FORMAL METHODS

APPLIED TO A

FLOATING POINT NUMBER SYSTEM

by

Geoff Barrett

Technical Monograph PRG-58

January 1987

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

Copyright (c) 1987 Geoff Barrett

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI.3QD
England

Abstract

This report presents a formalisation of the IEEE standard for binary floating-point arithmetic and proofs of procedures to perform non-exceptional arithmetic calculations.

Contents

1 Speciflcation 3
1.1 Rounding 3
1.2 Addition, Subtraction, Multiplication and Division 8
1.3 Remainder 12
1.4 Square Root 14
1.5 Floating Point Format Conversions 15
1.6 Rounding and Converting to Integers 16
I.6.1 Conversions to Integer Formats 16
1.6.2 Rounding to Integer 17
1.7 Comparisons 18
2 Implementation 20
2.1 Foreword to the Proof 20
2.2 Representations of FP 22
2.3 Representing Real Numbers 23
2.4 Unpacking and Denormalising 25
2.4.1 Unpacking 25
2.4.2 Denormalising 26
2.5 Rounding and Packing 26
2.5.1 Rounding 26
2.5.2 Packing 29
2.6 Finite Arithmetic Procedures 30
2.6.1 Addition and Subtraction 31
2.6.2 Addition 33
2.6.3 Subtraction 33
2.6.4 Multiplication 36
2.6.5 Division 37
A Standard Functions and Procedures 41
A. 1 The Data Type 41
A. 2 Bit Operations 41
A. 3 Boolean Values 42
A. 4 Shift Operations 42
A. 5 Comparisons 42
A. 6 Arithmetic 43
A. 7 Shift Procedures 43
A. 8 Arithmetic Procedures 44

Introduction

The main aim of a standard is that "conforming" implementations should behave in the manner specified - it is, therefore, desirable that they should be proved to do so. It has long been argued that natural language specifications can be ambiguous or misleading and, furthermore, that there is no formal link between specification and program. This report sets out to formalise the standard defined in [IEEE] and present algorithms to perform the non-exceptional arithmetic operations. Conversions between binary and decimal formats and delivery of bias adjusted results in trapped underflows are not covered.

The notations used in this paper are \mathbf{Z} (see [Abrial,Hayes, Z]) and occam (see [inmos]). The meaning of each new piece of Z is explained in a footnote before an example of its use.

Using a formal specification language bridges the gap between natural language specification and implementation. Natural language specifications have two disadvantages: they can be ambiguous; and it is difficult to show their consistency. The first problem is considered to be an important source of software and hardware errors and is eliminated completely by a formal specification. Further, it is important to show that a specification is consistent (i.e. has an implementation) for obvious reasons.

Of course, it could be argued that an implementation of a solution provides a precise specification of a problem. While this is true, no one likes to read other peoples' code and the structure of a program is designed to be read by machine and not by bumans. Moreover, any flexibility in the approach to the problem is hampered by the need to make concrete desiga decisions. Specification languages are structured in such a way that they can reflect the structure of a problem or a natural language description or even of a program. But, above all, they can also be non-algorithmic. This means that one can formalise what one has to do without detajling how it is to be done.

A formal development divides the task of implementing a specification into four welldefined steps. The first is to write a formal specification using mathematics. In the second, this specification is decomposed into smaller specifications which can be recombined in such a way that it can be shown formally that the decomposition is valid. Third, programs are written to satisfy the decomposed speciflcations. And, lastly, program transformations can be applied to make the program more efficient or, possibly, to adapt it for implementation on particular hardware configurations.

The example presented here is part of a large body of work which has been undertaken to formally develop a complete floating-point system. This work has been taken further by David Shepherd to transform the resulting routines into a software model of the inmos IMST800 processor, and so specify its functions. Thus, the development process has been carried through from formal specification to silicon implementation.

References of the form, e.g., p. $14 \S 6.3$ are to [IEEE].

Chapter 1

Specification

1.1 Rounding

This section presents a formal description of floating-point numbers and how they are used to approximate real numbers. The description serves as a specification for a rounding procedure.

First, floating-point numbers and their representation are described. Each number has a format. This consists of the exponent and fraction widths and other useful constants associated with these - the minimum and maximum exponent and the bias: ${ }^{1}$

```
Format
    \(\longrightarrow\)
    expwidth, fracwidth : \(\mathbf{N}\)
    wordlength \(: \mathbf{N}\)
    EMin, EMax, Bias :N
    wordlength \(=\) expwidth + fracwidth +1
    EMin \(=0\)
    EMax \(=2^{\text {cロッ~it }}-1\)
    Bias \(\quad=2^{\text {croidh }}-1\)
```

Four formats are specified - the exponent width and wordlength are constrained to have particular values:

Single	\cong Format \mid expwidth $=8 \wedge$ wordlength $=32$
Double	\cong Format \mid expwidth $=11 \wedge$ wordlength $=64$
SingleExtended	\triangleq Format \mid expwidth $\geq 11 \wedge$ wordlength ≥ 43
DoubleExtended	\triangleq Format \mid expwidth $\geq 15 \wedge$ wordlength ≥ 79

Once the format is known, the sign, exponent and fraction can be extracted from the

[^0]integer in which they are stored: ${ }^{2}$
Fields
Format
nat $: \mathbf{N}$
stgn :0..1
exp, frac: \mathbf{N}
$n a t=s i g n \times 2^{\text {morden noth-1 }}+e x p \times 2^{\text {frecounth }}+f r a c$

frac $<2^{\text {frac cidid }}$

Some of the elements of Fields are considered to be error codes, or non-numbers. These will be denoted by NaNF:

$$
N a N F \doteq \text { Fields } \mid \text { frac } \neq 0 \wedge e x p=E M a x
$$

Now, there are enough definitions to give a definition of the value. This is only specified in single or double formats when the number is not a non-number: ("infinite" numbers are given a value to facilitate the definition of rounding)

```
FP
    Fields
    value: \(\mathbb{R}\)
    (Single \(\vee\) Double) \(\wedge \neg N a N F \Rightarrow\)
    \(\exp =E M\) in \(\wedge\) value \(=(-1)^{\text {mine }} \times 2^{e \varphi p-B i \alpha \rho} \times 2 \times\) frac \(_{0}\)
        \(\vee\)
    \(\exp \neq\) EMin \(\wedge\) value \(=(-1)^{\text {iqp }} \times 2^{\text {tip-Bion }} \times\left(1+f r a c_{0}\right)\)
        where \(\quad f r a c_{0}=2^{\text {-fracoinh }} \times\) frac
```

To facilitate further descriptions, $F P$ is partitioned into five classes depending on how its value is calculated from its fields: (non-numbers; infinite, normal, denormal numbers; and zero)

$$
\begin{aligned}
& N a N \quad=F P \mid f r a c \neq 0 \wedge \exp =E M a x \\
& \text { Inf } \quad \hat{F P} \mid f r a c=0 \wedge \text { exp }=E M a x \\
& \text { Norm } \hat{=} \text { FP|EMin }<\exp <E M a x \\
& \text { Denorm } 三 F P \mid \text { frac } \neq 0 \wedge \text { exp }=E M i r \\
& \text { Zero } \quad=F P \mid f r a c=0 \wedge e x p=E M i n \\
& \text { Finite } \hat{=} \text { Norm } \vee \text { Denorm } \vee \text { Zero }{ }^{3}
\end{aligned}
$$

[^1]The essential ingredients of rounding are as follows:

- the number to be approximated;
- a set of values in which the approximation must be;
- a rounding mode;
- a set of preferred values in case two approximations are equally good.

Because the number to be approximated may be outside the range of the approximating values, two values, MaxValue and MinValue, are introduced which are analogoue to $+\infty$ and $-\infty$. The set of Preferred values is restricted to ensure that when two approximations are equally good, at least one of them is preferred. To ensure that rounding to zero is consistent, 0 must be in the approximating values.

$$
\text { Mode }::=\text { ToNearest } \mid \text { ToZero } \mid \text { ToNegInf } \mid \text { ToPosInf }
$$

```
Round Signature
    \(r: \mathbb{R}\); mode: Modes
    Approx Values, Preferred : PR
    Min Value, Max Value: \(\mathbf{R}\)
    value' \(: \mathbb{R}\)
    Preferred \(\cup\{\) value' \(\} \subseteq\) ApproxValues \(\cup\{\) MinValue, MaxValue \(\}\)
    \(0 \in\) ApproxValues
    \(\forall\) value \(_{1}\), value \(2_{2}\) : ApproxValues \(\cup\{\) MinValue, MaxValue \(\} \mid\) value \(\varepsilon_{1}>\) value \(_{2}\).
        \(\exists p:\) Preferred - value \({ }_{1} \geq p \geq\) value \(_{2}\)
    \(\forall\) value : ApproxValues - MinValue \(\leq\) value \(\leq\) MaxValue
```

The following schemas describe the closest approximations from above and below. If, e.g., the number is smaller than MinValue, then the approximation from below is MinValue:

Above
Round_Signature

$$
\begin{aligned}
& r> \text { MaxValue } \Rightarrow \\
& r \leq \text { value }=\text { MaxValue } \\
& \text { Madue } \Rightarrow \\
& \text { value' } \geq r \\
& \forall \text { vaiue }: \text { ApproxV alues } \cup\{\text { MaxValue }\} \mid \text { value } \geq r
\end{aligned}
$$

[^2]Below \qquad
Round_Signature

```
\(r<\) MinValue \(\Rightarrow\) value \(=\) MinValue
\(r \geq\) MinValue \(\Rightarrow\) value' \(\leq r\)
    \(\forall\) value : ApproxValues \(\cup\{\) Min Value \(\} \mid\) value \(\leq r\) •
    value \(\leq\) value'
```

Finaily, we are in the position to define rounding in its various different modes. Rounding toward zero gives the approximation with the least modulus:

```
RoundToZero
    Round Signature
    mode \(=\) ToZero
    ( \(r \geq 0 \wedge\) Below
    \(\checkmark\)
    \(r \leq 0 \wedge\) Above)
```

Rounding to positive or negative infinity returns the approximation which is respectively greater or less than the given number:

When rounding to nearest, the closest approximation is returned, but if both are
equally good, a member of the set Preferred is returned: 4

```
RoundToNearest
    Round_Signature
    mode \(=\) ToNearest
    \(\exists\) Above \(_{1} ;\) Below \(_{2} \mid r_{1}=r=r_{2}\) -
    value \(e_{1}-r<r\)-value \(e_{2} \wedge\) Above
        \(\vee\)
    value \(_{1}-r>r\)-value \(e_{2} \wedge\) Below
    value \(_{1}-r=r\) - value \(2_{2} \wedge\)
        (value \({ }_{1}=\) value \(_{2} \wedge\) Above \(\wedge\) Below
        \(\vee\)
        value \(_{1} \neq\) value \(_{2} \wedge\) value' \(\in\) Preferred \(\wedge(\) Above \(\vee\) Below \(\left.)\right)\)
```

These specifications can be disjoined to give the full specification as follows.

```
Round \(\cong\) Round ToNearest \(\vee\) RoundToZero \(\vee\) RoundToPosInf \(\vee\) RoundToNegInf
```

So far, the specification is suitable for describing rounding into any format - be it integer or floating-point. To adapt Round specifically for floating-point format, all that is necessary is to fill in the definitions of ApprozValues, Preferred, Min Value and MaxValue. This inevitably involves the format of the destination, so $F P^{\prime}$ must be conjoined with Round. Once the definitions are filled in, they are no longer needed outside the specification and can be hidden (by existential quantification). It is not difficult to show that the definition of Preferred is consistent with the constraint in Round_Signature, but this will be left until section 2.3 where a result is proved which makes it even simpler. It is also simple to verify that 0 is an element of Approz Values and that Min Value and MaxValue satisfy the constraint of Round signature.

FP_Round 1
Round $\wedge F P^{\prime}$

```
ApproxValues ={Fintte |Format = Format' - value }
Preferred ={Finite |Format = Format'^frac MOD 2 =0 \bullet value}
MinValue }\in{Inf |Format = Format'^sign=1 - value
MaxValue \in{Inf |Format = Format'^sign=0 - value}
```

FP_Round2 $\xlongequal[=]{=}$ PP_Round $1 \backslash\{$ Approx Values, Preferred, Min Value, MaxValue $\}$

[^3]The resulting error-conditions have not yet been specified. The conditions resulting in overflow and underflow exceptions are specifically related to a floating-point format and can be described as follows:

$$
\begin{array}{ll}
\text { Errors } & ::=\text { inesact } \mid \text { overflow } \mid \text { underflow } \\
\text { Error_Signature } & \hat{=} r: R ; \text { errors }
\end{array} \text { PErrors; } F P^{\prime}
$$

Error_Spec

> Error_Signature

```
inexact }\in\mathrm{ errors' }\Leftrightarrowr\not=\mathrm{ value'
overflow €errors' }\Leftrightarrow\mathrm{ Inf'V ЭInf * abs r }\geq\mathrm{ absvalue
(underflow Eerrors' }\Leftrightarrow0\not=\textrm{absr<< 2EM\mp@subsup{N}{}{\prime}-\mathrm{ Bio'}
    V
    underfiow Єerrors' \Leftrightarrow Denorm')
```

(The two alternative conditions under which underflow is included in the set errors' mean that there is a choice about which condition to implement.)

Finally, the whole specification is:

$$
F P _ \text {Round } \doteq F P _ \text {Round } 2 \wedge \text { Error_Spec }
$$

1.2 Addition, Subtraction, Multiplication and Division

In order to discuss these operators, they must be introduced into the mathematics:

$$
O p s::=a d d|s u b| m u l \mid d i v
$$

The essential ingredients of an aritbmetic operation are two numbers, $F P_{\mathbf{2}}$ and $F P_{5}$, and an operation op: Ops; the number $F P^{\prime}$ is the result - its format must be at least as wide as each of the operands:

> Arit_Signature $F P_{x} ; F P_{y} ;$ op : Ops $F P^{\prime}$ $\begin{aligned} & \text { wordlength } \\ & \text { wordlength }\end{aligned} \geq$ wordlength \geq wordlength

When both $F P_{3}$ and $F P_{5}$ are finite numbers, the specification is straightforward. A real number is specified which can be rounded to give the correct result - the result of
division by zero is described separately:
Volue_Spec \square
Arit Signature \wedge Finites \wedge Finite, $r: \mathbf{R}$

$$
\begin{aligned}
& o p=a d d \wedge r=\text { value }_{3}+\text { value }_{5} \\
& v \\
& o p=s u b \quad \wedge \quad r=\text { value }-v a l u e_{\mathrm{z}}, \\
& \vee \\
& o p=m u l \wedge r=\text { value }_{n} \times \text { value, } \\
& \vee \\
& o p=\operatorname{div} \wedge \text { value }_{s} \neq 0 \wedge r=\text { value }_{k} \div \text { value }_{\boldsymbol{y}}
\end{aligned}
$$

If the result after rounding will be zero, some additional information is necessary to specify the sign completely (p. 14 §6.3). If zero resulte from rounding a small number, the sign is that of the small number. If zero is the accurate result then it is the exclusive or of the signs of the arguments when the operation is multiplication or division and is best described by the maths otherwise:
Sign_Bit \qquad
Arit_Signature
mode : Modes; r: R

```
\((-1)^{\min ^{\prime}} \times\) abs \(r=r\)
\((o p=m u l \vee o p=\operatorname{div}) \Rightarrow(-1)^{\text {ion' }}=(-1)^{\text {mions }}+\) mpav
\((o p=a d d \vee o p=s u b) \wedge r=0 \Rightarrow\)
    \(\left(\right.\) Zero \(_{z} \wedge Z\) ero, \(\wedge\left(s i g n_{z}=\operatorname{sig} n_{z} \Leftrightarrow o p=a d d\right) \wedge\) sign' \(=\operatorname{sig} n_{z}\)
    \(\neg\left(\right.\) Zero \(_{z} \wedge\) Zero \(\left._{y}\right) \wedge\left(\right.\) sign \(\left._{z}=\operatorname{sign}, \Leftrightarrow o p=a d d\right) \wedge\left(\right.\) sign \(^{\prime}=1 \Leftrightarrow \operatorname{mode}=\) ToNegInf \(\left.)\right)\)
```

Rounding has already been described so operations on finite numbers may be defined by using FP.Round to specify the relation of r to $F P^{\prime}$:

$$
\text { Finite_Arit }=\left(\text { Value_Spec } \wedge F P P_{\text {Round }} \wedge S i g n _B i t\right) \backslash\{r\}
$$

Division of a finite, non-zero number by zero gives infinity; but, division of zero by zero is not a number:

Div_By_Zero
Arit_Signature
Finite \wedge Zero,
$o p=d i v$

If one of the operands is not a number, then the result is not a number (the standard demands that the result be equal to the offending operand but that is not aiways possible, p.13, §6.2):

$|$| NaN_Arit |
| :--- |
| Arit_Signature |
| $N_{a} N_{s} \vee N a N_{\%}$ |
| $N a N^{\prime}$ |

Now, arithmetic with infinity is considered. This is defined to be the limit of finite arithmetic. However, certain cases do not have a limit, and these result in a $N a N$:

> Inf_Arit_Signature
> Arit_Signature
> $\neg\left(N_{a} N_{s} \vee N a N_{5}\right)$
> Inf $\vee \operatorname{Inf}$

Inf_Add
Inf_Arit_Signature
$o p=a d d$
$\left(\right.$ infsigns $\left.=\left\{s i g n^{\prime}\right\} \wedge I n f^{\prime}\right) \vee\left(i n f s i g n s=\{0,1\} \wedge N a N^{\prime}\right)$ where infsigns $=\left\{I n f \mid I n f=F P_{4} \vee I n f=F P_{1}\right.$ • sign $\}$

Inf.Sub
Inf Arit_Signature
$o p=s u b$
$\left(\right.$ infsigns $=\{$ sign' $\left.\} \wedge I n f^{\prime}\right) \vee\left(\right.$ infsigns $\left.=\{0,1\} \wedge N a N^{\prime}\right)$
where infsigns $=\left\{I n / \mid I n f=F P_{s} \vee I n f=F P_{y}\left[-\right.\right.$ value $_{\boldsymbol{n}} /$ value $]$ • sign $\}$

Inf.Mul
Inf Arit_Signature

```
\(o p=m u l\)
\(\left(\left(\right.\right.\) Zero \(\left._{z} \vee Z e r o_{j}\right) \wedge N a N^{\prime}\)
v
```



```
Inf_Div
    Inf _Arit_Signature
    \(o p=\operatorname{div}\)
    \(\left(\operatorname{In} f_{\mathrm{z}} \wedge \operatorname{In} f_{g} \wedge N a N^{\prime}\right.\)
    \(\checkmark\)
```



```
    \(\vee\)
```


These partial specifications can be disjoined to give the complete specification of arithmetic with infinity:

$$
\operatorname{Inf} \quad \text { Arit } \hat{=} \operatorname{Inf} \quad A d d \vee \operatorname{In} f_{-} S u b \vee \operatorname{Inf}, M u l \vee \ln f \text { Div }
$$

None of the exceptional cases return the rounding errors; No_Round_Errors describes this, and FP_Arit describes the complete relation on Arit_Signature:

$$
\text { No_Round_Errors } \cong \text { round_errors' }: \mathbf{P R o u n d _ E r r o r s} \mid \text { round_errors' }=\{ \}
$$

$$
\begin{array}{rc}
F P _ \text {Arit } \hat{=} & \text { Finite_Arit } \\
\vee \\
& \text { No Round_Errors } \wedge\left(\text { Div_By_Zero } \vee N a N _ \text {Arit } \vee \operatorname{Inf} _ \text {Arit }\right)
\end{array}
$$

Five different errors can occur during the operations. These cover all the different cases when the finite operations do not extend to infinite numbers; division by zero; and when one operand is not a number:

```
Arit_Errors ::= NaN_Op|mu_Zera_Inf | div_Zero |div_Inf_Inf | Mag_sub
```

Error_Spec
Arit_Signature
arit_errors' : PArit_Errors

NaN_Op $\quad \in a r i t _e r r o r s ' \Leftrightarrow N a N_{s} \vee N a N_{s}$

div_Zero $\quad \in$ arit_errors $\left.s^{\prime} \Leftrightarrow\left(o p=\operatorname{div} \wedge \neg N_{a} N_{s} \wedge \text { Zero }\right)_{s}\right)$
div_Inf_Inf \in arit_errors' $\Leftrightarrow\left(a p=\operatorname{div} \wedge \operatorname{In} f_{z} \wedge \operatorname{In} f_{z}\right)$
Mag_sub \in ariterrors' $\Leftrightarrow\left(\operatorname{In} f_{s} \wedge \operatorname{In} f_{s} \wedge\left(\left(s i g n_{z}=s i g n_{,} \wedge o p=s u b\right)\right.\right.$

$$
\left.\left(\operatorname{sign_{0}} \neq \operatorname{sig} n_{7} \wedge o p=a d d\right)\right)
$$

Finally, the whole specification is:

$$
\text { Arit } \xlongequal{=} F P \text { Arit } \wedge \text { Error } S_{\text {Spec }}
$$

1.3 Remainder

To calculate remainder, all that is necessary is a divisor and a dividend, $F P_{3}$ and $F P_{\mathbf{r}}$. The result will be given by $F P^{\prime}$. The signature is:

> Rem_Signature
$F P_{s} ; F P_{s}$ ${ }_{F} P^{\prime}$

In the general case, in which both numbers are finite and the divisor is not zero, the result is defined as follows:

```
Fin Rem
    Rem_Signature
    Finite \({ }_{5} \wedge\) Finite,
    \(\neg\) Zero,
    \(2 \times\) abs value' \(\leq\) abs value,
    \(\exists n: \mathbb{Z}\) -
    value \(_{n}=n \times\) value \(_{\boldsymbol{r}}+\) value \(^{\prime}\)
    \(2 \times\) abs value \(=\) abs value, \(\Rightarrow n\) MOD \(2=0\)
```

Remainder of a finite number by zero is a non-number:

As ever, when one of the operands is a non-number, the result is a non-number:

The remainder of infinity by any number is not a number. The remainder of a finite
number by infinity is the original number:

```
In/_Rem
    -ignature
    \(\operatorname{In} f_{\mathrm{s}} \wedge \neg \mathrm{NaN}, \wedge \mathrm{NaN}^{\prime}\)
    V
    Finite \({ }_{z} \wedge I n /, \wedge F P^{\prime}=F P_{z}\)
```

When the result is zero, the sign is the sign of the dividend:
Sign_Bit \qquad
Rem_Signature

$$
\text { Zero' } \Rightarrow \text { sign } n^{4}=\text { sig } n_{4}
$$

There are three errors possible with remainder - when one of the operands is not a number, or the divisor is zero or the dividend is infinity. The second two give rise to the same exception:

$$
\text { Rem_Errors }::=\text { NaN_Op|rem_Zero_Inf }
$$

```
Error_Spec
    Rem_Signature
    errors' : PRem_errors
    \(N a N_{-} O_{p} \quad \in\) errors \(\Leftrightarrow N a N a_{s} \vee N a N_{g}\)
    rem_Zero_Inf \(\in\) errors \(\Leftrightarrow\left(\mathrm{In} /_{s} \wedge \neg \mathrm{NaN}_{\mathrm{g}}\right) \vee\left(\neg \mathrm{NaN}_{\mathrm{s}} \wedge\right.\) Zerog \()\)
```

Putting all the pieces together gives the full specification:
Rem $\hat{=}\left(\right.$ Fin_Rem $\vee R e m _$Zero $\vee N a N _$Rem $\vee I n f$ Rem $) \wedge$ Sign_Bit \wedge Error_Spec

1.4 Square Root

As with addition etc., an exact result is specified then rounded using $F P$ _Round. The exact square root is defined as follows:

```
Exact_Sqrt
    FP
    \(r: \mathbf{R}\)
    Finite
    value \(\geq 0\)
    \(r \times r=\) value
    \(r \geq 0\)
```

This is rounded and r is hidden. The destination must have a format at least as wide as the argument:

$$
\text { Pos_Sgrt } \doteq\left(\text { Ezact_Sgrt } \wedge F P _ \text {Round }\right) \mid \text { wordlength } \leq \text { wordlength } \backslash\{r\}
$$

The sign of zero is unchanged:
Sign_Bit \qquad
FP $F P^{\prime}$

$$
Z e r 0^{\prime} \Rightarrow \operatorname{sig} n^{\prime}=\operatorname{sign}
$$

The square root of positive infinity is infinity:

Inf_Sqrt
Inf
$F P^{\prime}$
sign $=0$
$F P^{\prime}=\operatorname{In} f$

In all other cases, the result is a $N a N$:

Exc_Sqrt
$F P$
$F P^{\prime}$
NaN \vee value <0 $N a N^{\prime}$

There are two errors - NaN. Op and when the operand is less than zero:

$$
\text { Sqrt_Errors } \hat{=} N_{a} N_{-} O_{p} \mid O_{p} L T 0
$$

Error_Spec \qquad

$$
\begin{aligned}
& F P \\
& F P^{\prime} ; \text { errors' }: P \text { Sqrt_Errors } \\
& N a N _O p \in \text { errors' } \Leftrightarrow N a N \\
& O p L T 0 \in \text { errors } \Leftrightarrow \neg N a N \wedge \text { value }<0
\end{aligned}
$$

Putting the pieces together:

$$
\text { Sqrt } \hat{=}\left(\text { Pos_Sqrt } \vee I n f \text { _Sqrt } \vee E x c_{-} S q r t\right) \wedge \text { Sign_Bit } \wedge \text { Error_Spec }
$$

1.5 Floating Point Format Conversions

When converting to a different format, Inf and $N a N$ must be preserved, and Finite numbers may have to be rounded:

Fin_Convert
$F P$

$$
F P^{\prime}
$$

Finite
FP_Round [value/r]
$\operatorname{sig} n=\operatorname{sig} n^{\prime}$

```
Convert \(\hat{=}\left(\left(\right.\right.\) NaN _Convert \(\vee I n f_{-}\)Convert \() \wedge\) No_Round_Errors \() \vee\) Fin_Convert
```


1.6 Rounding and Converting to Integers

This section covers both converting to an integer format and rounding to an integer in floating-point format. The basic adaptation of the rounding predicate is the same for both operations. The approximating values are all the numbers from MinValue to Max Value and the preferred values are the even integers. When converting to an integer format, the minimum and maximum values can be defined to be the minimum and maximum integers of the format. When rounding to an integer value in floating-point format, these values will be the greatest and smallest integers available in the destination format.

```
Integer_Roundl
    Round
    ApproxValues \(=\) MinValue..MaxValue
    Preferred \(=\) ApproxValues \(\cap\{n: \mathbb{Z} \mid n\) MOD \(\boldsymbol{2}=0\}\)
```

```
Integer_Round \(\hat{=}\) Integer_Round \(1 \backslash\{\) ApproxValues, Preferred \(\}\)
```


1.6.1 Conversions to Integer Formats

All that we need to know of an integer format are the minimum and maximum integers. These can be used to adapt Integer_Round to describe rounding into an integer format:

MazInt, MinInt : \mathbf{Z}

```
Int_Conv_Round \(\hat{=}\)
    Integer_Round |MinValue \(=\) MinInt \(\wedge\) MaxValue \(=\) MaxInt \(\backslash\{\) Min Value, Max Value \(\}\)
```

 When the operand is not a Finite number or is out of range of the integer format,
 the result is not specified:

Exc_Conv
FP
Integer'
NaN $\vee \operatorname{Inf} \vee$ value $<$ MinInt \vee MaxInt $>$ value

The specification is:

$$
\text { Convert_Integer } \doteq \text { Exc_Conv } \vee \text { Int_Conv_Round }[\text { value } / r]
$$

1.6.2 Rounding to Integer

There is a small problem in using Integer_Round to specify rounding to an integer value in a given floating-point format as there may be some integer values between the maximum and minimum values which cannot be oblained. The following definition assumes (as is the case with the formats specified in the standard) that if there exist two integers m and n such that there is an intermediate integer which cannot be obtained in the destination format, then no other value between m and n can obtained in that format. Although it is not difficult to give a definition in the general case, it is felt that the assumption is not unreasonable. Hence, MinValue and MarValue can be defined to be the minimum and maximum integer available in that format:

```
Rnd_Int_Round
    Integer_Round
    Max Value \(=\sup \left\{F P^{\prime} \mid\right.\) Format \(=\) Format' \(\bullet\) value \(\} \cap \mathbb{Z}\)
    MinValue \(=\inf \left\{F P^{\prime} \mid\right.\) Format \(=\) Format' - value \(\} \cap \mathbb{Z}\)
```

Rnd_Int_Round $\hat{=}$ Rnd_Int_Round $\backslash\{$ Min Value, Max Value $\}$
The destination format is restricted to be the same as that of the argument:

Fin_Int $=$ Finite \wedge Int_Signature \wedge Rnd_Int_Round[value/r]
In this case, Inf and $N a N$ are preserved:

$$
\begin{gathered}
\text { Inf_NaN_Int } \\
\text { Int_Signature } \\
\text { Inf } \vee N a N \\
F P=F P^{\prime}
\end{gathered}
$$

The whole specification:

$$
I n t \xlongequal{=} \text { Fin_Int } \vee I n f N_{a} N_{-} \operatorname{lnt}
$$

1.7 Comparisons

There are four mutually exclusive comparisons. Unordered when one is a non-number; equal; less than; or greater than:

LessThan

$$
F P_{s}
$$

$$
F P_{V}
$$

$$
\neg\left(N a N_{z} \vee N a N_{p}\right)
$$

$$
\text { value }<\text { value, }
$$

GreaterThan
$F P_{z}$
$F P$,
$\neg\left(\mathrm{NaN}_{\mathrm{z}} \vee \mathrm{NaN}\right)$
value $>$ > value,

The result of a comparison can be a condition code identifying one of the four disjoint relations:

$$
\text { Conditions }::=U O|E Q| L E \mid G E
$$

Compare_Condition

```
\(F P_{z} ; F P_{\text {, }}\)
condition' : Conditions
    condition' \(=U O \wedge\) Unordered
        \(\checkmark\)
    condition' \(=E Q \wedge\) Equal
        V
    condition' \(=L E \wedge\) LessThan
        V
    condition \(=G E \wedge\) GreaterThan
```

Alternatively, it may return a true-false result depending on one of the useful comparisons listed below:
Bool ::= true ! false

```
Compare_Bool
    \(F P_{z} ; F P_{y} ;\) op : P Conditions
    result' : Bool
    \(o p \neq\{ \}\)
    op \(\neq\) Conditions
    result' \(=\) true \(\Leftrightarrow\) Econdition' \(:\) op - Compare_Condition
```

An exception can be raised when one of the operands is not a number. If this exception is to be raised, the flag exception must be set:

Compare_Bool_Error
Compare Bool
exception : Bool

NaN_Op \in errorst \Leftrightarrow Unordered \wedge exception $=$ true
$(o p=\{E Q\} \vee o p=$ Conditions $-\{E Q\}) \Rightarrow$ exception $=$ false

Chapter 2

Implementation

2.1 Foreword to the Proof

Much of the proof relies on OCCAM specifications given in the appendix. Informal specifications can be found in [inmos]. The proof of the arithmetic procedures is largely routine manipulation of equations. These parts will be treated somewhat briefly with statements of the theorems necessary. Hints to the proof of theorems will be indicated, e.g., Rostine manipulation. (This hint is omitted.) For the non-exceptional cases, the algorithra uses the following scheme:

1. Unpack both operands into their sign, exponent and fraction fields.
2. Denormalise both by shifting in the leading bit of the fraction when necessary.
3. Perform the relevant operation.
4. Pack the result.
5. Round the packed result.

Error conditions are set during packing and rounding. The more difficult parts of the proof are caused by changes in the representation of numbers (e.g. packing, denormalising, etc.). The first section of the proof is concerned with specifying the relationship between $F P$ or \mathbb{R} and these representations. The second section contains procedures for changing representations along with their proofs. Later sections contain procedures for the arithmetic operations. The proofs of these are much simpler than for the others and only an informal outline of why they are correct is given.

The following is a brief description of how specifications and programs are related and how it is possible to assert formally that a program meets its specification. The predicates in braces, e.g. $\{\phi\}[\mathrm{P}\{\phi\}$, mean that if P is executed in a state satisfying ϕ, then it is guaranteed to terminate in a state satisfying ψ. Some of the conjuncts of the assertions are omitted for the sake of clarity. The first assertion is called the precondition of the program - if this does not hold on entry to the program, neither is it guaranteed to terminate nor, if it does, to terminate in any sensible state. The rules
relating the program to the assertions are described in [Gries], [Dijkstra] and [Hoare]. A brief description follows:

Rule 1 The program SKIP does nothing but terminate:

$$
\vdash\{\phi\} \operatorname{SKIP}\{\phi\}
$$

Rule 2 If the expression e can be evaluated correctly (i.e. there is no division by zero etc.), then if the state is required to satisfy ϕ after termination, it must satisfy ϕ with e substituted for x before:

$$
\left.\vdash\left\{D_{e} \wedge \phi \mid e / \mathbf{x}\right]\right\} \times \mathbf{x}:=\mathbf{e}\{\phi\}
$$

Rale 3 If P starts in state ϕ and terminates in state ψ and Q starts in state ψ and terminates in state X, then P followed by Q starts in state ϕ and terminates in state χ :

$$
\{ \phi \} \longdiv { \mathrm { P } \{ \psi \} \wedge \{ \psi \} \boxed { Q } \{ x \} \vdash \{ \phi \} \begin{array} { | c }
{ \mathrm { SEQ } } \\
{ \mathrm { P } } \\
{ \mathrm { Q } }
\end{array} \{ x \} , ~ . ~ }
$$

Rule 4 The rule for conditionals is that, if P starts in a state satisfying ϕ and its guard and terminates in state ψ and similarly for Q, then the conditional composition can start in a state which satisfies one or other of the guards and ϕ and terminate in a state satisfying ψ :

$$
\left\{b_{P} \wedge \phi\right\}\left[\mathrm { P } \{ \psi \} \wedge \{ b _ { Q } \wedge \phi \} \left[\mathrm { Q } \left\{(\psi\} \vdash\left\{\left(b_{P} \vee b_{Q}\right) \wedge \phi\right\} \begin{array}{|c|}
\hline \mathrm{IF} \\
b_{P} \\
\hline \\
\hline b_{Q} \\
\\
\hline Q
\end{array}\right.\right.\right.
$$

Rule 5 The precondition of a program may be strengthened:

$$
(x \Rightarrow \phi) \wedge\{\phi\}[\mathrm{P}\{\psi\} \vdash\{x\}[\mathrm{P}\{\psi\}
$$

Rule 6 The postcondition of a program may be weakened:

$$
(x \Leftarrow \psi) \wedge\{\phi\} \widehat{\mathbf{P}}\{\psi\} \vdash\{\phi\}[\mathbf{P}\{x\}
$$

The following two functions are useful, they return the integer part and the fractional part of a real number:

2.2 Representations of FP

The aim of this section is to specify the relation between $F P$ and its representations in the program. We will only be concerned with the implementation of single-leagth numbers on a machine whose wordlength is 32 :

$$
F P S 32 \doteq F P \mid \text { Single } \wedge \text { wordlength }=w l
$$

Externally to the program, each number is represented as a single Word corresponding to the value of its field nat. Thus, the relationship of FP to its external representation is given by:

$$
\text { External } \hat{\prime} \text { FPS32; word : Word } \mid \text { nat }=\text { word.nat }
$$

Internally to the program, $F P$ is represented by three words giving its sign, exponent and fraction. The exact relation between these words and $F P$ is discussed further below:

$$
\text { Internal } \xlongequal{=} \text { FPS32; wsign, wexp, wfrac : Word }
$$

To distinguish the five different classes of number, they are first unpacked into the sign, exponent and fraction fields. The words wsign, wexp, and wfrac correspond to the fields sign, exp, and froc:

```
Unpacked
    Internal
    wsign.nat \(=\operatorname{sign} \times 2^{\text {al-1 }}\)
    wexp.int \(=\) exp
    wfrac.nat \(=\) frac \(\times 2^{\text {enpmidit }+1}\)
```

To perform the arithmetic operations, Finite numbers are given a representation which bears a uniform relation to their value - the first equation in the following implicitly defines wfrac.nat:

Unnormalised \qquad
Internal

```
Finite
```



```
wsign.nat = sign }\times\mp@subsup{2}{}{*i-1
wexp.int = exp
```


2.3 Representing Real Numbers

The aim of this section is to specify the relation between \mathbb{R} and its representations in the program.

First, notice the simple result that the order on the absolute value of a number is the same as the usual order on the less significant bits of its representation as a word:

$$
F P ; F P^{\prime} \mid F o r m a t=\text { Format } \wedge \neg\left(N a N \vee N a N^{\prime}\right)
$$

\vdash abs value \leq abs value' \Leftrightarrow nat MOD $2^{\text {vordength-1 }} \leq$ nat t^{\prime} MOD $2^{\text {vorderph-1 }}$
This can be used to see that the number of least modulus with modulus grea:er than a given finite number is obtained by incrementing its representation as a word:

From this result, the consistency of Preferred in section 1.1 can be deduced.
In turn, this means that if the approximation of less modulus is known, only enough extra information to determine the four predicates in RoundToNearest is needed lo return the correct value. This is, of course, the familiar guard and sticky bits defined below:

```
Bounds
    \(r \quad: \mathbf{R}\)
    Succ; guard, sticky :0..1
    \(r>0 \quad \Rightarrow \quad\) sign \(=0 \wedge\) Below[value/value']
    \(r=0 \quad \Rightarrow\) Zero
    \(r<0 \quad \Rightarrow \quad\) sign \(=1 \wedge\) Above \(\left[\right.\) value \(/\) value \(\left.e^{\prime}\right]\)
    guard \(=0 \Leftrightarrow r\)-value \(<\) value \(-r\)
    sticky \(=0 \Leftrightarrow r-\) value \(=\) value \(_{0}-r \vee r=\) value
```

```
Bounds \(\vdash \exists\) Above \(_{1} ;\) Below \(_{2} \mid r_{1}=r=r_{2}\) -
    value \(_{1}-r<r-\) value \(_{2} \Leftrightarrow\) guard \(=0 \wedge\) sticky \(=1\)
    value \(_{1}-r>r-\) value \(_{2} \Leftrightarrow\) guard \(=1 \wedge\) sticky \(=1\)
    value \(e_{1}-r=r-\) value \(_{2} \Leftrightarrow\) sticky \(=0\)
    value \(_{1}=\) value \(_{2} \quad \Leftrightarrow\) guard \(=0 \wedge\) sticky \(=0\)
```

This is, bowever, not quite enough information to return the correct overflow condition. [f $r \geq 2^{\text {EMa'- }}$ - \boldsymbol{m}^{\prime}, this information is lost. Conversely, it is not possible to determine the overflow condition before rounding as the condition Inf' cannot be tested until the final result is calculated. Thus, it is necessary to divide Error Spec into two parts. The $^{\text {in }}$ inexact and underflow conditions can be determined before or after rounding. The design decigion is made that so many error conditions as possible will be determined after rounding in order that the precondition of the module is simpler. Thus, the following decomposition is valid (the validity is demonstrated by the theorem):

Error_After
Error_Signature; errors : P Errors


```
inexact \in errors' }\Leftrightarrow\textrm{r}\not=\mp@subsup{\mathrm{ value'}}{}{\prime
overflow }\in\mathrm{ errors' }\Leftrightarrow\mathrm{ overflow }\in\mathrm{ errors }\vee Inf'
underflow }\in\mathrm{ errors' }\Leftrightarrow\mathrm{ Denorm'
```

\vdash Error_Spee $\sqsubseteq(\text { Error_Before; Error_After })^{1}$
If we bave the approximation of less modulus, the guard and sticky bits and an overflow indication, there is enough information to determine the correct result and the correct error conditions. Thus, a real number may be represented prior to rounding as follows:

$$
\text { Packed } \triangleq((\exists \text { Succ }- \text { Bounds }) \wedge \text { External } \wedge \text { Error_After }) \backslash\{\text { errors' }\}
$$

This representation is too complicated for the immediate result of a calculation we require a form which has a sign, exponent and fraction but which contains enough information to produce a Packed number. If the exponent is considered to be unbounded above (this assumption causes no problems since the largest exponent which can be produced from finite arithmetic is less than $2^{\circ \prime}$), and demand that the fraction be at least $2^{\omega t-1}$ when the exponent is not EMin, a condition for an extra digit of accuracy is easy to formulate. The condition given here is stronger than necessary but simpler than

[^4]the weakest condition:

```
Normal
    \(\mathbf{r}: \mathbf{R}\)
    Internal
    wexp.int \(\geq\) EMin
    werp.int \(>\) EMin \(\Rightarrow\) wfrac.nat \(\geq 2^{\text {wil-1 }}\)
    abs (approx - exact) \(<0\)
    nonint approx \(=0 \Leftrightarrow\) nonint exact \(=0\)
```



```
    exact \(=2^{\text {Bin- eesp.int }+2+\text { hrecendh }} \times r\)
```


2.4 Unpacking and Denormalising

The object of this section is to specify and prove the procedures which will he used to perform changes of representation of FP. First, the numbers are unpacked from their External representation into the Unpacked representation. Second, numbers are converted into their Unnormalised representation.

Some useful constant words:

Zero, Dne, MSB, INF: Word	
Zero.nat	$=0$
Dne.nat	$=1$
MSB.bitset	$=\{w l-1\}$
INF.nat	$=2^{\text {huccimh }} \times$ EMax

2.4.1 Unpacking

The specification of the procedure:

$$
\text { Unpack } \hat{=}\{\text { word }\} \triangleleft \text { External; Unpacked } \mid F P=F P^{\prime} \triangleright\{\text { wsign, wexp, wfrac }\}^{2}
$$

The most significant bit of the word is stored in wsign, then the sign bit is shifted out and the exponent and fraction fields are shifted into the appropriate Words:

[^5]```
PROC Unpack (VALUE word, VAR waign, we:p, wfrac) =
```

    \{External\}
    SEQ
        Waign := word \(\wedge\) MSB
        \(\{\) Unpacked \(\backslash\{\) wexp, wfrac \(\}\}\)
        SHIFTLEFT (wexp, wfrac, Zero, word << One. expwidth) :
    \{Unpacked\}
    The following three theorems about integers are useful in the details of the proof:
    $$
\begin{gathered}
a, b, c: \mathbb{N} \mid c \neq 0 \vdash a=b \Leftrightarrow a \operatorname{DIV} c=b \text { DIV } c \wedge a \operatorname{MOD} c=b \text { MOD } c \\
\vdash a \times(b \operatorname{MOD} c)=(a \times b) \operatorname{MOD}(a \times c) \\
\vdash(a \times b) \operatorname{DIV}(a \times c)=b \text { DIV }_{c}
\end{gathered}
$$

### 2.4.2 Denormalising

The specification:
Denormalise $\hat{=}\{$ wexp, wfrac $\} \triangleleft U_{\text {npacked }} ;$ Unnormalised ${ }^{\prime} \mid \boldsymbol{F P}=\boldsymbol{F} P^{\prime} \triangleright\{$ wexp, wfrac $\}$
If the number is in Norm then the implicit leading bit is shifted in, otherwise it is left unchanged:

```
PROC Denormalise (VAR wexp, wfrac) =
 {Unpocked}
 IF
 wexp = EMin
 {Denorm}
 SRIP
 werp <> EMin
 {Norm}
 wfrac := NSB V (wfrac >> Dne) :
 {Unnormalised}
```


### 2.5 Rounding and Packing

This section aims to specify and prove procedures for converting between representations of $\mathbf{R}$.

### 2.5.1 Rounding

Specification:

There are two things to notice about the specification:

- the specification of errors is conjoined in such a way that the unprimed variable, errors, upon which it depends is not restricted by the the other conjuncts; thus the specification decomposes into a sequential composition of a specification on $F P$ and a specification on errors;
- Round, and hence FP Round, is a disjunction of specifications and thus may be implemented by a conditional.

The first observation can be formalised as:

```
\(\vdash\) Round_Proc \(\Leftrightarrow\left(\exists r: \mathbf{R} ; F P_{0} \bullet F P\right.\) Round2 \(\wedge\) Bounds \() ;\) Error_After
```

And the second observation can be formalised as:

$$
\begin{gathered}
\exists r: \mathbb{R} ; F P_{0} \bullet F P \_R o u n d 2 \wedge \text { Bounds } \\
\Leftrightarrow \\
\exists r: \mathbb{R} ; F P_{0} \bullet F P \_ \text {Round } \mid \text { mode }=\text { ToNearest } \wedge \text { Bounds } \\
\vee \\
\exists r: \mathbb{R} ; F P_{0} \bullet F P \_ \text {Round } \mid \text { mode }=\text { ToPosIn } \wedge \text { Bounds } \\
\vee \\
\exists r: \mathbb{R} ; F P_{0} \bullet F P \_ \text {Round } 2 \mid \text { mode }=\text { ToNegIn } f \wedge \text { Bounds } \\
\vee
\end{gathered}
$$

$$
\exists r: \mathbf{R} ; F P_{0} \bullet F P \_ \text {Round } 2 \mid \text { mode }=\text { ToZero } \wedge \text { Bounds }
$$

The first observation has the obvious implication that the module can be implemented as the sequence of two smaller programs, the first of which sets the correct approximation and the second of which returns the correct error conditions.

The second observation leads to a decomposition because each of the disjuncts is disjoint (i.e. the conjunction of any two is not satisfiable). Thus, a conditional can be formed in which the guards discriminate according to the rounding mode.

The most obscure line is the following: nat $:=$ nat + (guard $\wedge$ (aticky $\vee$ nat)). This is derived from: nat $:=$ nat $+(($ guard $\wedge$ sticky $) \vee$ (guard $\wedge$ (nat $\wedge$ One))). Using guard $=$ guard $\wedge$ One and the commutativity and associativity of $\wedge$, the last part of the expression reduces to guard $\wedge$ nat. Now, $\wedge$ distributes through $\vee$ to give the optimised expression.

The original expression can be seen to be correct by atudying the inequalities used to define RoundToNearest.

```
PRDC Round (VALUE mode, guard, sticky. VAR nat, errors) =
{overflow }\in\mathrm{ errors }\Leftrightarrowr\geq\mp@subsup{2}{}{\mathrm{ ENacs-Brat}}
{r\geq0=> Below[FP/FP'}}
{r\leq0=>Above[FP/FP']}
SEQ
 IF
 mode = ToZero
 SKIP
 {FP.Round2[FP/FP']}
 mode = ToNegInf
 IF
 gign = Zero
 SKIP
 aign f= Zero
 nat := nat + One
 {FP_Round2[FP/FP']}
 mode = ToPosInf
 IF
 aign = Zero
 nat := nat + One
 sign ## Zero
 SKIP
 {FP_Round2[FP/FP']}
 mode = ToNearest
 gat := nat + (guard ^(sticky V nat))
 {FP_Round2[FP/FP']}
{overflow }\in\mathrm{ errors }\Leftrightarrowr\geq\mp@subsup{2}{}{\mathrm{ EMax-Bian}}
 errors:= errors \cap {overflow}
 {underflow, inexact & errors}
 {overflow \in errors }\Leftrightarrowr\geq\mp@subsup{2}{}{\mathrm{ EMac-Brao}}
 IF
 Inf
 errors := errors U {overflow}
 ~ Inf
 SKIP
 {overflow }\in\mathrm{ errors }\Leftrightarrow/rf\veer\geq\mp@subsup{2}{}{EMas-Bion}
 {underflow & errors}
 IF
 Denorm
 errors := errors U {underflow}
 D Denorm
 SKIP
 {underflow }\in\mathrm{ errors }\Leftrightarrow\mathrm{ Denorm}
```

```
{inezact & errors}
IF
 (st1cky V guard) # Zero
 errors := errors U {Ineract}
 (sticky V guard) = Zero
 SKIP
{inexact }\in\mathrm{ ertors }\Leftrightarrowr\not=value
{FP_Round [FP/FP']}
```


### 2.5.2 Packing

Specification:

$$
\text { Pack } \cong \begin{gathered}
\{\text { wsign, wexp, wfrac\} }\} \\
\triangleleft(\text { Normal; Packedd }) \wedge \text { Error_Before } \mid r=r^{\prime} \triangleright \\
\{\text { word, guard, sticky, errors }\}
\end{gathered}
$$

The fraction is adjusted to remove the leading bit if the exponent is large enough. The exponent is checked for overflow. If overflow has occurred then the appropriate error condition is set and the exponent and fraction are set to give the largest finite modulus and to ensure that the guard and sticky bits will be correct; if overflow has not occurred, no change is made. Then, the fraction and exponent are packed and the guard and sticky bits set appropriately. The proof of this procedure is very much like that of Unpack and Denormalise:

```
PROC Pack (VALUE wsign, wexp, wfrac, VAR word, guard, eticky, errors) =
{Normal}
SEQ
 IF
 werp = EKin
 SKIP
 wexp <> EMin
 Wfrac := wfrac << One
 IF
 werp >= EMax
 SEQ
 errors := {overflow}
 wexp := EMax-One
 wfrac := NOT Zero
 werp < EMax
 errore := {}
 {overflow }\in\mathrm{ efrors }\Leftrightarrowr\geq\mp@subsup{2}{}{\mathrm{ EMue-Enow}
```



```
 SHIFTLEFT (word, stlcky,wexp,wfrac,fracwldth+One)
 {Below[abs r/r]^FP'|(word >> One),bstsel/bitset']}
 guard := word ^ One
 IF
 sticky = Zero
 SKIP
 Bticky <> Zero
 sticky := One
 word := waign V (word >> One) :
{Packed}
```


### 2.6 Finite Arithmetic Procedures

These procedures will take two Unnormalised numbers and calculate the result into an External. Their specification:

$$
\begin{aligned}
& \text { FiniteArit }=\quad\left\{\text { wsign }_{x}, \text { wexp }_{z}, \text { wfrac }_{z}, \text { op, wsign }, \text { wexp }_{y}, w \text { wrac }_{z}\right\} \\
& \triangleleft(\text { Unnormalised } ; \text { Unnormalised; } ; \text { Normal' }) \wedge \text { Value_Spec } \triangleright \\
& \text { \{wsign, wexp, wfrac\} }
\end{aligned}
$$

The procedures for each operation will be considered separately in the following sections.

### 2.6.1 Addition and Subtraction

Since adding a number is the same as subtracting the number with its sign changed, the two procedures are combined into one:

$$
\begin{aligned}
& \vdash A d d=S u b\left[s i g n_{y} / 1-s i g n_{y}\right] \\
& \text { AddSub } \doteq \text { FiniteArit } \mid o p=a d d \vee o p=s u b
\end{aligned}
$$

First, consider the sum of two numbers:

$$
\begin{aligned}
d, e: \mathbb{Z} ; f, g: \mathbb{N} \mid d \geq e \vdash 2^{d} \times f+2^{e} \times g & =2^{d} \times\left(f+2^{e-d} \times g\right) \\
& =2^{d} \times\left(f+\operatorname{int}\left(2^{e-d} \times g\right)+\operatorname{nonint}\left(2^{e-d} \times g\right)\right)
\end{aligned}
$$

and the difference:

$$
\begin{aligned}
\text { carry }: 0 . .1-2^{d} \times f-2^{e} \times g & =2^{d} \times\left(f-2^{e-d} \times g\right) \\
& =2^{d} \times\left(f-\operatorname{int}\left(2^{e-d} \times g\right)-\text { carry }+\left(\text { carry }- \text { nonint }\left(2^{e-d} \times g\right)\right)\right)
\end{aligned}
$$

If carry is 0 or 1 as nonint ( $2^{2-\alpha} \times g$ ) is zero or non-zero then simple manipulations show that we have enough information to calculate the sum or difference accurately Thus, the first step in both operations is to align the fractions: the least significant bit of carry is set if and only if any set bits are shifted out; the exponent of the result is set to the greater of the two arguments. Its specification:

Aligned

$$
\begin{aligned}
& \text { Internals ; Internal, } \\
& \text { carry: } 0 . .1 \\
& \text { wexp: Word } \\
& \text { Unnormalised } \vee \text { Unnormalised, }
\end{aligned}
$$

$$
\begin{aligned}
& A \operatorname{lig} n=\quad\left\{\boldsymbol{w e x p}_{x}, w f r a c_{x}, \text { wexp }_{5}, w f r a c_{1}\right\} \\
& \checkmark \text { Unnormalised } ; \text { Unnormalised }_{;} \text {; Aligned' } \mid \\
& \text { value } e_{1}=\text { value }_{z}{ }^{\prime} \wedge \text { value, }=\text { value }{ }_{\mathrm{p}}{ }^{\prime} \triangleright \\
& \text { \{wfrac } c_{z}, w f r a c_{y}, \text { wexp, carry \}}
\end{aligned}
$$

The following is a proof of the procedure which ignores the values of variables associated with $y$. The proof can be extended simply to include these:

```
PROC Align (VALUE wexp_x, werp_y, VAR wfrac_x, wfrac-y, wexp. carry) =
 {Unnormalised_^ { { = Internal }
 SEQ
 IF
 vexp_x >= vexp-y
 SEQ
 wexp := wexp_x
 {wexp.int = max{exps,exp, }}
 IF
 (wexp_x-wexp-y) <= wl
 SHIFTRIGHT (wfrac_y.carry,wfrac_y,2ero,wexp_x-werp_y)
 (werp_x-werp-y) > wl
 SEQ
 carry := wfrac_y
 wfrac-y := Zero
 {\mp@subsup{I}{0}{}= Internal}
 werp-y>=wexp_x
 SEQ
 wexp := wexp-y
 {wexp.int = max{exps,expy}}
 IF
 (wexp_y-wexp_r) <= wl
 SHIFTRIGHT (wfrac.s.carry,wfrac.x,Zero,wexp-y-werp_x)
 (wexp_y-wexp_x) > wl
 SEQ
 carry := wfrac-x
 wfrac-x := Zero
 {carry =0\Leftrightarrowfrac: MOD 2mes.int-cmpt = 0}
 {wfrace.nat = fracs DIV 2ece.imf-emit}
 IF
 carry = 0
 SKIP
 carry <> 0
 carry := 1 :
 { салry = 0\Leftrightarrow frac: MOD 2*ctim-cax = 0^ carry \in 0..1}
```


### 2.6.2 Addition

This procedure will deal with addition of numbers with like signs or subtraction of numbers with opposite signs:

$$
\begin{aligned}
& \text { Add } \hat{=} \quad\left\{w_{s i g n_{s}}, w f r a c_{x}, o p, w \text { wign }_{f}, w \text { frac }_{y}, w e x p\right\} \\
& \triangle \text { Aligned; Normal' } \wedge \text { Value Spec | } \\
& \left(o p=a d d \wedge s i g n_{2}=s i g n_{7} \vee o p=s u b \wedge s i g n_{2} \neq s i g n_{7}\right) \triangleright \\
& \text { \{wsign, wexp, wfrac\} }
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \text { Align; Add }=\quad\left\{\text { wsign }_{z}, \text { wexp }_{s}, \text { wfrac }_{x}, o p, \text { wsign }_{z}, \text { wexp }_{f}, \text { wfrac }{ }_{f},\right\} \\
& \triangleleft\left(\text { Unnormalised }_{\sim} ; \text { Unnormalised }_{\boldsymbol{p}} ; \text { Normal' }\right) \wedge \text { Value_Spec } \\
& \left(o p=a d d \wedge s i g n_{z}=s i g n_{7} \vee o p=s u b \wedge s i g n_{z} \neq s i g n_{7}\right) \triangleright \\
& \text { \{wsign, wexp, wfrae\} }
\end{aligned}
$$

Once the fractions have been aligned, they are added together. If the sum overflows, the result is shifted down by one - its least significant bit is preserved in carry and replaced after shifting. The sign of the result will be the same as both arguments.

```
PROC Add =
 \{Aligned \(\}\)
 \(\left\{\left(o p=s u b \wedge s i g n_{s} \neq \operatorname{sig} n_{7}\right) \vee\left(o p=a d d \wedge s i g n_{z}=s i g n_{7}\right)\right\}\)
 \{wexp.int \(\geq\) EMin\}
 VAR carryl:
 SEQ
 LONGSUN (carryl.wfrac,wfrac_x,wfac-y,Zero)
 \(\left\{2^{* /} \times\right.\) carryl.nat + wfrac.nat \(\left.=w f r a c_{2} . n a t+w f r a c_{g} . n a t\right\}\)
 carry : = carry \(V\) (wfrac \(\wedge\) One)
 \(\{\) carry \(\in 0 . .1\}\)
 wsign := wsign_x
 wexp := wexp+carryl
 SHIFTRIGHT (carryl,wfrac, carryl, wfrac, carryl)
 \(\{\) nonint \((2 \cdots \times r)=0 \Leftrightarrow\) carry \(=0 \wedge\) wfrac \(\ll(\) fracurdth +2\()=0\}\)
 wfrac := wfrac \(V\) carry :
 \(\left\{\right.\) Normal|abs \(r=\) abs value \({ }_{x}+\) abs value \(\}\)
```


### 2.6.3 Subtraction

This procedure deals with subtraction of numbers with like signs or addition of numbers with different signs. Its specification:

$$
\begin{aligned}
& \triangle \text { Aligned; Normal' } \wedge \text { Value _Spee } \mid \\
& \left(o p=a d d \wedge \operatorname{sig} n_{2} \neq \operatorname{sig} n_{7} \vee o p=s u b \wedge s i g n_{8}=s i g n_{7}\right) \triangleright \\
& \text { \{wsign, wexp, wfrae\} }
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \text { Align; Sub }=\left\{\text { wsign }_{z}, \text { wexp }_{z}, \text { wfrac }_{z}, o p, \text { wsign }_{p}, \text { wexp }_{y}, \text { wfrac }{ }_{z}\right\} \\
& \triangleleft\left(\text { Unnormalised }_{2} ; \text { Unnormalised }_{4} ; \text { Normal' }\right) \wedge \text { Value Spec } \mid \\
& \left(o p=a d d \wedge s i g n_{2} \neq s i g n_{3} \vee o p=s u b \wedge s i g n_{3}=s i g n_{3}\right) \triangleright \\
& \text { \{wsign, wexp, wfrac\} }
\end{aligned}
$$

An exception is made if the result will be zero so that the sign can be given correctly. Otherwise, the smaller argument is subtracted from the larger. The following procedure is useful to ensure that the exponent is in the correct range.

```
PROC Normal (VAR stIcky) =
 IF
 wfiac = Zero
 {Zero}
 yerp := EMin
 (vexp < ENin) AND (wfrac <> Zero)
 {Denorm}
 SEq
 sticky := attcky V (wfrac ^ (NOT ((NOT Zero) << (-wexp))))
 wfrac := wfrac >> (-wexp)
 werp := EM1n
 (werp >= EMin) AND (wfrac <> Zero)
 {Nomm\veeInf}
 SKIP
 IF
 sticky = Zero
 SKIP
 at1cky <> Zero
 wfrac := vfrac V Dne :
 {Normal}
```

```
PROC Sub =
 {Aligned}
 {(op=sub ^sig\mp@subsup{n}{z}{}=sig\mp@subsup{n}{7}{})\vee(op=add ^sig\mp@subsup{n}{z}{}\not={\operatorname{sign}})
 IF
 (word_x ^ (NOT NSB)) = (word_y ^ (NOT NSB))
 {abs values = abs value, }
 IF
 (mode = ToNegInf) AND (wfrac_x <> Zero)
 SEQ
 walgn := MSB
 werp := Zero
 wfrac := Zero
 {Sign_Of_Zero[Zero/Zero'|}
 (mode <> ToNegInf) OR (wfrac_x = Zero)
 SEQ
 walgn := wsign_x A waign-y
 werp := Zero
 wrac := 2ero
 {Sign_Of_Zero[Zero/Zero']}
 {Sign_Of_Zero[Zero/Zero'}}
 (word_x ^ (NOT MSB)) <> (word-y ^ (NOT MSB))
 {abs value, \not= abs value,}
 SEQ
 IF
 (word_x ^ (NOT MSB)) < (word-y ^ (NOT NSB))
 {abs valueg < abs value,}
 SEQ
 ws1gn := wsign_y
 wfrac := wfrac_y-wfrac_x - carry
 (word_x ^ (NOT MSB)) > (word_y A (NOT NSB))
 {abs value, > abs value,}
 SEQ
 ws1gn := walgn_x
 wfrac := wfrac_x - wfrac-y - carry
```



```
 VAR places, zero:
 SEQ
 NORMALISE (places,wfrac,zero,wfrac,Zero)
 wexp := wexp - places
 Normal (carry) :
 {Normal|abs r == abs value - abs value, }
```

These procedures are combined in the following procedure which deals with all nonexceptional addition and subtraction:

```
PROC AddSub =
 {Aligned}
VAR carry:
SEQ
 Align
 IF
 op = sub
 wsign-y := waign-y X MSB
 op = add
 SKIP
 IF
 wsign_x = wsign-y
 Add
 usign_x <> waign_y
 Sub :
 {Normal ^ Value_Spec}
```


### 2.6.4 Multiplication

Specification:

$$
\text { Multiply } \xlongequal[=]{=} \text { initeArit } \mid o p=m u l
$$

After multiplying the fractions, the result is determined exactly The fraction and exponent of the result are then adjusted to satisfy Normal. Details of the proof are left as an exercise:

```
PROC Multiply =
 {Unnormalised_ ^ Unnormalised,}
 VAR lo:
 SEQ
 wsign := wsign_x X wsign-y
 wexp := (wexp_x + wexp-y + One) - Blas
 LONGPROD (wfrac,lo,wfrac_x,wfrac-y,Zero)
 VAR places:
 SEQ
 NORNALISE (places,wfrac,lo.wirac.lo)
 wexp := wexp - places
 Nornal (lo) :
 {Normal| r = value, }\times\mathrm{ value }
```


### 2.6.5 Division

Specification:
Divide $\cong$ FiniteArit $\mid o p=$ div
An exception is made when dividing by eero. Both arguments are normalised so that the arguments to $L O N G D I V$ are in the required range and that the resulting quotient has enough significant digits. The quotient is then adjusted to satisfy Nomal:

```
PROC Divide =
 {Unnormalised, ^ Unnormalised,}
 {value, }=0\mathrm{ }
 SEQ
 wsign := vbign_x X waign-y
 SEQ
 {Unnommalised_}
 VAR places, zero:
 SEQ
 NORNALISE (place0,wfrac.x,zero,wfrac.x.Zero)
 wexp_x := wexp-x - places
 {wfrac,.nat \geq 2mi-1}\vee wfrac, nat = 0}
 {value\mp@subsup{e}{z}{\prime}=2\mathrm{ werps:in-Bino-wl+1}\timeswfracz,nat }
 {Unnormalised,}
 VAR places, zero:
 SEQ
 NORMALISE (places,wfrac-y,zero,wfrac_y,Zero)
 wexp-y := wexp-y - places
 {wfrac, nat \geq2-1-1}
 {value, = 2*ecpy.in-Binovi+1 }\times\mathrm{ wfrac,.nat }
 VAR rem:
 SEQ
 werp := (wexp_x+B1as) - wexp-y
 LONGDIV (wfrac,rem,wfrac_x >> One.Zero,wfrac-y)
 {values}=0\vee\mathrm{ wfrac.nat }\geq\mp@subsup{2}{}{\mathrm{ -i-2 - }}
 Var places, zero:
 SEQ
 NORMALISE (places,wfrac.zero.wfrac,Zero)
 wexp := wexp - places
 Normal (rem) :
 {Normal|}|=\mp@subsup{\mathrm{ value }}{2}{\prime}=\mp@subsup{\mathrm{ valueg}}{g}{}
```

Finaly, the component parts can be assembled by the following procedure which performs all non-exceptional arithmetic:

```
PROC FiaiteArit =
 \(\left\{\right.\) Unnormalised \(_{\boldsymbol{2}} \wedge\) Unnormalised, \(\wedge\) value \(\left._{\boldsymbol{p}} \neq 0\right\}\)
 VAR wsign, wexp, virac:
 IF
 (\(O P=a d d\)) \(O R\) (\(O p=a u b\))
 AddSub
 \(o p=m a l\)
 Nultiply
 \(o p=\operatorname{div}\)
 Divide :
 \{Normal \(\wedge\) Value_Spec \}
```


## Conclusions

It is often heard said that formal methods can only be applied to practically insignificant problems, that development costs in large products are too high, and that the desired reliability is still not achieved. The problem presented here is only a part of a large body of work which has been undertaken to implement a proven-correct floating-point system. This work develops the system from a Z specification to silicon implementation - an achievement which cannot be considered insignificant. The formal development was started some time after the commencement of an informal development and has siace overtaken the informal approach. The reason for this was mainly because of the large amount of testing involved in the intermediate stages of an informal development -a process which becomes less necessary with a formal development.

As for reliability, that remains to be seen. However, the existence of a proof of correctness means that mistakes are less likely and can be corrected witb less danger of introducing further mistakes. Errors can arise in two ways: first, a simple mistype in the program; or a genuine error in the proof. Because of the steps in the development, the effect of this can be limited. Either, a fragment of program is wrong and can be corrected without affecting any larger scale properties of the program; or, the initial decomposition was at fault, in which case most of the development may bave to be reworked. If the last scenario seems a little dire, remember that decomposition is a prerequisite of any structured programming methodology but errors at this stage are more likely to be discovered in a formal development. Furthermore, there are now two ways to discover bugs and a way to show that they are not present. The possibility of automalic proof-checkers gives some hope that programmers will be able to guarantee the quality of a program more reliably than an architect can guarantee the robustneas of a house.

This example, however, does demonstrate some of the advantages which can be gained from a formal specification. Specifications often become modified - either the customer changes her mind or the original description of the problem is found to be at fault.

Trying to modify a badly documented systera is disastrous. Trying to modify a well documented system is, at best, error prone. Using a formal specification, it is possible to determine which parts of the system to change and, moreover, how to change them witbout affecting unmodified parts. For instance, if the specification of error conditions were to change, it would be possible to prove that only the second part of the rounding module and, perhaps, its precondition need be changed. The modifications can take place witbout having to resort to various pieces of code. Likewise, in the development stage, the formalism exists to reason about bow proposed modules will fit together. Moreover, modules may be reused with greater confidence because there is a precise description of what each one does.

The advantages of a non-algorithmic formalism speak for themselves. The language used here bears a formal relation to its implementation and can be transformed to emulate the structure of a program. On the other hand, the high-level specification can be written to bear a close relationship to a natural language description - there are many mathematical idioms which already exist to formalise seemingly intractable descriptions. This paper has assumed some familiarity with the IEEE Standard, but it is desirable to use the formalism as a supplement to a natural language specification to which reference can be made in case of ambiguity.

## Acknowledgements

Thanks are due to David Shepherd, Michael Goldsmith, Bill Roscoe, Tony Hoare and Jim Woodcock for comments and encouragement. This work was carried out under an Alvey Research Project in collaboration with inmos.

## Bibliography

[Abrial] Abrial, J-R., Schumann, S.A. \& Meyer, B. Specification Language Z. Massachusetts Computer Associates, Inc. 1979.
[Dijkstra] Dijkstra, E.W. A discipline of programming. Prentice.Hall, 1976
[Gries] Gries, D. The science of programming. Springer-Verlag, 1981
[Hayes] Hayes, I. (ed.) Specification Case Studies. Prentice Hall, 1987
[Hoare] Hoare, C.A.R. An axiomatic Basis for Computer Programming. CACM 12 (1969). pp.576-580,583.
[IEEE] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 7541985, New York. August, 1985.
[inmos] inmos, Itd. The occam Programming Manual. Prentice Hall. 1984
[Z] Sufrin, B.A., editor. The Z Handbook. Programming Research Group, Oxford University. March, 1986.

## Appendix A

## Standard Functions and Procedures

## A. 1 The Data Type

$$
w l: N
$$

Word
bitset: $\mathbf{P}(0 . .(w l-1))$
nat : $0 . .\left(2^{d r}-1\right)$
int $:\left(-2^{v i-1}\right) . .\left(2^{v-1}-1\right)$
nat $=\Sigma i:$ bitset $\cdot 2^{i}$
int $=(2 \times n a t)$ MOD $^{2 t}-$ nat

## A. 2 Bit Operations

$$
\begin{aligned}
& \text { HOT : Word } \rightarrow \text { Word } \\
& \left(\begin{array}{l}
\text { NOT } w) . \text { bitset }=0 . .(w)-1)-w, \text { bitset }
\end{array}\right. \\
& \hline \begin{array}{l}
\Lambda, \vee, \mathrm{X}: \text { Word } \rightarrow \text { Word }
\end{array} \\
& \begin{array}{l}
\left(w_{1} \wedge w_{2}\right) . \text { bitset }=w_{1}, \text { bitset } \cap w_{2}, \text { bitset } \\
\left(w_{1} \vee w_{2}\right) . \text { bitset }=w_{1}, \text { bitset } \cup w_{2}, \text { bitset } \\
\left(w_{1} \mathrm{X} w_{2}\right) . \text { bitset }=w_{1}, \text { bitset } \Delta w_{2}, \text { bitset }
\end{array}
\end{aligned}
$$

## A. 3 Boolean Values

| TRUE, FALSE : Word |
| :---: |
| $\begin{aligned} & \text { TRUE .bitset }=0 . . w l-1 \\ & \text { FALSE } . \text { bitset }=\{ \} \end{aligned}$ |
| $\begin{aligned} & \text { Bool }=\{\text { TRUE }, \text { FALSE }\} \\ & \vdash \quad \text { NOT TRUE }=\text { FALSE } \\ & \text { NDT FALSE }=\text { TRUE } \end{aligned}$ |
| AND, OR : Bool $\times$ Bool $\rightarrow$ Bool |
| FALSE AND $b=$ FALSE |
| TRUE AND $b=b$ |
| TRUE OR $b=$ TRUE |
| FALSE OR $b=b$ |

## A. 4 Shift Operations

$$
\begin{aligned}
& \gg, \ll: \text { Word } \times \text { Word } \nrightarrow \text { Word } \\
& n . i n t \geq 0 \\
& \Rightarrow \\
& (w \gg n) . \text { bitset }=(0 . . w l-1) \cap \text { succ }-n . i=(w . b i t s e t) \\
& (w \ll n) . b \text { itset }=(0 . . w l-1) \cap \text { succ }^{=. i n t}(w . b \text { sitset })
\end{aligned}
$$

## A. 5 Comparisons

$$
\begin{aligned}
& <,>,<=,>={ }_{1} \equiv,<>: \text { Word } \times \text { Word } \rightarrow \text { Bool } \\
& w_{1}, \text { int }<w_{2}, \text { int } \Leftrightarrow w_{1}<w_{2}=\text { TRUE } \\
& w_{1}=w_{2} \Leftrightarrow w_{1} \equiv w_{2}=\text { TRUE } \\
& w_{1}>w_{2}=w_{2}<w_{1} \\
& w_{1}<=w_{2}=\operatorname{NOT}\left(w_{1}>w_{2}\right) \\
& w_{1}>=w_{2}=w_{2}<=w_{1} \\
& w_{1}<>w_{2}=\operatorname{NOT}\left(w_{1} \equiv w_{2}\right)
\end{aligned}
$$

## A. 6 Arithmetic

$$
\begin{aligned}
& +,-, \times: \text { Word } \times \text { Word } \rightarrow \text { Word } \\
& \left(w_{1}+w_{2}\right) \cdot n a t=\left(w_{1} \cdot n a t+w_{2} \cdot n a t\right) \text { MOD } 2^{\text {ot }} \\
& \left(w_{1}-w_{2}\right) \cdot n a t=\left(w_{1} \cdot n a t-w_{2}, n a t\right) \text { MOD } 2^{\text {at }} \\
& \left(w_{1} \times w_{2}\right) \cdot n a t=\left(w_{1} \cdot n a t \times w_{2}, n a t\right) \text { MOD } 2^{\text {ot }}
\end{aligned}
$$

I, \: Word $\times$ Word $\nrightarrow$ Word

$$
\begin{aligned}
& w_{2} \cdot \text { int } \neq 0 \\
& \Rightarrow \\
& w_{1}, \text { int }=\left(w_{1} / w_{2}\right) \cdot \text { int } \times w_{2}, \text { int }+\left(w_{1} \backslash w_{2}\right) \cdot \text { int } \\
& \left(w_{2}, \text { int }>0 \wedge 0 \leq\left(w_{1} \backslash w_{2}\right) \cdot \text { int }<w_{2},\right. \text { int } \\
& \vee \\
& \left.w_{2}, \text { int }<0 \wedge w_{2}, \text { int }<\left(w_{1} \backslash w_{2}\right) \cdot \text { int } \leq 0\right)
\end{aligned}
$$

## A. 7 Shift Procedures

SHIFTLEFT $\square$
$h i^{\prime}, l o^{\prime}$ : Word
hi, lo: Word
$n$ : Word
$n$. int $\geq 0$
$2^{\omega t} \times \overline{h i}^{\prime} \cdot n a t+l o^{\prime} \cdot n a t=\left(\left(2^{n t} \times h i . n a t+l o . n a t\right) \times 2^{n}\right)$ MOD $2^{2 \times \omega t}$

SHIFTRIGHT
$h i^{2}, l o^{\prime}$ : Word
hi, lo: Word
$n$ : Word
$n$. int $\geq 0$
$2^{\boldsymbol{\sigma t}} \times$ hi' $^{\prime} . n a t+l o^{\prime} . n a t=\left(2^{\boldsymbol{\prime}} \times\right.$ hi.nat $\left.+l o . n a t\right)$ DIV $2^{a}$

NORMALISE
$h^{\text {i }}, l{ }^{\prime}$ : Word
hi,lo: Word
places' : Word
$n . i n t \geq 0$
$2^{\boldsymbol{\sigma}} \times h i^{\prime} . n a t+l o^{\prime} . n a t=\left(2^{\alpha} \times h i . n a t+l o . n a t\right) \times 2^{\text {pecces' }}$
$w l-1 \in h i^{\prime}$. bitset $\vee h i^{\prime} . n a t=0=l o^{\prime}$. nat $\wedge$ places ${ }^{\prime}=2 \times w l$

## A. 8 Arithmetic Procedures

```
LONGSUM
 carry', \(z^{\text {t }}\) : Word
 \(x, y\), carry : Word
 carry.nat \(\in 0 . .1\)
 \(2^{\boldsymbol{a t}} \times\) carry' \(. n a t+z^{\prime} \cdot n a t=x . n a t+y . n a t+c a r r y . n a t\)
```

LONGDIFF
borrow', $z^{\prime}$ : Word
$x, y$, borrow : Word
borrow.nat $\in 0 . .1$
$-2^{\boldsymbol{\alpha}} \times$ borrow'.nat $+z^{\prime} . n a t=x . n a t-y . n a t-b o r r o w . n a t$

```
LONGPROD
 \(h^{\prime}, l{ }^{\prime}{ }^{\prime}\) : Word
 \(x, y\), carry : Word
 \(2^{\omega \prime} \times h i^{\prime} . n a t+l o^{\prime} . n a t=x . n a t \times y . n a t+c a r r y . n a t\)
```


## LONGDIV

quot', rem': Word
hi, lo, $y$ : Word
$2^{\boldsymbol{\omega}} \times$ hi.nat + lo.nat $<2^{\alpha} \times$ y.nat
$\mathbf{2}^{\boldsymbol{*}} \times$ hi.nat + lo.nat $=q u o t^{\prime} \times$ y.nat + rem'.nat
$0 \leq r e m^{\prime}<$ y.nat

## Index

Above 5
AddSub 31
Add 33
Aligned 31
Align 31
Arit_Signature 8
Anit 11
Below 6
Bool 42
Bounds 23
Compare_Bool_Error 19
Compare_Bool 19
Compare_Condition 18
Convert_Integer 16
Convert 16
Denormalige 26
Denorm 4
Div_By_Zero 9
Divide 37
DoubleEttended 3
Double 3
Equal 18
Error_After 24
Error_Before 24
Error_Signature 8
Error_Spec 11
Error_Spec 13
Error_Spec 15
Error_Spec 8
Exact_Sgrt 14
Exc_Conv 16
Exc.Sqri 14
External 22
FPSS2 22

FP_Arit 11
FP_Round 7
FP_Round 7
FP.Round 8
FP 4
Fields 4
Fin_Convert 15
Fin_Int 17
Fin_Rem 12
FiniteArit 30
Finite_Arit 9
Finite 4
Format 3
GreaterThan 18
$\operatorname{lnf}$ _Add 10
Inf_Arit_Signature 10
Inf_Arit 11
Inf_Convert 15
Inf_Div 11
Inf_Mul 10
Inf_NaN_Int 17
Inf_Rem 13
Inf_Sqri 14
Inf_Sub 10
Inf 4
Int_Conv_Round 16
Int_Signature 17
Integer_Round1 16
Integer_Round 16
Internal 22
Int 17
LONGDIFF 44
LONGDIV 44
LONGPROD 44
LONGSUM 44

LessThan 18
Multiply 36
NORMALISE 43
NaNF 4
NaN_Arit 10
NaN_Convert 15
NaN_Rem 12
NaN 4
No_Round_Errors 11
Normal 25
Norm 4
Packed 24
Pack 29
Pos_Sqrt 14
Rem_Signature 12
Rem_Zero 12
Rem 13
Rnd_Int_Round1 17
Rnd_Int_Round 17
RoundToNearest 7
Round ToNegInf 6
RoundToPosInf 6
RoundToZerо 6
Round Signature 5
Round 26
Round 7
SHIFTLEFT 43
SHIFTRIGHT 43
Sign_Bit 13
Sign.Bit 14
Sign Bit 9
SingleExtended 3
Single 3
Sqrt_Ermors 15
Sqrt 15
Sub 33
Succ 23
Unnormalised 22
Unordered 18
Unpacked 22
Unpack 25


[^0]:    ${ }^{1}$ The variable names which are used are declared in a signature (the upper part of the box) and any constraints on these are described by the predicates in the lower part.

[^1]:    ${ }^{2}$ This form is equivaleat to declaring the variables of Format in the signature and conjoining its constraints with the new constraint.

[^2]:    ${ }^{3}$ Logical operstors between schemas have the effect of merging the signatures and performing ihe logical operation hetween the pred icates.

[^3]:    'Decorating the name of a schema with, e.g., t, 'has the effect of decorating the names of the variables in the signature of that schems throughout.

[^4]:    ${ }^{1}$ lf a schema is thought of as a function from its unprimed to its primed components, the sequential composition (;) is analogous to the right composition of the two functions. The symbol 5 is used to indicate that a design decision has been made.

[^5]:    ${ }^{3}$ The symbols $\triangleleft \triangleright$ indicate that the procedure is to take its input from the varables to the left of $\triangleleft$, filling the other fields consistently, and put its output into the variables on the right of $\triangleright$ Formally, $\triangleleft$ bides all unprimed variables except those in the set to its left; $D$ bides the primed form of all variables except those to its right.

