames I key? key,
key! keY,+l
nameset! nemeset J

Finally, the special key EndKey will be returned to indicate that no more calls need be

made.

B1ockNames I key! EndKey

At that point, providing ell names has remained constant (i.e. no submits etc. have
occurred for this client),

al1names U nameset l

Oxford Ur1iversity
CO'"putlng i.aDoratory
Programming Research Group-Library
8-11 Keble Road
Oxford OX1 3QD
Oxford (O~65i 54141

72 The Distnbuted Computing Software Project

DermitioD

B1ockNames i

ASS

ke~? Key
count? N

key! : Key
nameset !: F Name

allnames: F Name

55' = 55

al1names = blocks- 1 0 owner- 1 ({nickname}'

key? \; key!

nameset! = (key! - key?) n allnames

.nameset! ~ count?

count? limits the size of the set returned.

A key ia itself to be regarded as a. set of names; i.e. the sel of keys is the (finite) set of
all 8Ueb sets of names

Key ~ F F Name

Each key value, passed from one call to the next, includes all the names that have
been returned (and possibly some that have not, but never will be).

Block storage service user manual 73

The special keys are

StartKey. EndKey: Key

Start Key 0 ()
EndKey Q Name

Reports

Success
Serv i ceError

74 The Distributed CClmputing Software Project

BLOCKCOUNT

Abstrad

BlockCount (cl lent?: User;
count! : N;
cost! Money;
report! : Report)

An estimate (upper bound) is returned for the number o(blocks currently owned by
cl ient?

Block storage service user manual 75

Definition

BlockCount
~55

count!: N

al1names: F Name

55' = 55

allnames = blocks- t
0 owner-1 «{nickname})

count! ~ _allnames

The count returned is an upper bound (rather than an exact value) because it may
include blocks which have been scavenged since the last initialisation of the service.

This operation may be unavailable if it was not enabled at initialisation of the service.

Reports

Success

ServiceError

CountNotAvailable

76 The Dilliributed Computing Scftware Project

SCAVENGE

Abstrad

Scavenge (name?: Name)

The block stored under name? is removed from the service; only expired blocks may
be scavenged.

S:avenge ma.y be invoked by the service at any time; it can never be invoked by clients.

Definition

SCBvenge I

655

Block

name? Name

Block = blocks name?

expires < nOI-l?

blocks' blocks \ {name?}

Block storage service user manual 77

6.6 Errop reports

The report! parameter of each operation indicates either that the operation
succeeded or suggests why it failed. In most cases, failure leaves the service
unchanged.

An operation can return only the report values listed in the Reports section of its
definition. If it returns the value Success, it must satisfy its defining schema. If it
returns any other value, it must satisfy instead the appropriate schema below.

NoSuclJBlock

NoSuchBlock
~5S

name? liI! dom blocks
report! NoSuchBlock

55' = S5

This report is given if there is no block stored under name?; note that this may be
because the" block has been scavenged.

78 The Distributed Computing Software Project

NoSpace

NoSpace I

ASS

I*blocks StorageCapec j ty

report! NoSpace

55' = SS

A new block cannot be submitted when the service's storage capacity is exhausted.

NotOwner

NotOlolner

ISS

ololner ~ nickname

report! = NotO~ner

55' = 55

Operationtl which can remove or change a block must be performed by the block's
owner only (excepting Scavenge).

Block storage service user manual 79

CountNotAvaliable

Count Not Ave i lab Ie i

~55

report! CountNotAveileble

If the B1ockCount operation was not enabled at service initialisation, this may be the
result of an attempt to invoke it.

Service£rror

Ser i ceError
55
55'

report! = Serv i ceError

ServiceError indicates an unexpected failure which is probablY not the client's fault.

These are typical causes:

Network (hardware or protocol) failure

Service hardware fault (e.g. disk error)

Service software error

80 The Distributed Computing Software Project

6.6 UCSD PascallDterfaee

UNIT 51;

INTERFACE {UNIT 51 IO-Aug-8~}

{Block Storage Service - UCsD-Pascal Interface}

USES {SU SVTYPES.COOE} SV_Types;

CONST
sI_DataSize = 528; {data bytes per block}
sI-NameLimit 6~; {max returnable names par call of BlockNames}

TYPE
51 -Name = SV_16HEX;

{b look name}

51_Data = PACKED ARRAY [1 .. 51_0ataSi.e] OF 5VjByte:
{b lock dat a}

51_Key =PACKED ARRAY [I .. ~l OF SVjByte;
{key used to chain BlockNames calls}

SI_NameSet = RECORD
count INTEGER;

names ARRAY [l .. sI_NameLimit] OF 51_Name

END;
{set i.e. names[l] .. names(count] returned by BlockNames}

51_Report = (51_Success,
SI_serviceError,
sI_NotOHner,
SI_NoBlocksLeft.
5 I_NoSuchB lock,
SI_CountNotAvailable);

Block storage service user ma.nua! 81

VAR

SI-./lulINeme 51_Name i {nerne of no block}

SI_StartKey SIj\ey, {given to first call of BlockNames}

SI_EndKey SI_Key; {returned by final cell of BlockNames}

PROCEDURE SLSubmi t (InCI i ent ,SV_User,

Inlifetime SV_Intervel:
VAR InDate SI....pata:
VAR Out Name 51_Name:
VAR OutCast SVJMoney:
VAR OutReport : 51_Report);

{store given date in a block, returning its name}

PROCEDURE 51_Reed (InCI ient sv_User;

InName SI...,.Name;
VAR OutOata 51_Deta:
VAR OutCast SV _Money;
VAR OutReport 5 I_Report) ;

{read data of named block}

PROCEDURE 51_Destroy (InCI ient SV_User;

InName SI-./lame;

VAR OutCast SV_Money;

VAR OutReport 5 I_Report) :
{destroy named block}

PROCEDURE 51jRepiece (InC] ient 5V_User;

InName 51_Name:
VAR InDate 51_Data;
VAR Out Name SIJName:
VAR OutCast : SV_Money:
VAR OutReport 51_Report);

{gives effect of destroy then submit}

82 The Distributed Computing Software Project

PROCEDURE SI_Stetus (InCl ient SV_User;
InName SI.)lame;

VAR OutOl.lner 5V_N i ckname;
VAR Out Created SV_Timei
VAR OutExpires SV_Timei
VAR OutCast SV_Money;
VAR OutReport SIYeport) :

{return attributes of named block}

PROCEDURE 51_Extend InCl i ent 5V_User;
InName SI.)lame:
Inlifet ime 5V_Interval;

VAR OutCast 5VJ1oney:
VAR OutReport 5 I_Report) ;

{change the lifetime of the named block}

PROCEDURE 5I_BlockNames (InCl ient 5V_User i
InKey SIj(ey:
InCount INTEGER;

VAR Out Key SIj(ey:
VAR Out Names 5I_Name5et i
VAR Out Cost 5V_Money;
VAR OutReport SIYeport) ;

{start ,ng from given Key, return up to given number of names
belonging to this cl ient, plus new key to obtain further names}

PROCEDURE 5I_BlockCount (InCI ient 5V_User;
VAR OutCount ; SV_IDINT:
VAR OutCost 5V_Money;
VAR OutReport 51_Report);

{if available, return the number of blOCKS owned by this cl ient}

Block storage service user manual 83

5.7 ModuJa·2 Interi'ace

DEFINITION MODULE SI: (* Roger Gimson 22-Feb-84 *)

(* Block Storage	 Service Modula-2 Interface *)

FROM SVTypes IMPORT User, Nickname. Time. Interval, Money;

IMPORT Long:

EXPORT QUALIFIED	 DataSize, NameLimit.
Name, Data, Key, NameSet, Report,
NullName, StartKey, EndKey.
Submit. Reed. Destroy, Replace. Status, Extend.
BlockNames, BlockCount;

CONST
DataSize 528; (* data bytes per block *)
NameLimit :::; 64; (* max returnable names per call of BlockNames *)

TYPE
Name ARRAY [1 .. 4] OF CARDINAL: (* block nam~ *)
Data : ARRAY [O .. Dete5ize-l] OF CHAR: (* block data *)

Key ARRAY [1 .. 2J OF CARDINAL;
(* for chaining BlockNames calls *)

NameSet RECORD
count: CARDINAL;
names: ARRAY (1 .. NameLimit] OF Name;

END;
(* set i. e. names [i) .. names [count] returned by B10ckNsmes *)

Report (Success,
Serv i ceError,
NotOl-lner.
NoBlocksLeft,
NoSuchBlock,
CountNotAvallable);

84 The Distributed Computing Software Project

VAR
Nul 1Name , Name; (* name of no block .)
StartKey : Key; (. given to first call of BlockNames *)

EndKey Key; (* returned by final call of BJockNames *)

PROCEDURE Subm; t (InCI ient User;
VAR InLi fet ime Interval;
VAR InData Data;
VAR Out Name Name;
VAR Out Cost : Money;
VAR OutReport Raport) ;

(* store given data in a block. returning its name *)

PROCEDURE Read (InCI ient User;
VAR InName : Name;
VAR Out Data Data;
VAR Out Cost : Money;
VAR OutReport Raport) :

(. read data of named block *)

PROCEDURE Destroy (InCl i ent User;
VAR InName Name;
VAR Out Cost Money:
VAR OutReport : Report);

(* destroy named block .)

PROCEDURE Replace (InCI ;ent User;
VAR InName Name:
VAR InData Data;
VAR Out Name Name;
VAR Out Cost Money;
VAR OutReport Report);

(* 9 i ve effect of destroy then submi t *)

Block storage service user manual as

PROCEDURE Status (InCl i ent User:

VAR I nName : Name:

VAR OutO~ner : Nickname:

VAR OutCreated : Time:

VAR OutExpires : Time:

VAR OutCost : Money:

VAR OutReport : Report);

(.	 return attributes of named block .)

PROCEDURE Ext end (InCl ient User;

VAR InName -Name;
VAR InLifetime : Interval;
VAR Out Cost Money;

VAR OutReport Report) :

(. change the lifetime of	 the named block.)

PROCEDURE BI ockNames (InCl jent User;

InKey : Key:

InCount ,CARDINAL,
VAR OutKey : Key:

VAR Out Names : NameSet:

VAR Out Cost : Money;

VAR OutReport : Report);

(.	 stert ing from the given key, return up to given number of names

belonging to this cl ient. plus new key to obtain further names *)

PROCEDURE B1ockCount (InC] ient User:

VAR Out Count Long. Integer:
VAR Out Cost Money:

VAR OutReport : Report):

(.	 jf available. return the number of blocks owned by this cl ient *)

END SI.

