
A FUNCTIONAL DATABASE

by

Phil Trinder

Technical Monograph PRG~82

ISBN 0-902928-61-9

December 1989

Oxford University Computing Labora.tory
Programming Research Group
8-11 Keble Road
Oxfo,d OX13QD
Engla.nd

•

Copyright © 1989 P.W. Trinder

Oxford University Computing Laboratory
Programming Research Group
8-11 Keble Road
Oxford OX! 3QD
Engl""d

Abstract

A Functional Database

Phil Trinder D.Phil. Thesis
Wolfson College Micbaelma.s Term, 1989

This thesis explores tbe use of functional languages to implement, manipulate and
query databases.

Implementing databases. A functional language is used to construct a database
manager that allows efficient and concurrent access to sbared data. In contrast to
the locking mechanism found in conventional databases, the functional database
niles data dependency to provide exdUl'iion. Results obtained !rom a prototype
database demonstrate that data dependency permits an unusual degree of concur
rency between operations on the data. The prototype database is used to exhibit
some problems that seriously restrict concurrency and also to demonstrate the
resolu tion of these problems using a new primitive. The design of a more realistic
database is outlined. Some restrictions on the data structures that can be used in
a functional databae:e are also uncovered.

Manipulating databases. Functions over the database are shown to provide a
powerful manipulation language. How to make such functions atomic is d€5cribed.
Such atomic transaction-functions permit consistent concurrent transformations
of a database. Some issues in tbe transa.r:tion model are also addressed, including
nested transactions.

Querying databases. Others have recommended list comprehensions, a construct
found in some functionalla.nguages, as a query notation. Comprehensions are clear,
concise, powerful, mathematica.lly tractable and well integrated with a functional
manipnlation language. In this thesis comprehensions are proved to be adequately
powerful, or relationally complete. Databa.se iUld programming language theories
are further integrated by describing the relational calculus in a programming lan
guage semantics. Finally, the mathematical tra.r:tability of the notation is used to
improve the efficiency of list comprehension queries. For eacb major conventional
improvement an analogous comprebension transformation is given.

Contents

I Introduction 1

1 Introduction 2

1.1 Ethos 2

1.2 Contributions 4

1.3 Organisation . 5

1.4 Authorship 7

2 Referential Transparency 8

2.1 Definition .. 8

2.2 Consequences 9

2.3 Centrality .. 11

2.4 Impact on Data Languages . 12

3 Related Work 13

3.1 Implementation Language 13

3.1.1 Requirements ... 13

ii CONTENTS

3.1.2 Current Langua.ges 14

3.1.3 Persistence 16

3.2 Data Manipulation Language 17

3.2.1 Requirements .. 17

3.2.2 Current Languages 19

3.2.3 Declarative File Systems 19

3.2.4 Comparison 22

3.3 Query Language. . 23

3.3.1 Requirements 23

3.3.2 FQL 24

3.3.3 FDL 24

3.3.4 Query Language Work 24

II Implementation 26

4 Bulk Data Management 27

4.1 Introduction . 27

4.2 Bulk Data Structures . 28

4.2.1 Non-destructive Update 28

4.2.2 Trees. 29

4.2.3 Efficiency 31

4.3 B-trees 33

CONTENTS m

4.3.1 Description 33

4.3.2 Example . . 36

4.4 Bulk Data Manager. 37

4.4.1 Transaction Functions 37

4.4.2 Manager 38

4.4.3 Multiple Users. 39

5 Concurrency 41

5.1 Introduction . 41

5.2 Prototype Database. 42

5.2.1 Hypothetical Machine 42

5.2.2 Metrics 44

5.2.3 Database Architecture 45

5.3 Bulk- Data Operations 45

5.3.1 Potential . 45

5.3.2 Lookups 47

5.3.3 Updates 49

5.3.4 Effect of Database Size 53

5.3.5 Data Dependent Exclusion . 57

5.3.6 Typical Mix .. 62

5.4 Transaction Processing 64

5.4.1 Drawbacks . .. 64

iv CONTENTS

5.4.2 Optimistic If 65

5.4.3 Friedman and Wise If . 73

5.4.4 FWOF .. 76

5.4.5 Balancing 76

6 Database Support 79

6.1 Introduction .. 79

6.2 Multiple Classes . 80

6.3 Views and Security 82

6.4 Data Structures .. 83

6.4.1 Conventional Structures 84

6.4.2 Graph Structures . 84

6.4.3 Secondary Indices. 85

6.5 Data Models 90

6.5.1 Relational Model 90

6.5.2 Functional Data Model. 94

6.5.3 Closure Problem 98

III Manipulation 101

7 Transactions 102

7.1 Introduetion . 102

7.2 Atomicity .. 103

CONTENTS v

7.2.1 Serialisability · 104

7.2.2 Totality .. · 105

7.3 Transaction Issues. .. 107

7.3.1 Long Read-Only Transactions · 107

7.3.2 Long Transaction Restart 110

7.3.3 Non-Terminating Transactions. 111

7.3.4 Nested Transactions .. · 112

IV Interrogation 113

8 Queries 114

8.1 Introduction 114

8.2 Relational Calculus 116

8.3 List Compreh.ensions 119

8.3.1 Introduction . 119

8.3.2 Relational Queries 120

8.3.3 Extra-Relational Queries 121

8.4 Syntactic Correspondence 124

8.5 Translation Rules 125

8.5.1 Outline 125

8.5.2 Relational Calculus Syntax. 127

8.5.3 List Comprehension Syntax 127

vi CONTENTS

8.5.4 Translation Functions. · 128

8.5.5 Example · 131

8.6 Semantics ... · 133

9 Improving Queries 135

9.1 Introduction 135

9.2 Improvement Environment 136

9.3 Algebraic Improvements 137

9.3.1 Selections · 138

9.3.2 Converting Product into Join · 139

9.3.3 Combination of Unary Operations. · 141

9.3.4 Common Subexpressions · 142

9.3.5 Projections 143

9.4 Algorithm Example. 144

9.5 Implementation-based Improvements 148

9.5.1 Preprocessing Files 148

9.5.2 Evaluating Options 149

9.6 Extra- Rela tional Queries 151

9.6.1 Date's Example . 152

9.6.2 Atkinson and Buneman'5 Example · 153

V Conclusion 156

CONTENTS

10 Conclusion

10.1 Summary

10.2 Future Directions

Appendices

A Parallel Programs

A.I Bulk Data. Manager.

A.J.1 Standard Bulk Data Mana.ger

A.J.2 Bulk Data Manager with Disk Delay

A.2 Bulk Data Operations

A.2.1 Lookups

A.2.2 Updates

A.2.3 Updates with Disk Delay.

A.2.4 Read and Write Programs

A.2.5 Typical Mix

A.3 Transactions

A.3.1 Five Bank Transactions

A.3.2 Two Long Transactions.

A.3.3 Two Transactions with a failing Optij

A.3.4 Long Read Transaction.

A.3.5 Long Read Transaction and Deposits

VB

157

. 157

.159

161

161

. 162

162

167

169

169

170

171

172

173

174

174

175

176

177

178

CONTENTS viii

B ML File Manager 179

C Denotational Semantics 187

C.I Semantic Domains 187

C.2 Semantic Functions 188

Bibliography 190

Acknowledgements

I am indebted to Phil Wadler and CarroU Morgan, my supervisors. Both
provided invaluable encouragement and sound advice. I am also grateful to
many others, all of whom cannot be named. Malcolm Atkinson and John
Hughes made it possible for me to work at Glasgow University for two years.
Pat Terry started it all by suggesting a British doctorate. Paul Fertig inter
ested me in declarative transaction processing. Colleagues in both Oxford
and Glasgow provided stimulation and a pleasantly bizarre working envi
ronment. Gabre Baraki, Andrew Kay and John Launchbury all listened to
half-baked ideas and made useful comments. The secretarial staff in both
departments provided valuable assistance.

] would like to thank my family and friends for their help. Dad for financial
snpport, Ja.mes for reading the thesis and both sets of Grandparents for
providing a peaceful retreat. Finally J am grateful to Oxford University and
the Committee of Chancellors and Vice-Principals for the schola.rships that
made this degree possible.

ix

Chapter 1

Introduction

1.1 Ethos

This Thesis explores the use of functional languages to implement, manip
ulate and query database>. The advantages of functional languages are of
ten cited and recited. This Thesis argues that the distinctive advantages
and disadvantages of functional languages derive from their enforcement of
referential transparency. The distinctive advantages are an amenability to
reasoning, the promise of painless parallelism and lazy evaluation [11,55,88].

These advantages lead the author to believe that, if the outstanding problems
with functional languages can be resolved, they will form the next class
of high-performance, general purpose, languages. Current problems with
some functional languages are their slowness, large memory requirements,
determinism and poor data storage facilities.

Data storage is important because almost all non-trivial programs manipu~

late permanent data. At present most declarative languages are guest lan
guages on single-processor procedural machines, and able to preserve their
data in the file system provided by the host machine. However, the inter
face to the file system that is provided by the guest languages is primitive
and often not referentially transparent. A guest functional language that

2

3 CHAPTER 1. lNTRODUCTION

adopted the proposals made in this Thesis would have rich, but declarative,
data manipulation and query facilities.

Further, there are several machines, and more under development, that are
designed to evaluate functional languages in parallel [3, 22, 28, 69]. To inte
grate with the declarative framework and thus be efficient on these machines,
the manipulation and query languages must be implemented in a parallel
functional language. From a database viewpoint, if parallel functional lan
guages become a fast alternative to procedural languages, then it is desirable
to implement databases in them. There is already some evidence that declar
ative multi-processors, with their large memories, have potential for fast data
manipulation [75].

There are four main kinds of datahase language. Databases are designed us
ing a data definition language (DDL). Databases are created and maintained
using data manipulation or data transaction language (DML). Databases
are interrogated using a query language (QL). Database management sys
tems are built using an implementation language. While the data definition,
transaction and query languages are all employed by database users, the
implementation language is used by the constructor of the database manage
ment system. The following schematic describes these relationships.

I""~'I"-

~ Implementm

In this Thesis an implementation, a transaction and a query language are
described but no data definition language. The reason for this is that data
definition languages are the suhject of much work in type theory. Type
theory, however, is outside the scope or this Thesis. It should be easy to use
the results of this Thesis together with the type theory results.

4 CHAPTER 1. INTRODUCTION

1.2 Contributions

The following contributions are made in the fields of databases and declara
tive programming languages.

•	 A database manager that allows efficient and concurrent access to data
is ronstructed in a pseudo-parallel funetionallanguage.

•	 In rontrast to the locking mechanism found in conventional databases ,
the functional database uses a novel exclusion mechanism, namely data
dependency. Data dependency is shown to provide an unusual degree
of concurrency between operations on the data.

•	 Some problems that seriously restrict concurrency a.re demonstrated
and overcome using primitives, including a new primitive, 'optimistic
if'.

•	 Some restrictions on the data structures that can be used in a. functional
database are also uncovered.

•	 Functions over the database are shown to provide a powerful manipula
tion language. Such transaction-functions are made atomic and permit
consistent and concurrent database transformations.

•	 List comprehensions, a construct found in some functional languages,
are proved to be an adequately powerful, or relationally complete, no
tation for expressing database queries.

•	 Database and programming language theories are furtner integrated hy
describing the relational calculus in denotational semantics, a program
ming language semantics.

•	 The mathematical tractability of list comprehension notation is used
to develop a suite of transformations to improve the efficiency of com
prehension queries. For each major conventional improvement an anal
ogous list comprehension transformation is given.

CHAPTER 1. 1NTRODUCTlON 5

1.3 Organisation

The remainder of this Thesis is made up of fi ve parts. There is an introduc
tory part and a part to describe each of the implementation, transaction and
query languages. Finally there is a concluding part, and some Appendices.

The la.nguage parts have the following dependencies. The transaction lan
guage is dependent on the implementation accepting functions over the database
as transactions. In contrast, while the query language is cleanly integrated
with our implementation it is not restricted to it. Indeed the query notation
may be used both in procedural languages and in conjunction with conven
tional databases.

Part I Introduction

Chapter 2 covers referential transparency. A definition is given and theconse
quences of forcing a programming language to be transparent are described.
It is argued that enforcing referential transparency is the fundamental differ
ence between functional and procedural languages. By applying functional
languages to databases, the impact of referential transparency is being inves
tigated. The impact on each of the data languages in this thesis is described.

Chapter S covers functional data languages. The requirements of implemen
tation, manipulation and query languages are outlined. Other functional
data languages are briefly described and related to the approach taken in
this Thesis.

Part II Implementation

Chapter Jcovers the implementation of a bulk data manager. It is shown that
a functional language can be used to implement efficient operations on trees.
An overview of B. trees, a common type of tree in databases, is presented. A
bulk data manager that uses trees and supports transactions from multiple
users on a shared database is described.

Chapter 5 covers the introduction and control of concurrency within the
database. A pseudo-parallel data manager is used to demonstrate concur
rent bulk-data operations and concurrent transactions. In contrast to the

6 CHAPTER 1. INTRODUCTION

locking mechanism found in conventional databilses the prototype manager
uses data dependency as a novel exclusion mechanism. Data dependency
is shown to permit an unusual degree of concurrency between transactions.
It is also demonstrated that, within certaiJl limits, the rate of processing
transactions is independent of the size of the database. Some problems that
severely restrict concurrency a.re identified and illustrated. Three primitives
are proposed to resolve these problems. Two of the primitives are new and
one of these, optimistic if, has been implemented. Optimistic if is used to
illustrate concurrency both within and between transactions.

Chapter 6 covers the design of a more realistic functional database. The
facilities illustrated are access to multiple classes, views, security, alterna
tive data-structures and support for data models. A class of data structure
that cannot be maintained under a non-destructive update regime is also
encountered.

Part III Manipulation

Chapter 7 covers the use of functions as transactions that manipulate the
database. How transaction-functions are made atomic is described and the
techniques are compared with a conventional logging-and-Iocking approach.
Some issues in the transaction model are also addressed. These include
proce:lsing long read-only transactions, restarting long transactions, evict~

ing nOll-terminating transactions and the provision of nested transactions.

Part IV Interrogation

Chapter 8 covers theoretical work on the expression of queries in program
ming languages. Queries are written as list comprehensions, a feature of some
programming languages. Relational queries are demonstrated, as are queries
requiring greater power than the relational model provides. It is argued that
comprehensions are clear because of their close resemblence to the relational
calculus. The power, or relational completeness, of list comprehensions is
proved. Database and programming language theories aIe further integrated
by describing the relational calculus in a programming langua.ge semantics.

Chapter 9 covers the improvement of list comprehension queries. For each
major improvement strategy identified in the database literature an equiva

CHAPTER 1. INTRODUCTION 7

lent improvement is given for oomprehension queries. This means that exist
ing database a.lgorithms that improve queries using several of these strategies
can be applied to improve comprehension queries. Extra-relational queries
can also be improved. An example of each improvement is given.

Part V Conclusion

Cha.pter 10 summarises the results reported in the Thesis and concludes that
fUDc:tionallanguages have potential as database implementation, manipula
tion and query languages. Further research directions are also identified.

1.4 Authorship

All of Chapter 4, and 50me of Chapter 5, describes joint work reported in
[5}. The pa.rts of Chapter 5 that are joint work are as follows. Data. de
pendency was identified as the exclusion mechanism, but the unusual degree
of concurrency it permits was not recognised. The concurrency restrictions
introduced by totaJ tra.nsactions and tree balancing were identified. Two
primitives, opti[a.nd [wi[were proposed to overcome these restrictions. The
suggestion in Cha.pter 7 that a non-deterministic primitive can be used. to
evict a non-terminating transaction is also reported in [5].

The work reported in Chapter 5 that was done solely by the author is as
follows. A pseudo-parallel data manager has been implemented. The con
currency possible between bulk-data operations is demonstrated. It is shown
that, within certain limits, the rate of processing transactions is independent
of the tree size. Data dependency is used as a novel exclusion mechanism and
is shown to permit an unusual degree of concurrency between transactions.
The restriction that total transactions place on concurrency is demonstrated.
To overcome this restriction the new primitive opti[has been implemented
and is used to provide concurrency both within transactions and between
transactions. A space allocation problem with opti[is encountered and a
solution is proposed. A new primitive [wo[that combines the beb.aviour of
/wi! and opti! is proposed. Finally a new means of rebalancing the tree is
proposed.

Chapter 2

Referential Transparency

This Chapter covers referential transparency. A definition is given and the
consequences of forcing a programming language to be transparent are de
scribed. It is argued that enforcing referential transparency is the funda.
mental difference between functional and procedural languages. By a.pplying
functional languages to databases, the impact of referential tra.nspa.rency is
being investigated. The impact on each of the data languages in this thesis
is described.

2.1 Definition

Readers familiar with referential transparency and its consequences for pro
gramming languages may wish to omit both this Subsection and the next.
Referential transparency is a. fundamental property of mathematical nota
tions. It was first described. for propositions by Whitehead and Russell [98].
Quine defines when part of an English sentence is referentially transparent
[73] and Stoy gives the following definition suitable for computing notations
[82].

The only thing that matters about an expression is its value, and any sub.
expression can be replaced by any other equal in value. Moreover, the value

8

CHAPTER 2. REFERENTfAL TRANSPARENCY 9

of an expression is, within certain limits, the same whenever it occurs.

Referential transparency allows a simple definition of equality: two expres
sions are equal if they denote the same value. Because the value is the only
important fea.ture of an expression, any two equal expressions may be inter
changed. For example, sin(1+5) can be replaced by sin(6).

The qualification 'within certain limits' refers to the conlext that an expres
sion occurs in. An expression may have different values in contexts in which
the values of its free variables differ. For example, if x = 6, then sin(1+5),
sin(6) and sin(x) are all interchangeable, provided that sin{ x) is not placed
in some context where x has been defined to be some value other than 6.

The clause stating that 'any sub-expression can be replaced by any other
equal in value' can be deduced from the first clause of the definition. An
immediate consequence of the clause 'The only thing that matters about an
expression is its value' is that the value of a composite expression depends
only on the values of its constituent expressions. Hence any sub-expression
may be replaced by any other equal in value. The ability to substitute
one expression for another is termed equational reasoning and is central to
mathematical thought. Substitution facilitates proof, and the transfonnation
and derivation of programs [17].

2.2 Consequences

Let us examine the impact of enforcing referential transparency on a pro
gramming language. We start hy considering some aspects of conventional,
referentially opaque, languages in order to have a ba.<;is for comparison. In a
referentially opaque language, programs compute by effect [48]. A program
proceeds by repeatedly computing a value and assigning it to a location in
the store. Because this behaviour is so close to a von Neumann architecture,
such programs are efficient on conventional machines.

The first consequence of enforcing referential transparency is freedom from a
detailed execution order. As the effect of a conventional language statement
may depend on the current contents of the store, the order in which the

10 CHAPTER 2. REFERENTIAL TRANSPARENCY

statements are executed is crucial. This execntion order must be specified
by the prograrmner.

In contrast, an expression in a transparent notation must always have the
same value in the same context. In other words, the value of an expression is
independent of the history of the computation. Hence the order in which the
expressiolls within a program are evaluated is not significant. This determin
ism implies that a program is simpler because it need not contain detailed
sequencing information. Further, both lazy and parallel evaluation become
natura.! alternatives.

Laziness is an evaluation strategy where the arguments to a function are
evaluated only if they are required to compute the result of the function.
Furthermore, the arguments are evaluated at most once. This strategy con
trasts with most procedural languages which are strict: the arguments of a
sub-program are always evaluated. In a lazy language a program can pro
cess icfinite structures because only as much of the structure as is needed
is generated. Lazy evaluation a.lso aids modularity hy separating data from
control. A more complete description of laziness and its costs and benefits
can be found in [48].

A second consequence is that referentially tra.nsparent programs may no
longer have side effects. Side effects are those actions a sub-program performs
in addition to computing the desired value. Such actions include assignment
to global variables and performing input or output. Side effects allow some
actions such as input and output to be expressed neatly. However1 unless
the additional effects are well documented, they may not be anticipated by
users of the sub-program. For this reason, the presence of unnecessary side
effects is regarded as undesirable [48, 90, 101).

The third consequence of enforcing referential transparency is that assign
ment may no longer be used. This is because a variable is a simple expression.
As such, the definition of referential transparency states that a variable must
always bave the same value in the same context. Assignment violates this
requirement by changing the value associated with a variable. The loss of
assignment is perhaps the most significant result of constraining a language
to be referentially transparent. Assignment is a fundamental operation in a
von Neumann machine and disallowing its use in a machine carries a heavy

CHAPTER Z. REFERENTI;\L TRANSPARENCY 11

penalty.

Consider, for example, the task of decrementing the balance of a bank ac
count. In a referentially transparent language, a new name must be as
sociated with the new value. A new account record must be constructed
containing the new balance, the unchanged information must be copied from
the original account, and the result given a new name. This approach to
modifying data is termed non-destruetive update. A destructive update or
assignment could simply change the balance part of the existing record. The
non-destructive update requires additional space to be allocated for the new
account record. Non-destructive update also requires more time, because
the unchanged information must be copied. from the original account into
the new one.

The situation is even worse for database applications where large data struc
tures are frequently modified. Consider the task of updating a bank account
record that is part of a file containing thousands of similar records. A de
structive update can simply alter the balance part of the specified record. A
non-destructive update must create a new copy of tbe entire file. Chapter
4 demonstrates how this can be done efficiently and the uses to which the
multiple copies of the file can be put.

Further discussions of referential transparency and its significance can be
found in Bird and Wadler [17], Stoy {82] and Turner [88]. A full description
of the suitability offunctionallanguages for parallelism can be found in [70J

2.3 Centrality

Preserving referential transparency is the fundamental difference between
functional and procedural languages. As described above, transparency fa
cilitates reasoning about programs using proof, transformation and deriva
tion, Transparent programs are free from a rigid evaluation order, making
parallelism easier and lazy evaluation possible. Side effects are eliminated
and a non-destructive update regime is enforced.

Some other advantages often claimed for functional languages include data

12 CHAPTER 2. REFERENTIAL TRANSPARENCY

abstraction, pattern matching and higher-order functions. While these fea
tures are supported, they do not seem to be specific to functiouallanguages.
Data Abstraction originated in the procedural world [14], and is widely used
there [2, 4. 37]. Pattern matching had its origins in procedural languages
[34]. Man)' procedural languages also treat procedures as first class objects
[8,451·

2.4 Impact on Data Languages

Because referential transparency is the significant property of functional Ian·
guages, when functional languages are used in databases the impact of ref~

erential transparency is being investigated. The consequences of preserving
referential transparency in each of the data languages in this thesis are as
follows. This theme is developed further in [86].

In the implementation language, referential transparency allows lazy lists, or
streams, of requests to be directed to the database manager. The choice of
data structures is limited because only a few can be updated efficiently un
der a non-destructive update regime. The multiple versions of the database
generated by non-destructive update do, however l permit an unusual degree
of concurrency. Further, referential transparency guarantees that the con
current operations have simple semantics.

In the manipulation or transaction language the multiple versions of the
database arising from non-destructive update make guaranteeing transaction
properties easy. Because transaction~functions are transparent they can be
reasoned about easay.

The lazy evaluation strategy underlying the query language makes database
queries faster. Because the query notation is transparent it is a.menable to
transiormation. In Chapter 8, transformations are given that improve the
efficiency of queries.

Chapter 3

Related Work

This Chapter covers other functional data la.nguages. The requirements of
implementation, manipulation and query languages are outlined. Other func
tional data languages are briefly described and related to the approach taken
in this thesis.

3.1 hnplementation Language

3.1.1 Requirements

The implementation language is used to construct a database management
system (DBMS). The most obvious requirement of an implementation lan
guage is the ability to slore data pennanendy. Values must be named so that
they can be retrieved by subsequent programs. What is actually preserved
is a binding of names to values , or keys to records. A name, va.lue pair is
called an entity [401.

It must be possible to define efficient operations on the stored data in the
implementation language. Tha.t is, it must be possible to implement opera
tions to lookup, update, insert or delete entities that have a low 5pace and

13

14 CHAPTER 3. RELATED WORK

time cost. Anyone of these operations is termed an action [40]. The im
plementation language must make it possible for many processes to perform
actions on different entities concurrently.

A DBMS constructed in the implementation language will need a data model,
such as the relational model. Such models enable the user to reason about
the data at a higher conceptual level than that of files and records. The
ability to support more than one data model is c1ea.r1y desirable.

The implementation language should allow a rich set of data structures to
be used (0 model the real world objects and relationships being represented.
The DBMS built using the implementation language must also provide some
facilities for recovering from system failure: should the database be dam
aged, it should be possible to retrieve the lost data as quickly and simply as
possible

In summary, the implementation language must provide permanent stor
age, efficient and concurrent actions, data model support, a rich set of data
structures and support for failure recovery. As already described, functional
Languages seem well adapted to concurrency. They also provide a rich set
of data structures. Chapter 4 demonstrates efficient actions and Chapter
5 concurrent actions. Chapter 6 demonstrates data model support. Cur
rent functiona.l Ia.nguages, however, do not provide adequate data storage
facilities. This problem is explored in the following Subsections.

3.1.2 Current Languages

Most current functional languages provide two mechanisms for permanent
storage, one primarily for programs and the other for data. This distinction
is unnatural in functional languages.

Programs and small amounts of data are preserved as text in a conventional
filing system and modified. using an editor. At the 'top level' of the system
tbe user is required to issue a sequence of commands that manipulate the
store in an imperative manner. Effectively the declarative system has been
embedded in an imperative shell, and this seems symptomatic of the guest

15 CHAPTER 3. RELATED WORK

status of functional languages on procedural machines. Examples of this type
of mechanism include KRC's and Miranda's scripts [15, 89].

Large amounts of data to be processed by a program is kept in files. Most
functional systems provide functions to read and write these files. These
functions may be embedded within other functions, they need not be used
at the top leveL Examples of these functions inclnde KRC's read and write
[15] and Miranda, read and tofile [891.

The behaviour of these functions is far (rom desirable. Let us consider KRC's
well documented write and read functions .

• write !name x will print the value of x into the file called /name .

• read /name will return the contents of the file /name.

The write operation is not performed until the write function is itself printed.
If a program attempts to read the same file, evaluation order becomes im~

portant. In fact, the Miranda manual contains the solemn warning "Users
who write Miranda programs which read and write the same file are warned
that they are treading on dangerous ground and that the behaviour of such
programs is unlikely to be reliable" [89].

The contents of the file created by write is the result of output being redi~

rected to the file. The file contains a printable representation of the data. For
example, numbers are represented as characters, and must be transformed
back into the original type before programs can manipulate them.

The read function is inadequate because it provides no way to deal with a
file whose content changes over time. Consider the function

getbaJ = convertionum (read "Balfile"),

that reads the string in a file and converts it into a number. Wben getbaJ is
first called it will return the number currently stored in a file. Even if the
contents of the file are changed it will continue to return the same value.

16 CHAPTER 3. RELATED WORK

3.1.3 Persistence

Persistence [7] seems to offer a solution to the problem of long-term data
storage in functional languages. Atkinson observed that in most existing
languages only certain data structures may be permanently stored. Much of
the effort in writing programs that manipulate permanent data is expended
in unpacking the data into a form suitable for the computation and then
repacking it for storage afterwards.

The idea behind persistent programming languages is to allow entities of any
type to be permanently stored. The length of time that an entity exists, or
its persistence, becomes an orthogonal property of the entity. Thus programs
manipulating persistent entities need no longer pack and unpack the data.

Mathews [63] describes a persistent store as a eross between a virtual memory
and a database. Entities in a database are structured - they may refer to
other entities. Transfers to and from the database are usually made by
explicit calls to special procedures. A virtual memory transfers unstructured
chunks, or pages, between memory and backing store. It performs these
transfers without explicit requests from the user. A persistent store contains
structured data, performs transfers automatically and garbage collects any
entities no longer in use.

Poly and ML are two near-functional languages that have been made persis
tent 16J]. Either Poly or ML could support efficient data operations, provide
data model support and allow arbitrary data structures to be used. Unfortu
nately Poly and ML are only near-functional and hence inherently sequential.
As a result, locking or exclusion occurs at a database level. Many programs
may read the contents of a database, but only one may write to it.

Chapters 4 and 5 show that persistence and a few parallelism primitives are
all that need to be added to a lazy functional language before it can be used
as an implementation language.

CHAPTER 3. RELATED WORK 17

3.2 Data Manipulation Language

3.2.1 Requirements

A Data. Manipulation Language (DML) is used to create, modify and inspect
a database. After being manipulated a database is required to satisfy some
consistency constraints [33]. In a mythical simple-minded bank, a consistency
constraint could be tbat

Moneyheld = EDeposits - E Withdrawals

It is not sufficient to guarantee the constraints after every action because
it is necessary to violate the constraints when modifying the da.tab~e. For
example, in a transfer of money between two accounts, money is withdrawn
from the source account before being deposited in the destination account.
After the withdrawal, but before the deposit the above consistency constraint
is violated.

A transaction is a collection of actions that preserves consistency. Any trans
action executed alone on a consistent database will transform it into a new
consistent state. Maintaining consistency becomes difficult when concur~

rency is introduced. In a bank, for example, the fact that one account is
being examined should not preclude other accounts from being accessed.

The problems that arise between concurrent processes with shared memory
are well known. For example, to withdraw money from a bank account, the
current balance is read and then a new balance is written. If two processes
wish to withdraw money from the same account they may interfere in the
following way. They may both read the current balance, then the first may
write its new balance, followed by the second. In this case the effect of the
first update will be ignored. To prevent interference in databases an exclusion
mechanism such as locking is nsed. The reader is assumed to he conversant
with the concept of record locking. Expositions can be found in [32,33].

A transaction may perform some actions before discovering that, for some
reason, it cannot complete, or commit. For example, an account entity it

18 CHAPTER 3. RELATED WORK

accesses may not exist. ill these circumstances the transaction must abort.
The database is likely to be in an inconsistent state as a result of the actions
the transaction has already performed. In aborting the transaction must
return the database to its original, consistent, state. Transactions with this
behaviour are termed total. To be more precise, a transaction is total if,
providing it returns, it was carned out completely or (apparently) not started
[611·

The qualification that a transa.ction must return refers to machine failures.
Within a transaction the consistency constraints may be violated. Hence,
if the ma.chine fails during a transaction, the database may be left in an
inconsistent state.]0 the event of a failure a DBMS should provide a recovery
procedure that will return the database to a consistent state with a minimum
of lost information. It may do so either by completing the transaction or by
removing the effects of the transaction. This is where the implementation
languages recovery mechanism from Subsection 3.1.1 is used. A DBMS that is
able to recover from machine failures may guarantee a stronger property than
totality, namely reliability. Totality guarantees that a transaction is executed
zero or one times. Reliability guarantees that a transaction is evaluated
exactly once.

When executing several transactions concurrently their actions may be in
terleaved in time. To preserve consistency all of the actions of a transaction
must occur against the same state of the database. A property strong enough
to guarantee this is serialisability. The actions of a transaction are serial
isable if, when a collection of transactions are carried ou t concurrently, the
result is as if the individual transactions were carried out one at a time in
some order [61].

It is desirable for transactions to be both total and serialisable. The con
junction of these two properties is termed atomicity. Logically the multiple
actious of atomic transactions occur "instantaneously". To surrunarise, a
transaction is a collection of actions that is atomic [61].

Once atomic transactions have been constructed, it is desirable to reuse them
within other transactions. For example, a transfer transaction m.ight be built
out of a withdrawal and a deposit transaction. The use of a transaction as a
su.btronsaction of another is termed nesting.

19 CHAPTER 3. RELATED WORK

A transaction language shonld be amenable to reasoning. In particular it
is desirable to transform transactions into a more efficient form. It is also
desirable to prove properties of transactions. For example, it might be proved
that a deposit immediately followed by a withdrawal of the same amount
has no effect. In summary, a data manipulation language must be capable
of supporting concurrent atomic transactions. It should also have a clean
semantics and be able to nest transactions.

3.2.2 Current Languages

In Subsection 3.1.2 the file manipulating operations found in current func
tionallanguages were described. These are inadequate as a DML for several
reasons. No provision is made for more than one process to access the files
concurrently. Only one file may be accessed by these operations - there is
no provision for consistent groups of updates. As described earlier, in some
languages some combinations of read and write operations do not have well
defined semantics. As a consequence programs that use these operations can·
not be reasoned about. It also makes composing file manipulating functions
to construct new functions, or nesting, unsafe.

3.2.3 Declarative File Systems

Friedman and Wise

Friedman and Wise have described a lazy applicative file system [36]. In
their system file manipulation was restricted to top-level functions. In a
given collection, several functions can take a file as an input parameter, but
only one function can modify a file. It is envisaged that, in the presence of
errors, such lazy file systems have unpleasant behavlour. It is well known
that allowing an error to propagate from its point of occurrence complicates
debugging [42, 48]. In an entirely delayed system an erroneous expression
may be encountered that is the legacy of an unknown program evaluated at
some unknown time in the past.

20 CHAPTER 3. RELATED WORK

Lispkit

The Lispkit operating system was described. by Henderson [49, 50] and Jones
[57]. The file system allows files to he read and written by the user. A
user communicates with the file system by sending a stream, or lazy list, of
commands to it, and receiving a corresponding stream of responses. Lispkit
is a distributed operating system and files may be shared between users.
The Lispkit file system does not provide a DML and hence does not support
atomic transactions.

Flagship PRM

The goal of the Flagship project was to build a multiple processor machine
suited to evaluating declarative languages [3]. In the design of the operating
system, or programmers reference model (PRM), transactions are provided
as primit.ives. This ensures that update is implemented efficiently, correctly,
consistently, securely and only once. PRM transactions have the side-effect of
updatiDg many entities atomically. Within a transaction, however, referential
transparency is guaranteed. PRM transactions may be nested and are not
restricted to top-level functions. Many transactions may occur concurrently.

The PRM has been implemented on a machine with 15 68020 processors.
The Flagship machine achieves some impressive results for the DebitCredit
benchmark [75]. DebitCredit is a bank transaction-processing benchmark
[761· Against a database of 30000 account records, 3000 teller records and
1000 bank records, the Flagship machine can process 45 transactions per
secoDd (TPS). Some comparative figures are as follows. It is not clear whether
all of these figures are based on a database of the same size.

Machine TPS
Flagsbip 45
Sun 5
IBM 4381-P22 22
DEC VAX 8830 27

PRM transactioDs do provide the database manipulating behaviour required.

21 CHAPTER 3. RELATED WORK

of a DML. However, the loss of referential transparency in much of the lan
guage is serious. The semantics of the transactions is complex, reasoning
about programs becomes hard and evaluation order becomes significant.

DL

DL is a language developed by Breuer to support data definition, data ma
nipulation and queries [19]. Data is viewed as definitions, and may be ma
nipulated by top-level redefinition or assignment. Bec.a.use DL is essentially
single user, concurrency and consistency issues are not addressed.

FDL

FDL is a functional data language that supports the functional data model
(72). In most existing DMLs there is an uneasy coexistence of data model
and computation model. FDL provides a single data and computation model,
that of the lambda calculus. In FDL there are three types offunction: com
putational, data and a combination of the two. Data functions are essen
tially definitions and database updates occur at a meta-level and are viewed
as function redefinitions_ FDL is also single-user and hence ignores concur
rency and consistency issues. Although the consistent data and computation
model simplifies a database programmers world, the meta-level for update
reintroduces some complexity.

Id

To facilitate data manipulation some extensions to the dataflow language Id
have heen proposed [67}. A new type of function called an index function is
introduced. Index functions are initially undefined everywhere. Information
ahout the function is added incrementally. defining it over a larger and larger
domain. The transaction model is derived from the model presented in this
Thesis_ A transaction is an expression evaluated in the context of the curren t
database and produces some output and a new database. Serialisability is

22 CHAPTER 3. RELATED WORK

guaranteed because only one transaction is manipulating the database at any
one time.

The dataflow model underlying Id provides adequate concurrency within a
transaction. It is not clear, however, whether parallelism between transac
tions is possible. Having two types of function also introduces some com
plexity into the programmers world.

3.2.4 Comparison

In the transaction language presented in this thesis the database is repre
sented as an abstract data type. Transactions are functions that take the
dalabase as an argument and return an updated database and some out
put. A process adds a transaction to a stream of requests to the database
and receives a response from the database on an input stream. Chapter 5
demostrates parallelism both within transactions and between transactions.
Chapter 7 describes how transaction-functions are made atomic. Because
transa.ctions are functions they can be nested simply by invoking one func
tion within another. The problem of machine failure is not addressed in
detail.

Like the Friedman and Wise file system the transaction language allows read
only sharing of parts of the database. The streams of requests and responses
are similar to those found in the Lispkit operating system. Unlike the PRM
transa.ctions the transaction-functions are pure - they have no side-effects.
As a result they have simple semantics.

Viewing the database as an abstract data type is in contrast to both DL
and FDL which view data as definitions. Concurrency issues that are not
relevant in DL and FDL are also addressed. Some of the Id proposals are
derived from work presented in this thesis. They differ in being based on a
dataflow model and by introducing a new type of function.

CHAPTER 3. RELATED WORK 23

3.3 Query Language

3.3.1 Requirements

A query language is used to interrogate the database. A bank manager,
for example, might wish to discover which customers have overdrafts. The
query language should be clear - how to express a query should be intu
itivelyobvious. Conversely, what a query means should also be immediately
apparent.

A query language should be powerfuL Codd defined a query notation to be
TeiationaBy complete if it is at least as expressive as the relational calculus
[27]. However, many queries require more power than that provided by the
calculus. Typically these queries entail computation or recursion. A bank
teller might, for example, wish to compute the total of all a. customer's ac
counts. A recursive language is needed, for example, to express queries over
recursive data structures such as trees or graphs.

A query language should be coucise. It should not be necessary to give a great
deal of verbiage to specify a simple query. For example, if a query specifies
only one attribute of an entity it should not be necessary to enumerate all of
the other attributes of the entity.

A query language should have a sound and tractable mathematical basis.
This facilitates reasoning about queries. For example, most queries can be
evaluated in different ways, and some evaluation orders are more efficient
than others, It is desirable that a simple specification of the query can be
transformed into a more efficient form.

A query language should be well integrated with the data manipulation la.n
guage. This often not the case. For example a query language may be based
on relations and the manipulation language based on von Neumann ma
chines. In summary, the notation is required to be clear, powerful, concise,
mathematically sound and well integrated with the manipulation language.

24 CHAPTER 3. RELATED WORK

3.3.2 FQL

FQL is an early functional query language developed by Buneman, Frankel
and Nikhil [211. It is based on the FP language [IlJ. In FQL a small set of
functions are composed to process lists of entities. The lists are processed
IazilYl and this is shown to reduce the number of disk accesses required to
evaluate a query_ Severa.I of the functions take other functions as arguments,
i.e. they a.re higher-order. FQL is used as an intermediate la.nguage in a
commercial database product.

FP is mathematically sound, with known identities Ill}. The FQL notation
is extremely concise. However, the author finds the parameterJess notation
makes it far from clear. For the same reason FQL wjll look strange to users.
FQL is closely related to the functional data model, and hence reasonably
powerful. The power of the language is, however, restricted by the fact that
it is difficult to define new higher-order functions.

3.3.3 FDL

As described in Section 3.2.4, FDL supports the functional data model
(FDM). The functional data model is based on functions and sets of entities.
In FDL, Poulovassilis shows how these concepts can be deanly integrated into
a functional language. The FDM gives a clear meaning to queries. Poulo
vassilis recommends the use of list comprehensions for expressing database
queries. She demonstrates how, used in conjunction with recursive functions,
computation and recursion can be expressed using comprehensions.

3.3.4 Query Language Work

A query language was required to be dear, powerful, concise, mathemati
cally sound, and well-integrated. Other workers have also shown that Hst
comprehensions are clear, powerful, concise and well integrated [20, 67, 72].
In Chapter 8 the power of comprehension notation is proved. It is argued
that clarity is aided by the close correspondence between comprehensions and

25 CHAPTER 3_ RELATED WORK

the relational calculus. Databases and programming languages are further
integrated. by describing the relational calculus in a programming langnage
semantics. In Chapter 9 the sound mathematical basis of comprehensions is
used to develop transformations to improve the efficiency of queries.

The power of comprehension notation is proved by giving a translation of
rela.tional calculus queries into list comprehensions. The use of translation
between a relational formalism and a programming language has some prece
dent in the database world. For example, the semantics of SQL has been de
scribed by translation into the relational calculus [92J and into the rela.tional
algebra [23J_

The task of improving queries has received much aUention. Both Date (32)
and Ullman [91] give surveys of the field and identlfy two classes of improve
ment techniques - algebraic and implementation-based. Seminal work on
algebraic improvements can be found in [56> 43] a.nd [81}. Seminal work on
implementation-based improvements can be found in [18, 811 and [1001.

Equivalent improvements are given for each major conventional improvement
strategy. Some of these improvemeuts are effective because, as demonstrated
in FQL, a lazy evaluation strategy reduces the number of disk accesses re
quired. Most of the improvements entail transforming a simple but inefficient
query into a more complex, but more efficient form. Transformation is a well
developed technique in the functional programming community [16,25, 29].
In particular, Freytag has shown how to transfonn a query evaluation plan
into a form that mini,mses the traversals of the data and the number of
conditional expressions [35). The query evaluation plan is the output of an
algebraic relational optimiser, so Freytag's optimisations occur at a lower
levellhan the transformations given in Chapter 9.

Chapter 4

Bulk Data Management

This Chapter covers the implementation of a bulk data manager. It is shown
that a functional language can be used to implement efficient operations
on trees. An overview of B-trees, a common type of tree in databases, is
presented. A bulk data manager that uses trees and supports transactions
from multiple users on a shared database is described.

Notation

Program fragments are presented in this and subsequent Chapters. Except
where the fragments are in a specific language such as Standard ML, the
fra.gments are not written in an existing language. Instead Bird and Wadler's
non-specific syntax is used [17].

4.1 Introduction

A class is a homogeneous set of data; it may represent a semantic object such
as a relation or an entity set. For example a class might represent a collection
of bank accounts. For simplicity the bulk data manager described in this

27

28 CHAPTER 4. BULK DATA MANAGEMENT

Chapter supports efficien t operations on a single class of data. The same
principles apply for operations on a database containing multiple classes of
data. Similarly the principles given in Chapter 5 for concurrent transactions
against a single class apply equally to transactions against a multiple-class
database. Because the same principles apply, both the transactions and the
manager are described in terms of a database, although only a single class of
data is supported. Chapter 6 gives the design of a more realistic, multiple
class database.

The remainder of this Chapter is structured as follows. Section 4.2 demon
strates that efficient tree-manipulating operations can be implemented in a
functional language. Section 4.3 describes the features of B-trees that are
significant in this Thesis. Section 4.4 describes the bulk data manager.

4.2 Bulk Data Structures

4.2.1 Non-destructive Update

In a persistent environment a class can be represented as a data structure
that persists for some time. Because of their size such structures are termed
bulk data structures. Operations that do not modify a bulk data strnctures,
for example looking up a value, can be implemented efficiently in a func
tionallanguage. However, when a data structure is changed in a functional
program a new version of the structure must be constructed. It appears to
be prohibitively expensive to create a new version of a large data structure
every time it is modified.

Updating large persistent data structures is related to the array, or aggre
gate, update problem. Aggregate update has received considerable attention
[51,68, 77, 94J. The problems are, however, different in several significant
respects. Arrays are located entirely in primary memory whereas bulk data
structures reside in secondary memory. Array updates are also not assembled
into transactions. Because of these differences aggregate update proposals
are not discussed further. A summary of their relation to the problem in
hand can be found in l84].

29 CHAPTER 4. BULK DATA MANAGEMENT

It is expensive to construct new versions of many data structures. For exam
ple consider representing a class as a list. Fortunately it is not necessary to
create a new copy of every element in the list when creating a new version of
it. While the new version of the list is logically completely sepa.rate from the
old version, most implementations allow the old and Dew versions to share
the unchanged part. This is best illustrated by a.n example. Consider the
following representation of f, a. list of names and values.

f ,

Constructing a new list with a value of 6 associated with 'h' gives

f ---1'.'13

f'~03-.EillJ3

On average, when creating a new version of the list, half of it will need to be
reconstructed. If the list contains n entities, this gives a time and space cost
of nJ2. Such high modification costs effectively prohibit the use of lists as a
bulk data structure in a functional language. Other structures are similarly
prohibited a.nd we return to this issue in Chapter 6.

4.2.2 'Trees

A new version of a tree can be cheaply constructed. For simplicity a binary
tree is considered. A class can be viewed as a collection of entities and there
may be a key function that, given an entity, will return its key value. If et
and kt are the entity and key types then an abstract datatype bdt, for a tree
can be written

bdt = Node bdt kt bdt IEntity el

30 CHAPTER 4" BULl, DATA MANAGEMENT

Alternately a polymorphic definition parameterised by the entity and key
types, 0: and {3, may be used:

bdt 0 (3 = Node (bdt	 '" (3) (3 (bdt '" (3) I EnWy "'"

Using one of these definit.ions, a function to lookup an entity can be written
as follows. If the lookup succeeds the result returned is the required entity
tagged Ok. If the entity does not exist, an Erro,' is reported.

lookup k' (Entity e)	 = Ok e, if key e = k'

= Error, otherwise

lookup k' (Nod, It k rt)	 = lookup k' It, if k' :S k

= lookup k' ri, otherwise

A function to update an entity is similar except that, in addition to producing
an output message, a new version of the tree is returned.

update e' (Entity e)	 = (Ok e, Entity e'l, if key e = key e'

= (Error, Entity e), otherwise

update e' (Node It k rt)	 = (m,Nod, It' k rl), if key,' S k

= (m, Node It k rt'), otherwise

where
(m, W) = update el It
(m, ,-t l

) = update el rt

31 CHAPTER 4. BULK DATA MANAGEMENT

4.2.3 Efficiency

Let us assume that the tree contains n entities and is balanced. In this case
its depth is Jog n and hence the update function only requires to coastruct
log n new nodes to create a new version of such a tree. This is because any
unchanged nodes are shared between the old and the new versions aad thus
a new path through the tree is all that need be constructed. This is best
illustrated by the following diagrams. H the tree depicted in Figure 4.1 is
updated to associate a value of 3 with x, then the result is depicted in Figure
4.2.

Figure 4.1: Original Tree

Original

m

32 CHAPTER 4. BULl' DATA MANAGEMENT

Figure 4.2: Original and New Trees

Original New

A time complexity of log n is the same as an imperative tree update. The
non-destructive update has a larger constant (actor, however, as the new
nodes must be created and some unchanged information copied into them.
If the origina.l version of the tree is no longer required the unused nodes will
be re.:::iaimed by garba.ge collector. Hence, although non-destructive update
requires the allocation of additional nodesl the total amount of space utilised
is the same as under a destructive regime.

The functional update can be made more efficient. A reference count is
sometimes used in garbage collection to record how many pointers there are
to a da.ta. structure. This corresponds to how many logical copies of the data
structure exist. A reference count of one implies that there is only one copy
and hence the original version need not be preserved if the data structure is
updated. Some implementations [83] incorporate an optimisation whereby
destructive update is used if there is only one reference to the data structure
being modified. Clearly this optimisation can be used when the original
version of a tree is not required and results in the functional update having

33 CHAPTER 4. BULl' DATA MANAGEMENT

the same time and space requirements as its procedural equivalent.

If non-destructive update is used, a copy of the tree can be kept cheaply
because the nodes common to the old and new versions are shared. These
cheap multiple versions will be shown to be extremely useful in the following
Chapters. To be more precise, retaining the original version after an update
requires log n nodes. As a result, keeping a copy of a tree that has since been
updated u ti:rnes requires no more than u log n nodes in the worst case. In
fact, as updates tend to occur in the same part of the database, or cluster,
the average figure is probably well below this.

A more detailed analysis of the time and space costs of bulk data operations
will be given once secondary indices have been introduced. The significant
points are that when a version is required it is preserved antomatically and
cheaply. Further, if a version is not required the update can be automatically
performed. efficiently.

4.3 B-trees

4.3.1 Description

In the foregoing a binary tree was used for simplicity. B-trees [13] are the
variant of trees widely used in databases. The distinction between binary and
B-trees is not important for the techniques just described. A sketch of the
motivations for B-trees, those of their features significant to this thesis and
some example figures follow. Full descriptions can be found in [32,91, 99].
Readers familiar with B-trees and their properties may wish to omit this
section.

In the database world the unit of cost is a disk access. This is because the
time required for an access is typically three or four orders of magnitude
greater than the time required to execute a machine instruction. A disk
access retrieves a fixed-sized chunk of data, or block, from the disk.

In a binary tree a node contains a key value and two pointers to sub-trees. To

34 CHAPTER 4. BULK DATA MANAGEMENT

access a node an entire block must be retrieved. Clearly a node may as well
fill a block. Thus a node may contain as many keys and associated pointers,
or entries, as will fit in a block. The Qrder of the tree can be defined a.s half
of the maximum number of keys possible in a node. Similarly, a leaf may
contain as many entities as will fit in a block.

It is desirable that disk space is not wasted. This can be guaranteed by
ensuring that every internal node of the tree contains a minimum number of
entries and that every leaf contains a minimum number of entries. It is also
desirable to give an upper bound on the number of disk acCe5ses required to
manipulate any entity. To do this the tree is balanced, so that every path
from the root to an entity is of the same length. Thus a search or insertion in
a B-tree of order m witb n entities is guaranteed to require fewer than logrn n
disk accesses. Sedgewick describes this bound as "'constant for all practical
purposes (as long as m is not small)" [78].

During insertion, the node into which an entry is to be added may be full. In
this case a rotation is performed. A new node is created, the entries from the
original node are split between the two nodes and the new entry is added.
An entry for the new node must in turn be added to the original node's
parent. In the worst case the root itself will need to be split. A similar
process may occur during deletion. This behaviour is best illustrated by an
example. Adding an entity with key value 'g' to the following B-tree

35 CHAPTER 4. BULK DATA MANAGEMENT

Figure 4.3 B-tree Rotation

results in the tree

The following definition, drawn in substance from [38j, provide5 a useful
summary. A 8·tree of order m is a balanced multiway tree with the following
properties.

36 CHAPTER 4. BULK DATA MANAGEMENT

• Every node has at most 2m + 1 descendents.

• Every node except the root has at least m + 1 descendents.

• The entities all appear at the same depth.

4.3.2 Example

For concreteness let us make some assumptions typical of existing hardware
and about some example B-trees. The cost of manipulating these structures
can then be calculated. Two example trees are considered, one consisting of a
few megabyte:; and the other of tens of megabytes. An important assumption
made is tnat the top two levels of the tree will he cached. As the root of
the tree will he used by every manipulation, and the node:; on the next level
level will also be used frequently this is likely to be the case under almost
any cacheing strategy.

Nodes
Sizes in byte:;.

Block-size 512

Key-size 9

Pointer-size 3

Entry-size = Key-size + Pointer-size 12

Order of tree, m = lBlock-size/2*Entry-sizeJ 21

Cacheing

Number of Jevels cached. 2

Maximum memory requirements 22k

Tree Sizes Example 1 Example 2
Number of entities 10' 10'
Entity size in bytes 512 512
Megabytes of datal n 5 50

Depth of tree = rlogm n1 4 6

Disk accesses to manipulate an entity 2 4

CHAPTER 4. BULK DATA MANAGEMENT 37

4.4 Bulk Data Manager

The preceding sections have shown that a new version of a B-tree can be
cheaply constructed. Let us move on to consider a manager function that
supports transactions on a bulk data structure.

4.4.1 Transaction Functions

Before the manager can be described transaction functions must be out
lined. Transactions are either read-only queries or modifications that update
the database. A query transaction can be expressed as a function from the
database to a domain of answers. A modifying transaction is a function that
takes the existing database and creates a new version. In case the modifi
cation fails for some reason it must also return some output. Rather than
distinguish between these two types of transaction a transaction is defined
to he a function of type bdt _ (output x bdt). Let us call this type trt.

Transactions are built out of tree manipulating operations such as lookup and
update. A function isok, that determines whether a.n operation succeeded
proves useful.

isok (Ok e) = True
isok out = False

Another useful function is dep that increments the balance of an account
entity.

dep (Ok EnWy ano bal) n = Entity ano (bal + n)

Using isok and dep, a transaction to deposit a sum of money in a bank
account can be written as follows.

38 CHAPTER 4. BULK DATA MANAGEMENT

deposit a. n d = update (dep m n) d, if (isok m)

= (Error, d), otherwise

where

m. = lookup a d

The arguments the deposit function takes are an account number a, a sum
of money n and a database d. The database in this case is a simple tree
of accounts. If the lookup fails to locate the account an error message and
the original <latabase are returned. If the lookup succeeds, the result of the
function is the result of updating the account. The update replaces the
existing account entity with an identical entity, except that the balance has
been incremented by the specified sum. Note that deposit is of the correct
type for a transaction function when it is partially applied to an account
number a.nd a sum of money, i,e. deposit a n has type bdt ---t (output x bdt).

The deposit function has a common transa..c.tion form. A test is made on
the current contents of the database. If the test is satisfied the transaction
proceeds. If the test fails the transaction aborts and the database remains
unchanged. It is important to note that, until the test has been performed, it
is not known whether the original or the updated database will be returned.
Aborting a transaction is easily specified because the original version of the
database is available, called d in deposit. As descrihed in section 4.2, it is
cheap to preserve the original version of the database.

4.4.2 Manager

The bulk data manager is a stream processing function. It consumes a lazy
list, or stream, of transaction functions and produces a stream of output.
That is, the manager has type bdt -+ [txt] ---t [output]. A simple version can
be written as follows.

manager d (J: Is) ::::	 out: manager d'ls

where

(out,d') =! d

39 CHAPTER 4. BULK DATA MANAGEMENT

The first transaction function f in the input stream is applied to the database
and a pair is returned as the result. The output component of the pair is
placed in the output stream. The updated database, d', is given as the first
argument to the recursive call to the manager. The manager function is
partially applied to an initial database do to obtain the stream processing
function. Thus the expression manager do is of type [txt] -t [output]. Be
cause the manager function retains the modified database produced by each
transaction function it has an evolving state.

The simplest form of transaction-function that the manager can process is a
single bulk-data operation such as lookup or update. Because these operations
manipulate a single entity, a manager processing only bulk-data operations is
equivalent to a file manager in a conventional database. The distinction be
tween processing bulk-data operations and transactions becomes significant
when concurrency is introduced in the next Chapter.

4.4.3 Multiple Users

The database must be available to many users simultaneously. This allows
each user to query and modify the data. A user will also see the effects of
other users' actions. The problem of combining asynchronous inputs from
many sources has been addressed in work on functional operating systems
149,50,831. A common solution is to employ a variant of Henderson's non
detenninistic merge. Some solution of this type can be employed for the bulk
data manager.

Figure 4.4 illustrates a possible configuration. A box represents a. stream
processing function. An arc represents a stream of values. Each user might
be a bank teller and the database might be a class of account entities.

40 CHAPTER 4. BULK DATA MANAGEMENT

Figure 4.4 Multiple Users

s
P
1

M
e
r
g
e

A user sends a stream of lransaction functions to the bulk data manager. A
transaction is tagged to identify the user it originated from. The transactions
from all of the users are merged together to form the single input stream to
the data. manager. The data manager generates some output as a result of
applying the transaction function and this is routed back to the appropriate
user by the split function. The output is untagged before being returned to
the user.

This scheme provides a template for some concurrency. Logically each func
tion in the above diagram could be evaluated on a separate processor. More
realistically, a group of closely connected functions will reside on a proces
sor. For example, a user function and associated tag and untag functions
might cohabit. The concurrency provided by such a scheme is limited in a
significant respect. Because the manager function is executing on only one
processor, only one process can be modifying the database at anyone time.
10 the next Chapter we describe how concurrent access to a shared databa.se
can be provided.

Chapter 5

Concurrency

This Chapter covers the introduction and control of concurrency within the
database. A pseudo-parallel data manager is used to demonstrate concurrent
bulk-data operations and concurrent transactions. In contrast to the locking
mechanism found in conventional databases the prototype manager uses data
dependency as a novel exclusion mechanism. Data dependency is shown to
permit an unusual degree of concurrency between transactions. It is also
demonstrated that, within certain limits, the rate of processing transactions
is independent of the size of the database.

Some problems that severely restrict concurrency are identified and illus
trated. Three primitives are proposed to resolve these problems. Two of
the primitives are new and one of these, optimistic if, has been implemented.
Optimistic if is used to illustrate concurrency botb within and between trans~

actions.

5.1 Introduction

It has been known for some time that functional programs have scope for
automatic concurrency [24,31]. Indeed several parallel functional machines
are being constructed [3, 22, 28, 69]. Because of its referential transparency

41

42 CHAPTER 5. CONCURRENCY

the value of a functional program is independent of evaluation order. For the
database manager this means that a transaction can potentially start before
tbe previous transaction has committed, with no risk of interference. Such
behaviour contrasts well with the imperative approach where the problem of
ensuring that concurrent transactions do not interfere is difficult.

The essence of the concurrency model used in functional languages is as fol
lows. A functional program, such as the database manager, cau be viewed
as an expression to be evaluated. The expression can be repre.sented as a
graph and evaluated by graph reduction [97]. At any stage in the evalua
tion there may be a number of subexpressions that could be evaluated next.
Referential transparency guarantees that every subexpression can be safely
evaluated simultaneously. Care is needed to ensure that work is not wasted
evaluating expressions that are not required hy the program.

The remainder of this Chapter is structured as follows. Section 5,2 describes
the machine architecture and the prototype database. Section 5.3 descrihes
the behaviour of concurrent bulk~data operations, Section 5.4 covers trans
action processing, identifying some problems that restrict concurrency and
illustrating the resolution of the problems using primitives.

5.2 Prototype Database

5.2.1 Hypothetical Machine

The prototype data manager is evaluated on a pseudo-parallel interpreter
that emulates a hypothetical machine. The architecture of this machine
determines the nature of the parallelism. In technical terms the hypothetical
machine is an idealised MIMD super-combinator reduction engine with disk
stora.ge.

The memory hierarchy js as follows. It is assumed that the secondary storage
underlying the persistent environment is balled on disks. It is further assumed
that the disk architecture is such that there are elapsed-time savings to be
gained by retrieving many nodes in the database simultaneously. A caching

43 CHAPTER 5 CONCURRENCY

strategy is assumed. To eliminate locality issues the machine is assumed to
have a. shared primary memory. On current ha.rdware a. shared memory limits
the number of processing agents to around 100 because of the contention that
arises in the memory.

The machine is assumed to be a multiple-instruction multiple-data, or MIMD,
machine. Hence each of the processing agents is capable of performing dif
ferent operations on different data. The machine performs super-combinator
graph reduction 153]. That is, the machine evaluates a. functional program
by evaluating a. sequenc.e of simple functions, or combinators. The evaluation
strategy used in the machine is lazy exc.ept where eagerne:;s is introduced by
the primitives descrihed in this Chapter. To preserve laziness the combina
tors and their arguments are expressed as a graph. In a machine cycle an
agent may either

•	 Perform a super-combinator reduction , or

•	 Perform a delta-reduction j i.e. evaluate a primitive such as 'plus'j or

•	 Perform a house-keeping activity such as sparking a new task or fol
lowing an indirection.

The work to be performed by the program is broken into tasks. Each task
reduces a subgraph of the program graph. Initially only one task exists. New
tasks are sparked by the eager primitives described later. Task syncnronisa
tion occurs as follows. A task marks the nodes it is processing as busy. A
task encountering a busy node is marked as blocked. As soon as the required
node is no longer busy the blocked task resumes. A task that is not blocked
is termed active. The scheduling strategy used in the hypothetical machine
is both simple and fair: every active task is assigned to a processing agent
and in a machine cycle the next redex in each active task is reduced.

In a real macl1ine there are a limited number of processing agents. Once
all of the agents are being utilised no further concurrency is necessary and
a throttling strategy is often employed to reduce the number of new tasks
sparked. Throttling is not applied in the hypothetical machine. This is
not unrealistic as the number of active tasks in the forthcoming examples is
modest.

44 CHAPTER 5. CONCURRENCY

In many real machines small sub-tasks are not sparked because of the ad
ministrative overheads associated with sparking, executing and completing
a task. This principle is termed granularity. The grain of parallelism is Dot

controlled in the hypothetical machine :- subtasks are sparked irrespective of
their size. This is not unreaHstic as most of the tasks sparked in the proto-
type database represent bulk-data operations such as lookup or update and
are of a respectable size.

The hypothetical machine is consistent with existing models of parallelism
[31, 70]. 1t is, however, overly simplistic in several respects. Assuming a uni
form machine-cycle is unrealistic as different primitives and different super
combinators take different times to evaluate. Assuming that all active tasks
can be reduced in a machine cycle is unrealistic. In a real machine a newly
sparked task must be migrated to an idle processing agent.

5.2.2 Metrics

The hypothetical machine is instrumented to record significant information
during the evaluation of a program. The metrics used are the number of
super-combinator and delta~ reductions, the number of graph nodes allo
cated, the number of machine cycles and the average number of active pro
C(~ses. The number of super-combinator and delta- reductions is a measure
of the time-complexity of the problem. The number of graph node; allocated
is a measure of a program's memory usage. Under the assumption that ma
chine cycles take coostant time, the number of machine cycles is a measure
of the elapsed-time taken to evaluate a program. The average number of
active processes gives the average concurrency available during a program's
evaluation.

In addition to the above figures, every 10 machine cycles the average number
of active tasks during those cycles is recorded.. This information can be used
to plot a graph of the average number of active tasks against time, measured.
in machine cycles. For clarity every point on these graphs is not plotted.
Instead a simplified graph giving the significant features of the evaluation
is given. To demonstrate the correspondence betweeo the abstract graph
and the detailed. data, the first two active task graphs also plot the average

CHAPTER S. CONCURRENCY 45

number of active tasks every 50 cycles.

5.2.3 Database Architecture

The database used to demonstrate parallelism represents a single class of
account entities. Each account entity has an account number, a balance,
a class and a credit limit. There are 512 account entities and each entity
occupies 14 bytes, giving a total of 7 Kbytes. To make the analysis of con
currency simple the account entities are stored in a binary tree. With the
exception of rebalancing, the concurrency possible in such a tree is similar
to that obtainable in a B~tree in which each of the nodes contains a small
binary tree.

The database resides entirely in primary memory. Whilst this data structure
is small it is sufficient to demonstrate the behavionr of the data manager.
Furthermore, Section 5.3.4 shows that, while all of the database remains
in primary memory, the rate that bulk-data operations can be processed is
independent of the size of the database.

5.3 Bulk-Data Operations

In this Section the concurrency between bulk-data operations such a:s lookup
and update is demonstrated. In contrast to transactions that may manipulate
several entities, bulk-data operations manipulate a single entity.

5.3.1 Potential

A purely lazy, or demand-driven, evaluation of bulk-data operations does
not lead to any concurrency. The operations are performed serially because
there is only a single source of demand, or task. It is rea.sonable to assume
that the result of all of the operations will be demanded. Thus a task can
be sparked to evaluate a subsequent operation before the current operation

46 CHAPTERS. CONCURRENCY

has completed. This effect can be achieved using an eager constructor. An
eager list constructor :sparks tasks to evaluate both the head and the tail of
the list concurrently. Consider the manager from Section 4.4.2:

manager d (f : Is) ::= out: manager d' Is
where

(out, d') = f d

To introduce concurrency an eager list constructor is used to create the out
put list. As a result a task is sparked to evaluate the output of the current
opera.tion and another is sparked to evaluate the manager applied to the
subsequent transactions.

Some form of exclusion is necessary to prevent concurrent transactions from
interfering, as outlined in Section 3.2.1. For simplicity exclusion between
bulk~data operations is described. The principle remains the same for trans~

actions. Suppose an update is creating a new version of the database, and
a lookup is directed at the entity being updated. The lookup cannot be
allowed to read the new data until the update has finished with it. A com
mon imperative solution is for a transaction to lock aU of the nodes it may
change, so denying access to other transactions until the original transaction
is complete.

Exclusion occurs within the manager as a result of data dependency. Recall
that update constructs a new version of the database. Until a node in the new
version exists no other function can read its contents. Any task demanding,
or depending on, a node that is being constructed is blocked until the node
becomes available. Once the required data is available the demanding process
is reactivated. Both blocking and reactivation OCCLJr automatically within
the parallel evaluator. Clearly the lookup can consume each node of the new
version of the database as it is produced by the update. A discussion of the
properties of data dependency as an exclLJsion mechanism is given in Section
5.3.5.

47 CHAPTER 5. CONCURRENCY

5.3.2 Lookups

Consider the manager processing a sequence of lookups directed to entities
throughout the structure. There is no data-dependency between the lookups
and hence one lookup never excludes another. The eager output-list construc
tor in the manager sparks tasks to perform the first lookup and to apply the
manager to the remaining lookups. Because the first lookup does not change
the database it is immediately available for processing the second lookup.
On encountering each of the remaining lookups the manager will spark a
task to perform the lookup and another to evaluate the manager against the
remaining input stream.

There is no limit to the number of tasks that can be sparked in this way.
Hence a (air scheduler is required to ensure that, not only are new lookups
sparked, but those already in the database make progress. The scheduling
strategy employed in the hypothetical machine is fair because it attempts
to perform a reduction in every active task in each machine cycle. As a
consequence the first lookup will complete at some point. From this point
onwards earlier lookup-tasks will complete at the same rate as the rna.nager
sparks new ones. The manager has reached a state of dynamic equilibrium.
If the input stream is finite, then, once the last lookup has been sparked, the
number of active processes will decline as the earlier lookup-tasks complete.

This behaviour is exhibited by the manager processing a sequence of 30
lookups directed to different entities. Appendix A contains the LML pro
grams for each of the examples in this Chapter. The bulk data manager is in
Appendix A.I.l and the program invoking 30 lookups is in Appendix A.2.1.
The active task graph for the eager evaluation of this program is as follows.

48 CHAPTER 5. CONCURRENCY

Figure 5.1 30 Lookups

Active
Tasks

o13.5

4

Machine190 430 590 681
Cycles

The first lookup completes after approximately 190 cycles and the maxi
mum concurrency is reached at this point. The average of 13.5 active tasks
represent the manager and 12.5 lookup-tasks. After the last lookup-task is
sparked at approximately 430 cycles the concurrency declines steadily until
the output phase is entered at cycle 590. The manager function requires 430
machiDe cycles to spark all 30 tasks, indicating that it requires approximately
14 cycles to spark a new task. Note that the number of active tasks depends
on this delay and the number of machine cycles each task takes to complete.
The small peak hetween cycles 590 and 681 represents an output phase. The
printing of the value of the first lookup sparks the evaluation of all of the
lookups, and only wben there are no more tasks does printing proceed. The
metrics obtained during the evaluation of the program are as follows.

49 CHAPTER 5. CONCURRENCY

30 LOOKUPS

Metric Lazy Eager
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

1923
1573

32366
5734
1.04

1923
1573

32366
681
8.82

Note that the avera,ge concurrency during the lazy evaluation of the program
is not 1.00. This is because a strict primitive in the lazy program will spark a
sub-task and for a brief period both parent and child tasks are active before
the parent task discovers that it is blocked. To compensate for this calibra
tion error the average concurrency in the eager evaluation can be divided
by the lazy average concurrency to give an adjusted average concurrency of
8.48 active tasks. Note that the elapsed-time to evaluate the eager program
has been reduced by a factor of 8.42. The elapsed time reduction factor is
reassuringly close to the adjusted average concurrency, indicating that the
additional tasks are reducing the elapsed time by performing useful work.

5.3.3 Updates

Not all of the parallelism is unbounded. Consider a stream of upda.tes di
rected at the same entity. Each update must wait un til the path in the tree
being created by the preceding update exists. As a result the parallelism is
bounded by the depth of the tree. This is illustrated by the following dia
grams. Initially the first update-task has control of the original root and is
constructing a new one.

50 CHAPTER 5. CONCURRENCY

Once the first update has constructed a. new root the second update is acti
vated.

A~E':i:t"b ," :.. 1----- 2

I \ I \ • I \

Similarly, once the second update has constructed a new root, the third
upda.te is reactivated.

~ ,6,(iD-----3lb. ,~_ 2

.', " , ," : \ ." .. --- 1

Note how a tree-node just created by an update is immediately consumed

51 CHAPTER 5. CONCURRENCY

by the following update. This is pipelined behaviour. In fact the pipeline is
slightly more complex than the preceding figures indicate beca.use the tree
constructor releases a node once it is in weak head normal form, i.e. before
the suh-trees are complete. As a consequence two tasks can perform useful
work at each level in the tree :~ oDe selecting a subtree to update a.nd the
other constructing a new sub-tree. Because these two activities take different
times, there will not always be two active tasks at each level in the tree. For
example, as the account tree has 10 levels, there can be at most 20 active tasks
in it. The manager will also be active, giving a. maximum of 21 active tasks.
In the following example the maximum number of active tasks recorded is
19.

It mundesirable to allow closures that may be erroneous to persist, as outlined
in Section 3.2.3. The eager output-list constructor forces most of the work
of an update to he performed, as the output required is only obtained once
the update reaches the entity at the leaf of the tree. Updates can be made
slightly more eager using a tree-constructor that eagerly constructs both of
its sub-trees. This forces the update to be performed on the entity found at
the leaf of the tree.

The following statistics are obtained when 30 updates are directed to the
same entity. The LML program is in Appendix A.2.2

52 CHAPTER 5. CONCURRENCY

figure 5.2 30 Updates

Active
Tasks

15.5

13.5

00 p'

9 a

a a

a

350 420 910 1226 Machine
Cycles

OUtpUl

Maximllrn concurrency is reached after approximately 350 cycles, when the
first update completes. At this point the pipeline described above is full, the
manager is active and there may be an update that bas been sparked but
has not yet demanded the root of the tree, i.e. entered the pipeline. Recall
that the manager requires approximately 14 cycles to spark a new operation.
By cycle 420 the manager has sparked aU 30 of the updates and the number
of active processes drops at this point. The pipeline remains full until cycle
910. The later update-tasks, although sparked, are blocked waiting for the
preceding updates to create a new root. No more tasks are sparked to replace
the completing tasks once the last update gains control of the root at cycle
910 ilnd the parallelism declines as before. Finally there is a brief output
phase.

The fact that the 30th update does not gain control of the root until cycle
910 shows that constructing a new root requires approximately 30 machine
cycles. For updates the construction time is the bottleneck, rather than the

53 CHAPTERS. CONCURRENCY

time the manager requires to spark a new task. The effect of this bottleneck
on a more realistic mix of opera.tions is investigated in Section 5.3.6. Note
that while inspection has revealed the small peak between cycles 350 and
420, a dip of similar size between cycles 820 and 910 has not been detected.

30 UPDATES

Metric Lazy Eager
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active ta.sks

2973
2783

46515
10373

1.15

2973
2792

46524
[226

10.34

Elapsed-time reduction factor 8.46.
Adjusted average concurrency 8.99 tasks.

The updates require more work in total than the lookups because each one
is constructing a. new version of the data.base. The eager manager constructs
entities that are not demanded and hence does slightly more work and uses
slightly more memory tha.n the lazy manager. Under the assumption that
all of the database will ultimately be realised this work is not wasted. Again
the adjusted average concurrency and elapsed-time reduction factors are re
assuringly close. The discrepancy between these two statistics is consistent
for all programs; the elapsed-time reduction factor is always less than the
adjusted average roncurrency.

5.3.4 Effect of Database Size

Primary Memory

If all of the database resides in primary memory the time to complete an
operation is proportional to the log of the database size. Hence an operation
on a larger database takes longer to romplete. As a result more tasks a.re
able to pass the hottleneck at the root before the first completes and greater
concurrency is possible. As in a smaller database, once the first operation

54 CHAPTER 5. CONCURRENCY

completes, earlier operations will complete at the same rate as they pass the
bottleneck In consequence the manager delivers the results of operations on
the larger database at the same rate as on a smaller database.

For example, consider a database only an eighth of the size of the account
database. Such a database-tree has only 7 levels and contains only 64 entities.
The following graph plots the a.<:tive processes when the stream of 30 lookups
from Section 5.3.2 is consumed by two instances of the manager. One instance
processes the lookups against the large database and the other against the
small database.

Active Figure 5.3 Large and Small Databases
Tasks

13.5

10

-----------~ , , . , ,,,, ,4 ,, ,

" •
140 190 Machine430 603 681

Cycles
First Lookup Output
Completes

Key

L~Tree /
Small Tree

Note that the first lookup in the larger database takes longer to complete
and hence the time to reach maximum concurrency is greater. This larger
set-up time results in a small 13% increase in elapsed time. Also note that
the last lookup starts at the same cycle in both instances. This fact and the
small increase in elapsed-time confirm the expectation that opera.tions on a

55 CHAPTER 5. CONCURRENCY

large databa.se occur at the same rate as in a small database.

Secondary Storage

If the lower levels of the database-tree are in secondary storage then the time
to perform a.n operation is greatly increased because of the disk access delay.
The time to perform a disk access is typically three orders of magnitude
greater than the time required to perform a machine instruction. As a. result
on the order of hundreds of tasks can pass the bottleneck at the root in the
time taken for the first operation to complete.

If the operations depend on each other it is reasonable to assume lhat the
path to any shared entity is preserved in cache. In this case the first operation
retrieves the path into cache and subsequent operations occur in relatively
high-speed primary memory. If the operations are independent then multiple
disk-accesses can occur concurrently.

The effect of disk accesses is difficult to demonstrate in the prototype man
ager because all of the database-tree resides in memory. To simulate the
effect of a disk access to retrieve the leaves of the tree a delay function has
been added to the lookup and update operations so that they wail for ap
proximately 750 cycles on demanding a leaf. The update operations are made
slightly more eager to force them to perform the delay-function even when
the value of the updated entity is not demanded. The additional concur
rency this introduces is apparent in the average concurrency for the 'lazy'
version of the program. When only 15 updates with a disk-delay are directed
to different entities in the datahase the following information is recorded.
The LML program for the updates is in Appendix A.2.3, and the bulk data
manager with a simulated disk delay is in Appendix A.1.2.

56 CHAPTER 5. CONCURRENCY

Figure 5.4 15 Updates with Disk Delay

Active
Tasks

22

19

5.8

410 620

15 UPDATES WITH DISK DELAY

Iloo]449 Machine
Cycles

Output

Metric Lazy Eager
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

6123
5917

70294
15942

lAO

6123
6167

70453
1449

15.89

Elapsed-time reduction factor 11.00.
Adjusted average concurrency 11.35.

The 22 active tasks represent 15 'disk accesses', the output of each update
being eagerly constructed and some calibration error.

57 CHAPTER 5. CONCURRENCY

5.3.5 Data Dependent Exclusion

Data dependency has several desirable properties a.s an exclusion mecha.nism.
A fuller investigation oC data dependent exclusion would be worthwhile and
might include a comparison with the conventional methods of locking, opti~

mistic concurreucy control and tirne~stampjng. Recall from Subsection 5.3.1
tha.t a process depending on data written by another is suspended until the
data it requires exists. In contrast to locking l optimistic concurrency ronteol
and time-stamping, the synchronisation occurs within the parallel evaluator
and no additional mechanism is required.

Some general properties of data dependent exclusion are as follows. Deadlock
is avoided because the manager function allows only one process to have
control of the database at a time. That is, one function is applied to a
version of the database at a time. Data dependent exclusion has va.riable
granularity. Any part of the database can be 'locked" the entire database, a
class of data~ an entity, or a field within an entity. The part 'locked' is just
that part being constructed by the current transaction function. [f the part
being constructed is itself a structure, then pipelining occurs automatically
between the constructor-task and a consumer-task, just as tree nodes can be
consumed as they are produced. This property could be useful to support
Unix-like byte-stream files.

Data dependent exclusion allows an unusual degree of concurrency between
read- and write-transactions. This concurrency is facilitated by the multiple
database versions generated under a non-destructive update regime. Con
sider two transactions that appear adjacent in the manager's input stream.
The second transaction is said to overtake if, although it is applied to the
database after the first, it may complete earlier in real time.

All transactions depend on the preceding write·transaction for at least the
root node, and possibly other internal nodes. However, because the entities at
the leaves are most likely to be in secondary storage, the dependence between
the entities accessed by two transactions is significant. Clearly a transaction
that does not read or write any entity read or written by a preceding trans
action does not depend on the entities of the earlier transaction and can
overtake. Let us tberefore only consider read- and write-transactions that

CHAPTER;. CONCURRENCY 58

read and write the same entity. For simplicity the transactions are taken to
be a single lookup and a single update. To emphasise the effect of exclusion,
lookup and update operations with a 'disk delay' are used and the effects
of caching a.re ignored. The LML programs for the following four pairs of
transactiom can be found in Appendix A.2.4.

Examples using larger transactions can be found in Section 7.3.1. It is im
portant to note that a write-transaction only writes entities, it does not
read them beforehand. This sort of write-transaction is useful if the new
value of the entity does not depend on the existing value. For example, such
write-only transactions might be used to maintain a class of personal identity
numbers (pins).

Write-Transaction followed by a Read-transaction

In Section 5.3.1 data dependency was shown to prevent a read~transaction

from overtaking a write-transaction. Consider an update of an entity fol
lowed by a lookup of the same entity. The eager manager introduces some
concurrency because the lookup can consume the new path in the tree that
the update is creating. However, once the leaf of the tree is reached, the
lookup becomes blocked until the update has performed the 'disk access' to
create the new entity. Only once the entity exists is the lookup reactivated
to perform its 750 cycle ldisk access'. As a result the update completes after
1070 machine cycles and the lookup after 1850 cycles. Recall that the lazy
version is made slightly eager to force the disk~access delay to occur. The
full statistics are as follows.

Metric Lazy Eager
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

788
767

20643
2044
1.39

788
777

20655
1850
1.55

Elapsed-time reduction factor 1.10.
Adjusted average concurrency 1.12.

59 CHAPTER 5. CONCURRENCY

Read-Transaction followed by a Write-transaction

In contrast, a write-transa.ction can overtake another read-transaction be
ca.use there is no data dependency between them. As the database is un
changed by the read-transaction it is immediately available for proceising by
the write-transaction. The write-transaction can construct a new version of
the database without disrupting the preceding read-transaction which is pro
ceeding on its own version of the database. Although in real time the read
transaction may complete after the write-transaction, logically it occurred
first, i.e. on an earlier version of the database.

When the manager processes a lookup followed by an update the following
statistics are obtained. The reduction in elapsed time and degree of concur
rency indica te that the lookup and update occur concurrently.

Metric Lazy Eager
Number of super~combinatorreductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

788
750

20637
2016
1.39

788
750

20637
1070
2.62

Elapsed-time reduction factor 1.88.
Adjusted average concurrency 1.88 tasks.

Read-Transaction followed by a Read-transaction

It is not surpnsmg that a read-transaction can overtake a preceding read
transaction. As before, the database is immediately available for processing
by the following read-transaction. When the manager processes two lookups
the following statistics are obtained. Again the reduction in elapsed time
and degree of concurrency indicate that the lookups occur concurrently.

60 CHAPTER 5. CONCURRENCY

Metric Lazy Eager
Number of super-combinator red-udions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Avera,ge number of active tasks

757
723

20220
1913
1.38

757
723

20220
967

2.73

Elapsed-time reduction factor 1.98.
Adjusted average concurrency 1.98 tasks.

Write-Transaction followed by a Write-transaction

Most unusually a write-transaction can overta,ke another write-transaction.
Recall that the write-transa.ctions only write entities, they do not both read
and write. As described in Section 5.3.3, an update following an earlier
update to the same entity must wait until the Dew path in the database
being created by the preceding update exists. However, once the entity at
the leaf has been located, both updates can independently construct a new
version. Overtaking at the leaves is significant because they are the part of
the da.tabase most likely to be on secondary storage. The entity written by
the first update will not be visible to transactions after the second update. It
will, however be visible to any lookups between the first and second update.

Wheh the manager processes two updates directed to the same entity the
following results are obtained. As before, the reduction in elapsed time and
degree of concurrency indicate that the updates occur concurrently.

Metric Lazy Eager
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

819
794

21062
2147
1.39

819
804

21072
1129
2.69

Elapsed-time reduction factor 1.90.
Adjusted average concurrency 1.94 tasks.

CHAPTER 5. CONCURRENCY 61

Summary

In summary, let us compare the concurrency between read- and write-transactions
permitted by data-dependency with that permitted by conventiona11ocking
schemes. The following table gives the concurrency permitted by each scheme

Concurrency Permitted Locking
Data-

Dependency
Read followed by Read
Read followed by Write
Write followed by Read
Write followed by Write

Y
N
N
N

Y
Y
N
Y

However a conventional write-lock permits the process in possession of the
lock to both read and write tbe entity locked. A read immediately followed
by a write is a common sequence. This effect is achieved in the data manager
by constructing a transaction-function that performs both a lookup and an
update. For example the bank deposit transaction has this form. This entails
following the path in the database to the entity twice. A more efficient
solution is to introduce a new bulk-data operation that follows the path to
the entity only once, and then replaces the entity with a function of itself.

Data dependency perm.its greater concurrency between lookups and replace
operations than a locking scbeme does. This is because a replace opera.tion
can inspect the original version of the entity and construct a new version
of it without disturbing a lookup that is proceeding on the original version.
An important use of this concurrency is given in Section 7.3.1. The con
currency between replace and lookup opera.tions permitted by locking and
data-dependency is summarised in the table below.

Concurrency Permi t ted Locking
Data~

Dependency
Read followed by Read
Read followed by Replace
Replace followed by Read
Replace followed by Replace

Y
N
N
N

Y
Y
N
N

62 CHAPTER 5. CONCURRENCY

5.3.6 Typical Mix

The preceding Sections analyse the behaviour of sequences of lookups, se
quences of updates and the interaction between lookups and updates. In
practice a bulk~data manager will process a mixture of operations such as
inserts, deletes, lookups and updates. The exact composition of the mi;<ture
will depend on the nat ure of the applications the manager is supporting.
The statistics below are collected when the manager processes a mix of 30
inserts, deletes, lookups and updates directed to different entities throughout
the database. The mixture, given in Appendix A.2.5, contains 11 lookups,
10 updates, 5 inserts and 4 deletes.

Figure 5.5 Typical Mix
Active
Tasks

320 20 680 930 1050 1139 Machine
Cycles

Output

63 CHAPTER 5. CONCURRENCY

MIXTURE OF 30 OPERATIONS

Metric Lazy Eager
Number of super-combinator reductions
Number of delta.-reductJoDS
Number of graph nodes allocated
Number of machine cycles
Average number of aetJve tasks

2814
2397

44363
8951
1.14

2814
2564

44470
1139
9.74

Elapsed-time reduction factor 7.86.
Adjusted average concurrency 8.54 tasks.

Let us use this mix to make a tentative ~tirnate of the effect of the bottleneck
in a. real concurrent machine. Let us assume that all of the database resides
in primary memory. In the above example the 30th operation gains control
of the root after 680 machine cycles and hence the average time for each
operation to clear the bottleneck is approximately 23 machine cycles. IT each
transaction comprises 10 operations this gives a total delay of 230 cycles per
transaction.

A machine cyde takes the same length of time as a super-combinator re
duction because an agent in the hypothetical machine may perform a super
combinator reduction in a cycle. The rate that super-combinators can be
reduced depends primarily on the underlying hardware, the compiler tech
nology and the size of the combinator. With good compiler technology, on
Motorola 68030 hardware (e.g. a Sun 3/50), approximately 50000 super
combinators can be reduced per second. If each processing agent in the hy
pothetical machine has this processing speed then the manager will process
in the order of 102 transactions per second. This rate compares favourably
with the transaction processing rates reported for existing machines with
imperative storage summarised in Section 3.2.3 [75J.

64 CHAPTER 5 CONCURRENCY

5.4 Transaction Processing

5.4.1 Drawbacks

There are some problems with the bulk data management methods proposed
in Chapter 4 that make the parallelism obtainable using just eager construc
tors inadequate. Maintaining balance in the database-tree restricts concur~

reney. As demonstrated in Subsection 4.3.1, insertion may require rotations
anywhere along the path to the inserted record. Usually such rotations occur
deep in the tree, near the point of insert.ion. Occasionally, however, the root
of the tree is rotated. It is only possible to ascertain whether or not the root
needs rotation after all the other rotations have taken place. As a result,
an insert operation must retain control of the root throughout its execution,
preventing any other concurrent operations.

A similar problem arises with total transactions, such as deposit from Subsec
tion 4.4.1. A total transaction retains control of the database throughout its
executioll. This is because neither the original nor the replacement database
can be returned until the decision whether to abort or not has been taken.
Therefore no other transaction may access any other part of the database
until this decision has been made.

To illustrate the occurrence of these problems, consider the manager consum
ing five transactions: three balance enquiries and two deposits. Some paral
lelism is possible because the balance enquiries, or lookups, can be overtaken.
However, the total deposit transactions prevent subsequent transactions from
starting until they have committed or aborted. The resulting serialisation of
the operations is demonstrated by comparing the evaluation of the transac
tions with the evaluation of a sequence of lookups and updates that perform
the same operations as the transactions, but without being packaged into
transactions with a commit/abort predicate. The LML programs are given
in Appendix A.3.l.

65 CHAPTER 5. CONCURRENCY

FIVE BANK TRANSACTIONS

Metric
Individual

Operations
(Eager)

Transactions
Number of super-combinator reductions
Number of delta-reductions
Number of gra.ph nodes allocated
Number of machine cycles
Average number of active tasks

521
478

18807
428

4.43

559
504

19243
1216
1.67

The total tra,nsactions reduce the concurrency by a factor of 2.65. Thefollow
ing Sections outline and demonstrate methods of overcoming the concurrency
restrictions.

5.4.2 Optimistic If

Description

Often total transaction functions have the {ann

if predicate db then transform db else db.

In many applications the predicate will usua.lly be true, allowing the transac
tion to commit. In rarer cases the predicate will be false and tbe transaction
will abort. Normally the predicate is evaluated and only when its value is
known is one ofthe branches selected for evaluation. Advantage can be taken
ofthe supposition that the then branch is most likely to be cbosen by starting
evaluation of the then branch immediately.

A new speculative parallelism primitive caned. optimistic if or optij is pro
posed.. When aptij is evaluated. both the predicate and the then branch are
evaluated. When, as in most cases, the pred.icate eventually eva.luates to
true, the evaluation of the then branch is well on the way to completion. If
the predicate is false, evaluation of the else branch is started. as usual and
evaluation of the then branch is arrested..

66 CHAPTER;, CONCURRENCY

The only difference between opti[and If is operational; they have identical
denotational semantics. The advantage gained from using opti[is that in
most cases concurrency has been increased and the elapsed time to evaluate
a total transaction has been reduced. The disadvantages are common to
speculative primitives. When the else branch is selected, it may be difficult
to kill processes in the then branch. Unnecessary computation may also be
performed in some cases, but this is not serious as these cases are assumed
to be rare. Also, an implementation may give speculative processes a low
priority, to be performed if there are spare processors but not otherwise.

It may appear desirable to evaluate both branches of a conditional. This is
not recommended as the number of speculative processes would be exponen
tial in the depth of nesting of optimistic ifs. Because opti[only evaluates
one branch, the likely one, the number of speculatjve processes is linear in
the depth of nesting. As a result the machine is less likely to be swamped.

The deposit transaction from Section 4.4.1 is too small to provide a good
example of the immedjate benefits of opti[. Consider instead a 'long' trans
action that performs four updates, and commits only if all of the updates
succeed. The transaction optimistically performs all four updates concur
rently. Although the operat.ions of a single transaction can be evaluated
concurrently, a subsequent transaction is blocked until the preceding trans
action has completed. The statistics gathered when the manager processes
the two 'long' transactions from Appendix A.3.2 are given below. In the
active task graph overleaf each of the two plateaus represents the updates
of a transaction being performed in parallel. Also note that the optimistic
version has performed slightly more reductions than the eager version.

TWO OPTIMISTIC TRANSACTIONS

Metric Eager Optimistic
Number of super-combinator reductions
Number or delta-reductions
Number of graph nodes allocated
Number of machine cycles
Ayerage number of active tasks

825
734

22453
2913
1.14

889
815

27871
894

3.97

67 CHAPTER 5. CONCURRENCY

Elapsed-time reduction factor 3.26.
Concurrency increase factor 3.48.

Figure 5.6 Two Optimistic Transactions

Active
Tasks

6.6

60 100 150 400 470 570 800 889

Machine
Cycles

Note that optimistic if is not the only means of introducing concurrency
within a transaction. A strictness analyser could ascertain that the commit
predicate requires the result of all of the updates, and hence that lhey can
be safely evaluated in parallel.

For larger transactions greater concurrency can be obtained. For eKample,
an optimistic transaction with 10 updates increases concurrency by a factor
of 5.60 and reduces the elapsed time by a factor of 5.18. However} because
concurrency is only possible within a transaction, the amount of concurrency
is bounded by the number of operations in the transactions process~d.

CHAPTER 5. CONCURRENCY 68

Run-time Transformation

Concurrency can be increased further by allowing subsequent transactions to
start on the assumption that the present transaction will commit. Loosely
speaking a sllhsequent transaction is applied to the database resulting from
the present transaction. If the present transaction is total, and the then and
else keywords are omitted, this can be sketched

! (opti! p x y).

It is reasonable to assume that a transaction function will examine the
database, i.e. that / is strict. Recalling that optij has identical semantics to
if, the following distribution law can be used. If / is strict or p terminates,
then

! (opti! p x y) = opti! p (f x) (f y).

The evaluation of the subsequent transaction, is initiated on the tentative
result of the current transaction, (f x). The required transformation of a
reduction graph is shown in Figure 5.7. The transformation ig performed
whenever a function demands the value of an optimistic if. Nate tha.t no
results can he returned from the subsequent transactjons until the predicate
is eva.llLated. If the predicate is false, then the evaluation of the else branch
will restart subsequent transactions.

69 CHAPTER 5. CONCURRENCY

Figure 5.7 Optimistic Transformation

fA
===> ,,~,

f x..~ p

If the two 'long' transactions are evaluated using the transformation the sec
ond transaction is no longer blocked awaiting the completion of the first. This
is reflected in the results below, where the graph no longer has two separate
plateaus representing the two transactions. Instead there is a single pla.teau
representing both transactions occurring concurrently. The metrics record
the increase in concurrency (rom an average of 3.97 tasks in the optimistic
case to 6.13 tasks with the transformation. Similarly the elapsed time to
evaluate the transactions has dropped from 894 machine cycles in the opti
mistic case to 627 cycles with the transformation. Note that the elapsed-time
reduction factor is significantly lower (15%) than the concurrency increase
factor because the evaluation using optimistic if and the transformation has
performed more reductions (11%) than the eager version.

Metric Eager
Opti

mistic
Opt. +
TransL

No. of super-combinator reductions
No. of delta-reductions
No. of graph nodes allocated
No. of machine cycles
Average n.o. of active tasks

825
734

22453
2913
1.14

889
815

27871
894
3.97

889
847

60290
627

6.13

CHAPTER 5. CONCURRENCY 70

Elapsed-time reduction factor, over eager evaluation, 4.65.
Concurrency increase factor, over eager evaluation. 5.38.

Figure 5.8 Two Optimistic Transactions with Transformation

Active
Tasks

10

6.7

2.2

50 100 240 420 629 Machine
Cycles

Space Consumption

In the above example a total of 123 optij transformations are performed. The
most significant feature of the results is that the number of nodes allocaled
has doubled. The additional space is allocaled when an optimistic if is shared.
Consider the reduction of the following app!ic:ation.

(~a.a + a) (opti! p • y)

~ ({3 reduction)

71 CHAPTER 5. CONCURRENCY

(ophj p x y) + (opti! p x y)
::::} {Transformation}

(optij p (+x)(+y)) (opti! p x y)
::::} {Suppose p evaluates to true}

(+x)(opti! True x y)
::::} {Transformation}

optif True (x+x) (x+y)
=> {Optif}

x+"

The additional nodes are required to construct a new segment of graph that
represents the expression optij p (+x) (+y). The optimistic if is evaluated
by each expression that shares it and this corresponds to a caJl-by-name
strategy. However, most of the laziness is retained as p, x and yare all
shared.

Much of the additional allocation cost can be averted. by using a strictness
analyser. At present the transformation is performed whenever a strict prim
itive demands the value of an optimistic conditional. In a program that has
been annotated by a strictness analyser the transformation can be applied
whenever a strict function is encountered. As a result the optimistic con
ditionals are distributed through larger functions, and hence fewer transfor~

mations are required. This can also be viewed as preserving the sharing
structure of strict functions. Recall that the transactions are in fact strict
as they inspect the database. For example, if! indicates a strict function,
the above application is reduced as follows and only one transfonnation is
required.

(-Ia.a + a)! (opti! p x y)
:::;. {Transformation}

(optif p «(-Ia.a + a)! x) «(-Ia.a + a)! y)
:::;. {Suppose p evaluates to true}

(-Ia.a + a)! x
=> {p reduction}

x+x

CHAPTER 5. CONCURRENCY 72

Further Examples

Optimistic if can also improve the sequence of deposits and balance enquiries,
as the following results show. The previous resolls are duplicated for com
parison. Note that optimistic evaluation regains 70% of the concurrency
available when the operations are performed individually.

FIVE BANK TRANSACTIONS

Metric
Individual

Operations
Eager

Transactions
Optimistic

Transactions
No. of super-combinator reductions
No. of delta-reductions
No. of graph nodes allocated
No. of machine cycles
Average no. of active tasks

521
478

18807
428

4.43

559
504

19243
1216
1.67

600
688

34000
838
3.08

Elapsed-t.ime reduction factor, over eager evaluation, 1.45.
Concurrency increase factor, over eager evaluation, 1.84.

If the predicate in a conditional fails, optimistic evaluation wiU perform some
unnecC9sary work. However, in all but the most pernicious instances, the
concurrency made possible by optij will stiU reduce the time required to
evaluate transactions. Consider the case of two 'long' transactions where
the second update of the second transaction fails. The LML program can
be found in Appendix A.3.3. The following statistics show that, although
optimistic evaluation performs 32% more super-combinator reductions than
eager evaluation, it reduces the time to evaluate the transactions by a factor
of 2.35. The elapsed~time reduction factor differs significantly from the con
currency increase factor because many of the additional tasks made possible
by optimistic evaluation have performed unnecessary rednctions.

73 CHAPTER 5. CONCURRENCY

OPTIF FAILING

Metric Eager Optimistic
Number of super-combinator reductions
Number of delta-reductions
Number of graph nodes allocated
Number of machine cycles
Average number of active tasks

675
571

20974
2317
1.14

889
783

27314
986

3.62

Elapsed-time reduction factor, over eager evaluation, 2.35.
Concurrency increase factor, over eager evaluation, 3.18.

5.4.3 Friedman and Wise If

As an alternative to optimistic if, Friedman and Wise if also offers a solution
to the problem of total transactions. As described before, total tramiletions
retain control of the root of the database until after the decision to commit
or abort has been made. In most cases the bulk of the database will be the
same whether or not the transaction commits. This common, or unchanged,
part of the database will be returned whatever the result of the commit
decision. If there were some way of returning the common part early then
concurrency would be greatly increased. Transactions that only depend on
unchanged data can begin and possibly even complete without waiting for
the total transaction to commit or abort.

The common parts of the database can he returned early using /wif, avariant
of the conditional statement proposed by Friedman and Wise [36]. TD define
the semantics of /wif let us view every value as a constructor and a s~quence

of constructedalues. Eery member of an unstructured type is a zero-arity
constructor - the sequence of constructed value::! is empty. Using C to
denote a constructor, the semantics can be given by the following reduction
rule::!. The reduction rules are in a form that differs from Friedman and
Wise's, but makes a later definition clear.

CHAPTER~ CONCURRENCY 74

/wif Trut x y::::;. x
/wi/ Fa/$e x y:::} y

fwif p Ie xo ... x.) (C Yo ... Y.)* C (flUif p '" ",,)···(fwif P x. Y.)

The third mle of /wi/ represents a. family of rules, one for each constructor
in the language. The third rule distributes /wi/ inside identical constructors,
allowing the identical thw and else constructor, C, to be returned before
the predica.te is evaluated. As an example, consider a conditional that selects
between two lists that have 1 as the first element.

/wi! p (cons I %8) (cons I ys)

{/wif 3)

cons (fwif p I I) (fwif P xs ys)

~ {flUif 3}

cons 1 (fwi/ p xs ys)

Note how the first element of the list is now available.

Semantically fwif is identical to the standard if except when the predicate
fails to terminate, i.e. has value.l. Normally a conditional does not terminate
if its predicate fails to terminate, i.e. if is strict in its first argument. In
contrast fwif returns the common parts of its then and else branches, even if
the predicate does not terminate. If the two branches have identical values,
then this will be the value of the conditional irrespective of the termination
of the predicate. The meaning of /wif can be described in domain theory as

fwif P x Y = (if p x y) u (xny).

To implement fivif the predicate and the two conditional branches are evalu
ated concurrently. The values of the conditional branches are compared and

75 CHAPTER.5. CONCURRENCY

common pacts are returned. When a. part is found not to be common to
both branches the evaluation of those branches ceases. Once the predicate is
evaluated, the chosen branch is returned and the evaluation of the other is
canceUed. This strategy amounts to speculative parallelism, the conditional
branches being evaluated in the hope that pa.rts of them will be identical.

Note that the third reduction is not as inefficient as it at first appears. When
'fwi! p' is distributed over the constructed values every occurrence of p shares
the same instance of the predicate. Lazy evaluation ensures that the predi
cate is evaluated only once and its value is used everywhere. The reduction
of a fragment of graph representing the foregoing example is illustrated. in
Figure 5.9.

Figure 5.9 twit Reduction

/\ 7"\
,

ys

fwif p

twit p

Friedma.n and Wise if is a. known primitive and its a.pplication within the
ma.nager appears straightforward. It is not implemented in the prototype
database.

CHAPTER 5. CONCURRENCY 76

5.4.4 FWOF

Both opti! aJld fwif are employed to obtain concurrency in the presence of
total transadions. A natural extension is to combine them to produce a
primitive, /waf, that has a combination of their properties. A total trans
action constructed using /wo/ not only returns the common parts of the
database early but also optimistically produces tentative results and allows
other transactions to proceed on the tentative results.

The semantics of /wof can be defined by adding a family of reduction rules to
the definition of /wi!. Like the third reduction rule, the fourth rule represents
a family of rules, one for each pair, CU and C;, of different constructors of
the same type.

fwof True x y "" x
fwof raise x y "" y
fwof p (C ", ... xo) (C Yo ... Yo) ""

C (fwof p '" !i» ... (fwof P Xo Yo)
fwaf p (CO XQ ... xo) (C, Yo ... Yo) ""

optif p (CO XQ ... xo) (C, Yo ... Yo), if CO,. C,

Because opti! has the same semantics as if it is not surprising that fwof
has ideutical semantics to fwif. This is easy to prove by case analysis on
the va.lue of the predicate. The new reduction rule introduces an operational
distinction between fwif and fwo/. The new rule is applied when the then
and else branches have different values. At this point in fwif, the evaluation
of the different branches ceases. In fwof, however, An optimistic assumption
is made that the then branch will be selected, and its evaluation is contin
ued. Incoming transactions may also be distributed into the conditional,
permitting them to start on the tentative results of the original transaction.

5.4.5 Balancing

To guarantee access time the tree must be balanced. Maintaining balance
reduces concurrency, as described above. One method of alleviating this

77CHAPTER 5. CONCURRENCY

problem would be to leave the tree unbalanced after an insertion, and peri
odically schedule a transaction to rebalance the whole tree. Unfortunately
rebalancing the tree requires exclusive acCess to the database for some time.
To minimise this problem conventional databases maintain the balance in~

crementally, as part of performing transactions.

To allow incremental balancing a new non-deterministic primitive called
ButIfYouHave Time was proposed in [5J. The expression

(a ButlfYouHaveTime b)

returns the value b, given sufficient time to compute it, but returns a if an
answer is required before b has completed. An insert function that preserves
balance if given the time can be written

insert e' (Node it k rt) = n ButIfYouHaveTime (rebalance n), if key e.' < k
where

n=Node (insert e' It) k rt

If the newly inserted part of the database is accessed while rebalancing is
in progress the rebalancing is cancelled. and the unbalanced tree is made
availabLe immediately. If, however, the newly inserted part is not accessed.
the balancing will complete. The behaviour of this version of insert mimicks
the conventional approach of treating local rebalancing as a 'spa.re~time' task.

Optimistic if can also be used. to permit concurrency while maintaining bal
ance. Eacb node may be assumed to be balanced, allowing subsequent trans
actions to proceed. This optimistic assumption will be true for most nodes
in a typical B-tree of large order. The insertion function can be written as

insert e l (Node It k rt) = optif (balanced n) n (rebalance n), if key e' < k
where

n = Node (insert e' It) k rt

CHAPTER 5. CONCURRENCY 78

This solution has several advantages over ButIfYouHaveTime. The tree is al
ways balanced, and this guarantees response time. Also, neither a new prim~

itive nor non-determinism is introduced. When rebalancing is required and
a subsequent transaction demands the rebalanced node ButIfYouHaveTime
has a speed advantage because it abandons the rebalancing whereas optij
completes the balancing.

Chapter 6

Database Support

This Chapter covers the design of a more realistic functional database. The
facilities illustrated are access to multiple classes, views, security, alterna
tive data-structures and support for data models. A class of data structure
that cannot be maintained under a non-destructive update regime is also
encountered.

6.1 Introduction

Efficient and concurrent a.ccess to a. single class of data was demonstrated
in the preceding Chapters. How to extend the implementation to support
multiple classes is described in this Chapter. Different views of the data
a.re constructed and restricted views ca.n be used to maintain the security of
the da.ta. The potential use of da.ta structures other than trees is described,
including the provision of seconda.ry indices. The implementation is shown
to support both the relational and the functional data models. Finally it is
shown that <closely-Hnked' grapb structures cannot be maintained efficiently
under a non-destructive update regime. Several of the extensions described
above use abstract data types in a conventional, but purely functional man
ner. This demonstrates that a type system developed for procedural database
programming languages can be used in functional database languages.

79

80 CHAPTER 6. DATABASE SUPPORT

SOIne databa.'ie issues not addressed a.re resilience, consistency constra.ints
and a..<:tive database facilities. These are not addressed because of time
constraints ratber than any intrinsic difficulty. For example, the multiple
versions of a. databa.se appear to make a checkpointing form of resilience
particularly easy to implement.

The remainder of this Chapter is structured as follows. Section 6.2 describes
bow multiple classes of data can be stored. Section 6.3 describes how sffurity
and different views of the data can be implemented. Section 6.4 describes
bow data s~ructures other than simple trees can be supported. Section 6.5
describes how the implementation can support data models.

6.2 Multiple Classes

A database must support classifica.tion, i.e. many homogeneous sets of entities
must be stored. Different data models view these sets as relations, classes
or entity sets. To support multiple classes the manager function remains
unchanged but the database becomes a tree of trees, as depicted in Figure
6.1. This approach has a pleasing generality as any operation that can be
applied to an entity can be applied to a class. For example, a class can be
inserted or updated.

The entities belonging to a class and the operations permitted on the class
Can be encapsulat~d ~ a.n abstract data type. As described in Subsection
4.2.2, Lhe tree structure is polymorphic, i.e. it is independent of the entities
stored. As a consequence, a single generic data manager can be constructed.
An instance of the manager can then be constructed for each different class
of da~a simply by parameterising the generic data manager with the key and
entity types l a null value and comparison functions.

81 CHAPTER 6. DATABASE SUPPORT

Figure 6.1: A Multiple-Class Database

d~

, ,, ,, ,

acet cust

,\ ,\ 1\ ,. \ I \ , \ , \ , \
I' I \ I \ ,\ , \ , \ I \ "

66666660 66666660

KEY
Database tree nodes IT]
Qass tree nodes o
Entities a

An example of such a generic data manager is included in Appendix B. Two
instances of the manager are coMtructed. Bank account entities are stored
in the acet structure and customer entities are stored in the cust structure.
The manager is constructed in a purely functional subset of standard ML
and uses the functor and signature mechanisms provided [45].

A detailed explanation of the program is not warranted because it is not
uncommon to use abstract data types to encapsulate database structure and
functionality [2, 21, 66]. The data manager does, however, demonstrate how
multiple classes can be supported by a functionaJ. database. It also shows
that the type mechanisms developed for procedural database programming
languages can be used in functional database languages.

Because all of the classes are stored in a tree with a common root node any

CHAPTER 6. DATAB.~SE SUPPORT 82

transaction that accesses more tban one class will see them in a consistent
stale. That is, logically each transaction is granted exclusive access to the
entire database. Means of restricting this access are described in the next
Section. Clearly a transaction must select the classes it needs to access.
For example, if lookup' is the original retrieval function then the function to
retrieve a.n account entity must be written

lookup k' d = lookup' k' (lookup' 'Aect' d)

Although not actually done in the program in Appendix B, the class selec
tion can be incorpora.ted into the parameterised data manager in an obvious
manner. Assuming this is done, the deposit function from section 4.4.1 be
comes

depusit and = acet.update (dep m n) d, if (isok m)
:::: (Error, d), otherwise

where
m :::: acct.lookup a d

6.3 Views and Security

Often a user's model of the data, or view differs from what is actually stored.
The user may be interested in only part of the data, for example just the bal
ances of bank accounts. Conversely the user's view may contain intensional
data, i.e. data not actually stored but constructed from the stored data. For
example a customer's age might be calculated from his or her date of birth.

A related requirement is security. Not all users should have access to every
operation on all of the data. For example, a customer's credit limit might not
be visible to a teller. Essentially database security allows a user to perform

• a restricted set of operations on

• a restricted set of attributes of

83 CHAPTER 6. DATABASE SUPPORT

• a. restricted set of entities in

• a. restricted set of cla.sses.

In conventional data.ba.ses, security is often provided by views. The pa.
rameterised data. ma.nager in Appendix B is extended using ML functors to
construct two views of the account class. The atmv view is suita.ble for an
automatic telling machine. The ccv view is suita.ble for a. credit controller.
New views can be a.dded without changing the data. manager or existing
views. This independence is termed logical data independ€nc€ [91J.

An example of jntensional data is found in ccv where the safety margin on
a.n account is constructed from the current ba.la.nce and the overdraft limit.
An example of a. restricted set of operations is found in atmv where only
update and lookup are possible. An example of a restricted set of attributes
is also found in atmv where only the balance and account class are visible.
An example of a restricted set of entities is found in ccv where the credit
controller can only see those accounts with a balance less than £50. An
abstract data type encapsulating the entire database could be constructed to
restrict the classes visible.

As before the use of abstract data types to provide views is not unusual and
a detailed explanation is not warranted. The views constructed do, however,
demonstrate that both views and security measures can be easily provided for
a functional database. The views are a second example of the use of a type
system similar to that used in procedural database programming languages.

6.4 Data Structures

It is desirable for an implementation to support a rich set of data structures
to model real-world objects and their relationships. Most conventional file or
ganisations correspond to a persistent data structure. Th.is Section describes
some desirable structures and their practicality under a. non-destructive up
da.te regime.

84 CHAPTER 6. DATABASE SUPPORT

6.4.1 Conventional Structures

An unsorted list corresponds to a heap file orga.nisation [91]. A sorted list
corresponds to a sequential file organisation. The great expense of list update
was shown in Chapter 4. A list may, however, be used if it is short enough
to make lookup cheap and is seldom updated when a copy must be retained.

Conventional databases use dense and sparse indices. A dense index provides
an index on every entity in the class or file. An entry in a. sparse index
identifies several entities, typically as many as will fit on a disk block. Both
dense and sparse indices can be implemented in a functional database. A
dense index is a tree with individual entities at its leaves. A sparse index
is a tree with a list of entities at the leaves. In fact, the B-tree structure
recommended in Chapter 4 is a sparse index with additional propertie;. As
a consequence the costs of accessing dense and sparse indices are similar to
the costs for B-trees. Generic abstract data types can be constructed to
represent a list, a sparse index and a dense index.

Conventional database; also use hash files to provide fast, i.e. constant time,
access to data. Unfortunately there seems to be no cheap means of non
destructively updating hashed structures. Hash-file update seems to be
closely related to the aggregate update problem outlined in Section 4.2.1.
In the next Section a closely-linked data structure is encountered that can
not be maintained non-destructively. For a time and complexity penalty,
however, even these can be represented.

6.4.2 Graph Structures

The structures found in many databases are more complex than the tree
structures described in Chapter 4. A graph structure is common, i.e. one
with shared sub-structures. Nikhi! has noted that non-destructive update of
graph structures is expensive. The example Nikhil uses to illustrate this is
that of several course entities that share the same classroom entity. If the
seating capacity of the classroom changes, a new version of the classroom
entity must be constructed. A new version of the course entities that share
it must also be constructed to refer to the new classroom entity. 'In general

85 CHAPTER 6. DATABASE SUPPORT

the transaction programmer must explicitly identify and rebuild every path
from the root of the database down to the "updated" object' [67J. Let us
call this problem graph modification.

The cost of graph modification is not as high as it might initially appear.
Sometimes there are only a few, well~defined paths from the root of the
database to the "updated" entity. Secondary indices are a common database
structure with shared sub--structuree;, i.e. the entities pointed to by both
indices. In the next Subsection a secondary index is shown to require a single
additional access path to be maintained. As a result a secondary index can
be implemented at a reasonable cost in time, space and programming effort.

Further, update is the only operation that is seriously affected during graph
modification. The update regime is not significant for a lookup. The insert
operation is not affected because a reference to the common sub-structure
must be added to all of the entities that share it. It is demonstrated in the
next Subsection that all references to a deleted entity must be removed, or
a substantial complexity and access time penalty is paid.

The graph modification problem can always be avoided by using keys to
represent the graphical structure, rather than pointers. For example, if the
key of the classroom entity was stored in each of the course entities then
they need not be changed when a new version of the classroom entity is
created. Representing a graphical structure in this way costs access time
because, instead of simply dereferencing a pointer, an index lookup must
be performed. More significantly, using keys introduces complexity for the
programmer who must explicitly perfonn the lookup. The classroom entity
is no longer logically part of the course entities. A pernicious instance of the
graph modification problem is described in Subsection 6.5.3.

6.4.3 Secondary Indices

It is often desirable to retrieve data on more than one key. For example, in
addition to being able to retrieve an account entity by its account number it
may also be necessary to retrieve it by its holder's name. The conventional
means of providing this access is to have a secondaf1/ index on the account

86 CHAPTER 6. DATABASE SUPPORT

class that maps a customer's name to the list of account entities that the
customer owns. All accounts owned by a customer could be determined by
scanning the account class, requiring n block accesses. An index is much
faster, requiring only D(Jog n) accesses. The index, however, requires addi
tional space and must be maintained, for example when an entity is inserted.

Secondary indices can be supported in a functional database. The primary
and secondary indices appear as separate trees. However, the entities at the
leaves of the trees are shared. As a result, a functional multiply-indexed
tree ba.s the same space requirements as its procedural counterpart. Often a
secondary index wm be sparse, i.e. it will contain a list of pointers to entities.
Figure 6.2 depicts the acet and owns indices.

Because of the expense of non-destructive list update these indices work well
if the list is short or is seldom updated when a copy is required. The cost
is not as high as it might at first appear because the list elements are key,
pointer pairs and hence so small that many of them win reside on a single
block.

To ensure that the two indices share the same entities the tree manipulating
operations must be written with some care. In insert, for example, the new
entity must be added to both indices. If the secondary index owns is an
instance of the data manager parameterised to use a customer '5 name as the
key and have a Jist of accounts as the entity type, then the insert function
can be written as follows. Both indices point to the same account entity, 10,

because e is passed to both acet.insert and owns.insert.

insert 10 d = (d ,out/), if out' =J:. OJ(
= (d , out"), if out" =J:. Of(
= (d" ,out"), otherwise

where
(d' ,out') = acct.insert e d
(d" , out ll

) = owns. insert e d'

87 CHAPTER 6. DATABASESUPPORT

Figure 6.2 A Seconda.ry Index

d~

, ,, , , ,,

acel

KEY
Database tree nodes CD
Oass tree nodes o
Entities o
Index list nodes OJ

Let us examine the efficiency of operations on a. class of size n with m sec
ondary indic~. With the reference-counting optimisation, if the old database

88 CHAPTER 6. DATABASE SUPPORT

version is not to be preserved the operations have the same space costs un
der a destructive update regime as under a non-destructive regime. The time
costs of destructive and non-destructive index operations are summarised in
the following table and are amplified below.

TIME COSTS

Operation Destructive
Update

Non-destructive
Update

Joobp
insert
update
delete

O(log n)
O(mlogn)

O(log n)
O(logn) ORO(mlogn)

O(logn)
O(m log nj
O(m log nj
O(mlogn)

A lookup requires the same time under destructive and non-destructive regimes.
The path in a single index is followed with a cost of O(log 71). The insert
operation requires the same time under both regimes because the new entity
must be inserted into each of the m indices, giving a total cost of O(m log n).

Under a non-destructive regime updating an entity in a tree with a secondary
index is slower. More space will be required if the original version is to be
preserved or there is no reference· counting optimisation. Under a destructive
regime any index can be followed and the specified entity modified in place.
with a cost of only O(log n). The destructively modified entity will remain
visible from any other index. Under a non-destructive regime a new path
must be constructed in every index that references the updated entity giving
a total cost of O(m log n). A new version of the acet and owns indices is
depicted in Figure 6.3. Note how the original version of the index structure
can be preserved.

Under a. non-destructive regime deleting an entity in a tree with a secondary
index may be slower. Under a non-destructive regime the existing path must
be removed from every index that references the entity. A destructive deletion
can be performed by deleting the entity from every index, with a cost of
O(m log n). Alternately a destructive deletion can be performed by following
a single index and marking the entity as deleted., with a cost of just o(log n).
'This strategy, however, causes pointers to the deleted entity in other indices
to dangle - they point to an entity that no longer exists.

89 CHAPTER 6. DATABASE SUPPORT

Figure 6.3: A New Version of a Secondary Index

New

Original New

KEY
Oass tree nodes o
Entities o
Index list nodes OJ
New node @

Dangling pointers make moving entities and reusing the space freed by deleted
entities difficult [32,91]. If there are several pointers to an entity, then moving
the entity will cause pointers to dangle. Ullman's scheme disallows movement
altogether. This is a serious restriction because some structures require to
move entities - B-tree rotations are a good exa.mple. Dale describes an
indirection mechanism that permits movement but both complicates and
slows future operations. If the space originally alloca.ted to a deleted entity
is reused, a. da.ngling pointer may now point to the wrong entity. For this
reason the space occupied by deleted entities is not available for reuse in

90 CHAPTER 6. DAT.4BASE SUPPORT

Ullman's scheme. Date a.gain uses indire<::tion to reclaim most of the space
at the cost of slower and more complex operations. In summary, the cheaper
destructive delete introduces complexity and may slow future operations.

6.5 Data Models

A database management system must support a data model to enable the
users to reason about their data at a higher level than that of entities and
bulk data structures. The functional database supports both the relational
and the functional data models.

6.5.1 Relational Model

The rela.tional data model was defined by Codd [26], and underlies many
commercial databases [6,47,102]. Homogeneous classes of entities are viewed
as mathematical relations, i.e. sets of tuples. In the bank example the account
and cmtomer information can be viewed as the following relations.

CUSTOME:RS

Name Addr."s Phone D.O.

Blagg', S.
Bloggs, C.
Jones, F.

7 Bellevue Rd.
7 Bellevue Rd.
2 George Rd.

3345632
3345632
5649822

:

ACCOUNTS

Account n.o. Balance Class Credit
Limit

1035 -30 C 200
1040 200 B 50
1045 54 C 100

91 CHAPTER 6. DATABASESUPPORT

A new relation OWNS is introduced to associate customers with the ac
counls they own. Note that OWNS is many-many, a. customer may bave
many accounts and an account may be owned by many customers.

OWNS

Account D.O. Names
1035 Bloggs, C.
1035 Bloggs, S.
1040 Bloggs, S.

It is easy to provide support for the relational model using the functional
database described earlier. A relation is simply a tree. The entities slored
in the tree are tuples. The tree can be flattened to obtain the list of tuples
currently stored in the relation. This list of tuples can be processed to answer
ad hoc queries about the database. In Chapter 8 a list-processing notation
is presented and proved to be relationally complete, i.e. to have at least the
expressive power of the relational calculus. Chapter 8 also describes how the
uniqueness property imposed by the relational model can be enforced using
a list duplicate-removal function.

To implement tbe scheme outlined above a flatten function must be incor
porated into the bulk data manager. Suitably parameterised instances of
the bulk data manager are also required to store the relations. If these are
named customer, account and owns, and Db is the type of the multiple-class
database, then the following abstract data type provides a relational bank
environment. The data type is given in standard ML, with a signature that
specifies the interface and a. structure that implements the signature.

signature BANl(=
sig

type Customer (* Type of a customer luple*)
val customers : Db _ list Customer

type Account
val accounts : Db ---j. list Account

92 CHAPTER 6'. DATABASE SUPPORT

type Own

val owns : Db --. list Own

end;

structure bank : BANI< =
struct
(*Import structures giving access to the classes of dala*)

structure c = customer
structure a = account
st;uctUrt 0 = own

type Customer = c.bb-.Rt (*Type from mgt" instance.)
fun customers d = c.flatten d

type Account = a.bkr.Rt
fun accounts d = a.flattEn d

type Own = o.bkr.Rt

fun owns d = a.flatten d

end;

Note tb.at the relation names, such as customers, are not bound to a list
of tuples. Instead they are bound to a function that, when applied to the
database, will return the list of tuples currently stored in the relation. Sec
tion 8.3.2 illustrates how this simplifies tbe task of expressing a query as a
transaction function, i.e. a function of the database.

New relations can be constructed and stored for future use. A suitably
parameterised instance of the bulk data manager is required.. This must be
inserted as an, initially empty, element of the multiple class database. The
new instance might be called new. If (f d) is an expression that constructs
the Jist of tuples that is to reside in the new relation, then tbe following
function will construct a new tree containing the elements of (f d).

maken,," d = foldl n',".;""erl d (f d)

93 CHAPTER 6. DATABASE SUPPORT

Let us examine the task of flattening the tree in more detail. The fiatten
function simply traverses the tree and constructs a list that points to the
entities at the leaves. The resulting data structure is depicted in Figure 6.4.
In Bird and Wadler syntax flatten can be written as follows.

fiatt en rei = fiat 0 rei

flat es (Entity e) = e: es
fiat es (Node It k rt) = fiat (fiat es It) rt

Figure 6.4: A Flattened Tree

acet

(flatten acCl)

KEY
Class tree nodes o
Entities o
List node rn

The flatten function is an O(n) operation because it traverses the tree visiting
each node and each leaf only once. The list produced by flattening is often
processed l for example by a query. The work expended in constructing the list
may be avoided by deforestation techniques [96]. These techniques eliminate
the intermediate data structures created during list proce5sing.

94 CHAPTER 6. DATABASE SUPPORT

The flattened list takes up little space, simply n pairs of pointers. As an
example, the flattened list for the 5 megabyte tree from Subsection 4.3.2
requires 59 kilobytes, or 1%of the space taken by the tree. Hence retaining a
copy of the flattened tree is cheap. If the tree is flattened frequently compared
with the frequency of modification, then memoising the flatten fundion will
be worthwhile. A memo function is like an ordinary function except that
it stores the arguments it is applied to, together with the results computed
from them. If a memo function is applied to the same argument again the
previously computed va.lue can simply be looked up [64J. Because flatten.'s
argumenL is a large data structure a variant of memo functions, namely lazy
memo functions [54L is appropriate. If flatten is memoised and the tree has
been flattened previously, a subsequent call to flatten need not traverse the
tree. Instead the existing flattened version can be used.

A number of memoising strategies are possible. depending on the frequency of
modification and the space available. The cheapest alternative is to memoise
flatten and not flat. In this case, if the relation is modified at all, a subsequent
invocation of flatten must traverse the entire tree again. The most expensive
alternative is to memoise both flatten and flat. In this case every sub-tree in
the tree will be memoised. A call to flatten on a modified tree will recompute
only the changed parts of the tree. Alternative memoising strategies are also
conceivable, for example memoising just the second level in the tree

6.5.2 Functional Data Model

The functional data model (FDM) Wag proposed by Shipman in a language
called DAPLEX [80]. Related work on expressing the functional data model
in functional languages Wag cited in Sections 3.2 and 3.3. Two concepts are
used to model data, entities and functions. Entities correspond to ohjects
in the real world, for example a customer or a bank account. Entities are
collected into classes called entity sets. A function maps an entity to a set
of target entities. For example balance might be a, function that maps an
account entity to the sum of money in the account. Similarly owns might
be a function that maps a customer entity to the account entities he or she
maintains.

95 CHAPTER 6. DATABASE SUPPORT

The functional database supports the functional data model naturally. An
entity may be represented as a tuple. An entity set is represented as a tree
of tuples that can be flattened and queried as described. for the relational
model. A function such as balance that returns an attribute of an entity is
simply a tuple selector function. A function that maps an entity to others
can be implemented as a secondary index, or by associating a list of keys
with the entity.

For example the owns function can be represented as a secondary index
keyed on the customer's name that stores a. list of accounts the customer
owns. Alternately a customer entity could contain a list of the keys of the
accounts owned. Additional space is required to store the secondary index.
The index, however, provides faster access requiring only D(log n) accesses
to locate all of the accounts a customer owns. If a list of keys is Btored,
each account must be looked up separately, with a cost of OOog n) for each
account. The next Subsection describes why a customer entity cannot refer
directly to tbe account entities.

To represent the many-many relationship between customers and accounts in
the FDM, two functions are required..]n addition to owns described above,
a function owned_by is need.ed. Given an account entity owned_by returns
the list of customers who own the acconnt. Let us use indices to represent
both owns and oumed_by. Figure 6.5 is a sketch of the database structure
used to implement the bank database.

96CHAPTER 6. DATABASE SUPPORT

Figure 6.5: The bank Data Structure

d

aw cust

owns owned~by

KEY
Database tree nodes
Qass tree nodes
Enlities
Index list nodes

rn
o
o
rn

97 CHAPTER 6. DATABASE SUPPORT

Assuming that suitable instances of the bulk data manager exist, the follow
ing Standard ML abstract data type provides a functional data model of the
bank database.

signature BANI{ ::::
sig

type Cu.slomer

val customers : Db ---. list Customer

val name : Customer --+ string

val address : Customer --+ li$t string

val phone_no : Customer --+ int

type Account

val accounts : Db --+ list Account

val accollnLno : Account --+ int

val balance : Account --+ real

val class : Account --+ string

lJaZ creditJimit : Account --+ real

val Dwns : Customer --+ Db --+ list Account

val owned_by : Account _ Db --+ list C'lJStomer

end;

stroeture bank : BANK ::::

struet

(*Import structures giving access to the classes 0/ data*)

structure c = customer

structure a ~ account

structure 0 = owns

structure Db = owned_by

type Cu.stomer = e.bkr.Rt (.. Type from mgr instance.)
fun customers d = e.fiatten d
fun name (n,a,p) = n

fun address (n,a,p) = a

98 CHAPTER 6. DATABASE SUPPORT

fun phone_no (n, a, p) = p

type Account = a.bkr.Rt

ftm accounts d = a.flatten d

/tm accounLno (n, b, c!s, crl) = n

fun balance (n, b. ds, crl) = b

/tm class (n, b, cis, crl) = cis

/tm crediLlimit (nib,cls,erl) = crl

fun owns c d = o.lookup c d

fun owned_by a d = ob.lookup a d

end;

Nikhil uses an almost identical Student-Course database to illustrate func
tional data modelling in a functional language. The only difference between
the above signature and Nikhil's corresponding environment is that accounts,
customers, owns and owned..by all take the database as a parameter. For
example, the value of customers d is the list of customer entities in the
database d. The explicit reference to the database means that queries using
a functional data model caD be expressed as transaction functions.

It is possible to argue that the functional database described here provides
a more consistently functional data model than that provided by DAPLEX
180), or FDL [721. In both DAPLEX and FDL updates are achieved by
Prolog-Like assertiou. This is in contrast to the update model outlined in
Chapter 4 that allows arbitrary transaction functions over the database.

6.5.3 Closure Problem

The structure required to support a functional model of the bank database
illmMates the graph modification problem from Section 6.4.2. The owns in
dex is keyed on customer name, just as the account entity set is. Rather than
having two identical indices we might wish to include the owns information
in a customer entity. This would take the form of a list of pointers to the
accounts a customer owns.

99 CHAPTER 6. DATABASE SUPPORT

Including this information in the customer entities not only saves the space
used by the owns index, but makes some a.ccesses fast. Consider the task of
listing aU of the customers with their accounts, rather like a relational join.
This can be achieved in time proportional to the size of the customer entity
set, by simplY scanning it and following the pointers to the related account
entities.

A sjmilar situation exists for the oumed_by informa.tion, and we might wish to
incorporate it into the account entities. If both owns and oumed_by informa
tion are incorporated, a circular structure is created with customer entities
referring to the account entities they own and account entities referring to
the customer entities that own them. Figure 6.6 depicts some of the owns
and owned_by information from Subsection 6.5.1. Customers "Bloggs, C."
and "Bloggs. S." are denoted "e" and "S" respectively. Similarly accounts
1035 and 1040 are denoted 35 and 40.

Such a closely-linked data structure is a pernicious example of the graph
modification problem. Consider the task of allowing a customer Jones to use
a.ccount 1035. A new version of the database must be constructed in which

• Jones appears on the owned_by list of account 1035, and

• Account 1035 appears on the owns list of Jones.

A new customer entity for Jones can easily he constructed. Now, however,
a new version of every account owned by Jones must be constructed to refer
to the new customer entity. Next, a new version will be required of any
customer entity that owns one of the new account entities. The pattern is
clear, and in general a new version is required of every entity that is reachable
from the updated entity in the transitive closure of the relation represented
by owns a.nd owned_by.

100 CHAPTER 6. DATABASE SUPPORT

Figure 6,6: Directly-linked bank Data Structure

aca eust

, , , ,, ,, , , , " , ,, , , ,, , ," ,

KEY
Class tree nodes o
Lislnodes CD
EruiLies

~
A solution to the problem is to store the key values of the a.ccounts a customer
owns in the customer entity and likewise for the owned_by information. This
breaks the multiple pathways from one entity to another. Jones can be given
access to account 1035 as follows. The customer entity set is updated with
a. new version of Jones's customer entity with the key of account 1035 in the
owns list. Similarly, the account entity set is updated with a new version
of account 1035 that has Jones's name in its owned_by nst. As noted in
Subsection 6.4.Z, storing keys in place of pointers increases the access cost
and introduces complexity for the programmer.

I:: 0....
I-

l
-+>

I-
l

ro
I-

l
...... ::l

-+>
0 ~

r-.
0

....
~

ro
I::

ll.t
ro
~

~
-
-
-
-
-

Chapter 7

Transactions

This Chapter covers the use of functions as transactions that manipulate
the database. How transaction-functions are made atomic is described and
the techniques are compared with a conventional logging-and-locking ap~

proach. Some issues in the transaction model are also addre.:ssed. These
include processing long read-only transactions, restarting long transactions,
evicting non-terminating transactions and the provision of nested transac
tions.

7.1 Introduction

A transaction was introduced as a function that consumes the database and
constructs a new version of it, i.e. a function of type bdt --I' (output x bdt).
Such functions are a powerful manipulation language. Because a transaction
function takes the database as a parameter it can inspect any part of the
data., subject to the security mechanism described in Chapter 6. Chapter
8 iUustrates queries that interrogate several classes of data and others that
are recursive. Because a transaction returns a new version of the database
it can modify any part of the data, again subject to the security mechanism
described in Chapter 6. A transaction that populates, or builds, an entire
class of data was demonstrated in Subsection 6.5.1.

102

CHAPTER 7. TRANSACTIONS 103

Not only is the notation powerful, it is also referentially transpa.rent and
hence amenable to reasoning. The list comprehension queries presented in the
next Chapter are essentially the bodies of transaction functions and Chapter
9 demonstrates how these transactions can be transformed to improve effi
ciency. Referential transparency also facilitates proofs about transactions.
For example a transaction might be shown to preserve an invariant in a
manner similar to that employed in [79].

The transaction language and the implementation are closely linked. The
implementation processes a stream of transactions and expects each transac
tion to be a function over the database as described above. The transaction
language makes use of the cheap multiple versions of the database generated
under the non-destructive update regime enforced in the implementation lan
guage.

The remainder of this Chapter is structured as follows. Section 7.2 describes
how transaction functions are made atomic, and contrasts the techniques
used with a conventionallogging-and-Iocking scheme. Section 7.3 describes
how some transaction issues can be addressed in the functional database.
These are the tasks of processing long read-only transactions, restarting long
transactions, evicting transactions that fail to terminate and providing nested
transactions. A task not addressed is that of making transactions reliable,
i.e. guaranteeing their atomicity in the event of a system failure.

7.2 Atomicity

In Section 3.2 a transaction was defined to be a collection of actions that is
atomic. To be atomic a transaction must he both serialisable and total. The
actions of a transaction are serialisable if, when a collection of transactions
is evaluated concurrently, the result is as if the individual transactions were
carried out one at a time in some order. A transaction is total if, providing
it returns, it is carried out completely or (apparently) not started.

Some transaction models use a stronger property than totality, namely re

liability [40]. Totality guarantees that a transaction is executed zero or one

104 CHAPTER 7. TRANSACTIONS

times. Reliability guarantees that a transaction is evaluated exactly once,
irrespective of machine failures. Such models are related to the task of mak
ing the database resilient in the event of system failures. The transaction
functions described in this Thesis are total but not reliable.

Several mechanisms for guaranteeing atomicity exist. The most common
is a logging-and-Iocking strategy. Optimistic concurrency control and time
domain addressing are two other alternatives [59, 74]. For brevity the trans
action function mechanism is only compared to a logging-and-locking scheme.

7.2.1 SeriaIisabiIity

Care is required to ensure serialisability in a conventional database. The
most common approach is to employ a two-phase locking protocol. Each
transaction must be well-formed, i.e. it must lock every entity it accesses and
unlock it after use. A two-phase transaction obtains all of its locks before
releasing any. As a simple example a withdrawal transaction must lock the
target account entity to exclude other transactions until the withdrawal is
complete; it must then release the lock. Locking introduces several diffi
cult issues that are not elaborated here. These include selecting a suitable
granularity, avoiding phantoms and the detection and resolution of deadlock.

Essentially serialisability ensures that no two transactions interfere. For ex
ample, if a withdrawal transaction does not lock the target account a com
peting deposit transaction might read the current balance and write a larger
balance. The effect of the deposit will be lost when the withdrawal writes its
new balance.

A collection of transactions processed by the functional database manager
is always serialisahle. The transactions occur in the order that they appear
in the input stream to the manager. This is because the manager applies
the transaction functions to the database in the order that they appear in
the input stream. Although the parallelism primitjves described in Chapter
5 allow the evaluation of several transactions to be interleaved in time, log
ically each transaction has exclusive access to the database and subsequent
transactions process the database it constructs. Hence a transaction function

105 CHAPTER 7. TRANSACTIONS

can perform many actions on the database without danger of interference.

7.2.2 Totality

The non-destructive update regime enforced by the functional implementa
tion language makes constructing total transactions easy. Indeed the COIl

ventional techniques of logging-and-Iocking, optimistic concurrency control
and time-domain addressing all use some form of non-destructive update to
ensure totality. In a locking system a log of each transaction's actions is
maintained and if a transaction aborts all of the changes made are reversed
using entries in the log. Under optimistic concurrency control writes occur on
temporary copies of the entities. A time-domain addressing scheme is inher
ently non-destructive. Update in place has even been described as a "'poi.son
apple" for reliable data manipulation [41). In fact the technique used in the
functional database that produces a new copy of each node changed in the
database-tree is similar to the shadow paging technique found in conventional
datab"-,,es [46).

A transaction function is easily made total because, under the non-destructive
update regime, the database prior to evaluating the transaction is preserved.
If a transaction needs to abort, the original database is simply reinstated.
Preserving the original version of the database is cheap, as described in Sec~

tion 4.2.3. Further, the transaction programrnerls task is simple because the
original database is named. For example, the original database is denoted d
in the transaction below.

To illustrate totality, consider the transaction two that sets the va.lues of
two entities to 10. If either of the updates fails the unchanged data.base d
is returned. Only if both updates succeed does the transaction return the
database d" that has been modified by both updates. Note that the d' , the
database reflecting only one of the updates is never returned by two.

CHAPTER 7. TRANSACTIONS 106

two a b d	 (out', d), if out' =F OK

(out", d), if Qut" =F OJ<

(outll, d"), otherwise

where

(out', d') ::;::: update a 10 d
(out", d") = update b 10 d'

In a conventional transaction language totality is enforced by a regime that
aborts every transaction unless the transaction executes a commit command.
In the functional transaction language there is no such default behaviour. It
is the programmer's responsibility to ensure that the database component of
every result returned by a. transaction-function reflects either all of the trans
action's a.ctions or none of them. As a consequence, non-total transaction
functions can be written. Consider the following transaction.

partial a b d = (d", out")

where

(out',d') = updatealOd
(out", d") = update b 10 d'

If the update of a fails, but the update of b succeeds then only the first of
the transaction's updates will have been performed, i.e. partial is not total.
Worse still, because the update of b succeeded the user is unaware that
the transaction has failed. The situation can be alleviated by providing the
user with totality-preserving higher order fnnctions or combining forms. One
combining form might be a conditional, another might apply a sequence of
functions to the da.ta.base. The sequence combining form can be written as
follows.

sequence Is d = seq Is d d

"q (f :fs) d d' seq Is d d", if out' = 0/(

(out", d), otherwise

where

(out", d") = I d'

CHAPTER 7. TRANSACTIONS 107

The partial transaction can be made total by using sequence as follows.

parlial a b d = sequence [update a 10, update b 10] d

Using combining forms to encourage programmers to write total transactions
is a far from perfect solution. A programmer may elect not to use the combiD~

iug forms and then construct non-total transactions. Any set of comhining
forms is restrictive and some of the combining forms are clumsy.

1.3 Transaction Issues

This Section outlines how some issues that arise in a transaction-processing
model can be addressed iu the functional database.

7.3.1 Long Read-Only Transactions

Many applications require long transactions that only read ent.ities. A query
that examines every account entity is au example of a long read-only trans
~.ction. A query that performs significant computation, a relational join for
example, will be even longer. In a conventional database, to guarantee that
the query is evaluated in a consistent state, every account entity must be
locked and only unlocked once it has been processed. If the query is compet
ing with update transactions it may be difficult for it to obtain a read-lock on
every account entity. Furthermore, once the query has locked every account
entity it will exclude many updates for a long period. For these reasons long
read-only transactions are usually evaluated when few updates areoccnrring.

In the functional database both reads and writes can overtake a read, as
described in Section 5.3.5. Thus a long read-only transaction ca.n proceed
on its own private version of the database while subsequent transa.ctions are
free to create new versions and inspect them. The space cost of preserving
the private version of the database used by the read-only transaction is low 1

CH/\PTER 7. TRANSACTIONS 108

as described in Section 4.2.3. The cost does, however, go up for each up
date performed. during the read-only transactlon. The result of the read-only
transaction will reflect the state of the database at the time the transac
tion started, and this may differ significantly from the state at the time the
transaction completes.

Consider a pair of transactions. The first looks up four entities and the second
updates the same fOUf entities. When these transactions are processed by
the prototype data manager the following results are obtained. The LML
program is in Appendix A.3.4.

As each transaction has only 4 operations, the maximum concurrency pos
sible if the transactions are processed serially is approximately 5 tasks, in
cluding a task for the manager. At least 7 tasks are active during most of
the evalua.tion indicating that the update transaction is occurring in parallel
with the read-transaction. Further evidence is provided by the elapsed-time
reduction factor of 3.63. Because of the 'set-up' and 'wind-down' times, a
speed-up of this size is too great to be obtained by evaluating the two four
operation transactions serially.

LONG READ-TRANSACTION FOLLOW~D BY A WRITE-TRANSACTION

Metric Eager Opt. +
TransL

No. of super-combinator reductions
No. of delta-reductions
No. of graph nodes allocated
No. of machine cycles
Average no. of active tasks

685
594

20764
1966
1.30

800
685

.524.58
541

6.02

Elapsed-time reduction factor, over eager evaluation, 3.63.
Concurrency increase factor, over eager evaluation, 4.63.

109 CHAPTER 7. TRANSACTIONS

Figure 7.1 Long Read. Transaction
N.o.

Active

Tasks

\2.2

11

80 \20 160 200 360 541

Machine
Cycles

A less spectacular, but more realistic example is obtained if the same read
only transaction is followed by two deposit transactions that both access an
entity that is being looked up. The LML program is in Appendix A.3.5. If the
transactions are evaluated optimistically, but without the transformation, the
deposits are blocked until the read-transaction completes and the sequence
of transactions require 1111 machine cycles to complete. Introducing the
transformation enables the deposits to occur concurrently with the read
transaction and the transactions only require 904 machine cycles to complete.
The full statistics are as follows.

CHAPTER 7. TRANSACTIONS llO

LONG RE:AD·TRANSACTlON FOLLO\\'ED BY TWO DEPOSITS

Metric Opt.. no

Trans£.
Opt. +
Trans£.

No.of super-combinator reductions
No.of delta-reductions
No.of graph nodes allocated
No.of machine cycles
Average no. of active tasks

638
503

23424
Illl
2.07

696
819

40383
904

3.34

Elapsed.time reduction factor, over optimistic evaluation, 1.23.
Concurrency increase factor, over optimistic evaluation, 1.56.

7.3.2 Long Transaction Restart

Many applications require transactions that perform large amounts of work
[41]. A great deal of work is lost if a long transaction is aborted. For
example, a transaction may abort because an entity it depends on has an
erroneous value. Often much of the work the transaction has performed
does not depend on the erroneous value and is simply repeated when the
transaction is later retried. In the situation described above the co::;t of
aborting a long transaction can be dramatically reduced by memoising the
sub-functions of the transaction. Consider the following transaction that
depends on 2 entities p and q. Note that the sub-functions it and 12 have
been memoised.

long d h a b
where

a = memo it (lookup 'p' d)
b == memo 12 (lookup 'q' d)

Suppose long aborts with the given value of p. The transaction may be retried
with a new value of p. Because h (lookup 'q' d) does not depend on p and
h is memoised the value of the application can simply be retrieved from h's
memo-table, saving recomputation. The value of any part of the transaction

III CHAPTER 7. TRANSACTIONS

tha.t depends upon the changed value will automatically be recomputed. In
the example the parts that will be recomputed are /1 (lookup 'p' d) and h a b.

7.3.3 Non-Terminating Transactions

In a conventional database a transaction may acquire some locks and then
fail to terminate. In this ca.se part of the database is unavailable for an
indefinite period. A common solution to this problem is to use a timer and
evict a.ny transaction that does not complete before its deadline.

A similar situation arises in the functional database. In fact, the situa
tion may be even worse. Recall that the dalabase manager applies the
transaction-functions to the database one after the other, a following transac
tion consuming the database produced by its predecessor. As a consequence,
should a transaction not only fail to tenninate but also fail to produce any
part of the database the foHowing transaction will be unable to start. The
failing transaction excludes every other transaction from the database. A
more common type of failure will occur where the transaction produces most
of the result database before failing. If the failing transaction is constructed
using /wi! or two! then the unchanged parts of the database will remain
visible. This situation is similar to that arising under a conventional locking
scheme with only small parts of the database unavailable for an indefinite
period.

A time-out solution can be employed in the functional database if non
determinism is introduced into the implementation language. The database
manager chooses non-deterministically between the database produced by
the transaction and an unchanged database. At a machine leve(the factor
guiding the choice is the time taken by the transaction function. Note that
the semantics of the transaction language are unchanged. The transactions
remain total, i.e. they are either performed compfete(y or not at all. However
the laws the database satisfies have changed because it may choose not to
apply a transaction-function to the database.

CHAPTER 7. TRANSACTIONS 112

7.3.4 Nested Transactions

It is desirable that existing transactions can he used to construct new trans
actions; tbis is called nesting. Several models of nested transactions exist
[62, 65, 741. A common model is as follows. The changes made by a 511b

transaction are only visible once its parent transaction has completed, i.e.
committed. If a parent transaction fails then any changes made by its sub
transactions must be reversed. In contrast, the sub-transactions of a parent
transaction fail independently of their parent transaction and of one another.
This enables an alternative sub-transaction to be invoked in place of a failed
sub-transaction to accomplish a similar task.

Care is required to support nested transactions in a conventional database
beca.use tb.e commitment of a sub-transaction is contingent on the commit
ment of its parent transaction. Nested transactions also complicate the rules
governing locking, for example a sub-transaction can lock entities locked by
its parenl..

In the functional database transactions are simply functions of a given type
and hence existing transaction-functions can be freely composed to construct
new transactions. A sub-transaction can itself have sub-transactions. Re
ver6ing a. parent or sub· transaction is easy because the database prior to tbe
application of the transaction function can be cbeaply preserved. As a sim~

pIe example consider transfer, a transaction constructed from deposit and
withdrow transactions to transfer a sum of money 11 from account a to ac
count h. In transfer if either sub-transaction fails the entire transaction fails
In the general case, however, the parent transa.ction is free to inspect the
output returned by the sub-transaction and perform Some alternate action.

d

transfer a b 11 d (out', d), if out' '" OK

(oullI,d), if out ll =J:. OJ(

lf
(oui ll
,), otherwise

where
(out', d') withdraw and
(out ll

, dO) deposit b n d'

'"-
-

.,----

Chapter 8

Queries

This Cha.pter covers theoretical work on the expression of queries in pro
graITlIIl.ing languages. Queries are written as list comprehensions, a feature
of some programming languages. Relationa.l queries are demonstra.ted, as
are queries requiring greater power than the rela.tional model provides. It is
a.rgued that comprehensions are clear because of their close resemblence to
the relational calculus. The power, or relational completeness, of list compre
hensions is proved. Database and programming language theories are further
integrated by describing the relational calculus in a programming language
semantics.

8.1 Introduction

There is a. grea.t deal of interest in unifying databases with programming lan
guages [1, 2, 7, 12]. Any database programming language must incorporate
a. query notation. Any well· integrated database programm.ing language must
have a consistent theoretical basis. The work described in this Chapter con
tributes towards unifying database and programming language theory. The
datahase theory used is the relational calculus. The programming language
coostruct recommended for expressing database queries is the list compre
hension.

114

115 CHAPTER 8. QUERIES

In Chapter 3 a query notation was required to be clear, powerful, concise,
ma.thematically sound and well integrated with the manipulation language.
Other work illustrating that list comprehensions are clear, powerful, concise
and well-integrated was referenced. In this Chapter it is argued that compre
hensions are clear because of their close resemblence to the relational calculus.
The power of comprehension notation is proved. Database and programming
language theories are further integrated by describing the relational calculus
in a programmlng language semantics.

The power of list comprehension notation is proved by showing that it is
relational1y complete. A notation is complete if it has at least the expressive
power of the rel;,.tional calculus. The completeness of comprehension nota
tion is proved by giving a translation of relational calculus queries into list
comprehensions. List comprehensions are shown to be strictly more powerful
than the relational calculus by demonstrating that they can express queries
entailing computation and recursion, neither of which can be expressed in
the cakulus.

There is a gap between database theory and programming language theory.
The rift arises because database theory is based on relations whereas pro
gramming language semantics are not. A semantics is given that bridges this
gap. It does so by describing the relational calculus in a well-understood
programrning language formalism, denotational semantics [39, 82]. This pro
vides tbe opportunity to applY techniques from the denotational world to
relational implementa.tions. These might include proving that implementa
tions match their specification and that optimisations preserve correctness.

It is extremely important to emphasise that the query language work pre
sented in this Chapter is independent of the implementation described in
the foregoing Chapters. List comprehensions are not restricted to functional
languages. They can be implemented in any language that supports easy
heap allocation. A pilot implementation in PS-Algol is under development.
Comprehensions may also be used to process lists of data extra.cted from
conventional da.tabases. This is, in fa.ct the approach taken in a commercial
database product based on FQL, a lazy list-processing functional language

[21J.

List comprehension queries can be cleanly integrated with the implementa

116 CHAPTER 8. QUERIES

tion described earlier. A comprebension simply forms the body of a trans
action function that takes the database as an argument and returns the list
of tuples in the database that satisfy the query. Even if the evaluation of a
query is time-consuming) it need not delay subsequent transactions beca.use
it is read-only and can cheaply retain a private version of the database.

Tbe remainder of this Cha.pter is structured as follows. Section 8.2 intro
duces the relationa.l calculus. Section 8.3 introduces list comprehensions and
demonstrates their use to express both relational and extra-relational queries.
Section 8.4 describes the syntactjc correspondence between comprehensions
and the relational calculus. Section 8.5 describes the translation process and
includell an example. Section 8.6 describes the semantics and its potential
UBel.

8.2 Relational Calculus

The formulation of tbe relational calculus used in this Chapter is described in
this Section. There are only two minor distinctions between this formulation
and Ullman's [91l. Readers familiar with the calculus may wish to omit this
Section.

Tbe relational calculus is a formalism for expressing database queries. It was
defined by Codd [27] and underlies a number of query languages [47,60, 102].
A query is written as a Zermelo-Fraenkel set comprehension with a predicate
or formula specifying the conditions the tuples must satisfy. This represents
a declarative specification of the query as, unlike the relational algebra, no
order needs to be given for tbe computation of the tuples satisfying the
formula.

Much of the following description is paraphrased from Ullman op. cit. There
are two flavours of the calculus, tuple relational and domain relational. The
flavours are equivalent as any query expressed in the tuple relational calculus
can be converted to a query in the domain relational calculus, and vice
versa. Tuple relational queries can be expressed as comprehensions or given
a meaning by first converting them to a domain relational form, and then

117 CHAPTER 8. QUERIES

using the translation or semantics.

Queries in the calculus are of the form {(il'" i ..)IF(it •.. ~)}, where ill" i"
are domain variables, and F is a formula built from atoms and operators.
Atoms are of two types.

•	 G; 0 aj where a, and aJ constants or domain variables and 0 is a com
parison operator «, =, etc). This asserts that aj stands in relation 0
to aj' For example, x < 3.

•	 (i1>" in) E R where R is a relation and i1>" ill are unbound domain
variables. In a slight departure from Ullman's formulation, membership
with constants or bound identifiers (at, .. a,,) E R is represented by

(it, .. in) E R /\ i1 = al/\" i" = a".

If F and F' are formulae, then a formula may be one of the following.

•	 An atom.

•	 Formulae combined using logical operators, F!\ F', F V r or ..,P.

•	 A quantified expression, :I(it. .. ~): R. F or V(ih .. i,.): R . F, where
(i}, .. ill) are unbound domain variables. The explicit mention of the
relation over which the domain variables range is the second difference
between this formulation and Ullman's. It is, however, found in Date's
formulation [32).

Parentheses may be used as needed.

Examples

Cartesian Product:

Hu, .. u"", .. v.)I(u" .. u.) E RA(" .. v. ES}

118 CHAPTER 8. QUERIES

Difference:

{(i) I(i) E R" ~((i') E S " i = i'))

The projection Jl;l>o1,.. i
l
R is expressed by:

Hu;",., .. "',)I(u" .. u.) E R}

The selection of tuples of a relation R satisfying a predicate F, or uFR, is
expressed by

Hu")I(u" .. u.) E R" F'}

where r is the formula F with each operand i denoting the ith component
of R, replaced by Ui-

Safety

In order to disaUow queries with infinite answers such as

{('lH(u) E R)),

safety conditions are defined. Informally a query, {(UI, .. U,.) IF(Uj, .. ur)}, is
safe if it can be demonstrated that each component of any (Ut,.- u,.) that
satisfies F is a member of Dom(F), which is defined as the set of symbols
tha.t either occur explicitly in F, or are components of some tuple in some
relation R mentioned in F. For example if F(Ul' U2) is Ut ='a'V(UI, U2) E R,
where R is a binary relation then Dom(F) :::: {'a'} U II1 R U ll2R. A formal
definition can be found in [91].

CHAPTER 8. QUERIES 119

8.3 List Comprehensions

8.3.1 Introduction

This Subsection briefly introduces list comprehensions or ZF-expressions.
Readers familiar with comprehensions may wish to omit it. Full descriptions
of comprehensions can be found in m<UlY functional programming texts, in
cluding [17,701.

List comprehensions are a construct based on 'Zermelo-Fraenkel set compre
hensions and are found in some functional languages [52, 88, 89, 93). A set
comprehension specifying the set of squares of all the odd numbers in a set
A can be written

{square x I x E A A odd x}

and has a corresponding list oomprehension

[squa~ :l I :l to- Ai odd xl.

This can be read as 'the list of squares of x such that x is drawn from A and
x is odd'. The syntax of comprehensions can be sketched as

comp ::= [e I q)
q ::= q:q I/lp ~ e

Here e is an expression in the language. The expressions to the right of the
vertical bar are called qualifiers. Qualifiers are either filters or generators.
A filter, I, is a boolean-valued expression that specifies a condition that po
tential list elements must satisfy to be included in the result. e.g. odd x.
A generator has the form p t- e, where p is a pattern that introduces one
or more new variables. The expression e is list-valued and denotes the se
quence of values that the pattern is to be successively matched a.gainst. The
generator in the above example is x t- A.

CHAPTER 8. QUERIES 120

8.3.2 Relational Queries

Relational da.tabase queries are easily expressed using list comprehensions.
The following queries are used by Ullman to compare different query lan
guages. The queries are posed. against a small database, called the Happy
Valley Farmers Coop, or HVFC. The HVFC database comprises the following
relations.

M EM BERS(NAM E,ADDRESS,BALANCE)

ORO ERS(OR. 0 ER....NO ,N AM E,ITEM ,QUANTITY)

SUPPtIE:RS (SN AME,SA 0 DRESS ,ITEM ,P RIC E)

Let us assume that the underlying implementation provides the following
support for relations. The names of the relations are bound to the current
list of tuples in the database. For each attribute of every relation there JS
a selector function that maps from a tuple in the relation to that attribute.
For example, balance will select the BALANCE attribute of a MEM BERS tuple.

Given this support, the query "Print the names of the members with negative
balances" can be written as the comprehension

[name m 1m+- members; balance m < 0).

The query works in a straight-forward manner. Each tuple in MEMBERS

is retrieved by m +- members. If the BALANCE attribute is less than zero,
balance m < 0, then the NAME attribute is included in the result by name m.

"Print. the supplier names, items and prices of all the suppliers that supply
at least one item ordered by Brooks" can be written

[(marne 8, sit em s,sprice 8) lOt-- orders; oname 0 = 'Brooks, B.';
8 t-- suppliers; oitem 0 = sitem s].

If subllst is a fnnction that checks that every element in its first argument
list is present in its second, then a query to "Print the suppliers that supply
every item ordered by Brooks" , can be written

121 CHAPTER 8. QUERIES

[8 1st--- suppliers; sublist brooksitems (allitems (sname s))]
where

brooksitems = [oitem 0 lot--- orders; oname () = 'Brooks, B. ']
allitems sn = [sit em sis t--- suppliers; sname s = sn].

List comprehension queries caD be simply transformed into transaction func
tions suitable for the transaction processor described in earlier Chapters.
Only two changes are necessary. The comprehensions must be made the
body of a function that takes the database as an argument. Each relation
name must be bound to a function that takes the database and returns the
list of tuples in that relation. Using these conventions, a transaction function
representing the first query can be written

negbal d = [name m I m t--- members d; balance m < 0].

Selector functions have been used to locate the attributes of tuples so that
any attribute not relevant to the query can be ignored. This is a substantial
advantage for real databases that contain relations with many attributes. An
alternative way of writing queries is to provide a pattern that matches all of
the attributes. The first query can be written in this style as follows.

[(name) I(name, address, balance) 4- members; balance < 0]

This is in fact the style that will be adopted for the translation and for
query improvement. The styles are easily interchangeable. The two styles
correspond to the variants of the relational calculus. Using selector functions
corresponds to the tuple relational calculus, whereas using pattern matching
corresponds to the domain relational calculus.

8.3.3 Extra-Relational Queries

List comprehensions are strictly more powerful than the relational calcu
lus. Neither computation nor recursion can be expressed in the calculus and

CHAPTER 8. QUERIES 122

queries requiring either recursion or computation are termed extra-relational.
Other workers have also demonstrated that extra-relational queries ean be
easily expr€Ssed using list comprehensions and recursive functions. Compre
hension solutions to two classic extra-relational queries from the database
literature are presented next. Improving the efficiency of these queries is
addressed in the next Chapter.

Date's Example

Date poses the following bill of material, or parts explosion, problem (32).
Given a relation such as

PARTS

Main Sub- Quantity
Component Component

PI P2 2
PI P4 4
P5 P3 I
P3 P6 3
P6 PI 9
P5 P6 8
P2 P4 3

write a program to list all the component parts of a given part to al11evels.
This problem is recursive only, no computation is required.

A list comprehension solution is a function explode with a single argument
maill, the part to be exploded.

explode main::: [p I(m,s, q) t- parts; m z main; p +- (s: explode s)]

The explode function works as follows. Each tuple in the parts relation is
obtained by (m,s, q) +- parts. If a tuple's main component is the assembly
being exploded, m z main, then the parts p returned are the subassembly
itself s, and its subcomponents, explode s. This solution is far more concise
than the 27-line SQL solution Date presents. It is also arguably clearer.

CHAPTER 8. QUERIES 123

Atkinson and Buneman's Example

Atkinson and Bunernan also chose a bill of material as a recursive and com
putational example 19]. A bill of material database is used to compare many
different databases, programming languages and database programming lan
guages. Their bm is more complex than Date's in that there are two types of
parts, composite and base. Composite parts are assembled from other parts,
whereas base parts are not. A base part has a name, a mass, a cost and a list
of suppliers. A composite part has a name, a cost increment (assembly cost),
a mass increment and a list of the parts required to assemble it, including
the Quantity required of each sub-part. Assuming that the subsidiary types
such as mass have already been defined, the type of parts can be specified
as the following abstract data type.

pari ::= Base name cost mass [suppliers] I

Comp name [(name, qty)] costinc massinc

The task set is to compute the total cost and total mass of a composite
part. Clearly thjs requires both recursion and computation. The task proves
impossible in most relational query languages. Four auxilliary efficiency goals
are identified by Atkinson and Buneman and these are addressed in the next
Chapter.

Let us define sumpair as a function that performs addition on a list of pairs,

sumpair abs = (sum[a I (a, b) ~ abs]' sum[b I (a, b) ~ abs]).

Given this, a simple list comprehension solution is as follows.

costandmass p ;::: em (lookup p paris)

em (Base p em ss);:::(c,m)
em (Comp p pqs ei mil

= sumpair ((ci, mil , [(q. c, q. m) I (p, q) ~ pqs; (c, m) ~ [coslandmass pi])

124 CHAPTER 8 QUERIES

The solution works in a straightforward manner. The costandmass function
simply calls a. subsidiary function, em, with the part record corresponding
to the given part number. The em function computes the cost and mass of
a part record. The cost and mass of a base record are simply the cost and
mass attributes of the record. The COst and mass of a composite part are
the sum of a list of pairs of costs and masses. The first cost and mass pair is
the cost increment and the mass increment for this assembly stage, (ci, mil.
The remainder of the list of cost, mass pairs are the costs and masses of the
subcomponents. Each subcomponent is retrieved by (p, q) +- pqs. The cost
and mass of each subcomponent is calculated, (c,m) 4- [costandmass pl.
Finally the costs and masses of each subcomponent are multiplied by the
quantity of the subcomponent required, (q '" C, q '" m).

This solution is as short as any of those presented by Atkinson and Huneman.
It is considerably shorter than most of the solutions given, {or example the 9
line ML solution and the 43-line Pascal solution. The solution is also clearer
than many of those given in Atkinson and Huneman's paper.

Atkinson and Buneman's query is of additional interest in that it entails pro
cessing a non-fla.t structure. Both base and component part records contain
lists of data. Although the task of querying non-flat bulk data types is not
seriously explored in this thesis it is a topic of some interest, particularly to
the object-oriented database community.

8.4 Syntactic Correspondence

List comprehensions bear a close resemblance to relational calculus queries.
Such a close correspondence to a declarative query specification notation
makes list comprehensions clear. The similarity arises because both nota
tions are based on Zermelo--Fraenkel set theory. The correspondence is par
ticularly evident between domain relational queries and pattern-matching list
comprehension queries. In Section 8.3 a pattern-matching list comprehension
expressing Ullman's first example query was given as

CHAPTER 8. QUERIES 125

[(name) I(name, address, balance) _ members; balance < 0].

The domain rela.tional specification of the same query is

{(name) I (name, address, balance) E members fI balance < O}.

The similarity is not always this strong. For example, if * is list concatena
tion, the calculus query

((I) I (I) E RV(I) E S}

corresponds to the comprehension

[(I) I (I) ~ R ++S].

To be more precise, naively foUowing the translation presented in the next
Section produces

1(1) I(t) ~ [(I) I (I) ~ R) ++ [(t) I (I) ~ 51].

This can be simplified to the above result using the identity [x Ix t- A] = A.

8.5 Translation Rules

8.5.1 Outline

The translation entails two stages.

•	 Translation rules are provided to translate a domain relational query,
with its formula in a restricted. form, into a list comprehension.

CHAPTER 8. QUERIES 126

•	 An algorithm for translating any relational formula into the restricted
form completes the process.

The restricted, or generative, form simplifies the translation. Essentjally it
ensures that the range of each variable in the query is determined before the
variable is used. Any formula can be manipulated into generative form. Its
definition depends on a distinction between relational calculus atoms. Atoms
are either generators or filters. With the exception that any negated formula.
is a filter, generators are

•	 assertions that a tuple of domain varibles is drawn from a. relation.

•	 a.<lsertions that a domain variable is equal to some value.

The generator is (name,address,balance) E members in the example from
the previous Subsection. The filter is balance < O. A formula is generative if
it has three properties.

•	 It is in prenex form. This is a well-known normal form [44] in which
the quantifiers occur on the left of the expression. It resolves vari
able scoping issues, and Date [32J recommends it as a natural way of
expressing queries. The example query above has no quantifier and
remains unchanged.

•	 The quantifier free part of the formula is in disjunctive normal form,
which is also well known [44]. As there are no disjuncts in the example
query, it satisfies this by default.

• All	 generators in each conjunct occur before all of the filters. Formu
lae can always be manipulated to make this true because conjunction
is commutative. The generator in the example query already occurs
before the filter, so no change is required.

Note that safety and generatIvlty are independent. There are generative
formulae that are not safe, and safe formulae that are not generative.

CHAPTER 8 QUERIES l27

The translation starts by defining the syntax of the relational calculus and
of list comprebensions. A suite of translation functions from the relational
calculus syntax into list comprehension syntax is then given. The translation
functions represent a constructive proof of the relational completeness of
comprehension nolation.

8.5.2 Relational Calculus Syntax

Syntactic Categories

Query Relational Calculus Query Q
Exp ReLational Formula E
Atom ReLational Calculus primitive A
Op Comparison Operator w
Ide Domain Variable Identifier I
RIde Relation Identifier R
Canst Constant k

Abstract Syntax

Q: {(f,"',I) I E}

E: E A E 1Ev E 1~E I (I"" ,J) E R 1
Aw A 13(£, ... ,J):R. E 11;1(£,··· ,I):R.E

A: f 1 k

w:<I>I$I<:I#I:

8.5.3 List Comprehension Syntax

This is the target syntax of the translation a.nd it is assumed that the iden
tifiers and constants used in the calculus a.re valid in it.

128 CHAPTER 8. QUERIES

Syntactic Categories

Comprehension List Comprehension C
Qual Qualifiers Qs
Qualifier Single Qualifier Q
Plexp Programming Lang. Expression E
Gen Generator G
Pall Pattern P

Abstract Syntax

C: [EI Qs]

Qs: Q IQ; Qs

Q: GIE

G:P~E

E is any expression in the language

P is any pattern in the language, to be matched with elements in the list.

8.5.4 Translation Functions

Translation Types

Simple::::::: Ide + Const
Env = List Ide

The environment contains the domain variables which are known to be al
ready bound.

CHAPTER 8. QUERIES 129

Q :Query -+ Comprehension

Q is a. function which tra.nslates a domain relatioua.I query into a list com
prehension. The comprehension computes the list of tuples in the database
which satisfy the query_

Q({{I" ... ,I.) IE)] = I [(I" ... ,I.) I eJ I (Q)
where

(p, e) = f[EI 0

f :Exp ~ Env ~ (Env x Qnal)

The E function is given a list of variables already bound, and translates a
relational formula into a qualifier and a new list containing the variables
bound in the formula. See the notes on individual equations below.

t:[E;, (I. E,l p = (Po-t+ P" [eo; e, I) (f (I.)

where
(Po, eo) = t:[E;,1 P
(p" e,) = f[EtI (p -t+Po)

f[E;, V E,I P = (p', [(p') <- [(p') I eoJ -t+[(p') le,) J) (fv)
where

(p', eo) = t:[E;,1 p

(p', ed = f[Et] p

f[~E] p = (O,I[p' Ie] = OJ) (f~)

where
(p', e) = f[EI P

f[Ao wA,l p = e [wI (AIAolp) (A[A,]p) p (fw)

f[{I" ... ,I.) E RJ p = ([[" ... [.J,[(I" ... ,I.) <- d R I) (f E)

CHAPTER 8. QUERIES 130

£[3(1" ... ,I.) •R . EI p = (p' ,I (II, ... ,I.) ~ d R; e I) (£3)
where

(P', e) = £[E] (p ++1/" .. ·I.J)

(£It)
£IV(!.,· . ,I.). R. EI p = (p', [(p') ~ intersect lip' I ell (I" ... ,I.) ~ d RII)

where

V, e) = £[EI (p ++1/,,·· ·I.J)

Notes

£V,N Ifp= [h,···!,,] we write (p) for (11,"'[..), trusting tha.t this leads
to no confusion.

£-, The filter produced for a. negated expression excludes a.ny values which
satisfies the expression, effectively using negation by failure.

£ E In this formulation of the domain relational calculus only unbound ideo
tifiers may be asserted to be members of a relation. To represent mem
bership assertions with constants or bound identifiers, (AI, ... A..) E R,
we write (Ill" -In) ERA II = A] 1\ .. • /.. = An'

£ E,£3,£V The databa.se d is a. free variable of the translation. It is a
function from relation identifiers to the list of tuples currently in that
relation.

A :Atorn --+ Env --+ (Env x Simple)

A transla.tes a. relational calculus primitive into a list comprehension identifier
or constant. It also returns an environment indicating whether an unbollfid
identifier has been encountered.

Alii p = (0, [k]) (Ak)
All) p = (0, [II), if I E p (AI)

= ([I]. [II), otherwise

CHAPTER 8. QUERIES 131

e :Op ~ (Env x Simple) ~ (Env x Simple) ~ Env ~ (Env x Qual)

e tra.nslates a rela.tional calculus comparison into a. qualifier. IT both of
the identHiers are hound, the result is a comparison filter. If, however, an
unbound identifier is asserted to have a value, the translation produces a
generator a +- [a'l. In the comprehension this binds a to the values taken
on by a', This is a form of unification.

el<1 (0, "") (0, a.) P = (0,1"" < a,l)	 (0<)

Similarly for >.~,~, 1-.

el=1 (Po, "0) (PI, a,) P	 = ([J, I "" = a,J), if Po = PI = 0 (0=)
= (Po, I"" <- [ad 1),Po '" 0
=(pt.! al <- [""m,Pl '" 0

Auxilliary Function

Intersect performs list intersection on a list of lists.

intersect xss = [x I xs .- %ss; x +- xs; memberatl x xss]

memheroll x xss = and [member x xs I xs .- 7SS]

8.5.5 Example

Let us return to the example query and translate it into a comprehension.

QI{(name) I(name, address, balance) E members/\ balance < 0ll

132CHAPTER 8. QUERIES

= {Q}

[(name) Ie]
where

(p, e) = £[(name, address, balance) E members 1\ balance < On 0

= {ftl}

[(name) Ie]
where

(p, e) = (Po ++P" eo; e,)

(Po, eo) = f[(name, address, balance) E membersl I)

(PI. e.) = f[balance < 01 0

= {fE, fw}

[(name) I eJ
where

(p, e) = (Po ++p,. eo; e,l
(Po. eo) = ([name, address, balance], (name, address, balance) +-- members)
(Ph e,l = e 1<1 (A[balancelPo) (AIO!Po) po

={AI, Ak}

[(name) I e]
where

(p, e) = (Po ++p" eo; e,)
(POI eo) = ([name, address, balanceL (name, address, balance) t- members)
(PI. e,l = El 1<1 (I), balance) (1),0) Po

133CHAPTER 8. QUERIES

= {8<}

[(name) I eJ
where

(p, e) = (po ++p" eo; e,)

(Po, eo) = ([name, address, balance], (name, address, balance) ..- members)

(p" c.) = (0, balance < 0)

= {Sub,t. Pa, eo, PI' e,}

[(name) I c]
where

(P, e) .::: ([name, address, balance].
(name, address, balance) +-- members; balance < 0)

= {Subsl. p, e l

[(name) I (name, address, balance) +-- members; balance < 0]

The syntax of the comprehensions produced by the translation is close to
that of several programming la.nguages. Hence the resulting comprehensions
can be evaluated. after trivial syntactic changes. As might be expected the
mechanically generated comprehensions are often slightly more complex than
a hand crafted comprehension that performs the same task.

8.6 Semantics

As the relational calculus is closely based on set theory it does not need a
semantics to describe its meaning. The purpose of the denotationablemantics
is to hridge a gap between database and programming language theories. The
rift occurs because database theory is founded on sets, or relations f32, 91],
and relations a.re not central to any programming language semantics [82).

The semantics presented in Appendix C is denotational. The meaning of
a relational calulus query is given as a. function that takes a da.ta.base and

134 CHAPTER 8. QUERIES

returns the set of tuples in the database that satisfy the query. An interpreter
for relational calculus queries has been constructed. The interpreter is closely
based on similar semantics to those described here.

The semantics is closely related to the translation into list comprehensions.
In some sense the translation of relational calculus queries in to list compre
hensions, that in turn have a semantics, gives a semantics to the calculus.
Indeed a semantics can be derived by composing the translation into com
prehensions with the sema.ntics of comprehensions. The resulting semantics
is more complex than the semantics given because it distinguishes between
translation-time and evaluation-time environments. Also, because the de
rived semantics is based on lists the tuples are ordered and the possiblity
of duplicates is introduced. Both ordering and duplicates are foreign to the
notion of relations and neither is introduced by the semantics given. For
these reasons a semantics that directly links the calculus to a domain of sets
is preferred to the derived semantics.

The potential benefits of such a semantics are well known, but have yet to
be exploited. Implementations might be proved to match their denotational
specifications. The semantics may suggest new optimisations and existsing
optimisations can be proved to preserve correctness. A particularly appeal
ing use might be to give semantics to an extended relational calculus that
suppods computation and recursive functions.

Chapter 9

Improving Queries

This Chapter covers the improvement of list comprehension queries. For each
major improvement stra.tegy identified in the da.tabase literature an equiva.
lent improvement is given for comprehension queries. This means that exist
ing da.tabase algorithms that improve queries using severa.l of these strategies
can be applied to improve comprehension queries. Extra.~re1ational queries
can also be improved. An exa.mple of each improvement is given.

9.1 Introduction

List comprehensions were recommended a.s a. clear, powerful, concise and
well-integrated query notation in the previous Chapter. In this Chapter the
sound mathema.tical basis of comprehensions is used to develop transforma
tions to improve the efficiency of comprehension queries.

The relational database literature cited in Chapter 3 identifies two classes
of improvement strategies, algebraic and implementation-based. Algebraic
improvements are the result of transforming a query into a more efficient
form using identities in the relational algebra. lmplementation-based im
provements are obtained by using information about how the dala is stored.
This infonnation may include the size of the relations and what indices exist.

135

136 CHAPTER 9. IMPROVING QUERIES

To improve relational queries Ullman [91] identifies four algebraic and two
physical implementation strategies. For each of these strategies an equiva
lent improvement is given for list comprehension queries. As a result existing
database algorithms that use these improvements can be followed to im
prove comprehension queries. Most of the improvements entail transforming
a simple, inefficient query into a more complex, but more efficient form. The
transformations are presented and illustrated using examples drawn from the
database literature. This work has also been reported in [871.

There is a class of useful queries that cannot be expressed in the rela
tional model. These entail recursion or computation and are tenned extro
relational. The two extra-relational querieg from the previous Chapter are
improved.

The remainder of this Chapter is structured as follows. Section 9.2 describes
the a.ssumptions made about the environment that the queries are evaluated
in. Section 9.3 describes the algebraic improvements. Section 9.4 gives an
example of emulating an algebraic improvement algorithm. Section 9.5 de
scribes implementation-based improvements. Section 9.6 demonstrates the
impro-.ement of extra-relational queries.

9.2 Improvement Environment

Queries are improved under certain assumptions about the environment in
which they will be evaluated. Because this work spans the database and
programming language worlds, assumptions are made about both. A pro
granuning language assumption is that the queries are evaluated under a lazy
regime. It is also assumed that the lists processed by the comprehensions
represent relations that have been retrieved from secondary, or permanent
storage. The remaining assumptions concern the underlying da.tabase. They
are typical of those found in conventional improvers. Further, the functional
database described earlier provides the functionality assumed.

It is assumed that permanent storage is provided by disks. Disks store data
as bloch or convenient-sized chunks. The size of a list is the number of blocks

CHAPTER 9. IMPROVING QUERIES 137

in it. Each disk access retrieves a block. Thus traversing a list will require
a number of disk accesses proportional to its size. It is assumed that the
implementation supports cacheing.

The Dumber of disk accesses required to evaluate a query is the cost metric.
This is because the time required for an access is typically three or four orders
of magnitude greater than the time to execute a machine instruction. As a
result it is often faster to perform additional computation if this will reduce
the number of accesses required.

It is assumed that the implementation supports indices. An index on a
relation typically consists of a sorted tree of values. The tree can be searched
for a value in time proportional to the logarithm of the size of the relation.
Information such as the size of the relations and the nature of the indices is
also assumed to be available.

It is assumed that the order of the tuples in the result of a query is not
significant. This is consistent with the relational model, and means that bag
equality, written 2::, can be used between lists. Two lists are bag equal if they
contain the same elements! although possibly in different orders.

Because disk access is central to this cost model, not all of the transformations
presented in the following Sections will improve comprehensions that do not
perform disk accesses. Finally, note that the conventional improvements
emulated are not guaranteed to be optimal for all possible instances of the
database.

9.3 Algebraic Improvements

This Section contains Subsections describing each of the conventional al
gebraic improvements and how an equivalent list comprehension improve
ment is obtained. The description of conventional improvement techniques
is closely based on that given by Ullman op. cit. Most of the improvements
are obtained using transformations that are analogous to identities in the
relational algebra. Some of the transformations described are examples of
clalises of transformations. Not every member of these classes is described.

CHAPTER 9. IMPROVING QUERIES 138

9.3.1 Selections

Performing selection as early as possible is the most important improvement.
It reduces the size of the intermediate results by discarding tuples that are not
required. Ullman illustrates this with a query that prints the A components of
those tuples in the AB and CD relations that have the same values in B and
C, and have a D value of 99. This may be expressed in the relational algebra
as IIA(O'B=cAD=99(AB x CD)). It can also be written as the comprehension

[alla,b) _ AB; (c,d) - CD; b~ c; d~991.

The following transformation, first proposed by P.L. Wadler, can be used to
CQnstruet queries that perform selections earlier.

Qualifier Interchange states that any two qualifiers q and q' can be swapped,
jf they don't refer to variahles bound in each other. Using s: to denote bag
equality, it may be stated

[e 1\0; q; q'; q,]

'" Ie I ~j q'j qj q'].

Rewriting programs so that selection occurs as soon as possible is a well
known program transformation strategy called filter promotion [30]. Quali~

fier interchange is a generalisation of filter promotion as it allows us to change
the order of generation as well as the order of filtration. This generality is
alsorefl.ected hy the fact that qualifier interchange is analogous to several re
lational algebra identities. These are the identities governing the commuting
of products and selections. 0

In the example above the filters are lb = c' and 'J = 99'. Note that 'b = c'
cannot be promoted over '(c, d) _ CD' because 'b = c' refers to c which is
bound in '(c, d).- CD'. It is, however, possible to interchange 'd = 99' and
'b= c'tgiving

139 CHAPTER 9. IMPROVING QUERIES

[al(a,b) ~ AB; (c,d) ~ CD; d ~99; b~cl·

Now, as '(a, b) .- AB' doesn't bind c or d\ '(c, d) .- CD; d = 99' can be
promoted over it, giving

[a I(c,d) ~ CD; d ~ 99; (a,b) ~ AB; b ~ cl.

This is considerably more efficient than the original query. If the size of
AB and CD is n, then the time complexity of the original query is O(n 2).

Usually the number of tuples with d value 99 is much sma.ller than n. If we
assume that it is a smaJl constant, i.e. independent of n, the new query is
0(.).

9.3.2 Converting Product into Join

If selections are combined with a prior cartesian product to make a join,
performance is improved. This is because the cost of a cartesian product
of two relations of size n is of O(n2), whereas the cost of a join, such as a
natural join, is usually of O(n log n). The example query must be manipu
lated into a suitahie form before the product ca.n be converted. The foUowing
transformation is used to perform this housekeeping task.

Filter Hiding. Recall from Section 8.3 that a denotes a tuple of variables.
IT I. is a filter involving only varia.bles in a, then

[e I 90j a .- Aj Illi ql]

r.1 90; a ~ A'; '111

where

A' ~ [a Ia ~ A; f.].

Even although the tuples satisfying III are drawn from both A and A', lazy
evaluation ensures tha.t they are read from secondary storage only once. This

CHAPTER 9 IMPROVING QUERIES [40

is because, when a demand is made for an element of A', the demand is
propagated immediately to a demand for an element of A satsfying fA' The
element of A may need to be retrieved. from secondary storage, but once this
is done, it can be passed directly to the expression demanding an element of
A', 0

Applying filter hiding to '(c, d) .- CD; d = 99' in the example query pro
duces

la I(e,d) ~ CD'; (a, b) ~ AB; b = el
where

CD' = I(e, d) I (e, d) ~ CD; d = 99J.

In this instance, filter hiding has neither improved nor degraded. the query.
The query is, however, now in a form suitable for converting the cartesian
product into a join. The transformation to do this is described next.

Product Elimination converts a cartesian product followed by an equal~

ity test into a natural join. It is the most common member of a cla.ss of
transformations that generate the different relational joins.

A na.tura.l join takes two relations of arity r and s and constructs a new
relation of arity r + s - 1, i.e. with one of the identical columns eliminated..
To reflect this in the following definition, b; represents the eliminated. column,
and abis written for (ao, .. , all., ho, ", b;_I' bJ +1 , .• ,bm). Any reference to the
eliminated column must also be relaced by a reference to the identical column,
a,. The substitution of G; for b; in an expression e is written e[ail b;]. Product
elimintation can then be stated

fe 190; iT A; 1j B; Go = bi ; qd

[e[a,/b;11 qo; ab ~ AB; q,Ia;/b,J]

where

AB = jmerge,; (sort; A) (sort, B).

The jmerge;j function is defined as

141 CHAPTER 9. IMPROVING QUERIES

jmorge'j 0B = 0
jmergeij A 0 = 0
jmerge" (a : A)(b: B) = ah : jmerge,j (a: A) B, if a, = hi

= jmergeij (a: A) B, if a; > bj

=jmerge'i A (Ii: B), if ao< hi'

The transforma.tion introduces a. sort-merge to compute the join. Alternative
algorithms could also be used. The sort; functions sort on ith component
of the relation. Some existing solution can be used to resolve the typing
problems raised by such joins. 0

Applying product elimina.tion to the example query produces

la I(c,d, a) ~ CDAB]
where

CDAB = jmerge" (sort, CD') (sort, AB)

CD' = [(c,d) I (c,d) ~ CD; d = 99J.

This has complexity of O(n log n), because AB is still of size n. The desir
ability of applying product elimination to the example depends on the ratio
between log n and the number of tuples in CD baving a d value of 99. Also
note how the transformations ha.ve taken a. simple query and produced a
more efficient, but more complex query.

9.3.3 Combination of Unary Operations

In a naive proce.sor, a relation may be traversed for each selection or projec
tion encountered in a query. Efficiency is improved if a sequence of selections
and projections can be evaluated in a single pass over a relation. Buneman,
Frankel and Nikbil have shown that lazy evaluation causes this to occur
automatically in functional query languages 121].

To illustrate the automatic combination, consider one of the examples from
Cha.pter 8,

CHAPTER 9. IMPROVING QUERIES 142

[name m Im t- members; balance m < 0].

This performs a select on balance, and a project onto name. Demand for
the name is propagated to a demand for a member tuple with a balance less
than zero. The next tuple ill members is obtained, possibly from secondary
storage. If the balance is less than zero, the corresponding name can be
returned immediately. [f the balance exceeds zero, the next tuple in me.mbers
must be examined. The significant point is that the tuple is retrieved only
once. The balance test and the projection onto name both occur while the
tuple is in primary storage.

9.3.4 Common Subexpressions

It is dearly advantageous to compute only once a result that will be used
ma.ny times. This is in fact what happens in a functional language with list
comprehensions. If e", is an expression referring to x more than once, and
A is the relation produced by some complex computation, then [10", I x t- A]
retains those parts of A that have been realised for some reference to x for
as long as there is a reference to them. This is called sharing [70] in the
functional language world.

Either let or where expressions can also be used to preserve common subex
pressions, even between comprehensions. For example, consider the improve
ment of a query that computes the difference between two projections of
a join. Using l><3 to denote join, this can be specified in the algebra as
IIj(A l><3 B) -I1j (A l><3 B). Writing - for list difference, this might be
expressed as

[61Ia t- Ai b t- Bj a" :::: bL]

[a, Ia ~ A; 1j ~ B; a, = b,J.

Applying product elimination produces

(la, I ab ~ AB] where AB = jmerg,,, (sorl, A)(sorll B))

([a; I ab ~ AB] where AB = jmerg,,, (sorl, A)(sort, B)).

143 CHAPTER 9. IMPROVING QUERIES

If we assume tha.t the result of the join is of size n, then it is also reason
a.ble to assume tha.t computing the difference between the projections on
the join costs n log n. Under these assumptions the cost of the above query
is 3n log n, as the join is performed twice before computing the difference.
The redundant join ca.n be elimina.ted by using the definitions of where and
substitution to obtain

ia, 1ab ~ AB] -ia, 1 ab ~ AB]
where

AB = jmerge" (sart, A)(sartl Bl)·

The left-hand comprehension costs n log n a.ccesses as it constructs a.nd con~

sumes the join simultaneously. The right-hand comprehension need only
tra.verse the result of the join, which costs n accesses. Finally, the difference
also costs n log n, giving a total cost of 2n log n + n accesses.

9.3.5 Projections

Queries are improved if projections are performed as soon as possible. A pro
jection reduces the size of the intermediate results because the tuples contain
fewer components. Promoting projections is not a major source of improve
ment, but is included as it is used in Ullman's improvement algorithm which
is illustrated in the next Section. A transformation to promote projections
is described next.

Shrinking. If a' is a tuple containing only those variables of a that are free
in ql or e, then

iela~A; q,1

ie Ia' ~ A'; 'h)
where

A' = ia' la ~ AI·

144 CHAPTER 9. IMPROVING QUERIES

As described for filter hiding, the construction of the additional list A' is
'free'. 0

Examples of the use of shrinking are found in the next Subsection. A projec
tion may remIt in a relation with duplicate tuples. Removing tbese reduces
the intermediate results further, but is an expensive operation. The cost is
high heca.use it is necessary to check that there are no duplicates for each
tuple. Most query languages provide an option to remove duplicates. A list
dupJicate-removal function like nub can be used if this is required.

9.4 Algorithm Example

Because aU of the main algebraic transformations can be emulated, algo
rithms that improve queries by applying several of these transformations can
be utilised. An algorithm given by Ullman is used as an example. A query
produced by the algorithm performs

• Selections as soon as possible.

• Projections as soon as possible.

• Joins in place of cartesian products.

• Sequences of selections and projections in a single pa.ss over a relation.

He illustrates the algorithm using a library database that contains the rela
tions BOOKS, PUBLISHERS, BORROWERS and LOANS. The relations have the
following attributes.

BOOKS (TITL E,A UTHOR,PN AM E, LC....N0)

PUBLISHERS(PNAM E,PA DDR,PCITY)

BORROW ERS(NAME,A DDR,CITY,CARD....NO)

LOANS(CARD..NO,LC..NO, DATE)

145 CHAPTER 9. IMPROVING QUERIES

To keep track of books, there is a view, or useful combination of these re
lations, ailed X10ANS. XLOANS is the natural join of BOOKS, BORROWE:RS

and LOANS, and might be defined in the rela.tiona.l algebra as

TI s(UF(tOANS x BORROWERS x BOOKS»

where

F = BORROWERS.CARD....NO = LOANS.CARD-NO

and BOQKS.LC....NO = LOANS.LC....NO

S = TITLE, AUTHOR, PNAME, LC....NO, NAME,

ADDR, CITY, CARO....NO, DATE

To list the books that have been borrowed before some date in the past,
say 1/1/82, we might write IITITLE(UDATE<ljlj81.(XLOANS». The equivalent
naive list comprehension query is

[(Wle) I (eard_no, Ilcno, date) ~ loans;

(name, addr, city, bcartLno) +- borrowers;

(title, author, pname, bklc_no) +- books;

bide_no = lle_no; beard_no = Icard_no; date < 1/1/82].

Ullman's algorithm starts by moving the selections to occur as soon a.s
possible. This can be emulated by promoting 'beard_no = leard.no' and
'date < 1/1/82' to obtain

[(title) I (ea"Lno, lie_no, date) ~ loans; date < 1/1/82;
(name, addr, city, beard_no) +- bOn'Vwers; bcard_no = Icard_no;
(title, author, pname, bklc_no) +- boob; bklc_no = ltc_no],

Applying filter hiding to loans produces

[(title) I (ea"Lno, lIeno, date) ~ loans';
(name, addr, city, beard_no) +- bOn'Vwersj bcard_no = leard_no;

CHAPTER 9. IMPROVING QUERIES 146

(WIe, authQr, pname, bklc_no) .- books; bklc_nQ = lIe_no]
where

loans' = {(Icard_no, lIe_no, date) I (lcard_no, lle_no, date) .- loans; date < 1/1/82].

Ullman's algorithm now promotes all of the projections. Applying shrinking
to •b .- borrowers' produces

[(title) I (careLno, lie_no, date) _ loans';

(beard_no) .- borrowers'; beard_no = lconi-no;

(title, author, pname, bklc_no) - booh; bklcno = lienol

where
loans' ~ [(leanLno, lie-no, date) I (leanLno, lie-no, date) ~ loans; date < 1/1/821
borrowerl = [(beard_no) I (name, addr, city, beard_no) - borrowersJ.

Applying shrinking to loans' and books produces

[(title) I (canLno,lIe_no) .- loans";

(beard_no) .- borrowers'; beard_no = leard_no;

(title, bklc_nQ) .- books'; bklc_no = lh·_no]

where
loans' = [(lcard_no, lIc_no, date) I (leard_no, lle_no, date) .- loans; date < 1/1/82J

loans" ~ [(leanLno, lie_no) I (leanLno, lie_no, date) ~ loans']

borrowers' = [(beard_no) I (name, addr. city, beard_no) .- bOrT"Owers]

books' ~ [(title, bkle_no) I (title, author, pname, bklcno) ~ booksl.

Product elimination can now be used to convert the product of loans ll and
borrowersl into a natural join, giving

[(title) I(eanLno,lIe_no) ~ Ib;
(title, bklc_no)'- books/j bklc_no = lIe_no]

where
loans' ~ l(leanLna, lie_no, date) I (leanLno, lie_no, date) ~ loans; date < 1/1/82J
loans" ~ [(leanLna, lie_no) I(leanLno, lie_no, date) ~ loans'l

CHAPTER 9. IMPROVING QUERIES 147

borrowerl = [(beard_no) I (name , addr, city, beard_no) to-- borrowers]
books' = [(tille, bk/c_no) I(title, author, pname, bklc_no) +- books]
Ib = jmfrgell (sort l loan5")(50rt1 borrowers).

Applying shrinking to lb gives

[(till,) I (1I'_no) ~ lb'; (titl"bkl,_no) ~ books'; bkle_no = lie_no]
where

loans' = [([canLno, lie_no, date) I (Icard_no, lleno, date) to-- loans; date < 1/1/821
loans" = [(lcard_no, lie_no) I (Icard_no, IIc_no, date) +- loans l

]

borrowers' = [(beard_no) I (name, addr, city, beard_no) +- borrowers]
books' = [(title, bklc_no) I(title, author, pname, hlelLno) +- books]
lb = jmergt.n (sort1loans")(sort1 borrowers')
Ib' = [(lIe_no) I(leoni-no, lie_no) ~ Ib].

Product elimination again produces the fina.l result, which has the same
evaluation plan as the query produced by Ullman's algorithm. That is, it
performs the same operations in the same order.

[(litl,) I (lie_no, litl,) ~ Ibbk]
where

loans' = [(lcan:Lno, lfe_no, date) I (leard_no, lIe_no 1 datf) t-- loans; datf < 1/1/82]
loans" = [(leard_no,lie_no) I (leard_no, Ucno, date) t-- foans']
borrowers' = [(beard_no) I(name, addr, city, beard_no) t-- borrowers]
books' = [(title, bkle_no) I(titlf, author, pname, bklcno) t-- books]
lb = jmergfll (sort1 toans")(sort1 borrowers)
Ib' = [(lie_no) I (leoni-no, lie_no) ~ Ib]
Ibbk = jm,rg'12 (sorl, Ib')(so"" books').

CHAPTER 9 IMPROVING QUERIES 148

9.5 Implementation-based Improvements

9.5.1 Preprocessing Files

The most important file processing ideas are sorting and the creation of
indices. The product elirrunation transformation illustrated the introduction
of sorting. Recall that the implement ion of secondary indices in a functional
database wa.s described in Chapter 6. A transformation that allows an index
to be used. is presented below.

Index introduction. If e' is an expression, and there is an index iindexA
on an attribnte aj, then

[el'loj 71_ A; aj = e' ; qtl

[e Iqo; 7i - jindexA e'; qd. D

In the example from Subsection 9.3.1 ,

[al(c,d)~ CD; d=99; (a,b)~AB; b=c]

index indroduetion can be applied to '(c, d) _ CD; d = 99" to obtain

[al(c,d) ~ d;ndeICD 99; (a,b) ~ AB; b = c].

A second application gives

[al (c,d) _ dindexCD 99; (a,b) 4-- bindexAB c].

This is a. very efficient form of the query_ If we continue to assume that
the number of CD tuples with d value 99 is constant, then only a. constant

149 CHAPTER 9. IMPROVING QUERIES

number of bindexAB lookups need be performed. Each lookup requires log n
accesses giving a total cost of O(1og n).

Another file processing example Ullman gives is an efficiency improvement
for cartesian products. With cacheing, efficiency is improved by choosing
the smaller relation to vary more slowly, or be in the 'outer loop'. This is
because, if the records of the smaller relation are cached, then, as they are
combined with each record in the larger relation, they are used more often.

To make the improvement, the smaller relation's generator can be promoted
using qualifier interchange. This is another example of the general power of
qualifier interchange. If L is the larger relation, S is the smaller 1 and lS is
written for (Zo, .. ,J",~, .. , Sm), then

[Is i7 <- L; s <- 51

becomes

[Is I" <- S; 1<- L].

9.5.2 Evaluating Options

It is often possible to compute a result in more than one way, either by
reordering operations or by treating the operands of a binary operator dif
ferently. Time spent evaluating these options is usually much less than the
time spent evaluating the query in an inferior way. Usually the cost of a
large number of alternatives is considered, and the best of these is selected.
As an example Ullman presents the options evaluated for simple selections
in System R [6]. These have the form

SELECT A" ... A.
FROMR
WHERE PI AND '" p•.

150 CHAPTER 9. IMPROVING QUERIES

The equivalent list comprehension form is [a 1a I- R; PI; ... PII]'

To compare the evaluation options the system uses the following information.

•	 T, the number of tuples in R.

•	 B, the number of blocks in R.

•	 I, if there is an index on attribute aj, the image size I is the number
of different values of u, in R.

•	 Whether or not a.n index is clustering. A clustering index is an index
on an attribute such that tuples with the same value for that attribute
reside in the same block.

A predlcate of the form 'aJ ::: c', where aj is an attribute and c a constant
is said to match an index on ajo Ullman uses the Happy Valley Farmers
Coop database described in Chapter 8 and improves a query that prints the
order numbers of any orders for more than 5 pounds of Granola. A list
comprehension expressing this is

{order_no I(order_no, name, item, qty) f-- orders; qty ~ 5; item = 'Granola '].

The database parameters are that T = 1000, B = 100, there is a cluster~

ing index on 'name" and a nonclnstering indices on 'item' (I = 50) and
'quantity'. The alternatives in the System R algorithm that are relevant for
the storage methods described in earlier Chapters are:

1.	 Get those tuples of R that satisfy a predicate of the form la; = c' that
match a clustering index. Then apply the remaining predicates. This
costs BII block accesses. In the above example, if the 'item' index
was clustering, this would be 2 accesses. It cannot be applied as the
item index, which is the only index matched by an equality predicate
'item ='Granola", is not clustering.

CHAPTER 9. &PROVlliGQUEillES	 lSI

2.	 Use a clustering index on ai, where 'al W c' is a predica.te, and w
is <,~, ~ or > to obtain the subset of R that satisfies this predi
cate, then apply the remaining predicates. This costs B /2 block a.c
cesses, or 50 block accesses in the example. It cannot be a.pplied as
the quantity index, which is the only index matched by an inequa.lity
predicate' qty 2: 5', is not clustering.

3.	 Use a non~clustering index that matches a predicate 'a, = c' to find all
of the tuples with Gi value c, and apply the other predicates to these
tuples. This costs T / [, or 20 accesses. The item index (anitemsorders)
fulfills these conditions.

4. Read	 all of the tuples of R and apply the predicates to each of them.
This costs B block accesses, i.e. 100 in the example. It corresponds to
the first comprehension in this Section.

In this case option 3 is best. To introduce the index we must first juxtapose
the enumeration of orders, '(order_no, name, item, qty) '- orders', and the
selection on the item ordered, 'item =1 Granola" . This can be achieved by
using qualifier interchange to promote 'qty ~ 5' over 'item ='Grnnola" I
giving

{order_no I (order_no, name, item, qty) +- orders; item =' Granola'; qty ~ 5].

Index introduction now allows us to use aniternsorders, giving

[order_no I (order_no,name,item,qty) +- anitemsorders 'Granolalj qty ~ 5].

9.6 Extra-Relational Queries

Improvements based on implementation information are particularly useful
for improving queries that are more complex than those permitted in the
relational model. The extra-relational parts of these queries are not amenable
to relational algebra transformations. In this Section the two extra-relational
queries from Section 8.3 are improved.

CHAPTER 9. IMPROVING QUERIES 152

9.6.1 Date's Example

The list comprehension solution to Date's recursive query was written

explode main = [p I (m,s, q) t-- paris; m = main; p t-- (s: explode s)j.

One source of inefficiency in explode arises because a bill of material is a
directed a.cydic graph (DAG). As written, explode will revisit any subcom
ponent that is common to two or more components in the bill. In the bill
sketched in Figure 9.1, Node D, and its subcomponents, will be visited in the
processing of both no de B and node C.

Figure 9.1
];

B'

0:

The redundant processing can be eliminated by memoising e.xplode. Recall
the description of memoisatlon given in Subsection 6.5.1. On encountering
a node that has already been processed, a memoised instance of explode can
simply lookup the value already computed and need not reprocess the node.

As written, explode scans the entire relation to find the immediate subcom
ponents of each main component in the bill. Hence if the size of the parts
relation is n, and the number of nodes in the bill being exploded is m then
the memoised explosion requires mn block accesses. Date's SQL solution has
a SELECT statement that locates the subcomponents of each main compo
nent. As described in the previous Subsection, the behaviour of such con
structs depends on the existence and nature of indices. If there is an index
u,sf$ on main components index introduction can be applied to obtain

CHAPTER 9. IMPROVING QUERIES 153

explode main = [p I (tn, s, q) .-- uses main; p to- (s : ezplode s)]

This is far more efficient as it simply looks up the subcomponents of a part
without having to scan the entire relation for them. IT we assume that there
are nearly as many main components as there are parts, then the index
lookup requires O(log n) block accesses. As lookup is performed for each
node in the bill in turn, the total cost is O(m log n) accesses.

9.6.2 Atkinson and Buneman's Example

Atkinson and Buneman's recursive and computational query was written

costandmass p = em (lookup p parts)

em (Base p c m 58) = (c, m)
em (Camp p pqs ci mil

= sumpair «(d, mil , [(q. c, q. m) I (p, q) ~ pqs; (c, m) ~ [coslandmass plJ).

A minor improvement can be obtained by rewriting the sumpair function to
use an accumulating parameter and hence to scan the list of cost, mass pairs
only once. The costandmass function can also be memoised to avoid the
recomputation of common subcomponents. The memoised solution meets all
four efficiency subgoals that Atkinson and Buneman identify for the query.
These are that the solution should

•	 avoid repeated recomputation of costs and masses of common subcom~

ponents.

•	 compute the costs and masses in a single pass over the data structure.

•	 provide index support to locate the part to be exploded.

•	 not have to compute the cost and mass of every bill in the parts relation

when only one is required.

CHAPTER 9. IMPROVING QUERIES 154

The efficiency of the memoised version of costandmass can be calculated
using m and n as defined in the previous Subsection. A lookup is perfonned
to locate each of the m nodes in the bill. Each lookup costs log n accesses,
giving a total cost of m log n.

For the purposes of comparison let us examine the efficiency of the PS-Algol
solution A~kinson and Buneman describe. Like the list comprehension solu
tioD, the PS-AIgol solution is memoised to avoid recomputation of common
subconlponents. The PS-Algol solution performs a lineM search for the part
to be exploded, requiring n/2 aCcesses. Once the target part is located, how
ever, direct links are followed from composite parts to their subcomponents.
Such links can usually be followed in a single access. Hence, once the target
part is located, visiting each node in the bill requires m accesses. Thus the
total cos(to locate and then explode the part is n/2 + m accesses. The cost
of locating the part to be exploded could be reduced to log n by introducing
a tree structure. This would, however, increase the complexity of the code
required to express the query.

The efficiency of the PS-Algol solution compared with the comprehension
solution depends on the ratio between m and n. The comprehension solution
is fa.st~ if the parts relation, i.e. n, is large relative to tbe bill being exploded,
i.e. m. To make these terms more concrete, consider the parts relation to
be the tree-file from Subsection 4.3.2 that contains 104 records. In this case
the comprehension solution is faster if the bill being exploded has fewer than
2469 parts.

Queries over non-destructively maintained data structures cannot be made
as efficient as queries over destructively maintained structures. In Chapter
6 non-destructive update was shown to preclude certain data structures. In
a destructive world closely linked data structures can be maintained. These
links, or pointers can be followed in a single access. To represent the same
structure in a non-destructive world keys must be stored, and the cost of an
index lookup incurred.

To iJlustrate this last point c.onsider a destructive update solution that might
be constructed for Atkinson and Buneman's example. The part relation may
be stored in a hash table with each component linked to its subcomponents.
Using the hash table the part to be exploded can be located in a constant

155 CHAPTER 9. IMPROVING QUERIES

number of acc€Sses. Once located, the bill can be traversed in just m accesses.
This gives a total cost of O(m). This destructive cost differs from the non
destructive cost of O(m log n) by a factor of log n, exactly the additional cost
of performing the index lookups.

(1

0
"'C

::l

~
("

)
.

"'
i

en
 '" ~

.-+

~

rn
-<

0 ::l

~
-
-
-
-

Chapter 10

Conclusion

This Chapter summarises the results reported in the Thesis and concludes
that functional languages have potential as database implementation, manip
ulation and query languages. Further research directions are also identified.

10.1 Summary

Preserving referential transparency is seen as the property that distinguishes
functional languages from procedural languages. By examining a da.tabase
implemented, manipulated and queried in a functional language the con
sequences of enforcing referential transparency in database languages have
been explored.

To discover the impact of referential transparency in the implementa.tion lan
guage a database manager has been constructed in a pseudo-paraHel func
tional language. The manager supports efficient concurrent operations on
large da.ta structures and allows a version of the structure, or database, to
be preserved cheaply. Some problems tha.t seriously restrict concurrenl;:y have
been overcome using new and existing primitives. Data dependency has been
shown to offer a novel exclusion mechanism that allows an unusual degree of
concurrency compared with conventional schemes such as locking. Support

157

CHAPTER 10. CONCLUSION 158

for the relational and functional data. models bas also been demonstrated.

Transactions have been written as functions over the database. These func
tions are made atomic using the cheap multiple versions of the database
generated under a Don-destructive update regime. The transaction-functions
provide concurrent and consistent manipulation of long-term data within the
functional model of computation. The power and mathematical tractability
of transaction functions has also been demonstrated.

List comprehensions are a referentially transparent query notation that other
workers have recommended as clear, powerful, concise, mathematically sound
and well integrated with its host language. The argument for the clarity of
comprehension queries has been reinforced by illustrating their close resem
blance to the relational calculus. The power, or relational completencss of
list comprehensions has been proved. Database and programming language
thwry have been further integrated by describing the relational calculus in a
programming language semantics. The sound mathematical basis of compre
hensions has been used to develop transformations tha.t improve the efficiency
of list romprehension database queries.

In conclusion, fast evaluation and the ease of transformation make preserv
ing referential transparency in a query language desirable. The suitability
of referentially transparent languages for implementing and manipulating
databases is less clear. The transaction language is attractive because of
its power and mathematical tractability. It is, however, dependent on the
implementation language providing cheap multiple versions of the database.

As an implementation language, a parallel functional language has sufficient
concurrency and clean semantics. Access to some important data structures
can be implemented efficiently - classes of data and secondary indices are
two examples. However, the non-destructive update regime limits the choice
of data structures to those that can be modified efficiently. Some desirable
data structures, such as closely-linked graphs, cannot be modified efficiently
and hence cannot be used in a functional database. The author believes that
the data structures that can be modified efficiently are sufficient to support
most database applications with acceptable efficiency. A more realistic im
plementation would provide a better understanding of the costs and benefits
of enforcing referential transparency in the implementation and transaction

159 CHAPTER 10. CONCLUSION

languages.

10.2 Future Directions

Three avenues of further research present themselves. The first is to construct
a more rea.listic implementation of the functional database. The second is
to explore the costs and benefits of non-destructive update. The third is to
explore the potentia.l of data dependency as an exclusion mechanism.

The first avenue is to provide more concrete evidence of the practical value
of a functional database by constructing a more realistic implementa.tion.
The results obtained from a prototype implementation are promising. The
existing implementation could be extended by implementing the fwif and
/waf parallelism primitives. This would enable the parallelism possible to
he further investigated and the primitives compared. The implementation
is, however, far from realistic as the amount of data stored is small and
the multiple processors are only simulated. Implementing a larger database
on a multi-processor macbine would provide more believable evidence of its
practicality.

The practicality of the query notation can also be established. Tbe notation
and associated transformations are an attractive combination. List compre
hensions are being included in a variant of PS-Algol that is being constructed
by workers at Glasgow University. The comprehensions will be used to pro
vide a.n object-oriented query language. The implementation should permit
the interrogation of severa.l megabytes of persistent data.

The second avenue to be explored is the non-destructive update model. The
investigation might include discovering further uses for the multiple copies of
the datahase generated by non·destructive update. For example the database
might be made resilient in the face of machine failure. Further investigation is
required to ascertain which data structures can be efficiently modified under
a non-destructive update regime and which cannot.

The third avenue is to explore the exclusion provided by data dependency. A
detailed comparison with conventional mechanisms is desirable. Data depen

160 CHAPTER 10. CONCLUSION

deney has several desirable properties that are immediately apparent, such
as an unusual degree of concurrency and deadlock freedom. Further inves
tigation may uncover other properties. It may be possible to convince the
Flagship d~ign team to use data dependent exclusion in their DebitCredit
functional database. It may also be possible to prove that the exclusion
mechanism is optimal in the sense that access is only prevented to those
parts of the entities that are currently being modified,

Appendix A

Parallel Programs

This Appendix presents the concurrent LML programs. The LML programs
are compiled into FLIC intermediate code [71]. An interpreter has been
written to simulate the parallel reduction of FLIC code. Eager and optimistic
primitives are added. to the compiler-generated FLIC manually, and tbe LML
programs below are annotated. by [!] to indicate where this has oeeured.

The bulk data manager, associated operations like lookup. and the account
database all reside in a. seperate module. This module is linked inlo programs
that use the operations it provides. Appendix A.I gives two versions of
the bulk data ma.na.ger module, although not all of the example database is
included. Appendix A.2 presents the programs that invoke a sequence of bulk
data. operations. Appendix A.3 presents programs that invoke a sequence of
transactions.

161

APPENDIX A. PARALLEL PROGRAMS	 162

A.I	 Bulk Data Manager

A.I.! Standard Bulk Data Manager

module
This module provides the bulk data manipulating functions
vith associated types and an example class of data called
acct .

export	 Rt, Dbt, Hessaget, key, and, fst, lookup. update, delete.
maDager. acct;

ree

(type Rt "" record Int Int Char lnt)
Acctno Balance Class Credit-Limit

and (type Dbt • tip Rt + Dode Dbt Int Dbt)
and (type Hessaget = error (List Char) Int + --Error with flag,

--key + explanation
ok (List Char) Rt) --Positive ack with

--explanatory note

key :: Rt -> Int

Extracts the key from a record, an integer in this case.

and	 key (record abc d) ~ a

and snd (x.y) = y
and fst (x,y) ~ x

lookup :: Int -> Dbt -) Out
Given a key and a database this retrieves the record
associated with that key in the obvious vay.

APPENDIX A. PARALLEL PROGRAMS 163

and lookup k' d let recE

lookup' k' (tip r) = ok "lkup, record
II

lookup' k' (node It k rt) =

if k' < k then
lookup' k' It

else
lookup' k' rt

in
(lookup' k' d,d)

insert :: Rt -) Dbt -> Out

Insert constructs a nev database which contains an
additional record. It thcveamths and thcveamths if the
record already exists.

and insert r' (tip r)
if key r' • key r then

(error "ins, ree exists- " (key r). tip r)
else

if key r' < key r then
(ok "ins, " r', node (tip r J

) (key r) (tip r»)

else
(ok tlins, r', Dode (tip r) (key r') (tip r'»II

II insert r' <node It k rt) ..
if key r' < k then

l.t

(m.lt') insert r ' It
E

in
(m. node It' k rt)

else

l.t

(m/rt l) = insert r' rt

in

(m, node It k rt')

= " r

APPENDIX A PARALLEL PROGRAMS 164

update :: Rt -> Dbt -> Out

Update cOQstructs a new database containing a
different record in place of an original record.

and update r' (tip r) = (ok "upd " r', tip r 1)

II update r' (node it k rt)

if key r' < k then
let

(m,lt') = update r' It
in

em, node[!] It' k rt)

else

l.t

(m,rt') = update r' rt

in

(m. node[~] It k rt')

delete :: lnt -> Dbt -> Out

Delete constructs a new database which is
identical to the original except it excludes
a record. It examines 4 cases - a node with
2 tips, a left tip. a right tip, or two nodes
for children.

and delete k' (node (tip rO) k (tip rl»
if k' = key rO then

(ok "del rO. tip rl)II

else
if k' c key rl then

(ok "del " rl, tip rO)
else

(error "del- key missing" k'.
node (tip rO) k (tip rl))

II delete k' (node (node It k2 rt) k (tip r»
if k' < k then

APPENDIX A. PARALLEL PROGRAMS 165

let
(m,lt') = delete k' (node It k2 rt)

in
(m, node It l k (tip r»

else
if k' = key r then

(ok "del" r. node It k2 rt)
else

(error "del- key missing" k'.
node (node It k2 rt) k (tip r»

II delete k' (node (tip r) k (node It k2 rt»
if k I < k then

if k' ~ key r then
(ok "del" r. node It k2 rt)

else
(error "del- key missing" k J

•

node (tip r) k (node lt k2 rt))

else
let

(m.Tt') = delete k' (node It k2 rt)

in
(m, node (tip r) k rt ')

II delete k' (node It k rt) s

if k' < k then
let

(m,lt') delete k' It2

in

(m, node It' k rt)

else

let

(m.rt') = delete kO rt

in

(m, node It k Tt')

APPENDIXA. PARALLEL PROGRAMS 166

manager:: Dbt -) (List Dbt -)

(Hessaget >(Dbt» -) List Dut

Manager is a stream processing function that
consumes a stream of database manipulating
functions and produces a stream of
outputs. It retains control of the tree.

and	 manager d (f.fs) = let
(m.d l) c: t d

in
(m .[!]	 manager d' fs)

I I	 man.ger d [) • [)

and	 acct c: node (node (node (node (node (node
(node (node (node (tip (record 1000 24 '8' 100»

1010
(tip (record 1010 523 'D' 500»)

1020
(node (tip (record 1020 37 'A' 50»

1030
(tip (record 1030 (-33) 'E' 50»»

1040
(node (node (tip (record 1040 (-51) IB' 150»

1050
(tip (record 1050 1022 'A' 500»)

1060
(node (tip (record 1060 75 'A' 150»

1070
(tip (record 1070 381 'C' 250»»)

-- ... 512 account records ...

8740
(node (node (tip (record 8740 (-51) 'B' 850»

8750

167 APPENDIX A. PARALLEL PROGRAMS

(tip (record 8150 8022 'A' 500»)
8760

(node (tip (record 8160 75 'A' 850»
8770

(tip (record 8770 381 'C' 850))))))))))
end

A.1.2 Bulk Data Manager with Disk Delay

In order to simulate the effect of disk-delayed access to the entities at the
leaves of the tree the following access function is added to the manager and
both lookup and update are modified. The access function simply wastes
time by counting.

a.ccess 0 = 1
II a.ccess n os access Cn-i)

lookup :: Int -> Dbt -> Out
Given a key and a database this retrieves the record
associated vith that key in the obvious yay. Screams
if there is no such record. Incorporates tva calls
to the access function to simulate a disk delay.

and lookup k J d ..
let ree

lookup' k ' (tip r) ..

if (key r .. k J) & (access 50) .. (access 50) then
ok "1kup. record'" " r

else
ok "lkup. record • " r

II
lookup' k' (node It k rt) ""

if k l < k then
lookup' k' It

168

II

APPENDIXA. PARALLEL PROGRAMS

else

lookup' k' rt

in

(lookup' k' d.d)

update :: Rt -) Dbt -> Out

Update constructs a new database containing a
different record in place of an original record.
Incorporates two calls to the access function to
simulate a disk delay.

and update r' (tip r) =
([!] ok "upd " r'.

tip['] (if (access 50) = (access 50) then r' else r'»
update r' (node It k rt)

if key r' < k then
let

(m,lt') = update r' It
in

(m, oode[!] It' k rt)

else
let

(m,rt ') = update r' rt
in

(m, ooden] It k rt')

169 APPENDIX A. PARALLEL PROGRAMS

A.2 Bulk Data Operations

A.2.1 Lookups

This program performs 30 lookups to different entities.

'include "esops.t";

manager acct [lookup 8230;

lookup 1540;

lookup 3730;

lookup 5610;

lookup 6300;

lookup 7530;

lookup 2670;

lookup 4750;

lookup 1060;

lookup 8050:

lookup 4230;
lookup 5730 j
lookup 6370;
lookup 8650 j
lookup 7560;
lookup 4350;
lookup 1430.
lookup 3230;
lookup 8550;
lookup 1670;
lookup 2340;
lookup 5350.
lookup 3450,
lookup 6670;
lookup nso;
lookup 4350;
lookup 8560;

170 APPENDIX A. PARALLEL PROGRAMS

lookup 6570;
lookup 2750;
lookup 5640]

A.2.2 Updates

This program performs 30 updates of the same entity

'include "esops.t";

manager acct [update (record 1400745 lA' 40);
update (record 1400 345 'A' 40);
update (record 1400 745 'A' 40) ;
update (record 1400 345 'A' 40);
update (record 1400 345 'A' 40),
update (record 1400745 'A' 40);
update (record 1400 345 'A' 40) ;
update (record 1400745 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400745 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400 745 'A' 40);
update (record 1400 345 'A' 40) ;
update (record 1400 345 'A' 40);
update (record 1400 745 I AJ 40);

update (record 1400 745 'A' 40);
update (record 1400 345 AJ 40);I

update (record 1400 345 AI 40);I

update (record 1400 745 'A' 40) ;
update (record 1400 345 I A I 40);

update (record 1400 745 'A' 40);

update (record 1400 345 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400 745 'A' 40);

171 APPENDIX A. PARALLEL PROGRAMS

update (record 1400 345 lA' 40):

update (record 1400745 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400 345 'A' 40);
update (record 1400 345 'A' 40)]

A.2.3 Updates with Disk Delay

This program performs 15 updates of different entities
using the data manager with a simulated disk delay.
Note that the data manager with the disk delay has the
same type as the standard module with no delay.

'include "eeops. til;

manager acct [update (record 1010 745 'A' 40);
update (record 3230 345 'A' 40);
update (record 5320 745 'A' 40);
update (record 8450 345 'A' 40):
update (record 6540 345 'A' 40):
update (record 3710 745 'A' 40):
update (record 7330 345 'A' 40):
update (record 1620745 'A' 40);
update (record 6750 345 'A' 40);
update (record 4440 345 'A' 40);
update (record 4750 745 'A' 40);
update (record 7570 345 'A' 40);
update (record 2640 745 'A' 40);
update (record 1460345 'A' 40);
update (record 8650 345 'A' 40)]

APPENDIX A. PARALLEL PROGRAMS 172

A.2.4 Read and Write Programs

This Subsection presents four programs that illustrate the possible combina
tioIls of rea.d and write operations. The programs use the data manager with
a simula.ted disk delay. Note that the data manager with the disk delay has
the same type as the standard module with no delay.

This program performs an update (write) followed by a
lookup (read) of the same entity.

'include "esops.t";

manager acct [update (record 1560 345 lA' 40);
lookup 1560]

This program performs a lookup (read) followed by an
update (vrite) of the same entity.

'include "asape.t";

manager acct [lookup 1560;
update (record 1560 345 'A' 40)]

This program performs two lookups (reads) of the same entity.

'include "esops.ttt;

manager acct [lookup 1300;
lookup 1300]

This program performs two updates (writes) of the same entity.

'include "esops. t" i

manager acct [update (record 1400745 'A' 40);
update (record 1400 345 'A' 40)]

APPENDIX A. PARALLEL PROGRAMS 173

A.2.5 Typical Mix

This program performs a sequence of 30 insert. delete, lookup
and update operations representative of a typical mi~ of
operations for some application .

• include "esops.t";

manager acct
[update (record 2770 746 JA' 40); lookup 2770;

insert (record 4630 445 'A' 40); lookup 4630;
update (record 6200 746 'A' 40);
insert (record 1470 746 'A' 40); delete 1470;
lookup 7410;
update (record 7310 446 'A' 40); lookup 7310.
update (record 8560 446 'A' 40);
update (record 2770 745 'A' 40); lookup 2770;
lookup 3660;
insert (record 5200 745 'A' 40);
lookup 1260;
insert (record 2310342 'A' 40); delete 2310;
update (record 4630 442 'A' 40); lookup 4630;
update (record 6300 746 'A' 40);
insert (record 5470 746 'A' 40); delete 1470;
lookup 7410;
update (record 7370 446 'A' 40): lookup 7310;
update (record 8260 446 'A' 40);
lookup 1360;
delete 5310;
update (record 1260 342 'A' 40)]

APPENDIX A. PARALLEL PROGRAMS 174

A.3 Transactions

A.J.! Five Bank Transactions

This program defines a bank deposit transaction.

It then performs 5 bank transactions - tvo deposits and

three balance enquires.

-include "esops.t";

let ree

isok (ok m r) = true
I I isok mag = false

and deprec (ok m (record ano bal class crl» n ~

(record ana (ba1+n) class crl)
I I deprec (error m k) n 2 <record 0 0 'AI 0)

and dep and 2

let (ol,d1) = lookup a d in
let (o2.d2) = update (deprec 01 n) d in

if[!] (isok 01) l (isok 02) then
(o2.d2)

else
(error "dep" O,d)

in manager acct [dep 1600 10;
lookup 5250;
lookup 7530;
dep 4320 5;
lookup 2730]

This program performs the same operations as the above
program. except the operations are not packaged up as

175 APPENDIX A. PARALLEL PROGRAMS

transactions.

'include "esops. t";

manager acct [lookup 1600;
update (record 1600 345 'A' 40);
lookup 5250;
lookup 7530;
lookup 4320;
update (record 4320213 'B' 50);
lookup 2730]

A.3.2 Two Long Transactions

This program performs tliO transactions both of which
update the same four entities.

'include "seops.t";

let rae
isok (ok m r) "'" true

II isok mag = false

~ update (record 1040 320 'AI
let (o2.d2) = update (record 1240 320 'AJ
let (o3.d3) = update (record 1440 320 'A'
let (o4.d4) ~ update (record 1640 320 'A'
if[!] Cisok 01) t Cisok 02) t Cisok 03) t

(o4,d4l
else

(error "lots" O,d)

in manager acct [lots;
lots]

APPENDIX A. NRALLEL PROGRAMS	 176

A.3.3 Two Transactions with a failing Opti!

This program performs two transactions both of which update
four entities. The second update of 'lots2' fails because
the entity does not exist.

'include "esape,t";

let ree
isok (ok m r) = true

I I isok mag = false

and lots d =	 let (ol,d!) "" update (record 1040 320 'A' 150) d in
let (o2.d2) = update (record 1240 320 'A' 150) dt in
let (o3,d3) = update (record 1440 320 'A' 150) d2 in
let (o4.d4) = update (record 1640 320 'A' 150) d3 in
if[!] Cisok 01) ~ Cisok 02) ~ Cisok 03) ~ Cisok 04) then

(o4.d4)
else

(error "lots" a,d)

and lots2 d = let (ol,dt) 2' update (record 1040 320 'A' 150) d in
let (o2,d2) = update (record 8840 320 lA' 150) dt in
let (o3,d3) = update (record 1440 320 'A' 150) d2 in
let (o4,d4) = update (record 1640 320 lA' 150) d3 in
if[!] (isok 01) t (isok 02) t (isok 03) t (isok 04) then

(o4,d4)
else

(error "lots2" O,d)

in manager acct [lots;
lots2]

177 APPENDIX A. PARALLEL PROGRAMS

A.3.4 Long Read Transaction

This program defines a transaction that updates four entities
and another that looksup the same four entities. The read
transaction is followed by the write transaction in the
manager's input stream.

'include "esops. til;

let ree
isok (ok m r) '" true

II isok msg = false

and lots d =	 let (ol,d!) = update (record 1040 320 'A' 150) d in
let (o2,d2) = update (record 1240 320 lA' 150) dl in
let (o3,d3) = update (record 1440 320 'A' 150) d2 in
let (o4.d4) = update (record 1640 320 'A' 150) d3 in
if['J Cisok 01) a Cisok 02) a Cisok 03) t (isok 04) then

(o4,d4)

else

(error "lots" D,d)

and lots2 d '"' let (ol.d1) = lookup 1040 d in
let (o2,d2) = lookup 1240 dl in
let (o3.d3) = lookup 1440 d2 in
let (o4.d4) = lookup 1640 d3 in
if[f] Cisok 01) & Cisok 02) t (isok 03) t (isok 04) then

(o4,d4)
else

(error "lots2" Old)

in manager acct [lots2;
lots]

APPENDIX A. PARALLEL PROGRAMS	 178

A.3.5 Long Read Transaction and Deposits

This program defines a transaction that looksup four entities
and also a bank deposit transaction. The manager is invoked
vith the lookup transaction followed by two deposits to two
of the accounts being looked up.

#include "esops.t";

let ree

isok (ok m r) = true
II isok msg false

and lots2 d =	 let (ol,dl) 0: lookup 1040 d in
let (o2.d2) = lookup 1240 dl in
let (o3,d3) ~ lookup 1440 d2 in
let (o4.d4) = lookup 1640 d3 in
if[!] Cisok 01) • Cisok 02) & Cisok 03) & Cisok 04) then

(o4.d4)
else

(error "1ots2" a,d)

and deprec (ok m (record ana bOll class crl» D

(record ana (bal+n) class crl)

II deprec (error m k) n = (record 0 0 I A' 0)

and dep and ~	 let (ol,d1) = lookup a d in
let (o2,d2) = update (deprec 01 n) d in
if[!] Cisok 01) & Cisok 02) then

(o2.d2)
else

(error "dep" O,d)

in manager acct [lots2 j
dep 1240 5;
dep 1440 5]

Appendix B

ML File Manager

(. AN IMPLEMENTATION OF OATABASE VIEWS .)
(. . **....................... .)

(. The following is a small example of how a generic data .)
(. manager that supports views can be constructed using .)
(. SIGNA111RE/STRUCTURE and FUNCTOR mechanisms provided by.)
(. ML in a purely functional manner. .)

(.Auxiliary functions-)

fun fst (x.y) ~ x;

fun snd (x~y) z y;

fun filter p ex: :xs) if (p x) then

(x::filter p xs)
else

filter p xs
I filter p [] = [];

179

APPENDIX B. ML FILE MANAGER 180

signature BKR
sig

type Kt

type RtO

val NullRt :RtO

val eq :Kt ... Kt -) bool

val Ie : Kt " Kt -) bool

end

structure acctkr:BKR
struct
type Kt ::: int (*Acctno.)
type RtO =real'" string'" real (-Balance, Account Class,Credit Limit.)
val NullRt (0.0."",0.0)II::

val eq :Kt * Kt -) bool = op
val Ie :Kt ... Kt -) bool = op <=

end;

structure custkr:BKR
struct

type Kt = string (-Name.)

type RtO = int • string list. int C*Acctno,AddresB.Phone no.)

val NullRt = (O,[l,O)

val eq :Kt Kt -> bool op

val Ie :Kt Kt -> bool = op (II::

end;

signature PARAMDB =
sig

type Dbt

structure bkr: BKR

type Request

val lookup :bkr.Kt -) Dbt -> (bkr.RtO*Obt)

val update :(bkr.Kt • bkr.RtO) -> Dbt -> (bkr.RtO*Obt)

val insert :(bkr.Kt ... bkr.RtO) -> Dbt -> (bkr.RtO*Obt)

(.val delete :)

val flatten :Dbt -) (bkr.Kt * bkr.RtO) list

APPENDIX B. ML FILE MANAGER	 IBI

val manager :(Dbt.Request list) -> bkr.RtO list

val initdb :Dbt

end;

functor genericdb(bkr:BKR):PARAMDB=
struct
datatype Dbt "" tip of	 (bkr.Kt*bkr.RtO)

I node of (Dbt • bkr.Kt • Dbt)

I empty;

type Request Dbt -) (bkr.RtO*Dbt):0::

structure bkr = bkr

fun lookup k' d ""

let

fun lookup' (k', (tip(k,r») = r

I lookup' (k', (node U,k,r») • if bkr.le(k'.k) then

lookup' (k J ,I)

else

lookup'(k' .r)

in
(lookup' (k' ,d) ,d) end;

fun insert (k' ,r') d ""
let

fun insert' «k' ,rJ).tip(k,r» = if bkr.le(k' .k) then
node (tip(k'.r'),k'.tip(k,r»

else
node (tip(k.r).k.tip(k'.r'»

I insert' «k',r'),node(l,k,r» = if bkr.le(kJ,k) then
node (insert 1 «k',r'),l),k,r)

else
node (l,k,insert'«k',r'),r»

I insert' «k' ,r') ,empty) .. tip(k' .r')
in

(bkr.NullRt,insert'«k',r'),d» end;

APPENDIX B. ML FILE MANAGER 182

fun update (k' ,r') d =
let

fun update' «k',r'),tip(k,r» if bkr.eq(k',k) then
tip(k' ,r')

else
tip(k,r)

1 update' «k' ,r J
) ,node(l,k,r» = if bkr.!e(k' ,k) then

node (update'«k',r'),l),k,r)
else

node (l,k,update'«k' ,r'),r»
in

(bkr .Nul!Rt. update J «k' ,r J) ,d»
end;

(..fun Delete k' d ... , 0)

fun flatten d
(-Flatten returns the relation sorted in (descending) key order.)

let fan flat (rel,tip(k,r» = (k,r): :rel
I flat (rel,node(l,k,r)) = flat «flat (rel,l)),r)

in
fl.t ([],d)

end;

fun manager (d,f::fs) = let val Coutp,d ') ~ fed) in
outp::manager(d',fs) end

manager (d, []) = [];
val initdb = empty

end;

structure acct:PARAHDB = genericdb(acctkr); (.Instances of parameterised.)
(.Database .)

structure cust:PARAHDB genericdb(custkr);

signature ATKKR z (>IoHide parts of the keys and.)
sig (.Records from atm's vie" ...)
structure bkr:BKR

APPENDIX B. ML FILE MANAGER 183

type AtmRt

val atmattr ;bkr.RtO -) AtmRt

val atmupd ;AtmRt '" bkr.RtO -) bkr.RtO

end;

structure atmkr:ATHKR::
struct
structure bkr = acctkr
type AtmRt .. real '" string
fun atmattr (bal.ae,c!) ~ (bal.ac)
fun atmupd «bal',ac').(bal,ac.cl» (bal' ,ac' ,cl)

end;

signature ATMDB =
(. Allovs us to hide most of a PARAMUS, also hide most of the.)
(. key and record info, except that needed by the viev oj

(. constructor functions oj

Big
type Dbt
structure bkr: BKR

end;

signature ATMVIEW ...,

(.This signature a110v5 lookup and update on an ATMDB, but.)

(.neither addition nor creation.)

sig
structure a :ATMDB ("'hiding of aceta functionality.)
structure akr :ATHKR
val lookup :a.bkr.Kt -) a.Dbt -> (akr.AtmRt '" a.Dbt)
val update ;(a.bkr.Kt '" akr.AtmRt) -> a.Dbt -) (akr,bkr.RtO"'a.Dbt)

end;

functor makeav(acct:PARAHDB. atmkr: ATMXR):ATHVIEW~

struct
structure a = acct
structure akr = atmkr
fun lookup k d = let val (r.d ') z a.lookup k d

APPENDIX B. ML FILE MANAGER 184

in (akr.atmattr r,d') end
fun update (k,r) d = let val (r1,d') = a.lookup k d

iu a.update (k,akr.atmupd (r,r'» d
end

end;
(-A viev instance .)

structure atmv:ATHVIEW = makeav(acct,atmkr);

(.Build toy database.)
val adb .. snd(acct.insert (12068,(30.0,"Dep",400.0» acct.initdb);
val adb .. snd(acct.insert (12032,(89.0,"Cur",250.0» adb);
val adb .. snd(acct.insert (12021,(342.0,"Sav",1250.0» adb);
val adb ~ snd(acct.insert (12492,(430.0,"Cur".250,O» adb);
val adb'" snd(acct.insert (12472,(21.0,"Cur",250.0» adb);

(-Typical usage 01 views-)
atmv.lookup 12021 adb;
atmv.update (12068,(40.0,"Dep"» adb;

signature CREDCTRLKR '" (.Hide differQnt parts.)
Big (.for cred controller *)
structure bkr :BKR
type CredctrlRt
val credctrlattr :bkr.RtO -) CredctrlRt
val credctrlupd :CredctrlRt • bkr .RtO -) bkr. RtO
val credctrltuplev :bkr.Kt • CredctrlRt -) bool

end;

structure cckr: CREDCTRLKR ~

stract
structure bkr .. acctkr
type CredctrlRt ::r. real • string • real • real

(.4th field = safety margin*)
fun credctrlattr (bal:real,ac.cl:real) = (bal,ac.cl.bal+cl)
fun credctrlupd «bal'.ac·.cl·.smJ).(bal.ac.cl» (bal·.ac',cl·)Q:

tUIl credctrltuplev (k.(bal,ac.cl.sm» ~ bal (a 50.0

APPENDIX B. ML FILE MANAGER 185

endj

signature CCDB ~

(. Allows us to hide most of a PARAMDB-Also hide most of the key'-)

(. and record in'fo. except that needed by the cred control vie~.)

(. constructor 'functions. 11<)

sig
type Dbt

structure bkr : BKR
end;

signature CCVIEW =

(. This signature allows lookup and update 00 a ceos. but.)

(. neither addition nor creation .)

sig
structure a :CCDB (.hiding of accts functionality.)
structure cckr :CREDCTRLKR (_include eG's record type+functions.)
val lookup :a.bkr.Kt -> a.Dht -> Ccckr.CredctrlRt * a.Dbt)
val update :(a.bkr.Kt * cckr.CredctrlRt) -> a.Dbt -> (a.bkr.RtO*a.Dbt)
val flatten :a.Dbt -> (a.bkr.Kt * cCkr.CredctrlRt) list

end;

functor makeccv(acct:PARAMDB. cckr:CREDCTRLKR):CCVIEW=
(* Note that attrv2 actually constructs information from.)
(. that present in the complete record. .)
struct
structure a = acct
structure cckr = cckr
fun lookup k d = let val (r,d') = a.lookup k d

in (cckr.credctrlattr r,d') end
fun update (k.r) d = let val (r'.d') ~ a.lookup k d

in a.update (k,cckr.credctrlupd (r.r ') d
end

fun flatattrv2 (k.r) = (k,cckr.credctrlattr r)
(.Version of credctrlattr.)
(.that covers keys.)

fun flatten d = filter cckr.credctrltuplev (map flatattrv2 (a. flatten d»

186APPENDIX B. ML FILE MANAGER

end;

structure ccv: CCVIEW makeccv(acct,cckr);

(*usage of a credit*)
(*controlers viev *)

ccv.lookup 12068 adb;

ccv.update (12032,(2.0,"Sav",2.0.3.0)) adb;

ccv.flatten adb;

Appendix C

Denotational Semantics

We present below a denotational semantics of the domain relational calculus.
The semantics uses Stoy's notation {82] and assumes that the query to be
described is both safe and generative. The syntactic categories for, and
abstract syntax of the relational calculus are given in Subsection 8.5.2.

C.I Semantic Domains

We use Set, Tuple and List constructors without definition.

Val = {Unbh + Num + String + ...

Dbase = Rlde --. Set (Tuple Val)

Env = Ide --. Val

Simple = List Ide x Val

187

APPENDIX C. DENOTATIONAL SEMANTICS 188

C.2 Semantic Functions

Q :Query -+ Dbase -+ Set Tuple

The Q function is given a database and a domain relational query and re
turns the set of tuples in the database that satisfy the query. It does so
by detennining all of the possible environments, or bindings of values in the
database which satisfy the relational formula, p E E[E n 6 {II t-+ Uno, ..
I. ~ Unb). The value of the result tuple is then extracted, (pIId,·· p[l.]).
Note that initially each variable, Ij, is unbound.

QI {(I" .. I.)IEl] o=
{(pll,], .. pII.!)lpEEIE) 0 {I,~ Unb, .. I. ~ Unb}}

£ :Exp -+ Dbase -+ Env -+ Set Env

The E function is given a relational formula, a database and the environment
constructed so far. From these it constructs a set of environments which
satisfy the formula..

EIE<, AE,]o p = {pdpo E (EIEO]op) A Pi E (EIE, lopo))

EIE<, V Ed 0 p = {PoIPo E (ElEO lop) V Po E (EIE, lop))

EI~Elo p = filter (EIElop=¢) p

q(l" .. I.) E R) 0 p = {pEll{l, ~ VI, .. I. ~ v.ll(VI, .. v.) E olR]l

EIAow Ad 0 p = 0 Iw] (AI Ao Ip) (AI Ai]p) p

q3(1" .. I.): R. E] 0 p = {pd("t, .. v.) E olR] II
p, E (EIE] 0 pEll{l, ~ "t, .. I. ~ v.}))

E['I(I" .. I.): R. E J8 p = {pd(v" .. v.) E olR] II
p, E n(EIE 10 pEll{l, ~ VI, .. I. ~ v.}))

189 APPENDIX C. DENOTATIONAL SEMANTICS

e :Op --+ Simple --+ Simple --+ Env --+ Set Env

The B function generates a set of environments that satisfy a relational
calculus comparison. For the <,:S,~, >, 1= operators it simply filters out
those environments that do not satisfy the comparison. For equality, however,
it may be required to extend the environment. This occurs if one of the
identifiers in the comparison is unbound, and is a form of unification.

81<1 (I., a) (h,b)p=filter(a<b)p

Similarly for >,:S,?:..,i:.

81=1 (I., a) (I"b) p=(unb? a ~{pffi{hd I..... b}l;
(unb? b ~{pffi{hd h a}};

filter (a = b) p))

A :Atom --+ Env --+ Simple

The A takes a relational calculus constant or identifier and returns a value
and a list possibly containing an identifier. If the atom is an identifier it
appears in the result list and may be used to extend tbe environment in the
e function.

AI J(1= ([],,q J(I)

AlI I = ([I], pI II)

Auxilliary Function

filter :Bool -. Env -. Set Env

filter p p = (p ~ {p};,p)

Bibliography

[IJ	 Abitboul S. Grumbach S. COL: A Logic.based Language for Complex
Objects. Proceedings of the Workshop on Database Programming Lan~

guages, Roscotf, France (September 1987), 301·333.

[2]	 Albano A. Cardelli L. Orsini R. Galileo: A Strongly Typed Interactive
Conceptual Language. ACM Transactions on Database Systems 10,2
(June 1985), 230·260.

[3]	 Flagship Project - Alvey Proposal. Document Reference G0003 Issue
4 (May 1985).

[4]	 American National Standards Institute Inc. The Programming Language
Ada Reference Manual. Springer Verlag LNCS 155 (1983).

[5)	 Argo G. Fairbairn J. Hughes R.J.M. Launchbury E.J. Trioder P.W.
Implementing Functional Databases. Proceedings of the Workshop on
Database Programming Languages, Roscoff, France (September 1987),
87·103.

[61 Astrahan M.M. Blasgen M.W. Chamberlin D.D. Eswaran KP. Gray J.N.
Griffiths P.P. King W.F. Lorie R.A. McJones P.R. Mehl J.W. Putzolu
G.R. Traiger 1.1. Wade B.W. Watson V. System R: Relational Approach
to Database Management. ACM Transactions on Database Systems 1,2
(June 1976), 97·137.

17]	 Atkinson M.P. Programming Languages and Databases. Proceedings of
the 4th International Conference on Very Large Databases (1978), 408
419.

190

191 BIBLIOGRAPHY

[8J	 Atkinson M.P. PS-Algol Reference Manual 2nd Ed. University of Glas
gow Computing Science PPR Report 12 (1985).

[9]	 Atkinson M.P. Buneman D.P. Types and Persjstence in Database Pro
gramming Languages. ACM Computing Surveys 19,2 (June 1987), 105
190.

[10]	 Augustsson 1. Johnsson T. Lazy ML User's Manual (I988).

[11]	 Backus J. Can Programming be Liberated from the von Neumann Style?
Corrununications of the ACM 21,8 (August 1978), 613-641.

112]	 Bancilbon F. Briggs T. Khosafian S. Valduriez P. FAD, A Powerful and
Simple Database Language. Proceedings of the 13th International Con
ference on Very Large Databases, Brighton, England (September 1987),
97-107_

[13]	 Bayer R. McCreight E. Organisation and Maintenance of Large Ordered
Indexes. Acta Informatica 1,3 (1972), 173-189_

[14J	 Birtwistle G.M. Dahl O.J. Myhraug B. Nygaard K. Simula Begin. Auer
bach, Philadelphia (1973).

[15}	 Bird R.S. Hughes R.J.M. The KRC Users Guide. Oxford University
Programming Research Group Manual (September 1984).

[16J	 Bird R.S. The Promotion and Accumulation Strategies in Transforma
tional Progra.mming. ACM Transactions on Programming Languages
and Systems 6,4 (October 1984), 487-505.

[17]	 Bird R.S. Wadler P.L. Introduction to Functional Programming. Prentice
Hall (1988).

[18l	 Blasgen M.W. Eswaran KP. Storage and Access in Relational
Databases. IBM System Journal 16,4 (1977).

[19]	 Breuer P.T. A Data Language - DL. Cambridge University Engineering
Department CUEDjF-INFENGjTRI6 (June 1988).

[20]	 Breuer P.T. Applicative Query Languages. Cambridge University Engi
neering Department (1988).

192 BIBLIOGRAPHY

[21J	 Suneman P. Nikhil R. Fra,nkel R. An Implementation Technique for
Database Query Languages. ACM Transa.ctions on Database Systems
7,2 (June 1982), 164-187.

[221	 Burton F.W. Sleep M.R. Executing Functional Programs on a Virtual
Tree of Processors. Proceedings of the ACM Conference on Functional
Progranuning Languages and Computer Architecture, Portsmouth, New
Hampshire (1981).

[23]	 Ceri S. Gottlob G. Translating SQL into Relational Algebra: Optimisa
tion, Semantics and Equivalence of SQL Queries. IEEE Transactions on
Soft"are Engineering (April 1985), 324-345.

[24J	 Clack C. Peyton Jones S.L. Generating Parallelism from Strictness Anal
ysis. Proceedings of the Workshop on Implementation of Functional Lan
guages. University of Goteborg and Chalmers University of Technology
Report 17, (February 1985), 92-131.

[25]	 Clark K.L. Darlington J. Algorithm Classification through Synthesis.
The Computer Journal 23,1 (1979),61-65.

[26]	 Codd E.F. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM 13,6 (June 1970), 377-387.

[27)	 Codd E.F. Relational Completeness of Database Sublanguages. Prentice
H,II (1972).

(28]	 Cox S. Glaser H. Reeve M. Compiling Functiona.l Languages for the
Transputer. Proceedings of the Glasgow Workshop on Functional Pro
gramming, Fraserburgh, Scotland (August 1989).

[29J	 Darlington J. A System which Automatically Improves Programs. Acta
Informatica 6,1 (January 1976),41-60.

[30]	 Darlington J. A Synthesis of Several Sorting Programs. Acta Informatica
ll,1 (January 1978), 1-30.

[31]	 Darlington J. Reeve M. ALICE: A Multiprocessor Reduction Machine
for the Parallel Evaluation of Applicative Languages. ProclS'edings of the
ACM Conference on Functional Programming Languages and Computer
Architecture, Portsmouth, New Hampshire (1981).

193 BiBLIOGRAPHY

[32]	 Date C.J. An Introduction to Database Systems 4th Ed. Addison Wesley
(1976).

[33]	 Eswaran K.P. Gray J.N. Lone R.A. Traiger I.L. The Notions of Consis
tency and Predicate Locks in a Database System. Communications of
the ACM 19,11 (November 1976),624-633.

[341	 Farber D.J. Griswold R.E. Polonsky J.P. SNOBOL, a String Manipulat
ing Language. Journal of the ACM 11,1 (1964), 21-30.

[35]	 Freytag J .C. Translating Relational Queries into Iterative Programs.
Ph.D. Thesis, Harvard University (September 1985).

136]	 Friedman D.P. Wise D.S. Aspects of Applicative Programming for File
systems. Sigplan Notices 12,3 (March 1977), 41-55.

[37]	 Goldberg A. Robsen D. Smalltalk 80 The Language and its implemen
tation. Addison Wesley (1983).

[38]	 Gonnet G .R. Handbook of Algorithms and Data Structures. Addison
Wesley (1984).

[39]	 Gordon M.J.C. The Denotational Description of Programming Lan
guages. Springer Verlag (1979).

[40}	 Gray J.N. A Transaction Model, in Automata, Languages and Program
ming. Springer Verlag LNCS 85 (July 1980).

[41]	 Gray J.N. The Transaction Concept - Virtues and Limitations. Pro
ceedings of the 7th International Conference on Very Large Databases
(October 1981).

[42J	 Gries D. The Science of Progmmming Springer Verlag (1981).

[43J	 Hall P.A.V. Optimisation of a Single Relational Expression in a Re
lational Database System. IBM Journal of Research and Development
20,3 (1976), 244-257.

[44]	 Hamilton A.G. Logic for Mathematicians. Cambridge University Press
(1978).

194 BIBLIOGRAPHY

[451	 Harper R. Introduction to Standard ML. Edinburgh University Techni
cal Report ECS-LFCS-86-14 (November 1986)_

[46]	 Hecht M.S. Gabbe J.D. Shadowed Management of Free Disk Pages with
a Linked List. ACM Transactions on Database Systems 8,4 (December
1983),503-514_

[47]	 Held G.D. Stonebraker M.R. Wong E. Ingress a Relational Database
System. Proceedings of the 44th National Computing Conference (May
1975)_

[48]	 Henderson P. Functional Programming Application and Implementation.
Prentice Hall (1980)_

[49]	 Henderson P. Purely Functional Operating Systems in Functional Pro
gramming and its Application. Darlington J. Henderson P. Turner D.A.
(Ed,) Cambridge University Pres' (1982)_

[50]	 Henderson P. Jones G.A. Jones S.B. The Lispkit Manual. Oxford Uni
versity Programming Research Group Technical Monograph PRG-31
(1983)_

[51]	 Hudak P. Bloss A. The Aggregate Update Problem in Functional Pro
gramming Systems. 12th ACM Symposium on the Principles of Pro
gramming Languages (January 1985),300-314.

{52]	 Hudak P. Wadler P.L. (Eds) Report on the Functional Programming
Language Haskell. Draft (April1989)_

[53]	 Hughes R.J.M. The Design and Implementation of Programming Lan
guages. D.Phil. Thesis, Oxford University Programming Research Group
Technical Monograph PRG-40 (July 1983)_

[54]	 Hughes R.J.M. Lazy Memo Functions, in Proceedings of the 2nd Inter
national Conference on Functional Programming Languages and Com
puter Architecture Nancy, France, Springer Verlag LNCS 201, (Septem
ber 1985), 129-146.

[5.5]	 Hughes R.J.M. Vv'hy Functional Programming Matters. Report PMG-40
Programming Methodology Group, Chalmers University of Technology,
Sweden (1984)_

195 BIBLIOGRAPHY

[56]	 Jarke M. Koch J. Query Optimisation in Database Systems. ACM Com
puter Surveys 16,2 (June 1984), 111-152.

157]	 Jones S.B. Abstract Machine Support for Purely Functional Operat
ing Systems, Oxford University Progranuning Research Group Technical
Monograph PRG-34 (August 1983).

[58J	 Kowalik Parallel MIMD Computation. MIT Press (1985).

[59]	 Kung H.T. Robinson J.T. On Optimistic Methods for Concurrency Con
trol. Carnegie Mellon Technical Report CMU-CS-79149 (October 1979).

[60]	 Lacroix M. Pirotte A. Domain Oriented Relational Languages. Proceed
ings of the 3rd Interna.tional Conference on Very Large Databases (Oc
tober 1977).

[61J	 Lampson B.W. Paul M. Siegert H.J. (Ed,) Distributed Systems, Archi
tecture and Implementation. Springer Verlag (1981).

[62]	 Liskoy B. Scheifler R. Guardians and Actions: Linguistic Support for
Robust, Distributed Programs. Proceedings of the 9th Annual Sym
posium on Principles of Programming Languages, Albuquerque, New
Mexico (January 1982), 7-19.

[63]	 Mathews D.C.J. A Persistent Storage System for Poly and ML. Univer
sity of Cambridge Technical Report 102 (January 1987).

[64]	 Michie D. 'Memo' functions and machine learning. Nature 218 (April
1968).

[65]	 Mueller E.T. Moore J.D. Popeck G.J. A Nested Transaction Mechanism
for LOCUS. Proceedings of the 9th ACM Symposium on Operating
System Principles, New Hampshire, USA (October 1983), 71-89.

[66)	 Nikhil R. Functional Databases, Functional Languages. Proceedings of
the Appin Workshop, University of Glasgow Persistent Programming
Research Report 16 (August 1985), 299-313.

[67]	 NikhiI R. Semantics of Update in a FDBPL. Proceedings of the Work
shop on Database Programming Languages, Roscoff, France (September
1987), 365-383.

196 BIBLIOGRAPHY

[68]	 O'DQunel J.T. An Architecture that Efficiently Updates Associative
Aggregates in Proceedings 0/ the 2nd International Conference on
Functional Programming Languages and Computer Architecture Na.ncy,
France, Springer Verlag LNCS 201 (September 1985), 164-189.

[69]	 Peyton Jones S.L. Using Futurebus in a Fifth Generation Computer.
Microprocessors and Microsystems 10,2 (March 86), 69-76.

[70]	 Peyton Jones S.L. The Implementation 0/Functional Programming Lan
guages. Prentice Hall (1987).

[71]	 Peyton Jones S.L. FLIC - a Functional Language Intermediate Code.
Department of Computer Science, University College, London, Internal
Note 2048 (February 1987).

[72]	 Poulovassilis A.P. FDL: An Integration of the Functional Data Model
and the Functional Computational Model. Proceedings of the 6th British
National Conference un Databases (BNCOD 6) (July 1988), 215-236.

[73)	 Qu;ue W.V. Word and Object MIT Press (l960), 141ff.

[74]	 Reed D.P. Naming and Synchronisation in a Decentralised Com
puter System. Ph.D. Thesis, Massachusetts Institute of Technology
MIT/LCS/TR-205 (September 1978).

[751	 Robertson LB. Hope+ on Flagship. Proceedings of the 1989 Glasgow
Workshop on Functional Programming, Fraserburgh, Scotland (August
1989).

[76]	 Sawyer T. Serlin O. DebitCredit Benchmark - Minimum Requirements
and Compliance List. Codd & Date Consulting Group, San Jos.e.

[77]	 Schmidt D. Detecting Global Variables in Denotational Specifications.
University of Edinburg Internal Report CSR-143-83 (September 1983).

[781	 Sedgewick R. Algorithms 2nd Ed. Addisun Wesley (1988)_

[79]	 Sheard T. Stemple D. Automatic Verification of Database Transaction
Safety. Univers.ity of Massachusetts Computer and Information Science
Technical Report 86-30 (1986).

197 BIBLIOGRAPHY

[80]	 Shipman D.W. The Functional Data Model and the Data Language
DAPLEX. ACM Transaction on Database Systems 6,1 (March 1981)
140-173.

[81]	 Smith J.M. Chang P.Y-T. Communications of the ACM 18,10 (Odober
1975), 568-579.

[82]	 Stoy J.E. DenotationaJ Semantics. MIT Pre" (1977).

[83]	 Stay W. The ImpLementation of Functional Languages using Custom
Hardware. Cambridge University Ph.D. Thesis (December 1985).

[84]	 Trinder P.W. The Provision of Store in Functional Languages. Qual
ifying Dissertation, Oxford University Programming Res:earch Group
(February 1987).

[85]	 Trioder P.W. Wadler P.L. List Comprehensions and the Relational Cal
culus. Proceedings of the 1988 Glasgow Workshop on Functional Pro
gramming, Rothesay, Scotland (August 1988), 115·123.

(86]	 Trinder P.W. Referentially Transparent Database Languages. Proceed
ings of the 1989 Glasgow Workshop on Functional Programming, Fraser
hurgh, Scotland (August 1989).

[87]	 Trinder P.W. Wadler P.L. Improving List Comprehension Da.tabase
Queries. Proceedings of TENCON'89, Bombay, India (November 1989),
18&.192.

[88]	 Turner D.A. Recursion Equations as a Programming Language in Func
tional Programming and its Application. Darlington J. Henderson P.
Turner D.A. (Eds) Cambridge University Press (1982).

[89]	 Turner D.A. Miranda System Manual, Research Software Limited
(1987).

[90]	 Ullman J.D. Fundamental Concepts 0/ Programming Systems. Addison
Wesley (1976).

[91J	 Ullman J.D. Principles of Database Systems, Pitman (1980).

BIBLIOGRAPHY	 198

[92]	 von Bultzingsloewen G. Translating and Optimising SQL Queries Hav
ing Aggregates. Proceedings of the 13th International Conference on
Very Large Databases, Brighton, England (September 1987), 235-245.

[93]	 Wadler P.L. An Introduction to Orwell. Oxford University Handbook
(December 1985).

1941	 Wadler P.L. A New Array Operation for Functional Languages. Oxford
University Programming Research Group internal document (October
1986).

[95]	 Wadler P. L. List Comprehensions. Chapter i of Peyton Jones S.L. The
Implementation of Functional PT'Ogmmming Languages. Prentice Hall
(1987).

[96]	 Wadler P. L. Deforestation: Transforming Programs to Eliminate Trees.
European Symposium on Programming, Nancy, France (January 1988).

[97}	 Wadsworth C.P. Semantics and Pragmatics of the Lambda Calcu
lus. D.Phil. Thesis , Oxford University Programming Reasearch Group
(1971).

{98l	 Whitehead A.N. Russell B. Principia Mathematica 2nd Ed. Vol I, Cam
bridge University Press (1925L 665ft

[99]	 Wirth N. Algorithms + Data Structures = Programs. Prentice Hall
(1976).

[1001 Yao S.B. Optimisation of Query Evaluation Algorithms. ACM Trans
actions on Database Systems 4,2 (June 1979) 133-155.

[101] Yeh	 R.T. Current Trends in Progmmming Methodology Vol I. Prentice
Hall (1971), 40-42.

[102) Zloof M.M. Query By Example. Proceedings of the 44th National Com
puting Conference (May 1975).

