
THE FORMAL DOCUMENTATION OF

A BLOCK STORAGE SERVICE

by

Roger Gimson

' A"~"~. ;~.- •.~---"[._- --[: . -

j-=~_~J _25 FE~':002 f
t

.... ~'-I·":"'.:~:~. I

, oxr()~') I
1

,",...M••~.J~11111111111. '
I 303397025

August 1987

Oxford UnivErsity Computing Laboratory

Programming Re~a.rch Group

8.11 Keble Roa.d
Oxford OXI3QD
Engla.nd

Copyright © 1987 Roger Gimson

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
England

The Formal Documentation or
a Block Storage Service

Roger Gimson

Abstract

The formal documentation for a low-level data storage service is presented. The

service aiiows blocks of data to be stored on behalf of clients in a distributed system.
The docunlentation includes both a User Manual, presenting the clieDts' view of the
service, and an Implementor Manual, describing how the service may be implemented.
It is called formal documentation because, as well as informal text giving the
conventional overviews to the casual reader, it includes precise specifications of the
behaviour of the service, written in the formal specification language Z.

Though applied here to the example of a block storage service, the illustrated style of
documentation can equally well be applied to describing any such system components.
This style has been developed as part of a project on designing aDd specifying
components of a distributed operating system. The monograph includes a. discussion of

the design choices considered for the service, and the experience gained through its
design, implementation and documentation.

3

Chapter I.

Cha.pter 2.

Chapter 3.

Appendix A.

Appendix B.

Contents

Introduction. 5

Block Storage Service· User Manua.l 1

Block Stora.ge Service - Implementor Ma.nual . . . 35

Discussion a.nd Experience. 81

Acknowledgements. .99

References 100

Index of fonnal definitions 101

Glossary of Z notation 104

Introduction

A distributed operating system consists of a number of separate services connected to
each other and ~o clients by a network. This monograph describes one such service,
the Block Storage Service. It allows clients to store and retrieve fixed size blocks of
data. The service only provides low-level data storage facilities, but can form the basis
for one or more independent higher-level file storage services.

The service is presented as a pair of manuals. The first, the "User Manual", describes
the service as seen from the outside, by a client of the service. An abstract view of the
state of the service is given. Operations which ma.y be performed on the service by a
dient are described in terms of changes in this abstract state.

The second, the "Implementor Manual·, describes how the service works internally. A

concrete view of the state of the service is given in terms of the components from
which the implementation is composed. This concrete state has a well-defined.
relationship to the abstract state described in the first manual. Each of the operations
that can be performed on the service is redefined in terms of changes to the
components of the concrete state.

Apart from presenting the design of a particular service, the monograph is intended to
illustrate how rigor can be introduced into the documentation of software systems. It
can also be seen as an example of how it is possible to present fonnal specifications of
system components in a style more fa.rniliar to the programmer. Only by achieving an
appropriate balance between formality and accessibility of presentation can we hope
that these techniques will be more widely accepted by computing practitioners.

The final chapter is a discussion based on the experience gained by formally designing,
specifying and implementing the service.

The Block Storage Service was developed as a part of the Distrjbuted Computing
Software Project which began at the Oxford University Programming Research Group

in 1982. The goal of the project hM been to construct and publish the design of
services in a loosely-coupled distributed operating system, based on the model of
autonomous clients having access to a number of shared devices.

A fundamental objective of the project has been the use of mathematical techniques
for program specification to assist the design, development a.nd presentation of
distributed system services. The fonnal notation used throughout ha.s been the
specification language Z, which has been undergoing development at the Programming

6

Research Group over the same period. The project baa therefore heen a continuing
practical test of the application of Z to system specification.

The first phase of the project resulted in the specification of a Dumber of services,
including an earlier version of the User Manual for the Block Storage Service [II. The
presentation has been subsequently improved into the form shown here, and an

Implementor Manual for the service has been developed. The formal notation Z, used
throughout this document, is defined in [2.7\. A glossary of the notation is included
here as an appendix. Common parts of services (e.g. accounting and access control)
have been combined together into a separate document known as the IICommon

Service Framework" (included in [8]). The descriptioDs presented here make use of
some definitions from that document.

7

Chapter 1

Block Storage Serviee . User Manual

1 Introduction
2 Service state

2.1 BloeD
2.2 Overall state

3 Operation parameters

3.1 Block-gpecific operations
3.2 Key·linked operations

4 Reports

5 Operation definitions

5.1	 Client operations
Create

Read
Status
Destroy
Rep 1ace
SetExpiry
GetJds
Geteou.,t

5.2	 Manager operations

Scevenge
Profi le

6 Service charges
7 Complete service

8 Block Storage Service

1 IDtrodnmon

The Block Stonge Service provides low-level data storage facilities. Clients (typically
other services or application programs) may create, access and destroy fixed-size
blocks of data by invocation of the service operations. A block identifier, chosen by the
service, is used to identify a particular block. A unique identifier is given to each
block, and once a block has been created its identity cannot be changed.

Blocks ha.ve a fIxed expiry time, chosen by the client, and will be destroyed without
warning on reaching the given time.

The service provides limited security of access to blocks. A client may not access a
block without knowing its identity, and block identifiers are hard to guess (since their
values are chosen from a very large set). The identity of any block is initially known
only to its creator; the service will never tell the identity of a block to any other client.
Blocks may be destroyed only by their creators, and so security also depends on the
proper authentication of clients.

As well as operations on individual blocks, the service also provides some opentions to
help clients keep tra.c.k of their block usage, and further operations for the
management of the stonge provided by the service.

General features shared with other services are described in the "'Common Service
Framework" (contained in [8]). They will only be summarised where appropriate in this
manual. In particular, the following types are common to all services, and will not be
defined further here:

f Byte, UserNum, Time, Money, Report, Op 1

Implementation-specific constants are shown in italics (e.g. BlockSize). Their actual
va.lues should be made available to users of a particular implementation, but are not
included here.

9 User Ma.n.ual

2 Servi"" .tate

Fin5t the individual uni~ of information which are stored by the service are considered,
then the overall abstract state of the service is presented.

2.1 Bloeka

The block storage service stores data on behalf of its clients in units called blocks. A
client may submit some data, consisting of a. fixed·size (BJockSjze) a.my of bytes, to
be stored in a block.

Bf ockOate ~ 0 .. BlockSize-l -+ Byte

&>me general information is also associated with each block. The owner of the block is

the dient who created it. Whenever a block is created, an expiry time must be given
by the client; it is the time urz&il which the service is obliged to store Ihe block. On
reaching it, a block is said to have expired, and ca.n be discarded by the service
without the client being notified.

The owner of the block, the time of its creation and tbe time of its expiry (wbich will

not be ea.rlier than its creation time) together form the block information.

Blocklnfo
owner
created
expires

UserNum
Time
Time

created { expires

A block consists of both the block informa.tjorz and the da.ta.

Block
BlockInfo
data: 81ockOata

10 Block Siorage Service

There is also a given finite set of block identifiers.

[Blockld]

An identifier (id) will be issued by the service when a block is created. This becomes
the client's reference to the block and any subsequent operations on the block will
req uire this ideo tifier.

2.2 Overollstale

The service state records all currently stored blocks according to Lheir identifjers. It
also contains a flnite set of new block ids which have Dot yet been issued. The schema
SS denotes the state of the storage service at any particular moment.

SS I

blocks BlockId --t-+ Block
nelo4ids F Blockld

IIblocks ~ MaxRloeks
neHids n dam blocks ~ e
Nuilld I! (dam blocks U neHids)

There is an implementation-specific limit (MaxBlocks) imposed on the total Dumber
of blocks tha.t can be stored at anyone time. The set of new ids never contains
identifiers of existing blocks. The service guarantees never to issue a special identity
(Nullld); this id can therefore be used by clients' applications to indicate "no block".

Initially, when the service is started for the firsttiroe, there are no stored blocks, and
all block ids except NulIld are potentially available for issue. This is modelled a,g an
operation with only a resultant (dashed) state.

In i tSS

55'

blocks' o

new ids' Blockld \ {Nu1l1d}

User Manual 11

3 Operation par.-m.eten

Each service operation can only be performed by an authentic client. Authentica.tion
of clients is assumed to be performed outside the service (see IIlCommon Service
Framework" in [8]). After authentication, the client number i8 ava.Uable :u;.an implicit
parameter of every operation, and so is the time at which the operation occurs.

Explicit input and output parameters are denoted by names ending in ? for input and
! for output. Every operation provides at least an explicit output report (report!)
indkating its outcome.

<lees i cParams I

cl ;entnum UserNum

no" Time
report! Report

Changes in the state of the service caused by operations all conform to the following
general schema in which the state of the service before a.n operation (55) is rela.ted to
that after the operation (55') and to the basic parameters of the operation.

llS5 ---,

55

55'

46asicParams

newids' = newids \ dom blocks'

It is a constraint on every operation that any id issued by it is removed. frolD the set of
new ids , and so can never be issued again.

Sometimes the state of the storage service is left unchanged by an operation.

!!ss t.SS leSs' = ess•
Some operations take parameters which denote a count of blocks (some number in the
range from zero up to at least the maximum number of blocklS), a set of blot;k
identifiers Or a sequence of block infonnatjoD of limited Jength. Th.e following sets are
defined here for convenience.

12 Block Storage Service

BlockCount s O•• MaxCount
BlockldSet • r Blockld
BlocklnfoSeq a { 5: seq Blocklnfo I liS ~ Maxlnfos)

where

MaxCount)' MaxBJocks

3.1 Block1pecifi~operations

Many operations on the service apply to an existing block stored by the service, and
require the id of this block to be supplied as a.n input parameter by the cHen\. A
framing schema is used to include this information in a specific operation defmition.
The block stored under the given id (block) is made an impUdt parameter of such
operations. An error report, introduced later, allows for 'the case that no block exists
with the given id.

<llliock
655
block Block
id? Blockld

block = blocks(id?)

Similarly, some operations create a new block and store it in the service l returning its
id as an output parameter. Such a block is always owned by the crea.ting client and its
creation time is the current time (its expiry time a.nd data will be given in the
particular operation definition). Its id is taken Irom the set of new ids. This is denoted
by another framing schema. The newly created block (nelo4block) is made an implicit
parameter of such operations.

¢tlewBlock

655
nelo4block Block
id! Blockld

newblock.owner = c1 ientnum
newblock.created = noW
id! e nelo4ids
newblock = blocks'(id!)

User Ma.nual 13

3.2 Ke,.~liDked operations

Some opera.tions are designed to operate over a potentially large set of values (such as

all current block identifiers). Such operation$ are designed to allow the set in question
to be traversed in several operation calls. This may be necessary to limit either the size
of output parameters or the execution time of any particular call.

In this sf'rvice, some operations require the traversal of a potentially large set of ids.

xs F Blockld

The operation itself is designed to traverse only a subset of XS I and repeated ca.Bs of it
may be necessary to construct xs as the union of the individually traversed parts. The
execution of the separate operations is related by passing a key parameter from one
call to the next, taken from the given set of all keys:

[Key]

Each such operation has an input key parameter (key?) and iln output key parameter
(key!) and affects a subset of xs (sl,Jbxs). To construct xs. the client first calls the
operation with a. special key StartKey:

Operat ion I key? = StartKey

The client then continues to call the operation repeatedly. supplying as the new key jn

each case the key returned by the previous call. For example. the i th call would be:

,Operation 1 key? ::; keYI ,key! ::; keYI.l
subxs = SUbX5 I

Finally! the special key EndKey will be returned to indicate that no more calls need
be made.

Operat i on I key! = EndKey

At that point! providing the set xs has relnained constant! and not been affected by
other operations on the service:

xs ::; U Sl,Jbxs ,

••

14 Block Storage Service

A key is itself to be regarded as standing for a set of block identifiers, using some
implementation-specific representa.tion (denoted by the function KeySet). The special
keys (StartKey and EndKey) denote the set of no block ids aDd the set of all block
ids respectively.

KeySet : Key ~ f Blockld

KeySet (StartKey) o
KeySet (EndKey) BlockJd

Each key value, passed from one call to the next, stands for aJ.l the ids that have been
traversed so far (including possibly many that are not in xs).

The following framing schema is used. to simplify the definition of such key-linked
operations,

cjl(ey
key? Key
key! Key

r BlockJd
subxs r BlockJd

KeySet(key?) c KeySet(keyl)
.ub•• = (KeySet(key!) , KeySet(key?)} n x.

On each key-linked call, the set of ids denoted by the output key is strictly larger than
the set denoted by the input key. Since the set of all ids is fInite, this implies that

eventually the EndKey must be reached, and aJ.1 potentiaJ. ids traversed. The
difference between the sets associated with the two keys indicates the subset of X5

involved in the parlicular call.

User Manual 15

... Reports

Each service operation is specified by gjving a definition of its successful execution,
then augmenting this with the potential reasons for lack of success. The report!
output parameter of each operation indicates either that the operation succeeded or
suggests why it failed. In all easelS, failure leaves the state of the service ubchanged.

Success indicates successful completion of the operation.

Success I

report! Report

report! = Success Report

The total effect of a service operation is in general defined by overriding the

definition of the successful outcome of the operation by one or more error report
schemas. If the precondition in the error schema is satisfied, the corresponding error
report is returned. Only if the precondition is not satisfied will the operation succeed.

In each of the following cases, the state of the service remains unchanged if an error
occurs.

NoSuchB Jock is given if there is no block stored With identity i d?

NoSuchB lock I

_55
id? , Blockld

id? f dom blocks

report! :::: NoSucbBlockReporf

16	 Block Sklrage Service

NoSpace indicates that a new block cannot be created when the storage capacity of
the service is full.

NoSpace

"55

ttblocks = Max Blocks
report! = NoSpaceReport

Not Oloolner indicates an attempt to perform an operation which can destroy a block by
someone other than the owner of the block.

NotOloolner

"55

¢6lack

block.oloolner ~ cl ientnum

report! = NotOwnerReport

BadKey indk:ates an input key has been provided which does not denote a valid id set.

BBdKey I

"55
key? : Key

key? f dam Key5et \ {EndKey}
report! = BadKeyRepod

Not Manager is given on an attempt by some other client to perforID an operation that
may only be performed by the service mana.ger.

~otManager

I	 "55 i

I	 cl ientnum ~ A{anager

report! = NotManagerReport !

User Manual 17

5 Service operations

On the following pages appear descriptions of the Block Storage Service operations.
They are grouped into two sections: those that can be perfonned by ordinary clients,
and those that can be performed only by the service manager. Each operation
description has three parts.

The Abetrad gives a procedure heading for the operation, with parameter definitions,

as it might appear in a. programming language. The correspondence between this
procedure, and a.u implementation of it in a real programming la.ngua~e, should be
obvious and direct. Each parameter is given a name ending with either? for an input
or ! for an output. A short informal description of the operation accompanies the
procedure heading.

The Deimitian section mathematically defines the successful execution of the
operation. It does this by giving a schema. which includes as a component every fonnal
pa.rameter of the procedure heading, either expHcitJy or as components of included

schemas (!luch as report! in dSS). A shori explanation accompanies the schema.

The Rep0J't8 sectjon provides a definition of the total operation, including the possible
error reports that may be obtained from its invocation. The errors are specified by a
set of error schemas, as alreadY defined, whose names are chosen to reflect the reports
they return. Schema overriding (e) is ueed to define an ordering of potential error
outcomes. This means that the later errors in a sequence of overrides will be
produced, if a.ppropriate, rather than earlier ones. The successful oUkome, which
appears fIrst in the definition, will only occur if none of the error conditions are
satisfied.

18 Block Storage Service

5.1 Client operations

There are eight operationa the ordinary client may ask the service to perform:

Create

Reed

Status

Destroy

Repl Bce

SetExp j ry

GelId.

GetCount

create a new block and store it

rea.d the dab of a block

obta.in the atatua of a block

remove a block from the service

replace one block with another

change the expiry time of a block

obtain the identitiea of blocks currently owned
by the client

obtain the number of blocks currently owned
by the client.

Dser Manual 19

CREATE

Abotraet
Create (expiry? Time;

data? 81 ockDate j

id! Blockld,
report! Report)

A block is crea.ted to store the given data? until the given exp i ry? lime, and is
stored by the service under the new identity i d!.

DeimitioD

createsuccess-- -,

ASS i

¢t'lewBlock

expiry? Time

data? BlockData
id! Blockld

newblock.expires max {now,expiry?}

newblock.data = data?

blocks' = blocks U {id! ~ newblock}

The expiry time of the block is set to be the requested time, or lhe current time,

whichever is later. This em;ures that a block ca.nnot expire 'before' it bas been created.
It:s owner and creation times are defined (by ¢t4ewB1oek) to be the invoking client a.nd

the current time respectively. The Dew block is stored with a. unique identity.

Reports
Create : (CreateSUCCe'55 A Success)

• NoSpacc

For success, there must be enough storage space left in the service.

20 Block Storage Service

READ

Abstract
Read (;d? Blockld,

datat BI ockOate;

report! Report)

The da.ta. is relurned for the block stored with identity i d?

DeimiUon

Reedsuccess
"55
~lock

id?
data!

Blockld
BlockOata

i

data! = block. data

The service is unchanged by this opera.tion. The data. of the stored block is returned.

Reports

Read Q (Readsuccess 1\ Success)
• NoSuchB lock

For success, the block must a.lready be stored by the service.

User Ma.nual 21

STATUS

AbttrAM

Status (i d? Blockld;
owner! UserNum;
created! Time;

expires! Time;

report! Report)

Status information (owner, and times of crea.tion a.nd expiry) is returned for the block
stored with identity i d?

Definition

Statussuccess i

=55

4fllock

id? BJockld
owner! UserNum

created! Time

expires! Time

owner' = block.owner
created! = block. created
expires! = block.expires

The service is unchanged by this operation. The owner, crea.tion time and expiry time
a.ttributes of the stored block are returned.

Reports

Status ~ (Status SU t:t:2SS A Success)
• NoSuchBlock

For success, the block must already be stored by the service.

22 Block Storage Service

DESTROY

Abstrert
Destroy (id? BlockId,

report! Report)

The block stored with identity i d? is removed from the service.

Def.i.nition

DestroYsuccess I

ASS
<fBJock
id? ; BlockId

blocks' ={id?) ~ blocks

The block is removed from the set of stored blocks.

Reports
Destroy ;2; (DestroYsuccess 1\ Success)

• NotOwner
• NoSuchBlock

For 8uccess, the block must already be stored by the service and the client must be the
owner of the block.

User Manual 23

REPLACE

Abotrad:
Replace (id? BlocHd;

data? BlockData;

id! Blockld;

report! Report)

The block stored with identity i d? is replaced by one with the given data? The

identity of the new block is returned.

Definition

Rep 1acesucce'S'S I

~SS

¢>Block
¢I'IewBJock

id? Blockld

date? : BlockData
id! Blockld

newbJock.expires ; block.expires

newblock.data = data?

blocks' • ({id?} ~ blocks) U {id ~ neHblock}
'

The new block bas the same expiry as the old OIle, but contains the new data._ Its
owner and creation times are defined (by ~e...Bl ock) to be the invoking client and the
current time respectively. The old block is removed and the Dew one stored under its
new identity.

Reports
Rep 1ace Q (Rep1aCesuccess 1\ Success)

• NotOHner
• No5uchB lock

For success, the block must already be stored by the service and the client must be the
owner of the block.

24 Block S\orage Service

SETEXPJRY

Abstrad
SetExpiry (id? Blockld;

expiry? Time:

report! Report)

The block stored with identity i d? is changed to have the new expiry time. Its identity
is not changed.

Definition

SetExp j rYsuccess i

655
¢61ock
id? : BlockId
expiry? Time

ne...block Block

ne block.o...ner
ne block.created
ne block.expires
ne bl ock. data

:: blocK.o...ner
block. created
max {no.... expiry?}

=block.date

blocks' =blocks. {id? ~ ne ...block}

The block is replaced by one having the same identity and attributes, except that the
expiry time is changed to the given value, or the current time, whichever is later.

Reports

SetExpiry g (SetExpirYsuccEsS Success)I\,

• NotOl-lner

Ii NoSuchB lock

For 8uccess, the block must already be stored by the service and the client must be the
owner of the block.

User Manual 25

GETIDS

Abstract
Get Ids (key? Key;

count? B1 ock.Count ;
key! Key;
i dset! Blockld5et
report ! Report)

Returns a set of block ids owned by the client, limited to a.t most count? entries. By
key-linking (see section 3.2), a.ll ids belonging to the client ca.n be obtained.

Definition

Get Idssucces5 i

=55
<Jj(ey
key? Key

count? BlockCount
key! Key
idset! Blockld5et .. f Blockld
suhJICS f Blockld

)(s = {x:dom blocks I blocks(x).o~ner = clientnum}

idset! subxs
.idset! ~ count?

The sta.te of the service is not changed. The set of all ids to be returned (}(s) is tbe l5e\

of ids of blocks owned by this client. The set of ids returned .in anyone call (subxs) is
a subset of ids (as defined in ~ey). The size of the returned set is limited to at most

count? elements. (Note that this set may be empty on any particular call even if
further ids remain to be returned).

Rf'!porta

Get Ids (Get IdsSUCCI!S5	 A Success)
4& BadKey

For success, the input key must be vaHd.

2G Block Storage Service

GETCOUNT

Abstract
GetCount (count! BlockCount;

report! Report)

The number of blocks currently owned by the client is returned.

Definition

Get Count success I

'55
count! : BlockCount

)(5 : F Blockld

)(s:: {x:dom blocks I block5(x).ololner cl ientnum}

count! = '*X5

The state of the service is not changed by this operation. The set of ids to be counted
(xs) is the set of ids of blocks owned by this client.

Note tha.t the count returned will include blocks which have expired but have not yet
been scavenged.

Reports
GetCount ~ (GetCount!>UCC~'iiS 1\ Success)

There are no addi~ional reports for this operation.

User Ma.nual 27

5.2 MaDAgel' operations

Operations <wociated with the mana.gement of the service Dlay only be perfonned by a
special client called the service manager.

There a.te two such operations specific to the storage service:

Scavenge remove expired blocks

Prof i 1e obtain details of block usage.

213 Block Stonge Service

SCAVENGE

Abstract
Scavenge (key? Key;

key! K.ey;

count~ BlockCount;

report! Report)

Removes a set of expired blocks from the service, returning the number removed. By
key-linking (see section 3.2), all expired blocks can be scavenged.

Definition

Scavengcsuccess---,
655
~ey

Keykey?

Keykey!
BlockCountcount!

xs F BlockId
subxs F BlockId

xs = {x:dom blocks I blocks(x).expires < now}

count! = #subxs

blocks' = subxs ~ blocks

The set of all ids to be scavenged (xs) is tbe set of ids of stored blocks which have
expired. The set of ids scavenged in anyone call (subxs) is a subset of xs (as defined
in ~eys). The number of blocks scavenged is returned as count!. Blocks scavenged
in this call are removed from the service.

Repom
Scavenge ~ (Scevengesucc~S5 /I, Success)

• BadKey
• Not Manager

For success, the client must be the service manager and the input key must be valid.

User Manual 29

PROFILE

Abetraet
Prof i 1e (key? Key:

key! Key;
infoseq! BlocklnfoSeq:
report! Report)

Returns a sequence of information about blocks stored in the service. By key~linking

(see section 3.2), the information profile of aU blocks can be obtained.

DermitiOD

Prof i 1eSUCCII!$$

"55
¢lIey
key? Key
k.ey! Key
infoseq! BlocklnfoSeq

xs F Blockld
subxs F Blockld
order seq BlockId

xs = dem blocks
dam order =1.. Msubxs
ran order = subxs
infoseq! =A i~dom order· blocks(order(i»tBlockInfo

The sta.te of the service is not changed by this operation. The set of all block ids for

which information is to be returned (xs) is the set of all blocks stored in the service.
The subset of these ids for which information is returned in anyone call (subxs) is a
subset of xs (as defined in ¢Key). The sequence of informa.tion returned is that of aU
blocks with ids in the set subxs in some arbitrary ordering (given by order).

Reporis
Prof i 1e ~ (Prof i 1e5Ucce55 A Success)

e BadKey
e Not Manager

For success, the client must be the service manager and the input key must be valid.

i

30 Block Storage Service

8 Service dlargea

Clients will be held responsible for the expenses incurred by their use of the service.
Expenditure will be recorded, and clients will be expected to obeerve any limits placed
upon them (however, such limits do not form pari of this service, and will be imposed
separately).

The basic parameters to an opera.tion are supplemented by two hidden parameters
(since they do not appear in the procedural interface). These are all operation
identifier op? and the cost of executing the operation cost!.

¢farams

¢6asicParams

op? : Op

cost! : Money

There is a. cost for each successful operation, which may have two components. One is

the expense of performing the opera.tion itself (CreateCost, ReadCost, etc.). The
other, if present, is related to the function requested by the operation. For example,
the create operation charges in advance for the storage of the given data , and the
destroy operation may give a. rebate (negative cost) if the block is destroyed before its
expiry time.

The expense of storing a. block is determined by applying a tariff function to the
creation a.nd expiry times of the block. Here is a typical block tariff function:

BlockTariff : (Time x Time) ~ Money

V created, expires: Time·
BlockTariff(created,expires) =

BlockCost * (expires - created)

where (_ * _) : (Money x Time) ~ Money is def"med appropria.tely.

The values of CreateCost etc. and the block tariff function itself may be varied; their
precise values at any time will be made known separately to clients.

The cost of successfully invoking a.ny particular operation on the storage service is
defined by a. tariff schema. For some operations, the cost is related to the times of

User Manual 31

creation a.nd expiry of an existing or a newly created block. On destroy a.nd replace
operations, a reba.te is given to encourage explicit destruction or replacement) rather
'han letting blocks expire and be removed by the service.

SSTariff
!ff'arams
Block
Block'

op? .:; CreateOp ...	 cost! :: CreateCost
+ BlockTariff (created'.e~pires')

op? =: ReadOp ... cost! ::. ReadCost
op? =: StatusOp ... cost! = StatusCod
op? =: DestroyOp ... cost! = DestroyCost

- BlockTariff (created. expires
+ BlockTariff (created, now

op?	 .:: ReplaceOp ... cost! =: ReplaceCost
- 8lockTariff (created, expires
+ BlockTeriff (created. now)

+ BlockTariff (created',expires')
op?	 -- SeeExpiryOp'- cost! =: SetExpjryCost

- BlockTariff (created, e~pires)
+ BlockTariff (creeted',expires')

op? :: GetldsOp ... cost! =: GetldsCost
op? :: GetCountOp'- cost! := GetCountCost
op? :: ScavengeOp ~ cost! = ScavengeCost
op? ::- Pro[jJeOp ... cost! ::: Pro[jleCost

If;m error OCCUrB, a fIXed amount may still be charged.

ErrorTar iff '" !ff'arems I cost! = ErrorCost

These two 6chema:5 combine to form a.n overall tariff framing schema in which the
error tariff will be charged unless the ouput report is successful.

46STariff Q Success ~ SSTariff A

~Success ~ ErrorTariff

32 Block Slarage Service

., CoIDplete BUVice

The full definilion of the complete Block Storage Service includes identification of
clients and other components which are common to many services. It depends on a
number of edemas delm~d in the "Common Service Framework" (in [8]).

Each separate operation in the service is given a unique operation identifier.

SSServiceOps '"
(Create 11 4f'arams lop? = CreateOp) v

(Reed 11 4f'arems ! op? = ReadOp) v

(Status 11 4f'arams lop? = StatusOp) v

(Oestro~ 11 4f'arams lop? ::= DestroyOp) v

(Replace II. 4f'arams lop? = ReplaceOp) v

(SetE)(pir~ II. 4f'a.... ams lop? ::= SetExpjryOp) v

(Getlds II. 4f'arams lop? = GetIdsOp) v

(Get Count II. 4f'arams lop? = GetCountOp) v

(Scavenge II. 4f'arams lop? = ScavengeOp) v

(Profile II. 4f'erams J op? = PronleOp)

Each of thewe operations has a briff associated with it.

SSBasicOps Q ~STariff II. SSServiceOps

The full service state includes subsystems for a clock, accounting, statistics and
controllingservke access. (See the ·Common Service Framework"' for further details,)

555tete ~ 55 II. Clock 11 Accts 11 Stats 11 Access

SeIVice initia.lisation includes initialisation of the subsystems.

InitSSStete s::
InaSS II. InitClock 11 InitAccts 11 Init5tets II. InitAccess

The full set of available operations includes a Nu 11 operation and those to do with the
service dock, accounting, statistics and access.

User Manual 33

55A110ps.

(SSBasicOps A ~SS A ¢Clock A ¢Accts A $5tats A ¢Access) v

{Null A sSS A ¢Clock A ¢Accts A ¢5tats A ¢Access}

(NotEnabled A sSS A ¢Clock A =Accts A =Stats A =Access)

v

(ClockOps A aSS A ~Clock A ¢Accts A ¢5tets A ¢Access) v

(AcctsOpS A =SS A ¢Clock A ~ccts A $5tets A ¢Access) v

(StatsOps A sSS A ¢Clock A EAccts A ~Stats A ¢Access) v

(AccessOps A aSS A ¢Clock A =Accts A sStats A ~Acce5s) v

The complete specification of the service, including the possibility of a bad operation
number or a non-detennin~Hc error in the underlying implementation. is then defined

as follows:

550ps •
«BadOperation A aSS A ¢Clock A sAccts A s5tets A :Access) •

(SSAllOps A ~S5 A ~Clock A ~Accts A ~Stats A Mccess»

v

(SeryiceError A sSS A ¢Clock A 5Accts A s5tets A 5Access)

Operations with bad operation numbers and other service errors do not change the
service state, except that the clock might tick.

35

Chapter %

Bloclt Storage Service -ImpJementor Manual

1 Introduction
2 Abstraet sta.te

3 Concrete state
3.1 Bask definitions

3.2 Data aubsystem

3.3 Header subsystem

3,4 Bit·map subsystem

3.5 Coual subsystem

3.6 Block identifiers

3.7 Consistency between Bubsyetema

3.8 Combined concrete state

3.9 Relation to abstract state

4 Additional operations and reports

4.1 Additional operations

4.2 Key-linked operatjoDs

4.3 Error reports

5 Operation implementations

5.1 Client operations

5.2 Mana.ger operations

6 Complete service

7 Disk layout and cacheing

7.1 Header blocks

7.2 Map blocks and cache

7.3 Disk layout

8 Implementation correctness

Appendix: Iterating schema.s

36 Block Storage Service

1 IntrodudiOD

This document is a gujde to the implementation of the Block Storage Service, which
provides low·level data storage facilities. It assumes that the reader is familiar with the

"Block Storage Servke • User Manual ll which outlines the abstr<let specification of the
service from the point of view of an external user (normally a program running on a
dient machine). In the following document, a concrete specification of a possible
implementation of the service is presented.

In order to make the implementation more understandable, it is presented in several
parts. First 3 number of subsystems a.re introduced in simplified form, each with
associated suboperations, which could implement various parts of the concrete service
state. These a.re then combined to give the overall concrete state, which is related to
the abstract service state.

Some additional suboperations and some reports are introduced which are useful for
defining the service operations. The implementations of the service operations
themselves are then defined, largely as compositions of the suboperatjons relating to
each of the affected Bubcomponents of the state. Each operation and suboperation
schema may typically be implemented as a procedure in the final program.

The implementations of some of the subsystems are then further refined in order to

show how their state can be stored on a disk, and to provide greater efficiency through
cacheing and data buffering.

The specification given here is still not directly implementable. A pa.rticular
programming language must be chosen by the implementor and then this design must
be transcribed into the programming language (currently by hand).

The design assumes that the final programming language will be an impera.tive
language with an inherent notion of sequences of commands or operations. There is no
consideration of the use of parallelism in the implementation. The introduction of such
parallelism at an appropriate level in the refinement of specifications of this kind is
stilI aD active topic of research. Our feeling is that in thjs particular service the
parallelism could be introduced after the level of refinement presented here (Le. after
the identification of the subsysLems 1 with associated subopera.tions, into which the
concrete state can be decomposed).

A further simplification in the design presented here is the lack of explicit provision for
handling faults in the underlying hardware, such as disk read/write errors.

Implementor Manual 37

2 Abstract .tate

As a reminder of what is to be implemented l the definition of the abstract state of the

Block Storage Service l as defined in the "Block Storage Service· User Manual''' is

summarised here.

A block of data to be stored by the service is a fixed·size (BlockSjze) array of bytes.

BlockData Q; 0 .. BlockSjze-l -# Byte

Each block also has some general infonnation attributes.

Blocklnfo i

owner UserNum

created Time
expires Time

created ~ expires

So a complete block is defined as followa in the abstract state.

Block I

Blocklnfo
data: BlockData

The overall abstract state of the service records all currently 8tored blocks accordjng
to tbeir identity from a set of block identifiers (BlockId). Unissued ide are also
recorded. There is a limit (MaxBlocks) on the number of blocks thatcaIl be stored by
the service. The null identifier (Nullld) is never issued.

55 ---,

blocks BlockId ~ Block

ne"'ids F Blockld

_b locks l!O: MaxBlocks

neHids n dam blocks = ~

Nullld ¢ (dam blocks U newids)

38 Block Storage Service

Initially there are no stored blocks I and all ids except Nullld are potentially available
for issue.

In i tSS
55'

blocks' = "
ne"ids' ; Blockld \ {Nullld}

Some further definitions provide for block counts, sets of ids and sequences of block
jnformation.

B1ockCount Q 0 .. MaxCount
BlockIdSet Q F Blockld
BlocklnfoSeq g { s: seq B10ckInfo I as ~ Maxlnfos }

where
MaxCount j;l: MaxBJocks.

Implementor Manual 39

3 Concrete state

The concrete sta.te of the service is built up from several subsystems, After

introducing some basic defmitions which will be used throughout, the subsystems are
specified as subcomponents of the system state with specific suboperations applicable
to each one. The state subcomponents are then combined to give the overall concrete

sta.te.

A subsystem specification is like an abbreviated user manual. It includes a description
of the state of the subsystem, its initial state, and the suboperations which may be used
to cha.nge the statE. Each suboperation has an abstract showing how it might appear
as a procedure ca.ll in a procedura.l programming language.

The overall concrete state of the impJementation is obtained by conjoining the sta.tes of

the subsystems. In a subsequent section, the implementations of the service operations
are specified as cODlbinations of the suboperatiol18 on the individual subsystems.

3.1 Basic definitions

A byte of data is implemented as a fixed number (ByteSill'e, normally eight) of bits.
By convention, these are indexed from zero upwards.

Bit • {V, 1)

Byt e 9. O.. ByteSise-l -+ Bit

In this manual, we shall model data arrays as functions from fixed-9ize domains of
index numbers (normally from zero up to a maximum value) to bytes. It is convenient
to define some general functions to operate on these arrays.

L WilL) ,

L f=_),

(_ IU_) «N'" Byte) x N) --+ (N'" Byte)

~ .'	 (N'" Byte); n,N •
a!.l.Q1Q. n = (O .. n-l) <Is
a f.c.2m n = succM I a

a e1. n = predM I a

40 Block Storage Service

The functions define a new array from the beginning Wl.1.Q (but not including) a
certain position in the supplied array or f.c.2m a given position to the end of the
supplied array. Additionally, it is possible to move the domain of an array so that it

starts at. a specified offset.

Each block in the store will be identified by a block number from the set B1ockNum.
This is a finite subeet of the natural numbers. There are as many different block
numbers a.s the potential number of blocks that can be stored by the service.

BlockNum F N

aBlockNum = MaxBlocks

Each block has an associated physical data-block, which holds the bulk of the data
as50ciated with the block, and a header, which holds the remainder of the block
information. The number of a block will be used for identifying its associated data
block and header.

The ph)'BicaJ disk layout may dictate that the block numbers are not contiguous. A
function is defined to provide the next higher block number after a given number in
the set.

next : BlockNum ~ BlockNum

V bn:BlockNum I bn ~ max BlockNum
next(bn) = min {n:BlockNum I bn < n}

3.2 nata subsystem

In the concrete state, an array of data-blocks (stored on a disk, as shown later) are
used to hold the bulk of the data of the stored blocks. Each da ta-block can hold a
fixed amount (DataBlockSjze) of bytes relating to a particular service block.

OataBlock ~ 0 .. DataBJockSize-l ~ Byte

Data-blocks are indexed by the number of the block whose data. they hold. The first
subcomponent of the concrete state of the service is therefore the storage for the data
blocks.

Implementor Ma.nual 41

DataBlocks

I dataBlocks BlockNum -+ OataBlock :

This subsystem IDay be in any initial state when the service ~ started for the first time,
so the data-blocks may take any initial values.

InitDataBlocks I

I ,Oat eBl ocks'

The sUboperations applicable to this subsystem are those of getting data from and
putting data. to the store, given the relevant block number.

GetData
GetData (bn? BlockNum; datablock! D.IBBlock)

GetDeta i

60ataBlocks
bn? BlockNum
datablock! DataBlock

datablock! dat aB locks (bn?)

PutData
PutOate (bn? BlockNumi datablock? OataBlock)

Put Date
I

6.0ataBlocks
bn? BlockNum
datablock? : OataBlock

dataBJocks' =dataBlocks e ibn? ~ datablock?}

Unless otherwise defined, it wiU be assumed that for any state S, 6.S r;;; S AS'.
Note that the GetOata operation does not define a new subsystem state. This is so
that it may be conjoined in a later service operation definition either with Put Oat a
(which does define a new subsystem state), or with a general schema specifying no
change in state.

42 Block Storage Service

3.3 Header lIubBylltem

It is convenient for service users to be provided with a block size sligh t1y larger than

an exact power of two, so that they can store additional attributes with ea.ch block,

such as a reference count for a file service. (A conventional size of 512 bytes might be

increased to 528 bytes, for example).

SInce data-blocks stored on a disk are usually a power of two in size, not all the data

component of a service block will therefore fit into a single implemented data-block.

BJodSjze > DataBJockSize

The remaining bytes (called the tag) are stored separately.

TagSjse BJockSiae - DataBlockSize

Tag :. 0 .. TagSjae-l -+ Byte

The tag is stored, along with other attributes associated with each block, in a header.
The other header attributes consist of the Blocklnfo and some extra information

required by ~he implementation. This includes the block id by which a client Dlay refer

to the block and an indication of whether the block is currently being used to store
da.ta.

Header

Blocklnfo

tag Tag
id Blockld

~ used Boolean I

The next subcomponent of the concrete state of the service is then the storage for the

headers, indexed by the corresponding block Dumber.

Headers I

I headers B1ockNum -+ Header I

Implemenklr Manual 43

Initially, when the service is first started, all the beaders denote unused blocb.

In i tHeaders
Headers'

'rf bn:BlockNum
headers'(bn).used False

The suboperations applicable to this subsystem are those of getting header5 from a.nd
puttlng them to the store.

GetBeader
Get Header (bn? BlockNumi header! Header)

GetHaader I

~eaders

bn? BlockNum

header! Header

header! :; headers(bn?)

PutBeader
Put Header (bn? BlockNum; header? Header)

PutHeeder ,
AHeaders

bn? BlockNum
header? ; Header

headers' :; headers' ibn? ~ header?}

As in the data subsystem, only PutHeader deflnes a new subsystem etate.

44 Block Storage Service

3.4. Bit~map sub8y8tem

It is desirable for blocks which are available for data. storage to be found without
reading too many headers (and hence ma.lring many disk accesses) during the search.
To do this, the service implementation includes a bit-map. Each bit .in the map
indicates the availability of a corresponding block.

FreeBie ~ 1; UsedBie g a

The next subcomponent of the concrete service state is therefore the bit-map.

BitMap
I bitMap: BlockNum Bit:

Initially, when the service is fIrst started, the bit-map shows only free (unallocated)
blocks.

InttBitMap i

BitMap'

ran bitMap' = {FreeBit}

The suboperations applicable to this subsystem are those of alloca.ting and freeing
bits, and of finding a block number corresponding to a free block.

AllocBit
Al10cBit (bn? : BlockNum)

AllocBit
ABitMap
bn? : BlockNum

bitMap' = bitMap. {bn? 1--+ UsedBit}

Implementor Ma.nual 45

PreeBit
FreeBit (bn? BlockNum)

FreeBit

llBitM.P
bn? : BJockNum

_bitMap' = bitMap e {bn? I-t FreeBit} ~
FiDdFreeBlock

FindFreeBlock (bn! BlockNum)

F i ndFreeB lock i

M3i tNap
bn! : B1ockNum

bitNap(bn!) = FreeBit

This last suboperation is specified non-constructively (it doesn't say which block
number is to be chosen from several candidates), and would in general involve a search
through the bit-map to find a block that was marked as free. An associated error
report is introduced later to cater for the case that there are no free blocks.

3.6 Count BubsYIJtem

A separate count is kept of the number of service blocks owned by each client, 80 that
it is not necessary to scan all the block headers to extract this information.

This forms a further subcomponent of the concrete service state.

Counts

I counts UserNum ~ BlockCount :

It is assumed that the number of users is sufficiently small that a count can be held for
each user (and hence a total function is used in the specification).

46 Block Storage Service

Initially, the counts for all clients are zero.

InitCounts
Counts'

ran counts' =' {O}

Suboperations allow the count for a particular user to be incremented, decremented or
inspected.

Inc:Count
IncCount (usernum? ; UserNum)

IncCount
6Counts
usernum? UserNum

counts' ; counts s {usernum? ~ counts(usernum?) + 1}

Dec:Count
DecCount (usernum? UserNum)

DecCount

6.Counts

usernum? UserNum

counts' = counts. {usernum? ~ counts(usernum?) - 1}
I I

FetehCount
FetchCount (usernum? UserNum; count! BlockCount)

FetchCount
6.Counts
usernum? UserNum
count! BlockCount

count! counts(usernum?)

Implementor Manual 47

3.8 Block identifiers

The service requires the generation of unique block identifiers. For the sake of easily
finding the block associated with a particular block id in the implementation, the block
number is encoded within the id. The id also contains a component to provide
uniqueness, since the same block number may be re-used many times for different user
blocks during the lifetime of the service.

Using the clock value at the time of allocation gives uniqueness down to the
granularity of the clock (assuming the clock 18 not allowed to run ba.ckwa.rds!). For
this implementation it is atlsumed that the granularity is sufficiently fine that ea.ch
service operation will occur at a dHferent time.

BlockldParts Q BJockNum x Time

A special function is used to construct a block id from jts components. This must be
invertible, but should disgu18e the components so that a client is not tempted to make

use of the encoded infonnation and so become dependent on this particular

implementation.

BID BlockIdParts ~ Blockld

r.n BID c Blockld \ {NullId}

The range of BID 18 made a sparse subset of all possible block ids (and excludes the
null id). This provides an initial barrier to attempts to use arbitrary data as block ids,
and hence a limited amount of security. It is convenient to define a partial function to
extract the block number from a block id.

~ , Blockld ~ BlockNum

I BIDN = BID-I. (A (b.t) ,BlockIdP.rts • b)

A suboperation is provided to extract the block number from the block id supplied as
input to a service operation (an associated error report is introduced later to allow for
a bad id).

48 Block Storage Service

GetBJockNum
GetBlockNum (Id? Blockld; bn! BlockNum)

GetBlockNum

id? BlockId

bn! : B1ockNum

bn! = BIDN(id?)

Another suboperation constructs a new block id for a given numbered block, using the
current time.

NewBlockId
NelolBlockId (bn? BlockNum; id! BlockJd)

NewBlockld
bn? BlockNum
id! BlockId
notol

i d!

: Time

= BIO(bn?... notol)

3.7 CQlUlistency between 8Ubeystems

There are certa.in consistency constraints which should hold between the
subcomponents in any valid concrete state. The operations as defined in this manual
should preserve these constra.ints. HoweverJ it is possible that disk or other operational
failures ma.y compromise this consistency in an actua.l implementation. These
constraints therefore form the basis for programs which could check the integrity of
the information after a crash, and reconstruct a consistent service state.

The bit-map should reflect the usage infonnation stored in each block header.

Implementor Ma.nual 49

Bi tMapCons istency -------------,
Header-s

BIt Map

V bn:BlockNum

header-s(bn).used = True ~

bitMap(bn) UsedBit

The counts should reflect the number of block headeI'B currently in use by each USer.

Count Cons i stency I

Headers
Counts

'Ii user: UserNum
count s (user) :::

#{bn:BlockNum
headers(bn).used
headers(bn).owner

}

True
user

'"

3.8 Combined concrete state

The complete concrete service state is obtained by combining the state~ of the
subsystems already described, which must be consistent. The value of the service dock
is a.lso mwe part of the combined 8tate.

cSS

DataBlocks

Headers

BitMap

Counts

BitMapConsistency

CountConsistency

now: Time

50 Block Storage Service

The identifying number of the client invoking the operation (c 1 i entnum) and a report
of the outcome of the operation (report!) are common parameters to all service
operations.

¢BasicParams

clientnum UserNum
report! Report

Each operation involves a potential change in the state of the service. The current
time will strictly increase in value from one operation to the next (as required to
generate unique identifiers).

nolo/' > no....

Sometimes the complete state of the storage service (except for the current time) is left
unchanged by an operation.

=c55 • Ac55 I 8(c55'\noH') = 8(c55\noH)

Some operations leave subcomponents of the state unchanged.

=Dat aB locks Ac55 eOat aB locks' eOataBlocks•
=B i tMap • Ac55 8BitMap' :=. aBitMap

=Counts • Ac55 aCounts' aCounts

Initially, the service state is defined by the initial states of all the subcomponents.

Implementor Manual 51

cln i t55

L
Ini.tDataBIOCkS

In i t Headers

In i tB i tNap

InltCounts

3.9 Relation to abstract state

The state refinement step is expressed by relating the abstract user state to the
concrete implementation state in the following abstraction relation.

Since the bit-maps and block counts can be derived from the block headers in the
concrete state, the blocks of the abstract state can be defined entirely in tenus of the
da.ta~blocks and headers from the concrete state. The identifiers availa.ble as new
block ids in the abstract state depend only on the current clock va.lue in the concrete
state.

ReiSS
55

c55

blocks
{bn BlockNum;
heade~ Heede~;

block Block I

header = heede~5(bn)

heade~. used = True

block. owner = heede~.owne~

block.created = heade~.creeted

block.expi~e5 =heade~.expi~e5

block.data = heade~.ta9 u

(dataBlocks(bn) at T,gS;ze)

headQ~. id ~ block
}

ne~id5

{bn,BlockNum, t,Time It> no" • BID(bn,t)}

I

52 Block Storage Service

4. AdditiOlUll operatiOlUl and reporta

In order to implement the service operations it is convenient to introduce some further
suboperation!'l. The implementation of key-linked operations is discussed, with the

iDtroduction of related suboperations. It is also necessary to define the situations in
which errors will occur aDd the corresponding report values that will be returned.

4.1 Additicmal operations

The following additional operations make use of &Ome of the suboperations previously
defined to perform actions that are required by several of the subsequent service
operation implementations.

A suboperat.ion is introduced to combine the extraction of the block number from the
block id and the reading of the block header (an associated error report is introduced
later which checks that the given id matches that of the header a.nd that the block is

still in use). It produces the block number and the header of the block as results.

GetAttribute.
GetAttributes (id? Blockld,

bn! 610ckNum:
header! Header) j

GetAttributes
GetBlockNum [id? bn! 1
GetHeader [bn!/bn?header!]
id? BlockId
bn! : BlockNum

) header! Header I

(Note tha~ we introduce the notation S[x] to have an identical meaning to the
idempotent schema renaming S[x/x] in order to provide an abbreviated reminder of
the name of a relevant parameter of the schema in question. Schema inclusion is used
here to 9how that GetAttr ibutes is implemented by calls on Get610ckNum and
Get Header.)

Implementor Manual 53

A further suboperation constructs a new block id, given the number of the block to be
used. It uses this and the client's identity to initialiae the header containing the

attributes of the newly allocated block.

NewAttributes
Ne~Attributes (bn? BlockNumi

id! Blockld;
header! Header)

NewAttr i butes
NewBlockld Ibn?, ,d' J
btl? BlockNum
i d! Blockld
header! Header
eli entnum UserNum

header! . o~ner eli entnum
header! . i d = i d ~

header! . used True

•.2 Key-linked operatioD.8

Keys are used to link together related calls of a particular service opera.tion, which in
conjunction potentially allow all the blocks in the service to be scanned. They are
implemented via an invertible function of block numbers. Intuitively, the set of blocks
denoted by a key in a key-linked operation is all those blocks with block numbers less
tha.n that obtai.ned from applying the function to the key. The StartKey corresponds
to tbe minimum block number, and the EndKey corresponds to no block number. The
fact that not all keys correspond to block numbers gives a degree of protection against
the use of arbitrary key values.

KN Key ~ BlockNum

KN(StartKey) = min BlockNum
E.ndKey Ii! dom KN

Keys are used to encode the starting and ending positions of scanning operations.

54 Block Storage Service

These operations involve iteraHons in which the current block number is successively
incremented. The state informa.tion passed from one scan iteration to tbe next
therefore cODsis~5 of the current bJock number, plus an indication of whether the last
block has been ~ached and a count of the number of blocks scanned so fa.r.

Scan i

bn BlockNum
last Boolean
scanned BlockCount

On each iteration, 'he block count is incremented and, if the last block has not been
reached, the next block number is set up.

6Scan
Scan

Scan'

bn ~ mex BlockNum ~

bn' = ne)(t(bn)

1est' = False

bn = max BlockNum ~

1ast I = True
scanned' = scanned + 1

At the start of a scan, the scan state information is initia.lised. using the input key (an
appropriate error is defined in the next section in case the input key is invalid).

StartScan
Scan
key? : Key

bn = KN{key?)

last = False
scanned = 0

Implementor Manual 55

On finishing a scan, the output key is defIDed according to the final block number,
depending on whether the last block has been reached.

EndScan
Scan'
key! : Key

last' = True ~ key ~ = EndKey
last' = False ~ KN(key') = bo'

4.3 Error hports

The report! output parameter of each operation indicates either that the operation
succeeded or suggests why it failed.. In all cases, failure leaves the state of the service

unchanged.

Success indicates successful completion of the operation.

cSuccess

report! : Report

report! = SuccessReport

The ~tal effect of a service operation is in general defined by overriding the
definition of the successful outcome of the operation by one or more error report

schemas. If the precondition in the error schema is satisfied, the corresponding error
report is returned. Only if the precondition is not satisfied will the operation succeed.
In each of the following cases, the state of the service remains unchanged if an error
occurs.

NoSuchB lock is given if there is no block stored with identity i d? nDlay result from
either the input of a bad block identifier (which does not correspond to a.ny data block)
or of an identjfier which denotes a block whkh no longer bas that id or is no longer in
Use. These two cases can be separately specified as follows.

56 Block Storage Service

c6adld
;cSS

id? : BlockId

id? ~ dom BWN
report! = NoSuchBlockReport

cMlsmatchedId
;cSS

GetAttributes [id?bn/bn!.header/headerIJ
id? BlockId
bn BlockNum
header : Header

(header. id :# id?) \I (header.used = False)
report! = NoSuchBlockReport

The combined error report is obtained by overriding one case with the other, since it is

necessary to check for a bad id before a mismatched id can be checked.

cNoSuchBlock cMismatchedId • cBadId

NoSpace indicates that a. new block cannot be created when the storage capacity of
the service is exhausted (i.e. when a search of ~he bit-map shows that all blocks a.re in
use).

cNoSpace i

=cSS

ran bitMap < {UsedBit}
report! :::: NoSpaceReport

NotOl-tner indicates an attempt to perform aD operation which can destroy a block by
a client wbo does not own the block.

Implementor Manual 57

cNotO...ner ,

:c55
GetAttributes {id?,bn/bn!,header/header!1
id? Blockld
bn : BlockNum

header Header

header. owner # clientnum
report! = NotOwnerReport

Not Manager is given if a management operation is attempted by a client who is not
the service manager.

cNotManager

I :c55

eli ent num # Manager

report! = NotManagerReport

BadKey indicates that a key value has been given as input which does not correspond

to any block.

cBadKey I

:c55
key? I(.ey

key? ii! dom KN
report! = BadKeyReport

In the implementation described here l no account has heen taken of potential faults in
the underlying hardware l such as bad disk blocks. Faults that are unrecoverable are
allowed for in the abstra.ct service specification by the ca:teh-all error report
Serv i ceError. In this event, the state of the service is specified t~main unchanged.

58 Block Storage Service

5 Operation im.plementations

The service operations are redefined here in terms of the concrete service state, making
use of the 5uboperations from the subsystems. Each service operation is specified by
conjoining the suboperations which are used in its implementation (by the use of
schema inclusion).

Parameter passing between suboperations is denoted by defining some auxiliary buffer
variables in the operation schema. The correspondence between the 'formal'
parameters of the suboperations and the 'actual' parameters of an operation
implementa\ion is specified by renaming applied to each included suboperation
schema.

As in the "User Manual", the description of each operation has three sections.

The Abatraet section is included to reduce cross-reference with the "User Manual". It
gives the procedural interlace to the operation for a program running on a client

machine. This will of course need to be adapted for a particular programming
language.

The Dermition section gives the formal description of the operation in terms of the
concrete state together with informal details to aid the implementor. In general, the
operation definitions make use of some suboperations, shown as included schemas with
parame\er renaming. Though there is no formal indication of the ordering amongst
these suboperations, the order in which they are presented is intended to reflect the
order in which they would be invoked in the implementation. The ordering is intended
to ensure that each variable is defined before it is used, so leading to a procedural
program.

The Reports section covers error conditions to produce a formal description of the
total operation. As in the User Ma.nual, schema overriding ($) is used to define an
ordering of potential error outcomes. This means that the later errors in a sequence of
overrides will be produced, if appropriate, rather than earlier ones. The successful
outcome, which comes first in the definition, will only be produced if none of the error
conditions are sa.tisfied.

Implementor Manua.l 59

&.1 Client operauontl

There are eight operations the ordinary client may ask the service to perform:

Create

Read

St atus

Destroy

Replace

SetExpi ry

GetIds

GetCount

create a. new block and store it

read the da.ta of a block

obtain the sta.tus of a block

remove a block from the service

replace one block with wother

change the expiry time of a block

obtain the identities of blocks currently owned

by the client

obtain the number of blocks currently owned
by the client.

60 Block Storage Service

CREATE

Abstraet
Create (expiry? Time;

data? BlockData;
id f Blockld;
report! Report)

DefiDitiou

cCreat esuccess I

<leSS
FindFreeBlock Ibn/bn!]
AlloeBit [bn/bn?]
NewAttr i butes [bn/bn? i d!. header/header!]
PutData [bn/bn?,dateblock/datablock?]
Put Header {bn/bn?header/header?l
IncCount [cl ientnum/usernum?]
expiry? Time
data? : BlockData
id! Bloekld
bn : BlockNum
datablock : DataBlock
header : Header
cl ientnum UserNum

datablock ::; data? illm TagSize
header. tag = data? 'a.!JllQ TagSjze
header. created = now
header.expires = max {now. expiry?}

A free block is found, it is marked as allocated and a new header is created for it. The

expiry time of the block is set according to the givell parameter. The data is split
between the hea.der tag field and the data-block. The data and header are written to
the disk, and the block count incremented for this client.

Reports
cCreate ~ (cCreatesuccess "cSuccess)

Gl cNoSpace

Implementor Manual 61

READ

Abotraet
Reed (id?

data!
report!

Blockld;
BlockDats;
Report)

DefWtion

cReedsuccess
::cSS

GetAttrlbutes [id?bn/bn!,header/header!]
GetData [bn/bn?dateblock/datablock!]
id? Blockld
data! : BlockOeta
bn 810ckNum
detablock OetaBlock
header Header

data! = header. tag U (datablock Itl. TagSjze)

The data i8 reconstructed from the header tag field and the data-block contents.

The state of the service is not changed.

R.poria

cReed == (cReadsuccess " cSuccess)
• cNoSuchBlock

62 Block Storage Service

STATUS

Abstract
Status (id? Blockld:

ol,mer! Used~um;

crest ed! Time;
expIres! Time;
report! Report)

Definition

cSt at USSUCCESS

, .c55

GetAttributes [id?,bn/bn!,header/header!]
id? , Blockld
OHner! UserNum
created! Time

expires! Time

bn BlockNum

oHner! header. owner

created! header. created

expires! header.expires

The appropriate attributes are returned as output parameters.

The state of the service is not changed.

Reports

cSt at us ~ (cStat USSUCCESS "cSuccess)

• cNoSuchBlock

Implementor Manual 63

DESTROY

Abstraet
Destroy (id? Blockld.

report! Report)

Definition

cDestroysuCCl!'SS I

lleSS
=DataBloeks
GetAttributes [id?bn/bn!,header/header!I
PutHeader (bn/bn?,header'/header?]
FreeBit [bn/bn?)
DecCount [el ientnum/usernum?l
id? Bloekld
bn 810ckNum
header Header
header' Header
cl ientnum UserNum

header' . used ::. False

The header a.nd relevant bit in the bit-map a.re marked as being free and tbe block
count for this client is decremented.

The data·block and new id components of the service state are Dot changed.

Reports
eOestroy ~ (cDestroYsuccess A eSuceess)

• cNotOHner
• eNoSuch810ek

64 Block Storage Service

REPLACE

Abstract
Replace (id? Blockld;

data? BlockData;
id! Blockld;
report! Report)

Definition

cRep1acesuccess
~cSS

=6 i tMap
=Counts
GetAttributes [id?bn/bn!,header/header!]
NeHAttributes [bn/bn? id!.header' /header! 1
PutData [bn/bn?datablock/datablock?J
Put Header [bn/bn?,header'/header?]
id? Blockld
date? : BlockData
id! BlockId
bn : BlockNum
datablock DataBlock
header Header
header' Header

header' .created =now
header' .expires = header.expires
header' .tag = data? upto TagSize
datablock = data? from TagSise

A new header is created for the block, including a new block identity, partly from the
old attributes and partly from the input parameters. The expiry time remains the

same as for the old block. The new data is split between the hea.der tag field and the
data.·block, which is overwritten (since the block number remains the same).

Reporta
cRep 1ace ~ (cRep1acesuccess "cSuccess)

• cNotOwner
• cNoSuchB lock

Implementor Manual 65

SETEXPIRY

Abstract
SetExpiry (id? Blockld;

expiry? Time;

report! Report)

DeCinitiOll

cSetExp i rYsuccess
t.cSS

~DataB locks

"BitMap
=Counts
GetAttributes [id?bn/bn!,header/header!]
Put Header [bn/bn?header'/header?}
id? BlockId
expiry? Time

bn BlockNum
header Header
header' : Header

header' .OHner :::
header' .created :::
header' .expires ::::
header' . tag ::::

header'. id ==

header' . used ::::

header. Olomer

header. created
max{noH.expiry?}
header. tag

header. id

header. used

The expiry field in the block header is changed to give the block the desired expiry
time. The rest of the header remains unchanged.

Reports
cSetExpiry e (cSetfxpirYsuCC12SS A cSuccess)

• cNotO"mer
• cNoSuchBlock

66 Block Storage Service

GETIDS

Abstrac::t

Get Id. (key? Key;

count? BlockCount.

key! Key:
idset! BlockldSet
report! Report)

DefinitiOD

This operation involves a scan of some of the block headers. The information passed
from one scan step to the next consists of the standard scan information (defined in

section 4.2)1 plus the accumulating id set

~canlds I

l!.Scan
i dset BlockldSet

idset' BlockldSet

For each relevant block hea.der obtained from scanning the disk, the id of the block is
added to the result set only if the block is in use and it is owned by the client.

GetBlockld I

l!.Scanlds
[bn/bn? header/header!}Get Header

BlockNumbn
Headerheader
UserNumc 1 j entnum

(header. used = True) A (header.ol-lner = cl ientnum) ::::::>

idset' = idset u {header. id}
(header. used :# True) v (header. owner :# cllentnum) ==>

idset' = idset

Thill f;can operation is iterated as many times as necessary in order to accumulate all
ids of blocks owned by the client, starting from the initially given block number and
continuing up to either the laat block header, or to a maximum number (count?) of
returned ids, or after a maximum number (MaxScan) of blocks have been scanned.

Implementor Manua.l 67

Endld~Iteration
Sc:anJds
count? : 6lockCount

(1 ast = True) v
(Widset=count?) v
(scanned = AlaxScan)

The service operation is then implemented by this iteration (see page 86 for definition
of the schema ~ operator). Iniflally the set to be accumulated is empty. The fina.l

accumulated set is returned as the result.

cGet I d ssuccess i

=cSS
.6.Scanlds
StartScan
GetBlockld ~ ~Endldslteration

EndScan
key? Key

count? 61ockCount
key! Key
idset! BlockldSet

idset o
idset! idset'

Reporlo

cGetlds Q (cGetldssu::cess 1\ cSuccess)
II c8adKey

68 Block Storage Service

GETCOUNT

Abstract
GetCount (count!

report!
B1ockCount :
Report)

Definition

cGet Count success I

Ec55
FetchCount [cl jentnum/u~ernum?,count!]

count! BlockCount
cl ientnum : UserNum

The number of used blocks owned by the client is returned, as determined from the
stored count infonnation.

The state of the service remains the same.

Reporio

cGetCount 9 (cGetCountsuc:cess A cSuccess)

Implementor Manu;}.) 69

5.2 Ma..nager operatioD.8

Operations associated with the management of the service may only be performed by a
special client called the service manager.

There are two manager operations specific to the storage service:

Scavenge remove expired blocks

Prof i 1e obtain details of block usage.

70 Block Storage Service

SCAVENGE

Abstract
Scavenge (key? Key:

key! Key;
count! B1ockCount ;
report! Report)

Definition
This operation involves a 8Ca.n of some of the block headen;. The information passed
from one scan step to the next consists of the standard scan infom'l.atioD (defined in
section 4..2), plus a count of scavenged blocks.

AScanScavenge
lI.Scan
scavenged BJockCount
scavenged' BlockCount

[

Each block which is eligible for scavenging has its header set to indicate it is free , and
the cOm'lsponding bit-map bit is freed. The count of blocks used by the owner of the
block is decremented. The count of scavenged blocks is incremented.

ScavengeB lock i

~cSS

=DataBlocks
lJ.ScanScavenge
GetHeader {bn/bn?,header/header!}
PutHeeder [bn/bn?header'/header?]
FreeBit [bn/bn?]
DecCount [owner/usernum?]
bn BlockNum
header : Header
header' Header
OHner : UserNum

header' . used = False
OHner =header. owner
scavenged' = scavenged + 1

I

Implementor Manual 71

Ineligible blocks axe those which axe not in use or have not yet expired. For these
blocks the scavenge count and the state of the service remain unchanged.

NotExp i radB lock
=cSS
6Scenscavenge
GetHeader [bn/bn?header/header!]
bn BlockHum
header Header
now Time

(header.used = False) v (header.expires) now}
scavenged' = scavenged

The basic operation per block involves checking whether it has expired, and if so

scavenging it. (Note that the Get Header suboperation in the above two schemas need
only be invoked once in the combined checking operation).

CheckBlock ~ scavengeBlock. NotExpiredBlock

This SCa.D operation is iterated as many times as necC8sary in order to scavenge all
blocks, starting from the initially given block number and continuing up to either the
last block hea.der, or after a maximum number (MaxScan) of blocks have been
scanned.

EndScavengelterat ion I

ScanScavenge

(lest = True) v (scanned MaxScan)

The service operation is then implemented by this iteration (see page 86 for definition
of the schema ~ operator). Initially the count of scavenged blocks is zero. The
final scavenge count is rE!turned as the result.

72 Block Stonge Service

cScavengesucce5S

Key
Key
B1ockCount

6cSS
AScanScavenge
StartScan
CheckBlock ~

EndScan

key?

key!
count!

~EndScavengelteration

scavenged = 0
count! = scavenged'

Reporla

cScavenge Q (cScavengesuccess	 1\ cSuccess)
ED cBadKey
• cNotnanager

Implementor Manual 73

PROFILE

Abstrad
Profi le (key? Key;

key! Key:
infoseq! 81ockInfoSeq;
report! Report)

Def"mition

This operation involves a. sca.n of some of the block headers. The information pa.ssed
from ODe Bcan step to the next consists of the standard scan informa.tion (defined in

section 4.2), plus the accumulating information sequence.

AScanlnfo
scen

infoseq BlockInfoSeq

infoseq' 81ockInfoSeq
li-------

For each block whose header is scanned, the releva.nt header information ia appended
onto the sequence of block information only if the block is in use.

GetBlocklnfo --,

=cSS
AScanlnfo
GetHeader [bn/bn?,header/header!]
bn : 810ckNum
header : Header

(header. used = True)
infoseq' i nfoseq'-' <headertBl ocklnfo>

(header.used ~ True} =t

infoseq' ::: infoseq

This ecan operation is iterated as many times as necessary in order to accumulate all
the block infonnation, starling from the initially given block number and continuing up
to either the last block header or after a maximum number (MaxScall) of blocks have
been sca.nned.

74 Block Storage Servic~

Endlnfolteration

ScanI

(1 est

nfo

= True) v (scanned = MaxScan)

Note that in order to ensure that the output sequence is not too long:
MaxScan ~ Maxlnfos

The service operation is then implemented by this iteratJon (see appendix for definition
of the schema !:!b..U.§. operator). Initially the sequence to be accumulated is empty.
The final accumulated sequence is returned as the result.

cProf i 1esuccess

Key
Key
BlocklnfoSeq

"c55
ll.Scanlds
StertScan

GetBlocklnfo
EndScan
key?
key!

infoseq!

~ -EndlnfoIteration

infoseq = <>
infoseq! = infoseq'

Reports
cProfi le ~ (cProfi lesucce5s A cSuccess)

• cBadKey
• cNotManager

Implementor Manual 75

6 Complete service

This section provides a combined definition of the operations of the implemented Block
Storage Service. It does not include details of the implementation of service
components, such as access control and accounting, which are incorporated from the

"Common Service Framework".

Both in the abstract and the concrete model of the service, the ba.eic parameters are
supplemented by two hidden parameters, an operation identifier (op?) and tbe cost of

executing the operation (cost ~).

¢Params I

¢E!asicParems
op? Op
cost! : Money

Since all cbarges for this service depend only on the operation parameters, and Dot
directly OD the concrete state of the service, the definition of the $SSTar j ff framing

schema given in the "User Manual" does not require further eJaboration for the

implementation.

The implemented service operations can then be brought together into a single
definition as follows.

cBasicOps ~

(</>SSTariff ,

(cCreate /I. ¢Per-ems lop? = G.reateOp) v

(cRead A ¢Per-ems lop? = ReadOp) v

(cStatus /I. ¢Perems lop? = SlatusOp) v

(cDestroy A ¢Par-ems lop? = DestroyOp) v

(cReplace /I. ¢Per-l!!lms lop? == Repla~Op) v

(cSetExpir-y A ¢far-ems lop? = SetExpiryOp) v

(cGet Ids /I. ¢Parems lop? = GetIdsOp) v

(cGetCount /I. ¢Far-ems lop? == GetCotlntOp) v

(cScavenge /I. ¢ferams lop? = ScavengeOp) v

(cProf i le A ¢ferams lop? = ProfileOp))

76 Block Storage Service

7 Disk layout and cacheing

In this section, some refinements are made to the subsystems that have been presented
so far. Since the permanent state of the service is to be stored on disk, it is necessary
to describe the implementation of headers and bit-maps in teTIll8 of ph~ical disk
blocks. Together with the data-blocks, these then comprise the layout of information
on the disk itself.

The specifications of the header and bit-map subsystems presented earlier can be
considered as the intermediate abstract states and operations for which concrete
implemen tations are now provided.

7.1 Beader bloeb

Typically, a number of block headers can be contained in each block stored on disk, 80

a header-block will consist of an array of block headers indexed by their position in the
block.

HeadersPerBlock = DiskBlockSize d.i..Y. HeaderSize

HeaderBlockP05 s 0 .. HeadersPerBJock-l
HeaderBlock ~ HeederBlockPos ~ BlockHeader

Header-blocks are given numbers from the set HeaderBlockNum) which must be large
enough to allow headers to be stored for the maximum Dumber of blocks in the
service.

HeaderBlockNum f N

MaxBlocks ~ $lHeederB 1ockNum * HeadersPerBlock

Two functions indicate the header (identified by its header-block Dumber a.nd position
within that header-block) associated with any particular numbered data-block. The
exad definition of these functions depends on the chosen layout of blocks on the disk,
and is not given here. However) each block must be associated with a different header.

I..mplementor Manual 77

HBN BlockNum ~ HeaderBlockNum
HBP BlockNum ~ HeaderBlockPos

~	 bnl.bn2:BlockNum I bnl ~ bn2 •
(HBN(bnl) , HBN(bnZ) v (HBP(bnl) , HBP(bnZ»

The headers subcomponent of the concrete service 6tate is represented by the storage
for the header-blocks, indexed by the corresponding header-block nunlber.

HeBderBlocks
headerBlocks HeaderBlockNum ~ HeaderBlock

Initially, when the service is first sta.rted, all the header-blocks contain headers
denoting unused blocks.

InitHeBderBlocks

HeaderSlocks'

'V bn:BlockNum
headerBlock~'(HBN(bn»(HBP(bn»).used False

The representation relation between the abstract Headers and tbe concrete
HeaderB locks is as follows.

RelHeaders	 i

Headers

HeaderBlocks

headers = A bn:BlockNum

headerBlocks(HBN(bn»(HBP(bn»

A header buffer is also introduced as an additional state componem, to hold a single
header-block with a particular number, for the duration of a service operation only.

HeaderBuffer
hnum HeaderB 1ockNum
hblock HeaderS lock

78 Block Storage Service

The suboperations on the hea.ders subsystem are implemented in terms of these new
state components.

GetHeader
GetHeader (bn? BlockNum: header! Header)

cGetHeader

lI.HeaderB locks

HeaderBuffer

bn? BlockNum

header! : Header

hnum HBN(bn?)

hblock headerBlocks(hnum)

header! hbl ock(HBP(bn?))

PutHead..
Put Header (bn? BlockNum; header? Header)

cPutHeader

6HeaderB locks

HeaderBuffer

bn? BlockNum

header? Header

hblock' HeaderBlock

hnum • HBN(bn?)

hblock' hblock s {HBP(bn?) ~ header?}

headerBlocks' headerBlocks • {hnum ~ hblock'}

When putting a. new hea.derJ it must have the same header-block number as the
existing header-block in the buffer. This allows a Dew header-block to be formed by

simply replacing the appropriate header component, leaving the rest of the header
block unchanged. This constraint is met in the service operation implementations,
where each put is preceded by a get for the same block number.

Implementor Manual 79

7.% Map b1o<ka ""d acll.

The bit-map showing block usage ill stored within several physical blocks on the disk.
Many bits are contained in each map-block, each bit being indexed by its position in
the block.

BitsPerBJock DiskBJockSize * ByfeSise

MapB IockPos a: O.. BitsPerBJock-l

NapSlock Q NapBlockPos ~ Bit

Map-blocks are given numbers from the set NapB 1ockNum. which must be large
enough to allow bits to be stored for the maximum number of blocks in the service.

MapBlockNum F N

MaxBJocks ~ _MapB JockNum * BitsPerBJock

Two functions indicate the bit (identified by its map-block number and position within
that map·block) associated with any particular numbered data.block. The exact
definition of tbese functions depends on the chosen layout of physical blocks on the
di5k, and is not given here. However, each block must be associated with a different bit

in a map·block.

MBN BlockNum -+ NapBlockNum
MBP : BlockNum ~ MapBlockPos

Y bnl,bnZ'BlockNum I bnl ~ bnZ •
(MBN(bnl) ~ MBN(bnZ» v (MBP(bnl) ~ MBP(bnZ»

The bit-map subcomponent of the concrete service state is represented by the storage
for the map·blocks , indexed by the corresponding map-block number.

NapBlocks ---.
I mapBlocks NapBlockNum ~ MapBlock ,

80 Block Storage Service

Initially, when the service is first started, all the map·blocks denote free blocks.

InitNapBlocks
MapBlocks'

V mbn:MapBlockNum
ran mapBlocks'(mbn) ::: {FreeBi~}

In order to oplimise the use of the bit-map, particularly to allow rapid identification of
free blocks when allocating new blocks, the concrete service state includes a cache for
a single map-block (it is called a cache here, rather than a buffer I since it persists

between one service operation and the next). The cache holds the ma.p-block and its
map·block number.

tlapCache
mnum MapBlockNum
mblock MapBlock

Initially, the cache holds a copy of the lowest numbered map-block, which Us all 'free'.

In i tMapCache
MapCache'

mnum' = min MapBlockNum

ran mblock' = {FreeBit}

The representation relation between the abstract B j t Map and the concrete
MapB locks and MapCache is as follows. The cached map.block overrides the
corresponding ma.p-block stored on disk.

RelBitMap I

BitMap
MapBlocks
MapCache

bitMap = A bn:BlockNum •
(mapBlocks S {mnum ~ mblock})(MBN(bn»(MBP(bn»

Implementor Ma.Ilual 81

The suboperations on the bit-map subsystem are implemented in terms of these new
state components.

An additional 8uboperation is introduced for use in the following two suboperations
which allocate or free the bit associated with a particular block. Given the number of
a block whose corresponding bit is to be altered, this suboperation checks whether the
bit is to be found in the cached map-block or not. If not, the cached map-block is
flushed to disk and the r~levant map-block obtained from disk. In either case, the the
bit is set to the requested value in the finally cached map-block.

UpdateMap
UpdateMap (bn? BlockNum: val? BH)

UpdateMap
MapBlocks
MapCache
bn? BlockNum
vel? Bit
newmblock MapBlock

mnum' = MBN(bn?)
mnum' = mnum ...

mapBlocks'	 = mapBlocks
=mblock,~mn::~~l~~m =+

I

mepBlocks' = mepBlocks _ {mnum ~ mblock}

newmblock = mapBJocks(mnum')

mblock' =newmblock s {nBP(bn?) ~ val?}

AlJocBit
AllocBit (bn? BlockNum)

cAllocBit
UpdeteMap [bn?,val/val?J I

bn? BlockNum
val : Bi t

va 1 = UsedBit

82 Block Storage Service

PreeDit
FreeBlt (bn? 81ackNum)

cFreeBit I

UpdateMap [bn?val/val?}
bn? BlockNum
val : Bi t

va1 = FreeBit

A further operation is introduced to find the block number of a (ree block. The cached.
map-block is searched. fJnJt for a free bit. Only if none is found will the map-blocks on
disk be used. This could involve a scan of all the map-blocks at the next lower level of
refinement of the implementation.

PindFre.Block
FindFreeBlock (bn! B\ockNum)

cFindfreeBlock -,

tJ1apBlocks
tJ1apCache
bn ! : BI ockNum

FreeBit E ran mb 1ock ~

MBN (bn !) = mum

mblock(MBP(bn'» = FreeB;!
FreeBit tl! ran mb 1ock ~

mapBlocks(MBN(bn! »(MBP(bn!» = FreeBit

The corresponding error report, which indicates that there are no (ree blocks on the
disk, also has to be refined in terms o(the map·blocks and cache.

Implementor Manual 83

cNoSpace l I

=cSS
sMapBI OCk9
=MapCache

FreeBit Ii!! ian mb lock
V bn:BlockNum •

FreeBit Ii!! ian rnapBlocks(I1BN(bn»

repoit! = NoSpaceReport

Clearly, only one sca.n of the disk would be required to either produce this error
report, or to identify a free block. Therefore the schemas F i ndFreeBl ock and

cNoSpace would be implemented by the same code,

7.3 Diok layout

It is assumed that the Block Storage Service is to be implemented on a random access
pennanent storage device (such as a magnetic disk) which may be modelled as an
array of fixed size blocks. Each disk block may be used to store a data-block, a

header-block or a map~block.

DiskBlock : := Di9kData «DataBlock»

DiskHeader «HeaderBlock»

Di skMap «ttapBlock»

The disk blocks are numbered consecutively up to the capacity of the disk.

DiskBlockNum ~ O.. MaxDjskBlocks-t

I
Disk

di9kBlocks: DiskBlockNu~ -+ DiskBlock :

The number of blocks on the disk must be sufficient to hold all the required blocks of
the service.

MaxDiskBlocks ~ 11810ckNum + IIHeadeiB 1ockNlJm + _napB I ockNum

84 Block St.orage Service

The layout of the different kinds of blocks OD the disk is given by the mappings from
the specific block numbers to the disk block numbers. The layout is not specified in
greater detail here, as it will depend on a particula.r disk design, but clearly the
diHerent kinds of block must occupy disjoint areas of the disk.

DLs!jout BlockNum ~ DiskBlockNum
HLayout HeaderBlockNum ~ DiskBlockNum
I1Layout MapBlockNum ~ DiskBlockNum

disjoint (ran DLayout. ran HLayout, ran MLayout>

The contents 01 the disk a.re simply tbe contents of the specific kinds of block placed in
the appropriate locations according to the layout maps.

Di skContents
Disk
OataB locks
HeaderBlocks
MapBlocks

diskBlocks
DLayout -1
HLa'dout -1
MLayout -1

dataBlocks
neaderBlocks
mapBlocks

DiskDeta
Di skHeader
DiskMap

U
U

Implementor Manual 85

8 Implementation correctness

It would be importan t to show that the implementa.tion of the Block Storage Service as
described in this manual correctly implements the view presented in the user manual.

In order to do this, each state refinement step expressed as an abstraction relation,

whether of the whole service or of ODe of its subsystems, must be considered in turn.

For each one it must be shown that there exists a concrete state that represents each
abstract state. For service initialisation, the concrete initial state must be shown to

correspond to a valid abstract initial state. For each operation, it must be shown that
the concrete operation may be applied whenever the abstract operation may be
applied, and that it will then produce a. result satisfying the abstract specification.

However) the implementations of the operations contained in this manual have Dot so
far been proved correct in this respect. The manual must therefore be looked upon as
an illustration of a style of implementation specification, rather than as containing a
proven implementation design.

86 Block Stora.ge Service

Appendix: Iterating echemas

If P is a schema which represents an operation on a state schen~,. S (having undashed
and dashed components repre.senting the state before and after the operation), and B

is a schema representing a predicate defined on S, iteration over P can be defined as
follows.

LeI
"5
I D
1\'1"1

•
•

5 A 5' I 85
..,e A =S

(BAP),I,

85'

'r/ j:N

then

P~B Io v II v 12 v _.•

87

Chapter 3

Dise1lll8ion and Experience

1 Introduction
2 History of development

2.1 Original design

2.2 Implementation

2.3 Implementor manual

3 Design of the user interface

3.1 Limited life

3.2 Immutability

3.3 Tag,

3A- Key·linked operations

3.5 Lifetime vs. expiry

3.6 Manager operations

3.7 Sca.venging

3.8 Structured parameters

4 Format of the User Manual

4.1 Errors

4.2 Common fn.mework

5 Design of the implementation

5.1 Lack of concurrency

5.2 Fault handling

5.3 Disk layout

5.4 Consistency and cra.sb recovery

6 Format of the Implementor Manual

6.1 Initia.l versions

6.2 Current version

6.3 Correctness concerns

88 Block Storage Service

1 btrodue:tion

The design and documentation of the Block Storage Service has been developed in
stages over the duration of the project. The history of this development is summarised
in the next section.

The subsequent sections look at the design choices and the documentation from the
point of view of both the user and the implementor of the service, corresponding to the
two manuals contained in the previous chapters. Alternative design choices a.re
discussed for each of the two levels of abstractioD, and some comments made on the
way in which the manuals have been presented.

This chapter concentrates on the experience gained from the specification and
implementation of the Block Storage Service in particular. Some general improvements

in manual style, and the introduction of the Common Service Framework to provide
the definition of common service characteristics, are both discussed in "The

Specification of Network Servicesll 181.

2 IlilJtory of development

3.1 Original design

The original design of the user interface to the Block Storage Service was developed,
and specified in Z, by Carroll Morgan and Roger Gimson. This led to the production
of the fir8t User Manual for which many of the conventions of presentation shown here
were first devised. It it; this design which was presented as part of a monograph at the
end of the first stage of the project [lJ.

2.2 Implementation

Having designed the u~er's view of the service, and produced a User Manual, an
implementation was designed and coded by Carroll Morgan without further use of
format techniques. The objective at this stage wa.s to get something working so that
the feasibility of the user interface could be assessed. In any case, no formal

refinements of signifkant size had been undertaken at that stage in the development of
the Znotation.

Discussion and Experience 89

The implementation (written in Modula~2 running on an LSI~ll) was found t.o be
adequate, and is still essentially unchanged. The service provides data storage
faciljties for spooled laser printer outpul, and a. certa.in amount of backup storage, for
members of the Programming Research Group to this day.

2.3 Implementor maunal

In the second part of the project, it was decided to produce an Implementor Manual
for the Block Storage Service that reflected the exist.ing implementation. Though t.his
is not the recotnmended methodology (after all, one of the main objectives of the use of
formal specification methods is to more clearly express design choices at. an abst.ract.

level ~ producing any code), it allowed implementation design deci!ions to be
assumed. while the presentation a.n.d structure of the specifica.tion in the manual were
considered.

The Implementor Manual has been through two earlier VertliOllS before the form
presen led in the previous chapter was evolved. Jonatha.n. Bowen produced the rl.I'8t
version, which was then rewritten and extended by Roger Gimson. Changes have
largely been motivated by the wish to structure the design into sepa.rat.ely
understandable subsystems, so giving the implementor firm guidelines t.o the st.ructure
of the final code.

Though the design essentially reflects the structure of the existing implement.at.ion, it.
was found tha.t the 5uboperations on the components of the service state didn't

necessarily correspond to routines in the existing code. If time had permitted, it would
have been an interesting exercise to rewrite the code to conform to the manual.

3 Detlign of the usel' iDterf'aee

The design of a low-level data stonge service was chosen in order to keep t.he
complexity of the service under control, while providing a basis for the implement.at.ion
of bigher-Ievel facilities. Such a. sepantion is Dot novel in itself (see, for example, t.he
Amoeba system [9]), though tbe design turned out to incorpora~ some unusual
characteristics.

90 Block Storage Service

3.1 Limited life

The m}tiaJ design choices were greatly influenced by a model of a dry-cleaning service,
originally proposed by Tony Hoare as a suitable study of an existing human-oriented
service.

The idea of enforcing a fixed lifetime on the data arose from that study. A dry·
cleaning service will dispose of any clothes that have been left for cleaning but not

been claimed after a suitably long period. By this analogy we mitigated the fear that
users would object if their data suddenly vanished at some point in the (uture.

Clearly the storage media implementing any particular service will not la.l5t (orever

but users are conventiona.lly happier thinking that their data will remain there
indefinitely un~il they explicitly force change.

In practice, lifetimes have been used in two distinct ways. For temporary data, such as
spooled printer output, a short lifetime is used (of perhaps one or two da.ys), so that
data. will normally expire rather than be explicitly destroyed. For permanent data,

such as backup storage, a medium or long lifetime is used (from a few months to a
year or more); occasiona.lly an archive program will be used by a client to explicitly
destroy data. which is ,;0 longer required, and extend the expiry time of data. to be

retained.

3.2 Immutability

The initial design a.lso embodied the idea tha.t stored blocks were immutable. Any
given block identifier could only ever refer to the 'same' stored data. There is no
operation which can change the data associated with a particular identifier.

Particularly in a shared service, the property of immutability is very valuable since it
allows a user to be sure that an identifier that they hold can only refer to a particular
data item, irrespective of operations being performed by other users. It presents the
S<UDe kinds o(advantages and disadvantages as in the manipulation of data structures
in purely functional programming languages.

In some applkations with tree-structured data, such as directories of files, an
underlying immutable implementation imposes \he condition that any change to a leaf
of the structure also changes the complete path back to the root. For balanced
structures, this introduces a penalty of at worst logarithmic complexity. It may also
have the disadvantage of requiring all references to the data to be channelled through

Discussion and Experience 91

the single root node.

However, immutability does, for example, provide a natural way to do check·pointing.
Assuming the components of the structure are not destroyed (or do not expire), a
snapsho~ of a complde tree structure may be held as a single reference to the root.

To ensure strict immutability, and if the expiry time of a block is considered as part of
its value, the service operation which changes the expiry time ahould alao change the
identity of the block. This was not done in the implemented system, mainly from a
wish to be able to change the lifetime of a tree-structured object, like a me, without
rewriting all its non-leaf nodes.

3.3 Tags

At one stage in the initial design, the 'tag' part of the data in a block (tbat pan which
extends the size of a block to be slightly larger than a conventional disk block) ¥fas
distinguished mthe user jnterface, $0 that its value was provided separately in a block

creation operation, and could be returned as part of a s'atus operation. This
distinction was dropped as being too 'implementation-inspired'.

Later discussions about implementing other services on top of the Block Storage
Service raised the possibility of making the tag mutable. It could then be used, for
example, for storing a reference count to the block without ha\<ing to change the
associated block id. This would be a relatively straightforward change to both the
specification and implementation of the service, though it would introduce the need. for

further operations to set and get the tag field.

3.4 Key-linked operatiOl18

One place where implementation issues do intrude more than they might is in the 'key
linked' operations. These arise from the wish to make each service operation
correspond directly to a single network procedure call, which for practical reasons is

limited in duration and size of parameters. Sjnce these operations are requued to

return sets or sequences of potentially large size, and could ta.ke correspondinglY long
to execute, th<ey each return only a part of the desired set or sequence.

This pa.rtitioning could be hidden from the user at a higher level by defining a single
operation which wouLd be implemented by the appropriate sequence of key-linked
operations, and which would construct the whole of the resultant parameter. However,

92 Block Storage Service

it might be misleading to define this single higher-level operation as an atomic
operation on the state of the service; at least the current formulation correctJy
describes the effed of other user operations interleaved between the components of a
key-linked sequence.

3.5 Lifetime VB. expiry

The user interface design presented in this monograph differs from the first phase
design in some small but significant ways.

The definition of the lifetime of a block as an interval from the creation time has been

replaced by explicit definition of the expiry time. The latter makes it possible to
ensure that a set of blocks all have the same expiry time, wherea.s in the former this
could vary according to the time of invocation of an operation. This means that, when
implementing a higher-level data structure from blocks, there can be a simple invariant
that all the constituent blocks will exist for as long as the higher-level structure exists.

3.6 Manager operations

Another difference from the initial design is that the acavenge operation has been
made an explicit manager operation, rather than an asynchronous internal operation
of the service. This corresponds to a change made to the implementation which
a.llowed the sca.venging to be invoked as an explicit operation.

The profJ.le operation was also added as another manager operation. The normal
service user does not need to be aware of these operations. However, they do form a

legitimate part of the user interface, if only for the special user who is the manager.

3.7 Seavenging

There is still a debatable point of design concerning scavenging. As the service is

presented here, a block is still accessible until it is scavenged, eveD though it may have
passed its expiry time.

In the first version of the design, with scavenge as an asynchronous internal operation,
the implementor was given some freedom of choice. The scavenge could be consjdered
to occur immediately before an access was attempted, resulting in no access to such
blocks, or to occur sometime later, meaning such blocks migh t be accessible.

Discussion and Experience 93

There may be a good case for forcing blocks to disappear as 800n as they reach their
expiry time, so that, for example, it is known that if OIl~ block in a higher-J~vel data
structure bas expired they all must have expired. This can be achieved in th~ current
design by simply including, as part of the teat in the error schema NoSuchBlock, a

check as to whether the block is past its expiry time.

3.8 Structured parameters

rome service operations return structured data items as results. For example, Get I ds
returns a set of block ids, while Prof i 1e returns a sequence of block information. In
the latter case, a set cannot be used because each piece of block information is not
neceasa.rily unique (it contains owner and creation and expiry times, but not the unique
block id) so replicated entries are significant. A bag might have b«n a more accurate
abstract specification for this parameter, but would have had a less obvious concrete
representation.

As it turned out, the implementation described in the foregoing Implementor Manual
would have guaranteed uniqueness of each piece of block infonnation, since it relies on
each block having a different creation time. However, building this fact iDto the User
Manual would unnecessarily limit the choice of implementations.

The representation of structured parametelll is briefly discuased in [8].

4 Pormat or the User MaDual

The overall design of the User Manual follows that of a typical manual for a library of
system calls, with an introductory overview of the system followed by detailed
descriptions of each of the operations that can be invoked on the system. The use of a
fonnal notation ensures that the user's view of the 6ystem is made much more explicit
than is usual in informal manuals, though without introducing unnecessary
implementation detail.

4.1 Errors

The specification of behaviour under error conditions is also covered in detail, though
not at the expense of cluttering the description of the successful behaviour of an

94 Block Storage Service

operation. The specification of error conditiom;, fonnalised in the 4Reports' section of
each operation description, has changed between the first version of the manual and
that presented here. Schema overriding is now used to explicitly define the order in
which errors may be detected. In some cases, such ordering is essential. For example, it

is necessary to check whether a block exists before its ownership can be checked.

4.2 Common framework

The introduction of the "Common Service Framework" has also made a difference to
the presentation. Parameters which Can be considered implicit to every operation have
been separated, including identifications of the client, operation and service involved in
a particular call. The combination of the individual operation specificatjons into an

overall specification for the whole service, including subsystems common to other
services, now forms the final part of the manual.

5 DeBign or the implementation

The implementation described here is simple, but it has been found to be adequate for
the straightforward applications it has supported over the three years it has been in
use.

5.1 Ladt of ooneurTeIlt:y

One major simplification in the implementation is the lack of provision for concurrent
execution of service operations. Though the user interface is specified as jf each
operation were atomic, this does not necessarily force the implementation to be
sequential, provided that the effect of executing two service operations lin parallel' is
equivalent, as far as the user is concerned, to executing first one then the other (in
either order).

A sequential implementation means that the time taken to execute anyone operation
should be strictly limited to ensure that other users are not kept waiting for too long.
For example, this is one reason for defining a Emit on the number of blocks scanned in
key.linked operations.

Discussion and Experience 95

5.2 Fault hand1l>lg

Another simplification in the implementation de$cribed here is that no account has
been taken of potential faults in ~e underlying hardware, such as bad disk blocks.
Faults that are unrecoverable (for example, cannot be cured by re-reading the disk
block) are allowed for.in the abstract service specifiCation by the catch-all error report
Serv j ceError. In this event, the state of the service is specified to remain uncha.nged.

An implementation which caters for such errors must ensure that any changes in the
concrete state made prior to the detection of the fault are recoverable, or at least do
Dot lead to an inconsistent COncrete state or changed abstract state. In practice, this
can often be achieved through a.ppropriate choice of the order of execution of
suboperations, and simply abandoning further calls on detection of the fault.

5.3 Disk layout

The implementa.tion does not specify in detail how the various blocks of information
should be laid out on the disk. ThUi would depend on the charaderistics of a
particular disk drive. However, it will generally be a good idea, in order to reduce diBk
arm movement, to place the data, header and bitmap disk blocks associated with a
stored service block in the same area of the disk.

In the actual implementation produced as part of the project, the disk format consisted
of 3'Z blocD per track, with 16 tracks per cylinder. One disk block could hold up to 8
headers, or 4096 bits of a bit-map. The chosen layout allocated the fIrSt 4 blocks of
each track to hold headers relating to the remaining 28 blocks used for data.. Every 8
cylinders, the last block of a track was W1ed for a bit-map (instead of data) relating to
all the service blocks stored on those cylinders.

G.. COIdistency and (!I'ae ~vet'Y

The criteria given for consistency within the implementation, showing how the bit-map
and count information should be consistent with the header infonnation, would imply
the restoration of this consistency after any service crash.

Cl'38hes are not modelled explicitly in the manuals. They can be considered as periods
during which all service calls will return an error report. There is no allowance for the
loss of information which might have occurred during the crash, the service state being
defined to remain unchanged for such errors. On rebooting the service after the crash,

96 Block Storage Service

the specified consistency constraints are assumed to be re·established.

In the actual implementation, the count infonnation is held in memory I and so must be
recomputed by scanning the complete disk. (It is assumed tha.t crashes will be

infrequent, as has been the case in practice.)

The bitmaps stored on disk should also be recomputed while scanning the headers. In

fact the actual implementation used a somewhat looser notion of consistency than
specified here. For a specific service block, the header might be marked (used', but the

bitmap indicates 'free', in which case the header is believed and the bitmap is corrected
on an attempt to a.ccess that block. Alternatively, the header might be marked 'free',
but the bitma.p indicates 'used', in which case the block becomes temporarily
unava.1lable for further allocation. A utility program can be executed occasionally to

restore full consistency and recover such unusable resources.

This extra complexity was intended to allow faster rebooting after a crash (the count
information was deemed to be unavaila.ble, and a scan of the whole disk avoided). In
hindsight, crashes are so infrequent that the simpler consistency criteria specified in
the Implementor Manual would have been adequate.

8 Format of the Implementor MaDual

The Implementor Manual went through three distinct forrrur. in an :dtempt to

provide a. sufficiently readable presentation.

8.1 Initial versiODB

In the fIrst version, the concrete state was developed explicitly as a number of separate
refinement steps from the a.bstract state given in the User Manual. The operations,
however, were defined as monolithic schemas on. the concrete state alone, which made
them rather large a.nd difficult to undergtand.

In the second version, the concrete state was introduced directly as a number of
subcomponents, including those relating to disk layout aod cachemg. The operatioD:!1
were composed from suboperatioDs involving the separate state subcomponents. Only
towards the end of the manual was there a description of how the concrete state
rela.ted to the abstract state. In this version, the number of subcomponents of the

Discussion and Experience 97

concrete sta.te made it difficult to remember what was affected by a particular
suboperation forming part of a service operation description.

6.2 CurreDt version

In the third fonn, as presented here, a balance was struck between the two previous
vereions. Two levels of abstraction were used. The concrete state is introduced as a.
few subsystems at an intermediate level of abstraction (such as those for headerB and a
single large bit·map), and rela.ted to the abstra.ct state. The service operations are
composed from suboperations involving these intermediate subsystems. Then the
intermediate subsystems are refined. one sta.ge further to include detalls of disk la.yout
and bit-map blocks and ca.cheing.

The refinement of each intermediate subsystem can be understood on its own, without
reference to the overall behaviour of the service. In thill sense, the fonnat of the
presentation more closely follows the use of abstraction and abstract data types
(coneeponding to the subsystems) in conventional system design.

6.3 CorredD.ess coueerus

However, none of the versions of the impletnentor manual have been oriented towards
the requirements for proving the correctness of the implementation. Indeed, there has
Dot been sufficient time within the project to attempt such a proof for a service of even
this moderate cOlDplexity (though a simpler one has been completed 110».

It therefore remains an open question as to whether the strictures necessary to a.Uow a
proof to be completed would enforce a futher change in implementa.tion specifica.tion
style. It is quite possible that the proof would be easier to carry out if assoc~ted with
the application of smaller re-fmement sLeps. However, it is not dear wbetber an
implementor would benefit from seeing these details in the manual.

99

Acknowledgements

Carroll Morgan played a large part in the initial design, and was wholly reeponsible
for the fll'St implementation, of the Block Storage Service. Jonathan Bowen produced
an initial version of the Implementor Manual, a command script for producing the
index and the glossary. The other members of the Distributed Computing Software
Project, Tim Gleeson and Stig Topp-JlI'rgensen, have also influenced the presentation

of the manuals. All the above, plus Berrard SufrlD, have made \'aJua.ble comments on
earlier drafts of this monograph. Thanks also to those working on the development of
Z in the several related projects at the Programming Research Group.

The Distributed Computing Software Project has been funded by a grant from the
Science and Engineering Research Council.

100

Referenees

1.	 Gimson, R.B., Morgan, C.C. "The Distributed Computing Software Project",
Technical Monograph PRG.50, Programming Research Group, Oxford
University (1985).

2.	 SUfrin, B.A. (editor) II.Z Handbook"', Draft 1.1, Programming Research Group.
Oxford University (1986).

3.	 Spivey, J.M. "Understancling z: A Specification Language and its Formal
Semantics'\ D.Phil. Thesis, Programming Research Group, Oxford
University (1986).

4.	 Spivey, J.M. "The Z Library· A Reference Manual", Programming Research

Group, Oxford University (1986).

s.	 Woodcock, J. "Structuring Specifications - Notes on the Schema Notation",
Programming Research Group, Oxford University (1986).

6.	 King, S., &z!rensen, tH., Woodcock, J. az: Concrete and Abstract Syntaxes",

Version 1.0, ProgramminK Research Group, Oxford University (1987).

7.	 Hayes, I.J. (editor) IISpecification Case Studies", PreIlHce·Hall International
Series in Computer Science (1987).

8.	 Bowen, J.P" Gimson, R.B., Topp-JliSrgensenj S. "The Specification of Network
Servicesl'J, Technical Monograph PRG-61, Programming Research Group,
Oxford University (1987).

9.	 Mullender, S.J. "Principles of Distributed Operating System Design", PhD
Thesis, CWI A.msterdam (1985).

10.	 Topp~J¢rgensen, S. "Reservation Service: Implementation Correctness Proofs'\
DCS Project working paper, Programming Research Group, Oxford
University (1987).

101

Appeudix A

Index or Cormal dermitioDS

The following index lists the page numbers on which each formal Dame is defined in
the text. Those names which are defined twice correspond to duplicated entries in the
User and Implementor Manuals. Names which have a. special symbol (b, $, =, c) as a.

prefIX are listed after the corresponding base name.

102

AllocBit

cAllocBit

cBadld

BadKey

cBadKey

cBasicOps
¢Bas i cParams

Bi t
BitMap

=BitMep

BitMepConsistency
Block

<161ock

B1ockCount
BlockOata

Block1dParts

BlockldSet

B1ocklnfo

B1ocklnfoSeq

Byte

CheckBlock
CountConsistency
Counts

=Count9

Create

cCreate

Creat esuccess

cCreatesuccess

OataBlock
DateBlocks

=DatBBlocks

DecCount

Destroy

cDestroy

DestroYsuccess
cDestroYsuccess

Disk

DiskBlock

DiskBlockNum

DiskContents

EndIdslteration

44

81

56

16

57

75

11,50

39

44

50

49

9.37

12

12.38
9.37

47

12.38
9.37

12.38

39

71

49

45

50

19

60

19

60

40

41

50

46

22

63

22

63

83

83

83

84

67

EndInfoIteration 74

EndScan 55

EndScavengeIteration 71

ErrorTariff 31

FetchCount 46

FindFreeBlock 45

cFindFreeBlock 82

FreeBit 45

cFreeBit 82

GetAttributes 52

GetBlockld 66

GetBlockInfo 73

GetBlockNum 48

Geteaunt 26

cGetCount 68

GetCountsoccess 26

cGetCountsuccess 68

CetOsta 41

GetHeader 43

cGetHeader 78

Getlds 25

cGetIds 67

Get Idssuccess 25

eGet Idssuccess 67

Header 42

HeederBlock 76

HeaderB 1ockPos 76

HeaderB locks 77

HeaderBuffer 77

Headers 42

IncCount 46

InitBitMap 44

InitCounts 46

InitDataBlocks 41

InitHeederBlocks 77

InitHeaders 43

In i tMapB locks 80

In i tMapCache 80

InitSS 10.38

cIn i tSS 51

InitSSState 32

103

<l/Iey 14 cRep 1acesuccess 64
MapBlock 79 55 10.37
MapBlockPos 79 ASS 11
MapBlocks 79 -55 11
Mspeeche 80 cSS 49

cMisrnetchedld 56 lIcSS SO
NewAttributes 53 -cSS 50
~ewBlock 12 SSA1IOps 33

NelolBlockld 48 SSBasicOps 32
NoSpace 16 SSOps 33

eNoSpace 56 SSServiceOps 32
cNoSpace l 83 SSState 32

NoSuchB lock 15 SSTeriff 31
cNoSuchBlock 56 q,sSTar j ff 31

NotExpiredBlock 71 Scan 54
NotManager 16 aSeen 54

cNotMansger 57 dScanlds 66
NotOwner 16 dScanlnfo 73

cNotOlolner 57 aScanSca.... enge 70
~arams 30.75 Sca.... enge 28
Profile 29 cScBvenge 72

cProfi le 74 Sca.... engeBlock 70
Prof i 1eSUcces5 29 Sce.... engesuccess 28

cProf i 1esuccess 74 cSca engesucces5 72
Put Data 41 SetExp i ry 24
Put Header 43 cSetExpiry 65

cPutHeader 78 SetE)(p i rYsucces5 24
Read 20 cSetExp i rYsuccess 65

cReed 61 StertScan 54
Readsuccess 20 Status 21

cReadSucGess 61 cStatus 62
RelBitMap 80 Statussucce55 21
RelHeaders 77 cStatussucces5 62
ReISS 51 Success 15
Replace 23 cSuccess 55

cReplace 64 Te9 42
Rep 1acesuccess 23 UpdateMap 81

Appendix B

GIOllNZY or Z notation

A glossary of the Z ma.thematical and schema notation used. in th~ monograph is

included here for easy reference. Readers should note tha.t the definitive concrete and
abstract syntax for Z is available elsewhere [6].

Glossa.ry 105

Z Reference Glossary

Mathematical Notation

1. Definitions and declarations.

Let x, x, be identifiers, t, t, be terms and

T, T
I

be sets.

lTl' T2- ...J Introduction of gjven sets.
)(;;:: t Defmition of x as syntactically

equivalent to t.

)(:::::)(1 «t 1» I -.- I x n «t »n

Data type defmitioD (the «t»
Lerma are optional).

x : T Declaration of x as type T.
)(1: T1 : .•. ; x : Tn List of decla.rations.n
)(1' ..•• xo : T Decla.rations of the same

type:" xl:T; ... ;xn:T.

2. Logic.

Let p. Q be predica. tea and D declaratioD!.

Negation: -Dot plio- P
PAil Conjundion: lIP and QB.

P v Il Disjunction: lIP or all':

~ -(-P A -Il).
Implica.tion: "P implies Q'" orP - Il
"if P then all; e ..p v Q.

P ... Il Equivalence: lIP is logically.
equivalent to QB;

o (P_Il)A(Il_P).

true Logical constant.
false ~ .. true

V 0 P Universal quantification:
"for all 0, P bolds"',

3 D P Existential quantification:
"there exists D such that P".

3, D • P Unique existence: '"there exists
a uniq ue D such that P"'.

VD\P'1l • (V 0 • P _ Il).

3DIP'1l • (3 D • PAil).

p ~ D I Q Where clause:

'3DIIl·P
p ~ x 1et 1 , ... ;xn9tn Where clause:

P bolds, with the syntactic
definition(s) deflned locally.

D I- P Theorem: ~ I- V D • P.

S.Sets.

Let S, T and X be sets; t, t, &ermsj P a
predicate and D declarations.

t 1 = t z Equality between terms.

t 1 ~ t z Ineqnality: 0 "(t,· t 2).

t E 5 Set membership: Ilt; is an element
of S"'.

t , 5 Non-membership:' -(t E 5).
~ Emptysel: • {.,X I false}.
5 ~T Set inclusion:

o(V"S·,'T).
5 c T Strkt set inclusion:

• S ~ T A 5 ~ T.
{ t I' t z' ...• t n } The set containing

t l' t z• '" and tn'
{ Dip • t } The sel of t " such lhal given

the declarations 0, P bolds.

{DIP} Give.DO'"T" ..' ''"T"
~ {D I p.(.,••,)}.

{ D • t } o {D I true' t}.

(t,. t 2• ...• t) Ordered. n·tuplen
of t 1• t z•... and tn'

T1 X Tz)(... X Tn Cartesia.n product;
the Bet of all n-tuples such that

the i th compolJent is of type T I •

P 5 Powerset: the set of all subsets
of S.

f,S Non-empty powef'8et:
• f 5 \ {~}.

f S Set of fmite subsets of 5:
o {T, f 5 I Tis finile}.

f, 5 Non·empty finite set:
o f 5 \ {~}.

http:p.(.,....��

106 Glossary

5 n T	 Set intersection: given S. T: P XI
a {x: X I xES 1\ X E T}.

5 u T Set union: given S. T: P X,

" {x'X I xeS v xeT}.
5 \ T	 Set difference: given 5. T: P X,

• {x,X I	 xeS A x¢T}.

n S5	 Distributed set intersection:
~ven 55, P (P X).
"{x,X I (V5,55 • x e 5)}.

U SS	 Distributed set union:
~veD 55, P (P X),
" {x'X I (35,55 • xeS)}.

tJS	 Size (number of distinct

elements) of a finite set.

~ DIP .. t Arbitrary choice from tbe

sel{DIP·t}.
~ D .. t Q ~ 0 I true" t

4. RelaUODII.

A relation is modelled by a set of ordered
pain hence operators defined for sets ca..n

be used on relations. Let XI YI and :z be
sets; x:X: Y:Yi and R:X Y.

X Y The set of relations from X to Y:
OP(Xxy).

x R !J x is related by R to y :
o (x. y) e R. (R is oflen

underlined for clarity.)
x y MapLet: 0 (x. y).
dam R The domain of a relation:

o{x:X 13y'Y ·xRy}.
ran R The range of a relation:

O{y:Y 13x'X·xRy}.
R, , R, Forward relational composition:

given R1: X~ Yi R : Y Z.z
• {x:X, z,l I 3y'Y •

xRtyAyRzz}.
R1 0 R Relational composition: z

.R,.R,.
R-' Inverse of relation R:

o {y'Y;	 x:X I x R y}.

id X	 Identity function on the set X:
S{x:X·)(~x}.

R'	 The relation R composed with

itself k times: given R: X f-+ XI

RO Q id X, R1+1 ::::: R' R.0

R'	 Reflexive transitive closure:
o U {n,N' R"}.

R'	 Non-reflexive transitive closure:
o U {n' N, • R"}.

R(5) Relational image: given 5: P X,

o {y'Y	 I 3x' 5· xRy}.

5 4 R	 Domain restriction to 5:
given 5: P X,

o {x:X;	 y'Y I xeS A x R y}.

5	 ~ R Domain subtraction:
given 5: P X.
O(X\5)4R.

R ~ T Ra..oge restriction La T:

given T:	 P Y,
O{x:X;!J'Y I xRyAyeT}.

R H Range subtraction of T:
given T: P V,
OR~(Y\T).

R	 Infix relation declaration (often
underlined in use for clarity).

5. Functions.

A function is a relation with the property
that for each element in its domain there is

a unique elemen t in its range related to it.
As functions are relations all the operators
(or relations also apply to functions.

X --+oJ Y	 The set of partial functions from
X to Y:
o {f' X.... Y I Vx, dam f·

(3, y , Y • x f y)}.

X ~ Y The set of total functions from
X 10 Y;

• {f, X Y I dam f=X}.

The set of partial injective (one. X >+> Y
to.one) functions from X to Y:
• {f ,X-Y I Y Y , ran f •

(3, • , X • f. = y)}.

The set of tota.l injective X >-+ Y
functions from X to Y:
• (X>+> Y) n (X Y).
The set of pa.rtial surjective

X - Y
functions from X to Y:
• {f , X- y I ran f =Y}.

X -4 Y The set of total surjective

functions from X to Y:

• (X-V) n (X V).

X ,... Y The set of total bijective

(injective and surjective)
functions from X to Y:

• (X -4 Y) n (X >-+ V).

X ... Y	 The set of finite pmial

functions from X to Y:

.(f,X-YI

f • r (X x V)}.

-1+>t+ >Qo Partial functions.

--+>-+ ~ Total functions.
...,...)& Finite functions.

f 1 • f 2	 Functional overriding: given

f 1- f 2 : X-++Y,

• (dom f z ~ f.' u fl'
PrefIx function declaration f
(default jf no underlines used).

(_ f _) Infix function declaration (often
underlined in use for clariry).
Postfix function declaration. f
The function f applied. to t . f t

f(t) • f t.

; D I P • t Lambda·abstraction:
the function that, given an
argument x of type X such
that P holds, the result is t.
GivenDQ.x1:T1; ... ; xn:Tn,
• {DIP.(.,. ...• x,)>-+t}.

; D • t .; D I true' t

Glossary 107

6. Numbers.

Let m, n be natural numbers.

The set of natural numbers
(non.negative integers).
The set of strictly positive

~

~l

natural numbenl: ~ N\ {O}.

The set of integers (positive, z
zero and negative).
Successive ascending natural

number.
5UCC n

Previous descending natural
1

pred n
number: ~ succ- n.

Addition: Q succn m.m + n
Subtraction: ~ predn m.
Multiplication: g L + m)n O.

m - n

m * n

m fu n In teger division.

m !!IQQ n Modulo arithmetic.

m' Exponentiation: Q (_ * m)n l.

Less than or equal, Ordering:
 m < n

, ~ succ·.

m < n	 Less than, Strict ordering:
Q m,nl\. m;tn.
Greater than or equal: ~ n'(m .m ~ n

m > n Greater than: S n<m.
Range' • (k' ~ I m<k , k <n}.m•• n

min 5
 Minimum of a finite setj
for 5: F1 N, min 5 e S I\.

(Vx:S • x ~ min 5).

Maximum of a finite set;

for 5 : F1 N. max 5 e S '"
(y.,S • x < me. 5).

max 5

7. (hders.

part i a l_order X
The set of partial orders on X:
• (R'XX I Vx,y."X·

x R x I\.

xRyl\.yRx=Ox=y'"
xRyl\.yRz=OxRz}.

108 Glosoary

tote I_order X
The set of total orders on X:

g {R:p8rtial_orderl~x.y:X·

x Ry v y R x}.

monot on i c X <x The eet of functions

from X to X that are monotonic

with respect to the order <x aD X:

• {f,X-X I ~ x, y'X •

x <X Y => f(x) <X f(y)}.

8. SequenceB.

Let a, b be elements of sequences, A, B be
sequences and ml n be natural numbers.

seq X	 The set of sequences whose
elements are drawn from X:

•	 {A, N'" X I
dom A = 1.. oA }.

<> The empty sequence 13.
seq! X The set of non-empty sequences:

• seq X \ {O}
(a1' ... ,	 an>

~ {lI-"'+&1O ...• n an }·

(St. ...•	 an> -. <b 1• ...• bill>
Concatenation:

~ (8 1, ...• an' b i •...• bill>'
O-A = A-<> = A.

head A	 The first element of a

non-empty sequence:
A , <> => head A = A(l).

Iast A	 The final element of a
non-empty sequence:
A ,	 <> => last A = A(oA).

ta i 1 A	 All but the head of a sequence:
tail«x>-A) = A.

front A	 All but the last of a sequence:
frc.,'(A -<x» = A.

rev (a1'	 82' ...• en> Reverse:

Q <an•...• 82' al>,

rev 0 :::: O.
j AA Distributed concatenation:

given AA : seq(seq(X»,
o M(l) ... -AA(oAA),

- / <> = <>.

'fAR Distributed relational

composition:
given AR ; seq (X f--* X),

o AR(l) I ... I AR(oAR),

I/O = id X.
_fAR Distributed overriding:

given A : seq (X -++ Y),

o AR(I) e ... e AR(oAR),

e/ <> = 0.
squash f Convert a finite function,

f: N-D X, into a sequence by

squashing its domain. Tha.t is,

squash 0 = O.
a.nd if f , a then

squash f =
<f(i»-sQuash({i}~ f)

where i :::: min(dom f).

5 1 A Index restriction:

o squ8sh(S4A).

A ~ T Sequence restriction:
o squ8sh(A ~ T).

d i sj 0 i nt	 AS Pa.irwise disjoint:
given AS: seq (I' X),

Q ('t:J i. j : dom AS • i" j

=> AS(i) nAS(j) = a).

AS part i t ions S

Q disjoint AS A

U ran AS :::: S.

A l..n B Contiguous subsequence:

o	 (3C, D, seQ X '
C-A-D = B).

9. Bags.

bag X The set of bags whose elements

are drawn from X: Q X -++ Nl
I t ems 5 The bag of items contained in

the sequences: Q {x:rans·

x a{ i'domsls(o)=x}}

Schema Notation

&:hema. definition: a schema groups
together some declarations of variables and
a predicate relating these variables. There
are two ways of writing schemas: vertically,
for example

5	 I

x N
y : seq N

x , .y

or horizontally, for the same example
5 • r x' N, y' seq N I x<Oy].

Use in signatures after V. ~. C.}, etc.:
(V5 • Y ~ <>l • (Vx,N, y' seq N

x<ey • y~<».

Schemas as types: when a schema name 5 is

used as a type it stands for the set of all
objects described by the schema, {S}. For
example, w : 5 declares a variable w with

components x (of type N) and y (of type
seq N) such that x l!ii lIy.

Projection functions: the component names
of a schema may be used as projection (or
selector) fUDctioDB. For example, given
.. : 5, W.X ~ w's x component and w.y is

its y component; of course, the following
predicate holds: w.x" .w.y. Additionally,
given H : X -++ 5, H'(~S.X) is a function
X-++N, etc.

a5	 The tuple fonned from a
schema.'s variables: for example,
85 is (x.y). Where there is
no risk of ambiguity, the a is

sometimes omitted, so that just
"5" is written for "(x. y)".

pred 5 The predicate part of a schema:
e.g. pred 5 is x If ay.

GI063'ry 109

Inclusion	 A schema 5 may be included
within the declarations of a
schema T, in which case the

declaratiollS of 5 are merged
with the other declarations of T
(variables declared in both 5
and T must be of the same type)
and the predicates of 5 and T
are conpined. For example,

I~ ,N I

E
is

x. Z : N
y : seq H

X'.yIlZ<X

5 I P	 The schema 5 with P conjoined
to its predicate pan. E.g.,
(5 I x>O) is

[x: N; y: seq N I xlfay " x>O J .

5 D	 The schema 5 with the
declarations 0 merged with the
declarations of S. For example,
(5 , z,N) is

[x.z,N, y'seqN, x~ey].

5 [neH/o I d] Renaming of components:

the schema 5 in which the
component old has been
renamed to neH both in the
declaration and at its every free
occurrence in the predicate. For
example, 5 [zhc:] is

[z:N; y:seQ H I z If ay

and5[y/x.x/y] is

[y,N, x:seq N I y (ex].

....5

110 Glos.ary

b. the second case above, the predicate. E.g., 5 ..".. T is

r'!:naming is slmultaneous.

x N
Decoration Decoration with prime, y seq	 N

subscript, superscript, etc.; z P N
systematic renaming of the
components declared in the X'lty=+xez
schema. For example,S' is

[x';N; y''SeQN I x'~.y'l. 5 coo T The schema formed from
schemas 5 and T by merging

The schema 5 with its predicate
their declarations and taking

put negated. E.g., "'5 is
pred 5	 * pred T as the

[x;N, y,seQ N I -(xc.yl].
predicate.	 E.g., 5 ~ T is

5 A T	 The schema. formed from
schemas 5 and T by merging
their declarations (see inclusion
above) and conjoining (and-ing)

their predicates. Given T Q [x:
N; z; f N I xez].S A T ~

x : N
y : seq N
z ; f N

x " .y ~ X E Z

x : N 5 \ (vI' v2' ...• vn)

y : seq N Hiding: the schema 5 with the
z ; f N variables VI_ v2' ...• and vn

hidden: the variables listed are

x " lIy " X E Z removed from the declarations
and are existentially quantified

5 V T The schema. formed from in the predicate. E.g., 5 \ x is

schemas S and T by merging [y; seq NI (3X' N·x~.yl I. (We
their declarations and disjoining omit the parentheses when only

(or-ing) their predicates. For one variable is hidden.) A
example,S V T is schema may be specified instead

of a list of va.ria.bles; in this case

x N the variables declared in tha.t
y seq N schema are hidden. For

z P N exa.mple, (5 AT) \5 is

x ~ lIy v x e z z f N

5 ~ T The schema. formed from
schemas 5 and T by merging
their declarationg and taking
pred 5 ~ pred T as the

(3 X' N; y' seq N •
X(l;yAxeZ)

Gloas"Y 111

5 r (vI'	 vz•... , vn)
Projection: The schema 5 with
any variables that do not occur
in the li$t vl' vz, _.• vn hidden:
the variables removed from the
dec1aratioIl8 are exJstentially
quantified in the predicate. E.g.,
(5 A T)t(x. y) is

x ~ N
y : seq	 N

(3 z , P N
x ll; tty /I. X E z)

As for hiding above, we may

project a single variable with no
parentheses or the variables in a
schema.

The following conventions are used for
variable names in those schemaB which
represent operations on some state:

undashed state before,

dashed ("'.j state after,

ending in .? inputs to (arguments for),

ending in II!" outputs from (results of)

the operation.

The following schema operations only
apply to schemas following the above
conventions.

pre 5	 Precondition: all the state after
components (dashed) and the
outputs (ending in If! tI) are
hidden. E.g. given

5 I

x7, 5, 5', y! N

s' s-x7 1\ y! = 5

post 5

5 • T

x7, s : N

(3 s', y! , N •
s = s-x? /I. y! = 5)

Postcondition: this i8 similar to
precondition except all the state
before componente (undashed)
and inputs (ending in ·7·) are

hidden. (Nolo Ih.1 Ihis
definition differs from IIOme
others, in which the
·postcondition" is the predicate
relating all of initial state,
inputs I outpubl j aJld fmal state.)

Overriding:
• (5 A "pre T) V T.
For example, given 5 above and

T
x7, 5. 5' : N

s < x7 1\ 5' = 5

5 • T is

x7, 5, 5', y! N

(5' = s-x? /I. y! = 5 f\

"(3.', N·
s < x? /I. 5 = .»

V (s < x7 /I. 5' = s)

which simplifies to

x7, 5, 5', y! N

(5' = s-x? 1\ y! = 5 1\

S ;<l: x7) v
(5 < x? liS' s)

pre 5 i$

I

112 Glossary

5 I T	 Schema composition: if we
consider an intermediate state
that is both the fmal state of the
operation 5 and the initial state
of the operation T then the
composition of 5 and T is the
operation which relates the
initial state of 5 to the fmal
state of T through the
intermediate state. To (orm the
composition of 5 and T we take
tbe state-after components of 5
and the etate-before components
of T that have a basename- in
common, rename both to new

vM'iable5J take the schema which
is the ~andJl (i\) of the resulting
schemas, and hide the new
vMiables. E.g., S , T is

x? I 9. 5'. y! : N

(3 So ' N
So = 9-)(A y! = s A
So < x? A 5' = so)

basena.me is the name with
ilIly decoration ("'It, "!It, "?II,

etc.) removed.

5 »T	 Piping: this schema operation is
similar to schema composition;
the difference is that, rather than
identifying the state after

components of 5 with the state
before components of TI the
output components of 5 (ending
in Y! ") are identified with the
input components of T (ending
in Y?") with the same basename.

115 change of ~ to .il:fifi state,
=5 no change of state,
ct6 framing schema for defmition of

further operations.

For example
6S • 5 A 5'

"5 • 115 I es = es'
4>5 • 115 1 y = y'

SOP ~ 4>5lx'=O

Other Definitions

Axiomatic deftnition: introduces global
declarations which satisfy one or more

predicates for use in the entire document.

dedaralion(s)

predicate(s)

or horizontally: o 1 p

Generic constan t: introduces generic
deciMations param.eteri8ed by sets AI 8 1

etc. which satisfy the given predicates.

lA, B, ...) i
declaration(s)

predicate(s)

Generic schema definition: introduces
generic schema parameterised by sets A, 8,
etc. When used subsequently, the schema
should be insla.nlialed (e.g. SIX, Y, ... J).

S[A, B, ... J I

declaration(s)

predicate(s)

The following conventions are used for
prefixing of schema names:

OXFORD UNIVERSITY COMPUTING LABORATORY

PROGRAMMING RESEARCH GROUP

8-11 Keble Road, Oxford OXl 3QD, England

Technical Monographs to August 26, 1987

PRG-2 Outlin"" of II .\hltbematical Tbl'olJ' of Computation
b).. Dana Scott. Novewber 1910, 24 p., £0.50

PRG-3 The Lattice of Flow Diagrams
b}, Dana Scott. Noyewbpr 1970.51 p., £1.00

PRG-5 Dalll Types as LaHices
by Dana Scott. Septpmber 1976, 65 p., £2.00

PRG-6 Toward a hfatnemaHcal Semantics {or Computt'r La.lIgul:lge.~

b}' Dana Scott aDd Christopher Strachey. August 1971, 43 p., £0.60

PRG-9 Tnt' Text of OSPub
by Cbristophl'r Strathey and Joseph Stoy. July 1972, 2v. 126,151 p., £3,50

PRG-lO The \'arietjes of ProgrammiDg Lallgua~

by Christopher Strachey. March 1913,20 p., £0.30

PRG-17 Report 01.1 tbe ProgTammillg NotatiolJ 3R
by Andl'f'w P. BI8.('k. August 1980, 58 p., £2.30

PRG-18 Tbe Sperwration 01 Ah.stracf Mappings and tbeir ImplementatiolJ .u B+ 7hes
by Elizahpth Fielding. Septembpr 1980, 7i p. + Appendix, £1.30

PRG-20 Partial Corre,tne.'i5 of Communiratwg Processps and ProtocoL"!
by Zhon Chao Chen and C.A.R. Hoare. May 1981,23 p., £1.75

PRG-22 A Model fvr Communicating Sequential Processes
by C.A.R. Hoart'. June 1981,26 p.. £1.30

PRG-23 A Calculus 01 Total CorrertDes.~ for Communirating ProcpS5es
hy C.A.R. Hoare. April 1981. 31 p.. £1.75

PRG-26 Tbe CODsistelJO" of tbe Cakufus of Total Correctness for CommulJicafjag Sequential
Prores.~e,<;

by Zhou Chao Chen. Februafl 1982. 38 p., £1.80

PR(~-29 Sj.lpritirations. PmgrBllIs <lnd ImpJenli'ntations
by C.A.R. Hoare. Juue 1982,29 P.. £1.75

PR(~-32 Tbe Lic;pkit .'\Janual
by Pf'l,l'f Henderwo. Geraiut A. JODe~ ao<\ Simon B. Jone<;.
['4.00 fnr both volumes

1983. 2',... L27, 136 p ..

PRG 34 Abstrart Alarhinr SliPllVrt IvrPurr/y Funrtioo.'!1 Oper«tiJJg System.,
by Simon B. Jones. August 1983,3:J p. + .-\jlpl·Utlh. £1.75

rRG-3G TJ/f' FOrlllill Sppdtiratioll o/.'! Gonferpnr,' ()r;-.'IIJi~iJJI:' S.nteJll
h)' Tim Cll'lIlPUL AugUST 1983.52 I). + :\pppu,\i..-x. £175

pn(~ 37 SI'I'<,iticaljnn-OripIJ(l'" SI'lJialitif, /"r G"lJilllUIl;",ltillg Pr"C!'5sPS
hr E.n. O/J<>r<lg aud C.A.R. Hoar.... Fl'bruarr 1984. 81 p.. £1.50

PRC;-38

PRG-42

PRG-U

PRG-45

PRG-4G

PRG-47

PRG-48

PRG-49

PRG-50

PRG-5J

PRG-52

PRG-53

PRG-54

PRG-55

PRG-56

PRG-57

PRG-58

PRG-·59

PRG-60

Making Nets .4.b.~trart aDd Structured and ~-ets allJ their Rf'/a/ioD to GSP

b}" Lud\l·ik Czaja. JaDuary/June 1984.,23, 26p., £1.30

A R8.1Jge of Operating System5 n'nUrn ill a Purcl}' Functional StJ-le

h)" Simon B. Jones. February 1985, H p., £J.30

The Weakest Prespedlkation

by C.A.R. Hoare aDd He JileDg. June 1985,50 p., £0.85

Lavo's of Programming - A ThCorial Paper

by C.A,R. Hoare, He Jifl'ng, I.J. Ha}"es, C.C. Morgan, J,W. Sand(>r!l,. I.H, Soreusen, J.M.

Spi...-ey, B.A. Sufrin, A.W. Rosroe.

May 1985, 4.3 p., £2.35

Speri8catioD Case Studies

by lao Hayes. July 1985, 58 p., £2.50

Spedfyiug the CICS Application Programmf'r'.~fnter/.ace

by Ian Hayl's. July 1985, 82 p., £3.10

CAVIAR; A Case Scudy ill SpecmcaHou

by Bill FliDlI and Ib Holm S0ren5eD. July 1985, 46 p., £2.00

Speciliration Directed ModulI' Testing

by lao HaYI'5. July 1985, 30 p.. £0.90

The Distributed Computing Sohware Project

by Roger GimsoD and Carroll Morgan. July J985, 85 p" £4.00

JSD EXpreS5l'd in CSP
by K.T. Sridhar and C.A.R. Hoare. July 1985,40 p., £1.45

Algl'brair Speci8ration and Proof of Properties of Communicating Sequential Processes
by C.A.R. Hoan aDd He JifeDg. November J985, 72 p., £0.90

The Laws of Occam Programming

by A.W. Rosroe aDd C.A.R. Hoarl'. Fl'bruary 1986,85 p., £2.50

Exploiting PuaUdism in the Graphirs Pip,.Jjne

by Theoharis A. Theoharis. June 1986, 101 p., £2.50

FuDrtionaJ Pror;rammiug with Side-EJ1f'ct.~

by Mark B. Josephs, Ph.D. thf'sis, Junl' 1986,101 p., £3.00

An IntroductioD to the Theory' of Li~ts

by Rilhard S. Dird. Ortober 1986, 28 p., £1.50

The Pursuit of Deadlock Freedom

h)" A.W. Rosroe and Kail'ID Dathi. November 1986, 38 p., £1.50

Formal AIethods Applied to a Floaling Point .1\"umber Sptem

b)' Groll' Datutt. JaDuar}' 1987,47 p., £1.50

~ot }·l.'t allocate'\

The Formal Sperification of a .Uier'Jpf'()('f'.%Of Imtruf'tioD Srr
by JOQathan Do..·eu. Jauuary 1987, 72 p., £2.00

