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Roger Gimson 

Abstract 

The formal documentation for a low-level data storage service is presented. The 

service aiiows blocks of data to be stored on behalf of clients in a distributed system. 
The docunlentation includes both a User Manual, presenting the clieDts' view of the 
service, and an Implementor Manual, describing how the service may be implemented. 
It is called formal documentation because, as well as informal text giving the 
conventional overviews to the casual reader, it includes precise specifications of the 
behaviour of the service, written in the formal specification language Z. 

Though applied here to the example of a block storage service, the illustrated style of 
documentation can equally well be applied to describing any such system components. 
This style has been developed as part of a project on designing aDd specifying 
components of a distributed operating system. The monograph includes a. discussion of 

the design choices considered for the service, and the experience gained through its 
design, implementation and documentation. 
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Introduction 

A distributed operating system consists of a number of separate services connected to 
each other and ~o clients by a network. This monograph describes one such service, 
the Block Storage Service. It allows clients to store and retrieve fixed size blocks of 
data. The service only provides low-level data storage facilities, but can form the basis 
for one or more independent higher-level file storage services. 

The service is presented as a pair of manuals. The first, the "User Manual", describes 
the service as seen from the outside, by a client of the service. An abstract view of the 
state of the service is given. Operations which ma.y be performed on the service by a 
dient are described in terms of changes in this abstract state. 

The second, the "Implementor Manual·, describes how the service works internally. A 

concrete view of the state of the service is given in terms of the components from 
which the implementation is composed. This concrete state has a well-defined. 
relationship to the abstract state described in the first manual. Each of the operations 
that can be performed on the service is redefined in terms of changes to the 
components of the concrete state. 

Apart from presenting the design of a particular service, the monograph is intended to 
illustrate how rigor can be introduced into the documentation of software systems. It 
can also be seen as an example of how it is possible to present fonnal specifications of 
system components in a style more fa.rniliar to the programmer. Only by achieving an 
appropriate balance between formality and accessibility of presentation can we hope 
that these techniques will be more widely accepted by computing practitioners. 

The final chapter is a discussion based on the experience gained by formally designing, 
specifying and implementing the service. 

The Block Storage Service was developed as a part of the Distrjbuted Computing 
Software Project which began at the Oxford University Programming Research Group 

in 1982. The goal of the project hM been to construct and publish the design of 
services in a loosely-coupled distributed operating system, based on the model of 
autonomous clients having access to a number of shared devices. 

A fundamental objective of the project has been the use of mathematical techniques 
for program specification to assist the design, development a.nd presentation of 
distributed system services. The fonnal notation used throughout ha.s been the 
specification language Z, which has been undergoing development at the Programming 
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Research Group over the same period. The project baa therefore heen a continuing 
practical test of the application of Z to system specification. 

The first phase of the project resulted in the specification of a Dumber of services, 
including an earlier version of the User Manual for the Block Storage Service [II. The 
presentation has been subsequently improved into the form shown here, and an 

Implementor Manual for the service has been developed. The formal notation Z, used 
throughout this document, is defined in [2.7\. A glossary of the notation is included 
here as an appendix. Common parts of services (e.g. accounting and access control) 
have been combined together into a separate document known as the IICommon 

Service Framework" (included in [8]). The descriptioDs presented here make use of 
some definitions from that document. 
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Chapter 1 

Block Storage Serviee . User Manual 

1 Introduction 
2 Service state 

2.1 BloeD 
2.2 Overall state 

3 Operation parameters 

3.1 Block-gpecific operations 
3.2 Key·linked operations 

4 Reports 

5 Operation definitions 

5.1	 Client operations 
Create 

Read 
Status 
Destroy 
Rep 1ace 
SetExpiry 
GetJds 
Geteou.,t 

5.2	 Manager operations 

Scevenge 
Profi le 

6 Service charges 
7 Complete service 
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1 IDtrodnmon 

The Block Stonge Service provides low-level data storage facilities. Clients (typically 
other services or application programs) may create, access and destroy fixed-size 
blocks of data by invocation of the service operations. A block identifier, chosen by the 
service, is used to identify a particular block. A unique identifier is given to each 
block, and once a block has been created its identity cannot be changed. 

Blocks ha.ve a fIxed expiry time, chosen by the client, and will be destroyed without 
warning on reaching the given time. 

The service provides limited security of access to blocks. A client may not access a 
block without knowing its identity, and block identifiers are hard to guess (since their 
values are chosen from a very large set). The identity of any block is initially known 
only to its creator; the service will never tell the identity of a block to any other client. 
Blocks may be destroyed only by their creators, and so security also depends on the 
proper authentication of clients. 

As well as operations on individual blocks, the service also provides some opentions to 
help clients keep tra.c.k of their block usage, and further operations for the 
management of the stonge provided by the service. 

General features shared with other services are described in the "'Common Service 
Framework" (contained in [8]). They will only be summarised where appropriate in this 
manual. In particular, the following types are common to all services, and will not be 
defined further here: 

f Byte, UserNum, Time, Money, Report, Op 1 

Implementation-specific constants are shown in italics (e.g. BlockSize). Their actual 
va.lues should be made available to users of a particular implementation, but are not 
included here. 
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2 Servi"" .tate 

Fin5t the individual uni~ of information which are stored by the service are considered, 
then the overall abstract state of the service is presented. 

2.1 Bloeka 

The block storage service stores data on behalf of its clients in units called blocks. A 
client may submit some data, consisting of a. fixed·size (BJockSjze) a.my of bytes, to 
be stored in a block. 

Bf ockOate ~ 0 .. BlockSize-l -+ Byte 

&>me general information is also associated with each block. The owner of the block is 

the dient who created it. Whenever a block is created, an expiry time must be given 
by the client; it is the time urz&il which the service is obliged to store Ihe block. On 
reaching it, a block is said to have expired, and ca.n be discarded by the service 
without the client being notified. 

The owner of the block, the time of its creation and tbe time of its expiry (wbich will 

not be ea.rlier than its creation time) together form the block information. 

Blocklnfo 
owner 
created 
expires 

UserNum 
Time 
Time 

created { expires 

A block consists of both the block informa.tjorz and the da.ta. 

Block 
BlockInfo 
data: 81ockOata 
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There is also a given finite set of block identifiers. 

[Blockld] 

An identifier (id) will be issued by the service when a block is created. This becomes 
the client's reference to the block and any subsequent operations on the block will 
req uire this ideo tifier. 

2.2 Overollstale 

The service state records all currently stored blocks according to Lheir identifjers. It 
also contains a flnite set of new block ids which have Dot yet been issued. The schema 
SS denotes the state of the storage service at any particular moment. 

SS I 

blocks BlockId --t-+ Block 
nelo4ids F Blockld 

IIblocks ~ MaxRloeks 
neHids n dam blocks ~ e 
Nuilld I! (dam blocks U neHids) 

There is an implementation-specific limit (MaxBlocks) imposed on the total Dumber 
of blocks tha.t can be stored at anyone time. The set of new ids never contains 
identifiers of existing blocks. The service guarantees never to issue a special identity 
(Nullld); this id can therefore be used by clients' applications to indicate "no block". 

Initially, when the service is started for the firsttiroe, there are no stored blocks, and 
all block ids except NulIld are potentially available for issue. This is modelled a,g an 
operation with only a resultant (dashed) state. 

In i tSS
 
55'
 

blocks' o
 
new ids' Blockld \ {Nu1l1d}
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3 Operation par.-m.eten 

Each service operation can only be performed by an authentic client. Authentica.tion 
of clients is assumed to be performed outside the service (see IIlCommon Service 
Framework" in [8]). After authentication, the client number i8 ava.Uable :u;.an implicit 
parameter of every operation, and so is the time at which the operation occurs. 

Explicit input and output parameters are denoted by names ending in ? for input and 
! for output. Every operation provides at least an explicit output report (report!) 
indkating its outcome. 

<lees i cParams I 

cl ;entnum UserNum 

no" Time 
report! Report 

Changes in the state of the service caused by operations all conform to the following 
general schema in which the state of the service before a.n operation (55) is rela.ted to 
that after the operation (55' ) and to the basic parameters of the operation. 

llS5 ---, 

55
 
55'
 
46asicParams
 

newids' = newids \ dom blocks' 

It is a constraint on every operation that any id issued by it is removed. frolD the set of 
new ids , and so can never be issued again. 

Sometimes the state of the storage service is left unchanged by an operation. 

!!ss t.SS leSs' = ess• 
Some operations take parameters which denote a count of blocks (some number in the 
range from zero up to at least the maximum number of blocklS), a set of blot;k 
identifiers Or a sequence of block infonnatjoD of limited Jength. Th.e following sets are 
defined here for convenience. 
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BlockCount s O•• MaxCount 
BlockldSet • r Blockld 
BlocklnfoSeq a { 5: seq Blocklnfo I liS ~ Maxlnfos ) 

where 

MaxCount )' MaxBJocks 

3.1 Block1pecifi~operations 

Many operations on the service apply to an existing block stored by the service, and 
require the id of this block to be supplied as a.n input parameter by the cHen\. A 
framing schema is used to include this information in a specific operation defmition. 
The block stored under the given id (block) is made an impUdt parameter of such 
operations. An error report, introduced later, allows for 'the case that no block exists 
with the given id. 

<llliock 
655 
block Block 
id? Blockld 

block = blocks( id?) 

Similarly, some operations create a new block and store it in the service l returning its 
id as an output parameter. Such a block is always owned by the crea.ting client and its 
creation time is the current time (its expiry time a.nd data will be given in the 
particular operation definition). Its id is taken Irom the set of new ids. This is denoted 
by another framing schema. The newly created block (nelo4block) is made an implicit 
parameter of such operations. 

¢tlewBlock 

655 
nelo4block Block 
id! Blockld 

newblock.owner = c1 ientnum 
newblock.created = noW 
id! e nelo4ids 
newblock = blocks'( id!) 
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3.2 Ke,.~liDked operations 

Some opera.tions are designed to operate over a potentially large set of values (such as 

all current block identifiers). Such operation$ are designed to allow the set in question 
to be traversed in several operation calls. This may be necessary to limit either the size 
of output parameters or the execution time of any particular call. 

In this sf'rvice, some operations require the traversal of a potentially large set of ids. 

xs F Blockld 

The operation itself is designed to traverse only a subset of XS I and repeated ca.Bs of it 
may be necessary to construct xs as the union of the individually traversed parts. The 
execution of the separate operations is related by passing a key parameter from one 
call to the next, taken from the given set of all keys: 

[Key] 

Each such operation has an input key parameter (key?) and iln output key parameter 
(key!) and affects a subset of xs (sl,Jbxs). To construct xs. the client first calls the 
operation with a. special key StartKey: 

Operat ion I key? = StartKey 

The client then continues to call the operation repeatedly. supplying as the new key jn 

each case the key returned by the previous call. For example. the i th call would be: 

,Operation 1 key? ::; keYI ,key! ::; keYI.l 
subxs = SUbX5 I 

Finally! the special key EndKey will be returned to indicate that no more calls need 
be made. 

Operat i on I key! = EndKey 

At that point! providing the set xs has relnained constant! and not been affected by 
other operations on the service: 

xs ::; U Sl,Jbxs , 
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A key is itself to be regarded as standing for a set of block identifiers, using some 
implementation-specific representa.tion (denoted by the function KeySet). The special 
keys (StartKey and EndKey) denote the set of no block ids aDd the set of all block 
ids respectively. 

KeySet : Key ~ f Blockld 

KeySet (StartKey) o 
KeySet (EndKey) BlockJd 

Each key value, passed from one call to the next, stands for aJ.l the ids that have been 
traversed so far (including possibly many that are not in xs). 

The following framing schema is used. to simplify the definition of such key-linked 
operations, 

cjl(ey 
key? Key 
key! Key 

r BlockJd 
subxs r BlockJd 

KeySet(key?) c KeySet(keyl) 
.ub•• = (KeySet(key!) , KeySet(key?)} n x. 

On each key-linked call, the set of ids denoted by the output key is strictly larger than 
the set denoted by the input key. Since the set of all ids is fInite, this implies that 

eventually the EndKey must be reached, and aJ.1 potentiaJ. ids traversed. The 
difference between the sets associated with the two keys indicates the subset of X5 

involved in the parlicular call. 
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... Reports 

Each service operation is specified by gjving a definition of its successful execution, 
then augmenting this with the potential reasons for lack of success. The report! 
output parameter of each operation indicates either that the operation succeeded or 
suggests why it failed. In all easelS, failure leaves the state of the service ubchanged. 

Success indicates successful completion of the operation. 

Success I
 

report! Report
 

report! = Success Report 

The total effect of a service operation is in general defined by overriding the 

definition of the successful outcome of the operation by one or more error report 
schemas. If the precondition in the error schema is satisfied, the corresponding error 
report is returned. Only if the precondition is not satisfied will the operation succeed. 

In each of the following cases, the state of the service remains unchanged if an error 
occurs. 

NoSuchB Jock is given if there is no block stored With identity i d? 

NoSuchB lock I 

_55 
id? , Blockld 

id? f dom blocks
 
report! :::: NoSucbBlockReporf
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NoSpace indicates that a new block cannot be created when the storage capacity of 
the service is full. 

NoSpace 

"55 

ttblocks = Max Blocks 
report! = NoSpaceReport 

Not Oloolner indicates an attempt to perform an operation which can destroy a block by 
someone other than the owner of the block. 

NotOloolner
 

"55
 
¢6lack
 

block.oloolner ~ cl ientnum
 

report! = NotOwnerReport
 

BadKey indk:ates an input key has been provided which does not denote a valid id set. 

BBdKey I 

"55 
key? : Key 

key? f dam Key5et \ {EndKey} 
report! = BadKeyRepod 

Not Manager is given on an attempt by some other client to perforID an operation that 
may only be performed by the service mana.ger. 

~otManager 

I	 "55 i 

I	 cl ientnum ~ A{anager
 
report! = NotManagerReport !
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5 Service operations 

On the following pages appear descriptions of the Block Storage Service operations. 
They are grouped into two sections: those that can be perfonned by ordinary clients, 
and those that can be performed only by the service manager. Each operation 
description has three parts. 

The Abetrad gives a procedure heading for the operation, with parameter definitions, 

as it might appear in a. programming language. The correspondence between this 
procedure, and a.u implementation of it in a real programming la.ngua~e, should be 
obvious and direct. Each parameter is given a name ending with either? for an input 
or ! for an output. A short informal description of the operation accompanies the 
procedure heading. 

The Deimitian section mathematically defines the successful execution of the 
operation. It does this by giving a schema. which includes as a component every fonnal 
pa.rameter of the procedure heading, either expHcitJy or as components of included 

schemas (!luch as report! in dSS). A shori explanation accompanies the schema. 

The Rep0J't8 sectjon provides a definition of the total operation, including the possible 
error reports that may be obtained from its invocation. The errors are specified by a 
set of error schemas, as alreadY defined, whose names are chosen to reflect the reports 
they return. Schema overriding (e) is ueed to define an ordering of potential error 
outcomes. This means that the later errors in a sequence of overrides will be 
produced, if a.ppropriate, rather than earlier ones. The successful oUkome, which 
appears fIrst in the definition, will only occur if none of the error conditions are 
satisfied. 
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5.1 Client operations
 

There are eight operationa the ordinary client may ask the service to perform:
 

Create 

Reed 

Status 

Destroy 

Repl Bce 

SetExp j ry 

GelId. 

GetCount 

create a new block and store it 

rea.d the dab of a block 

obta.in the atatua of a block 

remove a block from the service 

replace one block with another 

change the expiry time of a block 

obtain the identitiea of blocks currently owned 
by the client 

obtain the number of blocks currently owned 
by the client. 
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CREATE
 

Abotraet 
Create (expiry? Time; 

data? 81 ockDate j 

id! Blockld, 
report! Report) 

A block is crea.ted to store the given data? until the given exp i ry? lime, and is 
stored by the service under the new identity i d!. 

DeimitioD 

createsuccess-- -, 

ASS i 

¢t'lewBlock 

expiry? Time 

data? BlockData 
id! Blockld 

newblock.expires max {now,expiry?} 

newblock.data = data? 

blocks' = blocks U {id! ~ newblock} 

The expiry time of the block is set to be the requested time, or lhe current time, 

whichever is later. This em;ures that a block ca.nnot expire 'before' it bas been created. 
It:s owner and creation times are defined (by ¢t4ewB1oek) to be the invoking client a.nd 

the current time respectively. The Dew block is stored with a. unique identity. 

Reports 
Create : (CreateSUCCe'55 A Success) 

• NoSpacc 

For success, there must be enough storage space left in the service. 
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READ
 

Abstract 
Read (;d? Blockld, 

datat BI ockOate; 

report! Report ) 

The da.ta. is relurned for the block stored with identity i d? 

DeimiUon 

Reedsuccess 
"55 
~lock 

id? 
data! 

Blockld 
BlockOata 

i 

data! = block. data 

The service is unchanged by this opera.tion. The data. of the stored block is returned. 

Reports 

Read Q (Readsuccess 1\ Success) 
• NoSuchB lock 

For success, the block must a.lready be stored by the service. 
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STATUS
 

AbttrAM 

Status (i d? Blockld; 
owner! UserNum; 
created! Time; 

expires! Time; 

report! Report) 

Status information (owner, and times of crea.tion a.nd expiry) is returned for the block 
stored with identity i d? 

Definition 

Statussuccess i 

=55 

4fllock 

id? BJockld 
owner! UserNum 

created! Time 

expires! Time 

owner' = block.owner 
created! = block. created 
expires! = block.expires 

The service is unchanged by this operation. The owner, crea.tion time and expiry time 
a.ttributes of the stored block are returned. 

Reports 

Status ~ (Status SU t:t:2SS A Success) 
• NoSuchBlock 

For success, the block must already be stored by the service. 
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DESTROY 

Abstrert 
Destroy (id? BlockId, 

report! Report) 

The block stored with identity i d? is removed from the service. 

Def.i.nition 

DestroYsuccess I 

ASS 
<fBJock 
id? ; BlockId 

blocks' ={id?) ~ blocks 

The block is removed from the set of stored blocks. 

Reports 
Destroy ;2; (DestroYsuccess 1\ Success) 

• NotOwner 
• NoSuchBlock 

For 8uccess, the block must already be stored by the service and the client must be the 
owner of the block. 
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REPLACE 

Abotrad: 
Replace (id? BlocHd;
 

data? BlockData;
 
id! Blockld;
 
report! Report)
 

The block stored with identity i d? is replaced by one with the given data? The 

identity of the new block is returned. 

Definition 

Rep 1acesucce'S'S I 

~SS 

¢>Block 
¢I'IewBJock 

id? Blockld 

date? : BlockData 
id! Blockld 

newbJock.expires ; block.expires
 
newblock.data = data?
 
blocks' • ({id?} ~ blocks) U {id ~ neHblock}
' 

The new block bas the same expiry as the old OIle, but contains the new data._ Its 
owner and creation times are defined (by ~e...Bl ock) to be the invoking client and the 
current time respectively. The old block is removed and the Dew one stored under its 
new identity. 

Reports 
Rep 1ace Q (Rep1aCesuccess 1\ Success) 

• NotOHner 
• No5uchB lock 

For success, the block must already be stored by the service and the client must be the 
owner of the block. 
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SETEXPJRY 

Abstrad 
SetExpiry (id? Blockld;
 

expiry? Time:
 
report! Report)
 

The block stored with identity i d? is changed to have the new expiry time. Its identity 
is not changed. 

Definition 

SetExp j rYsuccess i 

655 
¢61ock 
id? : BlockId 
expiry? Time 

ne...block Block 

ne block.o...ner 
ne block.created 
ne block.expires 
ne bl ock. data 

:: blocK.o...ner 
block. created 
max {no.... expiry?} 

=block.date 

blocks' =blocks. {id? ~ ne ...block} 

The block is replaced by one having the same identity and attributes, except that the 
expiry time is changed to the given value, or the current time, whichever is later. 

Reports 

SetExpiry g (SetExpirYsuccEsS Success)I\, 

• NotOl-lner 

Ii NoSuchB lock 

For 8uccess, the block must already be stored by the service and the client must be the 
owner of the block. 
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GETIDS 

Abstract 
Get Ids (key? Key; 

count? B1 ock.Count ; 
key! Key; 
i dset! Blockld5et 
report ! Report) 

Returns a set of block ids owned by the client, limited to a.t most count? entries. By 
key-linking (see section 3.2), a.ll ids belonging to the client ca.n be obtained. 

Definition 

Get Idssucces5 i 

=55 
<Jj(ey 
key? Key 

count? BlockCount 
key! Key 
idset! Blockld5et .. f Blockld 
suhJICS f Blockld 

)(s = {x:dom blocks I blocks(x).o~ner = clientnum} 

idset! subxs 
.idset! ~ count? 

The sta.te of the service is not changed. The set of all ids to be returned (}(s) is tbe l5e\ 

of ids of blocks owned by this client. The set of ids returned .in anyone call (subxs) is 
a subset of ids (as defined in ~ey). The size of the returned set is limited to at most 

count? elements. (Note that this set may be empty on any particular call even if 
further ids remain to be returned). 

Rf'!porta 

Get Ids (Get IdsSUCCI!S5	 A Success) 
4& BadKey 

For success, the input key must be vaHd. 
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GETCOUNT
 

Abstract 
GetCount (count! BlockCount; 

report! Report) 

The number of blocks currently owned by the client is returned. 

Definition 

Get Count success I 

'55 
count! : BlockCount 

)(5 : F Blockld 

)(s:: {x:dom blocks I block5(x).ololner cl ientnum} 

count! = '*X5 

The state of the service is not changed by this operation. The set of ids to be counted 
(xs) is the set of ids of blocks owned by this client. 

Note tha.t the count returned will include blocks which have expired but have not yet 
been scavenged. 

Reports 
GetCount ~ (GetCount!>UCC~'iiS 1\ Success) 

There are no addi~ional reports for this operation. 
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5.2 MaDAgel' operations 

Operations <wociated with the mana.gement of the service Dlay only be perfonned by a 
special client called the service manager. 

There a.te two such operations specific to the storage service: 

Scavenge remove expired blocks 

Prof i 1e obtain details of block usage. 
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SCAVENGE 

Abstract 
Scavenge (key? Key; 

key! K.ey; 

count~ BlockCount; 

report! Report) 

Removes a set of expired blocks from the service, returning the number removed. By 
key-linking (see section 3.2), all expired blocks can be scavenged. 

Definition 

Scavengcsuccess-----------------------------------------, 
655 
~ey 

Keykey? 

Keykey! 
BlockCountcount! 

xs F BlockId 
subxs F BlockId 

xs = {x:dom blocks I blocks(x).expires < now} 

count! = #subxs 

blocks' = subxs ~ blocks 

The set of all ids to be scavenged (xs) is tbe set of ids of stored blocks which have 
expired. The set of ids scavenged in anyone call (subxs) is a subset of xs (as defined 
in ~eys). The number of blocks scavenged is returned as count!. Blocks scavenged 
in this call are removed from the service. 

Repom 
Scavenge ~ (Scevengesucc~S5 /I, Success) 

• BadKey 
• Not Manager 

For success, the client must be the service manager and the input key must be valid. 
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PROFILE 

Abetraet 
Prof i 1e (key? Key: 

key! Key; 
infoseq! BlocklnfoSeq: 
report! Report) 

Returns a sequence of information about blocks stored in the service. By key~linking 

(see section 3.2), the information profile of aU blocks can be obtained. 

DermitiOD 

Prof i 1eSUCCII!$$ 

"55 
¢lIey 
key? Key 
k.ey! Key 
infoseq! BlocklnfoSeq 

xs F Blockld 
subxs F Blockld 
order seq BlockId 

xs = dem blocks 
dam order =1.. Msubxs 
ran order = subxs 
infoseq! =A i~dom order· blocks(order(i»tBlockInfo 

The sta.te of the service is not changed by this operation. The set of all block ids for 

which information is to be returned (xs) is the set of all blocks stored in the service. 
The subset of these ids for which information is returned in anyone call (subxs) is a 
subset of xs (as defined in ¢Key). The sequence of informa.tion returned is that of aU 
blocks with ids in the set subxs in some arbitrary ordering (given by order). 

Reporis 
Prof i 1e ~ (Prof i 1e5Ucce55 A Success) 

e BadKey 
e Not Manager 

For success, the client must be the service manager and the input key must be valid. 

i 
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8 Service dlargea 

Clients will be held responsible for the expenses incurred by their use of the service. 
Expenditure will be recorded, and clients will be expected to obeerve any limits placed 
upon them (however, such limits do not form pari of this service, and will be imposed 
separately). 

The basic parameters to an opera.tion are supplemented by two hidden parameters 
(since they do not appear in the procedural interface). These are all operation 
identifier op? and the cost of executing the operation cost!. 

¢farams
 
¢6asicParams
 
op? : Op
 
cost! : Money
 

There is a. cost for each successful operation, which may have two components. One is 

the expense of performing the opera.tion itself (CreateCost, ReadCost, etc.). The 
other, if present, is related to the function requested by the operation. For example, 
the create operation charges in advance for the storage of the given data , and the 
destroy operation may give a. rebate (negative cost) if the block is destroyed before its 
expiry time. 

The expense of storing a. block is determined by applying a tariff function to the 
creation a.nd expiry times of the block. Here is a typical block tariff function: 

BlockTariff : (Time x Time) ~ Money 

V created, expires: Time· 
BlockTariff(created,expires) = 

BlockCost * (expires - created) 

where (_ * _) : (Money x Time) ~ Money is def"med appropria.tely. 

The values of CreateCost etc. and the block tariff function itself may be varied; their 
precise values at any time will be made known separately to clients. 

The cost of successfully invoking a.ny particular operation on the storage service is 
defined by a. tariff schema. For some operations, the cost is related to the times of 
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creation a.nd expiry of an existing or a newly created block. On destroy a.nd replace 
operations, a reba.te is given to encourage explicit destruction or replacement) rather 
'han letting blocks expire and be removed by the service. 

SSTariff 
!ff'arams 
Block 
Block' 

op? .:; CreateOp ...	 cost! :: CreateCost 
+ BlockTariff (created'.e~pires') 

op? =: ReadOp ... cost! ::. ReadCost 
op? =: StatusOp ... cost! = StatusCod 
op? =: DestroyOp ... cost! = DestroyCost 

- BlockTariff (created. expires 
+ BlockTariff (created, now 

op?	 .:: ReplaceOp ... cost! =: ReplaceCost 
- 8lockTariff (created, expires 
+ BlockTeriff (created. now ) 

+ BlockTariff (created',expires') 
op?	 -- SeeExpiryOp'- cost! =: SetExpjryCost 

- BlockTariff (created, e~pires ) 
+ BlockTariff (creeted',expires') 

op? :: GetldsOp ... cost! =: GetldsCost 
op? :: GetCountOp'- cost! := GetCountCost 
op? :: ScavengeOp ~ cost! = ScavengeCost 
op? ::- Pro[jJeOp ... cost! ::: Pro[jleCost 

If;m error OCCUrB, a fIXed amount may still be charged. 

ErrorTar iff '" !ff'arems I cost! = ErrorCost 

These two 6chema:5 combine to form a.n overall tariff framing schema in which the 
error tariff will be charged unless the ouput report is successful. 

46STariff Q Success ~ SSTariff A 

~Success ~ ErrorTariff 
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., CoIDplete BUVice 

The full definilion of the complete Block Storage Service includes identification of 
clients and other components which are common to many services. It depends on a 
number of edemas delm~d in the "Common Service Framework" (in [8]). 

Each separate operation in the service is given a unique operation identifier. 

SSServiceOps '" 
(Create 11 4f'arams lop? = CreateOp ) v 

(Reed 11 4f'arems ! op? = ReadOp ) v 

(Status 11 4f'arams lop? = StatusOp ) v 

(Oestro~ 11 4f'arams lop? ::= DestroyOp ) v 

(Replace II. 4f'arams lop? = ReplaceOp ) v 

(SetE)(pir~ II. 4f'a.... ams lop? ::= SetExpjryOp ) v 

(Getlds II. 4f'arams lop? = GetIdsOp ) v 

(Get Count II. 4f'arams lop? = GetCountOp ) v 

(Scavenge II. 4f'arams lop? = ScavengeOp ) v 

(Profile II. 4f'erams J op? = PronleOp ) 

Each of thewe operations has a briff associated with it. 

SSBasicOps Q ~STariff II. SSServiceOps 

The full service state includes subsystems for a clock, accounting, statistics and 
controllingservke access. (See the ·Common Service Framework"' for further details,) 

555tete ~ 55 II. Clock 11 Accts 11 Stats 11 Access 

SeIVice initia.lisation includes initialisation of the subsystems. 

InitSSStete s:: 
InaSS II. InitClock 11 InitAccts 11 Init5tets II. InitAccess 

The full set of available operations includes a Nu 11 operation and those to do with the 
service dock, accounting, statistics and access. 
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55A110ps.
 
(SSBasicOps A ~SS A ¢Clock A ¢Accts A $5tats A ¢Access) v
 
{Null A sSS A ¢Clock A ¢Accts A ¢5tats A ¢Access} 

(NotEnabled A sSS A ¢Clock A =Accts A =Stats A =Access)
 

v
 
(ClockOps A aSS A ~Clock A ¢Accts A ¢5tets A ¢Access) v
 
(AcctsOpS A =SS A ¢Clock A ~ccts A $5tets A ¢Access) v
 
(StatsOps A sSS A ¢Clock A EAccts A ~Stats A ¢Access) v
 
(AccessOps A aSS A ¢Clock A =Accts A sStats A ~Acce5s) v
 

The complete specification of the service, including the possibility of a bad operation 
number or a non-detennin~Hc error in the underlying implementation. is then defined 

as follows: 

550ps • 
«BadOperation A aSS A ¢Clock A sAccts A s5tets A :Access) • 

(SSAllOps A ~S5 A ~Clock A ~Accts A ~Stats A Mccess»
 
v
 

(SeryiceError A sSS A ¢Clock A 5Accts A s5tets A 5Access)
 

Operations with bad operation numbers and other service errors do not change the 
service state, except that the clock might tick. 
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1 IntrodudiOD 

This document is a gujde to the implementation of the Block Storage Service, which 
provides low·level data storage facilities. It assumes that the reader is familiar with the 

"Block Storage Servke • User Manual ll which outlines the abstr<let specification of the 
service from the point of view of an external user (normally a program running on a
dient machine). In the following document, a concrete specification of a possible 
implementation of the service is presented. 

In order to make the implementation more understandable, it is presented in several 
parts. First 3 number of subsystems a.re introduced in simplified form, each with 
associated suboperations, which could implement various parts of the concrete service 
state. These a.re then combined to give the overall concrete state, which is related to 
the abstract service state. 

Some additional suboperations and some reports are introduced which are useful for 
defining the service operations. The implementations of the service operations 
themselves are then defined, largely as compositions of the suboperatjons relating to 
each of the affected Bubcomponents of the state. Each operation and suboperation 
schema may typically be implemented as a procedure in the final program. 

The implementations of some of the subsystems are then further refined in order to 

show how their state can be stored on a disk, and to provide greater efficiency through 
cacheing and data buffering. 

The specification given here is still not directly implementable. A pa.rticular 
programming language must be chosen by the implementor and then this design must 
be transcribed into the programming language (currently by hand). 

The design assumes that the final programming language will be an impera.tive 
language with an inherent notion of sequences of commands or operations. There is no 
consideration of the use of parallelism in the implementation. The introduction of such 
parallelism at an appropriate level in the refinement of specifications of this kind is 
stilI aD active topic of research. Our feeling is that in thjs particular service the 
parallelism could be introduced after the level of refinement presented here (Le. after 
the identification of the subsysLems 1 with associated subopera.tions, into which the 
concrete state can be decomposed). 

A further simplification in the design presented here is the lack of explicit provision for 
handling faults in the underlying hardware, such as disk read/write errors. 
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2 Abstract .tate 

As a reminder of what is to be implemented l the definition of the abstract state of the 

Block Storage Service l as defined in the "Block Storage Service· User Manual''' is 

summarised here. 

A block of data to be stored by the service is a fixed·size (BlockSjze) array of bytes. 

BlockData Q; 0 .. BlockSjze-l -# Byte 

Each block also has some general infonnation attributes. 

Blocklnfo i 

owner UserNum 

created Time 
expires Time 

created ~ expires 

So a complete block is defined as followa in the abstract state. 

Block I 

Blocklnfo 
data: BlockData 

The overall abstract state of the service records all currently 8tored blocks accordjng 
to tbeir identity from a set of block identifiers (BlockId). Unissued ide are also 
recorded. There is a limit (MaxBlocks) on the number of blocks thatcaIl be stored by 
the service. The null identifier (Nullld) is never issued. 

55 ---, 

blocks BlockId ~ Block
 

ne"'ids F Blockld
 

_b locks l!O: MaxBlocks
 
neHids n dam blocks = ~
 

Nullld ¢ (dam blocks U newids)
 



38 Block Storage Service 

Initially there are no stored blocks I and all ids except Nullld are potentially available 
for issue. 

In i tSS 
55' 

blocks' = " 
ne"ids' ; Blockld \ {Nullld} 

Some further definitions provide for block counts, sets of ids and sequences of block 
jnformation. 

B1ockCount Q 0 .. MaxCount 
BlockIdSet Q F Blockld 
BlocklnfoSeq g { s: seq B10ckInfo I as ~ Maxlnfos } 

where 
MaxCount j;l: MaxBJocks. 
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3 Concrete state 

The concrete sta.te of the service is built up from several subsystems, After 

introducing some basic defmitions which will be used throughout, the subsystems are 
specified as subcomponents of the system state with specific suboperations applicable 
to each one. The state subcomponents are then combined to give the overall concrete 

sta.te. 

A subsystem specification is like an abbreviated user manual. It includes a description 
of the state of the subsystem, its initial state, and the suboperations which may be used 
to cha.nge the statE. Each suboperation has an abstract showing how it might appear 
as a procedure ca.ll in a procedura.l programming language. 

The overall concrete state of the impJementation is obtained by conjoining the sta.tes of 

the subsystems. In a subsequent section, the implementations of the service operations 
are specified as cODlbinations of the suboperatiol18 on the individual subsystems. 

3.1 Basic definitions 

A byte of data is implemented as a fixed number (ByteSill'e, normally eight) of bits. 
By convention, these are indexed from zero upwards. 

Bit • {V, 1)
 
Byt e 9. O.. ByteSise-l -+ Bit
 

In this manual, we shall model data arrays as functions from fixed-9ize domains of 
index numbers (normally from zero up to a maximum value) to bytes. It is convenient 
to define some general functions to operate on these arrays. 

L WilL) ,
 
L f=_),
 
(_ IU_) «N'" Byte) x N) --+ (N'" Byte)
 

~ .'	 (N'" Byte); n,N • 
a!.l.Q1Q. n = (O .. n-l) <Is 
a f.c.2m n = succM I a 

a e1. n = predM I a 
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The functions define a new array from the beginning Wl.1.Q (but not including) a 
certain position in the supplied array or f.c.2m a given position to the end of the 
supplied array. Additionally, it is possible to move the domain of an array so that it 

starts at. a specified offset. 

Each block in the store will be identified by a block number from the set B1ockNum. 
This is a finite subeet of the natural numbers. There are as many different block 
numbers a.s the potential number of blocks that can be stored by the service. 

BlockNum F N 

aBlockNum = MaxBlocks 

Each block has an associated physical data-block, which holds the bulk of the data 
as50ciated with the block, and a header, which holds the remainder of the block 
information. The number of a block will be used for identifying its associated data
block and header. 

The ph)'BicaJ disk layout may dictate that the block numbers are not contiguous. A 
function is defined to provide the next higher block number after a given number in 
the set. 

next : BlockNum ~ BlockNum 

V bn:BlockNum I bn ~ max BlockNum 
next(bn) = min {n:BlockNum I bn < n} 

3.2 nata subsystem 

In the concrete state, an array of data-blocks (stored on a disk, as shown later) are 
used to hold the bulk of the data of the stored blocks. Each da ta-block can hold a 
fixed amount (DataBlockSjze) of bytes relating to a particular service block. 

OataBlock ~ 0 .. DataBJockSize-l ~ Byte 

Data-blocks are indexed by the number of the block whose data. they hold. The first 
subcomponent of the concrete state of the service is therefore the storage for the data
blocks. 
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DataBlocks


I dataBlocks BlockNum -+ OataBlock :
 

This subsystem IDay be in any initial state when the service ~ started for the first time, 
so the data-blocks may take any initial values. 

InitDataBlocks I

I ,Oat eBl ocks' 

The sUboperations applicable to this subsystem are those of getting data from and 
putting data. to the store, given the relevant block number. 

GetData 
GetData (bn? BlockNum; datablock! D.IBBlock) 

GetDeta i 

60ataBlocks 
bn? BlockNum 
datablock! DataBlock 

datablock! dat aB locks (bn?) 

PutData 
PutOate (bn? BlockNumi datablock? OataBlock) 

Put Date 
I 

6.0ataBlocks 
bn? BlockNum 
datablock? : OataBlock 

dataBJocks' =dataBlocks e ibn? ~ datablock?} 

Unless otherwise defined, it wiU be assumed that for any state S, 6.S r;;; S AS'. 
Note that the GetOata operation does not define a new subsystem state. This is so 
that it may be conjoined in a later service operation definition either with Put Oat a 
(which does define a new subsystem state), or with a general schema specifying no 
change in state. 
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3.3 Header lIubBylltem 

It is convenient for service users to be provided with a block size sligh t1y larger than 

an exact power of two, so that they can store additional attributes with ea.ch block, 

such as a reference count for a file service. (A conventional size of 512 bytes might be 

increased to 528 bytes, for example). 

SInce data-blocks stored on a disk are usually a power of two in size, not all the data 

component of a service block will therefore fit into a single implemented data-block. 

BJodSjze > DataBJockSize 

The remaining bytes (called the tag) are stored separately. 

TagSjse BJockSiae - DataBlockSize 

Tag :. 0 .. TagSjae-l -+ Byte 

The tag is stored, along with other attributes associated with each block, in a header. 
The other header attributes consist of the Blocklnfo and some extra information 

required by ~he implementation. This includes the block id by which a client Dlay refer 

to the block and an indication of whether the block is currently being used to store 
da.ta. 

Header 

Blocklnfo 

tag Tag 
id Blockld 

~ used Boolean I 

The next subcomponent of the concrete state of the service is then the storage for the 

headers, indexed by the corresponding block Dumber. 

Headers I

I headers B1ockNum -+ Header I 
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Initially, when the service is first started, all the beaders denote unused blocb. 

In i tHeaders 
Headers' 

'rf bn:BlockNum 
headers'(bn).used False 

The suboperations applicable to this subsystem are those of getting header5 from a.nd 
puttlng them to the store. 

GetBeader 
Get Header (bn? BlockNumi header! Header) 

GetHaader I 

~eaders 

bn? BlockNum
 
header! Header
 

header! :; headers(bn?) 

PutBeader 
Put Header (bn? BlockNum; header? Header) 

PutHeeder , 
AHeaders 

bn? BlockNum 
header? ; Header 

headers' :; headers' ibn? ~ header?} 

As in the data subsystem, only PutHeader deflnes a new subsystem etate. 
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3.4. Bit~map sub8y8tem 

It is desirable for blocks which are available for data. storage to be found without 
reading too many headers (and hence ma.lring many disk accesses) during the search. 
To do this, the service implementation includes a bit-map. Each bit .in the map 
indicates the availability of a corresponding block. 

FreeBie ~ 1; UsedBie g a 

The next subcomponent of the concrete service state is therefore the bit-map. 

BitMap
I bitMap: BlockNum ....... Bit:
 

Initially, when the service is fIrst started, the bit-map shows only free (unallocated) 
blocks. 

InttBitMap i 

BitMap' 

ran bitMap' = {FreeBit} 

The suboperations applicable to this subsystem are those of alloca.ting and freeing 
bits, and of finding a block number corresponding to a free block. 

AllocBit 
Al10cBit (bn? : BlockNum) 

AllocBit 
ABitMap 
bn? : BlockNum 

bitMap' = bitMap. {bn? 1--+ UsedBit} 
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PreeBit 
FreeBit (bn? BlockNum) 

FreeBit 

llBitM.P 
bn? : BJockNum 

_bitMap' = bitMap e {bn? I-t FreeBit} ~ 
FiDdFreeBlock 

FindFreeBlock (bn! BlockNum) 

F i ndFreeB lock i 

M3i tNap 
bn! : B1ockNum 

bitNap(bn!) = FreeBit 

This last suboperation is specified non-constructively (it doesn't say which block 
number is to be chosen from several candidates), and would in general involve a search 
through the bit-map to find a block that was marked as free. An associated error 
report is introduced later to cater for the case that there are no free blocks. 

3.6 Count BubsYIJtem 

A separate count is kept of the number of service blocks owned by each client, 80 that 
it is not necessary to scan all the block headers to extract this information. 

This forms a further subcomponent of the concrete service state. 

Counts
 

I counts UserNum ~ BlockCount :
 

It is assumed that the number of users is sufficiently small that a count can be held for 
each user (and hence a total function is used in the specification). 
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Initially, the counts for all clients are zero. 

InitCounts 
Counts' 

ran counts' =' {O} 

Suboperations allow the count for a particular user to be incremented, decremented or 
inspected. 

Inc:Count 
IncCount (usernum? ; UserNum) 

IncCount 
6Counts 
usernum? UserNum 

counts' ; counts s {usernum? ~ counts(usernum?) + 1} 

Dec:Count 
DecCount (usernum? UserNum) 

DecCount
 
6.Counts
 
usernum? UserNum
 

counts' = counts. {usernum? ~ counts(usernum?) - 1}
I I 

FetehCount 
FetchCount (usernum? UserNum; count! BlockCount) 

FetchCount 
6.Counts 
usernum? UserNum 
count! BlockCount 

count! counts(usernum?) 
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3.8 Block identifiers 

The service requires the generation of unique block identifiers. For the sake of easily 
finding the block associated with a particular block id in the implementation, the block 
number is encoded within the id. The id also contains a component to provide 
uniqueness, since the same block number may be re-used many times for different user 
blocks during the lifetime of the service. 

Using the clock value at the time of allocation gives uniqueness down to the 
granularity of the clock (assuming the clock 18 not allowed to run ba.ckwa.rds!). For 
this implementation it is atlsumed that the granularity is sufficiently fine that ea.ch 
service operation will occur at a dHferent time. 

BlockldParts Q BJockNum x Time 

A special function is used to construct a block id from jts components. This must be 
invertible, but should disgu18e the components so that a client is not tempted to make 

use of the encoded infonnation and so become dependent on this particular 

implementation. 

BID BlockIdParts ~ Blockld 

r.n BID c Blockld \ {NullId} 

The range of BID 18 made a sparse subset of all possible block ids (and excludes the 
null id). This provides an initial barrier to attempts to use arbitrary data as block ids, 
and hence a limited amount of security. It is convenient to define a partial function to 
extract the block number from a block id. 

~ , Blockld ~ BlockNum 

I BIDN = BID-I. (A (b.t) ,BlockIdP.rts • b) 

A suboperation is provided to extract the block number from the block id supplied as 
input to a service operation (an associated error report is introduced later to allow for 
a bad id). 
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GetBJockNum 
GetBlockNum (Id? Blockld; bn! BlockNum) 

GetBlockNum
 
id? BlockId
 
bn! : B1ockNum
 

bn! = BIDN(id?) 

Another suboperation constructs a new block id for a given numbered block, using the 
current time. 

NewBlockId 
NelolBlockId (bn? BlockNum; id! BlockJd) 

NewBlockld 
bn? BlockNum 
id! BlockId 
notol 

i d! 

: Time 

= BIO(bn?... notol) 

3.7 CQlUlistency between 8Ubeystems 

There are certa.in consistency constraints which should hold between the 
subcomponents in any valid concrete state. The operations as defined in this manual 
should preserve these constra.ints. HoweverJ it is possible that disk or other operational 
failures ma.y compromise this consistency in an actua.l implementation. These 
constraints therefore form the basis for programs which could check the integrity of 
the information after a crash, and reconstruct a consistent service state. 

The bit-map should reflect the usage infonnation stored in each block header. 
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Bi tMapCons istency -------------, 
Header-s
 
BIt Map
 

V bn:BlockNum
 
header-s(bn).used = True ~
 

bitMap(bn) UsedBit
 

The counts should reflect the number of block headeI'B currently in use by each USer. 

Count Cons i stency I 

Headers 
Counts 

'Ii user: UserNum 
count s (user) ::: 

#{bn:BlockNum 
headers(bn).used 
headers(bn).owner 

} 

True 
user 

'" 

3.8 Combined concrete state 

The complete concrete service state is obtained by combining the state~ of the 
subsystems already described, which must be consistent. The value of the service dock 
is a.lso mwe part of the combined 8tate. 

cSS
 
DataBlocks
 
Headers
 
BitMap
 
Counts
 
BitMapConsistency
 
CountConsistency
 
now: Time
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The identifying number of the client invoking the operation (c 1 i entnum) and a report 
of the outcome of the operation (report!) are common parameters to all service 
operations. 

¢BasicParams 

clientnum UserNum 
report! Report 

Each operation involves a potential change in the state of the service. The current 
time will strictly increase in value from one operation to the next (as required to 
generate unique identifiers). 

nolo/' > no.... 

Sometimes the complete state of the storage service (except for the current time) is left 
unchanged by an operation. 

=c55 • Ac55 I 8(c55'\noH') = 8(c55\noH) 

Some operations leave subcomponents of the state unchanged. 

=Dat aB locks Ac55 eOat aB locks' eOataBlocks•
=B i tMap • Ac55 8BitMap' :=. aBitMap 

=Counts • Ac55 aCounts' aCounts 

Initially, the service state is defined by the initial states of all the subcomponents. 
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cln i t55 

L
Ini.tDataBIOCkS
 
In i t Headers
 
In i tB i tNap
 
InltCounts
 

3.9 Relation to abstract state 

The state refinement step is expressed by relating the abstract user state to the 
concrete implementation state in the following abstraction relation. 

Since the bit-maps and block counts can be derived from the block headers in the 
concrete state, the blocks of the abstract state can be defined entirely in tenus of the 
da.ta~blocks and headers from the concrete state. The identifiers availa.ble as new 
block ids in the abstract state depend only on the current clock va.lue in the concrete 
state. 

ReiSS 
55 

c55 

blocks 
{bn BlockNum; 
heade~ Heede~; 

block Block I
 
header = heede~5(bn)
 

heade~. used = True
 
block. owner = heede~.owne~
 

block.created = heade~.creeted
 

block.expi~e5 =heade~.expi~e5
 

block.data = heade~.ta9 u
 
(dataBlocks(bn) at T,gS;ze) 

headQ~. id ~ block 
} 

ne~id5 

{bn,BlockNum, t,Time It> no" • BID(bn,t)} 

I 
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4. AdditiOlUll operatiOlUl and reporta 

In order to implement the service operations it is convenient to introduce some further 
suboperation!'l. The implementation of key-linked operations is discussed, with the 

iDtroduction of related suboperations. It is also necessary to define the situations in 
which errors will occur aDd the corresponding report values that will be returned. 

4.1 Additicmal operations 

The following additional operations make use of &Ome of the suboperations previously 
defined to perform actions that are required by several of the subsequent service 
operation implementations. 

A suboperat.ion is introduced to combine the extraction of the block number from the 
block id and the reading of the block header (an associated error report is introduced 
later which checks that the given id matches that of the header a.nd that the block is 

still in use). It produces the block number and the header of the block as results. 

GetAttribute. 
GetAttributes (id? Blockld, 

bn! 610ckNum: 
header! Header) j 

GetAttributes 
GetBlockNum [id? bn! 1 
GetHeader [bn!/bn?header!] 
id? BlockId 
bn! : BlockNum 

) header! Header I 

(Note tha~ we introduce the notation S[x] to have an identical meaning to the 
idempotent schema renaming S[x/x] in order to provide an abbreviated reminder of 
the name of a relevant parameter of the schema in question. Schema inclusion is used 
here to 9how that GetAttr ibutes is implemented by calls on Get610ckNum and 
Get Header.) 
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A further suboperation constructs a new block id, given the number of the block to be 
used. It uses this and the client's identity to initialiae the header containing the 

attributes of the newly allocated block. 

NewAttributes 
Ne~Attributes (bn? BlockNumi 

id! Blockld; 
header! Header) 

NewAttr i butes 
NewBlockld Ibn?, ,d' J 
btl? BlockNum 
i d! Blockld 
header! Header 
eli entnum UserNum 

header! . o~ner eli entnum 
header! . i d = i d ~ 

header! . used True 

•.2 Key-linked operatioD.8 

Keys are used to link together related calls of a particular service opera.tion, which in 
conjunction potentially allow all the blocks in the service to be scanned. They are 
implemented via an invertible function of block numbers. Intuitively, the set of blocks 
denoted by a key in a key-linked operation is all those blocks with block numbers less 
tha.n that obtai.ned from applying the function to the key. The StartKey corresponds 
to tbe minimum block number, and the EndKey corresponds to no block number. The 
fact that not all keys correspond to block numbers gives a degree of protection against 
the use of arbitrary key values. 

KN Key ~ BlockNum 

KN(StartKey) = min BlockNum 
E.ndKey Ii! dom KN 

Keys are used to encode the starting and ending positions of scanning operations. 
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These operations involve iteraHons in which the current block number is successively 
incremented. The state informa.tion passed from one scan iteration to tbe next 
therefore cODsis~5 of the current bJock number, plus an indication of whether the last 
block has been ~ached and a count of the number of blocks scanned so fa.r. 

Scan i 

bn BlockNum 
last Boolean 
scanned BlockCount 

On each iteration, 'he block count is incremented and, if the last block has not been 
reached, the next block number is set up. 

6Scan 
Scan
 
Scan'
 

bn ~ mex BlockNum ~
 

bn' = ne)(t(bn)
 
1est' = False
 

bn = max BlockNum ~ 

1ast I = True 
scanned' = scanned + 1 

At the start of a scan, the scan state information is initia.lised. using the input key (an 
appropriate error is defined in the next section in case the input key is invalid). 

StartScan 
Scan 
key? : Key 

bn = KN{key?) 

last = False 
scanned = 0 



Implementor Manual 55 

On finishing a scan, the output key is defIDed according to the final block number, 
depending on whether the last block has been reached. 

EndScan 
Scan' 
key! : Key 

last' = True ~ key ~ = EndKey 
last' = False ~ KN(key') = bo' 

4.3 Error hports 

The report! output parameter of each operation indicates either that the operation 
succeeded or suggests why it failed.. In all cases, failure leaves the state of the service
 
unchanged.
 

Success indicates successful completion of the operation.
 

cSuccess
 
report! : Report
 

report! = SuccessReport
 

The ~tal effect of a service operation is in general defined by overriding the 
definition of the successful outcome of the operation by one or more error report 

schemas. If the precondition in the error schema is satisfied, the corresponding error 
report is returned. Only if the precondition is not satisfied will the operation succeed. 
In each of the following cases, the state of the service remains unchanged if an error 
occurs. 

NoSuchB lock is given if there is no block stored with identity i d? nDlay result from 
either the input of a bad block identifier (which does not correspond to a.ny data block) 
or of an identjfier which denotes a block whkh no longer bas that id or is no longer in 
Use. These two cases can be separately specified as follows. 
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c6adld 
;cSS 

id? : BlockId 

id? ~ dom BWN 
report! = NoSuchBlockReport 

cMlsmatchedId 
;cSS 

GetAttributes [id?bn/bn!.header/headerIJ 
id? BlockId 
bn BlockNum 
header : Header 

(header. id :# id?) \I (header.used = False) 
report! = NoSuchBlockReport 

The combined error report is obtained by overriding one case with the other, since it is 

necessary to check for a bad id before a mismatched id can be checked. 

cNoSuchBlock cMismatchedId • cBadId 

NoSpace indicates that a. new block cannot be created when the storage capacity of 
the service is exhausted (i.e. when a search of ~he bit-map shows that all blocks a.re in 
use). 

cNoSpace i 

=cSS 

ran bitMap < {UsedBit} 
report! :::: NoSpaceReport 

NotOl-tner indicates an attempt to perform aD operation which can destroy a block by 
a client wbo does not own the block. 
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cNotO...ner , 

:c55 
GetAttributes {id?,bn/bn!,header/header!1 
id? Blockld 
bn : BlockNum 

header Header 

header. owner # clientnum 
report! = NotOwnerReport 

Not Manager is given if a management operation is attempted by a client who is not 
the service manager. 

cNotManager

I :c55
 

eli ent num # Manager
 
report! = NotManagerReport
 

BadKey indicates that a key value has been given as input which does not correspond 

to any block. 

cBadKey I 

:c55 
key? I(.ey 

key? ii! dom KN 
report! = BadKeyReport 

In the implementation described here l no account has heen taken of potential faults in 
the underlying hardware l such as bad disk blocks. Faults that are unrecoverable are 
allowed for in the abstra.ct service specification by the ca:teh-all error report 
Serv i ceError. In this event, the state of the service is specified t~main unchanged. 
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5 Operation im.plementations 

The service operations are redefined here in terms of the concrete service state, making 
use of the 5uboperations from the subsystems. Each service operation is specified by 
conjoining the suboperations which are used in its implementation (by the use of 
schema inclusion). 

Parameter passing between suboperations is denoted by defining some auxiliary buffer 
variables in the operation schema. The correspondence between the 'formal' 
parameters of the suboperations and the 'actual' parameters of an operation 
implementa\ion is specified by renaming applied to each included suboperation 
schema. 

As in the "User Manual", the description of each operation has three sections. 

The Abatraet section is included to reduce cross-reference with the "User Manual". It 
gives the procedural interlace to the operation for a program running on a client 

machine. This will of course need to be adapted for a particular programming 
language. 

The Dermition section gives the formal description of the operation in terms of the 
concrete state together with informal details to aid the implementor. In general, the 
operation definitions make use of some suboperations, shown as included schemas with 
parame\er renaming. Though there is no formal indication of the ordering amongst 
these suboperations, the order in which they are presented is intended to reflect the 
order in which they would be invoked in the implementation. The ordering is intended 
to ensure that each variable is defined before it is used, so leading to a procedural 
program. 

The Reports section covers error conditions to produce a formal description of the 
total operation. As in the User Ma.nual, schema overriding ($) is used to define an 
ordering of potential error outcomes. This means that the later errors in a sequence of 
overrides will be produced, if appropriate, rather than earlier ones. The successful 
outcome, which comes first in the definition, will only be produced if none of the error 
conditions are sa.tisfied. 
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&.1 Client operauontl 

There are eight operations the ordinary client may ask the service to perform: 

Create 

Read 

St atus 

Destroy 

Replace 

SetExpi ry 

GetIds 

GetCount 

create a. new block and store it 

read the da.ta of a block 

obtain the sta.tus of a block 

remove a block from the service 

replace one block with wother 

change the expiry time of a block 

obtain the identities of blocks currently owned 

by the client 

obtain the number of blocks currently owned 
by the client. 
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CREATE 

Abstraet 
Create (expiry? Time; 

data? BlockData; 
id f Blockld; 
report! Report) 

DefiDitiou 

cCreat esuccess I 

<leSS 
FindFreeBlock Ibn/bn!] 
AlloeBit [bn/bn?] 
NewAttr i butes [bn/bn? i d!. header/header! ] 
PutData [bn/bn?,dateblock/datablock?] 
Put Header {bn/bn?header/header?l 
IncCount [cl ientnum/usernum?] 
expiry? Time 
data? : BlockData 
id! Bloekld 
bn : BlockNum 
datablock : DataBlock 
header : Header 
cl ientnum UserNum 

datablock ::; data? illm TagSize 
header. tag = data? 'a.!JllQ TagSjze 
header. created = now 
header.expires = max {now. expiry?} 

A free block is found, it is marked as allocated and a new header is created for it. The 

expiry time of the block is set according to the givell parameter. The data is split 
between the hea.der tag field and the data-block. The data and header are written to 
the disk, and the block count incremented for this client. 

Reports 
cCreate ~ (cCreatesuccess "cSuccess) 

Gl cNoSpace 
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READ 

Abotraet 
Reed (id? 

data! 
report! 

Blockld; 
BlockDats; 
Report) 

DefWtion 

cReedsuccess 
::cSS 

GetAttrlbutes [id?bn/bn!,header/header!] 
GetData [bn/bn?dateblock/datablock!] 
id? Blockld 
data! : BlockOeta 
bn 810ckNum 
detablock OetaBlock 
header Header 

data! = header. tag U (datablock Itl. TagSjze) 

The data i8 reconstructed from the header tag field and the data-block contents.
 

The state of the service is not changed.
 

R.poria
 

cReed == (cReadsuccess " cSuccess) 
• cNoSuchBlock 
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STATUS 

Abstract 
Status (id? Blockld: 

ol,mer! Used~um; 

crest ed! Time; 
expIres! Time; 
report! Report) 

Definition 

cSt at USSUCCESS 

, .c55 

GetAttributes [id?,bn/bn!,header/header!] 
id? , Blockld 
OHner! UserNum 
created! Time
 
expires! Time
 
bn BlockNum
 

oHner! header. owner
 
created! header. created
 
expires! header.expires
 

The appropriate attributes are returned as output parameters.
 

The state of the service is not changed.
 

Reports
 
cSt at us ~ (cStat USSUCCESS "cSuccess) 

• cNoSuchBlock 
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DESTROY 

Abstraet 
Destroy (id? Blockld. 

report! Report) 

Definition 

cDestroysuCCl!'SS I 

lleSS 
=DataBloeks 
GetAttributes [id?bn/bn!,header/header!I 
PutHeader (bn/bn?,header'/header?] 
FreeBit [bn/bn?) 
DecCount [el ientnum/usernum?l 
id? Bloekld 
bn 810ckNum 
header Header 
header' Header 
cl ientnum UserNum 

header' . used ::. False 

The header a.nd relevant bit in the bit-map a.re marked as being free and tbe block 
count for this client is decremented. 

The data·block and new id components of the service state are Dot changed. 

Reports 
eOestroy ~ (cDestroYsuccess A eSuceess) 

• cNotOHner 
• eNoSuch810ek 
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REPLACE 

Abstract 
Replace (id? Blockld; 

data? BlockData; 
id! Blockld; 
report! Report ) 

Definition 

cRep1acesuccess 
~cSS 

=6 i tMap 
=Counts 
GetAttributes [id?bn/bn!,header/header!] 
NeHAttributes [bn/bn? id!.header' /header! 1 
PutData [bn/bn?datablock/datablock?J 
Put Header [bn/bn?,header'/header?] 
id? Blockld 
date? : BlockData 
id! BlockId 
bn : BlockNum 
datablock DataBlock 
header Header 
header' Header 

header' .created =now 
header' .expires = header.expires 
header' .tag = data? upto TagSize 
datablock = data? from TagSise 

A new header is created for the block, including a new block identity, partly from the 
old attributes and partly from the input parameters. The expiry time remains the 

same as for the old block. The new data is split between the hea.der tag field and the 
data.·block, which is overwritten (since the block number remains the same). 

Reporta 
cRep 1ace ~ (cRep1acesuccess "cSuccess) 

• cNotOwner
• cNoSuchB lock 
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SETEXPIRY 

Abstract 
SetExpiry (id? Blockld; 

expiry? Time; 

report! Report) 

DeCinitiOll 

cSetExp i rYsuccess 
t.cSS 

~DataB locks 

"BitMap 
=Counts 
GetAttributes [id?bn/bn!,header/header!] 
Put Header [bn/bn?header'/header?} 
id? BlockId 
expiry? Time 

bn BlockNum 
header Header 
header' : Header 

header' .OHner ::: 
header' .created ::: 
header' .expires :::: 
header' . tag :::: 

header'. id == 

header' . used :::: 

header. Olomer 

header. created 
max{noH.expiry?} 
header. tag 

header. id 

header. used 

The expiry field in the block header is changed to give the block the desired expiry 
time. The rest of the header remains unchanged. 

Reports 
cSetExpiry e (cSetfxpirYsuCC12SS A cSuccess) 

• cNotO"mer 
• cNoSuchBlock 
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GETIDS 

Abstrac::t 

Get Id. (key? Key; 

count? BlockCount. 

key! Key: 
idset! BlockldSet 
report! Report) 

DefinitiOD 

This operation involves a scan of some of the block headers. The information passed 
from one scan step to the next consists of the standard scan information (defined in 

section 4.2)1 plus the accumulating id set 

~canlds I 

l!.Scan 
i dset BlockldSet 

idset' BlockldSet 

For each relevant block hea.der obtained from scanning the disk, the id of the block is 
added to the result set only if the block is in use and it is owned by the client. 

GetBlockld I 

l!.Scanlds 
[bn/bn? header/header!}Get Header 

BlockNumbn 
Headerheader 
UserNumc 1 j entnum 

(header. used = True) A (header.ol-lner = cl ientnum) ::::::> 

idset' = idset u {header. id} 
(header. used :# True) v (header. owner :# cllentnum) ==> 

idset' = idset 

Thill f;can operation is iterated as many times as necessary in order to accumulate all 
ids of blocks owned by the client, starting from the initially given block number and 
continuing up to either the laat block header, or to a maximum number (count?) of 
returned ids, or after a maximum number (MaxScan) of blocks have been scanned. 
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Endld~Iteration 
Sc:anJds 
count? : 6lockCount 

(1 ast = True) v 
(Widset=count?) v 
(scanned = AlaxScan) 

The service operation is then implemented by this iteration (see page 86 for definition 
of the schema ~ operator). Iniflally the set to be accumulated is empty. The fina.l 

accumulated set is returned as the result. 

cGet I d ssuccess i 

=cSS 
.6.Scanlds 
StartScan 
GetBlockld ~ ~Endldslteration 

EndScan 
key? Key 

count? 61ockCount 
key! Key 
idset! BlockldSet 

idset o 
idset! idset' 

Reporlo 

cGetlds Q (cGetldssu::cess 1\ cSuccess) 
II c8adKey 
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GETCOUNT
 

Abstract 
GetCount (count! 

report! 
B1ockCount : 
Report) 

Definition 

cGet Count success I 

Ec55 
FetchCount [cl jentnum/u~ernum?,count!] 

count! BlockCount 
cl ientnum : UserNum 

The number of used blocks owned by the client is returned, as determined from the 
stored count infonnation. 

The state of the service remains the same. 

Reporio 

cGetCount 9 (cGetCountsuc:cess A cSuccess) 
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5.2 Ma..nager operatioD.8 

Operations associated with the management of the service may only be performed by a 
special client called the service manager. 

There are two manager operations specific to the storage service: 

Scavenge remove expired blocks 

Prof i 1e obtain details of block usage. 
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SCAVENGE 

Abstract 
Scavenge (key? Key: 

key! Key; 
count! B1ockCount ; 
report! Report) 

Definition 
This operation involves a 8Ca.n of some of the block headen;. The information passed 
from one scan step to the next consists of the standard scan infom'l.atioD (defined in 
section 4..2), plus a count of scavenged blocks. 

AScanScavenge 
lI.Scan 
scavenged BJockCount 
scavenged' BlockCount 

[ 

Each block which is eligible for scavenging has its header set to indicate it is free , and 
the cOm'lsponding bit-map bit is freed. The count of blocks used by the owner of the 
block is decremented. The count of scavenged blocks is incremented. 

ScavengeB lock i 

~cSS 

=DataBlocks 
lJ.ScanScavenge 
GetHeader {bn/bn?,header/header!} 
PutHeeder [bn/bn?header'/header?] 
FreeBit [bn/bn?] 
DecCount [owner/usernum?] 
bn BlockNum 
header : Header 
header' Header 
OHner : UserNum 

header' . used = False 
OHner =header. owner 
scavenged' = scavenged + 1 
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Ineligible blocks axe those which axe not in use or have not yet expired. For these 
blocks the scavenge count and the state of the service remain unchanged. 

NotExp i radB lock 
=cSS 
6Scenscavenge 
GetHeader [bn/bn?header/header!] 
bn BlockHum 
header Header 
now Time 

(header.used = False) v (header.expires ) now} 
scavenged' = scavenged 

The basic operation per block involves checking whether it has expired, and if so 

scavenging it. (Note that the Get Header suboperation in the above two schemas need 
only be invoked once in the combined checking operation). 

CheckBlock ~ scavengeBlock. NotExpiredBlock 

This SCa.D operation is iterated as many times as necC8sary in order to scavenge all 
blocks, starting from the initially given block number and continuing up to either the 
last block hea.der, or after a maximum number (MaxScan) of blocks have been 
scanned. 

EndScavengelterat ion I 

ScanScavenge 

(lest = True) v (scanned MaxScan) 

The service operation is then implemented by this iteration (see page 86 for definition 
of the schema ~ operator). Initially the count of scavenged blocks is zero. The 
final scavenge count is rE!turned as the result. 
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cScavengesucce5S 

Key 
Key 
B1ockCount 

6cSS 
AScanScavenge 
StartScan 
CheckBlock ~ 

EndScan 

key? 

key! 
count! 

~EndScavengelteration 

scavenged = 0 
count! = scavenged' 

Reporla 

cScavenge Q (cScavengesuccess	 1\ cSuccess) 
ED cBadKey 
• cNotnanager 
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PROFILE 

Abstrad 
Profi le (key? Key; 

key! Key: 
infoseq! 81ockInfoSeq; 
report! Report) 

Def"mition 

This operation involves a. sca.n of some of the block headers. The information pa.ssed 
from ODe Bcan step to the next consists of the standard scan informa.tion (defined in 

section 4.2), plus the accumulating information sequence. 

AScanlnfo 
scen
 

infoseq BlockInfoSeq
 
infoseq' 81ockInfoSeq
li------- 

For each block whose header is scanned, the releva.nt header information ia appended 
onto the sequence of block information only if the block is in use. 

GetBlocklnfo --, 

=cSS 
AScanlnfo 
GetHeader [bn/bn?,header/header!] 
bn : 810ckNum 
header : Header 

( header. used = True) .... 
infoseq' i nfoseq'-' <headertBl ocklnfo> 

(header.used ~ True} =t 

infoseq' ::: infoseq 

This ecan operation is iterated as many times as necessary in order to accumulate all 
the block infonnation, starling from the initially given block number and continuing up 
to either the last block header or after a maximum number (MaxScall) of blocks have 
been sca.nned. 
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Endlnfolteration 

ScanI

(1 est 

nfo 

= True) v (scanned = MaxScan) 

Note that in order to ensure that the output sequence is not too long: 
MaxScan ~ Maxlnfos 

The service operation is then implemented by this iteratJon (see appendix for definition 
of the schema !:!b..U.§. operator). Initially the sequence to be accumulated is empty. 
The final accumulated sequence is returned as the result. 

cProf i 1esuccess 

Key 
Key 
BlocklnfoSeq 

"c55 
ll.Scanlds 
StertScan 

GetBlocklnfo 
EndScan 
key? 
key! 

infoseq! 

~ -EndlnfoIteration 

infoseq = <> 
infoseq! = infoseq' 

Reports 
cProfi le ~ (cProfi lesucce5s A cSuccess) 

• cBadKey 
• cNotManager 
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6 Complete service 

This section provides a combined definition of the operations of the implemented Block 
Storage Service. It does not include details of the implementation of service 
components, such as access control and accounting, which are incorporated from the 

"Common Service Framework". 

Both in the abstract and the concrete model of the service, the ba.eic parameters are 
supplemented by two hidden parameters, an operation identifier (op?) and tbe cost of 

executing the operation (cost ~). 

¢Params I 

¢E!asicParems 
op? Op 
cost! : Money 

Since all cbarges for this service depend only on the operation parameters, and Dot 
directly OD the concrete state of the service, the definition of the $SSTar j ff framing 

schema given in the "User Manual" does not require further eJaboration for the 

implementation. 

The implemented service operations can then be brought together into a single 
definition as follows. 

cBasicOps ~ 

(</>SSTariff , 

(cCreate /I. ¢Per-ems lop? = G.reateOp ) v 

(cRead A ¢Per-ems lop? = ReadOp ) v 

(cStatus /I. ¢Perems lop? = SlatusOp ) v 

(cDestroy A ¢Par-ems lop? = DestroyOp ) v 

(cReplace /I. ¢Per-l!!lms lop? == Repla~Op ) v 

(cSetExpir-y A ¢far-ems lop? = SetExpiryOp ) v 

(cGet Ids /I. ¢Parems lop? = GetIdsOp ) v 

(cGetCount /I. ¢Far-ems lop? == GetCotlntOp ) v 

(cScavenge /I. ¢ferams lop? = ScavengeOp ) v 

(cProf i le A ¢ferams lop? = ProfileOp ) ) 
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7 Disk layout and cacheing 

In this section, some refinements are made to the subsystems that have been presented 
so far. Since the permanent state of the service is to be stored on disk, it is necessary 
to describe the implementation of headers and bit-maps in teTIll8 of ph~ical disk 
blocks. Together with the data-blocks, these then comprise the layout of information 
on the disk itself. 

The specifications of the header and bit-map subsystems presented earlier can be 
considered as the intermediate abstract states and operations for which concrete 
implemen tations are now provided. 

7.1 Beader bloeb 

Typically, a number of block headers can be contained in each block stored on disk, 80 

a header-block will consist of an array of block headers indexed by their position in the 
block. 

HeadersPerBlock = DiskBlockSize d.i..Y. HeaderSize 

HeaderBlockP05 s 0 .. HeadersPerBJock-l 
HeaderBlock ~ HeederBlockPos ~ BlockHeader 

Header-blocks are given numbers from the set HeaderBlockNum) which must be large 
enough to allow headers to be stored for the maximum Dumber of blocks in the 
service. 

HeaderBlockNum f N 

MaxBlocks ~ $lHeederB 1ockNum * HeadersPerBlock 

Two functions indicate the header (identified by its header-block Dumber a.nd position 
within that header-block) associated with any particular numbered data-block. The 
exad definition of these functions depends on the chosen layout of blocks on the disk, 
and is not given here. However) each block must be associated with a different header. 



I..mplementor Manual 77 

HBN BlockNum ~ HeaderBlockNum 
HBP BlockNum ~ HeaderBlockPos 

~	 bnl.bn2:BlockNum I bnl ~ bn2 • 
(HBN(bnl) , HBN(bnZ) v (HBP(bnl) , HBP(bnZ» 

The headers subcomponent of the concrete service 6tate is represented by the storage 
for the header-blocks, indexed by the corresponding header-block nunlber. 

HeBderBlocks 
headerBlocks HeaderBlockNum ~ HeaderBlock 

Initially, when the service is first sta.rted, all the header-blocks contain headers 
denoting unused blocks. 

InitHeBderBlocks
 
HeaderSlocks'
 

'V bn:BlockNum 
headerBlock~'(HBN(bn»(HBP(bn»).used False 

The representation relation between the abstract Headers and tbe concrete 
HeaderB locks is as follows. 

RelHeaders	 i 

Headers 

HeaderBlocks 

headers = A bn:BlockNum 

headerBlocks(HBN(bn»(HBP(bn» 

A header buffer is also introduced as an additional state componem, to hold a single 
header-block with a particular number, for the duration of a service operation only. 

HeaderBuffer 
hnum HeaderB 1ockNum 
hblock HeaderS lock 
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The suboperations on the hea.ders subsystem are implemented in terms of these new 
state components. 

GetHeader 
GetHeader (bn? BlockNum: header! Header) 

cGetHeader
 
lI.HeaderB locks
 
HeaderBuffer
 
bn? BlockNum
 
header! : Header
 

hnum HBN(bn?)
 
hblock headerBlocks(hnum)
 
header! hbl ock(HBP(bn?))
 

PutHead.. 
Put Header (bn? BlockNum; header? Header) 

cPutHeader
 
6HeaderB locks
 
HeaderBuffer
 
bn? BlockNum
 
header? Header
 
hblock' HeaderBlock
 

hnum • HBN(bn?)
 
hblock' hblock s {HBP(bn?) ~ header?}
 
headerBlocks' headerBlocks • {hnum ~ hblock'}
 

When putting a. new hea.derJ it must have the same header-block number as the 
existing header-block in the buffer. This allows a Dew header-block to be formed by 

simply replacing the appropriate header component, leaving the rest of the header
block unchanged. This constraint is met in the service operation implementations, 
where each put is preceded by a get for the same block number. 
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7.% Map b1o<ka ""d acll. 

The bit-map showing block usage ill stored within several physical blocks on the disk. 
Many bits are contained in each map-block, each bit being indexed by its position in 
the block. 

BitsPerBJock DiskBJockSize * ByfeSise 

MapB IockPos a: O.. BitsPerBJock-l
 
NapSlock Q NapBlockPos ~ Bit
 

Map-blocks are given numbers from the set NapB 1ockNum. which must be large 
enough to allow bits to be stored for the maximum number of blocks in the service. 

MapBlockNum F N 

MaxBJocks ~ _MapB JockNum * BitsPerBJock 

Two functions indicate the bit (identified by its map-block number and position within 
that map·block) associated with any particular numbered data.block. The exact 
definition of tbese functions depends on the chosen layout of physical blocks on the 
di5k, and is not given here. However, each block must be associated with a different bit 

in a map·block. 

MBN BlockNum -+ NapBlockNum 
MBP : BlockNum ~ MapBlockPos 

Y bnl,bnZ'BlockNum I bnl ~ bnZ • 
(MBN(bnl) ~ MBN(bnZ» v (MBP(bnl) ~ MBP(bnZ» 

The bit-map subcomponent of the concrete service state is represented by the storage 
for the map·blocks , indexed by the corresponding map-block number. 

NapBlocks ---.
I mapBlocks NapBlockNum ~ MapBlock , 
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Initially, when the service is first started, all the map·blocks denote free blocks. 

InitNapBlocks 
MapBlocks' 

V mbn:MapBlockNum 
ran mapBlocks'(mbn) ::: {FreeBi~} 

In order to oplimise the use of the bit-map, particularly to allow rapid identification of 
free blocks when allocating new blocks, the concrete service state includes a cache for 
a single map-block (it is called a cache here, rather than a buffer I since it persists 

between one service operation and the next). The cache holds the ma.p-block and its 
map·block number. 

tlapCache 
mnum MapBlockNum 
mblock MapBlock 

Initially, the cache holds a copy of the lowest numbered map-block, which Us all 'free'. 

In i tMapCache 
MapCache' 

mnum' = min MapBlockNum 

ran mblock' = {FreeBit} 

The representation relation between the abstract B j t Map and the concrete 
MapB locks and MapCache is as follows. The cached map.block overrides the 
corresponding ma.p-block stored on disk. 

RelBitMap I 

BitMap 
MapBlocks 
MapCache 

bitMap = A bn:BlockNum • 
(mapBlocks S {mnum ~ mblock})(MBN(bn»(MBP(bn» 
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The suboperations on the bit-map subsystem are implemented in terms of these new 
state components. 

An additional 8uboperation is introduced for use in the following two suboperations 
which allocate or free the bit associated with a particular block. Given the number of 
a block whose corresponding bit is to be altered, this suboperation checks whether the 
bit is to be found in the cached map-block or not. If not, the cached map-block is 
flushed to disk and the r~levant map-block obtained from disk. In either case, the the 
bit is set to the requested value in the finally cached map-block. 

UpdateMap 
UpdateMap (bn? BlockNum: val? BH) 

UpdateMap 
MapBlocks 
MapCache 
bn? BlockNum 
vel? Bit 
newmblock MapBlock 

mnum' = MBN(bn?) 
mnum' = mnum ... 

mapBlocks'	 = mapBlocks 
=mblock,~mn::~~l~~m =+ 

I
 
mepBlocks' = mepBlocks _ {mnum ~ mblock}
 
newmblock = mapBJocks(mnum')
 

mblock' =newmblock s {nBP(bn?) ~ val?}
 

AlJocBit 
AllocBit (bn? BlockNum) 

cAllocBit 
UpdeteMap [bn?,val/val?J I 

bn? BlockNum 
val : Bi t 

va 1 = UsedBit 
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PreeDit 
FreeBlt (bn? 81ackNum) 

cFreeBit I 

UpdateMap [bn?val/val?} 
bn? BlockNum 
val : Bi t 

va1 = FreeBit 

A further operation is introduced to find the block number of a (ree block. The cached. 
map-block is searched. fJnJt for a free bit. Only if none is found will the map-blocks on 
disk be used. This could involve a scan of all the map-blocks at the next lower level of 
refinement of the implementation. 

PindFre.Block 
FindFreeBlock (bn! B\ockNum) 

cFindfreeBlock -, 

tJ1apBlocks 
tJ1apCache 
bn ! : BI ockNum 

FreeBit E ran mb 1ock ~ 

MBN (bn !) = mum 

mblock(MBP(bn'» = FreeB;! 
FreeBit tl! ran mb 1ock ~ 

mapBlocks(MBN(bn! »(MBP(bn!» = FreeBit 

The corresponding error report, which indicates that there are no (ree blocks on the 
disk, also has to be refined in terms o( the map·blocks and cache. 
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cNoSpace l I 

=cSS 
sMapBI OCk9 
=MapCache 

FreeBit Ii!! ian mb lock 
V bn:BlockNum • 

FreeBit Ii!! ian rnapBlocks(I1BN(bn» 

repoit! = NoSpaceReport 

Clearly, only one sca.n of the disk would be required to either produce this error 
report, or to identify a free block. Therefore the schemas F i ndFreeBl ock and 

cNoSpace would be implemented by the same code, 

7.3 Diok layout 

It is assumed that the Block Storage Service is to be implemented on a random access 
pennanent storage device (such as a magnetic disk) which may be modelled as an 
array of fixed size blocks. Each disk block may be used to store a data-block, a 

header-block or a map~block. 

DiskBlock : := Di9kData «DataBlock» 

DiskHeader «HeaderBlock» 

Di skMap «ttapBlock» 

The disk blocks are numbered consecutively up to the capacity of the disk. 

DiskBlockNum ~ O.. MaxDjskBlocks-t 

I
Disk

di9kBlocks: DiskBlockNu~ -+ DiskBlock : 

The number of blocks on the disk must be sufficient to hold all the required blocks of 
the service. 

MaxDiskBlocks ~ 11810ckNum + IIHeadeiB 1ockNlJm + _napB I ockNum 
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The layout of the different kinds of blocks OD the disk is given by the mappings from 
the specific block numbers to the disk block numbers. The layout is not specified in 
greater detail here, as it will depend on a particula.r disk design, but clearly the 
diHerent kinds of block must occupy disjoint areas of the disk. 

DLs!jout BlockNum ~ DiskBlockNum 
HLayout HeaderBlockNum ~ DiskBlockNum 
I1Layout MapBlockNum ~ DiskBlockNum 

disjoint (ran DLayout. ran HLayout, ran MLayout> 

The contents 01 the disk a.re simply tbe contents of the specific kinds of block placed in 
the appropriate locations according to the layout maps. 

Di skContents 
Disk 
OataB locks 
HeaderBlocks 
MapBlocks 

diskBlocks 
DLayout -1 
HLa'dout -1 
MLayout -1 

dataBlocks 
neaderBlocks 
mapBlocks 

DiskDeta 
Di skHeader 
DiskMap 

U 
U 
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8 Implementation correctness 

It would be importan t to show that the implementa.tion of the Block Storage Service as 
described in this manual correctly implements the view presented in the user manual. 

In order to do this, each state refinement step expressed as an abstraction relation, 

whether of the whole service or of ODe of its subsystems, must be considered in turn. 

For each one it must be shown that there exists a concrete state that represents each 
abstract state. For service initialisation, the concrete initial state must be shown to 

correspond to a valid abstract initial state. For each operation, it must be shown that 
the concrete operation may be applied whenever the abstract operation may be 
applied, and that it will then produce a. result satisfying the abstract specification. 

However) the implementations of the operations contained in this manual have Dot so 
far been proved correct in this respect. The manual must therefore be looked upon as 
an illustration of a style of implementation specification, rather than as containing a 
proven implementation design. 
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Appendix: Iterating echemas 

If P is a schema which represents an operation on a state schen~,. S (having undashed 
and dashed components repre.senting the state before and after the operation), and B 

is a schema representing a predicate defined on S, iteration over P can be defined as 
follows. 

LeI 
"5 
I D 
1\'1"1 

•
• 

5 A 5' I 85 
..,e A =S 

(BAP),I, 

85' 

'r/ j:N 

then 

P~B Io v II v 12 v _.•
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1 btrodue:tion 

The design and documentation of the Block Storage Service has been developed in 
stages over the duration of the project. The history of this development is summarised 
in the next section. 

The subsequent sections look at the design choices and the documentation from the 
point of view of both the user and the implementor of the service, corresponding to the 
two manuals contained in the previous chapters. Alternative design choices a.re 
discussed for each of the two levels of abstractioD, and some comments made on the 
way in which the manuals have been presented. 

This chapter concentrates on the experience gained from the specification and 
implementation of the Block Storage Service in particular. Some general improvements 

in manual style, and the introduction of the Common Service Framework to provide 
the definition of common service characteristics, are both discussed in "The 

Specification of Network Servicesll 181. 

2 IlilJtory of development 

3.1 Original design 

The original design of the user interface to the Block Storage Service was developed, 
and specified in Z, by Carroll Morgan and Roger Gimson. This led to the production 
of the fir8t User Manual for which many of the conventions of presentation shown here 
were first devised. It it; this design which was presented as part of a monograph at the 
end of the first stage of the project [lJ. 

2.2 Implementation 

Having designed the u~er's view of the service, and produced a User Manual, an 
implementation was designed and coded by Carroll Morgan without further use of 
format techniques. The objective at this stage wa.s to get something working so that 
the feasibility of the user interface could be assessed. In any case, no formal 

refinements of signifkant size had been undertaken at that stage in the development of 
the Znotation. 
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The implementation (written in Modula~2 running on an LSI~ll) was found t.o be 
adequate, and is still essentially unchanged. The service provides data storage 
faciljties for spooled laser printer outpul, and a. certa.in amount of backup storage, for 
members of the Programming Research Group to this day. 

2.3 Implementor maunal 

In the second part of the project, it was decided to produce an Implementor Manual 
for the Block Storage Service that reflected the exist.ing implementation. Though t.his 
is not the recotnmended methodology (after all, one of the main objectives of the use of 
formal specification methods is to more clearly express design choices at. an abst.ract. 

level ~ producing any code), it allowed implementation design deci!ions to be 
assumed. while the presentation a.n.d structure of the specifica.tion in the manual were 
considered. 

The Implementor Manual has been through two earlier VertliOllS before the form 
presen led in the previous chapter was evolved. Jonatha.n. Bowen produced the rl.I'8t 
version, which was then rewritten and extended by Roger Gimson. Changes have 
largely been motivated by the wish to structure the design into sepa.rat.ely 
understandable subsystems, so giving the implementor firm guidelines t.o the st.ructure 
of the final code. 

Though the design essentially reflects the structure of the existing implement.at.ion, it. 
was found tha.t the 5uboperations on the components of the service state didn't 

necessarily correspond to routines in the existing code. If time had permitted, it would 
have been an interesting exercise to rewrite the code to conform to the manual. 

3 Detlign of the usel' iDterf'aee 

The design of a low-level data stonge service was chosen in order to keep t.he 
complexity of the service under control, while providing a basis for the implement.at.ion 
of bigher-Ievel facilities. Such a. sepantion is Dot novel in itself (see, for example, t.he 
Amoeba system [9]), though tbe design turned out to incorpora~ some unusual 
characteristics. 
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3.1 Limited life 

The m}tiaJ design choices were greatly influenced by a model of a dry-cleaning service, 
originally proposed by Tony Hoare as a suitable study of an existing human-oriented 
service. 

The idea of enforcing a fixed lifetime on the data arose from that study. A dry· 
cleaning service will dispose of any clothes that have been left for cleaning but not 

been claimed after a suitably long period. By this analogy we mitigated the fear that 
users would object if their data suddenly vanished at some point in the (uture. 

Clearly the storage media implementing any particular service will not la.l5t (orever 

but users are conventiona.lly happier thinking that their data will remain there 
indefinitely un~il they explicitly force change. 

In practice, lifetimes have been used in two distinct ways. For temporary data, such as 
spooled printer output, a short lifetime is used (of perhaps one or two da.ys), so that 
data. will normally expire rather than be explicitly destroyed. For permanent data, 

such as backup storage, a medium or long lifetime is used (from a few months to a 
year or more); occasiona.lly an archive program will be used by a client to explicitly 
destroy data. which is ,;0 longer required, and extend the expiry time of data. to be 

retained. 

3.2 Immutability 

The initial design a.lso embodied the idea tha.t stored blocks were immutable. Any 
given block identifier could only ever refer to the 'same' stored data. There is no 
operation which can change the data associated with a particular identifier. 

Particularly in a shared service, the property of immutability is very valuable since it 
allows a user to be sure that an identifier that they hold can only refer to a particular 
data item, irrespective of operations being performed by other users. It presents the 
S<UDe kinds o( advantages and disadvantages as in the manipulation of data structures 
in purely functional programming languages. 

In some applkations with tree-structured data, such as directories of files, an 
underlying immutable implementation imposes \he condition that any change to a leaf 
of the structure also changes the complete path back to the root. For balanced 
structures, this introduces a penalty of at worst logarithmic complexity. It may also 
have the disadvantage of requiring all references to the data to be channelled through 
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the single root node. 

However, immutability does, for example, provide a natural way to do check·pointing. 
Assuming the components of the structure are not destroyed (or do not expire), a 
snapsho~ of a complde tree structure may be held as a single reference to the root. 

To ensure strict immutability, and if the expiry time of a block is considered as part of 
its value, the service operation which changes the expiry time ahould alao change the 
identity of the block. This was not done in the implemented system, mainly from a 
wish to be able to change the lifetime of a tree-structured object, like a me, without 
rewriting all its non-leaf nodes. 

3.3 Tags 

At one stage in the initial design, the 'tag' part of the data in a block (tbat pan which 
extends the size of a block to be slightly larger than a conventional disk block) ¥fas 
distinguished mthe user jnterface, $0 that its value was provided separately in a block 

creation operation, and could be returned as part of a s'atus operation. This 
distinction was dropped as being too 'implementation-inspired'. 

Later discussions about implementing other services on top of the Block Storage 
Service raised the possibility of making the tag mutable. It could then be used, for 
example, for storing a reference count to the block without ha\<ing to change the 
associated block id. This would be a relatively straightforward change to both the 
specification and implementation of the service, though it would introduce the need. for 

further operations to set and get the tag field. 

3.4 Key-linked operatiOl18 

One place where implementation issues do intrude more than they might is in the 'key
linked' operations. These arise from the wish to make each service operation 
correspond directly to a single network procedure call, which for practical reasons is 

limited in duration and size of parameters. Sjnce these operations are requued to 

return sets or sequences of potentially large size, and could ta.ke correspondinglY long 
to execute, th<ey each return only a part of the desired set or sequence. 

This pa.rtitioning could be hidden from the user at a higher level by defining a single 
operation which wouLd be implemented by the appropriate sequence of key-linked 
operations, and which would construct the whole of the resultant parameter. However, 
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it might be misleading to define this single higher-level operation as an atomic 
operation on the state of the service; at least the current formulation correctJy 
describes the effed of other user operations interleaved between the components of a 
key-linked sequence. 

3.5 Lifetime VB. expiry 

The user interface design presented in this monograph differs from the first phase 
design in some small but significant ways. 

The definition of the lifetime of a block as an interval from the creation time has been 

replaced by explicit definition of the expiry time. The latter makes it possible to 
ensure that a set of blocks all have the same expiry time, wherea.s in the former this 
could vary according to the time of invocation of an operation. This means that, when 
implementing a higher-level data structure from blocks, there can be a simple invariant 
that all the constituent blocks will exist for as long as the higher-level structure exists. 

3.6 Manager operations 

Another difference from the initial design is that the acavenge operation has been 
made an explicit manager operation, rather than an asynchronous internal operation 
of the service. This corresponds to a change made to the implementation which 
a.llowed the sca.venging to be invoked as an explicit operation. 

The profJ.le operation was also added as another manager operation. The normal 
service user does not need to be aware of these operations. However, they do form a 

legitimate part of the user interface, if only for the special user who is the manager. 

3.7 Seavenging 

There is still a debatable point of design concerning scavenging. As the service is 

presented here, a block is still accessible until it is scavenged, eveD though it may have 
passed its expiry time. 

In the first version of the design, with scavenge as an asynchronous internal operation, 
the implementor was given some freedom of choice. The scavenge could be consjdered 
to occur immediately before an access was attempted, resulting in no access to such 
blocks, or to occur sometime later, meaning such blocks migh t be accessible. 
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There may be a good case for forcing blocks to disappear as 800n as they reach their 
expiry time, so that, for example, it is known that if OIl~ block in a higher-J~vel data 
structure bas expired they all must have expired. This can be achieved in th~ current 
design by simply including, as part of the teat in the error schema NoSuchBlock, a 

check as to whether the block is past its expiry time. 

3.8 Structured parameters 

rome service operations return structured data items as results. For example, Get I ds 
returns a set of block ids, while Prof i 1e returns a sequence of block information. In 
the latter case, a set cannot be used because each piece of block information is not 
neceasa.rily unique (it contains owner and creation and expiry times, but not the unique 
block id) so replicated entries are significant. A bag might have b«n a more accurate 
abstract specification for this parameter, but would have had a less obvious concrete 
representation. 

As it turned out, the implementation described in the foregoing Implementor Manual 
would have guaranteed uniqueness of each piece of block infonnation, since it relies on 
each block having a different creation time. However, building this fact iDto the User 
Manual would unnecessarily limit the choice of implementations. 

The representation of structured parametelll is briefly discuased in [8]. 

4 Pormat or the User MaDual 

The overall design of the User Manual follows that of a typical manual for a library of 
system calls, with an introductory overview of the system followed by detailed 
descriptions of each of the operations that can be invoked on the system. The use of a 
fonnal notation ensures that the user's view of the 6ystem is made much more explicit 
than is usual in informal manuals, though without introducing unnecessary 
implementation detail. 

4.1 Errors 

The specification of behaviour under error conditions is also covered in detail, though 
not at the expense of cluttering the description of the successful behaviour of an 
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operation. The specification of error conditiom;, fonnalised in the 4Reports' section of 
each operation description, has changed between the first version of the manual and 
that presented here. Schema overriding is now used to explicitly define the order in 
which errors may be detected. In some cases, such ordering is essential. For example, it 

is necessary to check whether a block exists before its ownership can be checked. 

4.2 Common framework 

The introduction of the "Common Service Framework" has also made a difference to 
the presentation. Parameters which Can be considered implicit to every operation have 
been separated, including identifications of the client, operation and service involved in 
a particular call. The combination of the individual operation specificatjons into an 

overall specification for the whole service, including subsystems common to other 
services, now forms the final part of the manual. 

5 DeBign or the implementation 

The implementation described here is simple, but it has been found to be adequate for 
the straightforward applications it has supported over the three years it has been in 
use. 

5.1 Ladt of ooneurTeIlt:y 

One major simplification in the implementation is the lack of provision for concurrent 
execution of service operations. Though the user interface is specified as jf each 
operation were atomic, this does not necessarily force the implementation to be 
sequential, provided that the effect of executing two service operations lin parallel' is 
equivalent, as far as the user is concerned, to executing first one then the other (in 
either order). 

A sequential implementation means that the time taken to execute anyone operation 
should be strictly limited to ensure that other users are not kept waiting for too long. 
For example, this is one reason for defining a Emit on the number of blocks scanned in 
key.linked operations. 
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5.2 Fault hand1l>lg 

Another simplification in the implementation de$cribed here is that no account has 
been taken of potential faults in ~e underlying hardware, such as bad disk blocks. 
Faults that are unrecoverable (for example, cannot be cured by re-reading the disk 
block) are allowed for.in the abstract service specifiCation by the catch-all error report 
Serv j ceError. In this event, the state of the service is specified to remain uncha.nged. 

An implementation which caters for such errors must ensure that any changes in the 
concrete state made prior to the detection of the fault are recoverable, or at least do 
Dot lead to an inconsistent COncrete state or changed abstract state. In practice, this 
can often be achieved through a.ppropriate choice of the order of execution of 
suboperations, and simply abandoning further calls on detection of the fault. 

5.3 Disk layout 

The implementa.tion does not specify in detail how the various blocks of information 
should be laid out on the disk. ThUi would depend on the charaderistics of a 
particular disk drive. However, it will generally be a good idea, in order to reduce diBk 
arm movement, to place the data, header and bitmap disk blocks associated with a 
stored service block in the same area of the disk. 

In the actual implementation produced as part of the project, the disk format consisted 
of 3'Z blocD per track, with 16 tracks per cylinder. One disk block could hold up to 8 
headers, or 4096 bits of a bit-map. The chosen layout allocated the fIrSt 4 blocks of 
each track to hold headers relating to the remaining 28 blocks used for data.. Every 8 
cylinders, the last block of a track was W1ed for a bit-map (instead of data) relating to 
all the service blocks stored on those cylinders. 

G.. COIdistency and (!I'ae ~vet'Y 

The criteria given for consistency within the implementation, showing how the bit-map 
and count information should be consistent with the header infonnation, would imply 
the restoration of this consistency after any service crash. 

Cl'38hes are not modelled explicitly in the manuals. They can be considered as periods 
during which all service calls will return an error report. There is no allowance for the 
loss of information which might have occurred during the crash, the service state being 
defined to remain unchanged for such errors. On rebooting the service after the crash, 
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the specified consistency constraints are assumed to be re·established. 

In the actual implementation, the count infonnation is held in memory I and so must be 
recomputed by scanning the complete disk. (It is assumed tha.t crashes will be 

infrequent, as has been the case in practice.) 

The bitmaps stored on disk should also be recomputed while scanning the headers. In 

fact the actual implementation used a somewhat looser notion of consistency than 
specified here. For a specific service block, the header might be marked (used', but the 

bitmap indicates 'free', in which case the header is believed and the bitmap is corrected 
on an attempt to a.ccess that block. Alternatively, the header might be marked 'free', 
but the bitma.p indicates 'used', in which case the block becomes temporarily 
unava.1lable for further allocation. A utility program can be executed occasionally to 

restore full consistency and recover such unusable resources. 

This extra complexity was intended to allow faster rebooting after a crash (the count 
information was deemed to be unavaila.ble, and a scan of the whole disk avoided). In 
hindsight, crashes are so infrequent that the simpler consistency criteria specified in 
the Implementor Manual would have been adequate. 

8 Format of the Implementor MaDual 

The Implementor Manual went through three distinct forrrur. in an :dtempt to 

provide a. sufficiently readable presentation. 

8.1 Initial versiODB 

In the fIrst version, the concrete state was developed explicitly as a number of separate 
refinement steps from the a.bstract state given in the User Manual. The operations, 
however, were defined as monolithic schemas on. the concrete state alone, which made 
them rather large a.nd difficult to undergtand. 

In the second version, the concrete state was introduced directly as a number of 
subcomponents, including those relating to disk layout aod cachemg. The operatioD:!1 
were composed from suboperatioDs involving the separate state subcomponents. Only 
towards the end of the manual was there a description of how the concrete state 
rela.ted to the abstract state. In this version, the number of subcomponents of the 
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concrete sta.te made it difficult to remember what was affected by a particular 
suboperation forming part of a service operation description. 

6.2 CurreDt version 

In the third fonn, as presented here, a balance was struck between the two previous 
vereions. Two levels of abstraction were used. The concrete state is introduced as a. 
few subsystems at an intermediate level of abstraction (such as those for headerB and a 
single large bit·map), and rela.ted to the abstra.ct state. The service operations are 
composed from suboperations involving these intermediate subsystems. Then the 
intermediate subsystems are refined. one sta.ge further to include detalls of disk la.yout 
and bit-map blocks and ca.cheing. 

The refinement of each intermediate subsystem can be understood on its own, without 
reference to the overall behaviour of the service. In thill sense, the fonnat of the 
presentation more closely follows the use of abstraction and abstract data types 
(coneeponding to the subsystems) in conventional system design. 

6.3 CorredD.ess coueerus 

However, none of the versions of the impletnentor manual have been oriented towards 
the requirements for proving the correctness of the implementation. Indeed, there has 
Dot been sufficient time within the project to attempt such a proof for a service of even 
this moderate cOlDplexity (though a simpler one has been completed 110». 

It therefore remains an open question as to whether the strictures necessary to a.Uow a 
proof to be completed would enforce a futher change in implementa.tion specifica.tion 
style. It is quite possible that the proof would be easier to carry out if assoc~ted with 
the application of smaller re-fmement sLeps. However, it is not dear wbetber an 
implementor would benefit from seeing these details in the manual. 
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Appeudix A 

Index or Cormal dermitioDS 

The following index lists the page numbers on which each formal Dame is defined in 
the text. Those names which are defined twice correspond to duplicated entries in the 
User and Implementor Manuals. Names which have a. special symbol (b, $, =, c) as a. 

prefIX are listed after the corresponding base name. 
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GetAttributes 52
 
GetBlockld 66
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Geteaunt 26
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GetCountsoccess 26
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CetOsta 41
 
GetHeader 43
 

cGetHeader 78
 
Getlds 25
 

cGetIds 67
 
Get Idssuccess 25
 

eGet Idssuccess 67
 
Header 42
 
HeederBlock 76
 
HeaderB 1ockPos 76
 
HeaderB locks 77
 
HeaderBuffer 77
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IncCount 46
 
InitBitMap 44
 
InitCounts 46
 
InitDataBlocks 41
 
InitHeederBlocks 77
 
InitHeaders 43
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In i tMapCache 80
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cIn i tSS 51
 
InitSSState 32
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<l/Iey 14 cRep 1acesuccess 64 
MapBlock 79 55 10.37 
MapBlockPos 79 ASS 11 
MapBlocks 79 -55 11 
Mspeeche 80 cSS 49 

cMisrnetchedld 56 lIcSS SO 
NewAttributes 53 -cSS 50 
~ewBlock 12 SSA1IOps 33 

NelolBlockld 48 SSBasicOps 32 
NoSpace 16 SSOps 33 

eNoSpace 56 SSServiceOps 32 
cNoSpace l 83 SSState 32 

NoSuchB lock 15 SSTeriff 31 
cNoSuchBlock 56 q,sSTar j ff 31 

NotExpiredBlock 71 Scan 54 
NotManager 16 aSeen 54 

cNotMansger 57 dScanlds 66 
NotOwner 16 dScanlnfo 73 

cNotOlolner 57 aScanSca.... enge 70 
~arams 30.75 Sca.... enge 28 
Profile 29 cScBvenge 72 

cProfi le 74 Sca.... engeBlock 70 
Prof i 1eSUcces5 29 Sce.... engesuccess 28 

cProf i 1esuccess 74 cSca .... engesucces5 72 
Put Data 41 SetExp i ry 24 
Put Header 43 cSetExpiry 65 

cPutHeader 78 SetE)(p i rYsucces5 24 
Read 20 cSetExp i rYsuccess 65 

cReed 61 StertScan 54 
Readsuccess 20 Status 21 

cReadSucGess 61 cStatus 62 
RelBitMap 80 Statussucce55 21 
RelHeaders 77 cStatussucces5 62 
ReISS 51 Success 15 
Replace 23 cSuccess 55 

cReplace 64 Te9 42 
Rep 1acesuccess 23 UpdateMap 81 



Appendix B
 

GIOllNZY or Z notation
 

A glossary of the Z ma.thematical and schema notation used. in th~ monograph is 

included here for easy reference. Readers should note tha.t the definitive concrete and 
abstract syntax for Z is available elsewhere [6]. 
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Z Reference Glossary 

Mathematical Notation 

1. Definitions and declarations. 

Let x, x, be identifiers, t, t, be terms and 

T, T
I 

be sets. 

lTl' T2- ...J Introduction of gjven sets. 
)( ;;:: t Defmition of x as syntactically 

equivalent to t. 

)( ::::: )(1 «t 1» I -.- I x n «t »n

Data type defmitioD (the «t» 
Lerma are optional). 

x : T Declaration of x as type T. 
)(1: T1 : .•. ; x : Tn List of decla.rations.n
)(1' ..•• xo : T Decla.rations of the same 

type:" xl:T; ... ;xn:T. 

2. Logic. 

Let p. Q be predica. tea and D declaratioD!. 

Negation: -Dot plio- P 
PAil Conjundion: lIP and QB. 

P v Il Disjunction: lIP or all': 

~ -(-P A -Il). 
Implica.tion: "P implies Q'" orP - Il 
"if P then all; e ..p v Q. 

P ... Il Equivalence: lIP is logically. 
equivalent to QB; 

o (P_Il)A(Il_P). 

true Logical constant. 
false ~ .. true 

V 0 P Universal quantification: 
"for all 0, P bolds"', 

3 D P Existential quantification: 
"there exists D such that P". 

3, D • P Unique existence: '"there exists 
a uniq ue D such that P"'. 

VD\P'1l • (V 0 • P _ Il). 

3DIP'1l • (3 D • PAil). 

p ~ D I Q Where clause: 

'3DIIl·P 
p ~ x 1et 1 , ... ;xn9tn Where clause: 

P bolds, with the syntactic 
definition(s) deflned locally. 

D I- P Theorem: ~ I- V D • P. 

S.Sets. 

Let S, T and X be sets; t, t, &ermsj P a 
predicate and D declarations. 

t 1 = t z Equality between terms. 

t 1 ~ t z Ineqnality: 0 "(t,· t 2 ). 

t E 5 Set membership: Ilt; is an element 
of S"'. 

t , 5 Non-membership:' -(t E 5). 
~ Emptysel: • {.,X I false}. 
5 ~T Set inclusion: 

o(V"S·,'T). 
5 c T Strkt set inclusion: 

• S ~ T A 5 ~ T. 
{ t I' t z' ...• t n } The set containing 

t l' t z• '" and tn' 
{ Dip • t } The sel of t " such lhal given 

the declarations 0, P bolds. 

{DIP} Give.DO'"T" ..' ''"T" 
~ {D I p.(., ....••,)}. 

{ D • t } o {D I true' t}. 

(t,. t 2• ...• t ) Ordered. n·tuplen
of t 1• t z•... and tn' 

T1 X Tz )( ... X Tn Cartesia.n product; 
the Bet of all n-tuples such that 

the i th compolJent is of type T I • 

P 5 Powerset: the set of all subsets 
of S. 

f,S Non-empty powef'8et: 
• f 5 \ {~}. 

f S Set of fmite subsets of 5: 
o {T, f 5 I Tis finile}. 

f, 5 Non·empty finite set: 
o f 5 \ {~}. 

http:p.(.,....��
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5 n T	 Set intersection: given S. T: P XI 
a {x: X I xES 1\ X E T}. 

5 u T Set union: given S. T: P X, 

" {x'X I xeS v xeT}. 
5 \ T	 Set difference: given 5. T: P X, 

• {x,X I	 xeS A x¢T}. 

n S5	 Distributed set intersection: 
~ven 55, P (P X). 
"{x,X I (V5,55 • x e 5)}. 

U SS	 Distributed set union: 
~veD 55, P (P X), 
" {x'X I (35,55 • xeS)}. 

tJS	 Size (number of distinct 

elements) of a finite set. 

~ DIP .. t Arbitrary choice from tbe 

sel{DIP·t}. 
~ D .. t Q ~ 0 I true" t 

4. RelaUODII. 

A relation is modelled by a set of ordered 
pain hence operators defined for sets ca..n 

be used on relations. Let XI YI and :z be 
sets; x:X: Y:Yi and R:X .... Y. 

X .... Y The set of relations from X to Y: 
OP(Xxy). 

x R !J x is related by R to y : 
o (x. y) e R. (R is oflen 

underlined for clarity.) 
x ..... y MapLet: 0 (x. y). 
dam R The domain of a relation: 

o{x:X 13y'Y ·xRy}. 
ran R The range of a relation: 

O{y:Y 13x'X·xRy}. 
R, , R, Forward relational composition: 

given R1: X~ Yi R : Y ...... Z.z
• {x:X, z,l I 3y'Y • 

xRtyAyRzz}. 
R1 0 R Relational composition: z 

.R,.R,. 
R-' Inverse of relation R: 

o {y'Y;	 x:X I x R y}. 

id X	 Identity function on the set X: 
S{x:X·)(~x}. 

R'	 The relation R composed with 

itself k times: given R: X f-+ XI 

RO Q id X, R1+1 ::::: R' R.0 

R'	 Reflexive transitive closure: 
o U {n,N' R"}. 

R'	 Non-reflexive transitive closure: 
o U {n' N, • R"}. 

R(5) Relational image: given 5: P X, 

o {y'Y	 I 3x' 5· xRy}. 

5 4 R	 Domain restriction to 5: 
given 5: P X, 

o {x:X;	 y'Y I xeS A x R y}. 

5	 ~ R Domain subtraction: 
given 5: P X. 
O(X\5)4R. 

R ~ T Ra..oge restriction La T: 

given T:	 P Y, 
O{x:X;!J'Y I xRyAyeT}. 

R H Range subtraction of T: 
given T: P V, 
OR~(Y\T). 

R	 Infix relation declaration (often 
underlined in use for clarity). 

5. Functions. 

A function is a relation with the property 
that for each element in its domain there is 

a unique elemen t in its range related to it. 
As functions are relations all the operators 
(or relations also apply to functions. 

X --+oJ Y	 The set of partial functions from 
X to Y: 
o {f' X.... Y I Vx, dam f· 

(3, y , Y • x f y)}. 

X ~ Y The set of total functions from 
X 10 Y; 

• {f, X .... Y I dam f=X}. 



The set of partial injective (one. X >+> Y 
to.one) functions from X to Y: 
• {f ,X-Y I Y Y , ran f • 

(3, • , X • f. = y)}. 

The set of tota.l injective X >-+ Y 
functions from X to Y: 
• (X>+> Y) n (X ..... Y). 
The set of pa.rtial surjective 

X - Y 
functions from X to Y: 
• {f , X- y I ran f =Y}. 

X -4 Y The set of total surjective
 
functions from X to Y:
 
• (X-V) n (X ..... V).
 

X ,... Y The set of total bijective
 
(injective and surjective) 
functions from X to Y: 

• (X -4 Y) n (X >-+ V). 

X ... Y	 The set of finite pmial
 
functions from X to Y:
 
.(f,X-YI
 

f • r (X x V)}.
 

-1+>t+ >Qo Partial functions.
 

--+>-+ ~ Total functions. 
...,... )& Finite functions. 

f 1 • f 2	 Functional overriding: given
 

f 1- f 2 : X-++Y,
 
• (dom f z ~ f.' u fl' 
PrefIx function declaration f 
(default jf no underlines used). 

(_ f _) Infix function declaration (often 
underlined in use for clariry). 
Postfix function declaration. f 
The function f applied. to t . f t 

f( t ) • f t. 

; D I P • t Lambda·abstraction: 
the function that, given an 
argument x of type X such 
that P holds, the result is t. 
GivenDQ.x1:T1; ... ; xn:Tn, 
• {DIP.(.,. ...• x,)>-+t}. 

; D • t .; D I true' t 
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6. Numbers. 

Let m, n be natural numbers. 

The set of natural numbers 
(non.negative integers). 
The set of strictly positive 

~ 

~l
 
natural numbenl: ~ N\ {O}.
 

The set of integers (positive, z 
zero and negative). 
Successive ascending natural 

number. 
5UCC n 

Previous descending natural 
1

pred n 
number: ~ succ- n. 

Addition: Q succn m.m + n 
Subtraction: ~ predn m. 
Multiplication: g L + m)n O. 

m - n 

m * n
 
m fu n In teger division.
 

m !!IQQ n Modulo arithmetic.
 

m' Exponentiation: Q (_ * m)n l.
 
Less than or equal, Ordering:
 m < n
 
_,_ ~ succ·.
 

m < n	 Less than, Strict ordering: 
Q m,nl\. m;tn. 
Greater than or equal: ~ n'(m .m ~ n 

m > n Greater than: S n<m. 
Range' • (k' ~ I m<k , k <n}.m•• n
 

min 5
 Minimum of a finite setj 
for 5: F1 N, min 5 e S I\. 

(Vx:S • x ~ min 5). 

Maximum of a finite set; 

for 5 : F1 N. max 5 e S '" 
(y.,S • x < me. 5). 

max 5 

7. (hders. 

part i a l_order X 
The set of partial orders on X: 
• (R'X ....X I Vx,y."X· 

x R x I\. 

xRyl\.yRx=Ox=y'" 
xRyl\.yRz=OxRz}. 
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tote I_order X 
The set of total orders on X: 

g {R:p8rtial_orderl~x.y:X· 

x Ry v y R x}. 

monot on i c X <x The eet of functions 

from X to X that are monotonic 

with respect to the order <x aD X: 

• {f,X-X I ~ x, y'X • 

x <X Y => f(x) <X f(y)}. 

8. SequenceB. 

Let a, b be elements of sequences, A, B be 
sequences and ml n be natural numbers. 

seq X	 The set of sequences whose 
elements are drawn from X: 

•	 {A, N'" X I 
dom A = 1.. oA }. 

<> The empty sequence 13. 
seq! X The set of non-empty sequences: 

• seq X \ {O} 
(a1' ... ,	 an> 

~ {lI-"'+&1O ...• n ...... an }· 

(St. ...•	 an> -. <b 1• ...• bill> 
Concatenation: 

~ (8 1, ...• an' b i •...• bill>' 
O-A = A-<> = A. 

head A	 The first element of a 

non-empty sequence: 
A , <> => head A = A(l). 

Iast A	 The final element of a 
non-empty sequence: 
A ,	 <> => last A = A(oA). 

ta i 1 A	 All but the head of a sequence: 
tail«x>-A) = A. 

front A	 All but the last of a sequence: 
frc.,'(A -<x» = A. 

rev (a1'	 82' ...• en> Reverse: 

Q <an•...• 82' al>, 

rev 0 :::: O. 
j AA Distributed concatenation: 

given AA : seq( seq(X», 
o M(l)  ... -AA(oAA), 

- / <> = <>. 

'fAR Distributed relational 

composition: 
given AR ; seq (X f--* X), 

o AR(l) I ... I AR(oAR), 

I/O = id X. 
_fAR Distributed overriding: 

given A : seq (X -++ Y), 

o AR(I) e ... e AR(oAR), 

e/ <> = 0. 
squash f Convert a finite function, 

f: N-D X, into a sequence by 

squashing its domain. Tha.t is, 

squash 0 = O. 
a.nd if f , a then 

squash f = 
<f(i»-sQuash({i}~ f) 

where i :::: min(dom f). 

5 1 A Index restriction: 

o squ8sh(S4A). 

A ~ T Sequence restriction: 
o squ8sh(A ~ T). 

d i sj 0 i nt	 AS Pa.irwise disjoint: 
given AS: seq (I' X), 

Q ('t:J i. j : dom AS • i" j 

=> AS(i) nAS(j) = a). 

AS part i t ions S 

Q disjoint AS A 

U ran AS :::: S. 

A l..n B Contiguous subsequence: 

o	 (3C, D, seQ X ' 
C-A-D = B). 

9. Bags. 

bag X The set of bags whose elements 

are drawn from X: Q X -++ Nl 
I t ems 5 The bag of items contained in 

the sequences: Q {x:rans· 

x ..... a{ i'domsls(o)=x}} 



Schema Notation 

&:hema. definition: a schema groups 
together some declarations of variables and 
a predicate relating these variables. There 
are two ways of writing schemas: vertically, 
for example 

5	 I 

x N 
y : seq N 

x , .y 

or horizontally, for the same example 
5 • r x' N, y' seq N I x<Oy ]. 

Use in signatures after V. ~. C.}, etc.: 
(V5 • Y ~ <>l • (Vx,N, y' seq N 

x<ey • y~<». 

Schemas as types: when a schema name 5 is 

used as a type it stands for the set of all 
objects described by the schema, {S}. For 
example, w : 5 declares a variable w with 

components x (of type N) and y (of type 
seq N) such that x l!ii lIy. 

Projection functions: the component names 
of a schema may be used as projection (or 
selector) fUDctioDB. For example, given 
.. : 5, W.X ~ w's x component and w.y is 

its y component; of course, the following 
predicate holds: w.x" .w.y. Additionally, 
given H : X -++ 5, H'(~S.X) is a function 
X-++N, etc. 

a5	 The tuple fonned from a 
schema.'s variables: for example, 
85 is (x.y). Where there is 
no risk of ambiguity, the a is 

sometimes omitted, so that just 
"5" is written for "(x. y)". 

pred 5 The predicate part of a schema: 
e.g. pred 5 is x If ay. 
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Inclusion	 A schema 5 may be included 
within the declarations of a 
schema T, in which case the 

declaratiollS of 5 are merged 
with the other declarations of T 
(variables declared in both 5 
and T must be of the same type) 
and the predicates of 5 and T 
are conpined. For example,

I~ ,N I 

E 
is 

x. Z : N 
y : seq H 

X'.yIlZ<X 

5 I P	 The schema 5 with P conjoined 
to its predicate pan. E.g., 
(5 I x>O) is 

[ x: N; y: seq N I xlfay " x>O J . 

5 D	 The schema 5 with the 
declarations 0 merged with the 
declarations of S. For example, 
(5 , z,N) is 

[x.z,N, y'seqN, x~ey]. 

5 [neH/o I d] Renaming of components: 

the schema 5 in which the 
component old has been 
renamed to neH both in the 
declaration and at its every free 
occurrence in the predicate. For 
example, 5 [zhc:] is 

[ z:N; y:seQ H I z If ay 

and5[y/x.x/y] is 

[ y,N, x:seq N I y ( ex ]. 
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b. the second case above, the predicate. E.g., 5 ..".. T is 

r'!:naming is slmultaneous. 

x N 
Decoration Decoration with prime, y seq	 N 

subscript, superscript, etc.; z P N 
systematic renaming of the 
components declared in the X'lty=+xez 
schema. For example,S' is 

[x';N; y''SeQN I x'~.y'l. 5 coo T The schema formed from 
schemas 5 and T by merging 

The schema 5 with its predicate 
their declarations and taking

put negated. E.g., "'5 is 
pred 5	 * pred T as the

[x;N, y,seQ N I -(xc.yl]. 
predicate.	 E.g., 5 ~ T is 

5 A T	 The schema. formed from 
schemas 5 and T by merging 
their declarations (see inclusion 
above) and conjoining (and-ing) 

their predicates. Given T Q [x: 
N; z; f N I xez].S A T ~ 

x : N 
y : seq N 
z ; f N 

x " .y ~ X E Z 

x : N 5 \ (vI' v2' ...• vn ) 

y : seq N Hiding: the schema 5 with the 
z ; f N variables VI_ v2' ...• and vn 

hidden: the variables listed are 

x " lIy " X E Z removed from the declarations 
and are existentially quantified 

5 V T The schema. formed from in the predicate. E.g., 5 \ x is 

schemas S and T by merging [y; seq NI (3X' N·x~.yl I. (We 
their declarations and disjoining omit the parentheses when only 

(or-ing) their predicates. For one variable is hidden.) A 
example,S V T is schema may be specified instead 

of a list of va.ria.bles; in this case 

x N the variables declared in tha.t 
y seq N schema are hidden. For 

z P N exa.mple, (5 AT) \5 is 

x ~ lIy v x e z z f N 

5 ~ T The schema. formed from 
schemas 5 and T by merging 
their declarationg and taking 
pred 5 ~ pred T as the 

(3 X' N; y' seq N • 
X(l;yAxeZ) 
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5 r (vI'	 vz•... , vn) 
Projection: The schema 5 with 
any variables that do not occur 
in the li$t vl' vz, _.• vn hidden: 
the variables removed from the 
dec1aratioIl8 are exJstentially 
quantified in the predicate. E.g., 
(5 A T)t(x. y) is 

x ~ N 
y : seq	 N 

(3 z , P N 
x ll; tty /I. X E z) 

As for hiding above, we may 

project a single variable with no 
parentheses or the variables in a 
schema. 

The following conventions are used for 
variable names in those schemaB which 
represent operations on some state: 

undashed state before,
 
dashed ("'.j state after,
 
ending in .? inputs to (arguments for),
 
ending in II!" outputs from (results of)
 

the operation. 

The following schema operations only 
apply to schemas following the above 
conventions. 

pre 5	 Precondition: all the state after 
components (dashed) and the 
outputs (ending in If! tI) are 
hidden. E.g. given 

5 I 

x7, 5, 5', y! N 

s' s-x7 1\ y! = 5 

post 5 

5 • T 

x7, s : N 

(3 s', y! , N • 
s = s-x? /I. y! = 5) 

Postcondition: this i8 similar to 
precondition except all the state 
before componente (undashed) 
and inputs (ending in ·7·) are 

hidden. (Nolo Ih.1 Ihis 
definition differs from IIOme 
others, in which the 
·postcondition" is the predicate 
relating all of initial state, 
inputs I outpubl j aJld fmal state.) 

Overriding: 
• (5 A "pre T) V T. 
For example, given 5 above and 

T 
x7, 5. 5' : N
 

s < x7 1\ 5' = 5
 

5 • T is 

x7, 5, 5', y! N 

(5' = s-x? /I. y! = 5 f\ 

"(3.', N· 
s < x? /I. 5 = .» 

V (s < x7 /I. 5' = s) 

which simplifies to 

x7, 5, 5', y! N 

(5' = s-x? 1\ y! = 5 1\ 

S ;<l: x7) v 
(5 < x? liS' s) 

pre 5 i$ 

I 
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5 I T	 Schema composition: if we 
consider an intermediate state 
that is both the fmal state of the 
operation 5 and the initial state 
of the operation T then the 
composition of 5 and T is the 
operation which relates the 
initial state of 5 to the fmal 
state of T through the 
intermediate state. To (orm the 
composition of 5 and T we take 
tbe state-after components of 5 
and the etate-before components 
of T that have a basename- in 
common, rename both to new 

vM'iable5J take the schema which 
is the ~andJl (i\) of the resulting 
schemas, and hide the new 
vMiables. E.g., S , T is 

x? I 9. 5'. y! : N 

(3 So ' N 
So = 9-)( A y! = s A 
So < x? A 5' = so) 

basena.me is the name with 
ilIly decoration ("'It, "!It, "?II, 

etc.) removed. 

5 »T	 Piping: this schema operation is 
similar to schema composition; 
the difference is that, rather than 
identifying the state after 

components of 5 with the state 
before components of TI the 
output components of 5 (ending 
in Y! ") are identified with the 
input components of T (ending 
in Y?") with the same basename. 

115 change of ~ to .il:fifi state, 
=5 no change of state, 
ct6 framing schema for defmition of 

further operations. 

For example 
6S • 5 A 5' 

"5 • 115 I es = es' 
4>5 • 115 1 y = y' 

SOP ~ 4>5lx'=O 

Other Definitions 

Axiomatic deftnition: introduces global 
declarations which satisfy one or more 

predicates for use in the entire document. 

dedaralion(s) 

predicate(s) 

or horizontally: o 1 p 

Generic constan t: introduces generic 
deciMations param.eteri8ed by sets AI 8 1 

etc. which satisfy the given predicates. 

lA, B, ... ) i 
declaration(s) 

predicate(s) 

Generic schema definition: introduces 
generic schema parameterised by sets A, 8, 
etc. When used subsequently, the schema 
should be insla.nlialed (e.g. SIX, Y, ... J). 

S[A, B, ... J I 

declaration(s) 

predicate(s) 

The following conventions are used for 
prefixing of schema names: 
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