
Two Papers on CSP

by

A.W. Roscoe

n v ., , / ..

- " ~;l." ,....,,,,, __"

, , ,
)0'J

0""v,U (),"(:JWUf

Technical Monogra.ph PRG-67
ISBN 0-902928-49-X

July 1988

Oxford University Computing Laboratory
Progra.mming Research Group
8-11 Keble Road
Oxford OX1 3QD
England

Cop)'right @1988 A.W. Roscoe

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OXI 3QD
England

An alternative order for the

failures model

by A.W. Roscoe'

Oxford University Computing Laboratory,
8-11 Keble Road, Oxford OXI 3QD, U.K.

o. Introduction. This paper introduces an alternative, coarser, partial or
der on the (improved) failures model of [BR] (sometimes called the fa.ilures
divergences model). The new order gives exactly the same semantics to CSP as
the old one. As well as being of intrinsic interest for this reason the new order
allows one to establish some interesting new results about the semantics ofCSP
and also (if desired) to extend the model to encompass certain extra forms of
unbounded nondeterminism.

The present failures model N, with its explicit treatment of divergence, was
independently introduced in [R,B] to overcome various technical difficulties in
the "pure" failures model of [HBR, BHR]. In the earlier model we had based
Ollt partial order on nondeterminism

p;;JQ¢>pc;,Q

and so it was natural that this idea should be extended to the improved model:

p;;J Q ¢> D[PI c;, D[QI" .r[PI c;, JlQI·

This order works very well, of course. P:! Q just when P "improves-" Q, or
when P is more deterministic than Q. :! is a complete partial order, though

'The a\l~hor gratefully acknowledges that I,he work reported in this paper was supported
by ONR grant NOOO14-8T-G-0242.

1

when the underlying alphabet of communications is infinite the compactness
condition

('IX E p(Y).(s,X) E F1PI) 0> (s,Y) E .r[PI
is necessary for this. (This assumption turns out to be somewhat weaker than
an assumption of finite nondeterminism.) In this paper we will sometimes refer
to this order as the nondeterminism order.

There are good intuitive reasons for expecting all CSP operations to be
monotonic and continuous with respect to ~, and so they are. That the order
produces the right semantics for recursion is demonstrated by the congruence of
the failures denotationa[semantics and its operational semantic~ (BRW) as well
as the intnitively attractive idea that the recursive term p,P.F(P) ·must, in this
order, always denote the most nondeterministic solution to

P ~ F(P).

Summary of definitions and notation. The reader should consult earlier
works, particularly [H], for the syntax of CSP and the meaning of its constructs.
This section contains a summary of the technical details of the model N and the
semantics of CSP in that model. It assumes a knowledge of standard notations
concerning traces.

A'is defined relative to some non-empty alphabet E of communications which
is fixed for all processes. This parameter will generally be understood rather than
mentioned explicitly. Each syntactic CSP process P will be identified wi th an
element of Nr.. Thus we will not use process alphabets (aP) as part of the se
mantics, unlike [HJ. The use of process alphabets produces a trivially isomorphic
theory where each process is identified with Nczp, where aP is the process' own
alpha.bet. The ad vantage of this, essentially typed, theory is that the parallel op
erator does not require the explicit mention of alphabets. Its disadvantages for
theoretical work like that in this paper are that more mathematical housekeeping
is required and that the theory of mutual recursion becomes ra ther messy.

N consists of all pairs P ~ (F, D) such that F ~ E* x PC1:) and D ~ E",
and such that for s, t E E* and X, Y ~ E

(1) F1'0 A (st,0) E F ~ (s,0) E F

(2) (t,X)EFAY£;;X 0> (t,Y)EF

(3) (t,X)EFAVaEY.(t(a),0)ItF 0> (t,XUY)E F

(4) ('IX' £;; X.X'finite 0> (t,X') E F) 0> (t,X) E F

(5) sED::::} .!ltED

(6) sED 0> (st, Xl E F.

2

Let P = (F, D) EN' be a process. Define

.1l[P] ~ F

V[P] ~ D

traces(P) ~ {t I (t,0) E F}

refusals(P) ~ {XI(O,X)E F)

and for s E trace.s(P) define

Palter. ~ ({(t,B) I (st,B) E F),{t I ,t ED})

and for s E :E'" define

R[P], = {X I("X) E .1l[P]}

so that n[p]s = refu..sals(P after s) when s E troces(P). For s E traces(P),
Pafter.s is a process.

The detenninism order!:. is defined on N' by

P [; Q <> V[P] 2 -"[QI A -"IPI2 V[QI·

(N', t;) is a complete partial order: 1. = (~ .. XP(:E), ~'") is the least element,
and if 6. is a directed subset of N' the least upper bound U6. is

(n{F I (F,D) E Do),n{D I (F,D) E Do)}.

CSP is given a denotational semantics over N' as follows.

The atomic processes STOP and SKIP are defined

STOP ~ ({(O,X) I X (:; Ej,0)

SKIP ~ ({(O,X) I V ~ Xj U {((V),X) I X (:; E},0) .

Let P ~ (F,D), P' = (F',D') and for b E B (:; E, P, ~ (F"D,) all be

J

processes. Then

Via ~ P]
Fla ~ P]

Vlx , D ~ Prj
Flx,D~ Prj

DiPn P']
FIPn P']

ZljPo P']
F[Po P'i

VIP Bile P']

FIP Bile P']

VIP Illp']

FIP III P']

VIP; P']

FIP;P']

VIPIa]
FIPla]

VlflPl]
FlflPI]

Vlf-1IPI]
Flr1[PI]

{(a)'I'ED)

{(O,X) I a V. X} U ((a)s,X)I("X) E F)

{(b)' I b E B ~ , ED,}

{(O,X) IBn X ~ 0} U {«b)s,X) Ib E B ~

DUD1

FuF'

DuD'

(s,X) E F,}

{lO,X)1 (O,X) E Fn F'}U{("X) Is" ()~("X) E FuF'}

U{(s,X) I s E VIPoP']}

{stlsE (BUC)'~sfBE D~skE troce,(P')}

U{st I s E (n Uc)' ~ sfB E traces(P) ~ s~C ED'}

{(s, (X n B) U (Y n C) U Z) I Z n (B U C) = 0 ~, E (B U C)'

~(sfn,x) E F ~ (,ky) E F'}

u{(s, X) Is E VIP Bile P1}

U{ me1'[Je{s, t) 1sED 1\ t E traces(Pi)}

UU{m"ye(s,t) IsED' ~ t E traces(P)}

{(s,X) 13t,u., E merge(t,u) ~ (t,X) E F (u,X) E F'}

U{(s,X) I s E VIPIIIP']j

{st I sED 1\ stick-free}
U{st I,(V) E traces(P) ~ tED' ~ stick-free}

{(s,X)1 (s,Xu h/) E F~,tick-free}

u{(st, X) I,(V) E traces(P) ~ stick-free ~ (I, X) E F'}

U{("X) Is E VIP;P']}

{(sla)1 IsED} U {(sla)t IIfn.s(a)" E Iraces(P)}

{('la,X) I(s,X U {a}) E F} U {("X) I s E VIP\aBJ

{(f('))1 IsE D}

{(f(s),X) I (s, f- I IX)) E F} U {(s, X) I s E Vlf[PI]}

{sl f(s) E D}

{(s,X) I(f('),f(X» E F) U {I', Xl Is E VIr'[Pl]}

Each of these operations is continuous with respect to !;, and so we may
define the mE'3ning of a recursion (single or mutual) by the least fixed point in
the usual way.

1. The new order. The failures model includes the assumption that once
a proces5 <,;(m diverge (011 trace s. say) then we are not interested in what it
Gill do (or fail to do) 011 auy extension of $. This assumption., which we made
for Y<lrious tf'chllical and philosophical reasons, essentially corresponds to an
assumption that a divergent process is undefined. The new order (which we will
call the rlejinerlness order) is based solely on this principle. P will be weaker

4

than Q just when Q's divergences are a subset of P's and all of P's convergent
behaviour is copied exactly in Q. Included in P's convergent behaviour are
its minimal divergence traces, because the process has completed these traces
before it can diverge. \Ve demand that these be included among Q's traces but
not necessarily among its divergences. If X is any set of traces we define Jl(X)
to be the minimal elements of X: {.9 E X I ,lI.t E X.t < }.

Po<; Q ..	 VIQ] ~ :DIP] A

s 'I- :DIP]". 'R[P]. = 'R[Qls A

I'(:D[P]) ~ traces(Q)

Several points are immediately appa.rent about this order. First, it is coarser
than the old one, jn that

Po<;Q". P1;Q,

and trictly so, in that tbere are many pairs of processes P,Q such that

P 1; Q but not Po<; Q .

Secondly, the divergence-free processes (i.e., the ones with Z>[P) = 0) are all
incomparable and maximal in the order. (No process is strictly above a non
divergent one.) Thirdly, the new order has the same least element as the old
one (.1., the immediately divergent process).

The new order is complete and, wbere appropriate, has identicallea.st upper
bounds for directed sets as the old one. These and some other useful facts about
the new order are established in the next Lemma.

Lemma 1.1

a)	 P 0<; Q => P r;; Q

b) .1. = (E'" x P(E),E-) is the least element of N for both orders. The
S-maximal elements are the divergence-free processes.

c)	 If P .:s Rand P ~ Q ~ R, then P .:s Q.

d) Any nonempty subset S of N hali greatest lower bounds with respect to
both.:s and ~. In general, n S5 1: nr;;5.

e) Any subset of N with any ~·upper bound has a least upper bOllnd.

f)	 Each .:s-directed set has a least upper bound.

g)	 If U< 5 is defined then so is Uc S and the two are equal. Furthermore
U< S = po = (F',D'), where ff· =n{F I (F, D) E 5} and D' =n{D I
{F,D} E 5}.

5

Proof. (a.) and (b) and are trivial. For (c), we observe that P ~ Q if and only
if P ~ Q and

(i) ("X) E F~P]" s "VIP] => (s,X) E F[QI, and

(il) ~(VIPI) (; .races(Q),

so to prove the result it will be sufficient to prove (i) and (ii). If(s, X) E J1PJA
s " VIP] then, since P S; R, we know (s, X) E .11!R). Hence (s, X) E .11!Q! as
Q ~ R. Exactly the same argument applies for (ii).

The ~-greatest upper bound of nonempty S ~.N' is always given by (r, D·),
where F" ~ U{F I (F,D) E S}, D" ~ U{D I (F,D) E S} and where F is
the closure of F with respect to the compactness axiom (4) (Le., a pair (s, X)
is included if all (s,Y) are for finite subsets Y of X). The application of this
closure operator is not necessary when S or 1: is finite. This bound does not work
in general for the definedness order ~, however, since one does not in general
have PES => ns S; P. The greatest lower bound of S ~ {(F;,D;) liE A}
is constructed so tha.t it diverges as soon as the behaviour of any two elements
of S starts to differ, either by having a different refusal set or a different next
communication. We define n~S to be (F, D), where

• D ~ U{D; liE A}U{st 13i,j.(3Y(" Y) E F;\ Fj) V(3a.(s(a), 0)F; \ Fj)}

• F ~ U{F,I ; E A} U {(s,X) I sED}

It is easy to show that this process is in .N' and is indeed the ~ greatest IDwer
bound of S. That this greatest lower bound is ~-less than the other one follows
trivially from the fact that ~ is coarser than ~.

(e) follows because, as is fairly well-known, any partial order which has
greatest lower bounds for nonempty sets has this property. The usual argument
is repeated here. If S is a set with an upper bound, then Us, the set of upper
bounds of S is nonempty and so x = nUs exists. Since y S z whenever YES
and zEUs it fDllows that each yES is a lower bound for Us. A1; x is the
greatest lDwer bound fDr S it follows that x 2. y for a.ll YES and therefore that
x E Us. Plainly x is the least element of Us and is therefore the least upper
bound of S.

We now turn to the proof of (f). Notice that if.:l is a ~-direeted set it is
also [;·directed. Its ~-least upper bound

u~ ~ (n{;<j[p] I P E A},n{PIP! I PE 6.))

is nDW shown to be an ~-upper bound. IT P E ,Q, then V[P] '2 V[lJ.:l] by the
properties of!;;;;. IT s ¢ V[P] and Q E ,Q" it follows from the existence of R such

6

that R" P and R" Q that' E V[Q] D' RiP], = RiQ]s. Hence RIUt>!, =
R[P].s. Finally, if s is minimal in V[P] and Q E fj. it again follows from the
existence of R 2: P,Q that s E traces(Q). This shows that s E trace3(Ua..),
which completes the proof that P :$ U.6., Obviously Ufj. is the ~-least s-upper

bound.

It follows by part (e) from the fact that A bas one ~-upper bound that it
has a least one U< fj.. Since S is coarser than!;; it follows that U< fj. r; U6.·
Combining this wIth the last observation in the previoU& paragraph-proves that
the two are the same, which .is what we wanted-.

The first sentence of (g) follows easily from the second, which is what we
prove. We show first tha.t if pi = (F',D').is the actual least upper bound on 5
then D* = D' , where n* is as defined in the statemen t of the Lemma. Trivially
D ' ~ D" and, since D' satisfies a.xiom (5), if D' f:. n* there is .9 E (JlD") \ D ' .
As s E JlD- there must be some PI :: {Ft. D t } E 5 such that .s E JlD t . Since

DIJD t :$ D' we therefore know that 3 E traces(P'). It follows that p/I :: (F 'I
,)

defined
F" = F'u{(st,XlltEl:'"X<;l:}
D" = D'U{st I tEl:'j

is a process. But it easy to show that P :=; P" for all PES (for example, by
part (c) above) and that PI/ < P'. It follows that pI cannot be the least upper
bound on S, a contradiction.

It is easy to show that p" defined in the statement of the Lemma satisfies
axioms (1), (2), (5) and (6). We next note that F* 2 F I since F' is a. ~-upper

bound for S. Now by the above paragraph those parts of F" and F' implied by
divergence and axiom (5) are equal. Suppose that s f/. D ' :: D". Then there
is P :: (F, D) E S such that s f/. D. Necessarily R[P]s = R[P']s as P :$ P'.
It follows tha.t R[P']s 2 R[r]s. Putting these facts together yields F' :2 F",
proving tha.t in fact F' :: F". Since D' :::: D" and F ' :::: F· we have thus proved
that P~ is the aetualleast upper bound, as claimed. This completes the proof
of the Lemma. 0

It is easy to construct functions which are monotonic in either of our two
orders without being monotonic in the other. However all the usual CSP con
structs, with their standard definitions over N, turn out to be monotonic in the
new order as well as the old. Of course one can prove each case sepa.ra.tely (and
easily), but this is unenlightening. The underlying reason why they all work is
described in the next paragraph.

\Vith the exception of recursion, a special case which will be dealt with later,
every CSP operator over N is defined by mapping the beha.viours (failures and
divergences) of the argument process(es) to the behaviours to which they corre
spond in the image. An examination of these definitions will reveal that, for each
operator F, all convergent behaviours of F(P) (its beha.viours on non-divergent

7

traces plus the facts that its minimal divergences are traces) are consequences of
the convergent behaviours of P. Hence, if P :S Q and 8 ¢ V(F(P)], R[F(P)]s
is deriv~d only from the non-divergent behaviours of P, each of which is also
possible for Q by definition of:S. Thus

nIF(p)Js ,; nIF(Q)Js.

The rev~rse inclusion follows from k-monotonicity, as does

VIF(P)J ;2 V[F(Q)J.

If .s is minimal in V[F(P)] then the fact that it is a trace of F(P) is derived
from some convergent behaviour of P, necessarily present also in Q; hence s is
a trace of F(Q), completing the proof that F(P) ~ F(Q).

The most interesting operator to look at in conjunction with the preceding
paragraph is sequential composition (j). This is the only operator where a min
imal. divergence trace of an argument can contribute to a non-divergent trace of
the result. This happens in P; Q if P can diverge immediately after terminating
(v').

This non-dependence of the convergent behaviour of F(P) upon the divergent
behaviour of P is closely related to a property of the opera.tional. semantics. The
first-step behaviour of F(P) may depend on the behaviour of P or not (the latter
is the case with the prefixing operators, for example). However, if it does and
P can perform an internal. action to become, say, pi, F(P) can perform an
internal action and become F(P'). Thus, when an operated-on process is active,
its internal. actions occur independently of F: they are outside its control. An
immediate consequence is that, if F has brought P to a point where it can
dherge but is still interested in what it can do, then F(P) can diverge also.

When a function is :S-monotonic and k-continuous, it is :S-continuous. For
if 1) is :S-directed, then {F(P) ! P E V} is also, with least upper bound
U{F(P) I P E V} as described above. However, since F is !;-continu.ous and V
is necessarily k-directed, we have

F(UV) = U1F(P)IPEV}.

This completes the proof as the least upper bound of V is the same in both
orders.

This means that all CSP constructs other than recursion are continuoIlB in
the new order, and so we ma.y deal with recursion using least fixed points in the
usual way. ~ is well known, this makes recursion itself a continuous operation in
that if F{P, Q) is continuous, then IlP.F(P, Q) represents a continuons function
ofQ. Therefore all CSP terms represent continuous functions of their free process
variables.

8

The fact that the two orders yield the same f>emantics for esp (Le., ascribe
the same value in N to each term) follows very easily by structural induction
once we observe that the only place where the orders are used is recursion, and
the two orders yield identkalleast upper bounds to all sequences that can appear
there. (Of course, the fa,.et that the two orders have the same bottom is also
used here.)

2. Consequences for proof rules. The existence of the definedness order
has a number of striking consequences for proofs by recursion induction and
unique fixed point rules. I had previously proved some of the following results
from the theorem (of [BRWl) expressing the congruence of the operational and
denotational semantics for esp. These earlier proofs, though interesting, were
far more difficult and less natural than the foHowing.

Theorem 2.1. Suppose the recursive esp term p.P.F(P) is divergence-free
(i.e., the least solution to P =: F(P) has V[P] :::: 0). Then it is the only solution
to P ~ F(P).

Proof. We know that any solution Q to this equation must satisfy

Q ~ !,P.F(P)

but, being divergence-free, p.P.F(P) is maximal in N under $. Hence Q ::::;:
!,P.F(P). 0

Of course, this result is equally true of mutual recursions. Indeed, one does
not need to know that all the mutually defined processes are divergence-free
before one can draw useful conclusions.

Theorem 2.2. Suppose E..:::: F(E") is a esp mutual recursion indexed by some
set 11, and that in the least solution the A-component is divergence-free. Then
all solutions have identical A-components.

Proof. If f-), is divergence-free then

E.. .$ E:... ~ P), ::: pI),

where .$ has been extended to the product space in the usual way (i.e., co
ordinatewise). D

The above results are useful, for they a.llow one to extend the use of the
unique fixed point rule to any recursive definition which is known to have a
divergence-free least f>olution. One application is to the analysis of networks
where internal communication is hidden. These-can-often be proved divergem::e
free by specific techniques. In cert<Li.n circumstances one can show tDat the se
mantic value of the network is the same as the appropriate component of the so
lution to the mutual recursion over its state space obtailled by applying suitable

9

"expa.nsion theorenLS". The above theorems show that this "state-recursion"
has only one solution, which is extremely useful when proving equality between
the (state-space of) the network and some other system. More deta.ils of these
applications will be found in [R3}.

The rest of the results of this section all have the flavour of the above Theo
rem: extending to general divergence-free recursions results which were already
known for constructive recursions. They are all couched in terms of functions
that are ~-monotonic or ~·continuous rather than directly as theorems about
esp, for reasons that will become apparent in the next section.

Lemma 2.3. Suppose F is a continuous function from NA to itself, and that in
the least solution to E. = F(E.) the A-component P A is divergence-free. Then for
each trace 3 there exists a natural number n such for any Q E ph and m 2: n,

s ¢ Vlr(Qh] and 'R1F"'(Q.),]s ~ RIP,]s .

Proof. Suppose Q and s are as above. We know that the least solution is
U1F"(~) In E NT. Thus there is some n such th.t s ¢ VIF"(.0),1.

An easy induction shows that FIe(~) ~ FIe(Q) for all k, and that

F"(~) ~ Fm(Q) when n ~ m.

The definition of ~ and the fact that F"(~h. ~ PA then easily gives

s ¢ Vlr(Q),] .nd 'R[F"'(g),]s ~ 'R[F"(~),Is = RIP,ls

for m ~ n, which establishes the Lemma. 0

For a number of years I have been attracted to fixed point induction rules of
the following form.

Proforma rule. If R is a predicate on (vectors of) processes which is satisfiable
(i.e., R(P) holds for some P) and satisfies some "continuity" condition, and
J-tP.F(P) is a recursive definition, satisfying some "well·defineaness" condition,
such that

VP.(R(P) => R(F(P»))

then infer R(/'P.F(P)). 0

These have been discussed before in, for example, [Rl,BHR,Re,RRl,RR2J.
Two slots need to be filled in: the conditions on predicates and recursions. In
valid veIsions of the rule one naturally finds that the stronger one condition is,
the weaker th!:' oth!:'r needs to be.

Up to now, by far the most useful versions of the rule ha.ve been based on
cases where F is a contraction map and {P I R{P)} a closed subset in some

10

complete metric space. This applies, for example, over untimed models like)/
when F is constructive, that is

\lP,\ln,F(P I n)J n + 1 = F(P)J n + 1

and R satisfies

(a) ~R(P) ", (3n,\lQ,Q I n = PIn", ~R(Q))

where P 1 n represents the n-step behaviour of P. That is, over N,

D[P I n] = DIP] U (st Iisl = nA s E traces(P)}

.rIP InJ = .1'JPJ U ((s, X) I s E DIPI nJ

Over product spaces NA. P 1 n is taken co-ordinatewise. See [BRR] for more
details. Over the timed models ofiRRl,RR2,Re] F is an arbitrary recursion (for
there all recursions represent contraction maps) and R represents a closed set in
the metric spaces used as models.

The proof of validity in these cases is very simple. We know, by the con
traction mapping theorem, that F has a unique fixed point in the space of all
processes; but, as F preserves R it is also a contraction mapping on the complete
metric space {P IR(P)). As F has a fixed point in the subspace, the unique
fixed point in the whole space must lie in the subspace.

On the assumption that equality with a given process is to be an acceptable
predicate R, it is clear that any acceptable "well-definedness" condition on re
cursions must at least imply uniqueness of fixed points. In the context of the
traces model for CSP I was able to establish (in [RI]) a version of the rule which
relied only upon unique fixed points, and not on anything more concrete, even
continuity of F. Over any partial order we can define the interval topolO!JY to be
the smallest topology in which all the "closed intervals" [x, y} = {z Ix ~ z .$ y}
are closed sets. Now the interval topology over the traces model is compact (a
very common property for models of computation - see the appendix) 50 that
the following theorem applies. (For one topology, T, to extend another, U, sim
ply means every set open (closed) in U is open (closed) in T. If T extends U
one sometimes says that T is finer than U. If, in this case, T is compact then so
must be U: hence the conditions of the following theorem require the compact
ness of the interval topology fortunately this topology is always compact under
the conditions of the theorem, as is proved in the appendix.)

Theorem 2.4 [RI]. Suppose (X,~) is a complete lattice and that T is a
compact topology on X which extends the interval topology. Suppose also that
the monotonic function J : X X has a unique fixed point x. Then if Y c; X
is nonempty, closed in T and such that J(Y) ~ Y, we can deduce x EY.

Proof. A straightforward transfinite induction establishes that each of the set.<;
[jcr(.l),Jcr(T)J n Y (all of which are closed) are all non-empty, where ..1 and

11

Tare nspectively the least and greatest elements of X. (The limit ordiual
case uses the compactness of T.) But the fact that / has a unique fixed paint
implies that (j"'(..l),/"'(T)] is eventually (i.e., for large enough 0') the singleton
set conta.ining the fixed point. The result follows immediately. 0

This proof depends crucially on the eJCistence of a top element. Indeed the
theorem is not true of more general partial orders. One need only consider the
flat truth value domain {true,/alse,..l} and the continuous function....,. This has
unique fixed point..l and maps the closed set {true,false} into itself.

Having observed this it once seemed to me to be unlikely that one could
get an analogue of Theorem 2.4 for the failures model. However, the new order
will allow us to prove two useful partial analogues, at least. They both have
as preconditions the fact that the unique fixed point is divergence-free, which is
unlikely to be much of a practical handicap since l'Umost all processes one will
tolerate in practice will satisfy this constraint.

First we define three more conditions on predicates.

(tJ)	 If -,R(P) then there is a finite set T of traces such that, for

anyQ,if

s E VIP] <> s E V[QI and nlP]s = nlQ]s

fN all 9 E T, then ~R(Q).

('Y)	 H,R(P) then there are finite sets T of traces and F offailures

such that, for any Q, if

S E V[P] <> s E V[QI

for all sET and

(s, X) E ,;r[P) <> (s, X) E .1'][QI

for all (s,X) E F then ~R(Q).

(6)	 H -,R(P) then there are finite sets T of traces and F of finite

failures (failures (.!l,X) with X finite) such that, for any Qt

if

s E V[P] <> s E v[QI

for all .!l E T and

(s,X) E ,;r[P] <> (s,X) E .1'][QI

for all (s, X) E F then ~R(Q).

12

These conditions simply say that any fallure to satisfy the predicate is de
tectable from a process' behaviour on a finite set of traces, or on a finite set of
possible divergences and fallures, or on a finite set of possible divergences and
finite failures. (n) says that failure is detectable by some finite length of true.
(In each case the sets or length can depend on the failing process.)

The definitions of the conditions 13, 1, 6 can all be extended to predicates of
product spaces NA. One simply insists that fallure is detectable from a finite set
(or sets) as before from a finite selection of components of the vector of processes.
This is different to the extension of ct to product spaces, where {ail'Q'1"l3"ueed cn.Iy
be detectable from all components up to some fixed length.

((3)	 If R(E-.) then there are finite sets T of traces and (l of indices

such that, for any 9..., if

S E VIP,j .. s E VIQ,j and nlp,js ~ nlQ,js

1o, all sET and .\ E ~, then ,R(Q).

(-,)	 IfR(E-.) then there are finite sets ~ of indices, T of traces

and F of failures such that, for any fl, if whenever>" E ~

s E VIP,j .. s E VIQ,j

foraUsETand

(s,X) E .1l!P,j .. (s,X) E TIQ,j

1m all (s, X) E F then ,R(Q).

(6)	 If R(E-.) then there are finite sets ~ of indices, T of traces

and F of finite failures (failures (.s,X) with X finite) such

that, for any fl, if whenever>" E t

s E VIP,j .. s E VIQ,j

for all sET and

("X) E TIP,! .. (s,X) E .1l!Q,j

10' all (s,X) E F then ,R(Q).

The conditions ct, (3, 1, 6 are clearly successively stronger: for example every
p-predicate is an a-predicate_ Each of them generates a topology on II or NA
where a. set is closed precisely when it has the form {P IR(P)} for an allowable
predicate R. Several later results depend on facts about these topologies, but

13

rath€r than analyse them in detail here we will state results as required and
relegate proofs to the appendix. The following proposition lists some of these.

Proposition 2.5.

a)	 The conditions /3, ..,. and 6 are equivalent if the underlying alphabet :E is
finite. If it is infinite 6 is strictly stronger than ..,. and ..,. is strictly stronger
than {3. is equivalent to /3 if the alphabet is finite and the index-set A isQ

finite. Otherwise /3 is strictly stronger than Q.

b)	 For all ~ E {/3•..,.,6} the ~-topology on NA defined above is well-defined.
The topolog:-.(generated by eon NA is the same as the product topology
where each copy of N is given the topology generated bye.

c) The 6-topology on NA is compact, Hausdorff and zero-dimensional.

d) If f. EN', each of the ,et, {Q IQ" f.}, {Q IQ S f.J, {Q IQ;;) f.} and
{QI Q J;;;; E} are closed in the 6="topology (andh;;'ce in the~t~rs as well).
o

Having made all these definitions and stated the above proposition we are DOW

in a position to fulfil the promise made earlier and prove some analogues of
Theorem 2.4. The lower topology on a partial order is defined to be the smallest
topology on which all sets of the fonn xT:::: {y I x ::s: y} are closed (see the
appendix for more details).

Theorem 2.6. Let X be a complete partial order and let T be a compact
extension of its lower topology. Then, if f ~ X _ X is a monotonic function
whooe least fixed point x is maximal (and hence unique) and Y, closed in T, is
such that f(Y) ~ Y, we have x E Y.

Proof. This is very similar to that of Theorem 2.4. Transfinite induction
establishes that the (closed) sets {fa(J.))T nY are all non-empty, where ..L is
the least element of X. But the fact that the least fixed point of f is maximal
implies that (f0"(..L))T eventually (i.e., for large enough a) contains only the
fixed point. The resl11t follows immediately. 0

Corollary. If F : Nil -+ NA is monotonic with a divergence-free least fixed
point E. and R is a satisfiable 6-predicate such that VQ.R(Q) ~ R(F(Q)) then
Rlf.). - -

Proof. This follows trivia.ll:y from Theorem 2.6 and Proposition 2.5 (c) and (d).
o

This corollary shows that the proforma rule is valid in any case where the
least fixed point can be shown to be divergence free and the predicate satis·
fies 6. This and the other version given below show that we can do without
constructiveness for many applications.

14

When the function F is continuous one can, beca.use of Lemma 2.3, weaken
b to (3.

Theorem 2.7. If F : NA _ .N'A is continuous with a divergence-free least fixed
point £.and R is a satisfiable ,a.predicate such that VQ.{R{fD :::> R(F(Q))) then

R(El

Proof. H R(f.) did not hold then we could find a finite sets cI> of indkes and T
of traces such that for any Q, if for all (A,s) E <} X T we had "RIP,ls ~ RiQ,]s
and s ¢ 'DITQ.d. then RCQ) would not hold. And we \rnrn;v- that there exists
Q E NA such that RCQ),and hence R(Fn(Q» for all n. However, ch~ing n
t;; be greater than all the ns chosen by Lern~a. 2.3 for the (>', s} E cI> x T, this
gives a contradiction. 0

There is a striking similarity between the proof of Theorem 2.7 and the co.
responding result fOI' metric spaces and contraction mappings discussed above.
Both rely on the fact that iterations begun from an a.rbitrary point in the space
(the process known to sa.tisfy the p.edicate) conve.ge to the fixed point. Fa. a
consequence of Lemma 2.3 is that, if a continuous function F has a divergence
free least fixed point, then every sequence of the form (Fn(Q) In E N) converges
to the fixed point in the ,a. topology.

It is mathematically pleasing to have characterisations of when the .ecllI'Sion
induction rule is valid that are independent of a specific metric. Even though
the great majo.ity of recursions included in CSP programs are constructive,
it proves useful to have these abstract forms of the .ule when the function .is
derived from the process and not the other way round: this will be covered in
[R3].

3. Unbounded nondeterminism; hiding infinite sets. AJ; stated in the
introduction, the completeness of the deterntinism orde. J;; depends on the com
pactness a.xlom (4). As an illustration of this, consider the "processes~

P. = n m~ STOP
n:::m

where n represents the nondeterministic choice over a _possibly infinite set of
indexed prOCe6ses. The natural interpretation of Pn as a set of failures (assuming
its alphabet is N) is

{«),X) I{n,n + 1,n + 2, ...} I' X} U{(m),X) Im ~ n}

which does not satisfy the compa.ctness axiom. If these pI'Ocesses were allowed
we would, as one would expect from their definitions, have Pn !:: Pn+l' Howeve.
the chain (Pn In E N) would have no upper bound, for if P:;! Pn for all n then

15

P can neither communicate on its first step nor refuse the whole alphabet - a
clear contradiction to axiom (3).

The compactness axiom is not as restrictive as one of finite nondeterminism.
The latter would state that, for each .5, n[p].s contains a finite number of
maximal elements, with every Y E n[PDs contained in one of them.. Axiom (4)
allows infinite nondeterminism provided it is finitely presented in some sense,
for example it allows sets of refusals such as

{X ~ N I \I'.{2i, 2. + 1} 'l X}

where there are uncountably many maximal elements. However, as we see from
the processes Pi above it prevents us from expressing many natural processes
properly.

It is clear that if one wants to model unbounded nondeterminism properly,
then we are far better off without this compactness axiom. Fortunately the de
fined ness order ~ does not need it for completeness, and so it may be discarded.
(Note that the Pi as defined above are not comparable under :S;.) I should re
mark at this point that an alternative, slightly simpler, form ofa.xiom (3) which
is sometimes seen

(3') (.,X) E .F[PJI> (.(a),0) ¢ .F[P] => (.,XU{a}) E .rIPJ

require,"xiom (4) in th",ense that (3')+(4)" (3)+(4) bnt (3') alone iS5trictly
weaker tban (3). (3') aIlowssuch "processes" as P = ({(<>,X) I X ~ N I> X is finite},0)
(which cannot refuse the whole set of integers or communicate any). This P is
not acceptable a.s P\N would not have any traces at all. (See the definition of
the infinite hiding operator below.) Thus (3') is not adequate if axiom (4) is
omitted.

We will denote by Nf the failures model defined without aXiom (4) over
some alphabet L:. (As before, we will usually suppress the subscript.) Of course
N' only differs from JII when L: is infinite. The orders ~ and :$ are defined
exactly a.s before. ~ is complete, but if L: is infinite ~ is not (as is illustrated
by the example above).

All parts of Lemma 1.1 continue to hold in N' except that it is now unnec·
essary (and wrong) to apply the closure operator F when finding the ~-grea.test

lower bound of a nonempty set. It is interesting to note that, over X', ~·grea.test

lower bounds are found by union and ~-least upper bounds (where they exist)
are found by intersection, but that neither of the opposite pair of statements
hold in general.

All the operators that were used over N (and defined earlier) may be defined
over JIll using exactly the same clauses. In proving the operators well-defined
over JII, axiom (4) is never used except when proving axiom (4) ~ It follows that

16

they are all well-defined over N'. We now prove that they are all monotonic and
continuous.

If P E N ' . define p# as follows:

D[P#J = DiPJ

;<JP#J = traces(P) x prE).

This is a process with the same traces as P but which can refuse anything at
any time. Clearly p#. E N and the fun.ction thus 'tepresented from (N', S) to
(N,!:,;) is continuous.

The fact that all operators other than recursion are !:,;-monotonic follows
because in all cases the behaviour of the result of an operator depends in a
direct and positive way on the behaviour of its arguments. The proof of :$:
monotonicity is completed by exactly the same argument we used earlier over
N.

The operators' continuity can be proved by using the # operator. If F is
one of the operations and ~ ~ N' is directed, we know by a standard argument
using monotonidty that

U{F(P) I P E~} S F(U~)·

We also have, since # is continuous from N ' to N and F is continuous over N:

U{F(P#) I P E~} = F({U~)#)·

It follows (using the same observation as in the last paragraph) that

DmJ{F(P) IP E~}J = D[F(U~)]·

But if P .$; Q and V[PJ::: VIQ] it is easy to see that P ::: Qi continuity follows
immediately.

I think it is virtually certain that a.ll the usual algebraic laws of CSP (from
[BR,H], for example) remain true over the extended model N', but have not
yet systematically checked this. However we will see below that several natural
extensions of these do not extend to the innnite hiding operator denned below.

As we know, all of the operators dealt with above map N to itself, 50 there
is little reason to move to the extended model jf they are all one wants to
use. However, as hinted earlier, there are interesting operators which we can
denne over Af' that could not be denned before. Firstly we can now define
the nondeterministic composition of an arbitrary nonempty 'Set of processe; by
union. If S is any nonempty set of processes

D[flSJ = U{D[PJ IPES}

17

.F\flSI = UVllPl1 PES}.

This is continuous in each process argument individually, but not over infinite
vectors of processes. (In considering the monotonicity and continuity of n it is
easier to th..ink of it as a function of vectors rather than sets of processes, for the
latter ha.ve no obvious partial order.) For exa.mple, if we define vectors E.." by

{ .L ifn::; mP~ = STOP otherwise

we have E...1l :S f..,,+l but n.e" = .1. for all n while n(u{pn I n EN}) :::
n(STOpN) = STOP.

The existence of the above operator implies that any satisfiable specification
defined purely as a property of the traces/failures/divergences of a process (ev
ery individual behaviour satisfies some property) has a most nondetenninistic
solution: simply take the nondeterministic composition of all solutions. (Some
properties of this form, like "deadlock-free", do not have most nondeterministic
solutions over N.)

Perhaps the most annoying restriction imposed by the original model on the
language was the impossibility of hiding an infinite set of events. If we allow
infinite alphabets at all, it is strange only to be able to hide finite sets. There is
no reMon not to define it over N ' , however.

VIP\XI =	 {('IX)' I' E VIPI}
U{(s\X)' 13s, < " <• = " AVi.(.;\X = .\X A.; E 'rare,(P)))

TIP\XI =	 {(sIX, Y) I (s, X U Y) E TIP)) U {(., Y) I. E VIP\a))

Notice that in this definition we insist that the sequence of traces yielding di
vergence are linearly ordered. This is often not done when X is finite because
then Konig's Lemma proves that, if there are infinitely many Si with s;\X $ S

for all i then there is an infinite ordered sequence of the type above.

It is straightforward to show that this operator is well-defined and 'monotone
with respect to $ and~. However it is not continuous, again because of the
introduction of unbounded nondetenninism. Consider the sequence (Pn I n EN),
where

Pn = (x: {k Ik:S n} ~ STOP)O(x: {k I k > n) ~ .L).

These form a $-chain with limit

P = x: N ~ STOP.

PIN = STOP but, fm each n, Pn\N = .L.

Thus we have succeeded in modelling unboundedly nondeterministic opera
tors. but with the seemingly ine\-itable loss of continuity. This means that in

18

general the least fixed point might not be reached after only w iteratioD.B of the
underlying function, Indeed, one can give a simple if contrived example to show
that any ordinal can be r~uired. Given an ordinal a we take it (i.e., {f31 f3 < cr})
as our alphabet and defuJ.e

P ~ iJ:"~(PII~:iJ~STOP)\,,.

A little thought will reveal that the least :fixed point here is

iJ:" ~ STOP

since every execu tion generates a strictly decreasing sequence of ordinals, which
cannot be infinite. It takes precisely a iterations to reach this:fixed point, unless
a is finite in which case it takes a + 1.

Unbounded nondeterminism seems to appear in two distinct forms: it ma~
ifests itself in a finite time, as in

Ql ~ n{n ~ STOP I n E N}

where the initial refusals of N' capture it, or takes an infinite amount of time
to appear as in

Q2 = n {Pn In E N} where Po = STOP, Pn+I = a --t Pn .

Q2 appears to be able to perform any finite number of as, but not to be able
to perform an infinite sequence of them. Thus, intuitively, we would not expect
Q2\a to diverge. (Note that this fonn of unbounded. nondeterminism can appear
where there is a finite alphabet.) Unfortunately, in the N' semantics, Q2\a can
diverge because it interpolates a process' infinite behaviours from increasing
sequences of its finite behaviours. N' has no means of describing this second,
and perhaps more subtle, fonn of unbounded nondeterminism. (This example
illustrates the fa.ct that, in N', hiding (even finite) is not infinitely distributive
over nondeterministic choice.)

The law P\X\Y = P\Y\X fails to hold in general for essentially the same
reason. To see this consider the process

Q = x: N - Pn

where Pn are as defined above. If a is hidden hefore N there is no divergence
as there is no infinite e..xecution sequence of as following any natural number:
Q\a\N = STOP. However if N is hidden first this information is l~t and so
divergence is predicted: Q\N\a = .1..

A way around this problem is to introduce a new component into the model
to represent the infinite traces of a process. Thus a process will be described. as
a triple (F, D, 1), where F and D have the sa.me structure as before a.nd I is the

19

set of infinite traces it can perform. See the sequel [R2] for the con6truction of
this model. In the sequel we will see that the present model and semantics in
general give a pessimistic \'iew of esp, in that if P is any esp term PI is the
value ascribed to it by the semantics above and Pz is the operationally natural
value then PI ~ Pz. Equality is achieved once one introduces the infinite traces
component. We also recover the desirable algehraic properties that were shown
to have been lost above.

Thus arguably the model N' is not really a "proper" model for unboundedly
nondetenninistic esp, ra.ther an approximation to the correct one. Nevertheless
the fact that it exists and is a complete partial order is certainly interesting. (In
the sequel we will see that when it is extended by infinite traces it i6 not only an
incompler-e partial order but has no complete partial order consistent with esp.
The existence of the fixed points of recursions becomes much harder to prove.)

Proof rules over N'. Perhaps paradoxically we find-that the model N' which
was made possible by .$. has slightly less of the attractive properties proved in
Section 2 (using ~) than does N.

Theorems 2.1 and 2.2 and Lemma 2.3 hold OVe! N' for exactly the same
reasons as before. One can still define the properties 0:, f3, ..., and 6 exactly as
was done there. Parts (a) and (h) of Proposition 2.5 still hold. The 6-topology
on N' is still compact, but since every open (closed) set clearly conta.ins (P,D)
if and only if it contains (F,D) for each (F,D) E JV" it fails even to be To.
(Recall that "F denotes the closure of F under the compactness axiom.) For this
reason it fa.ils to be an extension of either lower topology. The -y-topology is
Hausdorff and satisfies all parts of Proposition 2.5 (d). Unfortunately it is not
compact, unless of course "E is finite_

All this means that none of 0: - 6 satisfies the conditions of Theorem 2.6.
The lower topology is itself compact, as it always is over a consis tently complete
cpo (see the appendix), so at least Theorem 6 is not vacuous. Whether there
are any compact extensions of it that are practically useful will be a subject of
further research.

Since Lemma 2.3 still holds in the extended model it follows that Theorem 2.7
does as well. However, unlike over N, care is necessary in applying this theorem
over ,V' since now by no means all functions are continuous. In partkular
it will be unsafe to use it whenever the function in question involves infinite
nondeterminism or infinite hiding.

4. Conclusions. We have seen that it is possible for two different orders to
give exactly the same semantics to esp, at first sight a rather surprising result.
Sjnce I discovered the new order several of my colleagues have pointed out to
me that a very similar alternative order based on definedness has recently been
discovered by Greg Nelson for Dijkstra's language of guarded commands [NJ. As

20

in this paper he replaced the usual refinement order by a new one which treats
all nondivergent behaviour as incomparable: two processes P,Q are ordered just
when P can diverge whenever Q can and all of P's nondivergent behaviour is
reflected exactly in Q:

(u,.L) " P => P(u) =Q(u).

Just M was the case in esp, the new order there provided exa.ctly the same
semantics <LS before but increases the range of constructs that can be considered.

In both of these languages the nondeterminism ordermust remain the order
of refinement and will therefore continue to play <L most important role. However
just because it has that function does not means that it is the best order on which
to base the semantic fixed point theory: we have just seen how by moving to
S. we were able to prove a wjde range of new results about fixed points and to
extend the model and language.

As I remarked above, the extension N1 of the failures model is only able to
cope properly with certain sorts of unbounded nondeterminism. It is perhaps
best viewed as a stepping stone to the model incorporating infinite traces that
will be introduced in (R2J, though where it is adequate it is certainly simpler
and easier to analyse than the new one.

Now that we have two different orders on the failures model we a.re hee.d with
the question of which should be presented as the "standard" order for rec.ursion
to those meeting the model for the first time. If we agree that the restriction to
finitely nondeterministic operators is undesirable there seem to be two [}ptioll5.
One could present this new order (over N 1

), mentioning the important role of
!: in refinement. On the other hand one could continue to use!: over N' and
appeal to the existence of S. and the results of this paper to assert the existence of
fixed points, even though the order wonld not be complete. This is an important
question but at this stage it is too early to decide.

Appendix: the topology of Nand N'. In this section we justify some of the
claims that were made about the topological properties of the various conditions
on predicates and about the lower and interval topologies. Of necessity we
assume that the reader has a basic knowledge of general topology: essentially
up to product spaces and Tychonoff's theorem.

First we establish the various parts of 2.5, with a few observations ahout NI.
The fact that fJ, I and fJ are equivalent when ~ is finite is obvious because there
are only finitely many refusal sets and all refusal sets are finite. Theca.se when
L: is infinite is illustrated by setting ~ = N. Then

R.(P) '" 3".«>,{nH EriP}

is a p-predicate but not a 'i'~predicate, while

11-,(P) '" \1,.(" N) " ;F[PJ

21

is a ,-predicate but does not satisfy 6. (R.., is deadlock-freedom, an important
predicate: 8 is the only one of our conditions that doe; not allow all predicate;
that are formed by specifying that all hehaviours must satisfy some condition
on divergences and failures.)

The fact that a is equivalent to (3 (and hence to , and 6) if the alphabet and
A are both finite follows easily from the fact that there are then only finitely
many traces of any length and ~ (in the definition of (3) can be equal to A. If A
is infinite the predicate

R~ce) " 3A.P, ~ STOP

satisfies 0' but not (3. The following predicate of a single process also has these
properties

R~(P)" P # STOP

when the alphabet E is infinite.

The fact that {3, , and 6, as defined in section 2 (over either model and over
a simple or product space), generate topologies is easily demonstrated. In each
case it is trivial that the whole space and the empty set are closed. That an
arbitrary intersection of closed sets n{C.\ , A E I} is closed follows because if
some P fails to be in here then P ¢ C.\, say. This last fact is witnessed by some
finite set(s) (of traces, or traces and failures, etc.). Exactly the same sets witness
that P cannot be in the intersection. IT C and D are closed then so is CUD,
for if P ¢ CUD then there are finite sets for each of C and D wi tnessing this.
The union(s) of these witness that P cannot be in C or in D, and therefore not
in CUD.

To prove that the topologie; produced on Nh (and, indeed. on Nih) are just
the products of the topologie; on the individual spaces it is helpful to consider
bases for the open sets of the topologies. We de..aI here with 6, the others ((3 and
,) being very similar indeed. An examination of 6 (defined respectively over a
single and a product space) reveals that a set U is open (the complement or
negation of an open set) if and only for all P E U there the (T, F)-ba.ll (respec
tively (T,F,'lJ}-ball) about P is contained in U for some finite sets T,F(,'lJ).
The (T,F)-ball is defined to be those processes which cannot be distinguished
from P by their divergences in T and their finite failures in F. The {T,F,~}
ball about E.. E Nil. is similarly defined to be all those vectors which cannot be
distinguished from E.. by inspecting the divergences in T and finite failure; in F
of their A-components for A E ~. Denote these balls hy

N(T.I')(P) and N(T.F,OI(E.J

respectively. It is easy to see that ifQ E N{T,F)(P) then

N(T,FJ(Q) ~ N(T,FJ(P)

22

and that the same holds over NA. It follows that the balls are in each case a
basis for the respective topology.

A basis for the product topology on NA generated by 6 OD each component
is formed by taking a finite set S of pairs (A, U) where U is a basis element on
N (and, without loss of generality, (A, U), (A, U') E S => U ==: U') and letting
Us ==: LE \ (A, U) E S => P>. E U}. Given P E Us, we know that for each
(A, U) E S there are T;.. and F>. such that N(T>...F>..)(P>.) ~ U). Define

4> = (.\ I (.\,U) E 5}
T = U{T, I (.\,U) E 5}
F = U{F, I (.\,U) E 5}.

It is easy to see that N{T,F.<)(E) ~ Us. It follows that the 6-topology on NA
is finer (an extension of) the product topology. The other way round is easier:
given N IT.P.•l (!'.), set 5 = {(.\,NIT,F](P,)) I .I E 4>}. It is ",,"y to see that
Us ==: N{T,F,<)·

The compactness c.x.iom (4) in the definition of N means that each element
is completely determined by its divergences and finite failures: there is a unique
element of N corresponding to each pair (ff, D) of finite failures and divergences
satisfying axioms (1-3),(5),(6). This means that the natural projection from N
to the set Nr... of all such pairs is a bijection. IT the 6-topology is defined on
Nfin in the same way as over N it is clear that this map in a homeomorphism.
Thus if we could prove that Nfin is compact under 6 we would also have proved
that N is.

It is clear that the 6-toplogy on Nfl.. is just the subspace topology inherited
from the topology equivalently defined on the set A of arbitrary palrs (fJ,D) of
finite failure and divergence sets (i.e., not necessarily satisfying the axioms). It
is easy to prove that the latter is just the product of the two topologies on sets
of finite failures and traces respectively where bases are given by

N x(ft) {ft' I ft' n X = ft n X} X a finite set of finite fallures
Nx(D) {D'!D'nX=DnX} X a finite set of traces

which are in turn homeomorphic to the product of b* X pCb) and 1:- copies
respectively of the discrete topology on {a, 1} - compact by Tychonoff's theorem.
It follows that N is compact if and only if it is a closed subset of A. Since the
intersection of closed subsets is closed it will be sufficient to check that the 6ets
of pairs satisfying each of (1-3),(5),(6) individually a.re closed. This is implied
by the fact that, in each case, if a pair (ff, D) does not satisfy the cuiom then
this fact is discernable from checking if (ff, D) contains each of some finite set of
behaviours. For example. if it fails (1) then eitlier (<>, 0) ¢ ff (one behaviour)
or there are s < t such that (5,0) ¢ ff and (t,0) ¢ ff (two behaviours). The
most interesting case is axiom (3). Here, because we are restricting ourselves to
finite failures, the set Y must (implicitly) be finite itself. Failure to satisfy this

23

axiomwo.,jd manifest itself by ("X) Eff, ("XUY) ¢ ff and (.(a),0) ¢ ff
for each a E Y. (It is the need to make (3) closed that has forced us down into
finite failures.)

Since the topology on A has been established to be homeomorphic to a
Hausdorff one it follows trivially that the toplogies on Nfi.. , and hence on N,
are Hausdorff also.

Since N' is compact Hausdorff under 6 it follows from the equivalence of the
6-topology on Nil. and the product topology that the 6-topology on ;VA is com
pact Hansdorff (Tychonoff's theorem again). The topology is zero-dimensional
because it has a basis of d06ed and open (clopen) sets: the ball N(T,F,'~)CEJ is
closed In'Cause (as is easily checked), the complement of this ball is equal to

U1N(T,F,OI(Q) IQ ¢ N(T,F,OI(Qll

which is an open set. This completes the proof of 2.5 (c).

Each of the predicates described in (d) have the property that their failure
can be demonstrated by at most two behaviours from a single component of Q.
For example, the failure of Q 2':. E.. is either demonstrated by some divergence of
Q.x not being present in P.x,(S, 0) not being in F[Q] for some minimal divergence
of P m("Xl E .1lIQI '!> ("Xl E YIPJ for wme s ¢ VIPJ and X finite. (Here
we use the fact that F[PTI and F[Q] are determined by their sets of finite
failures.)

The b~topology on N' is not even To because when two processes have the
same set of divergences and finite failures there is no open set tha.t contains one
without the other. In fact it inherits compactness from N,.... in the same way
as above, since its open sets are precisely the inverse images of Nfin's open sets
under the natural projection.

When E is infinite, none of the stronger topologies on N can be compact
because of the theorem that no proper extension of a compact Ha.usdorff topology
can be compact. The i-topology on N' is easily shown to be Hausdorff (any pair
of distinct processes differ on some behaviour) but turns out not to be compact,
essentially because the infinitary version of axiom (3) is then not closed in the
sense described above.

This concludes our disc1Uision of the a, P, i and f, topologies. We now turn
our attention more generally to the subject of the interval and lower topologies.
(For a much deeper discussion of these, in particular over lattices, see [CCL].)

The interval topology is always Tt, for each singleton set is closed ([x, x] =
{:t}) and the lower topology is always To. The interval topology often satisfies
stronger separation properties than this (for example compact Hausdorff) but

24

need not, as iB demonstrated by the lattice with only an infinite set of incompa
rable points between top and bottom. The lower topology never satiBfies T1 in
a nontrivial partial order, for if x < y then every open set containing y contaills
x.

Over a consistently complete cpo X (i.e., one where each finite set ofelements
with an upper bound have a least upper bound) the lower topology is always
compact. To prove this we appeal to a theorem of Alexander (see, for example
[K]) that a topology is compa.ct if each cover by elements from some sub-basis
has a finite subcover. Thus in our case it sufficient-to prove that if S is- a subset
of X such that for all finite F ~ S the set n{x 11 % E F} is nonempty, then
n{x 11 xES} is nonempty. The assumptions imply that each finite F ~ S
has a least upper bound UF. The set of these as F varies forms a directed set,
the limit of which is the least upper bound of S, proving that n{x11 xES} is
nonemptyas desired, for it must contain this limit.

A simple extension of this argument shows that the interval topology O\'er a
consistently complete cpo is compact also. (In fact, one proves that the perllaps
finer topology with sub-basis of closed sets {x f, x 11 x E X} is compact, where
z!== {y I y ::; x}.) For in that case any subset G of this sub-basis with the finite
intersection property splits into two parts {% 11 Z E S} U {y!l yET}. For as
before, the least upper bound of S exists, and since % 1 ny !tl 0 when 7 E S
and YET we know that ea.ch yET is an upper bound for S, so it folloWli that
US ~ y for all yET and hence that US EnG.

Acknowledgements. 1 would like to thank Peter Collins for help in discovering
the Alexander sub-basis theorem used in the Appendix. A number of people,
in particular Tom Verhoeff, have helped me by pointing out minor errors and
stylistic improvements. Several people, including Carroll Morgan, have pointed
out the similarity of this work with that of Nelson which Wag refered toin the
conclusion.

References.

[BJ Brookes, S.D., A Model for Communicating Sequential Processes, Oxford
University D.Phil. thesis, 1983.

[BHR] Brookes, S.D., Hoare, C.A.R., and Roscoe, A.W., A Theory of C{Jmmuni~

eating Sequential Processes, Journal of the Association for Computing Machin
ery, vol. 31, no. 3,560-599.

[BR] Brookes, S.D., and Roscoe A.W., An improved failures model for com
municating processes, Springer Lecture Notes in Computer Science, vol. 197,
281-305.

25

[BR\V] Brookes, S.D., Roscoe A.W., and Walker, D.J., An operationaZ3emantics
for CSP, Submitted for publication.

[CCL] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., lYUslove, M., and
Scott, D.S., A compendium of continuous lattices, Springer-Verlag (1980).

[Hl Hoare, C.A.R., Communicating sequential processes, Prentice-Hall, 1985

(HBR1 Hoare, C.A.R., Brookes, S,D., and Roscoe, A.W., A theory of communi
cating sequential processes, Oxford University Computing Laboratory, Program
ming Research Group, Technical Report PRG-16.

[K] Kelley, J.L., General Topology, Spring" GTIM27 (1975).

[N] Nelson, G., A generalisation of Dijkstra 's calculus, Research report 16, Dig
ita.l Systems Research Center, 1987.

[R1] Roscoe, A.W., A mathematical theory of communicating processes, Oxford
University D.Phil. thesis, 1982.

[R2] Roscoe, A. W., Unbounded nondeterminism in CSP, in this volume.

[RJ] Roscoe, A.W., Induction and jixpoint rules for CSP networks, in prepara
tion.

[ReJ Reed, G.M., A uniform mathematical theory for real-time distributed com·
puting, Oxfrod University D.Phil. thesis, 1988.

[RRl] Reed, G.M., and Roscoe, A.W., A timed modelfor communicating sequen
tial proceS8eS, Proceedings of ICALP'86, Springer LNCS 226 (1986),314-323.

[RR2] Reed, G.M., and Roscoe, A,W., Metric spaces as models for real-time
concurrency, to appear in the proceedings ofMFPLS87 (Springer LNCS).

26

Unbounded nondeterminism

in CSP

by A.W. Roscoe!

Oxford University Computing Laboratory,
8-11 Keble Road, Oxford OXl 3QD, U.K.

O. Introduction

As is well known to the theoretical community, it is generally far easier to model
finite nonde.termiuism (where a process can only choose between finitely many
options at anyone time) than unbounded nondeterminism (where no 5uch re
striction applies). The difficulties encountered with unbounded Dondeterminism
have. hitherto forced us to restrict the language and semantics of CSP to avoid
it: the most obvious restrictions being our inability to define the hiding operator
P\B when B is infinite and the absence of an innnite Dondeterminism Dperator
nS for arbitrary nonempty sets S of processes.

Doth of these restrictions are inconvenient. If we are to allow innnite alpha
bets at all (and it is often l\f;eflll to have them) it f;E'€mS unnatural restricting
hiding to finite setf;: for example it if; impof;f;ible to define a piping operator
~ whe.re the alphabet of interaction contains the integers. The fact that there
is no infil1i te nondeterministic compasition rueans that there is sometimes no
most nondeterministic proces~ satisfying a specification when one might expect

lThe author gratefully acknowledges that the work reported in this pll.per WlIS supported
by ONrt grant N00014-87·G·024::!.

27

there would be. This is unfortunate because it becomes impossible to treat such
specifications as though they were (parts of) programs.

In an earlier paper [R2] I showed how many of the restrictions on unbounded
nondetemUlusm could be lifted by separating the nondeterminism order from the
order used for finding fixed points, Unfortnnately the structure of the model
used there (failures and divergences using only finite traces) means that the
semantics given by that model to unboundedly nondeterministic operators is
not sufficiently discriminating. That model can successfully model a process
which wm, on its first step, nondeterministicalIy choose any integer, but cannot
tell between a process which can communicate any finite number of as and one
which may also choose to communicate an infinite number. One purpose of tills
paper is to develop a more refined model which can make this sort of distinction.
This is done in the first section by adding a component of infinite traces so tha.t
any esp process is represented by (F, D, I) where F is its set of failures (still
with finite traces), D is its set of (finite) divergence traces and I is the set of
infinite traces it can communicate.

Unfortunately the obvious orders on th..is new model fail to be complete,
though they do have greatest lower bounds for arbitrary nonempty sets, which
means that the standard iterative technique will produce the least fixed point
of monotone 1 provided there is any 2 with 1(2) ~ 2. My first reaction to
tIus failure was to look for a new order coarser than the obvious one which was
complete (for this was precisely what I had been able to do in the paper men
tioned above for the (F, D) model without the finite subsets axiom). However
one can prove that no order which gives the right semantics can be complete.
Specifically we find an w-sequence of eSP-definable processes wh06e semantic
values are provably ordered in any sensible order but which can have no least
Upper bound.

If recursions are well defined we must therefore find some special property
of eSP-definable functions which leads them to have fixed points. In a. sense
the rest of the paper is devoted to this task, though it achieves fa.r more. The
chosen route was to investigate the connections between the abstract semantics
for CSP given in Section 1 with an operational semantics given in terms of
transition diagrams or synchronisation trees. This had already been done for
standard esp in [BRW].

The second section develops the abstraction maps between transition systems
and the abstract models described in Section 1, and proves results about them.
It also shows how the map to the infinite traces model can be approximated by
a sequence of maps that a.re produced by iteratiug a functional.

In [BRW] the congruence proof was proved in two steps by the introduction
of an intermediate denotatiollal tree sema.ntics between the term-rewriting tree
semantics and the abstract denotational semantics. It turns out that there is lit
tle problem in defining an infinitely nondeterministic term-rewriting semantics:
this hardly notices any difference between finite and infinite branching. However

28

the metric theory of trees (plus the contraction mapping theorem) that we used
as the foundation of the intermediate semantics before is now of no use at all,
for the existence of such a theory is dependent on finite branching and Konig's
Lemma.

It is possible to develop the proof along similar lines by making use of the
theory of infinitely branching trees reported in [R3]. However, the relative com·
plexity of that and the discovery of the partial abstraction functions alluded
to above, which take over an important function of the intermediate semantics,
mean that it is no longer so attractive to do sO". Therefore in the present· paper
the proof is executed in a single step. The final section is devoted to this. The
structural induction which proves the congruence simultaneously proves that all
eSP·definable functions do indeed have least fixed points. Let ~ be the natural
map from synchronisation trees to the infinite traces model, and S be the dena·
tational semantic function mapping esp terms to it. If P is any esp term and
p is any binding of the free process variables of P to closed esp terms (ones
without free process variables) it is shown that

SIPip= <I'(OIPip)

where P[[p] = 'I>(p(p)) for each identifier p and O[P]p is the tree produced by
the operational semantics when the free variables of P have been substituted by
the appropriate p[p].

Thus, as well as proving the abstract semantics well defined, we have related
it to the corresponding operational semantics. To the author, one of the most
interesting insights brought by this work has been an understanding of why the
denotational fixed points of noncontinuous operators, which often take longer
than w to reach, are nevertheless operationally correct.

Despite the mathematical complexity of the results alluded to abm'e, the
actual definition of the infinite traces model a.nd the 15emantics of esp over it
are by no means inaccessible. For someone who is willing to take the justification
of these on trust, there is no need to read beyond the Uliddle of the first section.
Some technical material from the first section, such as the well·definedness of
the esp operators, has been relegated to an appendix.

A note on alphabets. The concept of a process' alphabet is of vitalimpor.
ta.nce to the definition of the esp parallel operator: when two processes are
running in parallel, the combination.call.commnni.cate aaevent in the combina·
tion alphabet if and only if all processes to whose alphabet it belongs are willing
to communicate that event. There have been two ways of presenting this. In
earlier papers [DHR,D,Rl} a.Iphabets were introduced as an explicit pa.nmeter
of the parallel operator Bib. In some more recent works, particularly [H] they
have been attributed to all processes: in essence this leads to a typed theory of
esp. The latter (alphabetised) theor)' leads to a more elegant syntax for the de·
scription of processes and the presentation of algebraic laws, but is messier when
it comes to building abstract modelS, fDr there has to be a separate model for

29

every possible alphabet, including the empty one which is an annoying special
case. Since the majority of this paper is concerned with the construction and
analysis of models we here adopt the former (unalphabetised) style and use a
single, nniversal, nonempty alphabet 1: for all processes. However the two pre
sentations are trivially equivalent and it is easy to determine the value predicted
in the alphabetised theory from its value in the unalphabetised theory. Thus,
subject to the obvious modifications, everything which is proved in this paper
is equally valid in either.

1. Adding infinite traces to the failures model

'Ve take a.<l our basis the failures/divergence model with the new "definedness"
order developed in [R2] but without the bounded nondeterminism axiom

Wc;:finX.(s,Y)EF"" (s,X)EF

which "''as needed before that order was developed. This model, as in the earlier
paper, will be termed N'. Recall that the definedness order::; is defined

P	 :S Q '" :D[Q] c;: :D[P] A

s rf. :DIP] "" R[P]s; R[Q]s A

j'(:D[P]) c;: traces(Q)

where j.tT denotes the minimal elements of a. set T of finite traces and 'R[P]s
deno'", {X I(s,X) E F[P]}.

As was noted in the introduction, though this model can describe the sort of
unbourrded nondeterminism which makes itseU apparent in a finite time, such as
a process which can choose any integer on its first step but cannot deadlock, it
cannot describe the type which takes infinitely long to unfold. This is exemplified
by a. process which, though it can perform every finite prefix of some infinite
sequence, cannot perfonn the whole sequence. Such behaviour cannot arise in
the context offini te nondeterminism, essentially because of Konig's Lemma: that
any infiuite but finite branching tree (in our case the tree of ways in which the
process can perform a prefix of the infinite trace) has an infinite path. (The fact
that the hiding operator is operationally correct for finitely nondeterministic
CSP is crudally dependent on this fact.) Thongh one might argue that the
infinite behaviours of a process need not concern us, for they cannot be fully
observed, the application of operators such as hiding can mean that the set of
jnfinite behaviours influences the finite behaviours. For example, if Po = SKIP
and Pn+1 = a - Pn , need (n{Pn I n E N))\{a} terminate?

This sort of question arises because, when we model a process by its set
of possible behaviours of one sort, we are often more interested in its certain
behaviours of another. Thus, by recording all situations in which a process can
diverge or refuse a set we can tell when it must accept from a given set in a finite

30

time. And by knowing all possible infinite sequences one can sometimes deduce
that a process will do something in a finite time, as is demonstrated by the
example at the end of the last paragraph. Notice how these ideas are consistent
with the philosophy of the nondeterminism order !;;: a process improves as it
has less possible behaviours.

One cannot really hope to model tlus sort of unbounded nondeterminism
without a record of the infinite traces that a process might perfonn. We therefore
iud ude such a record in a new model.

All the usual trace notations can be extend.ed in the:obvious waY5 to infi·mte
traces, though of course one cannot concatenate 11. with oS when u is infinite.
From here on u will conventionally denote an infinite trace. The set of all
infinite sequences of elements of any set X will be written X'"".

The new model will have the same structure as N' except that it will have an
extra component representing infinite traces. Thus a proce'iS P will be a triple
(F,D,I), where F c:;: E~ X 'P(~), D c:;: E~ and I <; L'"". F should be nonempty
and the eight axioms must be satisfied. The first seven are tabulated below.

(1) (s',0) E F ". (,,0) E F

(2) (t,X) E F" Y (; X ". (t,Y) E F

(3) ("X) E F" 'fa E Y.(t(a),0) f. F ". (t,XUY) E F

(4) sED::> stED

(5) sED". (s',X) E F

(6) su E I ". (s,0) E F

(7) .sED:::;. suEI

A.'cioms (6) and (7) are both new but straightforwa.rd because they are simple
extensions to axioms (1) and (4) respectively. One more axiom is required, which
can be thought of as an infinite trace analogue to axiom (3). The latter says
that anything which, on one step, cannot be refused, must be a possible com
munication. The llew axiom will say that when one, from the finite convergent
behaviour, can show that there must be infinite traces, then there axe enough
of them.

This axiom is 'ierr sl1htle and. pl'l"haps beca.use it is unlike any of the others,
proved hard to derh·e.

One can often IHove from the failures of a nondivergent process that some
infinite trace is possible because one can formulate a strategy for forcing one.
The most simple-minded form of strategy is that based on a single infinite trace
u. If (s,{a}) f/.. F for all s(a) < 11. then it is intuitively clear that a user single
mill.dedly striving for the infinite trace 11. must be successful. However there are
more subtle versions of this. Consider a process whose failure-set is

Fo = {(s,X) I s E {a, b)" "{u,b} '" X}.

31

Imagine always offering tlus process the set {a,b}: it is never refused, so weca.n
guarantee that an infinite trace must arise. However we have no finer control over
exactly which infinite trace it is, though on further reflection we can observe that l

since every finite sequence s of as and bs is possible there must be an in£nite
trace su extending every such s. The necessity of some axiom reflecting the
forcing ofinfinite traces is demonstrated by the definition of the hiding operator
below. Studying this will reveal that if a process P with the above failmes did
not have il.n infinite trace, then P\{a, b} would not have any failures, divergences
or infinite traces!

It was true in all versions of the failures model that, modulo divergence, every
process was iden tical to the nondeterrrunistic composition of its deterministic
implementations. (There is an extensive discussion of this fact in [B]. An up to
date paper which shows the power of this idea is [Blam].) The intui tive argument
that applied in these models, that on any particular interaction with a process
one cannot tell that it is not deterministic unl€Ss it diverges, still applies in
our current situation. This property is a consequence of the principle that an
external observer cannot tell by experimenting on a process just when it makes
a nondeterrrunistic choice. The only circuIIUitances in which an observer could
make such a distinction would be if he could copy a process half way through
an experiment on it. No CSP operator can do this, so in modelling CSP we
generally adopt this principle. It is intimately related to the fact that CSP
operators are distribntive over nondeterrrunistic choice, for example,

a ~ (P n QJ = (a ~ P) n (a ~ Q).

Imagine for the moment that we conld take copies of processes in mid execution,
and that this is done with the processes above after a has been communicated.
Then the various copies of the process on hte left may act variously as P or
Q, since there is no guarantee that the nondeterministic choice has been made
before copying. But all copies of the one on the right must behave the same (all
as P or all as Q), for there we know the choice has already been made. Thus, if
we could take such copi€S, the above law would not be naturally valid.

One can tell if a process is deterministic by inspecting its set F of failures.
They must satisfy

(s,0) E F => «(s,X) E F ¢} (X n {a I (s(a),0) E F} = 0)).

Theinfinite traces of a deterministic process are easy to deternUne: since it can
never refuse any event which it can communicate, one can clearly force it to
communicate any infinite trace u, all of whose finite prefixes are traces. We can
thus categorically state that, if F satisfies the above condition then

1= {ul'Vs< u.(s,0)E F}.

In models involving divergence one has the problem that, since no deter
ministic process can diverge, a process whose set of divergences is nonempty is

32

not the nondeterministic compositiOll of its deterministic implementations. Olle
can easily get around this by defining a process to be pre.deterministic if it is
deterministic until it diverges (if it does). A process (F, D) or (F, D, 1) will be
said to be pre-deterministic if

("O) E F '* (("X) E F*, E Dvxn {a I (,(a),0) E F} =O).

We can determine the infinite traces of such a process exactly as before: we
must have

I = {u IV, < u.(,,0) E F}

for either, when trying to force an infinite sequence, the process eventually di
verges (in which case the trace should be present by axiom (7) and is in the right
hand side above by axiom (4)) or it does not, in which case the a.rgument is a.s
for deterministic processes. Even though we do not know what the la.st axiom
will be, we do now know what the set of pre-deterministic elements of the new
model is.

The nondeterminism order!: extends trivially to the new model. If P =:::

(F, D, I) and p' = (P', D', t) are any two triples we say

P !: jY === F;;J F' A D ;;J D' A I 2 l' .

If P =:: (F,D,I) is any triple we define the set ofits pre-deterministic implemen
tations by

imp(P):::: {Q 1Q :.J P A Q is pre-deterministic} ,

noting that this is well-defined by the observation above that the set of pre
deterministic processes is known already.

If S is any nonempty set of processes we define its nondetenninistlc compo
sitionnS to be (F,D,I), where

F = U{F'1 (F',D',I') E S}

D = U{D'I (F',D', I') E S}

I = U{I' I (F', D', I') E S}.

This is just the process which can exhibit any behaviour of any element of S.

This allows us to state axiom (8).

(8) imp(F,D, I) is nonempty and (F,D,I) = nimp(F,D,I).

In other words, every behaviour of a. process arises from some pre-deterministic
implementation. One should perhaps note that, as we defined pre-deterministic
processes abo\ce, this a.'ciom in fact implies a.'cioms (6) and (7). However it
would not b(> fair to exclude these a_'i they were certainly taken into account
when constructing the defillition of pre-deterministic processes. Axiom (8) can
be regarded as a statement about what sets I are allowable for given F and D

33

since, for any F and D satisfying (1)-(5) there are sets I satisfying (1)-(8), for
example the set of all infinite traces all of whose finite prefi.x.~ are traces.

Axiom (8) is both complex and, in style. unlike any other published axiom
for a CSf model. The reader who wishes to convince himself that it really is
the "right" ax..iom should look at the Appendix, where several quite different
formulations are derived and where it is shown that the various CSP operators
defined below preserve the a.xioms, and also at the proof of Theorem 2.2 where
it is shown that every reaJ (i.e., operational) process satisfies it,

The set of all triples satisfying the above eight axioms will be termed U.

The notations of Nand N' are extended to U in their obvious ways. If
P ~ (F.D,!), we define TIP] = I, DIP] = D and FIP] = D. traces(P) will
continue to denote the finite traces of Pj Troces(P) will denote tmces(P)UI[P]'

The main motivation for deriving a.xiom (8) was to force there to be enough
infinite traces to reconcile 'with what the failures prove the process can be forced
to do. We have noted that it places no bound on the :finite (F, D) behaviours of
a process. One interesting question which is of importance later on is answered
by Lemma 1.l.

Lemma 1.1. If (F, D, I) E U, (F, D, If) satis:fies axioms (1) to (7) (the only one
that has to be checked is axiom (6)) and [1;2 I, then (F,D,I') E U.

Proof. We need to show that there are elements of imp{F, D, If) containing ev
ery element of I' \ I, for every other behaviour is accounted for by an element of
imp(F, D, I} (r;; imp(F. D, I'}). Since, if n E 1'\1, we have imp(F,D,I U {n}) r;;
imp(F, D, I'} it will be sufficient to show that there exists P... E imp{F, D, I U {u})
such that u E I[P...]. Note that s < u implies s ~ D (or else u E I).

For each s < u and each a E E such that s(a) f.. u and (s(a), 0) E F, choose
p.!,) E imp(F,D,I) such that (5(a),0) E FlIP.!,)] (it must exist .. (F,D,I)
satisfies axiom (8)). We will construct a pre-deterministic process by offering all
possible options on the De.xt step that (F, D ,I) can as long as the trace remains
a prefi..x of u, but immediately it ceases to be (i.e., has the form sea) f.. u where
8 < u) it behaves like ps(a)' Formally, p ... is de:fined to be (Fu, D u, Iu) where

F.	 = {(s,X) Is < ,,/\ xn {a I (.'(a),0) E F) = 0}
U{(s(a)s',X) I s < n /\ sea) f. n /\ (s(a),0) E F /\ (s(a).,',X) E FIP,!,)]}

D. =	 {s(a)s'I' < u /\ '(a) f. u /\ (s(a),0) E F /\ sea)"~ E V[p.(,)]}
I. =	 {n} U {,(a)u' 1, < n /\ s(a) f. ,,/\ (s(a), 0) E F /\ s(a)u' E DIP.(,)]}

It is elementary to check that Pu E imp(F,D.IU {u}), which completes the
proof of the Lemma. 0

One consequence of this result is that we can interpret axiom (8) as saying
that there are enough infinite traces to account for the set of failures: the in:finite
traces for divergences are implied by axiom (7) and this Lemma says that adding

34

e.."\':tra infinite traces never implies the addition of yet more. In other words a.uom
(8) could be replaced by the weaker statement

F ~ U{F' I (F',D',I') E imp(P))

for all P = (F,D, I). This observation is expanded on in the Appendix.

The reader might like to check that the elements of U with failure set Fo
as defined above are precisely (Fa, 0, I) where I is a set of nonempty infinite
traces such that every element of {a, b}* is a prefix of some element of I. This
follows in part from the fact that, if P is a process with the given-failure set and
q E im!J(P), then Q must have an infinite trace as it is easy to prove that it ha.s
arbitrarily long finite traces. Some possible Is are {a, b}'"', and {,~U 13 E {a,b}·}
for any fixed U E {a,b}u. Some more examples will be seen a little late.r.

\Ve have already indicated above how tIle nOlldeterminism order is extended
to u.. It is obvious that the maximum elemen ts are precisely the determinis
tic processes as defined above and that the least element is the immediately
divergent process.

Since divergence (and hence undefinedness) always appears aSter a finite
length of trace, there is no obvious way of extending the idea of definedness to
infinite traces. \Ve therefore extend:::; in the same way as above: the order on
the infinite tra.ces being by reverse inclusion.

P:o	 Q <> V[QTI (; V[PTI "

s ~ VIPTI 0> 'R[PTIs ~ 'R[QTI' "

!,(V[P]l (; truees(Q)"

TIP];> TIQ]

At first sight it might seem a more natural extension of:S if we made processes
with different infinite traces after convergent behaviour incomparable. However,
such an order would be incomplete in a disturbing way because there would be
sequences with many minimal upper bounds. As we shall see later in examples of
hOlv recursions converge, we do genuinely seem to need the structure of reverse
inclusion here.

The following lemma characterises a few useful elementary propertie; of the
two partial orders.

Lemma 1.2.

a) P ~ Q jf. alld oul.... if, illlIJ(P) ~ iml!(Q).

h) P S Q 0> PC: Q

c) 1.. = (:::a x P(~), ~a ,:~:>-J) is the least element of U for both orders.

d) If P S Rand P ~ Q ~ R, then P SQ.

35

e)	 A process P is pre-deterministic if and only if there is a deterministic Q
such that P :s Q.

f)	 'The ~-maxilIlal elements of U are precisely the deterministic processes.

Proof. (a), (b) and (c) are trivial. For (d), we observe that P .$. Q if and only
if P [; Q and

(i)	 ("X) E F[PJ A' ,,:DIPJ => ("X) E FIQI, and

(;i) p(VIPj) <; tmce,(Q),

so to prove the result it will be sufficient to prove (i) and (ii). If (s, X) E :F'[P]A
s" :DIPj then, ,;nce P 5 R, we know ("X) E FJR], Hence (s,X) E FJQI as
Q \: R. Exactly the same argument applies for (ii).

Part (e) is elementary once we observe that if P is not pre-deterministic then
its nondeterministic convergent behaviour must be present in any Q such that
P 5 Q.

It is easy to show that if P and Q are both deterministic and P \: Q then
P :;:: Q. It follows that if P is deterministic then imp(P) :::: {Plo and, by (a),
that all deterministic processes are maximal. It is easy to see that, for any
P E U, imp(P) contains a deterministic process Q (since any pre~determlnistic

process is weaker than some deterministic one by (e)). It follows that P \: Q
and hence that no nondetermlnistic process can be maximal. This proves (f).
o

All the usual operators may be defined over U. As one would expect, in most
CMes the finite parts of these definitions are exactly the same as before (with
the notable exception of hiding). They are given in full below.

STOP and SKIP are defined

STOP = ({(<>,X) IX <; !:1,0, 0)

SKIP = ({(<>, X) Iv'" xl U {«v'},X) I X <; !:}, 0,0) ,

Let p:::: (F,D,I), P':::: {F',D',I'} and, for b E B, Pb = (H,Db,Ib) be

36

processes. Then

DITa ~ P]

Iia ~ P]

Tla ~ P]

Dlz, Il ~ P%J

Ilz,Il~P%]

Tlz,Il~P%IT

DIP n P']

IIP n P']

TIP n P'I

DIPoP'IT

IIPoP']

T1poP']

DIP Bile p'J

IIP Bile P']

TIP Bile P']

DIP III p']

IIP III P']

TIP lP.p']

DIP; P']

IIP;P']

TIP;P']

{(a)' I' E D}

{(a)," Iu E I}

{(<>,X) Ia ¢ X} U {«a)"X) I (s,X) E F}

{(o), 10 EllA' E Db}

{(o)," I 0 EllA," E [b}

{(<>,X) IBn X = 0} U {«o)"X) 10 EllA ("X) E Fb}

DUD'

[UP

FUF'

DUD'

Iu I'

{(<>,X) I«>,X) E F n F'} U {("X) I' '1<> A("X) E F U F'}
U{("X) I s E DIPoP']}

{,t I' E (Il U C)" A ,fB E D A ,k E traee,(P'))
U{,t Is E (Il U C)" A ,fB E tmees(P) A ,k ED'}

{u E (B U C)W Iuf Il E Traees(P) A uk E Tram(P'))
U{'U I' E DIP Bile P']}

{(s, (X n Il) U (Y n C) U Z) I ' E (B U C)' A (,fB, X) E FA

(,fC, Y) E F' AZ n (B UC) = 0}

U{("X) i' E DIP Bile p']}

U{merge(',t) IsED AtE trace,(P'))
UU{merge("t) IsED' AtE tracc,(P))

U{merge(8,t) I s E Tmces(P) 1\ t E Tmces(P I
) 1\ s or t is infinite)

{("X) I"t.t'.s E merge(t,t') A(t,X) E FA (t',X) E F'}
U{(s,X) Is E DIP III P']}

{.st IsED 1\ stick-free}

U{ 8t Is{ v'} E traces(P) 1\ t E D' 1\ s tick-free)

{II III E I A 1/ tick-fI'ee)

U{ S'u I s{y') E fraces(P) 1\ U E I' 1\ stick-free)

U{,u I' E DIP;P']}

{("X)I(',XU{V})E FAstick.free)

U{(,t, X) I'(Vi E !racest P) A stick·free A (t, X) E F'}

U{("X) t, E DIP;P']}

37

V[P_YI {(u\X)' Iu E I A u\X is finite} U {(s\X). I sED}

IIp\X] {u\X Iu E I A u\X is infinite} U {su I' E VIP\X]}
FIP\XI {{'IX, Y) I("X U Y) E F) U {(s, Y) I' E VIP\XIl

vltlPl1 ((f(s»)' I' E D)

IlfIP)! (feu) Iu E I} U {(f(s))u I' E D)

FltlP11 {(f('),X) I (s, rl(X») E F) U {(s, X) I s E VlflPll}

VWI[PII {slf(s)ED}

IIt-IIPII {ulf(u)EI}

FWI[P!1 {(s,X)I(f(s),f(X))E F)

We have seen above how the nondeterministic composition of an arbitrary
I10nempty collection of processes may be defined by component-wise union.

The only definition here that really requires comment is that of hiding. The
definition of D[P\X] is rather simpler than before, since a divergence caused
by the hiding 110W arise!; from a single infinite behaviour rather than from an
infinite collection of finite ones. Notice that, with this exception, failures and di
vergences never depend on the in:finite traces of the operands. Some fundamental
properties of these operators a.re summarised in the next theorem.

Theorem 1.3. All the operators above are well defined (i.e., preserve the
a.xioms) and monotonic with respect to both orders. All operators are both
finitely and infinitely distributive: i.e., F(n 5) :::: n {F(P) 1 P E 5} for all
opera.tors F and nonempty 5 ~ U.

With the exception of hiding the only term that needs to be checked for
well·definedness a.nd mOllotonicity is I, for we already know these facts for N'.
In these cases monotouicity is trivial, for infinite traces are always constructed
positively out of bellaviours of the operands. Axioms (6) and (7) are generally
easy to check. Some example proofs ofax..iom (8) are given in the Appendix.
Distriblltivity is a, consequence of the fact that all behaviours of F{F) are always
deducible from single behaviours of F. This is also discussed in the Appendix.
We should perhaps note tltat no claim has been made for the continuity of the
Operators, which is becanse many of them are not COntinuous as a consequence
of unbounded nondetermjnism. See later examples for discussion of this. The
main consequence of this lack of continuity is that the :fixed points of recursively
defined programs need not have appeared by the wth iteration from..l so familiar
to computer scientists. Ho\','ever, once we can show that necessary least upper
bounds e.xist there is no problem in defiuing the meaning of any recursive term
to be the least fixed point of the appropriate monotone function: it is given by
/"(..l) for sufficielltly large a. Once one can do this, we can define a. semantic
function S : E _ UEnv -4 U. where E is the set of all CSP terms and UEnv is
the set of mappings from process variables to U, in the obvious way. 0

38

Properties of the partial orders. \Ve have seen how the partial orders $"
and ~ are defined. \Ve canuot hope that ~ is complete in general, for it is nDt
complete Dver ."',/1 when L; is infinite. UnfDrtunately, neither order is complete,
even when I: = {a, b}. It is ea.."y tD construct increasing ~-sequencesof processes,
all with F = Fa as defined above and D = 0 which can have no upper bDund.
As a simple example, let Un = «a)n(b))'" be the infinite trace which has n itS

then a b cyclically. It is clear that the sets {sun Is E {a,b}*} are disjoint a.6 n
varies, and therefore tbat, if we set In = {Sum IS E {a, b}* A m ~ n}, any upper
bound for the sequence «(Fo,0,I..) t n E N) must have an. empty set of in1inite
traces. This is impDssible for ~ as, since all the processes are divergence-free,
any upper bound must have failure set Fa. (And we have already observed that
all such elements of U have nonempty I.) It is also impoosible for!: since any
upper bDund must have an implementation Q (necessarily detennlnlstic). Q
must also be an implementatiDn Df all processes in the sequence and therefore
have an infinitl' trace - a contradiction.

\Ve will return to this incompleteness shortly and show that it is, tD some
extent at least, inevitable. Defore we do this, however, it will be nice to establish
a few positive properties.

Theorem 1.4.

a) Any uonempty subset 5 Df U has greatest lower bounds with respect to
both ~ and ~. In general, n:$'5 r;;. n!;5.

b)	 In either order, any subset of U with any upper bound has a least upper
bound.

c)	 If U< 5 is defined then so is Uc 5 and the two are equal. Furthermore
U< 5 ~ po ~ (r,D",r), wh.,e r ~ niF I (F,D,I) E S}, D" ~ n{D I
(F, D,I) E S} and r ~ n{I I (F, D,I) E S}.

d)	 If 5 is a nonempty set then Uc 5 exists if and only if n{ imp(P) IPES}
is nonempty, and in that case IJ!; S = n (n{ imp(P) IPES}).

e)	 If f : U -- U is a functiDn which is mDnotone with respect to one of the
orders (l.nd dlere is P E U such that f(P) ~ P (respectively f(PJ r; P),
then f Ita;; a least fixell point given by r'(.l) for some ordinal Q.

f)	 If f :U _ U is lllollotoue ...,·jth respect to bDth orders then any least fixed
point for one order is also the lea.."t fixed point for the other.

Proof. It is easy to see that ns is the ~-greatest Imver bound of any nonempty
set 5. (For an explanation of why n 5, as defined above, is in U, see the
Appendix.) It does not work in general fDr the definedness order ~, however,
sil\ce one does llDt in general han' P E 5 => ns ~ P. The greatest lower bound
of 5 = {(F.. D"I,) liE A} is, as wa.." the case in N', constructed so that it
diverges as soon as the finite behaviour of any two elements of S starts to differ.
We define n:$s tD he (F.D,I), when>

39

• D ~ U{D; I ; E A}U{,t 13;,j.(3Y.(s, Y) E F;\F;)v(3a.(s(a},0) E F;\F;)}

• F ~ U{F; I; E A} U {("X) Is E D}

• I~U{Iil;EA}U{,ulsED}

It is easy to show that tills process is in U and is indeed the S greatest lower
bound (}f S. Trivially n ~S (::; n s. This completes the proof of (a).

(b) follows because, as is fairly well known, any partial. order which has
greatest lower bounds for nonempty sets has this property. The usual. argument
is repeated here. If S is a. set with an upper bound, then Us, the set of upper
bounds of Sis nonempty and so x :::0 nUs exists. Since y .s z whenever yES

and ZEUs it follows that each yES is a lower bound for Us. AB x is the
greatest lower bound for S it follows that x ~ y for all yES and therefore that
x E Us. Plainly x is the least element of Us and is therefore the least upper
bound of S.

The first part of (e) follows trivially from the fonnula which is the second
part. However it has an interesting separate proof. Note that, since Q S P ~

Q (::;; P, if P = n<s exists then it is a ~~upper bound for S and hence Q :::::: Uc: S
exists and Q ~ P. Whenever RES we then have R ~ Q (::;;. P and R S-P.
Lemma 1.2 (d) above then tells us that R :S Q. It follows that Q is as-upper
bound for S and hence that Q ;::: P. ¥le then have Q (::;; P and P (::;; Q. The
result follows immediately.

For the second part, we show first that jf P' = (F',D',I') is the actuallea8t
upper bound on S then D"' = D t

• For trivially D' ~ D* so let s E IID* (where
recall D' ~ n{D I (F,D,I) E S}). Note that there must be P = (F,D,I) E S

tsuch that s E 1J.D. Since P S p we must have s E troces(P'). If s rt D' then
consider P" = (FIt,D'I,I") defined

F" = F' U {(st, X) I tEE' A X <:; E}
D" = D' U{st I tEE'}
1" = l' U {su I u E E"} .

traces(p/I) is prefix closed by the observation above. It is thus easy to see that
pit is a process, that P S p tl for all PES and that pI 1::. P'I. It follows that
pi cannot be the least upper bound on S, a contradiction. Hence IlD· ~ D'; it
easily follows that D"' ~ D', so the two are equal as desired.

Tha.t P* defined in the statement of the theorem satisfies axioms (1), (2),
(4), (5), (6) and (7) is tri,..ial. Vle next note that trivially F"" 2 Fl. Now by
the above paragraph those parts of F* and F' implied by dh'ergence and axiom
(5) are equal. Suppose that s rt D' = D*. Then there is P = (F, D, 1) E S
such tha.t s rt D. Necessarily R[PTI·s = R[P']s as P S P'. It follows that
RIP/TIs 2 R[P*]s (for the latter is the intersection of a set containing R[P]s).
Putting these fact together yields F' 2 F*, proving that in fact r = F*. Note
that this implies that P* satisfies axiom (3).

40

Since we have now shown that D· = D' and F· = F', and it is trivial that
1* 2 r it follows directly from Lemma 1.1 that p. satisfies axiom (8) and is
therefore in U. The fact that it is the ::;~least upper bound for S is then trivial.
This completes the proof of (c).

(d) follows easily from axiom (8) and (b) above.

(e) is true in any partial order with property (a). By another standard
argument, if f is monotonic and x = n {P I f(P) ::; P} exists in a partial
order then it is the least fixed point of f. We still have to show that the least
fi..xed point can also be found by iterating fa(1.). The. oaly place at which the
standard cpo proof of this could go wrong is where, for. limit ordina.hi A, one
defines f>'(1.) = U{fa(1.) I Q E >.} since this least upper bound might not be
defined. But it always is, since it is easy to prove by transfinite induction that
all the fa(J....) are bounded above by the least fixed point x constructed above
so that we can always apply (b) when constructing f>'(.l).

(f) follows easily from (c) and (e). H f is monotonic with respect to both
orders and has any fixed point then it follows easily from (e) that it has least
fixed points f~(.l) and fg(.l) with respect to these two orders. But one can
prove from (cfthat if both of these exist then the value of f'Y(.l) is independent
of whether it was defined using::; or ~ by an easy transfinite induction on "'f.
From this it is easily seen that both processes reach the same fixed point, and
do so at the same time.

(f) can altematively be proved by observing that, by (e), jf f has a fixed
point then it has a least fixed point with respect to both orders. If x and y
denote the ~ .. least and I; ..least fixed points respectively, we have 2 ::; Y and
hence x I; y by Lemma 1.2. But we know y ~ x so it follows that x == y. 0

We should remark now that all of the properties of the partial orders identi
fied in Lemma 1.2 and Theorem 1.4 extend easily (some of them appropriately
amended) to products of U, i.e., UA (= A -+ U) for an arbitrary nonempty set
A, with the order E..::; Q (or £. ~ Q) if and only if P>. ::; Q>.. (or P>.. ~ Q>..) for all
>. E A. Some of the mme useful Irroperties of th~e product spaces, which are
important in the consideration of mutual recursions and in the definition of the
partial abstraction functions later on, are summarised below. All the proofs are
either standard or straightforward extensions of what we have already seen.

Theorem 1.5.

a)	 .lA is least element of U with respect to both orders.

b)	 Any nonempty subset S of UA has greatest lower bounds with respect to
both::; and 1;. In general, n<s ~ ncs. In either case the greatest lower
bound's >..component is give~ by n {P>. I PES}, where n here denotes
the greatest lower bound operator over U in the appropriate order.

c)	 In either order, any subset of U with any upper bound has a least upper
bound. In that case its >.·component 1s given by U{P>. I PES}.

41

d)	 If U< S is defined then so is Uc S and the two are equal. Furthermore
(U<S)A ~ Pi = (Fi,Di,I;), "'here Fi = n{.1'[P),11 E. E S} D; =
n(Dlnll E E S} Ii = n{I[p),11 E E S}.

e)	 IT f: lFI. ---4 UfI. is a function which is monotone with respect to one of the
Ord'Crs and there is l!. E U A snell that I(E) S E... (respectively I (E.) [EJ,
then f has a least fixed point given by ICr(l. A) for some ordinal 0'.

f)	 If f : Ufl. ---4 UfI. is monotone with respect to both orders then any least
fixed point for one order is also the least fixed point for the other. 0

These theorems and what we have shown up to now show that ~ and!; are
exceptiouaUy well-behaved partial orders. It is interesting to note that ~ has
its lower bounds given by union and ~ has its upper bounds given by intersec
tion, but that the reverse facts are not true. For examplll n {a _ STOP, b _
STOP)::: 1. or (a _ STOP)n(b _ STOP) depending on which order is chosen,
and U(I, ~ STOP) n (b ~ STOP. (0 ~ STOP) n (b ~ SKIP)} = a ~ STOP
ultder ~ which is not the intersection of the two. Indeed even in cases where S
is a chain, Uc S might exist but not be given by component-wise intersection.
If PH is the 11th process in the chain seen earlier with no upper hound, then if
we define

Q. =(c~ STOP)n(d~ p.)

the least upper bound of this sequelice is c _ STOP even though «(d},0) is a

failure of every Q".

The author's first reaction on finding that the two "natura!" partial. orders
were incomplete was to try to find another one that was but which gave the same
iwmautics. After all, that had been one of the main reasons for the development
of the ~ order over ,N' since it gave exactly the same least fixed point semantics
but was complete, showing that a!l desired fixlld points actually exist. I should
pedlaps remark at this point that the given orders do actuaUy compute tIle
correct values for CSP definable recursions and that the least upper bounds
required t.o compute them always exist. Of course the proof of these facts will
be tlle subject of mudl work later, but it is worthwhile seeing some examples
here.

Examples. Define Po = STOP and Pn+l = a - Pn. Set P = n{Pn I n EN},
so that P can perform any finite number of as but not an infinite sequence of
tllem. OperationaUy we can think of P as a process which, as its first action,
takes a secret decision on exactly how many as to perform. Now consider the
recursively defined process

Q = (a ~ Q){.JII(.)p

and let F : U _ U be the fUllction associated with the right hand side of this
recursion. Since the rif';ht hand side of r.he highest level paralIel construct initially
imposes a bound Oll the nnmber of as q call perform, it is clear that Q itself

42

cannot perform an infinite sequence of them. On the other hand it is clear that
Q can perform as large a finite number of as as it pleases. We would therefore
expect P :::: Q. However, as is easily verified, F (.l) can perform an infinite
sequence of as (it is equal to P n R, where R :::: a -+ R). On the other hand,
Fw+I(.L) =(a ~ (pnR)l{o,lI[ojP =P a.nd F(P) =P, so this recun<ioa reaches
the operationally correct fixed point at w+1. Some more examples ofrecursions,
their nxed points and the ordinal required to reach them are summarised Wow.
The reader might enjoy constructing a. few of his own .

• If f : E --10 E is such that r(a) # fm(a) when n # m then the recursion

Q, = STOP n a ~ ((QlEIlE P) n f(Q,))

(with P as above) reaches its fixed point (which is the same as that of the
recursion pI :::: P n a -+ f[PIJ which converges in w steps), in exactly w.2
iterations.

•	 Let Q be an infinite ordinal and E:::: Q (the set of all {3 < Q). Then the
recursion

Q, = 13 : '" ~ «1 : 13 -. STOP) EIIE Q,)\'"
takes exactly Q steps to converge to its fixed point {3 : Q -+ STOP. Q2 is
a, process th<\t inputs any element {3 of Q and then outputs any element
of {3 to a copy of itself or deadlocks if {3 :::: O. (The fact that this is the
natural fixed point is an easy consequence of the fact that there is no
illfilljte descending sequence of ordinals.)

Suppose ::5. is some partial order which does all we want: namely give the
same fixed p oint theory and make U complete. Clearly it must make all CSP
operators monotonic and have the same minimal element .1. To give the same
n.xed point theory it must have the property that, when C is a linearly ordered
subset of U with respect to j and one of our existing orders, then a least upper
bound for ::5. is also a, leaot upper bound for the other. (Note that i; a.nd :s: are
in this relationship.) It must also make P' -< Q, where Q is defined a.s in the
example above and pi:::: STOPna -+ P'. For Q is a fixed point ofthls recuI'5ion
but is distinct from the natural nxed point (by assumption the -<-least) which
has the infinite sequence of as. (P' -< Q can also be proved by looking at the
recursion of Q, where pi is the wth iterate.)

From these simple fac ts and assumptions we will be able to prove that j

cannot E'xjst: for there is a sequencl" of processes in U which are provably ordered
by j but which ca.n hilw no upper bound. Set E:::: {a,b}. Recall that the set
Fo of failures was defined

Fo = {("X) 1.< E {a,b)" A {a,b) \1: X).

The corresponding set where a process can refuse anything at any time js

F I = {("X) I' E {a,b)" A Xc:; {a,b)).

43

necall that the triples (Fo,0. I) satisfying the axioms were those where I contains
an extCll5jon of every finite tHce. All triples (F1 , 0, I) satisfy the axiOIIlS.

\\'e will now construct SOUle subsets of {a,b}"" to go along with Fo and Ft.
]f u E {a.,b}'"' and 1/. E N, define Tn(U) to be the ratio of the number of as to
the numher of bs plus one in the first n elements of u. (The "plus one" is to
make this always defined.) We should perhaps remark that some traces u have
lim"...... oorll (u) existing and some do not. (In fact, there are uncountably many
1L:i witll any given limit in [0.00).) In the author's experience the ratios Tn(U)
are very useful when it comes to choosing pathological subsets of {a,b}'" and
similar.

FornE {l,2.3, ...} \,,·edefine

J" = {u E (a, b)" I 3, > O.3m.'tk?- m.'< r.(u) < 2. - ,}.
n

Thus U E In if and only if the ratios eventually stay within (0, ~) and away from
the boundaries of that in terval. This last condition means. amongst other things,
that III c011tains no sequence with limit 0 or ~. Notice that 1..1 E In does not
imply that limn~= Tn(U.) exists. The sets In have some interesting properties.
First, the In all con tain elements beginning with any chosen s E {a, bt (in fact,
ullcoantably many). Also 1"+1 <; In and nUn I n E {1,2•...}} = 0. Perhaps
the most interesting property is that, if m S n then

u{me7'ge(s. t) I S E In U {a, b}* /I. t E 1m U {a, brA s or t is infinite} = 1m .

Also, the insertion or deletion of finitely many elements of a sequence u does not
effect membership of any In since the limiting behaviour Tn(U) is not affected
by such manipulations. \Ve can now define some processes

Pn (Fo,0,q for n E {1,2,3,)
Qn (F,,0,ln) lor n E {1,2,3, }
Po (Fo,0, {a,!}")
Qo (F,,0, (a, b)"}
Q= (F,,0,0)

We will prove that the p.. are a. ::<-increasing sequence.

Now if j: E _ "E is defined by f(a) =. f(b)::; a, we have f-l[P'J == Qo a.nd
j-l[Q] ~ Qoo, where pi and Q are as described at the start of this discussion.
Hence Qo ~ Q= as j-l is monotonic.

Now for all n it is not too hi'lrd to see that P" III Qo = Po and P" III Qoo ::::: Pn·
It follows thi'lt Po :::$ Pn fol' all n '2: 1 a.s III is monotonic.

Next, observe that P" : 11r: Pnl ::::: Qn if m S n. (The transi tion from Fo to F1

arises because oue side of the parallel may refuse a and the other b.) It follows
that Q", :=0 (Po Ell: Pm) j (P" Ellr: Pm) =::: Q" when m S n.

44

The property of the In described above implies that Pm III Qn = Pk, where k
is the lesser of nand m. Hence, when m:S: n, Pm = Pn III Qm ~ Pn HI Qn =P"".
This completes the proof that the Pn form an increasing sequence.

The fact the the Pn are j-increasing is unsurprising, since they are increasing
with respect to !; and ::;. We have specified that all ~ least upper bounds are
also!:. least npper bounds. Since n{In I n E N) is empty, any b least upper
bound for this sequence has I = 0. Dut there is no element of U with F ~ Fo
and I::; 0. It follows that this sequence has no upper bound with respect to ~.

Therefore ~ cannot be complete.

We therefore have to give up all bope of a conventional fixed point theory,
though note that, by Theorem 1.4, if we can show every CSP term has somenxed
point then we essentially have one. One of the reasons the author embarked upon
the research set out in the rest of this paper was to prove that every such function
has a fixed point. However, it must also be said that a theory like ours which is
based on monotonic functions and fixed points which are attained at a.rhitrary
ordinals is by no meaD!> obviously right in an intuitive sense. There is even more
need now to relate this abstract semantics to an operational semantics than
there was for the cousiderably simpler boundedly nondeterministic version if we
are to understand how it works (if, indeed it does). It will turn out that by the
final section we w:ill be able to show that all CSP definable functions have least
fixed points and to prove the congruence result described in the introduction.

Ne...ertheless it would be very nice to have some simpler argument tha-t every
CSP function has a fixed point that did not rest on such a large body of work
o-utside the model. For example, if one could find any partial order which was
complete and made all operators monotouic one would be able to show every
function we want has a fixed point. Theorem 1.4 would then ensure that the
fixed poin t we actually want exists.

2. Abstraction functions

Wllel\ we come to compare abstract and transition system semantics in the
final sectiou we will need abstraction functions which map one to the other.
The purpose of this section is to introduce and analyse functions from arbitrary
transition systems to U and N', nut before we do this we summarise some facts
about transition systems.

Summary of notation, nomenclature and results. A tronsitionsystem is a

set of states with a binary relation ~ for each element 6 ofthe set E+ ::;; EU{T)
of transitions, where T deuotes an internal tramition. We should note that E
(the set of visible actions) is an implicit parameter of almost everything we do
from now on, as iudeed it was in the last section.

A mOTphism [IU,R3] is a function from one transition system to another
which characterises the property of indistinguishability in that no experimenter

45

who can only see transitions (visible or invisible) should be able to tell P from
F(P) if F is a morphism. F: C --0 D is said to he a. morphism if and only if:

(i) P--!-.Q => F(P) -~-,p(Q), and

(ii) F(P)....'..,X => 3Q.P....'..,QAF(Q)=X.

Ivlorphisllls a,re closely related to the idea of bisimulation hut differ mainly in
that the~i ,1'ea,t internal actions in exactly the same rigid way that they treat
visible OIl~S.

The index of nondeterminism i(C) of a transition system C is the smallest

infinite regular cardinaF which is strictly larger than {Q I P ~ Q} for all P E C
and 6 E ~t.

The functions. Given an element P of a transition system, we can construct its
sets of failures, divergence and infinite traces in natural ways which are described
below.

We first define two Inulti-step versions of the transition relation. If P,Q E
C and s :::: (x; I°~ i < n) E (2::+)* we say P ~ Q if there exist Po ::::
p,p]"."Pn :::: Q such that PI: ~ PHI for k E {O,l, ... ,n -I}. Unlike
th.is nrst version, the second ignores rs. For s E E~ we write P ~ Q if there

exists s' E (E+)* such that P ~ Q and .s' \ T :::: s. The following properties of
h and ~ are all obvious.

Lemma 2.1.

a) P g P 1\ P ~~ P

b) P=~QI\Q::::k.R~pdbR
c) Pl-~QI\Q~R~P~R

d) P='k>R=>3Q.P~QAQd"R

e) P~R~3Q,P~QI\Q~R

Suppose C is a transition system and P E C. \Ve say P can diverge, written
PT, if there exist Po:::: P,Pj,P2 , ••• such that, for all n E N, Pn ~ Pn+1 •

divergence,(P) = {st 13Q.P d" Q A Q j)

Notice that we have said that .sf is a divergence trace whenever s is. This is
motivated by a desire (inspired by our abstract semantics) to make all possihly
di\'ergent processes undefined. (As will be apparent from a careful reading of

'A reguhu cardinal>' is one which is llot (h~ union of less than>' set,,; all of which are of
size less than >.. The~e are arbi lrarily IIl.Tg~ r~Jl;ular cardinala, sinc~ for example el'ery 9UCa$$Or

cardinal is regular. The combinatorial properti~s which make regular cardinal, the nataral
bOUllds for nondeterminisill an: well illustrated in [R.3].

46

the proofs below and in the final section, the fact that our semantic models and
functions are strict with respect to divergence is sometimes oC great importance.)

Say P E C is stable provided there is no Q such that P ~ Q (in other
words, if P cannot make any internal progress). If B ~ E we say P ref B if
Va E IJU{r}.-.3Q E C,P ~ Q. Thus PrefB implies that Pis stable. We
can now define

failures(P) = {("B) I 3Q.P ~ Q A Q ref B} U its, B) Is E diuergence,(P)} .

The point of these definitions is that a process. can properly'refuse B only when
it is in a stable state, for as long as it is performing internal actions one cannot
be sUre that it will not come into a state where a desired event is possible.
On the other hand, when a process diverges it also refuses (in a different sense
perhaps) all communications offered to it. The second part of the definition is
also motivated by the desire to make a divergent process undefined.

If u E E'" is an infinite trace and P E C, we write P ~ if there are P =
Po, Pl , P2 , ••• E C and Xi E E+ such that Vk.P" ~~ PHI and (a" IkE NA aA: f:. r) =
u.	 This lets us define

infinites(P) = {u E E W IP ~} U {su I' E diuergences(P) A u E E'}.

Similarly, if (XI liE w) = 'U E (E+Y'" we can write P ~ if there exist
P :::; Po, PI, P z, ... such that, for all i, Pi ~ p.+!.

Clearly it is possible to define other functions, and to vary the6e definitions
for a.nother definition of divergence. However the above are exactly the required
maps to define the abstraction maps into our main abstract models.

Definition. If C is any transition system then we define abstraction maps
:=: : C -+ N'I (the failures/divergences model with no compactness axiom) and
ol> : C -+ U as follows.

=o(P) = (failures(P), diuergences(P))
p(P) = (failures(P), diuergences(P), infinites(P))

We now prove a theorem which establishes some basic properties of .p and

Theorem 2.2. The maps =: and <I>"are "''''ell defined, and furthennore

a)	 If F : C - D is a mmphism then =o(F(P)) ==o(P) and ;p(F(P)) = ;pCP)
foraliPEC.

b)	 If P E C and C is a sub-system of D (Le., a subset c108ed--und-er-a3:l the
transition relations) then the values 4l(P) and 3(P) do not depend on
whether we think of P as an element of C or of D.

4;

c) Given allY transition system C there is another one C' such that C is a

subsystem of C I and the maps <I> : C I

- U a.nd S : C -)/1 are onto.

Proof. Wefirst prove the well-definedness of the map,,:S and <I>. Observe that
for any process P, either <>E divergence.s(P) or there exists a stable Q such
that P g Q. This and Lemma 2.1 (b) easily imply that the traces of =:(P)
and o}(P) (finite or finite and infinite) are prefix closed. The other axioms of)/I
follow trivially once one observes that, if Q ref B and B I

~ B then Q ref B I for
auy stableQ E C, hence :=:(P) is well defined.

The only non-trivial thing which remains to be proved about <I>(P) is axiom
(8). \Ve !Lave to prow that every hehaviour of ~(P) (failure, divergence or
infinite tra.ce) belongs to some element of imp(~(P). (The reverse inclusion
heing trivial.) As we remarked earlier, this axiom is true because on no actual
interaction with the process can one tell it is nondeterministic. To prove it true
of 'I>(P) it will thus be necessary to isola.te the ways in which a process can
appear to act on a particular run and to show that these can be rega.rded as
pre-deterministic and include every behaviour of <I>(P). There are two ways in
which a r,ransition system can generate nondeterminism: by executing a Taction
and thereby changing the available actions invisibly and by having more than
one pos.'iible result from carrying out a given action (visible or invisible) from
some sta-te.

Given P in a. transition system C, we wiIl slightly abuse notation and use
the term pre-deterministic .subtree of P for what is essentially the record of the
behaviour of P after it has made its internal decisions of the 60rt" described
above. It will be a set T of pairs (.s,Q) where.s E L;* and Q E C, with the
meaning that Q is the state that it might come into inunediately on completing
.s. It must satisfy the following conditions

(i) «>,P) E T

(ii) (s,Q),(s,Q') E T,* Q = Q'

(iii) traces(T)::: {s I 3Q.(5,Q) E T} is prefix closed.

(iv) (s,Q),(S((L),Q') E T => 3QII.Q ~~ Q" I\QII ~ Q'

(v) (s,Q) E T" ~Ql,* 3Q',Q g Q'" Q' ref {a EEl '(a) rf. 'rdce3(T)},

Ginn such a subtree one can define a pre-deteyministic process: ~'(T) is defined
to be (F,D,I) where

D = {s'l(s,Q)ET"QTl
F = {(s, X) I 5 E 'race3(T) " X n (a EEl sCa) E 'race,(T)) = 0} U {(',Xl I' E D)
I ~ (u E);'\ '<Is < u.s E 'races(T)) U {su I' E D}

Lemma 2.2.1. If T is a pre-deterministic subtree for P then ~(P) I; <I>'(T).

48

The proof of this lemma is easy and uninteresting except for the observation
that because the state associated with each finite trace is unique oue can simply
construct a path through the transition system for each required infinite trace
by stitching together the pieces for each of its elements produced by (iv) above.
o

Every behaviour exhibited by P (of any of the three types) is exhibited by
one of its pre-deterministic subtrees. This is a consequence of the next lemma..

A path from P may be defined to be sequences of Pi and Xi E 1::+ such that
Po;::: P and Pi --=-. P,+l' A path can either. be,finite or infinite. Au infinite
path is divergent if the Xi are eventually all 1'S.

Lemma 2.2.2. If Po ~ PI ~ P2 ••• is a nondivergent path from P then
there is a pre-deterministic subtree T of P such that

(i) If x; # r then «x; I j ~ i}\r, P;+,) E T, and

(ii)	 If Pi is stable and s ~ (x, I j < i}\r then {a I s{a} E 'race,(T)} ~ {a I

3Q.P;~ Q}.

The proof of this lemma simply consists of the tedious construction of T
piece by piece. 0

It follows from this that .p(P) = rl{ .p1(T) IT is a pre-deterministic subtree-of Pl.
This completes our proof that .p is well defined.

We now turn to the proof of (a), namely that the values of the abstractions
are preserved by morpbisms. The following all follow fairly easily from the
definition of a morphism.

P ob Q "" F(P) ob F(Q)
F(P) ob R"" 3Q.F(Q) ~ R" P ob Q

Q stable .. F(Q) stable
Q ref B .. F(Q) ref B

QT" F(Q)T
Q~ .. F(Q)~~

Q~ .. F(Q)~

For example, suppose F(Q)T. Then there exist R o = F(Q),Rl,R:h ... such
that R; -~ R'+l for all i. Claim that there exist Qo = Q,Ql,Q2"" such
that F(Q,) = Ri and Qi. ~ Qi+l' These will be constructed inductivcly, first
setting Qo = Q. If we have constructed Qi then, as F(Q;) ~ Ri+l there exists
Q;+1 such that F(Qi+d = Ri+l and Q; ~ Qi+l' It follows that the desired Qi
exist. This trivially impUes QT.

It is easy to see that the above imply divergences(P) ;:: diueryences(F(P)),
/ailures(P) = /ailures(F(P)) a.nd in./inites(P) = in./inites(F(P)), which in turn
implies part (a).

49

Part (b) is a trivial couseqlH'nce of (a) since, if C is a subsystem of D, the
obvious iudusion map is a. morphism.

We now turn to the proof of (c). This is fortunately rather easy given axiom
(8). The pre-deterministic processes (which can be identified with the pairs
(T, D) wh~re, 0 i- T <;;:; :E* is prefix closed and D ~ T, may be turned into a
transition system P D;

(T, D) -c... (T, D) if <>E D
(T,D) -~ ({, I (a)s E T), {s I (a)s ED}) if(a)ET.

It is easy to check that iI!(T. D) is precisely the pre-deterministic €lement of U
that corresponds to (T, D).

Now all we have to do is to ma.ke up a space CI consisting of (disjoint copies
of) C, PD and a separate point for each nonempty subset S of PD. The
transitions of €lements of C and PD are those inherited from thooe systems. If
S is one of the subsets then

s ~ (T,D) for all (T,D) E S.

The fact that the 4> : C I U is onto is now a straightforward consequence--t

ofaxiolll (8). That:=: is onto follows trivially from the fact that ~ is and the
fact th~t N' is exactly the set of all first two components of elements of U.

This completes the proof of Theol'em 2.2. 0

It might seem a little crious that we have gone to the trouble of extending
an arbitrary transition to one on which .p is auto, especially when the disjoint
sum construction is so trivial. The reason for this will become apperent when
this r€sult is used in the next section.

For reasons which will be apparent in the fiual section it is useful to have not
only the map .p : C ---> U but also a sequence of approximations to it. We will
define a map 'l>a : C ---> U for each ordinal. a. (Once again, C is here an arbitrary
transition system.) It is convenient to define .pa in terms of a functional

9, (C ~ U) ~ (C -, U).

If 'P C ---> U and PEe, \ve define Q('l')(P) :;: (F I
, D', I'), where

F' =	 {(<>,X) I P ref X}
U{(s,X) 13Q.P -.!.., Q A (3,X) E J''1''(Q)]}
U{((a)s,X) 13Q.P -"-. Q A (s,X) E F["(Q)]}

D' ~ {, 13Q.P ~ Q A s E D["(Q)]}
U{(a), 13Q.P -~ Q A 3 E D[,,(Q)]}

I' = {u 13Q.P -.!.., Q A u E T[,,(Q)Jj
U{(a)u 13Q.P -~ Q A u E T['!'(Q)]}

The following Tlworem establishes some useful properties of Q.

Theorem 2.3.

50

a) Q is well defined and monotonic with respect to both orders.

b) ~, as defined earlier in this section, is a fixed point of Q.

Proof. The whole of part (a) follows immediately from the fact that y can. be
re-written entirely in CSP. The operator P 1>Q used below is an abbreviation for
(PDQ) n Q (the process which caD offer the choice between P and Q but which
must eventually make an internal transition to become Q if no action occurs).
It is a useful operator since it allows more conciseness, and has appea.red before
in simila.r circumstances in the -literature, e.g. [1.

9(<l»(P) x: pO ~ n{<l>(Q) I P --=-. Q} if lJQ.P ~Q

9(<l»(P) «x: pO ~ n{<l>(Q) I P --=-. Q}) otherwise
I>n{<l>(Q) I P ~ Q}

where pO denotes {a EEl 3Q.P ~ Q}. It is easy to see that our two
definitions of Q are equivalent. Note that the overall structure of th.is CSP
definition depends only on the transitions within C, and is therefore independent
of the value of w. It is this last fact which proves that Q is monotone with. respect
to both orders.

Pa.rt (b) is intuitively obvious. Consider, for example, the divergencecompo
nen t. It follows immedia.tely from the definition of T that V[<Jo(P)R = divergr:nces(P)
is equal to

{s'l P -'-. Q A Q ~ R" RT} U {(a)" IP --=-. Q" Q ~ R" RT}

which in turn is equal to

{s I P .2.., Q A' E divergern:es(Q)} U {(a)' I P --=-. Q'" E divergence'(Q)}

which is 1J[Q(T)(P)ll by definition of y, Both the other cases are similar and
depend on t his one. The failures case divides into three components rather than
two for obvious reasons. D

Dy Theorem 1.5 applied to the product space UC (:: C --+ U), it follows from
the existence of one fixed point that Q has a least fixed point which is equal to
To for some a where

~olP) .1 forallPEC
~,,(P) U{~"(P) I ~ E~} if J1. is a limit ordinal

<1>/3+1 9(<l>")

since To is the least element of the prod uct space and T 13 = QI3(~o). These T 13
will playa crucial role in the main congruence theorem in the next section. This
is essentially because of the next theorem.

Theorem 2.4. 01' is the least fixed point of Q. Hence there exists a such that
<1>0:: T.

51

Proof. Let '1'" be the least fL\:ed point of9. We know by the above that t o' !; 1Ji,
so it will be sufficieut to prove the reverse. In other words we should show
that V[~"IP)I ~ divergenee,(P), :F[~o(P)1 ~ fail"res(P) and I[,!;o(P)) ~
infinit.es(P) all hold. In each case this is done by taking an arbitrary element
of the left hand side and constructing a sequence of processes, either finite or
infinite, which demonstrate that it is in the right hand side. \Ve define functions

It' {(P,ls,X» I P E C A(s,X) E :F1I~o(P)]} (C X E+ X (E" X PtE))) U {I'.}
fd' lIP,s»~ I P E CAs E V['!;"(P))) CxE+xE
f,' {(P,u» I P E C A' E 1[~o(P)J} CxE+xE""

a..s follows, where 6 is some new object. If (s,X) E F[<fJO'(P)]:::: F[9(w O')(P)]
then by definition of 9 one of the following three clauses must hold according to
\..... hieh of the clauses of the fa.ilures component of the definition of Q applies.

(i)	 P lllt\y he sta.ble. s ==< > and P Tef X. In this case set fJ(P, (s,X)) :::: 6.

If 1I0t then

(ii)	 tllere may exist Q such that P ~ Q and (s,X) E F[~O'(Q)]. In this case

'" flIP,(s,X)) ~ (Q,7,(S,X». If not then

(iii) there must exist Q, a and 8' such that s :::: {a)s' and P ~ Q and (.~', X) E

.1'[QI. In this ease set fl(P,(s,X» ~ (Q,a,(s',X».

If, in (ii) or (iii), there is more than one choice for Q an arbitrary choice is made.

If s E V[~o(P)J ~ V[g(~o)(P)1 then by definition of 9 one of the fullow
ing two cases must hold according to which of the clauses of the divergences
component of 9 applies.

(i)	 There may exist Q such that P ~ Q and s E V[w,,(Q)]. In this case set
!diP,s) ~ (Q,7,S). Unot then

(ii)	 there must exist Q, a and s' such that j == (a)s' and P ~ Q and oS' E

1'[Q]. In this case set fd(P~S):::: (Q,a,s').

If, in either case, there is more than one choice for Q an arbitrary choice is made.

If u E 1[4',,(PH = I[9(4i O')(P)] then by definition of 9 one of the following
two cases must hold according to which of the danses of the infinite traces
componellt of 9 applies.

(iJ	 There may exist Q such that P -~ Q a.nd u E I['I>O'(Q)]. In this case set

fd(P,U)=(Q,T,U). Huot then

(il)	 there must exist Q, a and u' such that u == (a)u' and P ~ " Q and

1/' E I[Q]. In this case set fd(P, u) = (Q, ct, u').

52

If, in either case, there is more than one choice for Q an arbitrary choice is made.

These rather cumbersome functions have been defined in such a way tha.t
we can deterministically define, in each case, an infinite or finite (the latter only
possible in the case of failures) sequence of processes and actions demonstrating
membership of the appropriate component of if!(P). For example, given (s,X) E
F[<f!a(P)] set Po = P and So = 5. If ever ft(Pn,lSn,X)) =~ then the iSequence
is ftnished, otherwise ft(P", (sn' X)) = (Q, x, (t,X)) and we set X n = x, PI'+! =
Q and s"+l = t. This process may terminate, in which case the sequence
constructed demon.<;trates that P ~ Pn 1\ Pn ref X, or it. may 'Dot, in which
case all but finitely many of the XI are r which demonstrates- that there exists

5' .:s: sand n such that P ~ Pn 1\ Pn1. In either case (s, X) E faill.l.res(P), the
second one being because then s E divergences(P). Each of the other two cases
divides into two in just the same way. In those cases, as with the failurl'!i one
described here, the strictness of our semantics with respect to divergence i6 a
crucial part of the proof.

This completes the proof of Theorem 2.4. 0

This result shows the equivalence of the natural operationally defi.D.ed ab~

straction function and one which it obtained by iterating a CSP definition
through the ordinals. This is exactly what we shall wa..nt to do on a much
wider scale when we seek to prove the congruence theorem in the final section.
It will turn out that this last result is perhaps the most important component
of the proof of that theorem.

3. Transition system semantics for CSP

This section is devoted to the definition of the operational semantics for CSP
and closely related semantics over more general transition systems.

A crucial starting point of the creation of a Plotkin-style semantics is the de:fi
ni tiOtl of the programming language. Tlle definition we take is just the usual core
esp extended by unbounded nondeterminism and infinite hiding. For formal
reasons we must fix ab initio the range of unbounded nondeterminism allowed.
However this may be as large as we please. In particular, it is convenient to
fix it strictly larger than the cardinality of the alphabet 'E. Thus the following
language is implicitly parameterised both by th.e-alphahe±.I:....a£.aJl poasihle ,com
munications and by the bound >., an infinite regular cardinal on the 'Il1lbounded
llondeterminism.

Decause the unbounded noudeterminism operator (unavoidably) and the
guarded choice operator (avoidably at a price) are infinitary operators (take
a potentially infinite number of process arguments) one should, for rigour, be
rather careful owr the definition of the synta.x of this version of esp. On the

53

one hand we can write down the usual sort of DNF definition.

P ,,~	 p I STOP I SKIP Ia ~ P I x ; D ~ g(x) I PDQ I P n Q I
P Blio QIPIIIQ I P;Q I P\B I tiP] I r'[PJ I ~p.P Ins

where 9 is any function from D (a suhset of "E) to processes, S ranges over
nonempty sets of processes smaller than >., f ranges over the set AT of (not
necessarily finite-to-one) alphabet transformations, p over the set Varofprocess
....ariables, etc.

\Vhell there are infinitary operators ill a syntax, like those in this language,
the idea, of what is defined by a synta.x like this one is less obvious tban it
usually is a.nd should therefore be discussed hriefly. If we are to have a principle
of structural induction and have a way of defining the semantics of programs we
cannot lla.ve a program of the form ns or:z: : B -+ g(x) which is itself in S or
in the range of g. One can, of course, regard BNF definitions like the above as
fixed point equations, defining the smallest syntactic class which is closed under
the various operations on the right. For a language with only finitary constructs
this fixed point .is reached by w iterations (every program is "born on a finite
day") bllt we have to go further, to cater for programs like n : N - Pn where
Pn is born on day n. The functional implied by the right hand side of the ahove
DNF definition is clearly monotone (the more programs there are, the more it
deliver~) but since it is not operating over a set (rather over the proper Class
of all syntactic objects) it is by no means ohvious it even has a fixed point.
FortlUlately it does, and is guaranteed to reach it by >. iterations, where>' is the
bound on nondeterminism and the size of"E already mentioned. (See [BRW] for
some IDore discussion of this question.) The principle of structural induction is
then perfectly valid and corresponds to the principle of transfinite induction on
the "birthday" of a term.

To simplify the operational semantics a little it is convenient, as was done in
[DRW], to treat the constructs STOP, SKIP and a --t P as special cases of the
conStruct x: B -+ g(x): STOP has D empty, a _ P has B = {a} and g(a) = P,
and SKIP ~ ..; ~ STOP.

Let E he the set of aU CSP terms defined by the above. An element of E
may have free process variahles, in which case it is said to be open. If it has
Iloue it is said to be closed; we denote the set of all closed terms hy P. Closed
terms a.re of importance since their meauing is fully determined; there are no
slots for processes waiting to be filled in.

If P, Q E E and p E Var then P[Q /1)] denotes the term where Q has been
substituted for all free occurrences of p is P. 'When Q is not closed (though for
us it usually will be) some care .",ill be necessary to prevent P hinding any of
Q's free variables,

The Plotkin-style semantics regards the set P of all closed CSP-terms as
a Transition system, sinCE;> it df:>.5cribE;>.5 the set of all actions each closed term

·54

can perform and which new terlll!; it may then become. The clauses of this
operational semantics are given ill the usual "natural deduction" style below.

Below, a,b range over!:: and x,y over E+ = E U {r}. Alphabet transforma
tions (functions from E to E) are extended to E+ by setting i(r) = r.

(b E B)
(x: B ~ g(x)) ~ g(b)

pnQ~p	 pnQ2.Q

~p.P 2. P[~p.PlpJ

P~P'

PDQ ~ roQ
p~pl

POQ~P'

p~pl

PBlb Q 2. P'Blb Q

Q~Q'

PoQ~PoQ'

Q~Q'

POQ~Q'

Q~Q'

P Bib Q 2. P Bib Q'
p~pl

PBlb Q ~ P'Blb Q

Q-~QI

PBlb Q ~ PBlb Q'

P~P' Q~Q'

PBlbQ~P'BlbQ'

(a E B - C)

(aEC-B)

(aEBnC)

p~pl Q~Q'

PIIIQ~P'IIIQ PIIIQ~PIIIQ'

P~P'

P;Q~P';Q

3P'.P~P'
P;Q 2. Q

P~P'

P\IJ ~ P'\B

P~P'

P\B 2. P'\B

P~P'

f[PJ~f[P'J

55

(x ;0 y')

(x'/. B)

(a E B)

(y = f(x))

P --=-. p'
(f(y) ; x)

f-l[PJ-"-. f-IIP']
PES
ns~p

Note at this point that the operationally natural element ofU corresponding
1.0 each clo~~d term P is given by <!'(P), where oJ.l is as defined in Section 2
and P is cOllsidered to be an element of the transition system P defined above.
Thcorem 2.~ shows that this is equal to <I>(F(P» for any morphism F. Vrtle can
110W state the main congruence result that we would like to prove, namely that
for all closed CSP tenus P, <I>(P) =: S[P], where S[P] denotes the value in U
defined by the semantics defined earlier (though we should remember that we
still have all obligation to show the existence of fixed points).

There a.re two structure clashes between the operational and denotational
semantics. The first is the obvions one that one is given in terms of transition
systems and the other in terms of the abstract model U. But perhaps the
more difficult one to resol ve is the clash between the term rewriting style of the
opera.tional semantics and the denotatiollal style of the other. Of course the
latter means that the semantic value of each term is deduced from the semantic
value of its subcomponents in a transparent way and that an abstract fixed
point theory is used. In the earlier paper on the operational semantics of CSP
[DR\Vj these two issues were resolved separately by creating an intermediate,
denotatiollal tree semantics. Unfortunately the complete metric spaces of trees
used in that paper no longer exist because of the introduction here of infinite
bl'anchillg.

The main result of [R3] is that, fol' each infinite regular cardinal .x, there
exis ts a transi tion system T>. such that for all transition systems C with i(C) ::; .x,
there exists a unique morphism H). : C --+ T).. Thus T). is a final object in the
category of transition systems with Inorphisms as arrows. Analogues of the
contraction mapping th<.>orem and related results hold which are useful when
OIle uses these systems. T>. can be used to give an intermediate denotational
semantics to CSP in the style of [DRW]. However, because of the complexity of
this lIel... theory and thanks mainly to the construction of the ~a in the previous
section we do not now need to do so.

It is useful to extend the operational space defined above to include non·
closed terms with their va"riables insta.ntiated by elements of an arbitrary tran~

si t.ion sys tem.

Definition. If C is any transition system then CcsP is the system of CSP
syntactic terms over C: namely the set of all substitutions by elements of C
for all free variables of general terms in the language. All ter:ms are distinct.
Note that CcsP contains every closed CSP term and every element of C. The

transitions of each term are those of P if P E C (Le., P ~ Q in CcsP if and

only if P ~ Q in C). The transitions of proper syntactic terms are determined

56

from the operational semantic clauses above (from those of their subterlIlS or
otherwise).

The stipulation that all terms are distinct means that each possible con
struction of a tenn leads to a different element of the system. For example,
in (CCSPfSP, for each P E C the terms a _ a _ rp', a _ ra _ p' and
ra _ a _ p1 are all different, where the syntactic quotes r.l denote the bound
ary between the inner and outer syntactic construction. However the obvious
map from (CGS P)CSP to CcsP which "forgets" these boundaries is easily &hown
to be a morphism.

Note that Theorem 2.2 (a) tells us that the image under ~ of a closed tenn
P is independent of whether it is considered to belong to the spaceP of closed
terms or any C GSP, since there is an obvious morphism embedding P into any
CcsP.

We are now in a position to begin the proof of the main theorem, namely
that the U semantics for CSP is well defined and congruent to the operational
semantics. \Ve will eventually complete the proof by performing a structural
induction over CcsP , but before we do that it is helpful to prove the operational
and denotational versions of all the non·recursive operators congruent.

Theorem 3.1. The operational versions of the various CSP operators are all
congruent to the denotational versions over U. In other words, for each operator
o and each P, Q E CcsP,

il!(P (') Q) = il!(P) (') il!(Q).

Furthermore all the operators are well behaved with respect to the partial ab
straction functions ~cr in the sense that

il!.(P (') Qj $ il!.(P) 0 il!.(Q)

for each a. (The form of these clauses is modified suitably when the operator 0
is not binary. The precise statement for each operator in turn can be found in
tbe Lemmas below.)

Proof. This theorem is no more nor less than a conyenient grouping of a large
number of similar tllOugh separate results. These are stated below, grouped by
operator, plus for each operator a further result which js crucial in the proof of
the full congruence part of the Lemma. In ead of these Lemmas it is assumed
that the given term is an element of CcsP of the given fonn; the immediate
subterms being unrestricted elements of CcsP (i.e., not necessarily elements of
C itself).

The operators break into two classes as far as style of proof is concerned:
prefi..xing and nondeterministic choke, which are easiest, and -the rest of the
operators, which require very similar though more difficult arguments. As usual,
recursion is a special case and will be dealt with on its own later. All the Lemmas
are stated below but Olily a few sample proofs are given.

57

Lemma 3.1.1 (a).

(1) (x, A _ p.) 2?, Q iff Q = (x, A _ p.).

(2) IT s = {n}s' then (x : A - Pr) b Q iff a E A and Po. 4 Q.

(3) ("A-P.)refD iff AnD=0.

(4) ~((.,A - P,I!J.

. ~ (5) If II = (a}u' then (x: A _ Pr) ==::> iff a E A and Po. ~.

Proof. Tl\ese clauses all follow straightforwardly from the operational seman
tics. 0

Lemma 3.1.1 (b). For all terms P~ denoting functions from A into C OSP , we
have

~(x, A _ p.) = x, A _ ~(P.).

Proof. This is an easy consequence of part (a) above and the definitions of ~

and the prefixing operator over U. 0

Lemma 3.1.1 (c). For all terms Pr denoting functions from A to C csP and
all ordillals Q we have

clJa(X : A - P~) ~ x: A - ~a(P~),

Proof. This is proved by transfinite induction on o. When 0 == 0 it js trivial,
for the left hand side equals ..L. If it is true for all f3less than some limit ordinal
Q then

x , A - ~o(P.) :> ~"(x , A - p.)

for all p < a as oI>-y(P) increases with 'I and prefixing is monotone. Hence

"A _ ~o(P.):> U{~"(x, A - P.) I fJ < o} = ~o(x, A - P.)

by properties of least upper bounds and definition of .p".

It only remains to treat the successor ordinal case. Recall that .p~+I ==
g(01>0), which is to say that

• if P is stable (has no internal transitions) then

~"+l(P) = X , po _ n {~"(P') I P ...0... P'}

where pO denotes the initial external transitions possible for P, and

• if P is not stable then

,}".tlP) = (x, po _ n{~"(P') I p...o... P'}) I> n{~"(p') I P -'-. P'}

where P t> Q = (PDQ) n Q.

58

The definition of the transitions of x : A _ P", means that

~cr+1(x : A - P",) = x: A - ~cr(P",)

which, since in general ~"'f(Q) increases with '"1 and prefixing is monotone, is less
than x : A _ ~O'+l(P",) as required. (This was a curioll5 induction, since the
inductive assumption was only used in the limit ordinal case. In fact it can be
eliminated from that as well, but tills proof w.i11 serve as a model for later ones
where induction is really needed.) 0

Lemma 3.1.2 (a).

(1) ns;g R if! R =ns or 3P E S.P;g R.

(2) If s #<> then ns ~ R if! 3P E S.P ~ R.

(3) .(nS ref B) (as it is not a stable process).

(4) (nS)) iff 3P E S.P).

(5) ns ~ iff 3P E S.P~.

Proof. These clauses aU follow straightforv..ardly from the operational seman~

tics. 0

Lemma 3.1.2 (b). For all S ~ C csP (of size less than our bound on nonde
terminism) we ha.ve

~(ns) =n{~(p) I PES).

Proof. This is an easy consequence of part (a) above and the definitions of ~

and that of n over U. 0

Lemma 3.1.2 (c). For all P,Q in C csP and all ordinals 0 we have

~o(ns) ~ n{~o(p) I PES).

Proof. This is very similar to that for prefi:cing. The reader may notice that,
so far as the structtll'e of their operational semantics is concerned, prefixing and
nondeterministic choice have much in common. D

Note that, since binary nondeterministiLchoice is a special case of the general
variety, conesponding results hold for n as well.

Lemma 3.1.3 (a).

(1) PDQ g U iff 3pl,Q'.P ~ pi, Q ~ Q' and U = P'OQ'.

(2) If.j 1=-<> then POQ _~;. U iff P ~ U or Q:::4:> U.

(3) poQ ref Ii if! P ref Band Q ref B .

.59

(4)	 PDQI iff PT 0' Qj.

(5)POQ=* iffP~orQ~.

Proof. Tlus follows directly from the definition of the transition relation over
C CS

p. Recall that a tenn of the form PDQ derives its transitions from those
of P and Q using the appropriate rules of the operational semantics. (3) above
follows sincE' these rules mean that PDQ ref n if and only jf (a) P and Q are
both stable and (b) neither P nor Q Can perform any action in B. All the others
follow from the obsen·a.tiou that, if Uo = PDQ, then Uj ~ U.+ 1 for all i < Ct

(0: E w + I) if and only if one of the following applies.

(i)	 All t. equal T and for each j there exist Pj and Qj such that, for all i,
U, ::: PiOQ, and either Pi = Pi+l and Q. ~ Q'+1 or p. ~~ Pi+1 and
Q,::: Q.+1

(ii) No! all Xi equal T (and k is minimal such that Xl; ::/: T), the Ui (i 5; k) and

Xi (i < k) satisfy (i). If U'" = P",oQ", then P'" ~ U"'+! or Q", ~ U"'+l'
Subsequeut transitions are possible for U"'+l is CcsP,

(1) com~s from the case where (i) above applies to a finite sequence of processes
and actions, (2) from the case where (ii) applies to a finite sequence, (4) from
the case where 0) applies to an infinite sequence and (5) from (il) applied to an
infini te sequence.

Lemma 3.1.3 (b) If P,Q E CcsP then ~(PDQ) =1>(P)D1>(Q).

Proof. This follDws more or less immediately from the definHion of <1' and
Lemma. 3.1.3 (a) above.

Lemma 3,1.3 (c) If P,Q E CcsP and Q is any ordinal then ~o:(POQ) :S
<Po:(P)D<1'Q'(Q) (where oI>Q' is as defined in Section 2).

Proof. This is a transfinite inductiDn on Q. The Q = 0 and limit ordinal cases
are the same as with prefi..xing above, the latter following by mono tonicity of o.

It only remains to prove the result for successor ordinals ct = f3 + 1. The
proof Df this clause for all standard operators other than prefixing <l:nd nonde
terministic chDice follows from laws (all theorems of the denotational semantics)
which show hDW processes in each of the two fDrms produced by the definition
of 9 combine under the operators in question to prDduce one of these forms in
a way more or less directly analogDus to how the operational semantics works.
Several laws are required for each Dperator because of the different cases that
arise. In the case of 0 there are three. the first for the case where both argu
ments are stable, thf' second for the one where one of the arguments is stable
and Oll€ ullstab1€, and Dlle for two unstable arguments.

0.1 (X'A~p')D("n~Q')="Aun~{R"p,
HXEA\B

\\'here R; -= Qr HXEB\A
Qr np;; ifxEBnA

60

0.2	 If Q ::::z: : D Q:s;, then---f

«x, A ~ p.) t> P')OQ ~ (x, A U n ~ R.) t> (P'oQ),
p. if x E A \ B

whereR~= Qz ifxE B\A
{ Qz n Pz if x E B n A

0.3	 If Pc:: (x : A -I Pz) t> pi and Q ::: (x : B -I Qz) t> Q', then

PoQ~(x ,AUB~R.) t>«p'OQ1n(p{OQk
ifxEA\B

whereRz ::: Qz ifxE B\A
Qz n l'z ifxEBnA

These laws show that, in any combination of stable and unstable processes, the
way in which the operational semantics of Po Q are "composed" from those of P
and Q is reflected precisely in the abstract semantics. For example consider the
case where both P and Q are unstable elements of CcsP. Then the operational
semantics allows us to deduce that poQ is also unstable and that

~"+l(PO Q)

(x, pou QO ~ n{p.(R) I p....o... RVQ....o... R})

t>n({~"(P'OQ) I P ~ P'} U {<l>o(PoQ') I Q _c.. Q'}) (1)

<:: (x, pOU QO ~ n{~"(R) I p....o... RV Q....o... R})

t>n({p"(p')O~.(Q)I P ~ P'} U (~.(P)O~O(Q') I Q ~ Q'}) (2)

<:: (",pouQo~n{~.(R)IP....o...RVQ....o...R})

t>n({~O(p')O~O+l(Q)! P ~ P'} U {~O+l(P)O~O(Q') I Q -..':.. Q'}) (3)

(x, po u QO ~ R.)

t>n{~"(p')O~O+l(Q)I P -..':.. P'} nn{~O+l(P)O~"(Q') I Q -..':..Q'j) (4)

n{,l'.(p') I p....o... P'} if x E pO\Qo

whNe R.~ n{po(Q')IQ....o...Q'} ifxEQO\P
O

n{po(P') I p....o... P'}
1nn{~.(Q')IQ-c..Q'} ifxEQonpo

= 'l'.+l(P)OPo+1IQ)	 (5)

Line (1) comes by inspecting the tra,nsitions of PDQ a;nd from the-definition
of <1>3+1 = q(<fJ,~J). Line (2) comes by induction and the Dlonotonicity of CSP
operators. Line (3) comes from the fact that in general o})~+l(R) ~ T£l(R) and
monotonicityaga.in. The equality of line (4) with line (3) is a consequence of the
fact tha.t if Sand T ilfe nonempty sets of processes then n(S u T) =ns n nT.
The equality of lines (4) find (5) follows from the law 0.3 above and the fact
that 0 distributes over n so that for example

~n{<l>'J+dP)O~o(Q')IQ ~ Q'} ~ ~O+l(P)o n{~~(Q') I Q --'..Q'}.

61

This establishes the most difficult subcase of the result for a ={3 +1. The other
two follow from 0.1 aud 0.2 in the same way. This completes the proof of
Lemma 3.1.3 (cl.

Lemma 3.1.4 (a).

(1) p\XobQ iff 3t.3P'.P=bP'AR~P'\X."ds~t\X.

(2) P \ X ref IJ iff P ref B U X.

(3) P \ XT iff 35 E X 3pl. P ~ pI 1\ piT or 3u EX"'. P~.

(4) P \ X ~ iff 3u' E X W p 4 1\ u' \ X = u.•

Proof. Tl\e proof is straightforward aJld is omitted. (There is a cha.racterisation
of the pos;:.ible execution sequences of P \ X similar in style to that for 0.) 0

Lemma 3.1.4 (b). If P E C GSP then <f-(P \ X) ~ ('I;(P)) \ X.

Proof. This is ,I. straightforward consequence of the part (a) above. (N.B. This
particular result is much simpler over this model than over the original failures
model [DR'V] because divergences are now inferred from single infinite traces
rather tlta.n infinite sets of finite ones.) 0

Lemma 3.1.4 (c). If P E CGSP and a is any ordinal then ~o(P \ X) ~

'l;o(PI\ X.

Proof. The central component in this proof is again some laws which show that
the denotational sema.ntics reflects the structure of the operational semantics.

\X.l If A n X ~ 0 then

(x: A ~ p.) \ X ~ x : A ~ (P. \ X)

\X.2 If A n X f 0 then

(x: A ~ P,) \ X ~ (x : A \ X ~ p. \ X) "n{p. \ X I x E A n X}

\X.3

«(x:A~P.) "P')\X (x : A \ X ~ p. \ X)
"n({p'\X}U{p.\X Ix E AnX})

The proof itself is once again a tra.nsfinite induction on Cr. The a = 0 and
limit ordinil.l ca.~f!S are pra.ctically the $ilme as for the other operators we have
seen. The del'h·~tioll of the a ::::: {3 +1 ca·~e breaks down into cases depending on
which of P and P \ X are stahle (Le., on which of the laws above applies). We

62

,,,ill omit the proof of the easiest case (both stable). The two othel'6 (where P\X
is unstable and P either is stable or not) can be covered by a single argument.

<j>~+l(P\X) ~ (x:pO\X~n{<l'~(P'\X)IP2,p'})

I>n{<l'~(p'\X)13xEXU{T}.P2,P'} (1)

<; (x :pO\X~n{<l'~(P')\XIP2,P'})
I>n{(<l'.(P')) \ X 13x E xu {T}.P 2, P'} (2)

(x: p O\ X ~ n{<l'~(p') \X IP 2, P'})

I>n ({n {(<l' ~(P')) \ X I P --"-. P'} I P is not stable}

u{n{(<l'~(p'))\Xlp2,P'}lxEXnpO}) (3)

O(x: p \ X ~ (n{<l'~(P') IP 2, P'}) \ X)
I>n({(n{<l'~(p') IP--"-.P'}) \X I P is not 'table}
U{(n{<l'~(P') I P 2, P'}) \X I x E xn pO)) (4)

<l'~.,(P\X)	 (5)

Line (1) comes by inspecting the transitions of P \ X and from the definition of
<1» 13+1 = 9(oJ!.I3). Line (2) comes by induction and monotonicity. Line (3) is equal
to line (2) by associative properties of n. The set to which the outermost n is
applied after r> is guara.nteed to be nonempty since we have assumed P \ X to
be ullstable, though either of its two components may be empty. Lines (3) and
(4) are equal by distributive properties of \X. Lines (4) and (5) are equal by
law \X.2 if P is stable and by \X.3 if P is not. (In either case the law proves
the equality of Q(oJ!iJ)(P) and line (4).) This completes the proof of Lemma 3.1.4
(e). 0

Lemmas fo:r the rest of the operato:rs are stated below. In each case part (a)
is the major part of the proof of part (b). For part (c) only the laws required
for the successo:r ordinal case are stated. The proof then follows, as in the
cases of 0 and hiding, from these laws, the monotonicity and distributivity of
the operator and the fact that one step of the behaviour of the operator never
requires knowledge of more than one step of the operand(s).

Lemma 3.1.5 (a).

(I)	 PBIt,Q~R iff 'E(BUC)'and3P',Q'.p4p'IIQ~Q'IIR=
pi BIb Q', v..·11ere:/ = s~B and s" = s~C.

(2)	 P BI t, Q ref X iff P ref X n B II Q ref X n C.

(3) P BIt, QI iff PI or QI.

(4) P Bll:: Q::&' iff "IL E (B U C)""' and P ~ I\Q~. where 11./ = 11.~B and
u." = u~C. (~.D. One of u l and 11." may be finite.)

Lemma 3.1.5 (b). If p.Q E CcsP then <l'(P BIt, Q) ~ <l'(P) BIt, ~(Q).

63

Lemma 3.1.5 (c). If P, Q E C csP and a: is any ordinal then

~olP Bll: Q):S ~o(p)BIl: ~o(Q).

Laws.

I!.I If p" (x ,A ~ p.) and Q ~ (0 ,A' ~ Q.) then

P BIb Q :::: x : A" -+ R;r

11.2 If p::::: (x : A --) P;r) l> pi and Q :=; ({l: A' -+ Q;r) then

P Bll: Q ~ (x , A" ~ 11.) t> (P' Bll: Q)

11.3	 If P ~ (x ,A ~ p.) t> P' and Q ~ (0 ,A' ~ Q.) t> Q' then

P Bib Q ~ Ix ,A" ~ R.) • «P' Bll: Q) n (P Bib Q'»

where ill each case .4" = (A n (D \ C» U (A! n (C \ B» U (A n A' n D n C) a.nd

p. Bib Q if x EAn (E \ C)
11.~ PBIl:Q. ifxEA'n(C\B)

{ p.BIl: Q. if x E An A'nE nc

Lemma 3.1.6 (a).

(I)	 pIIIQ~11 iff 3s',s",p',Q'.pkp'AQ£Q'AR~P'IIIQ'AsE
me'17e{s', s"}.

(2) pili Q eef X iff P eef X AQ eef X.

(3) plllQI	 iff PI o'Ql.

(4)	 p IIIQ ~ iff 3'u','uJl .P 4 /\Q ~ /\u E merge('u',u"). (One ofu' and
urI may be finite.)

Lemma 3.1.6 (b). If P,Q E CcsP then '!!IP IIIQ) ~ PIP) III ~(Q).

Lemma 3.1.6 (c). If P, Q E CcsP a.nd a is any ordinal then

PalP IIIQ) :S Pa(P) III PoIQ)·

Laws.

111.1	 If P ~ Ix ,A ~ p.) and Q ~ (0 ,A' ~ Q.) then

pIIIQ ~ x ,AUA' ~ R.

64

111.2	 If P = (x : A ~ Prj ~ P' and Q = (a : A' ~ Qr) then

PIIIQ = Ix: AUA' ~ R r) I> (P'IIIQ)

111.3	 IfP=(x :,4~Pr) ~P'andQ=(a:A'~Qr)I>Q'then

P IIIQ = (x: AUA' ~ R r) ~ liP' IIIQ) n (P IIIQ'))

where in eac11 case

Pr IIIQ if x E A \A'

Rr = { plllQr
(Pr III Q) n (P III Qr)

if x E A'\A
if x E AnA'

Lemma 3.1.7 (a).

(1)	 P;Q ~ R iff 3P'.P ~ pi A s v-free" R = P';Q
.r'(J\ ."or Is',s",P'.s' ..j-free/\ P ==:: P'/\ Q ~ R/\ 8 =8'S".

(2) P;QrefX;jf Pre/XU {y'}.

(3) p;Qr iff	 PI or 3P'.P M P' "Qr.

C4) P-, Q ~ iff P ~ Au v-free or
"hI)	 u'38, U', P'.P ~ pi 1\ s v-free 1\ Q ===} Au = su'.

Lemma 3,1.7 (b). If P,Q E C osP then 'to(P;Q) = 'to(P);'to(Q).

Lemma 3.1.7 (c). If P,Q E CosP and a is any ordinal then

'too(P;Q)':; 'too(P);'too(Q).

Laws.

;.1 If P = (x : A ~ Prj and y' ~ A then

P;Q=x:A--Pz;Q

;.2 If P=(x :A~ Pr) and y'EA then

P;Q=(x:A\{y'}~Pr;Q)I>Q

;.3 If P = (x: A -- P;r) po pi <Iud"; rt A then

P;Q = (x: A ~ Pr;Q)	 ~ (P';Q)

65

;.-! If P == (x: .--1. __ P~) I> pi and ..j E A th.eu

P;Q ~ (x: A \ {v'J ~ P,;Q) HQ n (P';Q)

Lemma 3.1.8 (a).

(1) flP] =~ R iff 3P', ,'.P k P''' R ~ flP']", ~ f(") .

(2) fIP]"f X iff P ref f-l(X).

(3) fIP]) iff PT.

(4) flPI =~ iff 3u'.P k As ~ f(u').

Lemma 3.1.8 (b). If P E CcsP then T(jIP]) ~ flT(P)].

Lemma 3.1.8 (c). If P E CcsP and £t is any ordinal. then

T.(j[P]) S fI~.(P)].

Laws.

fIJ.l liP = (x : A ~ P,) then

flP] ~ x : f(A) ~ fIP,J

fl].2 If P ~ (x : A ~ P,) I> P' then

flP] ~ (x : f(A) ~ fIP,]) I> flP1

Lemma 3.1.9 (8).

(1) r'fP] ~ R iff 3P'.P @ P' A R ~ r'IP') .

(2) f-lIP] ref X iff P reff(X).

(3) f-lIPJ) iff PT.

(41 r'IP] ~ iff P~.

Lemma 3.1.9 (b). If P E C O'SP tnen T(r'IP]) ~ r'I~(p)J.

Lemma 3.1.9 (c). If P E CcsP and £t is any ordinal then

~.(r'IP]) s r'l~o(p)].

66

Laws.

i- l [].! If P ~ (x , A ~ P,l then

i-liP] = X ,r'fA) ~ r'[p,]

f-l[]'2 If p:::: (x : A. ---J. P:r) I> pi then

r'[p] = (x, r'(A) ~ r'[p,]) I> r'[p']

This completes the proof of Theorem 3.1. 0

These results provide the building blocks of the proof of the main result,
and are put together below. The next Theorem is the main rfi'.Sult of the paper.
Notice how the well defined ness of the denotational semantics, the congruence
theorem and the result about the ~cr are proved by a simultaneous structural
induction.

Definitions. Given a CSP term P and apE OEnv :::: Var GCSP, we can---J.

defiue all operational "semantic function": O[P]p E GCsP is defined to be the
r('..suIt of substituting each free variable p in P by p(p). (Note that P may have
no free variables, finitely many, or infinitely many. This last possibility arise!)
because of the two infiuitary operations n and x : A ---J. P:r.) Given p E OEflV
we cau define the corresponding element p of UEnv :::: Var -} U by

Pip] = if>(p(p»

and also, for each n, a,n a,pproxlmation

PUp] = if>.(p(p».

In this theorem we will assume that the basic transition system C is such
tha.t <It : G -+ U is onto (following Theorem 2.2 (c». This is helpful in the proof,
since it mea.ns that for each a E UEnv there is apE OEnv such that p::;: U, but
is not in fac t necessary, because of Theorem 2.2 (b) and the fact that C may be
assumed to include any given system as a subsystem.

Theorem 3.2. Suppose P is any CSP term. Then the following all hold.

a) S[PTIcr is defined for all (1 E UEnv.

b) SUPII' = if>(OIPlp) fm all p E DEnv.

c) For each ordinal (r and eac1l p E OEnv we have S[P]pa 2': ~Q{O[P]p).

Proof. This is by ~tl'llctllral induction on P. Given the sequence of Lemmas
above, the C<lSE>S of all the uon-recursive opera,tors are trivial. There is notbing
to proYe for pa.rt (a) since the denotational sema.ntics of the first section only

67

got imu potclltia.] trouble at recursive terms. Part (b) follows in each case from
the appropriate (b)-Lemma. For example, given a term POQ,

S1PoQTIi' (S[PTIfi) 0 ISIQlfi) by definition of S
~(O[PTIp)O 'I'(O[Qlp) by .induction
~(OIPlpoO[Qlp) by Lemma 3.1.3 (b)
~(O[PoQlp) by definition of O.

Part (c) follows in ea.cIt case froUl tll.Q a.ppropriate (c)-Lemma. For example,
p;iVQll a term POQ, P E OEnu and an ordinal a,

S[PoQIP" (S[PIP) 0 (S[Qlp") by definition of S
:0 po(OIPlp)O~o(O[QJp) by induction and monotonicity
:0 ~o(OIPlpoO[Qlp) by Lemma 3.1.3 (c)

1'o(OIPOQlp) by definitjon of O.

It OJ:ly remains tu cOllsidl"r the case of a recursively defined term j..tp.P, where
the H'Sltlt is known to hold of P. To prove part (a) it is sufficient (by Theorem
1.4 (e)) to 5hO'v that, given a E UEnu, tllere is some fixed point of the function
F : U -I U defined

F(X) = S[PTIa[Xjp].

Choose psuch that p::: a, and let X = <I>(O[Jlp.P]p). Now, since O[j..tp.P]p has
the Single r transition to O[P[Jlp.Pjp]]p it follows that

x = p(OI~p·Plp) = ~(O[Plpp.Pjpllp) = ~(O[PJp[CJ[pp.Plpjpll

since pi;, not free in P[Jlp.PjpJ, by properties ofsubstitution. But induction tells
us that the right ha.nd term above equals S[P]p[O[J-1p.P]pjp] which is in turn
equal to SIPJPI~(O["l,.Plp)jl'] =S[Pla[Xjp]. Hence X = F(X) as cequire<!.
This proves part (a) for ItP.P.

For part (b), observe that S[p]p is defined to be the least fixed point of F
and tll~e X = <I>(O[/-l]).P]p) has been shown to be a fixed point. It follows that
S[P]jJ ~ X. To prove the opposite inequality we show that, for all ordinals 0,

1'o(O[I'1,.Plp) S F O (1.).

\Vhen n = 0 the result is trivia.l, for the left hand side equals.1.. IT 025 a limit
ordinill and the result holds for all {J E 0 then it holds for a since both sides are
simpl;.- the least upper bounds of their predecessors. So suppose it holds of (J and
0= p+ 1. Then, since CJ[/tP.P]P has tile single T transition to O[P[J-1P.Pjp]]p,
it follows that

1-}J+l (OII'P.Pjp) = ~"(OIP[I,p.PjpJip)

P A(O[Plp[OII'l,.Plpjp])

s S[Plp[OI~p.Plpjpl' by(r)ofP
S S[Pjl'a[po(OI~p·Plp)jp]
S S[PjPlFO(1.)jp] induction and monotonidty

pM'(1.) definition of F

GS

This proves the result for alia. However we know by earlier work (Theorem 1.4
and Theorem 2.4) that there is Cl such that FO(.l) = X and ~.,. =~. It follows
that X ::; S[Pllp, completing the proof of (b).

It only remajns to prove (c), in other words that, given p and 0,

<!>o(O[~p.PDp) <; S[~p.Plr.

Once again we prove this by tra.nsfinite induction on o. Again the result is easy
for 0 = 0 since the left hand side is .1 and also for the limit ordinal case since
the left hand side at Cl is then the least upper bound of the previous' left hand
sides, and S[P] is mOllotone. So suppose 0 = {3 + 1 and that the result holds
at {3. Then

<!>O+l(Olltp.Plp) <l>O(O[P[~p.PlpJDp)

<l>0(O[PDp[OI~p·Plplp])

<; S[PlptO[~p.PDplpl· by«jofP
<; S[PIIP"[<!>o(OI~p.Plp)lpl
<; SIPIP"[S[~p.PDP" I pi induction and monotonicity

S[~p.Plpa as recursions denote fixed points
<; SII,p.PIIP"+l by monotonicity

which proves it for (3 + 1. This completes the proof of Theorem 3.2. 0

On mutual recursion

The reader tnay have noticed that this section has not discussed the subject
of mutuaJ recursion, where finitely or infinitely many procesSe5 are defined in
tenu8 of each other. This was for two reasons. First, the formalisation of the
syntax of mutual recursion and its operational semantics are rather complex.
Furthermore, as is apparent from the above, we would have had to repeat much
of the above analysis of single recursion in the mutual case.

Second, there is a simple transformation which converts any mutual recursion
into a single one, which makes it all less necessary. Suppose we are defining
processes P>. by mutuaJ recursion for all). E A, where without loss of generality
A is disjoint from the alphabet~. In other words we are identifying each P>.
(thought of as an element of Var) with a CSP term F>.(l~.J, which roay contain
any or all of the variables Pw \Ve a.djoin A to ~ to obtain a new alphabet E'
alld define a new function term F involving a single variable P as follows:

F(P) = .\, A ~ Fl(P),

where F~ is the result of substitutjng each P~ in F>.(E..) by (PI:,III:' J' -+ RUN)\ {J'},
where RUN = a : I;' -> RUN is the deterministic process which ca.n alwa.ys
COIllIllunica te anything. Thus jtP.F(P) denotes a process which on its first step
gives the choice of A and then acts like the P>. which was defined by mutual

69

recursion. For on each recursive call the correct "component" of P is selected,
aud the procrss of ._election hidden. (Note that (P E,IIE' RUN) = P for any
process P.) Note that this trallSformation does not use any infinite hiding or
nondetenninisUl, and is therefore valid in boundedly nondeterministic CSP as
well.

It is intuitively obvious. and call easily be proved, that there is a correspon
dence between the solution" of the mutually recursive definition and the vectors
{(P ~II~II--f RUN)\{p} I ~I E A) for solutions P of the single recursion. Thus
we can assert that all mutual recursions do have solutions. We have not proved
them cOllgraeut to their operational semantics, for the latter have not been de
fined. Dut these observations give one great confidence that such a result must
be true for a.lly reasonable semantics.

On JVI and :::

So far tllis section has concentrated solely on the semantics of CSP in the new
mOtlel U and the corresponding abstraction map oft. Given the discussion at the
sr.<I.rt of this paper we would not expect to get such good results for N 1 and
:=: since the finer semantics uses infinite traces in a crucial way to detennine
the finite hehaviours when computing the hiding operator. This assessment is
correct: we call in fact prove only an inequality rather than a full congruence,
thongh this becomes a.n equality in the absence of hiding.

De[olV, T denotes the semantic function mapping CSP into Nil so that T :
E NEnv ----+ .'v'. where NEnu :0 Var -> N'. If p E OEnu, then p is the-t

cOrresponding element of NEnv: P[p]:::: :=;(p(p)).

Theorem 3.3. If P is auy C5P term and p any element of OEnu, then

TIP!p <:; :":(OITPlp·

If tlle definition of P does lIOt involve the hiding operator, then

TITP!p ~ :":(OITP!)p.

Proof. One could prove this result from first principles like we had to do for
U. It is, however, much easier to derjve it from Theorem 3.2. For this, we need
maps between Nt and U. If (F,D,!) E U, then we define its projection into
N' to be rr(P,D,!) ~ (P,D). If (P,D) EN', we define «P,D) ~ (P,D,I),
Where I:::: {s I (s,0) E F}. Note that 7r 0 ~ is the identity map on N' and that
«rr(P)) <:; P fm all P E 11.

t"nder the comlitions of the theorem we know, by Theorem 3.2, that

:":(OIP!p) ~ rr(~(OIP!p» ~ rr(SIP!,,).

It will therefore be enough to prove tha.t, for all CSP terms P and all a E UEnv,

TIP!" <:; rr(SIP!a.

70

where 0[1)]:= 1r(O"[p]) for each p E Var, and that this inequclity may be replaced
by equality when P does not involve hiding. This is a straightforward structural
induction. The clause for each non-hiding opera.tor follows simply from mono
tonicity and the fact that such operators cummute with the projection function
1r. For e.'\:ample

,(PDQ) = ,(P)O'(Q) fo' all P,Q E U.

This is just another way of saying that the failures and divergence components
of these Opel"ators does not rely on infinite traces. We get a.- weaker Iesult for
hiding

,(P\X) ~ ,(P)\X fm all P E U.

In fact, it is easy to see from the definition that l!'(P}\X:::: l!'«t(l!'(P))\X), since
over N' the hiding operator has to assume that all infinite traces are present all
of whose finite prefi..xes are.

The case of recursion follows from the obvious continuity of 11'. If we are
given a recursive term I1p.P a.nd a E UEmv, then if

!(X) = TlIP!a[Xjp] F(Y) = SIP]a[Yjp)

we can prove that l!'(Fcr (.l) ~ f Q
(1..) or l!'(FQ (.l» :::: fa(1..) for all a as

appropriate. The limit ordinal case is by continuity and the successor case by
(structural) induction. The result then follows immediately. 0

The inequality for terms involving hiding may well be strict, as is demon
stra.ted by the process (n{Pn I n E N))\{a}, where Po = STOP and Pn+1 =
a -> P". This is identified by T with 1.., but operationally is identical to STOP.
Theorem 3.3 at least tells us that the value of the operational process is no worse
than that predicted by the denotational semantics. It would have been much
more dangerous the other way round, since it would then have been pn'>sible for
an implementation to behave in a way that has been "proved" impossible in the
abstract sem~ntics.

4. ConeI usions

"Ve have seen a long and technical proof that the semantics of CSP in the infinite
tra.ces model are well defined, and have simultaneously proved their congruence
with a.n operationa.l semantics. I hope that the fact that these proofs were
difficult will not obscure the fad that the concept behind the model- adding
infinitQ traces to the existing failure!> model -- is simple .a.nd tha.t the semantic
definitions are all straightforward.

In the later sections of this paper a.hnost all the work was cast in tenns of
the coarser definedlless order S rather than the nondeterminism order!;. The
reason for this was that most of our results, stated in terms of S, trivially imply

71

the corr6pollliing results for ~ but not the reverse. (For example consider the
(c)-Lemmas ill Theorem 3.1.) In fact all of the work can be recast in terms of
~ if desired

This leads to the salUe question as was posed in [R2J, namely that of which
j, tlle Hatural order to lise when presenting the model and semantics, given that
both work. Here the arguments Me slightly different. On the one hand now
neither order is complete (whereas only .s was over N '). However ~ does still
haw;; Hirer theory of least upper bounds than ~,for tbey are always given by
intersection where they exist while this is not even true for directed sets for (;.
Ou the otheL ~ is simpler to define and is perhaps more intuitive, but it does
not ha.ve such it cla.im over U to be tbe "established" order as over Nor N'.
This question will he best resolved by time and experience.

On the technicrl.l side we have seen in tllls work that completeness and mono
tonici ty are 11atural casualties of the jutrod Ilction of unbounded nondeterminism,
hilt that their ah!)C'lIce does not matter unduly except in the sense that proofs
become wore difficult and require advanced mathematics. To the author the
mOot iuterestinp; fea.tl11'e of tbe proof is the way the approximate abstraction
fUllction;; 'I>" show thtlt the least fixed point corresponds with the operationally
natural olle \'ia a type of wllon-destructiveness" argument.

Future work ou this model must include a mucb fuller investigation of its al~

gebra.ic properties. The OIli;>--S seen in this paper, namely the infinite distributivity
of all operators and the laws of t]le Lemmas in Theorem 3.1, were simply those
Hceded for the rest of the work. Another issue will be the study of other un~

uouudedly nondeterministic constructs sucb as fair hiding operators. We should
note that it is ouly permissible to add a new opera.tor (other than one derived
froIH existing operators) to this version of CSP if it can be given an operational
semantics and Lemmas of tbe type seen in Theorem 3.1 proved about it. The
work of Darrett [Dar] on the operationa.l semantics of fairness will probably be
important here. It will also be interestiug to see what use can be made of the
infinite traces component in the specifications of processes. For example one
could add a cla,use to the usual specification of a buffer which stated that the
buffer lleVer does infinitely many hlputs without an output, so that anything one
pu ts ill is eventnally going to come ou t (even in the presence of an environment
\....hich etlgerl)' places as much as possible into the buffer at all times).

The difficnlties one encounters when dealing with unbounded nondetermin
ism, particnlarly the sort which is only detectable from infinjte behaviours, are
certainly not restricted to the models seen hI this paper. Hopefully some of the
work reported here will transfer to other formalisms for concurrency. One pla.ce
where v<lllltlble work could be done is in timed CSP (see [RR1, RR2, ReD. The
incorpori\tioll of infin.ite beha.viOlll"s there (were it possible) would allow more
a.hstltlCf. and general expressions of sHcli modalities as "eventually" which appear
in some forms of tcrnporallogic.

72

Appendix: more details of U

Alternatives to axiom (8).

The version of axiom (8) seen earlier is in a different style from the others, and
from aJl other axioms of CSP models I have seeD. Its discovery was the result
of an evolutionary process in which it passed through various incorrect fonns
(all weaker ones which failed to be comp05itional) and a.n equivalent but rather
inelegant equivalent formulation. All the earlier forms were expressed ill tenns
of "games" played between the experimenter and the process- during- which the
experimenter tries to force infinite haces out of the process. One incorrect but
interesting earlier attempt is described next to show the difficulties which are
involved here.

An experimenter who sets out to force an infinite trace out of a process may
have decided in advance what his strategy will be. In this case his strategy can
be described as a prefix closed nonempty set of traces T. At each step, if he has
50 far succeeded in communicating t E T with the process, he will next attempt
(T jt)O (the set {a I t(a) E T}). IT the process can never refuse any of these sets,
it is clear that an infinite trace in T, the set of all infinite traces all of whose
finite prefixes are in T, must result. This leads to a property analogous to axiom
(8).

(s,0) E F 1\ T a nonempty prefix dOl5ed set of finite
(8') => 31£ E if.s1£ E I

trn.ces snch that t E T => (st, (T/t)O) ~ F

While this axiom is (or should be) self-evidently true of all real processes,
it turns out to be not quite strong enough. It seems that some CSP operators
(e.g., both forms of parallel compOl5ition) fa.il to be closed under it. and it is
strictly weaker (even in the context of (1-7)) than (8). Consider the following
exampleofa process P with D = 0 and E = {a,b,c,d}. P cannot at any time
refuse {a, b} or {c, d} (or any superset of either) but can communicate any finite
sequence in ~ ...

F = ((s,X) Is E E' ~ {a,.)" X ~ {c,d) 'l X).

Forcing strategies of the form seen in (8') are just sets of traces T such that,
whenever t E T then either {t(a),t(.)} <;: Tor {t(c),t(d)} <;: T (this starting
from any traces E r:-.) An element of imp(P) is a deterministic process which,
after any trace s, must either be a.ble to do a or b and must either be a.ble
to do c or d. It is possible to include enough infinite traces to satiGfy all the
strategies implied by (8') yet leaving imp(P) empty because there is a.n infinite
trace missing from every single one of them.

This is shown by a set-theoretic construction which relies on the facts that
there are exactly c (= 2)0\(1, the continuum) /ltrategies (s, T), exactly c possible
implementations Q and exactly c infinite traces in each such Q and satisfying

73

A

each such (8, T). The sets of strategies and implementations are both ordered
by the initial ordinal c (Le., the smallest ordinal with this cardinal) and sets

Q and B o are constructed recursively for all Q S. C so that Ao contains a
representative of each strategy (8, T)/l for f3 < 0, B a contains a representative
of each implementation Q/l for f3 < 0 and Ba nAa :::: 0. We set A o == B o :::: 0, at
limit ordinals Aa :::: U/lEoA/l and Bo :::: U/lEaBj3. Since the A Q and B a always
have cardinal less than c for 0 < c, and the sets of infinite traces of (8, T)a and
of Qa are both of size c, it is always possible to find distinct infinite traces u and
ul from th~se sets which are different from all of Aa UBa . Then Aa+1 == Aa U{u}
and B a+1 := Ba U {u'}. The set I:::: Ac is then such that each (8') strategy is
satisfied but imp(F, 0, I) is empty.

Axiom (8') seems to be weaker because it assumes that the user has decided
on his strategy from the start, whereas he might keep on changing his mind.
The fact that he changes his mind about what he is going to offer the process
does not change what has b€€n communicated with him before. My first correct
axioms were (more complex) modifications of this one wh..ich took account of
this fact.

On seeing axiom (8) (but not my earlier versions) Stephen Bla.mey came
up with another one which is essentially the same as my first correct one (cast
in terms of games) but a lot more elegant. It looks like a "classical" model
axiom since it is cast in terms of logic, but the logic is unusual since it has
both infinitely nested quantifiers and infinitary use of propositional connectives.
There are several different presentations of it, one of which is given below.

(8') V, E traces(P).VXo <; ~.(s,Xo) If. F "'"
3a, E X o.(s(a,},0) E FA VX, <; ~.(s(a,),X,) If. F ""

3a, E X,.(s(a"a,),0) E FAVX, <; ~.(s(a"a,),X,) If. F"'"

"'" sea; I i ~ I} E I

This axiom can be read as saying that, from all finite traces that a process
can reach, any infinite sequence of sets offered to the process will either lead
to refusal at some finite stage or to an infinite trace. At first sight this axiom
appears very similar to (8/) above. But it is not, because the way the quantifiers
nest mean that consistent families of infinite traces are delivered for all decisions
an experimenter might make on what sets to offer: if two experiments differ at
the nth stage, the infinite traces delivered will not differ before the nth stage.

The (game-theoretic) proof that this axiom is equivalent to our axiom (8)
in the context of the others may be found in [Blam]. The reader may note that
(8*) is easily seen to represent only a lower bound on the set of infinite traces, in
that adding extra infinite traces cannot inv.ilidate it. This was not so apparent
of (8), where we had to prove Lemma 1.1. (Of course a construction similar to

74

that in the proof of that Lemma is a part of the proof of equivalence of (8) and
(8·).)

Blamey has also pointed out that modification of the "modalities" in (8')
above produces a further correct axiom, arguably simpler than either (8) or
(8-). If we let T range over all prefix closed nonempty sets of traces, then this
new version can be stated:

(st) (s.0) E F => 3T.(\lt E T.(st, {a I t(a) I" T)) E F) A \lu E T.su E I

where again T = {u I Va.s- < u ~ a E· T}. This:·js,.cioser"·in; spirit to (8-:
than to (8-), for the set T represents no more nor- Jess than a determlni5tic
implementation of P after s. This axiom is thus easily seen to he implied by
the statement "each finite trace a belongs to some deterministic implementation
of p", which is trivially implied by (8). (For every pre·deterministic process is
weaker than a deterministic one with the same traces.) (8 t) implies (8) since
all easy conseqaence of something proved earlier (Lemma 1.1) is that for (8)
to be true it is enough for each failure to be present in some dehrministic
implementation. If, for each a E trnces(P), T, is given by (8 t) for a, and (r,X)
is any failure of P = (F, D, 1), the set of traces

{sis :0; r}U{s(a)t /s < rAs(a) 1, rAs(a) E traces(P)At E T.,.}}
U U{ r(a)t I t E T,(o} A r(a} E traces(P) A a I" X}

can be seen to represent a deterministic implementation of P exhibiting (r,X).
Note that this argument also shows that (8') is equivalent to the statement that
each trace s belongs to some deterministic implementation.

We observe that, thanks to axioms (4) and (7), the statement of (81) can be
weakened a little: we can ignore the case<l when a is a divergence trace. This
gives

(8') «s,0) E FAsl" D) => 3T.(\lt E T.(st,{a I t(a) I" T}) E F)A\I" E T.su E I

which sometimes has shorter proofs than the original version.

The alternative versions (8-), (8 t) and (8~) are probably more concise than
the original (8), when one takes into a.ccount all the discussion of pre-deterministic
processes necessary to set (8) up. However (8-) has the di5advantage tha.t the
meaning of an infinitary logical expression like the above may be opa.qne to some.
Also, when one is doing technical analysis of the model such as that seen below
in the well-definednes5 proofs of the vanOIlll operators, (8) seems generally easier
to deal with than (8-). We have seen that (8 t) and (8~) are technically close in
spirit to (8), and in technical manipulations they are similar to use. "Nhich one
of them should be stated as the axiom (8) will depend on whether one prefers
the COnciseness of (8t) or (8 t) to the fact that in (8) the true structure of this
axiom is laid bare ra.ther more dearly.

75

Technical properties of CSP operators

We now turn to the proof of Theorem 1.3, namely that all CSP operators are
well defined and monotonic with respect to both orders. As was noted in the
earlier discussion of Theorem 1.3, with the exception of hiding we ca.n restrict
our attention to the infinite traces component since in each case the other com
ponents are defined exactly as over the existing model }I'. And in each of th~e

cases ffionotonicity is trivial, and axioms (6) and (7) elementary. Leaving hiding
on one side temporarily, it will therefore suffice to prove that (a version of) ax
iom (B) holds in each case. We have already seen (e.g., in. the proof of Theorem
2.2) how (8) itself is used in manipulations. Below we prove the equivalent fonn
(Bl)) though it convenient to aasume the formally stronger statement (Bt), which
is of course permissible since the two versions are equivalent in the presence of
(1-7).

The proofs for all operators come down to more or less the same thing.
For each operator F we have to create, for each finite nondivergent trace .9 of
P(P, .. .), the set T required by (81). In each case the trace s exists in F(P, ...)
as a consequence of at most one true from each of the arguments P, ... of F.
The set T is then constructed from the Ts which are chosen by (8 t) in the
arguments relative to the traces used to construct s.

The individual cases vary in difficulty. Consider the nondeterministic com
position operator nS, where S ~ U is nonempty. The validity of axiom (81)
follows from the observation that, if s E traCe.9(nS)\1J[nS] then there is PES
such that .9 E trace.9(P) (and necessa.rily s ¢ 1J[P]). The T which works for s
in P will also work in ns, since the failures and infinite traces of P are subsets
ofthoseofnS.

The communication operator x : B _ P~ is almost as easy. For any
nonempty trace (a).9, necessarily a E Band s is a true of PCP Choose T
for Po relative to.9. For.9 =<> we simply choose, for each a E B, a T(J relative
to Po and <>. Then T = {<>} U {{a)s I a E B ".9 E To}. In either case the
requirements for T are easily shown to be met.

Suppose lJ is a nondivergent true of P BIb Q. Then s~ B is a. nondivergent
trace of P and s~c is a nondivergent trace of Q, so there exist prefix-dosed
nonempty sets Tp and Tq such that

(VI E Tp.((sfBl', {a I '(a) ¢ Tp} 1E Fpl' Vu E Tp.(sf B)u E Ip and

(VI E TQ.«sfC)', {a I '(a) ¢ TQ}) E FQ)' Vu d'Q.(sfC)u E IQ_

It may be assumed that Tp,TQ ~ (B u Ct, since whenever sf is a minimal
divergence trace of P Dr Q it is possible to include no extension of t in Tp or
TQ. Define T = {, E (B U C)" I 'fB E Tp' 'k E TQ}. Now, if' E T 'hen
s,fB = (sfB)(,fB) and s,fc = (sfC)(,fC). It follow> by definition ofTpand
TQ that

("fB,{al(,fB)(a)¢Tp})EFp and (stfC,{a I (,fC)(a) ¢TQ})EFQ

76

It follows frODl. the definition of the failures of P BIb Q that

(st, (E\(B u e)) u XUY) EFIP Bib QI
where X= {aEB I (t~B)(a) ItTp} and Y= {aE C I (tfC)(a) ItTQ}.

But this is equal to (st, {a I t(a} rt T}) by definition of T, so the first requirement
for T is met.

Secondly, suppose U E T. Whenever t < u we have t~ B E Tp and t~C E TQ•

But {t I t:<; u~B A t is finite} = {t~B I t < u} and similarly for C. It follows
that u~ B E Tp UTP and uk E Tq UTq. Thus .u~ R'E Thrces(P) and su~C E
Traces(Q),so that su E I[P Bib QI as required.

This wa.s in fad a rather straightforward construction: essentially, the im
plementation of P Bib Q is found by rnnning implementations of P and Q in
parallel. This is p~sible because II is an operator which, like prefixing, never in
troduces nondeterminism. The only other operator with this property is inverse
image, f-l[P], where a corresponding construction works.

The interleaving parallel operator requires a little more thought since it can
introduce nondeterminism: run two deterministic implementations together and
the result need not be deterministic. If s is a nondivergent trace of P 111 Q
then there n1.mt exist traces Sp, sQ of P and Q respectively such that s E
merge(sp, sQ). Choose Tp for P relative to Sp and TQ for Q relative to sQ. We
now build up T and functions rPP : T -+ Tp and rPQ ; T -+ TQ simultaneously by
recursion on the length of SET. Initially <>E T and rPp(<» == rPQ(<>)=<>.
If sET then s(a} E T for all a such that ¢p(s)(a) E Tp or ¢q(s)(a) E Tq. H
¢p(s)(a) E Tp hut not ¢q(s)(a) E Tq then ¢p(s(a}) = ¢p(s)(a) and ¢Q(s(a)) =
rPQ(s), and vice-versa. H rPp(s){a) E Tp and rPQ(s)(a) E TQ then an o\Ibitrary
choice is made: without loss of generality we define rPp(s(a» = rPp(s)(a) and
rPQ(s(a» = 4>Q(s). The important thing is that rPP and rPQ are monotonic (with
respect to the prefix order) functions with the property that, for all t E T,
¢p(t) E Tp, q)Q(t) E Tq and t E merye(¢p(t),¢q(t)). This means that, given
U E T, there are elements of Tp UT; and TQ UTQ which merge together to form
u (the prefix oroer least upper hounds of {¢p(.•) I s < u) and {¢q(s) Is < u}
respectively). This implies that u E T::::> su E I[P III Q] as required. The way
T is constructed also implies that it satisfies the other (first) requirement of T
relative to s.

This way of resolving the nondeterminism introduced b¥ UI-- whid, in some
sense, minimises the set T of traces is not in fact the only one: we could have
made the more generous and obvious definition T = U{merge(tp, tq) I tp E
Tp I\tQ E TQ}. However the argument that {Stl I tl E 11 is a suhset of![P III Q]
would then have been a delicate argument using Konig's Lemma: possible in
this case becawe the nondetenninism introduced by III is always finite: ch(X)Se
left or right. There is the same choice (with easier arguments) in the cases
of two of the other operators which can introduce nondeterminism: ; and D.
The final two: f(P) and P\X are different for they can introduce unbounded

77

nondetenninism: therefore the sort of resolution of nondeterminism seen above
now becomes strictly necessary.

I(P) can introduce unbounded nondeterminism when 1 is not finite-to-one.
In the Ca.<ie of a nondivergent trace 1(8) of I(P), where 8 is a trace of P, we
choose Tp relative to P and 8 and construct T and a function ¢ by firstly
induding <> E T and setting ¢(<» =< >. Then, if 8 E T we include 8U(a)
;n T for all a ,uch that .p(s){a) E Tp . .p(s{f(a)} li; then defined to be .p(s)(a),
an arbitrary choice being made if there is more than one such a.

As was observed earlier, hiding is unlike the other operators in that the
infinite traces of P influence all components of P\X rather than just its in:finite
traces. It is thus necessary to prove axioms (1)-(5) as well as (6), (7) and
(S). The f<\ct that J1P\X] is nonempty and that 1hlce8(P\X) is prefix closed
(axioms (1) and (6)) both follow easily from the following Lemma.

Lemma A.L IT s E troce8(P) then s\X E troees(P\X).

Proof. Let T be chosen by axiom (st) relative to s. There are two possibilities
we must consider. Either there exists t E T such that t E X· but {a I t(a) E
T} n X = 0, or no such t exists. In the first case we get (st,X) E F[P] and
hence (s\X,0) E J1P\Xll. In the second case, since <>E Tn X· there must
exist u E X ON n T and hence su E I[P] so that s\X = su\X E Dnp\Xll. The
result follows immediately. 0

Axioms (2), (3), (4), (5) and (7) are all ea.<iY to prove. It remains to prove
(st). If s is a nondivergent trace of P\X then there is a trace Sp of P such that
.'I = .'Ip\X. Choose Tp relative to Sp in P. As was the case for III and I(P)
we construct T for s together with a function ¢ : T -. Tp. Initially <>E T
and ¢(<» = <>. H t E T then either there is an in:finjte U E X'" such that
¢(t)u E Tp, in which case we define t to have no extensions in T, or not, in
which case we include in Teach tea) where a ¢ X and there exists rEX" such
that ¢(t)r(a) E Tp. We define ¢Ct(a)) = ¢(t)r(a), once again an arbitrary choice
being made if there is any ambiguity. This function ¢ works in just the same
way as we ha~ seen before: it is trace-monotonic and ¢(t)\X = t for all t E T,
which means that for each u E T we have u = u'\X, where u' i5 the lea.<it upper
bound of {¢(t) 1 t < u}. u' is necessarily in TP and hence 8U = (.9pu')\X is an
element of I[P\Xll as required. That T also satisfies the :first requirement for
axiom (st) is easily checked.

All the opentors are ohviously ~-monotone since they all construct the
behaviours of the result process positively from the behaviours of the operand(a).
As was observed when Theorem 1.3 was stated, this impliea that all operators
other than hiding are S-monotone since they are S-monotone over .II' and the
failures/divergence components of those operators are defined exactly as over
N'.

The only monotonicity result left to prove is the S-monotonidty of P\X.
So suppase P sq. Since we know that P\X ~ Q\X it ia enough to prove

78

that, whenever , ~ D[P\XJ, 1<[P\X], (; 1<IQ\X]s and that ,.(D[P\X]J (;
traces(Q). The first of these facts follows from the fact that au. nondivergeut fail
ures of P\X are consequences of nondivergent failures of P. If 5 E J.l(V[P\X])
then either there is an element t of Il(D[PH) such that t\X = 5 or there is
u E I'[P] such that u\X = 5 and t < u => t ~ D[P], which implies there is
t E traces(P)\ Z>[P] such that t\X = s. In either case t E troces(Q) by definition
of s: and 50 s E tmces(Q\X) by Lemma. A.I above.

The rema.ining part of Theorem 1.3 i5 its statement that the CSP operators
are distributive in the sense that F{nS) =n{F(p) I P E F} for each operator
F and nonempt)' set S. This is a direct consequence-of the facts that n is simply
component-wise union and that, for each operator F, each single behaviour of
F(P) is always attributable to at most one behaviour of each operand of F.
Thus each behaviour of F(n S) is the consequence of some behaviour of some
element P of S, which means that the same behaviour must be present in F(P).
This arbitrary distributive law did not hold over,N" in the case of hiding [R2]
precisely because the hiding operator there requires more than one behaviour
of P (in fact, an infinite number) to deduce some behaviours of P\X. A finite
distributive la.w still holds there by a separate argument which relies on KOnig's
Lemma.

Acknowledgements

.AE will be apparent from the Appendix, Stephen Blarney has put a lot of work
into analysing, refining and understanding the axioIIlB for U. In addition this
work has been assisted by conversations with a number of colleagues, notably
Paul Gardiner, Alan Jeffrey and David Walker.

References

[B] Brookes, S.D., A Model for Communicating Sequential Processes, Oxford
University D.Phil. thesis, 1983.

[Bar] Barrett, G., The semantics and implementation of occam, Oxford Univer
sity D.Phil. the;is, forthcoming.

[Blam] Blamey, S.R., The soundness and completeness of axioms for CSP pro
cesses, forthcoming.

[BHR] Brookes. S.D., Hoare, C.A.R., and Roscoe, A.W., A theory of communi
eating sequential processes, JACM Vol. 31, No.3 (July 1984) 560-599.

[BRWJ Brookes, S.D., Roscoe A.W., and Walker, D.J., An operational semantics
for CSP, Submitted for publication.

IH] Hoare, C.A.R., Communicating sequential processes, Prentice-Hall, 1985

79

[R1] Roscoe, A.W" A mathematieal theory of communicating processes, Oxford

University D.Phil. thesis, 1982.

[R2] Roscoe, A.\V., An altemative order for the failures model, in this volume,

[R3] Roscoe, A.W., Analysing infinitely branching trees, in prepara.tion.

[ReJ Reed, C.M., A uniform mathematical theory for real·time distributed com~

puting, Oxford University D,Phil. thesis, 1988.

[RR1] Reed, C.M., and Roocoe, A.W., A timed model for eommunicating sequen
tial proceJ3e3, Proceedings of ICALP'86, Springer LNCS 226 (1986), 314-323.

[RR2] Reed, C.M., and Roscoe, A.W., Metric spaces as models for real-time
concum:'t1cy, to appear in the proceedings of MFPLS87 (Springer LNCS).

80

