
Oxford University
Com})uting Laboratory
Programming Research GrOUP-libra.,
8-11 Keble Road .
Oxford OX, 3QD
Oxford (0865) 541 d1

SPECIFYING SYSTEM IMPLEMENTATIONS IN Z

by

Jonathan Bowen

Roger Gimson

Stig Topp·J~rgensen

Technical Monograph PRG-63

February 1988

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXl 3QD
England

Copyright © 1988 Jonathan Bowen, Roger Gimson, Stig Topp-Jl2Irgensen

Oxford University Computing Laboratory

Programming Research Group

8-11 Keble Road

Oxford OX1 3QD

England

Specifying S}'1ltem Implementations in Z

Jonathan Bowen

Roger Gunson

Stig Topp-Jl6rgensen

Abstract

In an introductory chapter, an outline is presented of some techniques for specifying
the building of systems from subsystems using the formal notation Z. These techniques
have heen applied to the specification of implementations for services in a distributed
system.

The major part of the monograph consists of an extended example showing bow the
implementation of a simple file server can he specified using some of the outlined
techniques. The example file service is implemented in terms of a lower-level storage
service. The specification includes the handling of errors th at may arise because of this
dependency.

3

Chapter 1.

Chapter 2.

Appendix A.

Appendix B.

Contents

Introduction 5

Building Systems from Subsystems in Z . . 7

Implementing a simple File Service. 21

Acknowledgements. 75

References. 76

Index of schema names 77

Glossary of Z notation 80

5

IntrOductiOll

One of the most important steps in the implementation of any system of significant size
is the clear identification of, and separation of the code into, a number of well-specified
subsystems. Together, the subsystems implement the desired behaviour of the
complete system, bu teach suhsystem can he implemented separately as .. a system-of its
own.

This monograph is concerned with the specification of system implementations
constructed from a number of separate subsystems. The specifications are expressed
in the formal notation Z [1-41. The first chapter discusses the use of Z to build systems
from subsystems. The second chapter is an extended example showing how the
impLementation of a simple file service can be expressed using these techniques.

The Distributed Computing Software Project, from which this work arises, has been
investigating the design, implementation and documentation of distributed system
services using formal methods. Two earlier monographs present and discuss the
general approach to service specification [51, and provide a larger example of the use of
formal specification as a basis for the documentation of a service 16].

Some of the techniques presented in the first chapter have already been used in the
earlier monographs. However, the file service implementation discussed in the second
chapter is more complex and requires a different approach. In particular, it relies on a
clear specification of the sequencing of suboperations within the implementation. Some
of the extra complexity arises from the use of a separate lower-level storage service as
part of the implementation. This then leads on to consideration of the behaviour of the
implementation in the case of errors - which were ignored in the earlier examples.

7

Chapter 1

Building Systems from Subsystems in Z

1 Introduction

2 Conjoining states

3 Operations

3.1 Conjoining operations

3.2 Operation parameters

3.3 Disjoint parameters

3.4 Shared parameters

3.5 Parameters between su boperations

3.G Parameter passing cycles
3.7 Piped parameters

4 Homogeneous operations

4.1 Disjoining operations

4.2 Overriding operations

5 Sequencing operations

5.1 Composing operations

5.2 Parameter buffers

6 Programming in Z

G.1 Conditional

G.2 Iteration

G.3 Interleaving

7 Conclusion

8 Specifying System Implementations in Z

1 Introduction

An important part of producing an implementation from a system design is the

decomposition of the design into a number of separable subsy"tems, corresponding to

separately coded parts of the implementation. It is from these subsystems that the

complete implementation design is built.

In Z, the building of the state of a system from the states of a number of sepaTate
subsystems is relatively straightforward. Building the opeTations of the complete

system from operations of the subsystems involves more detailed choices, paTticularly
concerning the bandling of parameleTs.

Few of tbe techniques described here are especially new (see 171 fOT some Telated
examples). They have been used by Z practitioners in paTticulaT specifications for

some time. However, no single document provides an overview of these techniques.

The purpose of this chapteT is to describe and contrast the techniques themselves,

partie ularly when operation parameters are involved.

9 Building S~tel1ls from Subsystems in Z

2 Conjoining states

Assume we wish to build a system from two existing subsystems. Let us call the
subsysterns A and B, and the combined system C.

Assume also that we already have models of the two subsystems in Z: In particular,

the subsystems have state components SA and 58'

The state of the combined system S(is simply the conjunction of the states of the

subsystems.

Sc ~ SA 58A

Note that by use of schema conjunction we also cover the use of schema inclusion,
so that the above definition could equally well h'l.ve been written as follows.

S(I

I 5
A

58 I

If the subsystems have been separately specified, we will nonnally wish the
components of their states to have disjoint names to eliminate unwanted superposition.

names(SA) n names(SB) =0

Though superposition of names in conjoined schemas has been found useful in some
specifications, it implies 'sharing' of state components between the subsystems, which
is contrary to good information hiding principles in conventional software d~ign. We
shall assume in the following that the names are disjoint. If necessary, this can be
achieved by appropriate decoration or renaming of the original subsystems.

10 Specifying System Implementations in Z

3 (}peratiOIlll

The operations which can be performed on the combined system will be built from the
suboperations whicb are assumed to have already been defined on tbe su bsystems.

Assume that we have operations PA and Os defined on subsystems A and B
respec tively.

PA Q liSA

as Q llSs

We assume liS and =5 are defined in the conventional way unless otherwise specified.

In particular, llS denotes an arbitrary change of state and =S denotes a cbange of
state where the 'before' and 'after' states are the same:

liS 5 /I S'

;;5 Q liS I as' as

3.1 Conjoining operstiOD8

The simplest way in which to specify an operation that can be applied to the combined
system is to conjoin subsystem operations.

R[Q PA /I Os

This simply says that the effect of the combined operation R[on Sc is the same as

performing PA on SA and Os on Ss' Since the subsystem state components are disjoint,
the operations on the subsystems may be thought of as being performed 'in parallel'
(or, equally well, as being performed one after the otber, in either order}.

3.2 Operation para.meters

In Z, parameters to operations are simply expressed as extra components (additional to
those of the 'before' and 'after' state) in the signature of the operation schema. By
convention, tbeir names are written with a suffix of '?' or 'I' indicating input and
output parameten; respectively. However, tbis does not provide a semantic difference
from otber scbema components.

Building Systellli! from Subsystems in Z 11

Tbere is notbing to prevent tbe predicate in an operation scbeLDa from imposing a
constraint on the value of an input parameter which may be incompatible with some
values that might be supplied by the 'calling' environment. Similarly, there is nothing
whicb forces tbe predicate to constrain an output parameter to have a particular value.
(These freedoms are essential for allowing partial or non-deterministic specifications to
be written.)

3.3 Disjoint parameters

It is simple to pass parameters to subsystem operations wben the parameters are
disjoint. Take tbe following su boperation definitions.

Pp, ~ liSp,; t?: T: u!: U

0a e liSa; \I?: V; ... !; W

Since the parameters are non-interfering, the suboperations may be conpined as
before, giving a combined system operation wiLh four parametell>.

Re ~	 Pp," as

liSe; t?: T; \I?: V; u I: U; ... !: wI ...

Tbe more common situation, however, is for there to be some sharing of parameters.

3.4 Shared param.etera

Tbe sharing may simply allow some parameters to be common inputs or common
outputs to both suboperations. Take this example.

Pfl	 liSp, ; t?; T; u I : U
~ as	 lISs : t?: T; u!: U

In other words, t? is input to botb suboperations, and u I is output from both
suboperations. Again tbe suboperations may be conjoined, with tbe paranleter names
becoming superposed.

RC	 Pp, " as

liSe: t?: T: u!: U I

Some care is required to ensure that this combination remains meaningful. The

12 Specifying System Implementations in Z

precondition of RC will be the conjunction of the preconditions of PA and Us, which
may mean that its domain is restricted. In particular, the combined operation will only
be applicable if any constraints imposed on the value of t? by each suboperation are
bo th sa tisfied.

With a shared output parameter, such as u! above, care must also be taken that the

two operations do not simultaneously define incompatible output values. The most
frequent use of such shared outputs is for something like a report value indicating the
outcome of the operation. In this case, a COll'mon situation would be for each

suboperation to define the output value for disjoint parts of the input domain.

3.5 Parameters between suboperatiolUl

Another form of sharing parameters is when some output produced by one
suboperation is to be used as input to another suboperatioD. This normally implies
that, in the implementation, the execution of the first suboperation must be completed
before the second is started. Sequential composition of operation schemas, which we
consider later, is the obvious way of comhining the operations to reHect this ordering.
However, a more abstract specification, which avoids overspecification of execution
order, can be achieved with operation conjunction, if used with care.

Let us consider an example. Take t.he following suboperations.

°a
PA ~ liSA' u I, X

liSa; v?:X

We wish the output of PA to be the input to Us' This can be expressed using
schema conjunction with renaming as follows.

RC ~ PAlx/u'] A Ua[x/v?)

The correspondence between parameters is achieved by renaming to a common
intermediate name x (in preference to the asymmetric, and possibly confusing,
alternative: PA A Us [u I Iv? J).

The intermediate x may be considered as simply a device for describing the parameter
correspondence, in which case it should probably be hidden to avoid clashes in
su bsequent operation combinations.

Rc ~ (PA[x/u']" Us[x/v?\)\(x)

Building Systems [roQl Subsystems in Z 13

3.6 Para=eter passing cycles

Care must be taken not to introduce unimplementable parameter passing structures
containing cycles, the most trivial example being where each suboperation of a pair
provides an output which is input to the other.

PA ~ c,SA; t?, y; u I ,X I '"
~aS = c,Ss; v?,X; w',y I

RC = PA[y/t?, x/u'] A Oa[x/v?y/w J) ???

Though there may be nothing wrong with such a non-constructive specification, it
means that an implementation cannot be construded by any meaningful combination
of the two subsystem operations to satisfy this specification.

3.1 Piped par8TIleters

A special schema notation has been suggested for use in situations where parameters
are passed from one snboperation to the next in the style of a pipeline.

RC Q PA(xl/u! J » 0e[x?/v?j

The renaming is slightly different from the conjoined case, since plpmg superposes
only matching 'I' and '?' parameters, and it includes the hiding of such matched
parameters. With suitable initial choice of parameter names in the subsystems the
renaming would be unnecessary.

14 Specifying System Implementations in Z

4 Homogeneous operations

A wider range of operation construetor~ becomes a?plicable if the operations to be
composed are homogeneous; in other words, if they are defined over the same state
rather than each being defined on a different subsystem state.

We can redefine the subsystem operations 10 apply to the combined system state,
ensuring in each case that the other subsystem does not change.

Pc ~ PA /\ =S8

Clc :;) Os /\ =SA

This could also be written in a more general form, avoiding explicit mention of the

unchanging subsystem (useful when there are several subsystems conjoined in the
combined state), through the use of schema hiding.

Pc e PA to. =Sc\llSA

°c Os to. :Sc\llSs

4.1 Disjoining operations

Once homogeneous forms of the subsystem operations bave been defined, scbema
disjunction becomes available as an operation combinator.

RC e Pc v 0c

In general, this specifies a non-deterministic choice between performing one
suboperation or the other, leaving the remaining subsystem unchanged.

However, in the situation that the preconditions of the two suboperations are mutually
exclusive, only one of the suboperations is applicable for a given set of input values
and the choice reduces to a deterministic one.

Building Systems from Su bsystems in Z IS

4.2 Overriding operations

A special case of disjoining operations is when the precondition of QC is used to

determine the choice between Pc and Oe. In this case the special notation of scheU\;\
overriding becomes applicable.

RC ~	 Pc eI Oe

(Pc A -pre Oe> v Uc

This is most freq uently encountered in the specification of exceptional conditions, or

error reports, where tbe precondition of Qc is an error condition that must be false for
the 'normal' operation Pc to succeed, and where otherwise Qc is used to define the
outcome in the error case.

16 Specifying System Implementations in Z

5 Sequencing operations

The next form of operation combinator can be seen as introducing a more concrete

view of the construction of systems. In particular, it introduces tbe idea of operation
seqnencing, so that one suboperation is explicitly specified a.s following another. In this

sense, it forms the first step towards more implementation-oriented specifications.

5.1 Composing operations

Schema composition can be used to comhine homogeneous subsystem operations. The

combined operation is tben writteu iu an explicitly 'sequential' form.

R Pc ; Qc or RC ~ Qc I Pcc

If there is no 'communication' hetween t.he two subsystems (hecause they affect

different parts of tbe state and tbey have no parameters), the ordering is unimportant

and both alternatives would reduce to the same net effect as the conjunction PA 1\ Ga.
Things get more complicated, however, when parameters are introduced.

The same technique of using a hidden variable (as in section 4.5) can be used, with tbe

advantage that composition makes it easier to see that the suboperation which sets tbe

value of tbe variable must precede the suboperation which makes use of that value.

~Rc = (Pc!x/u!) I Ue[x/v?])\(x)

5.2 Param.eter buffers

An alternative to having a hidden variable to sbow parameter correspondence is to
explicitly include a 'parameter buffer' in the combined system state.

XBuf [x; Xl

Sc g SA " 58 " XBuf

Building Systems from Subsystems in Z 17

Each suboperation is extended to explicitly set, or leave unchanged, the value of this
buffer, as well as to leave other subsystems unchanged. Any operation may make use

of the current value of the buffer.

Pc ~ PAlx'/u l) A =SC\~SA\~XBuf

Oe ~ Calx Iv?) A =Sc\6Sa

Rc Pc J Oe
f;

Here, Pc sets the value of the buffer, while 0c leaves it unchanged but makes use of its
current value. (Both definitions include =,Sc, which includes =XBuf, hut in Pc change

is allowed because ~XBuf is hidden from =Sd.

This use of buffers is clearly closer to an implementation-oriented description, io which
the buffer may be seen as a programming language variable that will retain its value
unless explicitly changed by an assignment (i.e. value-changing operation). Note that
in Z, it is necessary to explicitly state that the value will be left unchanged by some
operations (or, as in the form above, to specify that an operation may change its value
by hiding 6XBuf from the ESC schema).

18 Specifying System Implementations in Z

6 PrOgrlUIUIling in Z

In order to construct more complex operations from 5uboperations, particularly when
specifying an implementation-oriented view of a system, it is often useful to use the
kind of constructors found in conventional programming languages.

Sequential composition of operations has already been considered. Here we introduce
definitions for conditional, iterative and interleaving constructors.

Further discussion of the transformation of Z specifications into programs can be

found in 18-101.

In the following, we will assume that P and Q are homogeneous operations on a state
5 (having undashed and dashed components representing the state before and after
the operation), and B is a schema representing a predicate defined only on the current
state (involving no change of state).

6.1 Conditional

~P if 8 tl.tt Q ~ (8 ~ P) v (-B ~ Q)

or, if there is no 'else' part

P if 8 (B ~ P) v (-8 ~ =5)

6.2 Itel'ation

Let
10 ~B ~ =5
1;+1 (B~p),r, 'I i:N

then

P~B ~ 10 v Ii v 12 v ...

Building Systems from Subsystems in Z 19

6.3	 Interleaving

P II Q (P I Q) v (Q I P)

This may be generalised to lin' N P, where n is a component in the schema P, and
N is a set compatible with n's type.

If N is the empty set,

Iln'N P ~	 =s

otherwise, if N is not empty, II n : N P represents the logical disjundjo~ of all
possible sequences of P, each with different values of n cbosen from N and with
n hidden. For example, if Nql, 2, 3}, tben:

"n'N P ;	 (P1IPzlPa)V(PzIP1IPa)V(PzIPaIPI)v

(PlIPaIPz)V(PaIPIIPz)v(P3IPZIPj)

where P1;(Pln=1)\(n); P2~(Pln=2)\(n); P3~(Pln=3)\(n)

20 Specifying System Irnplemen\ations in Z

7 Conclusion

The techniques presented in this chapter have heen used in various specifications
produced as part of the Distributed Computing Software Project.

The use of schema conjunction, disjunction and overriding to define an operation from
constituent parts is commonplace in most Z specifications of system components.
Examples of their use, and particularly of overriding to define error behaviour, can be
found in [5J.

The Block Storage Service Implementor Manual (contained in 16]) illustrates the
building of systems from subsystems in which the implementations of the operations on
the service make use of conjoined suboperations (denoted by schema inclusion). The
parameter passing techniques described in section 3.4 are used to pass parameters
between the suboperations within an operation implementation.

The following chapter in this monograph illustrates the techniques described in section
5, making use of suboperation sequencing, and explicitly including parameter buffers
as part of the state of the implemented system.

21

Chapter 2

Implementmg a 8imple File Sex-vice

1 Introduction

2 User view of the service
2.) PageFiles

2.2 Service state

2.3 Parameiers

2.4. PageFile-specific operations

2.5 Error reports

2.6 Service operat.ions

3 Implementation subsystems
3.) Page Store

3.2 Header Store

3.3 Combined state

3.4. Representation relation

4 Successful operations

4.1 Abstract operations on the Page Store

4.2 Abstr~ct operations on the Header Store

4.3 Auxiliary operations

4.4. Combining operations

5 Error handling

5.1 Page Store subsystem redefined

5.2 Header Store subsystem redefined

5.3 Auxiliary errors

5.4. Combining operations

6 Implementing one service in terms of another

6.1 Errors in Page Store

6.2 Errors in Header Store

6.3 Constructing the service operation!

6.4. Expiry during operations
7 Implementations of subsystems

7.J Implementation of the Page Store
7.2 Implementation of the Header Store

8 Conclusion

22 Specifying System Implementations in Z

1 Introduction

To illustrate some of the methods described in the previous chapter, we shall now

consider lhe implementation of a simple file service, the PageFile Service, so called

because each file consisls of a (possibly sparse) array of fixed-size pages of data.

First the user's view of the service is presented with just sufficient detail to give a
precise definition of what is to be implemented. Then two simple subsystems, a Page

Store and a Header Store, are identified and the abstract states of these subsystems

are formally defined. The concrete state of the Page File Service is defined in terms of

the abslract states of the suhsystems and some constraints on the concrete service
state are proposed to ensure the efficiency of the implementation. Also, the

representation relation between the abstract and concrete state of the PageFile

Service is formally defined.

The next step is to consider the implementation of the concrete service operations.

For the sake of simplicity only the successful outcome of operations are considered

initially. The successful operatiOllS on the two abstract subsystems are specified and
some further auxiliary operations (not affecting the state of the sllbsystems) are

defined. The successful cases of lhe concrete operations on the file service are then
specified in terms of the operations on the subsystems and the auxiliary operations.

Some of the ahstract service operations have errors associated with them. To allow

the concrete service specificatiou to mirror lhis, the abstract specifications of the
subsystems and the auxiliary operations are modified to take such errors into account.

The concrete operations on the rile service are then redefined in terms of these

operations.

By this stage, Lhe subsystem operations have been specified as ideal in the sense that
they always will return a predictable result. However, if these subsystems are to be

implemented in terms of olher services, possibly residing on other hosts in the

distrihuted system, the implementation must allow for errors sucb as the crash of a

subsystem and network failures. The specifications of the subsystems are modified to

allow such errors to occur. The effect of these changes on the specifications of the
concrete PageFile Service operations is studied. It is ShOWll how consideration of such
error, is to some extent incompatihle with the efficiency constraints stated earlier.

Finally the implementations of the Page Store and the Header SLore are hoth specified

in terms of the Block Storage Service described in 16j.

I

Implementing a simple File Service 23

The structure of tbe implementation can be illustrated as:

The PageFile Service is implemented in terms of tbe Header Store and tbe Page Store
each of which in turn is implemented in terms of the Block Storage Service.

The final design presented in this cbapter is not directly irnplementabJe, but is

detailed enougb for a competent programmer to implement in a cbosen imperative
programming language with a minimum of effort.

24 Specifying System Implementations in Z

2 Deer view of the eervice

In Lhis seclion we shall present the user's view 01 tbe PageFile Service in abbreviated

form. Only sufficient detail is included to give an unambiguous description of what is
to be implemented. The full User Manual follows tbe style of th e Block Storage

Service (see [G]).

The PageFile Service provides data storage facilities for pagefiles consisting of a set
of numbered fixed-size pages. It is intended as a simple intermediate service on top of

which more elaborate files (such as files consisting of arbitrary-lengtb sequences of

bytes) could be implemented.

Pagefiles may be created, updated, accessed and destroyed by clients. An identifier,

chosen by the service, is used to identify a particular pagefile. A unique identifier is

given to each page file, a new identifier being issued each time a pagefile is changed.

Pagefiles have a limited lifetime, with an expiry time chosen by tbe client, and will be
destroyed without warning on reaching the given expiry time.

The service provides limited security of access to pagefiles. A client may not access a

pagefile without knowing its identity, and pagefile identifiers are hard to guess (since

their values are chosen from a very large set). The identity of any pagefile is initially

known only Lo its creator; the service will never tell the identity of a pagefile to any

other client. Pagefiles Illay be updated or destroyed only by their creators, and so

security also depends on the proper authentication of clients.

Implementation-specific constants, which are also not defined fur ther, are sbown III

italics (e.g. PageSize). The following basic sets are also used:

[UserNum, Time, Report, Id, Byte]

2.1 PageFiles

The PageFile Service stores pagefiles on hebalf of its clients. A pagefile is a file

consisting of an indexed sel of pages. Each page is a fixed size array of bytes.

Page f; O.. (PageSize-l)-Byte

Implementing a simple File Service 25

Pages in a pagefile are numbered in sequence.

PageNum 0 .. (MaxPages-l)

The data in a pagefile consists of the numhered pages. Not every numher need have an
associated page of data at any particular moment.

PageFi leData ~ PageNum -H Page

As well as containing the client's data, the pagefile records some general information:

the owner of the pagefile (the identity of the client who created it), the time of its
creation, the time of its last update and the time of its expiry.

Whenever a pagefile is created, an expiry time must be given hy the client; it is the
time until which the service is obliged to store the pagefile. On reachin~ its expiry
time, a pagefile is said to have expired, and can he discarded hy the senice without
notification of the crlent. A pagefile consists of the information above and its data.

PageFi le ~ Info; data: PageFileData

An id (identifier) will be issued hy the service when the pagefile is created, taken from
the set Id of all identifiers. This becomes the client's reference to the pagefile and any
su bsequent operations on the pagefile will require this identity.

2.2 Service state

The service state records all currently stored pagefiles according to their identities. It
also contains a finite set of new pagefile ids which have not yet heen issued. When a
new id is issued, it is taken from this set. The schema PFS denotes the state of the
Page File Service at any particular moment.

26 Specifying System Implementations in Z

PFS
f 11 es Id -++ PageF i Ie

ne<-llds F Id

ne<-lids n dom files = "

NullId E ne"'ids U dom files

The senice guarantees never to issue Lhe special identity NulJld; this id can therefore

be used b}' clients' applications to indicate "no file".

Initially, when the service is started for the first time, there are no stored pagefiles,

and all ids except the N uJITd are available.

Inl tPFS

PFS'

files'

ne""ds' ld \ {NlIJJld}
 "

2.3 Parameters

The general aspects of operations on the PageFile Service, including the client number,
curren! 'JJlle and an output report are combined in the following schema, relating the

state of the service before an operation (PFS) to that after the operation (PFS').

ne<-lids' ~ ne... ids \ dom files'

It is a property of every operation that any id issued by it is removed from the set of
new ids, and so can never be issued again. Sometimes the state of the Page File Service
is left unaffected by an operation, particularly if an error is detected.

27 Implementing a simple File Service

=PFS llPFS I 8PFS' 8PFS

2.4 PageFile-spccific operations

Many operations on the service apply to an existing pagefiJe stored by the service, and

require tbe id of this pagefile to be supplied as' an input parameter by the clielit. A

framing schema is used to include this information in a specific operation definition.

¢f'ageF i 1e

llPFS

f i 1e ; PegeF i 1e

i d? : £d

file = flles(ld?)

The PageF i I e stored under the given id (if one exists) is made an implicit parametel

of such operations. Similarly, some operatious produce a new pagefile and store it ir

the service, returning its new id as an output parameter. Such a pagefile is alway!
owned by the current client and its update time is the current time (its creation anc

expiry time, and data, will be given in the particular operation definition). Its id i~

taken from the set of new ids. This is denoted by another framing schema.

<It-le PageF; 1e
llPFS

ne file : PageFI Ie
i d! : ld

ne.... file.ol-lner clientnum

ne"f i 1e. updat ed no....

Id' E ne ids

ne"fl Ie = fi les'(ld!)

28 Specifying System Implementations in Z

2.5 Error reports

The report! output parameter of each operation indicates either that the operation
succeeded or suggests why it failed. In all cases, failure leaves the state of the service
unchanged. Success indicates successful completion of the operation.

Success ~ [report' : Report I report! = SuccessReport

The total effect of a service operation is in general defined by overriding the
definition of the successful outcome of the operation by one or more error report
8chemas. If tbe precondition in the error schema is satisfied, the corresponding error
report is returned. On ly if the precondition is not satisfied (usually corresponding to
the satisfaction of a precondition in the successful operation definition) may the
operation succeed.

NoSuchF i I e is given if there is no pagefile stored with identity id?

NoSuchFile

=PFS

id? ld

i d? ~ dom f I Ies

report! = NoSucbFileReport

NoSuchPage denotes that there is no page with number pn? in pagefile I d?

NoSuchPage
=PFS
¢PageF i Ie
pn? : PageNum

pn? ~ dom file. data
report I = N oSucbPageReport

NoSpace indicates that a new pagefile cannot be created when the storage capacity of
the service is exhausted. The service capacity is not ll\odelled explicitly here, and so
this error may occur non-deterministically, but it is guaranteed tha.t the state of the
service will be unaffected in this case.

Implementing a simple File Service 29

NoSpace

=PFS
nospace Boolean

nospace True
report I NoSpaceReport

NotOl-<ner indicates an attempt to perform an operation which can destroy a pagefile

by someone other than the owner of the pagefile.

NotOl-<ner

=PFS

ljPageF i le

fi le.Ol-<ner # cl ientnum

report! = NotOwnerReport

2.6 Service operations

On the following pages appear descriptions of the service operations. Additionally, the

following operation !Day be invoked at any time to remove expired files.

Scavenge

nPFS
expired If Id

expired = {f:domflles I (files f).expires.;now}

f I 1es' = exp i red ~ f i I es

30 Specifying System Implementations in Z

CREATEFILE

Abstract
CreateFile (expires? Time;

pn? PageNum;
page? Page;

id l Id;
report! Report

A new pagefile is created with a specified expiry time, and is stored by the service
under the new pagefile i d I. The pagefile contains one page having the given page
n umber and data.

Definition

Creat eF i 1esuccess
llPFS
expires? Time
pn? PageNum
page? Page
¢NeHPageF i Ie

neHfile.created = nOH
neHfile.expires = max {expires? no\-<}
neHfile.data = {pn? ~ page?}
files' = files u {id ' neHfile}

The owner of the pagefile is the client. If an expiry time in the past is given, then the
expiry lime of the pagefile is set to nOH.

A new identifier is chosen which has never before been issued, and the new pagefile is
stored under that id.

Reports

CreateF i le (CreateFi lesuccess	 ~ Success)
m NoSpace

Implementing a simple File Service 31

WRITEFILE
Abstract

Ur i t eF i 1e (i d? Id;
pn? PageNum;
page? Page;
id I Id;
report! Report

An existing pagefile with the given Id? is replaced by a new pagefile with a new, d I

which has the new pege? at the specified pn? The old pagefile is destroyed.

Definition

Ur i t eF i 1esuccess
llPFS

¢PageF i 1e

pn? : PegeNum
page? : Page

¢NewPegeF i 1e

newfile.created

newfile.expires

newfile.deta

f i 1es' :::: (i d? ~

f i 1e. creat ed

fi Ie. expires
file.deta $ {pn? ~ page?}

files) U {id' ~ ne~flle}

The creation and expiry times of the new pagefile are the same as the origina.l pagefile.
Only the owner may write to a pagefile.

A new id is chosen which has never previously been issued, and the new pagefile is
stored under that id. The old pagefile is removed from the service.

Reports

Ur iteFi Ie ~ (Ur iteFIlesucces5 fo. Success)
$ NoSpace

$ NotOHner

$ NoSuchF i 1e

32 Specifying System Implementations in Z

READFILE

Abstract
ReadFile (id? Id:

pn? PageNum:
pagel Page;
report! Report

The page with the specified pn? in the pagefile called I d? is returned.

Definition

ReadF i 1esuccess
=PFS
<WageF i 1e
pn? PageNum

page! : Page

pagel f i 1e . dat a pn?

The service is unchanged by this operation.

Any client may read a pagefile if they know its pagefile id.

An error report is produced if the pagefile does not have a. page of da.ta with the given
page number.

ReportB

ReadF i 1e (ReadF i 1eSUCC8SS " Success)
e NoSuchPage

e NoSuchF i 1e

Implementing a simple File Service 33

DESTROYFILE

Abstract
DestroyFi le (id? Id;

report I Report

The pagefile stored under i d? is removed froID th" service.

Definition

DestroyF 11 esuccess

t,PFS

4f'ageF I Ie

files' = {id?} ~files

A pagefile may be destroyed only by its owner.

Reports

DestroyF i 1e £ (DestroyF I 1esucce~s 1\ Success)
Ell NotOlolner

ED NoSuchFi 1e

34 Specifying System Implementations in Z

SETFILEEXPIRY

Abstract
SetF,leExpiry (id? Id;

expires? Time;

id! Id;

report I Report

An existing pagefile stored under id? is replaced by a new pagefile with a new I d I

and a new expiry time, but having the same data. The old pagefile is destroyed.

Deftnition

Set F i I eExp i rYsuccess I

llPFS

qf'ageF I 1e
expires? : Time

¢Ne...PageF i I e

ne f i 1e. created file.created
ne file.expires max {expires?, no... }

ne fi le.data file.data
f i I es' = (i d? ~ f i 1es) U {i d! ~ ne'" f i 1e }

The new pagefile has the same data and creation time as the old pagefile. The client
must be the owner of the file.

If an expiry time in the past is given, then the expiry time of the pagefile is set to no....

Reports

SetF i 1eExp i ry (SetF ,I eExp irYSJCCeSS " Success)
$ NotO...mer
$ NoSuchF lIe

Implementing a simple File Service 35

3 Implementation subsystems

In order to determine the concrete st<l.te and the corresponding operalions on it, we
need to determine tbe subcomponents of that state.

An obvious choice of subsystems is·a page store to hold'th·e data contents of the files
and a header store to hold the remaining information, induding an index to the data

pages.

3.1 Page Store

The Page Store allows a user to create, retrieve and destroy pages. When a page is
created the Page Store assigns a unique Page I d to it. This id is then used in all
future references to that page. A speci<l.l identifier, the N ullPageId, is reserved for
special purposes and will never be issued.

Together with the actual contents of <l. page, the Page Store will record its expiry time.

Page I nf 0

expires Time
contents Page

The state of the Page Store can be defined as:

PS
pages : Pageld ~ Page Info
ne~pagelds : f PagaId

ne~pageids n dom pages = 0
NullPageld ~ ne~pageids U dom pages

The state records all currently stored pages according to their identities. It also
maint<l.ins a set of page ids w~;ch pwe not yet been issued.

36 Specifying System Impleroen tations in Z

Initially, when the service is started, there are no stored pages and all page ids except
the NullPageld are potentially available for issue.

InitPS

PS'

pages' = 0

ne",pageids' Pageld \ {NllllPageld}

The Page Store as described here is very similar to the Block Storage Service [61.
Indeed we shall later see that it is a quite trivial matter to impJernen t the Page Store
in terms of the Block Storage Service.

:1.2 Header Store

The conlents of a pagefile can be described in terms of a contiguously numbered
array of Page Ids (corresponding to pages stored hy the Page Store).

PageSeq PageNum ~ Pageld

A special case is the represellt..'1tion of the empty file:

EmptidSeq {s;PageSeq I ran s = {NIlJiPageld} }

Assuming that the actual pages will be held in the Page Store, a pagefile can be
adequately represented by its "bea.der":

Header

I Info

~eco~tents PageSeq I

Implementing a simple File Service 37

Using the new file representation the state of the Header Store can be defined as:

HS
headers

new header i ds
Id ~ Header
f Id

newheaderlds n dam he~~~rs = 0 .
Nul/fd Ii! ne ...headerids U dam headers

The state records all currently stored headers according to their jdentitie., and
maintains ~ set of ids which ha.ve not yet been issued.

Initially, when the service is started, there are no stored headers and all file ids except
the N ulUd are poten tially available (or issue.

InitHS

HS'

headers' = 13

nel-lheaderids' fd \ {NulJId}

3.3 Combined state

The concrete sta.te of the entire Page File Service ca.n be expressed by combining the
two subsystems:

V pf:ran headers
pf.explres > no ... ~

V p:ran pf.flJecontents
p = NuJlPageld v

(pages p).explres ~ pf.expires

38 Specifying System Implementations in Z

The page ids cont<lined in a non-expired header are those of the NullPageJd and of

pages stored in the Page Store. A page must not expire before the header from which

it is referenced.

For the sake of the efficiency of the implementations we should ideally like to impose
some further constraints.

A page expires at the same time as the header from which it is referenced.

ExpiryConstraint

cPFS

V pf:ran headers'
pf .expires > no~ ~

V p:ren pf.fllecontents \ {NuJlPageld}

(pages p).expires = pf.expires

At any given time, the Page Store will only hold pages which are referenced from

headers stored in the Header Store.

CompactnessConstraint

cPFS

V pld:dom pages'

3 pf:ran headers
pid E ran pf.fllecontents

We shall later see that these constraints are incompatible with other requirements of
the service, and they are therefore not a mandatory part of the final specification.

Implementing a simple File Service 39

3.4 Representation relation

The relation between the abstract and concrete representation of the PageFile ServJce

can be defined as:

RelPFS
PFS
cPFS

dam f (1es " dom headers
ne~ids " ne~headerids

V	 pf: dam f i 1es •
f.expires > no~ ~

f.o~ner ~ h.o~ner ~

f.created ; h.created ~

f.updated ; h.updated ~

f.expires" h.expires ~

f.fi lecontents ;

h.filecontentsHNullPageId) r pages

~here

f ~ (f i 1es pr)

h g (headers pf)

For each file in the abstract representation there is a header in the concrete
representation. The file information is stored directly in the header. The contents of

tbe file may be found by retrieving the pages whose Don-null ids are stored in the

header.

40 Specifying System Implementations in Z

4 Succegsful operations

This section concentrates on describing the successful behaviour of the concrete
operations whose abstract equivalents were descrihed in section 2.

First a number of suboperations will be defined. These consist of operations cn the

two subsystems and a few auxiliary operations. Then it is shown how the service

operations can be described in terms of these suboperations. For the moment, it is
assumed I.hat the suboperatiolls are always successful.

4.1 Abstract operations on the Page Store

Create a new page and return the id of that page.

Creat ePagesuccess
t>PS
page? Page

expires? Time

pBgeid' Pagerd

pBgelnfo PageInfo

pageinfo.expires =expires?

pagelnfo.contents =page?

pageld! E newpage Ids

pages' = pages U {page,d ' ~ pBgeinfo}

newpageids' = newpageids \ {PBgeld l }

Read an existing page.

ReadPagesucce5S
=PS
pageid? PageId

page! Page

pageid? E dom pages
pagel = (pages pageld?).contents

41 Implementing a simple File Service

Destroy au existing page.

DestroyPagesuccess
M'S
page i d? Pageld

pageid? E dom pages
pages' : {pageid?} ~ pages
ne~pageids' = ne~pageids

Change the expiry date of a page, leaving the other page information (including page
id) unchanged.

SetPageExp r rYsuccess
c,PS

nO>-l : Time
pageid? PageId
expires? : Time

pageid? E dom pages
{pageid?}~pages' = {pageid?}~pages

(pages' pageid?).contents =
(pages pageid?).contents

(pages' pageid?).expires = max {no~. expires?}
ne>-lpageids' = ne~pageids

The Page Store is automa.tically scavenged periodically and expired pages removed.

ScavengePages
c,PS

no~ : Time

pages' = {p:dom pages I
(pages p).explres > no~} ~ pages

ne>-tpageids' = ne~pageids

42 Specifying System Implementations in Z

4..2 Abstract operations on Header Store

The operations which ma.y be performed on the Header Store are very similar to those
for the Page Store.

Create a new header and return its id.

CreateHeader success

llHS

header? Header

id! Id

id l E ne~headerids

headers' = headers U {id l ~ header?}

ne~headerids' = ne~headerids \ {id!}

Read an existing header.

ReadHeader"uccess

=HS
i d? Id
header I Header

id? E dom headers

header I = headers Id?

Implementing a simple File Service 43

Replace an existing header. The old header is deleted and a new one created (with a

new id).

Rep 1ace Header 5UCC~SS

llHS

id? Id

header? Header

id ' Id

id? E dom headers

id! E ne~headerids

headers' = ({id?}4headers) U {id! ~ header?}

newheaderids' = ne~headerids \ {id ' }

Destroy an existing header.

DestroyHeader success

llHS
i d? ; ld

Id? E dom headers
headers' = {id?} 4 headers
newheaderids' = ne~headerids

The Header Store is scavenged periodically and expired headers removed.

ScavengeHeaders
llHS
no~ : Time

headers' = {hd;dom headers I
(headers hd) . exp ires > no~ } <l headers

ne~headerids' = ne~headerids

44 Specifying System Implementations in Z

4.3 Auxiliary operations

Apart from the operations on the subsystems, a number of other suboperations are

needed.

Create an empty fileheader (Le. for a file without any pages)

MakeHeader
expires? Time

header! Header

cl ientnum UserNum

no"! : Time

header! .o~ner = cl ientnum

header l .created = no~

header l .updated = no~

header l .expires = expires?

header' .filecontents =EmptySeq

Extract from a header the page id corresponding to a given page number.

GetPageld
header? Header
pn? PageNum
pageid! PageId

pageid' header?filecontenls pn?

Implementing a simple File Service 45

Insert a page id into a file header.

PutPageld
header? Header
pn? PageNum
page i d? Page! d
header l Header
no« : Time

heederl.o~ner = header?o~ner

header I .created = header?created
header' . updated = no~

header' .explres = headar?expires
header' .filecontents =

header?filecontents $ {pn? ~ pageld?}

Change expiry date of a file header.

Set HeaderExp i r\:j
header? Header
expires? : Time
header! Header
no~ : Time

header! .o~ner = header?o«ner
header'.created = header?created
header I .updated = no~

header! .expires = expires?
header I .fllecontents = header?fi lecontents

4..4 Combining operations

The next step is to forn) the required service operations by combining the

suboperations. Basically thi~ can be done using schema conjunction or sequent-ia.l

composition (as discussed in Ch~pter 1). As we shall Jater want to argue about the

i!11f'orbnce of t1:e sequence iu wllich suboperations are performed, and what happens
when 3.n operation fail;; ,r,~,'w~y through ils executiou, we shall choose to use

s<:Cjuenli:01 comFosition for combillillg suboperations.

46 SpeCIfying Sys~em Implemen~a~ions in Z

To pass pararne~ers be~ween suboperations in a sequence i~ is convenient to introduce

some buffErs:

HeaderBuf _

I header: Header :

holds the header of the pagefile currently heing handled.

OldPageIdBuf ---.

I oldpageid Pageld
 I

holds the id of an existing page (to be read or destroyed).

NewPageIdBuf

I neJo<page i d : PageId :

holds the id of a newly created block in the Page Store.

The progression of an operation can now be described in terms of the states of the
subsystem, combined with the states of ~he newly introduced parameter buffers:

cPFS 1 HeaderBuf A OldPageIdBuf A

NewPageldBuf A HS A PS

In the following, the effect of the individual suboperations on this combined state is

described using hiding and renaming (see Chapter I, section 5).

Operations on Page Store

CreatePagej =cPFSI\6PS\6Ne~PageIdBuf A

CreatePage~~~PR5Inewpageid'/pageldIJ

ReadPage J =cPFS I \lIPS A

ReadPagesucc".. 10 1dpage Id/page Id?)

ADeslro",Pagel =CPFS1\lIPS
Destro",Pagesuc",";S [01 dpage i d/page I d?]

Implementing a simple File Service 47

SetPegeExplrYl ~ =cPFS1\fiPS ~

SetPageExp i rysucc~ss [0) dpage id/page id? J

Operations Qll ~ Store

CreeteHeader l ~ =cPFS 1\fiHS ~

Crest eHeaders~cces~"'eaderIheader?1

ReadHeader I ~ =cPFS l \fiHS\c.HeaderBuf ~

ReadHeadesuccessr [header' Iheader! 1

ReplaceHeaderl £ =cPFS\\fiHS ~

ReplaceHeadersucc~ss[header/header?l

DestroyHeaderl £ =cPFSj\fiHS ~

DestroyHeadersuccess

Auxiliary Operations

MakeHeader \ ~ =cPFS1\~HeaderBuf ~

MakeHeader[header'/headerIJ

GetPageld\ =CPFS1\~OldPageldBuf ~

GetPageld[header/header?,
oldpageid'/pageid l !

PutPageld l =cPFS1\fiHeaderBuf ~

PutPageld[header/header?,
newpageid/pageid?,

header'/headerlJ

SetHeaderExpirYl ~ =cPFS1\fiHeaderBuf ~

SetHeaderExpiry[header/header?,

header' Iheader I I

Apart from these operations a further two slightly more conlplicated operations are

needed, one which destroys all pages belonging to a file, and one which changes the

expiry date of all pages belonging to a file.

In order to comlrnet these we first introduce tv-a new operations which, given a page
id, will respectively destroy it or change its expiry date. If the id given is the

48 Specifying System Implementations in Z

N ullPagefd the operations will have no effect at all.

NotNullld

OldPageldBuf

oldpageid t- NuJlPageld

Destro~PagelA ~ Destro~Pagel if NotNullld

SetPageExpir~lA ~ SetPageExpir~l if NotNul lId

(For the ddinition of the i..i conditional construct see Chapter 1, section G.1.)

The two nquired operations can now he defined as:

Destro~Pagesl ~

lI pn?:PaseNum(GetPageld l I Destro~PagelA)

5etPagesExpir~1 ~

Ilpn?:PaseNum(GetPageldl I SetPageExplrY1A)

(For the dEfinition of the II interleaving construct see Chapter 1, section G.3.)

The succe;sful behaviour of the concrete service operations can now be defined by

combining the previously defined suboperations in suitable ways.

cReadF i l esuccess ReadHeederl GetPageId 1 I ReadPege 1

cCreateF i I esuccess MakeHeaderl I CreatePagel I

PutPagefd l I CreateHeader 1

cDestro~F i Je~u~~es~ ReadHeader 1 I

(DestroyHeader 1 " Destro~Pagesl)

cl-lr i teF i I escccess ReadHeader 1 I GetPageI d 1

(Destro~PagelA II
(CreatePege l I PutPageId 1 I

ReplaceHeader 1 »

I

Implementing a simple File Service 49

cSetFi leExpirYsuccess ~ ReadHeader l J SetHeaderExplrYI I

(ReplaceHeader l II SetPagesExpirYI)

At this stage the order in wbich certain of tbe suboperations are performed is
immaterial. In tbese cases this bas been marked by using the II operator rather than
the J when com bining these to indicate that the order may be reversed if desired.

The Scavenge operation of the PageFile Service need not be implemented since both
tbe Page Store and the Header Store will independently scavenge the appropriate
implementation data.

50 Specifying System Implementations in Z

5 Error handling

According to the user's view, the service mnst be capable of detecting and reporting a

number of different types of errors. These are:

N oSuchFjJe - occurs if an attempt is made to read, npdat,e, destroy or

change expiry date for a file which does not exist. In the

implementation this corresponds to an attempt to read a

non-existing header in a sub-operation. Since all concrete
operations manipulating existing files start by reading the

fileheader, it will be snfficient if this SUb-operation is
capable of detecting the error (provided that the
subsequent sub-operations are not carried out in this

case).

NoSpace - occurs if an attempt to create a file or to add a page to a
file fails due to lack of storage space. In the concrete

model of the service this corresponds to failure to create a

new page or failure to create a new header.

NoSuchPage - occurs if an attempt is made to read a non-existent page

in an existing file. In the implementation this corresponds

to finding the N ullPageId rather than a specific page id

in the appropriate position of the header.

NotOwner - occurs when an attempt is made to write to, destroy or

change the expiry date of an existing file by somebody

other that the owner of the file. In the concrete

representation this can be detected by checking the owner

field of the corresponding header.

In the following the operations of the subsystems will be redefined, to allow for the

first two lypes of errors. Additionally two new anxiliary operations are introduced to
cope with the last two types of errors. We shall adopt the convention that all
operations on su bsystems will return a report indicating whether the operations were

successful or not.

Implementing a sinlple File Service 51

The successful report can be described by previously defined Success schema:

Success

report I Report

report! SuccessReport

For the moment, it is assumed that the total operations can be defined by the

idealised ones presented in the following sections, which include the error handling
just described.

6.1 Page Store Bubsystem redefined

The only Page Store operation which can occasionally fail is the create page

operation, which may return an error report in case the Page Store is full. The
capacit.y of the store is not modelled here, rather we shall let this be a
nondeterministic attribute of the underlying implementation.

NoPageSpace

=PS
nopagespace Boolean
repor t I Report

nopagespace " True
report! = NoPageSpaceReport

Cr eat ePage, deal : (Creat ePagesuccess	 " Success)
III NoPageSpace

The remaining operations will always be successful.

ReadPage'deal ReadPagesuocess " Success

Dest royPage, deal DestroyPageswccess h Success

SetPageExPlrY,deal ~ SetPageExp,rYswccess" Success

52 Specifying System Implementations in Z

5.2 Header Store subsystem redefined

As with tbe create page operation, the create header operation will fail if the header

store is lull. Again, we shall not model the capa.city here but leave this a

nondetern:inistk attribute of the underlying implementation.

NoHeaderSpace

=HS
noheaderspace : Boolean
report I : Report

noheaderspace = True
report I = NoHeaderSpaceReport

CreateHeoder Ideal ~ (CreateHeader oUccess	 A Success)
al No HeaderSpace

The read header operation may fail in case an attempt is made to re<1.o a non-existing

header (corresponding to an attempt to access a non-existing file on the abstrad
level).

NoSuchHeader

=HS
i d? Id

report' ; Report

id? ~ dam headers

report' = NoSuchHeadcrRepod

Implementing a simple File Service 53

ReadHeader Ideal (ReadHeadersuccess" Success)
<l; NoSuchHeader

The remaining two operation will always be successful.

Rep 1aceHeader ,deal ~ Rep 1aceHeader success" Success

DestroyHeader. deal ~ DestroyHeader ~ucc"ss " Success

5.3 Auxilinry errors

As mentioned earlier, two new auxiliary operationB will be required.

Check III"t the current client is owner of the file whose header is held in the header
buffer.

CheckO"ner Success e NotO~nerError

where

Not O"nerError
header? , Header

report l , Report

cl ientnum : UserNum

heauer?o"ner # cl ientnum

report I = NotOwnerReport

&4 Specifying System Implementations in Z

Check tbat the page id held in the old page id buffer is a genuine page id rather than
the N ullld.

CheckPegeId Success m NoSuchPageError

where

NoSuchPageError

pageid? : PageId

report I : Report

pegeid? NuJJPageld

report I NoSucbPageReport

The effect of these new auxiliary operations on the combined system state cPFS t can
be defined as:

CheckO"nerJ Q =cPFS ~ CheckO~ner[header/header?1t

CheckPageId J Q =cPFS I ~ CheckPageId[oldpegeid/pegeid?)

5.4 Combining operations

As with other su boperation parameters the report parameter will be passed on to the
subsequeat suboperations via a parameter buffer.

ErrorS t e t e _-----,

I errorstete Report I

The contents of this buffer will at a given point in time indicate whether any of the
previously executed suboperations failed during the execution of the current service
operation. If one suboperation in a sequence for some reason fails, it is often not
meaningful to execute the subsequent suboperations. This can be accomplished by
specifying that any suboperation should leave the system state nnchanged if the error
state when the operation is invoked is not SuccessReport, Le. overriding eacb
suboperation specification with:

Implementing a simple File Service 55

Error
sErrorState
zcPFS I

errorstate "# SuccessReport

As a last action a service operation should cOnJmunicate the result of the
operation to the user. This basically consists of translating the content of the error
buffer into a report type whicb is known to the user.

HakeReport

=cPFS I
=ErrorState
report I : Report

errorstate = NoHeaderSpaceReport =
report! <: NoSpaceReport

errorstate = NoPageSpaceReport =
report I <: NoSpaceReport

errorstate = NoSuchHeaderReport =
report I <: NoSucbFileReport

errorstate = NoSuchPatreReport =
report! = N oSucbPatreReport

errorstate = NotOwnerReport =
report I = NotOwnerReport

The progression of a service operation can be described in terms of the slate of the
error buffer combined with the system state cPFS 1 , defined in the previous section.

cPFS2 ~ ErrorState A cPFS 1

The individual suboperations affect tbis combined state as follows.

56 Specifying System Implementations in Z

Operations on ~ S!0Uge Subsystem

Creat ePagez f! CreatePage,deallerrorstate' /report l] ~ Error

ReadPagez ReadPage,deat!errorstate' /report I] III Error

Dest royPagez DestroyPage,deal[errorstete' /report l] III Error

SetPageExpiryz f! SetPageExpirY,deat!errorstate'/report!] ~Error

Operations Q!l ~ Storage Subsystem

CreateHeaderz CreateHeader,deal[errorstate' /report l] III Error

ReadHeaderz ReadHeader,deal[errorstate' /report l] III Error

ReplaceHeaderz f! Rep 1aceHeader ,deal [errorstate' /report I] ~ Error

DestroyHeaderZ f! DestroyHeader ,deal (errorstate' /report I] III Error

Auxiliary Operations

MakeHeader z MakeHeader j III Error

GetPageld z GetPageld l III Error

PutPage Idz f! PutPageld l III Error

SetHeaderExp i ryz ~ Set HeaderExp i rYl ~ Error

CheckO"'nerz CheckO",nerl[errorstate' /report I] III Error

CheckPageldz CheckPageldl[errorstate' /report ') III Error

Implemen~jng a simple File Service 57

The special operations to destroy all pages or to change the expiry date for all pages
of a file need to be rewritten in terms of ~he new suboperations, but generally behave
in almost exactly the same way as before.

OestroyPageZA g

DestroyPagez if NotNullPageld

SetPageExpirYZA ~

SetPageExpiryz if NotNullPageld

OestroyPagesz ~

IIpn?,PaseNum(GetPageldz J DestroyPagezA)

SetPagesExpiryz ~

Ilpn?:PaseNum(GetPageldz I SetPageExpirYZA)

The concrete service operations can now be redefined in terms of the newly defined
suboperations.

cCreateF i le,deal Success J MakeHeaderz I CreatePagez
PutPageldz I CreateHeaderz I

MakeReport

dk i teF .le,deal Success J ReadHeaderz ' CheckOwner z '
GetPageldz I CreatePagez I

(OestroyPagezA II
(PutPageldz I ReplaceHeaderz))

MakeReport

cReadF i 1e ideal ~ Success I ReadHeaderZ r GetPageldz
CheckPageldz I ReadPagez I

l1akeReport

cDestroyFileideal g Success I ReadHeaderz I CheckOHnerz
(Dest royHeaderz II OestroyPagesz)
l1akeReport

cSetFlleExp,rY,oeal ~ Success I ReadHeaderz r CheckO~nerz

SetHeaderExp,ryz I

(ReplaceHeaderz II SetPsgesExp,ryz)
l1akeReport

I

58 Specifying System Implementations in Z

When constructing a service operation by combining suboperations as above, it is

important that the concrete state of the system is consistent and corresponds to a well
defined abstract state at any point where a suboperation may "fail" (i.e. not return a
SuccessReport) and thereby in effed ahort the remaining suboperations in the
sequence, Also, this ahstract state must correspond to what the user expects. In most
cases th~ means that the abstract service state must be unchanged whenever a
suboperaLion may "fail".

For the last four service operations above this poses no problems at all, since the
precondirlons for the entire operations can be (and are) checked hefore any updating
of concrete service state takes place.

The Create operation is not quite so simple, as the CreateHeader suboperation
might fail if the Header Store is full. At this point, however, a new page would have
heen created. This does not affect the abstract view of the service, but it does violate
the compactness constraint stated in section 3. To overcome the problem we might
choose todelete the newly created page.

cCreateF i leallempl S

Success , MakeHeaderz , CreatePagez

PutPageIdz ' CreateHeaderz I

MakeReport ,
((Destro~Pege[ne~pageid/pageid?l A

=cPFS j \6PS) if CreateHeaderError)

where

CreateHeaderError _
ErrorStale I errorstate NoHeaderSpaceError

6

Implementing a simple File Service 59

Implementing one service in term8 of another

If tbe suhsystems presented in the previous sections are to be implemented using other
services (which of course may reside on different host computers from the PageFile
Service), the abstract specification of tbe suhsystem operations must be extended to be
able to mirror the types of errors which may he caused.,-&I-ectlx:oldndir.ectly by the
use of such services.

According to the Common Service Framework [51 any service operation may at any
time return ServiceErrorReport as a result of an operation. This is basically to
allow for errors in both underlying hardware and software. Note that an operation
wbich return a ServkeErrorReport is required to leave the abstract state of the
service unchanged.

Also, the communications network which connects the services may fail during the
operation. This causes special prohlems since no indication as to the result of. the
operation need he given to the requesting service. We will assume that the network
layer of the implementation provides full error-recovery and that' 8€en...from a user
point of view, network errors will never happen.

In the following the operations on the two subservices are fU'St redefined to allow for
service errors as described above, and afterwards the impact of these changes on the
construction of the service operation implementations presented so far is studied in
detail.

6.1 Enor8 in Page Store

In the Page Store subsystem the following error may occur at any time:

PageServiceError

=PS
report! Report

report I ServiceErrorReport

60 Specifying System Implementations in Z

The complete operations on the subsystem can therefore be defmed as:

CreatePage ~ Creat ePage, deal v PageServiceError

ReadPage Q ReadPage ,deal v PageServiceError

DestroyPage ~ DestroyPage ,deal v PageServiceError

~SetPageExpiry Set PageExp iry ideal v PageServiceError

6.2 Errors ill Header Store

In the Header Store .subsystem the equivalent errors may occur at any time:

HeaderServiceError

"HS
report! Report

report! ServiceError Report

The total operations on the subsystem can now be defined as:

CreateHeader Q Creat eHeader ideal v HeaderServiceError

~ReadHeeder ReadHeadar'deal v HeaderServiceError

ReplaceHeader Q Rep 1aceHeader ,deal v HeaderServ i ceError

DestroyHeader - DestroyHeader ,deal v HeaderServ iceError

6.3 Constructing the 8ervi~ operations

We shall now see what changes will be required to the service operations in order to
handle lhe newly introduced error types.

The first change is the obvious one of changing the MakeReport schema, so that the
new errors may be reported to the user of the service. The fact that the Page File
Service makes use of otber services is transparent to the user. Errors occurring in

Implementing a simple File Service 61

such services or during communications with such services, should therefore be
reported as if they occurred in the Page File Service itself.

d1akeReport
=cPFS 1

;;ErrorSt ate
report I ; Report

errorstate = NoHeaderSpaceReport =
report I = NoSpaceReport

errorstate = NoPageSpaceReporl =
report! = NoSpaceReport

errorstate = NoSuchHeaderReport =
report! " NoSuchFileReport

errorstate = NoSuchPageReport =
report! = NoSuchPageReport

errorstate = N otOwnerReport =
report I :> NotOwnerReport

errorst ate:> ServiceErrorReport
report I = ServiceErrorReport

We shall reconsider each of the specifications of concrete pagefile operations
presented in the previous section, taking into consideration that any operation on a
subsystem may fail, and that correct sequencing of suboperations therefore is eveD
more crucial than before in order to ensure that the system state is always consistent.

The ReadF i 1e operation does not change the system state at any point and can
therefore cause DO problems.

cReadFile ~ Success J ReedHeaderz I GetPageId Iz
CheckPageIdz I ReadPagez I cMakeReport

The Creat eF i 1e operation takes the form:

cCreateFile Success I MekeHeaderz , CreatePagez ,
PutPagaldz- I Createl,jeaderz ,. cMakeReport

CreatePage may fail during the CreateHeader operation. In this case a Dew page
would have been created, which was not referenced from any file. This violates the
compactness constraint. We could of course try to repeat the failed suhoperation, or

62 Specifying System Implementations in Z

attempt t¢ delete the just created page, but there is no guarantee tha.t we will succeed
in doing :lO within a reasonable time. We therefore have two choices: either ~ suspend
operation indefinitely (Le. in effect closing down tbe service) or to ease the
compactness constraint and just state that we will attempt to obtain compactness.

The destroy operation takes the form:

cDestroyF i 1e"Uempl ~ Success I ReadHeaderZ I CheckO"nerZ
(DestroyHeaderZ " DestroyPagesZ) I

cMakeReport

Here, if the pages are destroyed first followed by the header and th e laller operation
fails, we will end up with a file header referring to pages which do not exist any
longer (and thus violates the specification). If tbe header is destroyed first and tben

the pages, and part of the latter operation fails, we will end up with some pages wbich
no longer correspond to an existing beader and thus violate the compactness
constraint as above. In reality what we can do hy ignoring the constraint is to make
the outcome of the operation independent on tbe outcome of DestroyPages and we
can thererore create the report before this suboperation is performed.

cDestroyFile Success I ReadHeaderZ J CheckO"nerz
DestroyHeaderz I cMakeReport I

DestroyPagesz

The write operation takes the form:

cUr i teF 11 e"tlempt ~ Success I ReadHeaderz ' CheckO"nerz
GetPagaIdz I CreatePagez J

(DestroyPagezA "
(PutPageldz J Rep 1aceHeaderZ»

MakeReport

Here we observe the same problem witb the compactness constraint as before. If
DestroyPage is performed before Rep 1aceHeader and replace header fails, tbe old
page has been corrupted whereas the new one has not been completely created yet. If
OestroyPage is performed after Rep 1aceHeader and fails we have again violated
the compactness constraint. Removing the constraint makes the result of tbe
operation independent of Dest royPage.

Implementing a simple File Service 63

cUriteFlle Success I ReadHeaderz I CheckO~nerZ ,
GetPegeldz I CreatePagez , PutBlockldz
RepleceHeader z I cMakeReport ,

DestroyPagezA

Note that we could use CreeteHeader and DestroyHeader instead of the atomic

ReplaceHeeder:

_ CreatePage I CreateHeeder I DestroyHeeder I DestroyPage _

This however presents us with another problem; if Dest royHeader fails we end up
having both the old and the new file in the system, which certainly violates tbe
specification of Wr i t eF I 1e.

Tbe SetF i 1eExp ir!:l operation takes the form:

cSet F i 1eExp i rYat\~mpt ~

Success I ReadHeader z J

CheckO~nerz I SetHeederExpiryz I

(ReplaceHeader " SetPegesExpiryz)
cMakeReport

No matter whether we perform the SetPagesExp i ry operation before or after tbe
SetHeederExpiry operation, if tbe later operation fails, the expiry time of all pages
will not be the same as tbat of the header and we have violated the expiry constraint.
Obviously we have to ignore this constrainL

However this is not enough. The state invariant specifies that the pages belonging to a
header must not expire before the header. This means that if the lifetime of a file is to
be increased, then SetPagesExp i ry must be performed before Rep 1aceHeeder, so
that the state will be consisten t should the latter operation fajl. However, if the

lifetime is to be decreased then the operations should be performed in the reverse
order.

IncreaseLlfetime

HeederBuf

expires? : Time

expires? ~ header.expires

64 Specifying System Implementations in Z

cSetFileExpiry Q

Success , ReadHeaderZ J

CheckOHnerZ J SetHeaderExpiryz
((SetPagesExpiryz J ReplaceHeaderZ)

if IncreaseLifetime else
(ReplaceHeaderZ I SetPsgesExpiryZ»

cMakeReport

6.4 Expiry during operations

The spedication we now have derived is quite convincing. There is however still one
ou tstanding problem which is perhaps not obvious; what happens if a file expires

while it is being read or updated? If we were unfortunate, the components of that file

might be scavenged by the subsystems hefore the operation was completed. In the

specificaLion above this might result in an attempt 10 manipulate an expired entity

which would result in a ServiceErrorReport. This is perhaps not what one might
expect but it does fulfil the requirements since any service is always allowed to return

ServiceErrorR.eport as a result.

The other obvious way of coping with this problem is to make sure thai it does not

happen. If we assume that the maximum duration of any operation is DeltaTime, we

could get a.round the problem by specifying that the expiry time of the

su bcomponents should be Delta Time afler the expiry time of the file, and at the
same time change the abstract specification such that no attempt will be made to

access a file after it has expired. To do this the NoSuchF i I e schema from section 2.5
should be substituted by:

NoSuchF i 1e

=PFS
id? : Id

id? ~ dom files v

(files id?).expires < now

report! = NoSucbFileR.eport

However, as the frequency with which this type of error can occur is negligible we

shall reg~rd service error as an acceptable result under these circumstances.

Implemen~ing a simple File Service 65

1 Implementations of Bubsyskm...

In this sedion we shall present possible implemen~atjons of the two subsystems which
were originally defined in section 3 and extended in the subsequent sections.

Both the Header Store and the Page Store will be implemented nsing' the .Block
Storage Service \61, with state defined by the schema 55. Seen from the Block Storage
Service the owner of the blocks used to represent pagefiles is the PageFile Service
itself. In order to distinguish blocks which are used to represent pages from blocks
used to represent headers, we shall use the first data byte of each block to indicate to
which of the subservices the block belongs.

Two constants are used to identify the block type

PageBlock Byte

Header Block Byte

PageBlock 1- HeaderBlock

Any block belonging to the PageFile Service will be marked as belonging to either the
Page Store subsystem or tbe Header Store subsystem.

MarkedBlocks

SS

~ b:ran blocks'
b. owner; PageFiJeService .".

b.data(l) E {PageBlock, HeaderBlock}

An implementation making use of a subsystem is obliged only to use the subsystem
within its defined scope. If tbis cannot be guaranteed (i.e. if tbe implementation
cannot be proven correct with respect to tbe specification of the subsystem), tbere is
an awkward problem. The implementor ca.n either ignore the problem (at some risk)
or can perform simple consisteucy checks and at least return some kind of error
reports if obvious iucoosistcilcies occur, thus making the debugging of user programs
SOl11ewha.t easier.

In the following we sball regard obvious inconsistencies as being equivalent to service
errors and treat them as such.

66 Specifying System lmplementations in Z

7.1 Implementation of the Page Store

Pages and blocks are both defined as sequences of bytes. Provided tbat the page size

is less that the block size (to allow for the byte indicating the block type), it is

therefore ~ trivial matter to represent a page in terms of a block. We shall cboose to
let eacb page he represented by a block and shall let the page be identified by the

name of ~be block representing it.

Pageld 9 Blockld

Two straightforward operations describe the conversion from pages to blocks and

vice· versa.

PackPage Page ~ BlockData

UnPackPage BlockData 47 Page

V p:Page •

(PackPage p) for PageSize+l

PageBlock - p

V b:BlockData I b(l) = PageBlock

UnPackPage b

b after I for PageSize

Tbe representation rela~ion for the page store subsystem can be defined simply as:

RelPS

PS
SS

V pi:dom pages'
b.o"'ner = PageFi}eService
b.expires = p.expires

b.data = PackPage p.contents
",here

b 9 (blocks pi)

p 9 (pages pI)

ne",page,ds = ne""ds

Implementing a simple File Service 67

It should now be fairly obvious that each page store operation can be implemented in
terms of exactly one corresponding block service operation, together with some data
conversion. Since the implementation of the operations is so straightforward we shall
use simple schema conjunction (see Chapter 1) in defining the concrete operations. In
the following a number of concrete operations will be presented, each corresponding
to one of the earlier defined abstract subsystem operations.

Create a new page:

cCreat ePage
Create[blockdeta/dete?, expires?/expiry?,

pageidl/idl, report/report I)

page? Page
expires? Time

pageid l Pegeld
report I Report

blockdate BlockDeta
report Report

blockdeta = PackPage page?
report = SuccessReport =*

report I = SuccessReport

report = NoSpaceReport =*
report! = NoPageSpaceReport

report l! {SuccessReport, NoSpaceReport} =*
report I = ServiceErrorReport

Note, that if the block storage operation returns with an unexpected error, a
ServiceError report will be returned.

68 Spedfying System Implementations in Z

Read a Page:

cReadPage
Read[pageld?/id? blockdata/data l •

report/report I 1
page1d? Pageld
pagel Page

report! Report

blockdata BlockData
report Report

pagel = UnPackPage blockdata

report = SuccessReport ~

blockdata(l) = PageBlock =
report I = Success Report

blockdata(l) #- PageBlock =
report! = ServjceErrorReport

report #- SuccessReport =
report I = ServiceErrorReport

If the block does nol exist or it is nol a page block, the specification of the

operation has been violated, and a service error is reported.

Remove a page:

cDestroyPage
Destroy[pageid?/Id? report/report I J

pageld? Pageld
report I Report

report Report

report '" SuccessReport ~

report I = SuccessReport
report #- SuccessReport =

report I = Service ErrorReport

i

Implementing a simple File Service 69

cSetPageExpiry
SetExpiry[pageid?/id?, expires?/expiry?

report/report']
pagei d? Pageld
expires? Time
repor t ! Report
report Report

report " SuccessReport =+
report I = SuccessReport

report # SuccessReport =+
report I = ServiceErrorReport

7.2 hnpleJnentation of the Header Store

Assuming that a header can be represented as a fixed-length sequence of bytes:

HeaderRep ~ 0 .. HeaderRepSize-l -+ Byte

and assuming that

H eaderRepSize < BJockSize

the concrete representation of the headers can be defined in much the same way as
the representation of the pages.

Of course, the disadvantage of this representation is that the maximum allowed
number of pages in a pagefile, MaxPages, would be fairly small. For an attempt at a
more advanced and flexible implementation of a header store see Illi.

In the following we shall assume the existence of a set of operations to convert to and
from this representation.

HeaderToRep Header ~ HeaderRep

RepToHeader HeaderRep ~ Header

RepToHeader HeaderToRep-l

70 Specifying System Implementations in Z

Given the conversion functions it is a trivial maUer to represent a header in terms of a
block and a header can be identified in terms of the block by which it is represented.

Id !::! Blockld

The conversion functions could be defined as:

PackHeader Header -+ BlockData

UnPackHeader BlockDate ~ Header

II h: Header'

(PackHeader h) for HeaderRepSize

HeaderBlock- (HeederToRep h)

II b:BlockDeta I b.data(1) :: HeaderBlock

UnPackHeader b =
RepToHeader (b after 1 for HeaderRepSize)

The representation relation for the Header Store is very much like that for Page Store.

RelHS

HS

55

II h:dom headers'

hd.o ...ner = PageFjJeService

hd.expires = b.expires
b.deta :: PeckHeader hd

...here

hd ~ (headers h)

b Q (blocks h)

ne...headerids ne... ids

The concrete operations on the Header Store resemble very much the corresponding
operation~ on the Page Store.

Implementing a simple File Service 71

Create a new header:

cCreat eHeader --,

Create[blockdata/data? expires?/exp;ry. I

i d!. report/report I]
header? Header
expl res? Time
i d! Id
report I Report
blockdata BlockData
report Report

blockdata = PackHeader header?
report = Success Report q

report! " SuccessReport

report = NoSpaceReport
report I = NoHeaderspaceReport

report f! {successReport. NoSpaceReport}
report I = ServiceErrorReport

72 Spe<ifying System Implementations in Z

Read a he~der:

cReadHeader

Read [i d?, b1ockdat a/dat a!, report /report !]

id? Id
header l Header

report' Report

blockdate BlockData

report Report

header 1 ~ UnPackHeader blockdata

report = SuccessReport
b 1ockdat a(I) = HeaderBJock

report I == SuccessReport

b Iockdata (J) 1- PageBlock
report I == NoSuchHeaderReport

report E {NoSuchBlockReport, NotOwnerReport} =
report I == NoSuchHeaderReport

report e {SuccessReport, NoSuchBJockReport,

NotOwnerReport} I report I == ServiceErrorReport

If lhe req~ested block does not belong to the PageFile Service or if it is not marked as
a header block, it is reported as non-existing.

Remove aheader:

cDestroyHeader
Destroy[id?, report/report I)

id? Id
report! Report

report Repor t

=report == SuccessReport
report! == SuccessReport

report 1- NetErrorReport
raport! == ServiceErrorReport

Implementing a simple File Service 73

Replace one header with another:

cRep I aceHeader

Replace[id?, blockdata/data?, id l ,

report/report I J

i d? Id

heeder? : Header

i d l : Id
report! Report

blockdata : BlockDate
report Report

b\ockdate ~ PackHeader header?

report = SuccessReport
report I = SuccessReport

report 'i NetErrorReport ""9

report I = ServiceError Report

This completes the specification of the concrete operations.

74 Specifying System Implementations in Z

8 Conclnaion

Despite restructuring the implementation specification a number of times during its
development, in an attempt to make it easier to understand, the version presented
here is slill by no means straightforward to assimilate.

One of Ihe advantages of the schema composition techniques, namely being able to
abstract pari of a specification under a simple name, is also one of its main
disadvanlages. In larger specificat.ions, such as this one, it is all too easy to hide the
delail so well that, il is overlooked!

Here, a.s in the Block Storage Service Implementor Manual 161, we bave tried to
present a design in a form suitable for a programmer rather than for a proof of
correctness. The refinemen t steps demons Irate design decisions, and are probably too
large to realistically expect a complete proof to be carried out by hand. In addition,

the notation has been kept within the Z framework, although a small number of extta
schema operators have been added, in particular to handle iteration and interleaving
(see Chapter I, section 6). For an example of how a Z specification could be further

refined Lowards a programming language, see 1121.

The prOVISIon of computer based tools may help with refinement in the future.
However, even without lhese tools, the use of a formal notation gives the designer
more confidence and understanding of the internal design of the system before the
coding stage.

,

7S

Acknowledgements

Tbank you to Carroll Morgan and Tim Gleeson, former members of the Distributed
Computing Software project, for providing some of the experiences on which this
monograph is based. In addition, Tim Gleeson made invaluable commen.ls on an
earlier draft.

Also, thank you to those working on the development of Z in the several related
projects at the Programming Research Group wbo have provided inspiration.

The Distributed Computing Software project has been funded by a grant from the
Science and Engineering Research Council.

76	 Specifying System Implementations in Z

References

1.	 Su{r'lll, B.A. (Editor) "Z Handbook", Draft 1.1, Programming Research

GrQUP, Oxford University, (1986).

2.	 Spivey, J.M. "The Z Library - A Reference Manual", Programming Research
Group, Oxford University, (1986).

3.	 King, S., S¢rensen, !.H., WooJcock, J. "Z: Concrete and Abstract Syntaxes",

Version 1.0, Programming Researcb Group, Oxford University, (1987).

4.	 Hayes, I..J. (Editor) "Specification Case Studies", Prentice-Hall International

Series in Computer Science, (1987).

5.	 Bowen, J., Gimson, R.B., Topp-J¢rgensen, S. "The Specification of Network
Services", Technical Monograph PRG-61, Programming Research Group,

Oxford University, (1987).

6.	 Gunson, R.B. "The Formal Documentation of a Block Storage Service",

Technical Monograph PRG-62, Programming Researcb Group, Oxford

University, (1987).

7.	 Woodcock, J. "Structuring Specifications - Notes on the Schema Notation",

Programming Research Group, Oxford University, (1986).

8.	 S;!rensen, LH. "Structured Programming with Schema.s", Progr<lmming

Research Group, Oxford University, (1986).

9.	 Josephs, M. "Formal Methods for Stepwise Refinement in the Z Specification

Language", Programming Research Group, Oxford University, (1986).

10.	 Wordsworth, J. "A Z Development Method", IBM, Hursley Park, UK, (1987).

11.	 Gimson, R.B. "PageFile Service· Implementor Manual", DeS Project working

paper, Programming Research Group, Oxford University, (1987).

12.	 Morgan, C.C. "The Specification Statement: Fonnal Treatment", Course Noles
for Software Engineering, Programming Research Group, Oxford

University, (1986).

77

Appendix A

Index of formal definitions

The following index lists the page numbel1l on which each formal name is defined in

the text. In particular, aU schema names are inclnded La aid cross reference. Schemas
names in the index with a rather than a page Dumber next to them are defined in

the Block Storage Service [61. Names which have a special symbol (t., 4>, =, c) as a

prefix are listed after the corresponding base name. Note that for a schema S, unless
otherwise derined, it is assumed that the following definitions exist if required:

65 ~ S" 5'

=S ~ 6S I 85' = 8S

Byte 24
CheckO"'ner 53
CheckO",ner, 54
CheckO",nerz 56
CheckPageld 54
CheckPageld[54
CheckPageldz 56
CompactnessConstralnt 38
Create *
CreateF i 1e 30

cCreateF 11 e 61

cCreateF 11 eat tempt 58

cCreateFi le,deel 57

CreateF i I esuccess 30

cCreat eF i 1esuccess 48
CreateHeader 60
CreateHeader, 47
CreateHeaderz 56
CreateHeaderError 58
CreateHeader Ideal 52

CreateHeadersucc~s 42
CreatePage 60

cCreatePage 67
CreatePage\ 46

78 SpeciJying System ImplemenLaLions in Z

CreatePagez 56

CreetePage ,deal 51

Creat ePagesueeess 40

Destroy *
DestroyF i 1e 33

cDestroyF i 1e 62

cDestroyF i 1eat tempt 62

cDestroyF i 1e ,deal 57

Dest royF i 1esueees. 33

cDes t royF j 1esucces. 48

DestroyHeader 60

cDestroyHeeder 72

De s t royHeeder I 47

DestroyHeaderZ 56

DestroyHeeder1deal 53

Des t royHeadersuccess 43

DestroyPege 60

cDe st royPage 68

DestroyPa ge l 46

DestroyPegelA 48

DestroyPagez 56

DestroyPegezA 57

DestroyPege ideal 51

DestroyPegesuccess 41

DestroyPagesl 48

DestroyPagesz 57

Empty5eq 36

Error 55

Error5tete 54

ExpiryConstraint 38

GetPageId 44

GetPegeld 1 47

GetPageId z 56

Header 36

HeaderBlock 65

Header8uf 46

HeaderRep 69

HeaderServiceError 60

HeederToRep 69

H5 37

Id 24, 70

IncreaseL I fet line 63

Info 25

In i tH5 37

InitPFS 26

InitP5 36

HakeHeader 44

HakeHeederl 47

HekeReport 55

cMekeReport 61

Merked810cks 65

¢t'le~PegeF i 1e 27

Ne~PegeId8uf 46

NoHeader5pece 52

NoPege5pace 51

No5pace 29

NoSuchF i 1e 28,64

NoSuchHeeder 52

No5uchPage 28

No5uchPageError 54

NotNullId 48

NotO~ner 29

NotO...nerError 53

OldPageIdBuf 46

Page 24

PeckHeeder 70

PackPage 66

PageBlock 65

PageF r 1e 25

¢PageF i 1e 27

PageF i 1eDete 25

Pageld 66

PageInfo 35

PageNum 25

Page5eq 36

PageServ I ceErr or 59

79

PFS 26 ReplaceHeadersueeess 43
llPFS 26 Report 24
=PFS 27 RepToHeader 69
cPFS 37 5cavenge 29
cPF51 46 ScavengeHeaders 43
cPFSZ 55 ScavengePages 41

PS 35 SetExpir~ ..
PutPageld 45 SetF i 1eExp I ry 34
PutPageld l 47 cSetFtleExp,ry 64
PutPageldz 56 cSetF i laExp irY,deal 57
Read SetF i 1eExp i rYsueeess 34*
ReadF 11 e 32 cSetF i I eExp, rYsueeess 49

cReadF i le 61 SetHeaderExpiry 4S
cReadF i 1e ,deal 57 SetHeaderExp,rYl 47

ReadF i I esuee ess 32 SetHeaderExpiryz 56
cReadF i 1esueees. 48 SetPageExp,ry 60

ReadHeader 60 cSetPageExp,ry 69
cReadHeader 72 5etPageExp,rYI 47

ReadHeader 1 47 SetPageExp irY1Fl 48
ReadHeader Z 56 5etPageExp,ryz 56
ReadHeader odeal 53 SetPageExpirYZFl 57
ReadHeader success 42 SetPageExpirY,deal 51
ReadPage 60 Set PageExp irYsueeess 41

cReadPege 68 5etPagesExp,rYl 48
ReadPagel 46 SetPagesExpiryz 57
ReadPagez 56 5uccess 28,51
ReadPage'deal 51 S5 *
ReadPagesueeess 40 Time 24
RelHS 70 UnPackHeader 70
Re1PFS 39 UnPackPage 66
RelPS 66 UserNum 24
Replace Wr i teF i 1e 31*
RepleceHeader 60 cWriteFi1e 63

cRep1aceHeader 73 cWriteFi 1eatlempt 62
Rep 1aceHeeder 1 47 cWr i teF i 1e, deal 57
ReplaceHeaderz 56 Wr i teF i I esueeess 31
Rep 1aceHeader ,deal 53 cWr, teF i 1esueeess 48

80 Specifying System Implementalions in Z

Appendix B

Glossary of Z notation

A glossary of the Z mathematical and schema notation used in this monograph is
included here for easy reference. Readers should note that the definitive concrete and
abstract syntax for Z is available elsewhere [31·

Glossary 81

Z Reference Glossary

Mathematical Notation

1. Defin.itiona aDd declarationa.

Let", "j be identifiers, t, t I be terms and

TJ T, be sets.

ITl' Tz.... J Introduction of given sets.
x ~ t Definition of" as syntactically

equivalen t to t.
X ::=x 1 «t 1»1 ... /xn«t n»

Data lype definition (the «t»

terms are optional).

x T Declaration of " as type T.
xI' T1; ... ; Xn: Tn List of declarations.

xl' X n : T Declarations of the same
rype: ~ Xl' T ; ... ; xn : T.

2. Logic.

Let p, 0 be predicates and D declarations.

~ p Negation: "not po.
P A 0 Conjunction:"P and 0".
P v 0 Disjundion:"P or 0":

~ ~(~PA ~O).

P ""* Q Implication: "P implies Q" or
"if P then 0": ~ ~P v O.

P ~ 0 Equiv•.Ience: up is logically

equivalent to 0":
~ (P _ 0) A (0 => P).

true Logical constant.

false ~ ~ true
V D P Universal quantification:

"for all D, P holds".

3 D P Existential quantification:
"there exists 0 such that P".

31 D • P Unique existence: "there exists
a uniq ue 0 such that P".

VDIP·Q ~ (V D • P =9 0).

3DIP·Q ~ (3 0 • P A Q).

P !:!b.m::.!l. D 1 0 Where clause:
~ 3 D 1 Q • P

P where xIS t 1 : ... ; "n~ t n Where clause:
P holds. with. the syntactic

definition(s) defined locally.
D I- P Theorem: ~ I- If D • P.

3. Set9.

Let S. T and X be sets; t. t, terms; P a
predicate and D declarations.

t 1 = Equality between tenos. t z
t j "# t z lnequaliry: ~ ~(tl = t z).
t e S Set membership: "t is an element

of 5".
t f S Non-membership: ~ ~(t e 5).

eJ Empty set: ~ { ,,:X 1 fa! se }.
5 ~ T Set inclusion:

~ (Vx:S'" eT).

SeT Strict set inclusion:
~5~TASi-T.

{t l , t z, ... , t n } The set containing

t l' t Z' ... and tn'
{ DIP, t } The set of t's such that given

the declarations D, P holds.

{D I P} GivenO~xI:Tl;"'; xn:T n•

g {DIP· (x I' "n)}.
{ D • t } ~ {D I true • t}.

(t I' t z, ... , t n) Ordered n-tuple

of t I' t z,·.. and tn'
T1 X Tz X '" X Tn Cartesian product:

the set of all n·tuples such that

th.e i th component is of type T , .

II' 5 Powerset: the set of all subsets

of S.

1'1 S Non-empry powernet:
~ p S \ {0}.

f S Set of finite subsets of S:

S {T: PSI T is finite}.

IF} 5 Non-empty fmite set':
~fS\{0}.

82 Glossary

5 n T Set intersection: given S. Toll' X,
£ {x 0 X I x EO 5 1\ X EO T}.

5 u T Sel union: given S. ToP X,
£ {x 0 X I xES v X EO T}.

5 \ T Set difference: given S. T: II' X,
~ {x; X I xES 1\ X Ii! T}.

n 55 Distrihuted S€t intersection:
g~en 55: P (P X),
~ {xoX I (VS:SS • xeS)}.

U 55 Distributed set union:

given 55: P (P Xl.
~ {XIX I (35:55 • xeS)}.

115 Size (number of distinct

elements) of a finite set.
~ DIP • t Arbitrary choice from the

set {D I P • t }.

1-1 D • t £ ~ D I true . t

4. Relations.

A relation is modelled by a set of ordered

pairs hence operators defined for sets ca.n
be used on relations. Let X, Y and Z beI

sets; x: X;	 y: Y; and R: X H Y.

X H Y	 The set of relations from X to Y:
~1I'(XxY).

x R y)(is related by R to y:

~ (x, y) EO R. (R is often

underlined for clarity.)
X >-+ y Maplet: a (x. y).
dam R The domain of a relation:

a{x:X 13y:Y' xRy}.

ran R	 The range of a relation:

a{y:Y	 13x:X' xRy}.

R1 J Rz	 Forward relational composition:
gi"'en R1 : X H Y; RZ: Y HZ,

S {XIX; z:Z I 3y:Y •

X R1 y 1\ Y Rzz}.
R Rz Relational composition;1 0

g Rz J R1 ·
R- 1 Inverse of relation R:

g {y:Y; XIX I x R y}.

id X	 Identity function on the set X:
a {XIX· x>-+x}.

R'	 The relatioD R composed with
itself k times: given R: X H X,
RO Sid X. R' + I SR' 0 R.

R*	 Reflexive transitive closure:
S U {n: N • Rn }.

R+ Non-reflexive transitive closure:
a U {n: N1 • Rn

}.

R(S] Relational im age: given 5: P XI

S {y:Y I 3xIS' xRy}.

S 4 R	 Domain restriction to 5:
given 5: II' X,
a {XIX; !J:Y I xeS 1\ xRy}.

s ~ R	 Domain subtraction:

given 5: IP X,
a (X \ S) ~ R.

R ~ T	 Range restriction to T:

given T: II' YI

£ {XIX; y:Y I x R y 1\ yeT}.

R ~ T	 Range su btraction of T:
gi...en T: If' YI

£ R ~ (Y \ T).

R	 Infix rebtion declaration (often

underlined in use for clarity).

S. Functions.

A function is a relation with the property

that for each element in its dom"in there is
a unique element in its range related to it.
As functions a.re relations all the operCltors

for relations also apply to functions.

X -H Y	 The set of partial functions from

X to Y:
a {f : X~ Y I 'V x : dom f •

(3 1 Y : Y • x f y)}.

X --> Y	 The set of total functions froUl
X to Y:
g {f : X --++ Y I dom f = X}.

Glossary 63

X >++ Y The set of partial injective (one 6. Numbers.
to-one) functions from X to Y:
; {f : X-++ Y I II Y : ran f • Let m, n be natural numbers.

(3 1 x: X·fx"'y)}.
The set of natural numbersX H Y The set of tolal injective

/oj

(non·negative integers).
functions from X to Y:

N[The set of strictly posilive
; (X >++ Y) n (X --+ Y).

natural numbers: Q N\ {O}.
X -iii Y The set of partial surjective

I The set of in tegers (positive,
functions from X to Y:

zero and negative).
; {f: X~Y I ran f"y}.

suee n Successive ascend in g natu ral
X Y The set of total surjective

number.
functions from X to Y;

pred n Previous descending natural'
~ (X~Y) n (X--+Y).

nnmber: ; suce-j n.
X '"* Y The set of total bijective

m ... n Addition; 9 succ" m.
(injective and surjective)

m - n Subtraction: 9 predn m.
functions from X to Y:

m * n Multiplication: ; (_ ... m)n O.
; (X ~ Y) n (X >-> V).

m illY n Integer division.
X Y The set of finite partial

m mod n Modulo arithmetic.
functions from X to Y: nm Exponentiation: Q <- * m)n 1.9{f:X YI

m ~ n Less than or equal, Ordering:
f E f (X x V)}.

~ ~ succ· .
...... >++-- Partial functions.

m < n Less than, Strict ordering;
--+>->~'"* Total functions.

Qm~n1\mj/n .
......_- - Finite functions.

m ~ n Greater than or equal: Q n ~ m.
fie f 2 Fnnctional overriding; given

m :> n Greater than: Q n<m.
f1,fz:X Y,

m•. n Range; ; {k:N I m~k 1\ k"n}.
g (dom f 2 ~ f l) U fz.

mIn 5 Minimum of a finite set;
f Prefix function declaration

for 5 : fiN, mi n 5 E 5 1\
(default if no underlines used).

(lJx:S • x ~ min 5).C f _) Infix function declaration (oHeu
max 5 Maximum of a finite set;

underlined in use for clarity).
for 5 : FI N, max 5 E 5 1\f Postfix function declaration.
(IJ x: 5 • x " max 5).f t The function f applied to t.

f (t) Q f t.

>- D I P • t Lambda-abstraction:

7. Orders.

the function that, given an
part i aI_order X

argument x of type X such
The set of partial orders on X:

thai P holds, the result is t.
g {R:X X IlJx,y,z;X·

Given D9 x1 :T 1 : ... ; xn:T n,
x R x ~

9 {Dlp.(xl, xn)Ht}.
xRy~yRx=x"Y1\>-D· t Q >-Dltrue·t
xRy~yRz=xRz}.

84 Glossary

tota 1_order X

The set of total orders on X:
£ {R:partlal_orderIVx,y:X·

x R y v y R x}.

monotoniC X <x The set of functions

from X to X that are monotonic

with respect to the order <x on X:
~ {f: X-++ X I Vx, y: X •

X <x y ~	 f (x) <x f (y) } .

8. Sequences.

Let a, b be elements of sequences, A, B be

sequences and m, n be natural numbers.

seq X	 The set of sequences whose

elements are drawn from X:

£ {A: N-flX I
dom A ::: 1 .. tJ,A }.

o The empty sequence 0.

seq! X The set of non-empty sequences:

~ seq X \ {<>}

<ai' an>
£ { 1H a l' ..., n H B II }.

<ai' ... , en> - <b l , b >m

Concatenation:

~ <al"'" all' b j , ... , bm>,

O-A::: A-O ::: A.

head A	 The first element of a

non-empty sequence:

A 1- <> => head A ::: A(1) .
last A	 The final element of a

non-empty sequence:

A 1- <> ~ last A ::: A(ltA).

t a i I A All but the head of a sequence:

t ail (<x> - A) ::: A.

front A All but the 1ast of a sequence:

front(A-(x»::: A.

rev <a l • a2' ... , ell> Reverse:

~ (anI ...	 J a21 al),

rev <> = O.

I AA Distributed concatenation:

givenAA : seq(seq(X»,
~ AA (l) - ... - AA (It AA) ,
- 1<> :::	 O.

liAR	 Distributed relational

composition:

given AR seq (X +-+ X),

~AR(l) ~ lAR(ltAR),

ll<>=idX.
1II/AR	 Distributed overriding:

given A : seq (X -# Y),

~ AR(l) 1II ... 1II AR(IIAR),

1II1 <> ::: 0.

squash f	 Convert a finite function,

f: N -fl X, in to a sequence by

squashing its domain. That is,

squash I2l ::: <>,

and if f # '" then

squash f :::

(f(I»-squash({IH f)

where i ::: min(dom n.
S 1 A Index restriction:

~ squash(5<lA).

A ~ T Seq uence restriction:
g squash(At>T).

d i sjo int	 AS Pairwise disjoint:

given AS: seq (P X).

g (1/ i. j : dom AS • I 1-j

~ AS(i)nAS(j)::: 0).

AS oartitions S
g diSjoint AS 1\

U ran AS ::: S.

A ill B Contiguous subsequence:

~ (3C,D: seq X "
C- A -D ::: B).

9. Bags.

bag X	 The set of bags whose elements
are drawn from X: ~ X -# NI

items 5	 The bag of items contained in
the sequence s: ~ {x:ran s"
xHIt{ I : dom sls(i) =x} }

5

Glossary 85

Schema Notation

Schema definition: a schema groups
together some declara.tions of variables and
a predicate relating tb ese variables. There

are two ways of writing schemas: vertically,

for example

5
x 1'1
y seq N

x ~ lIy

or horizontally, for the same example
5 ~ [x: 1'1; y: seq 1'1 I x~lIy).

Use in signatures after V, ~, {...}, etc.:

(V5 • y t <» ~ (Vx:N: y: seq 1'1
xl;lIy . yt<».

Schemas as types: when a schema name 5 is
used as a type it stands for the set of all
objects described by the schema, {5}. For

example, ~ : 5 declares a variable ~ with

components x (of type 1'1) and y (of type
seq 1'1) such that x ~ lIy.

Projection functions: the component names
of a schema may be used as projection (or

selector) functions. For example, given

"': 5, "'.x is ~'s x component and ~.y is
its y component; of course, the following

predicate holds: ~. x ~ II>;. y. Additionally,
given X ~ 5, ~d~5.x) is a function
X~N, etc.

e5 The tuple formed from a

schema's variables: for example,
95 is (x. y). Where there is

no risk of ambiguity, the e is
sometimes omitted, so that just
"5" is written for "(x, y)".

pred 5 The predicate part of a schema:
e.g. pred 5 is x ~ Ily.

Inclusion

5 I P

5 D

A schema 5 lllay be included

within the declarations of a

schema T, in which case the

declarations of 5 are merged
with the other declarations of T
(variabLes declared in both

"ud T must be of the same type)
and tbe predicates of 5 and T
are conjoined. For example,

T .,
5
z N

z < x

is

x, Z : 1'1
y : seq 1'1

x l; lIy 10. Z < X

The schema 5 with P conjoined
to its predicate part. E.g.,
($ I x>O) is

[x: 1'1; y: seq 1'1 I X~lly 10. x>O J.

The schema 5 with the
declarations D merged with the
declarations of 5. For example,
(5 : z:N) is

[x, z:N; y:seq 1'1 I x~lty].

5[ne~/old] Renaming of components:

the schema 5 in which the

component old has been

renamed to ne... both in the
declaration and at its every free

occurrence in the predicate. For
example, 5[z/x] is

(z : 1'1; y: seq 1'1 I :z ~ ItY
and5[y/x,x/y] is

[yoN; x:seq 1'1 I y ~ Itx].

86 Glossary

In ~he second case above, the

renaming is simullaneous.

Decoration Decoration with prime,

etc.;

the

the

subscript, superscript,

systematic renaming of

components declared in

schema. For example,S' is

(x':N; y':seqN I x'~~y'J.

~S The schema 5 with its predicate

part negated. E,g., ~S is

[x:N; y:seq N I -(x,,~y)l.

5 " T The schema formed from

schemas 5 and T by merging

their declarations (see inclusion

above) and conjoining (and-ing)

their predicates. Given T ~ [x:

N; z: P "'I I x E Z 1,5 " T is

x : N
y seq N
z P N

)(~ Uy ")(E Z

5 V T	 The schema fonned from

schemas 5 and T by merging

their declarations and disjoining

(or-ing) ~heir predicates. For

example,S V T is

x fII

y seq N

z II' fII

x " lly V	 x E Z

5 =* T	 The schema formed from

schemas 5 and T by merging

their declarations and taking

pred 5 =* pred T as the

5 ~ T

5 \ (vI'

predicate. E.g., 5 ~ T is

x N

y seq N

z P N

x " tty ~ X E Z

The schema formed from

schemas 5 and T by merging
their declarations and taking

pred 5 ~ pred T as the

predicate. E.g., 5 ... T is

)(~

y seq N
z If' N

)(" Ity ~)(E Z

v2' ,." v n)

Hiding: the schema 5 with the

variables Vj. v2'." • and \In

hidden: the variables listed are

removed from the declarations

and are existentially quantified

in the predicate. E.g., 5 \ x is

[y:seq~I(3)(:fII·x'lly)1. (We

omit the parentheses when only

one variable is hidden.) A

schema may be specified instead

of a list of variables; in this case

the variables declared in that

scbema are hidden. For

example, (S " T)\S is

z II' N

(3	 ><: N; y: seq N •

>< '" ~y 1\ X E z)

r

Glossary 87

5 ~ (vI' v z..... v n)

Projection: The schema 5 with

any variables that do not occur

in the list v l' v z' ... , "n hidden:
the variables removed from the
declarations are existentially

x?, 5 N

(3 5'. yf ; N •

5' = 5-X? " y! ~ 5)

quantified in the predicate. E.g., post S Postconditioa:.. this ·is similar to
(5" T)~ (x, y) is precondition except all the state

before components (undashed)
x N and inputs (ending in "?") are

Y seq III hidden. (Note th at this
definition differs from some

(3 Z : f N others, in which the

x " ~y " x E z) "postcondition" is the predicate

relating all of initial state,
As for hiding above, we may inputs, outputs, and fInal state.)
project a single variable with no
paren theses or the variables in a
schema.

5 ill T Overriding:

~ (5 " ~pre T) V T.
For example, given 5 above aDd
T --,

The following conventions are used for
variable names in those schemas which

x?, 5, 5 N

represent operations on some state:
5 < x? 1\ 5' = 5

undashed state before,
dashed (".") state after, 5 ill T is
ending in "?" inputs to (arguments for),
ending in "I" outputs from (results of)

the operation.

The following schema operations only
apply to schernas following the above
con ven tions.

pre 5 Precondition; all the state after

x?, 5, 5', yl , III

(s' = 5-X? " y! = 5 1\

~(3 5" N

5 < x? " s' = 5»

v (s < x? " s' = 5)

components (dashed) and the which simplifies to
outputs (ending in "I") are
hidden. E.g. given

5 I

x? S. s
,
• yl , N

s = 5-X? " YI = 5

x?, S, 5"1 y! N

(5' = S-X? " Y I s "
S ~ x?) v

(5 < x? " s' s)

pr e 5 is

88 Glossary

5 I T	 Schema composition; if we
consider an intermediate state
that is both the final state of the
operation 5 and the initial state
of the operation T then the
composition of 5 and T is the
operation which relates the
initial state of 5 to the final
state of T through the
intennediate state. To form the
composition of 5 and T we take
the state-after components of 5
and the state-before components
of T that have a basename" in

common, rename both to new
variahles, take the schema which
is the "and" (A) of the resulting

schemas, and hide the new
variables. E.g., 5 I T is

X?IS' 5', y! N

(3 So : N

So = s-x " YI = S A

So < x? " s'. = So)

• basen ame is the name with
any decoration (" I '\ "I", a?". ,
etc.) removed.

5 »T	 Piping; this schema operation is
similar to schema composition;
the difference is that, rather than

identifying the state after
components of 5 with the state
before components of T, the
output components of 5 (ending
in a!") are iden tified with the
input components of T (ending
in a?") with the same basename.

The following conventions are used for
prefixing of schema names;

liS change of ~ to after state,
=5 no change of state,
<1>5 framing schema for definition of

further operations.

For example
QliS 5	 " 5'

=5 e 65 I 85 = 85'

<1>5 65 I 'd = 'd

SOP s <1>5 I x'= 0

Other Definitions

Axiomatic definition; introdnces glohal

declarations which satisfy one or more
predicates for use in the entire document.

declaration(5)

predicate(s)

or horizontally; DIP

Generic constant; introduces generic
declarations parameterised by sets A, B,
etc. which satisfy th e given predicates.

[A, B, ...] I

declaration(s)

predicate(s)

Generic schema definition: introduces
generic schema par ameterised by sets A, B,
ek. When used subsequently, the schema
should be instantiated (e.g. 5 [X, y 1).

5(A, B, ... J I

declaration (s)

predicate(s)

