
'OYfr·"."', ''';''''''~''':'''I !"""'~.
\

i , _' , . __
OXk"w Ox I :;'UU

CORRECTNESS AND COMMUNICATION
IN REAL-TIME SYSTEMS

by

Steve S~hneider

Technic31 Monograph PRG-84
ISBN 0-902928-63-5

March 1990

Oxford University Computing Laboratory
Programming Research Group
11 Keble Road
Oxfo;d OXI 3QO
England

Copyright © 1990 Steve Schneider

Oxford University Computing Laboratory
Programming Research Group
11 Keble Road
Oxford OXl 3QD
England

Electronic mail: sasOuk.ac .oxford. prg (JANET)

Correctness and Communication 1ll

Real-Time Systems

Steven A. Schneider

Balliol College

Oxford

Snbmitted for the degree of Doctor of Philosophy, .\lichae!ma.'l 1989

Abstract

This thesis builds upon the ma.thematical theory for real-time distributed comput
ing developed by Reed and Roscoe. Time-critical process constructors for mod
elling timeonts, interrupts, and communication constructs, are dcflned in terms of
the primitive operators of Timed Communicating Sequential Processes (TCSP).
The work on communication involves the modelling of channels, inputs, outputs,
chaining, and a characterisation and analysis of buffers. These tools are applied to
the specification, construction, and verification of communication prolocols. The
methods are generalised to apply to networks.

Real-time systems are inherently complex, and this is reflected in the corn
plexity of the verification process. This thesis presents three useful verification
methods. Tbe first is a complete compositional proof system for behavioural spec
ifications on TCSP. The second involves the definition of generic specifications
on processes, capturing those properties of component processes which combine
rea.dily when constructing large networks. Methods of constructing and of identi
fying processes meeting such specifications are examined, and laws are fannulated
roncerning their interaction.

The third approach exploits the mappings between different models within
H.eed's hierarchy. A notion of timewise refinement is presented which allows simple
processes to be refined by the introduction of timing considerations. Properties
which are preserved by timewise refinement are important, since there already
exist well-established techniques for proving that such properties hold of processes
in models lower in the hierarchy.

Acknowledgments

I would like to thank my supervisor, Mike Reed, for his encouragement, advice.
and guidance during the course of this thesis. Thanks are also due 1.0 Bill Roscoe
for his invaluable comments and suggestions concerning this work. I am grateful for
the comments provided by Jim Davies, whose concurrent approach to the subject
has resulted in many fruitful discussions and collaborative results. This work ha.'5
also benefitted from conversations with and advice from Michael Goldsmith, Dave
Jackson, Stephen Blarney, Steve Brookes, Alan Jeffrey, Karen Paliwoda, Ceraint
Jones, and many other colleagues in the PRC, and on the ESPRIT BRA-SPEC
project.

This thesis is dedicated to Elizabeth, for sharing the strain of writing up.
Thanks a.re also due to Mum, Dad. Chris, and JOYl for their love and support.

I arngrateful to SERC for financial support during the course of this research.

Contents

1 Introduction

2 Notation

3 Additions to Timed CSP
3.1 Delayed Sequentia.l Composition
3.2 Indexed Choice

3.2.1 Arbitrary non-deterministic choice
3.2.2 Indexed prefix choice

3.3 An alternative syntax for TCSP
3.4 Derived Operators

3.4.1 Timeout
3.4.2 Tireout
3.4.3 Interrupts

3.5 The After Operator
3.6 Infinite behaviours

4 Factorising Proofs
4.1 Behavioural Specifica.tions
4.2 The proof system for TMF

4.3 Soundness ...
4.4 Completeness .
4.5 A treatment of stability
4.6 The proof system for TMFJ
4.7 Soundness and Completeness.

.5 Aspects of Good Behaviour
5.1 Non-retraction.
5.2 Responsiveness
5.3 Promptness
5.4 Impartiality
5.5 Limited on A
5.6 Bounded Stability.

6 Timewise Refinement
6.1 The mapping e .
6.2 Weak Timewise Refinement
6.3 Strong Timewise Refinement.
6.4 Other Timewise Refinements.

1

3

5

12

12

14

14

16

17

18

19

20

23

25

27

31

31

32

38

43

48

52

57

58

59

68

72

78

81

84

87

89

90

98

122

7 Communication 124
7.1 Definitions 124
7.2 Real-time Buffers 126
7.3 Chaining 130
7.4 Networks of processes. 133

8 Examples 137
8.1 A Time Server. 137
8.2 Time Division Multiplexing 139
8.3 A Watchdog Timer 141
8.4 Some Simple Protocols 145

8.4.1 The Stop and Wait Protocol I 145
84.2 The Stop and Wait Protocol II 154
8.4.3 The Alternating Bit Protocol 155
8.4.4 The Sliding Window Protocol . 159

9 Conclusions, Comparisons, and Future Work 162
9.1 Conclusions 162
9.2 Comparisons. 164
9.3 Future Work. 174

A Mathematical Proors 178
A.l The hiding lemma. 178

B Semantic Models and Mappings 184
B.1 Reed's Hierarchy .. 184
B.2 Semantic Models and Mappings 185
8.3 Semantics for TCSP with process variables 198

Bibliography 205

IndeJt of Notation 210

2

1 Introduction

The theory of Communicating Sequential Processes (CSP) [Hoa.85] has matured
into a complete methodology for the analysis of concurrent systems. It provides
a complete framework for systems design, from the capture of liveness and safety
specifications, through the development of CSP programs, to the verification of
systems. It supports program refinement, and provides the theoretical foundation
for the occam languages. General methods concerning many important aJipects of
concurrency (for example, deadlock-freedom) have been developed.

The inclusion of real-time considerations in the theory of CSP was first at
tempted in [Jon82]. However, technical difficulties made the treatment difficult
to apply. The introduction of more successful real-time models ([RR86, RR87,
Ree88]) for CSP is relatively recent. Although such models enable the rigorous
analysis of processes whose description involves timing considerations, the develop
ment of general techniques for such analysis is still in its infancy. Reed provides a
theoretical basis for the specification and verification of timed processes in [Ree88J,
but any application depends upon manipulations of the axioms of the semantic
model TMrs, and this makes proofs extremely arduous. We need to devf'lop gen
eral methods for reasoning about time-critical and time-dependent behaviour. in
the way that the high level theory for CSP rests upon the semantic models for the
language.

Any effective model for real-time distributed computing should enable the
mathematical definition of temporal concepts such as timeouts, interrupts and
priority, and should support the definition of new process constructors (for ex
ample, a timeout operator). An adequate treatment of communication is also
required in order to analyse processes whose characterisation involves the use of
communication channels, such as huffers, protocols, and pipes.

The motivation for providing a formal semantics of a computer language is
to allow "programmers to make rigorous statements about the behaviour of the
programs they write" [Sto77]. Our primary concern is to use the timed models
to express time-dependent specifications, and to prove that these are satisfied by
candidate processes. There are a number of fruitful approaches we carr tale. In this
thesis, we examine three possibilities: the use of the compositional nature of the
semantics to break down proof obligations to manageable proportions; the creation
of a library of common specifications, sucb as 'the process will respond within t
seconds', and developing techniques for recognising and constructing processes
meeting them; the exploitation of the hierarchy of models defined in [Ree88] so
that verifications in simple models remain valid further up the hierarchy. We will
see that each approach insulates us from much of the detail present in thesemantic

3

models.

The thesis is organised as follows. In chapter 2, we introduce some new nota
tion for reasoning about timed behaviour. The following chapter introduces new
proces~ constructors, including operators for time-critical constructs. In chapter 4,
we present a complete proof system for the timed failures model (TMF) of Timed
CSP (TCSP), and consider how it can be extended to the timed failures stability
model. Chapter 5 introduces a series of families of specifications, and examines the
relatiomhips between them. In chapter 6, we define two forms of timewise refine
ment, and consider their use in verification. Chapter 7 defines several concepts for
communication, and a.nalyses the behaviour of processes that involve their appli·
cation. Chapter 8 illustrates the methods and constructs of the previous chapters
with examples. The final chapter contains a comparison of our results with existing
work in the literature, and a discussion of future research directions.

Our aims in this thesis are to ea..<te the high level specification of real-time
systems. to facilitate the construction of TCSP programs, and to provide tech
niques for verification. In particular, we consider these techniques in the context of
new CODstructs for both time-critical behaviour and point-to-point communication.
In this way, we lay the foundation for a powerful specification and development
methodology for real-time concurrent systems.

4

2 Notation

We use the notation of [Ree88], and introduce some new definitions. A glossary of
the notation introduced here is provided at the end of this dissertation.

Recall from [Ree88J the universal delay constant 6, which represents the time
taken for a process to make a recursive call, or to recover from the performance
of an event. We assume in this dissertation that the duration 6 is significantly
smaller than one time unit (no greater tha.n 0.1 time units).

Timed Traces

Timed traces are finile sequences of (time/event) pairs where the times M50ciated
with the events appear in non-decreMing order. Times are drawn from [0,00),
and events from the universal set of event!! E. The set of all possible timed traces
is denoted TE;;. We write s/"""St to represent the concatenation of traces SI and
.'It, and #.'1 to represent the length of s. As in [HoaS5], we define the relation in
as follows:

5/ in St == 3u,v. U,....Sl V = St

Tbis relation holds whenever the first trace is a contiguous subsequence of the
second.

The first and last operators are defined upon non-empty traces, returning the
first and last events in a trace, respectively:

first(((t, a))~s) ==a
last(s~((l,a))) a

To ease the subsequent mathematics we allow first(O) = last(O) = e for some
object e ¢ 1:: (suggested by J. Davies). The begin and end operators are defined
for all traces:

brgin((}) " 00

begin(((t, a))~'J " t

end(OJ " 0

rnd(s~((t, aJ)

Again, the values chosen for the empty trace are the most convenient for the
subsequent mathematics.

5

The @n operator returns the nth timed event of a trace. It is defined as follows:

O@n = (00, e)
(((I, a))~s)@l = (I, aj

(((I,a»)~s)@(n + 1) = s@n

We define the during, before, and after operators on timed traces. The first returns
the subsequence of the trace with times drawn from set I. The others return the
parts of the trace before and after the specified time.

oTl = 0
(((I, a»~s) T I = ((I, a)~(8 T 1) if I E I

(8 T 1) otherwise

or I = 0
(((I',a))~sJtI = ((I',a))~(stt) ift'';;1

0 otherwise

81 t = sT(I,oo)

where / is a set of time values. In the case that 1= {t} for some time t, we ma.y
omit the set hrackets. The be/ore operator, r, is also used to denote the restriction
of a trace to events drawn from a given set of events. If the second argument of
the operator is a set, then:

orA = 0
(((I,a))~sJtA = ((t,a»)~(stA) ifaEA

(((I,a))~s) t A = s rA otherwise

(((I,il))~s) t A = ((I,il)ns t A) if a E A
(((I,il»)~s) r A = s t A otberwise

If timed refusals are not being considered, the events in a timed trace may be
labelled with hats, to indicate that they have occurred at the instant they became
available; the operator hstrip strips the hats from a timed trace:

hslrip(() = 0
hslrip(((I, a»)~s) = ((I, a)~h8Irip(8)

hSlrip(((I, il»)~s) = ((I, a»)~hslrip(s)

Following Reed, we write s for hstrip(s).

The operator !strip strips the timing information from a trace:

Islrip(0) = 0
1$lrip(((t, a)~s) = (a)~tsl,'ip(s)

6

We use thstrip to denote the composition of these two functions.

We define an operator 0' on traces, which yields the set of events present in the
trace:

a(s) £ {aEEI3to((t,a))inhstrip(s)}

Note that we discard the 'hat' information when considering which eyents are
present in a trace.

We define a temporal shift operator:

() ~ t ()
«((t"a))~s)~1 £ ((I, - I, a))~(s ~ I) if t, ~ t
«((t"a))~s)~1 - s..:..t otherwise

and a count opera.tor, 1 ,which returns the number of occurrences of events from
a given set:

51 A £ #(s t A)

In the case that A = {a} for some event a, we omit the brackets.

The following functions are used in conjunction with the corresponding TCSP
operators. We define a simple hilling operator on traces, with the effect of removing
hidden events:

slA £ st(E-A)

and an equivalence relation ~ on timed traces as follows: u ~ v if and only if u is
a permutation of v. As both are timed traces, only events occurring at the same
time may be interchanged. Formally, u 3:: v precisely when there is a bijective
function f ' {i E Nil ,;; ; ,;; #u} --> {i E Nil ,;; i ,;; #u} such that
V; E liE Nil (i';;#u} ou@i=v@f(i).

Finally, we define parallel operators on traces, corresponding to the effect of
parallel composition in Timed CSP. These are used in the semantic equations.

uxll,v £ {slsiX=ullsiY=vllsi(XUY)=s}

u Illv £ {sIVtosTt"'(uTI)~(vTt)}

We write Tmerge(u,v) to denote tbe set of all traces in TE, obtained by inter
leaving u and v. When ii. = v we define the trace s = u V v to be such that s = v,
and the nth element of s is hatted precisely when the nth element of u or v is.

7

Timed Refusals

Recall the definitions from [Ree88]:

TINT - ([I, ,) II" E R II 0';; 1< ,< oo}
RTO[(- (I x X II E TINT II X E P(r:)}
RSET (U Z I Z E p(RTO[()}

Refusal tokens are drawn from RTOI<. Each refusal token is the cross product
of a hall open interval of times, and a set of events, ~Ild is therefore considered
as a set of (time,event) pairs. Refusals N are drawn from RSET, and therefore
consist IJf finite unions of these refusal tokens. Hence a refusal set is also a set of
(time,event) pairs.

A number of the operators of the previous section have a similar action when
applied to timed refusal sets. If we make the definition

I(N) '0 {tI3aEE.(t,a)EN}

then we can define begin and end on refusals, to be the infimum and supremum
respectively, of the times at which events are refused:

begin(N) == 00 if N = 0
b,gin(N) '0 inf(l(N)) otherwise

<nd(N) 0 if N = 0~

<nd(N) '0 sup(l(N)) othe,wi,e

The before, after, and during operators can be defined on refusals:

Nt I _ Nn([O,t)xr:)

N1t ~ Nn([t,oo) xE)

N i [I"t,) N n ([t" t,) x r:)

Recalling that l: denotes the set of all events, we see that these restrict a refusa.l
set to events that may be refused before, during, and after the specified times.

We overload the i symbol to denote set restriction:

NtA '0 Nn([O,oo)xA)

with hiding defined in terms ofrestriction:

N\A '0 N t(r:-A)

8

We define a temporal shift operator on refusals:

~ ~ t '" {(t, - t, a) I (t" a) E ~ 1\ t, " t}

We define an alphabet operator (7:

a(~) '" {aEEI3t.(t,a)E~}

All of the operators on refusal sets may be extended to infinite refusal sets
(which are discussed in chapter 3)

Failures

For convenience, we extend some of the above definitions to individual timed
(trace, refusal) pairs, which are termed failures.

begin(s.~) " min({begin(s), begin(~)})

end(s.~) " m.r({end(s).end(~)})

(s,~) TI " (s TI,~ T1)

(s,~Ht " (s tt,~ ttl
(s,~)lt " (s1t,~1t)

a(s,~) " a(s) U a(N)

(s,N)~t " (s~t,~~t)

(s, N) t A " (s t A, ~ t A)

(s,~)\A " (s\A,N\A)

We define a predicate A on failures, to indicate that the set A is forced over
the entire behaviour, and hence that all occurrences of events from A in the trace
happen as soon a5 possible. Such a failure is termed A-active.

A(s,~) " [0, end(s,~)) x A <; ~

This allows an alternative formulation of the semantic equation for hiding in TMF :

hIP\A) = {(s\A,N-W)IA(s,~)I\(s,~)EhlPll\a(N')<;A)

9

Processes

The functions traces, fail and stab are defined on sets of (trace,stabllily,rt'fusa1)
triples as in (Ree88J:

'"cos(P) '" {s I (s,o,N) E P}
fail(P) '" {(s,N)I(s,o,N)EP)

,'ah(P) '" {(s,o) 1 (s,o,N) E P}

SUP(P) '" {("o,N) 1 (s,N) E fail(P) A ° = ,,,pip I (s,I3,N) E P))

CL.(P) '" ((s,o,N) 13(w,o,N) E P. w '" s}

These functions are extended to apply to TCSP processes, by applying them
to the semanlics (in Tft.!Fs) of their arguments.

We exlend lhe alphabet operator to TCSP processes:

a(P) '" U{a(s) I ' E trac,,(P»)

and observe that this differs from the alphabet concept nsed in other versions of
CSP (e.g. [HoaS5]). The operator defined here only allows events that a pro
cess ma.y perform to be included in its alphabet, whereas the alphabet concept
in [HaaSS] also allows events that the process cannot perform to appear in its
alphabet.

We use T, S, F, and £ to denote the semantic mappings from CSP to MT, Ms,
MF , and MFs respectively. We use TT, ST, FT, £T' and £T to denote the semantic
mappings from TCSP to TMT , TMs, TMF, TM;.s, and TMFS respectively (see
appendix B).

We use the == relation between TCSP processes when they have the same
semantics in the model TMFS (given in [Ree88] and reproduced in appendix 8.2).

P = Q '" EdPi = Er[QI
If two processes are equivalent in this sense, then they will also have the same
semantics in TMF. Hence the laws given later for TMFS also hold for TMF .

The set of the possible initial events of a process P is denoted inits(P). It is
defined by

inits(P) '" {a 13 I. ((t, a») E Iram(P))

As in untimed CSP, we may label processes by applying an alphabet transfor
mation to them.

i, P '" fi(P)

10

where /i(a) = i. a for a.1I events a E I: \ {,j}; but termination is still signalled by ..I

so we have /;(..1) = ,j. The labels may be removed by applying /,-1 to the process.
We define "m,(P) = !i-' (P).

Finally, we will use an indexed parallel operator, with finite indexing set, as an
abbreviation for a. sequence of binary parallel operations. It is defined inductively
on the indexing :set:

II P; ~ PJ X
J

II xf PI
{X,IJ'iO}

II Pi ~ (II Pi) IU,..<ox.lIlXo" Po +'
{X,IJ(i'a+1} {X,II'i' .. }

when n ~ ~. This indexed parallel operator is entirely similar to the untimed
version, and so we have the standard result that the order in which the (Pi, X;)
pairs are labelled does not affect the semantics of the parallel composition.

11

3 Additions to Timed CSP

The semantic models presented in [RR86, RR87, Ree88] (reproduced in Appendix B)
provide a secure foundation for the modelling of real-time concurrency_ In this
chapter we build upon that foundation by defining new syntactic process con
structors in terms of the basic ones, thus guaranteeing their well-definedness and
continuity. These operators include both timeout and interrupt, which allow the
explicit introduction of such hehaviour into a process description. We also propose
a defining equation for arbitrary non-deterministic choice, and see that it is not
always well defined. We discuss a timed after operator, and the notion of infinite
behaviours, which will be used to succinctly capture particular desirable aspects
of beha\iour in chapter 5, and to define strong timewise refinemen t in chapter 6.

3.1 Delayed Sequential COInposition

The semantics given for the sequential composition operator P; Q allows instan
taneous passing of control from P to Q, at the moment that P successfully termi
nates. This may introduce unwanted non-determinism, since both P and Q may
perform events at the instant of P's successful termination. If an event is pos
sible for both processes then the choice between them will be non-deterministic.
In many cases the complexity introduced by this behaviour is not necessary for
correctness of processes, and serves only to make verification more difficult. We
shall see when we consider the proof system that it is ea::;ier to analyse a sequential
operator that enforces a delay between successful termination of its first operand
and the passing of control to its second. We sball also see, in Chapter 6, that it
is advantageous to use the delayed sequential composition operator in producing
timewise refinements of untimed CSP processes.

We define the new sequential composition as follows:

P;Q" P;WAlTo;Q

It follows that; is well defined and continuous, since it is defined in terms of
the basic TCSP operators. We can derive a semantic equatiou for P; Q in the
evaluatilln domain TMFS from the equations for the sequential operator ; and
WAIT 6. This may be simplified to eliminate the closure operator C4, whose
presence in the equation for P; Q is made necessary by the instantaneous passing
of control.

12

Theorem 3.1. 1 FOT" any P and Q! the semantie equations fOT" P ; Q may be
written as follows:

Edp;Q] ~ SUP({("a,H)I';\"u(s)"VIETINT.

("a, HU (I x {.f)}) E Edp])
U

{(s, a, H) I3 I • .; \" u(sri)

"((s rl)~((t,.;}),H rIU([G,t) x {.;})) E!a;[IEdp])
"(s ~ (t H),a- (I H),H~ (t + 8)) E ErlQIJ)

ETlp; Q] SUP({(s,a,X) I.; \" u(s)" ("a,X U {.f)) E EHp])
u
{(s,a,X) 131. (s r I)~((I,))) E l,aees(EHP])

".; \" u(s rI)" s T(I, 1+ 8) = ()
"(s~(tH),a-(I+8),X) EETlQ]l

Observe that SHIP; P " WAIT 8; P, and that WAIT I; P " WAlT (t +8); P.
The; operator cannot be used with the WAIT construct to introduce delays of
length less than 6.

This new operator obeys many of the laws which hold of the original sequential
composition operator:

(a ~ P); Q _ a~(P;Q) (af.;)
(P;Q);R ~ P;(Q;R)

(WAIT I, III WAlT I,); P WAlT m;n(t" t,}; P

However, other equivalences are no longer valid because of the delay in transfer of
control:

WAlT I, ; WAlT I, ¢ WAlT (I, + I,)
SKIP; P ¢ P

In place of the first of these we have

WAIT I, ; WAlT t, " WAlT (I, + I, + 8)

13

3.2 Indexed Choice

3.2.1 Arbitrary non-deterministic choice

\Ve define a.n indexed non-deterministic choice operator, while recogmsmg that
it is does not always have a well-defined semantics, and does not provide for an
effecti"e treatment of unbounded non-determinism which does not manifest itself
in a. finite time. However, it is useful in many situations, such as the modelling of
a process which may terminate at any time chosen non-deterministically from an
interval.

The a.ddition to the syntax of TCSP of a.n infinite non-deterministic choice
operator involves an extension of each of the semantic mappings (see appendix B)
from TCSP to the various timed models:

Definition 3.2.1 We extend the semantic mappings to the timed models as fol
lows:

Erlnp,! " SUP(UETlp;!)
ieliE/

ETlnp;] " SUP(UET!P;J)
iel ieI

Frln p;! " UTrip;]
ieIiET

sri n P;! " SUP(U ST Ip;])
ieI"I

Trln p;] " UTrlp;!
ieJ"I

However, the ma.ppings are not in general well defined: the set SUP(UiEI £T [P,])
satisfies all the axioms of the model TMFS (reproduced on page 194) with the
possible exception of axiom 5, the bounded speed axiom (also axiom 5 in TMF,
axiom 6 in the other models). Reca.ll tha.t this axiom slales that

'oft E IO,oo),3n E N,'ofs E traces(S) 0 end(s)'; t '* #5'; n

for any element S of TMFS _ Now consider

Po " STOP

POH " Po III a ~ STOP

P " ."
nP.

14

For every n, process Pro may perform n a's at time O. Hence there is no bound on
the number of a's that P, the non~deterministicchoice of all the Pro, may perform
at time 0; so a.xiom 5 does not hold of oUI proposed semantics for P.

If we wish to use an infinite non-deterministic choice operator, we must take
care that this problem does not arise, by ensuring that the set of processes over
which the choice is made has a function which places a bound upon the speed of
all the processes in that set.

Definition 3.2.2 A set {Pi liE 1} is uniformly bounded in TMFS if

3 n' [0,00) ~ N,V'i E 1,t E [0,00).
s E trae<s(frlP;]) A ,"drs) ,; t => #s ,; n(t)

This definition extends to the other timed models in the obvious way.

The function n provides a bound for the speed of each of the processes sep
arately, and thus upon the speed of the non-deterministic composition, and will
ensure that UiEI £T [Pi] satisfies the bounded speed axiom. Observe that any
finite set of processes is unjformly hounded in each timed model.

If a set of processes is not uniformly bounded, then the bounded speed axiom
will not hold of UiEI £T [PI]' Thus we bave a necessary and sufficient condition
for fT [n;EI p;] to be well-defined,

Lemma 3.2.3 £T [n.EI Pi] is well-defined if and only if the set

{P,liEl)

is unifonnly bonnded in TMFs.

This result extends immediately to the other models.

A useful result we obtain from this analysis is that we are able to model a delay
wbich is non-deterministic over some interval. For all t, the process WAIT t has
its speed bounded by At. 1, since it may perform at most one event. Hence,
for any set T ~ [0,00), we have that the set of processes {WAIT tit E T} is
unifonnly bounded, and so n'ET WAIT t will have a well defined semantics; we
will abbreviate it WAIT T

Corollary 3.2.4 The semantics of the process WAIT T is always well defined,
where

WAIT T ~ nWAIT t
<ET

15

3.2.2 Indexed prefix choice

As we shall see in chapter 7, indexed prefix choice is required for the definition of
inputting a message onto a channeL Such a. construct cannot be modelled with
bina.ry deterministic choice if the number of possible messages for the channel is
infinite.

Definition 3.2.5 We extend the semantic mappings of the timed models aB fol
lows:

ET[" A ~ P.] " {((), O,~) I A n <T(~) = 0}

U{((t, a))~(s + (t H)),a+ t + 6,~) I

a E A At;> 0 A A n <T(~ r I) = 0

A (s,a,~ ~ (I + 6)) E £rlP(a)]}

ETla,A~P(a)1 " {((),0,X)IAnX=0)

U{((0, a))~(s +6), a + 6, X) I
a E A A (s,a,X) E £~IP(a)]}

U{((I, a))~(s + t + 6},a+ t + 6, X) I
a E A At;> 0 A (s,a,X) E £;'[P(a)]}

Frl" A ~ p.1 " {(O,~) I An<T(~) = 0}

U{((I, a))~(s + (t + 6}),~) I

a E A At;> 0 A A n <T(~ r t) = 0

A (s, ~ ~ (t +6)) E F T [P(a)]}

ST[a ,A~ Pia)] "	 {(O,O)}

u{(«0, a))~(s + 6), a +6) I a E A A (s, "') E SriP(a)Il
U{(«t, a))~(s+ 1H), a + t H) I

aEAAt;>OA(s,a)ESdP(al]}

TT[a' A~ P(a)1 "	 (OJ

u{«(O, a))~(s+ 6) I a E A A BE TrIPla)]}

U«(t,a))~(.s+ t +6) I a E A At;> 0 to. s E TrIP(a)I}

16

Recall that in the models without timing information, the presence of a hat on an
event in the trace indicates that it happened at the moment it became available.

It should be noted that the same clash with axiom 5 arises with the treatment
of indexed prefix choice. Recalling the processes P" defined above, it can be seen
that the semantics of n : N _ P" will not meet that axiom, for exactly the same
reason as in the case of the infinite non-determinism operator. To define infinite
prefix choice, the same condition is necessary and sufficient:

Lemma 3.2.6 The semantics of a: A _ P(a) is well-defined if and only if the
set of processes {P(a) I a E A} is uniformly bounded.

3.3 An alternative syntax for TCSP

As we shall see, the instantaneous sequential composition operator is awliward to
use both in the proof system and in timewise refinement; the closure operator used
in the defining equatjon gives rise to unnecessary complications in the associated
proof rule, and in conditions for preservation of timewise refinements. By using the
delayed sequential composition operator we can bypass these problems. However,
if the first argument is a simple delay, then the complications do not arise. Hence
we retain the delay operation WAIT t; P.

We will use the synta.x given helow as our language TCSP. We have added the
two indexed choice constructs, and have replaced instantaneous sequential compo
sition with delayed sequential composition. We have retained the instantaneous
sequential composition operator when it is used with a WAIT l command. With
the exception of these alterations, the synta.x is identical to that defined in [Ree88].
Our syntax for TCSP is given as follows:

P ::= STOP I .L I SKIP I WAIT t I

a~P I a:A~P(a) I PnP I np, I PDP I

PIIP I PAII.p I PiliP I
WAIT t; PIP; PIP \ A I

rJ(p) I I(P) I ~X. F(X)

17

If we wish to give a more explicit semantic treatment of recursion, then we nse
a synt.u: with process variables, as follows:

P ,,=	 STOP I 1- I SKIP I WAIT t I

a~P I a:A~P(a) I Pnp I np; I PDP I

P II PIP A 11 8 PIP III P I

WAIT t ; PIP; PIP \ A I

r'(p) I I(P) I X I ~X.P

where X is of type var, the set of process variable names. This approach is more
laborious, since the semantic equations require environments, which are only used
explicitly in the definition of recursion.

The syutax above gives rise to TCSP terms. The processes STOP, SKIP,
1.. and WAIT t have no free process variables; X has as its set of free process
variables the set {X}, the set of free process variables of }j X • P is that of P with
X removed; and the set of free variables of any other compound process is the
union of the sets of free variables of the component processes. Any TCSP term
which !Las no free process variables (in the sense of [Ros82]) is a TCSP process.
The semantics of a TCSP process is independent of the environment in which it
is evaluated, so the semantic equations give rise to exactly the saIne semantics as
that provided by the equations given in [Ree88].

We will use the syutax with variables in chapter 6, where an explicit treat
ment of recursion is required; with the exceptiou of that chapter, we will use the
syntax without variables throughout the thesis, although we are aware that we
could provide a more explicit (though more laborious) justification of our results
if required.

3.4 Derived Operators

We make implicit use of the following lemma in the construction of these operators:

Lemma 3.4.1 u(P) nx = 0 => P" P\ X

This lemma states that the hiding of an impossible set of events from a process
will not alter the behaviour of the process.

Our motivation for defining the following operators by syntactic equiva.1ence is
that we automatically obtain the result that the operators are non-expanding. In

18

practice, when reasoning about proces.ses built with these operators, it will usually
be easier to use the derived semantic equations.

3.4.1 Timeout

One important aspect of time-critical hehaviour is the timeout, where control is
passed from one process to another if the first performs no external actions in a
given period of time. This behaviour can be modeUed in Timed CSP.

Definition 3.4.2 The timeout operator t is defined as follows:

PrJ. Q '" rem;((i; Po WAITt; trig ~;; Q) \ {trig})

If i : P performs no visible actions by time t, then the event trig is made available
by WAIT t; trig -+ i : Q. The abstraction operator forces this event t.o occur as
soon as it becomes available, resolving the choice against process i Pi control
passes to process (i : Q)\ trig, which is equivalent to i : Q, since trig ¢ lJ'(i: Q). If
1 ; P does perform a visible action by time t, then the choice is resolved in favour
of (i : P) \ trig, equivalent to P, and the other side of the choice is no longer a
possibility. Observe that i : P may not resolve the choice with a hidden action,
since it cannot perform event trig.

If trig ¢ u(P) U IJ'(Q) then we have the following equivalence:

PrJ,Q" (POWAITt;trig~Q)\{trig)

Further, if P is unable to terminate successfully, ,j ¢ u(P), then we ha.ve

PrJ, Q " (P 0 WAIT t); Q

Example

The process (a -+ c -+ STOP) t b -+ STOP is initially prepared to engage in
event a. If a is performed within 5 time units, then (after a delay of 6) the process
behaves like c -+ STOP. If the a does not occur within 5 time units, then the
offer is withdrawn and the process hehaves like b -+ STOP.

19

Theorem 3.4.3 The semantics of P r!> Q in TMF simplifies to the following equa
tion:

hlp I!, QI = ((s,N) I b,gin(s) " 1 A (s,N) E hip]
V

((),N I I) E hip] A b,gin(s) " 1+ 6 A
(s ~ (I +o),N ~ (I +0)) E hIQ]}

The timeout operator obeys the following laws:

P g (Q t5 R) == (P g Q) IJ+~+6 R

(pnQ)I!,R " (pI!,R)n(QI!,R)

pl!,(QnR) " (pI!,Q)n(pI!,R)

(PDQ)I!,R " (PI!,R)D(QI!,R)

PI!, (QDR) " (PI!, Q)D(PI!, R)

(PII Q) I!, (R II S) " (PI!,R)II(QI!,S)

(P,!,Q)II(WAITI;R) " WAITI;(QIIR)

(WAIT I, ; P) 'it' Q " WAIT t, ; (P "C;" Q) if t, ;, t,
WAIT (I, +6); Q if t£ < t1

(WAIT t, ; P) [5 Q " WAIT t, : (P "c;', Q) if I, ;, t,
WAIT(t, +6); Q if t£ < l1

((a~ P)I!, Q)\A " WAIT6;(P\A) if a E A, t > 0

3.4.2 Tireout

Another important aspect of timed behaviour is the hreout, where a process is
allowed to run for a particular length of time, after which control is passed to a
second process, providing the first has not termina.ted.

In order to define the tireout operator, we mllst first define a subsidiary operator
HALT/. which bebaves like its argument P up until time t, but must then refuse to
perform anything else (except that it may terminate successfully if this is possible
for P). It is defined in the followiug fashion: giveu au a.rgument P, axiom 5 for
TMF yields that

3n. Vs E traces(P). end(s) (t => #s (n

20

Then

"
HALT,(PI =0 PEllE' (((111(a, E' ~ STOP)) III WAIT t); STOP)

.=1

where EJ = E \ {./}. The semantics of HALTI(P) are therefore given by

.FrlHALT,(PII ((s,N) Iend(s \ -').; t /\ (5 f t,N It) E hlpi
/\(s,(N ft)U(Nn[t,oo)x U})) Eh[P]

Definition 3.4.4 The. tireoul operator, i,, is defined as follows:

(

i , HALT,(P))
III
WAlT t; a ~ SKIP

(SKIP)
; 0

0 ~ i , Q

P j Q, =0 "mid EIl{o,v} \ (a,o})

(

SKIP)

~ -. b -. SKIP

Remarks by A.W. Roscoe were helpful in formulating the above definition.

This construction begins with control at i : HALTI(P), and terminates success
fully if i : HALT,(P) does so before time I. 1f i : HALTt(P) does not terminate
successfully by time t, then hidden event a becomes available and so is forced to
occur. After a delay of 6, terminatiDn of the construct

(((I, HALT,(P)) III (WAIT t; a ~ SKIP))

becomes possihle, so it is forced by the sequential composition operator: control is
removed from i : HALTl(P). After another delay of 6 the process passes control
to i: Q. The construction works because (i: HALT~(P)) \ {a, b} =- i: HALTj(P)
and (I, Q) \ {a, oJ" i, Q.

Examp)e

The process
(p X • a ~ X) j p X • 0 ~ X

" will recursively engage in event a for 10 time units, after which it will behave like
t' X • b -. X, regardless Df the number of as performed.

21

Theorem 3.4.5 The semantic equation for Ihe tirf;Qut operator reduces to the
following:

Fr[P~QI ~	 {(s,N)I(sll,NIIU[O,I)x{J})EFrlP]AJ~u(SII)A

s T(I, I + 20) ~ 0 A (, ~ (I + 20), N~ (I + 20)) E .Fr [Q]]
U

{(', N) I(r((t', J)), N rI' U 10, t') x {J} E Fr[P] A t' « t A

J ~u(,)AJ ~u(N1 t')}
U

{(,~((I", J)), N) 1 (s~((t', J)), N rI' U [0, t') x {J]) E .Fr [P]
A 1'« t A J ~ u(,) A t"" t' A J ~ urN TII', I"))}

If it is not possible for P to terminate successfully before (or at) time t then a
simplerconstrnction is possible.

p! Q =' (Pili WAlTt);SK[P; Q,
This construction fails if P is able to terminate before time t, since on its successful
termination control will pass to Q, whereas we require that the whole process P:,Q
terrrumtes successfully if P does so before control is removed. In the case where P
cannot terminate successfully, only the first component of the union in the semantic
definition given above is non-empty, and so the semantic equa.tion is reduced to

hlPjQ] ~	 {("N)I(dl,Nrl)EFrlp]A,T(I,I+20)~O

A (s ~ (I+20),N ~(t+ 20)) EFdQJ]

The tireout operator obeys the following laws:

pi(Q!R) =' (P!Q) i R
II f,l! IJ fj+C,+tS

(pn Q)! R =' (Pi R)n(Q! R), , ,
p! (QnR) =' (P! Q)n(P! R) , "

(PDQ)! R =' (p! R)D(Q! R), , ,

pi (QDR) =' (P! Q)D(P! R) , "

22

(PIIQ)I(RIIS) '" (pIR)II(QIs), "

(pi, Q) II (WAlT(tH);R) '" WAIT t +.; (Q II R)

(WAIT t, ; P) I Q '" WAITt, ;(P I Q) if it ~ t j
11'+6 't- I /

WAlT (t, + f.); Q if it < t1

(WAlTt, ;p)1 Q '" WAIT t, ; (P I Q) if it ~ tJ

" It-II

WAIT (t, + f.); Q if it < t l

(.~p)IQ)\X", WAlT.;(pl Q)\X if a E X
,+' •

(P~Q) I R '" (P I R)~(QI R)
IJ+lt+6 11+lt+6 'E

(P I Q) I R '" pI (Q I R)
IJ IJ+lt+!6 IJ /.e

3.4.3 Interrupts

The tireout operator passes control from one process to another at a. predeter
mined time. There is also a need to model the situa.tion where a special interrupt
event may cause the passing of control from one process to another, known as the
interrupt handler. The interrupt described here is a simple interrupt, in the sense
that control cannot be passed back to the first process. It is a simple adaptation
of the definition of the tireout operator: the essential alteration is that it is the
occurrence of the interrupting event i, rather than the termination of a delay pro
cess, that triggers the availability of the'; event which removes control from P.
Observe that i is always available while P is running.

We will model a process that behaves like P except that iuterrupt event i is
always available before P terminates; if event i occurs, then control is removed
from Pond passed to the interrupt handler Q. This will be denoted P ~ Q.

23

Definition 3.4.6 We define the interrupt operator as follows:

j : P) (SKIP)III : 0
(j. i ~ SKIP b ~ j : Q

P YQ == remA I EII{J.I,b,.l} \ {b})

SKIP)

(~i -.. b ---t SKIP

Observe that this will not necessarily have the desired behaviour if i E u(P),
since the performance of event i in that case may be due to P as opposed. to the
trigger process. It is therefore the responsibility of the programmer to ensure that
interrupt events are distinct from the alphabet of the interruptible process.

As in the case of the tireout operator, the interrupt operator has a simpler
formulation if process P cannot terminate:

PyQ " (Pllli~SKIP);Q

We may generalise the interrupt operator to model the case where there are a
number of different interrupt events, and the behaviour of the process following
an interrupt is dependent on the identity of the event causing the interrupt. We
take P \l Q(i) to be the process which has each element of the set I available as ,,1
an interrupt event while it behaves as P, and if an interrupt event i occurs, then
control is passed from P to Q(i). The definition is extended as follows:

Definition 3.4.7 The generalised inte1'1'1.l.pt operator is defined as follows:

j: P) SKIP)

((SKIPjl\ :iI ~ ~ : b, ~ j : Q(i)

\bllP 'il Q =:: remj(I ElI!ub1u{,/)iEf

SKIP)

(~i : iI -.. b; ---t SKIP

where h, = {b, liE I}, and j1 = (j.i liE I)

24

As before, we require tbat 0"(P) n I = 0 in order to ensure that the operator yields
the desired behaviour.

The construct allows interrupts to he prioritised. In the process

((P 7 Q(i)) .7 R(j))
tEl lEJ

the interrupts drawn from set J have a higher priority than those drawn from set
I, in that they can interrupt the interrupt handler of a lower priority interrupt.

3.5 The After Operator

The after opera.tor on untimed processes is defined as follows:

Definition 3.5.1 If s E traces(P), then

F[P/s] '" {(w, X) I(s~w,X) E FIPIJ

As we shall see, the introduction of timing information requires a more subtle
treatment of the after operator.

Definition 3.5.2 We define the after operator Ion processes as follows: iJ(s,~) E
/ai/(£r[P]) and md(s,N) <; t then

£r1P/«(s,N),t)] '" {(u,o~ t,W) I
(s~(u + t),o, NU (N' + I)) E £rlPI)

Otherwi" P/(s, N), t) is undefined.

This operator is very different to the CSP version presented in [Ros82] and [HoaS5]_
The only information an observer can obtain from an untimed process while it is
executing is the trace of eveuts that have occurred, so the untimed after operator
only considers the behaviour of a process after a trace. In timed esp, we can
also observe which events were refused during the performance of the trace, and
this additional information may enable us to predict more accurately the future
behaviour of the process. For example, consider the process

P '" a~((b~STOP)tb~c~STOP)

n
a -+ STOP 0 c -+ STOP

25

If we only concern ourselves only with traces, then we cannot know, after the
observa~ion of a, whether or not event b will become available. However, the
knowledge that event c was refused before the a was performed allows us to deduce
that the non-deterministic choice was resolved in favour of the first process, since
the second cannot refuse c before performing a. Hence the addition of relevant
refusal information will allow us to deduce that b will certainly become available
after the a is performed.

Even the (trace, refusal) pair corresponding to what we may have observed does
not give ue all the information we could use to predict possible future behaviours,
since implicit in every observation of a failure (5, N) is a time t which corresponds
to the time up to which the process has been under obeervation when (5, N) has
been ohserved. It provides information about what has not been observed: no
events other than those in s have been performed, and only those events in N have
been refused, up to time t.

The time t associated with the failure (5, N) allows us to predict the future
behaviour of the process by enabling us to deduce how much internal progress has
taken place. In the process P above, we are able to deduce that event b will be
availahle after Observing the failure (((1 , a)), [0, 1 +8) x {c}), but we cannot know
whether or not the timeout has occurred, and hence that c will become available
after b has been performed, unless we can keep track of the internal progress of
the process. The additional knowledge that nothing else has occurred (or been
refused) up until time 6 allows us to infer that a c will become available after a b
ha." been performed. This is apparent from the following equivalence:

PI((((1,a)),[O,1+D)x{,)),6) " b~c~STOP

We overload the after operator in the following way:

PI(s,N) '" PIUs, N), end(s,N))

Pis " PI((s,0), "d(s))

PI(" t) " PI((s,0),t)

PII - PI(((),0),I)

Some of the laws given for the after operator in [Hoa85J extend naturally to include
time, and new laws regarding timing behaviour are introduced:

PIO = P

(Pls)lu _ Pls~(u +"d(s))

(PII,)/I. " PI(t, +I.)
(WAfT I; P)lt P

26

(WAIT t; PJlt + 6 '" P
(PI(s, N))/' '" PI((s,NJ, 'nd(s, N) + t)

3.6 Infinite behaviours

There are many cases where we would wish to consider the infinite behaviour
of processes. A classic case is iu the treatment of one form of unbounded non
determinism, where two processes may be distinguished only by their infinite he
haviours: for instance, we cannot distinguish in finite time between a. process which
can wait an arbitrary length of time and then offer event a, and a. process which
could also always refuse to offer a. The problem of unbounded non-determinism
in untimed CSP has been successfully treated in [Ros88b], where infinite traces
are added to the standard failures-divergence model.

Infinite behaviours are also necessary for the framing of temporal logic state
ments such as 'always 1J'. Indeed, part of the definition of a timed buffer. presented
iu [Sch88], is an attempt to capture a statement of this kind: that if the buffer is
empty, then it will eventually offer to input; and if the buffer is non-empty, then
output will eventually be offered.

The semantic models presented in [Ree88] deal only with finite behaviours, in
the sense that each possible behaviour of a process can be considered as the result
of observing the process for a finite time: (s, 'K) E Fr[P] tells us that if we watch
P up until time end(s, 'K), tben (s, 'K) is a possible observation. This notion may
be extended to infinite behaviours of P: observations that may be made if P is
watched for all time. The infinitary nature of these observations derives from the
fact that they are possible complete histories of the process, and so the observations
themselves need not contain traces of infinite length nor unbounded refusals: it
is perfectly possible to see only a finite number of events perfonned, and only a
finite number of refusals, when a process is observed for all time. The discussion
of the after operator made the point that a failure of a process may be considered
as a possible behaviour of that process up to any time after the end of the failure.
We can therefore consider it as a possible behaviour of the process observed for all
time. Hence any failure of P may also be considered as an infinite failure of P.

In this thesis, we retain tbe philosophy of the timed models presented in
[Ree88]' that processes are completely characterised by their finite behaviours.
The set of infinite behaviours of a process will therefore be completely defined by
its set of finite behaviours. Hence we are not solving the problem of unbounded
non-determinism mentioned above, but we are making it possible to frame some
statements about processes (such as the statement that a process is a buffer) in

27

terms of infinite behaviours. Although tbese statements could be translated into
statements concerning the finite behaviours of the process under consideration,
they will be more than convenient notational shorthand, since such statements
anticipate a treatment of infinite behaviours analogous to the treatment for un
timed CSP mentioned earlier; when sucb a treatment is available, we intend that
our definitions and predicates are still concerned with the infinite behaviours of a
process.

Any treatment of infinite failures must have that the restriction of an infinite
failure to a finite time must be a failure of P. For the purposes of this thesis, we
will take any infinite failure which ha5 this property to be an infinite failure of P.

Definition 3.6.1 Define the infini.te traces T:E~, and mfinite refusal sets IRSET
by

TE. '" {'E([O,oo)xE)"IVIE[O,oo).sttETE,}

'Where tilt, definition of the before operntor t is eztended in the obvious way to allow
infinite traces as arguments.

TE~ '" TE, UTE.

IRSET '" {U Z I Z E P(llTO/() II 'lit. UZ tiE RSET}

We may then define infinite behaviours of a set of failures.

Definition 3.6.2 If P is a set of failures, then

I(P) '" {(s,N)IVtE[O,oo).("N)ttEP)

This gives rise to a semantic mapping IT, which denotes the infinite hehaviours
of a process.

Definition 3.6.3 We define IT : resp _ T:E~ x IRSET as follows:

IrlP] '" {(s,N) IVI E [0,00). (s,NJ t t E Fr[PD)

A particularly useful subset of a set of infinite failures is those pairs whose
traces have finite length. These allow considerations of infinite refusals following a
trace, which will be used when we come to define strong timewise refinement. For
convenience, we will call these the semi-infinite failures.

28

Definition 3.6.4	 If P is a sd of failur~s, th~n

SliP) = {(s,N) IVt E [0,00). (s,N) r I EPA #s is finil')

Again, this extends to a semantic mapping SIr:

Definition 3.6.5 Th~ s~mantic mapping SIr: TCSP -+ TE~ x IRSET i8 d~

fin~d as follows:

SIdP] = ((s,N) I (s,N) E hip] A #s ;,finit,)

We obtain the equations below for infinite behaviours, by considering them as
limits of finite approximations. We conjecture in section 9.3 that these equations
would a.lso hold in a model which could adequately ha.ndle all aspects of infinite
behavioJ+r.

hISTOP] {((),N) IN E lRSET)

h [1-) {((), N) IN E IRSET)

hISKIP)	 {((), N) I -' ~ a(N))

U{((()I,-'),N) I-' ~ a(N r t))

hlWAlT I]	 {((),N) I -' ~ a(N))

U{((()t',-,),N) I -' ~ a(N T[1,1')))

hla - P) {((), N) Ia ~ a(N))

{(((t, a))~s, N) I a ~ a(N r t) A

(s - (t H),N ~ (I H)) E hip])

hla: A _ Pia)] {((),N)IAna(N)=0
U

{((it, a))~s,N) I A na(N r II = 0
A(s-(IH),N~(I+O))EIdP(a)])

hlpn Q)	 hiP] UIdQ)

29

TriP 0 Q] {(s, H) I ((), H r beg;n(s)) E IT [Pi nIT[Q]
A (s.HI EIrlp] U1rlQIl

TriP II Q] {(s, H, U H,) I (s, H,) E Irlp] A (s, H,) E IrlQ])

ITlp xlly Q] {(s,H, UH,) I (H, uH,) I(xu Y)~H, rXUH, r y

A (s rX,H, rX) EIrlP]
A (s r Y,H, I Y) EIrlQ]
AS,XUY=s)

TriP III Q] {(s,H) 13s"s,. 5 E s, III s,

A (5" H) E IrlP] A (s" H) E IrIQ]

IriWAlT I; P] {(s + I, H) I (5, H~ I) E Irlp])

Idp;Q] {(s,H) I (s,HU[O,oo)x (.i))EIdP]/\,f §!u(s))

U

{(s~(w + (I H)), H) I (w, H ~ (t + 6)) E Ir [PI

A .I §! u(s) A (s~((t, ,f)), H t t u [0, t) X (,f)) E IdPlJ

Tdr'(p)] {(s, H) I (f(s),J(H)) E IrlP]l

Observe that the equations for hiding, infinite nondeterministic choice, alphabet
transformation, and recursion have been omitted. We will see in section 9.3 that
we woold expect these to be different when all aspects of infinite behaviour ca.n be
adequately modelled.

The following theorem allows the derivation of semi-infinite behaviours from
(finite) stable behaviours.

Theorem 3.6.6 If (5, a, N) E crlP] then (5, la, 00) XurN 1all E SIrlP].

Proof This follows immediately from axiom 12 of TMFS. 0

30

4 Faetorising Proofs

In this chapter we present the first of our verification methods. We see that the
semantic equa.tions for TMF naturally give rise to a compositional proof system
for a particula.r class of specification, behaviQuralones. The advantages of compo
sLtionality in a. proof system are well-known: it supports the modular development
of systems, and permits factorisation of the verification task.

Behavioural specifications capture a wide range of predicates on proresses, in
cluding miUlY of the specifications defined in Chapter 5. The proof system is
therefore applicable to verifications that processes have these properties. In Chap
ter 8 we will see detailed examples of the use of behavioural specifications in the
capture of system requirements, and of the application of the proof system.

4.1 Behavioural Specifications

Reed [Ree88J defines a specification on TMFS to be a mapping from the complete
metric space TMrs to the set {TRUE, FALSE}. We think of S as a predicate on
TMFS processes, such that S holds of P if and only if S(P) = TRUE. Specifi
cations on the other semantic models may be similarly characterised as mappings
from those models to {TRUE, FALSE).

We define a behavioural specification on TMFS to be a predicate on the set of
triples (s. Q. N) underlying TMFS, TI:, x [0, ooJ x RSET. Similarly, a behavioural
specification on TMF is a predicate on Tr:, x RSET; a behavioural specifica

tion on TMs is a predicate on Tf:, x [O,ooJ; and a hehavioural specification on

TMT is a predicate on Tf:,. We use the convention that the argument to a be
havioural specification identifies the model employed, so for example 5(8,0:, N)
is a behavioural specification on TMFS • Ohserve that, in this thesis, we use a
many-sorted first order predicate calculus with equality as our assertion language.

We define the satisfaction relation sat hetween a TCSP process P and a
behavioural specification S to hold if and only if the specification holds of every
element of the semantics of P in the model identified by S:

Definition 4.1.1

PsatS(s,a,N) ~ If(s.a,N)E&r1PloS(s,a,N)

P sat S(s,a,X) ~ 1f("a,X)E&rlp]oS(,.a,X)

P sat S("N) ~ 1f("Nj E FriPlo S(s,N)

P sat 5('.0) ~ If("a) E sri PI 05(',0)

31

P sat Sis) "; 'I s E TriP] • Sis)

In each model, every behavioural specification has a corresponding specifica
tion on processes. In TMFS the specification 8(8,0:, N) corresponds to the pred
icate Us on processes, where Us(P) = T ~ V(s,D',N) E £T[P] • S(s,a,N).
In Reed's notation we obtain Predus = S. However, not every specification on
processes has a corresponding behavioural specifica.tion: for example, the specifi
cation (((1, a)), 2, 0) E £T [P] on process P cannot be written with a behavioural
specification and the sat relation.

The nature of behavioural specifications gives rise to a. set of inference rules
which allow us to deduce properties of the behaviours of composite processes from
properties of the behaviours of the syntactic subcomponents. The rules can be
derived directly from the clauses of the semantic equation, and so there is a la.w
for each syntactic construct. The set of rules for TMF allows us to reduce the proof
obligation on any composite TCSP process to proof obliga.tions on its component
processes. The cases where stability values are included in the model are not so
straightforward, so we will first present the rules for behavioural specifications on
TMF .

4.2 The proof system for TMp

The rules for the basic processes are as follows:

Rule STOP

(s = 0) '* S(s, H)

STOP sat S(s, H)

Rule 1

(, = 0) '* S(s,H)

1- sat S(" H)

32

Rule SKIP

(s ~ 0 1\ J ¢ u(~)) }
V ""S(s,~)
(s ~ ((t,J)) 1\ J ¢ u(~ t t) 1\ t;> 0)

SKIP sat S(s,~)

Rule WAIT t

s = 0 1\ J ¢ u(~ 1t) }
V => S(s,~)

,~ ((t', J)) 1\ t';> t 1\ J ¢ u(~ Tit, 1'))

WAIT t .at S(s,~)

The rules for the more complex operators are written to enable reduction of
proof obligations. The form of tbe conclusion of each rule matches the form of
a proof requirement on a composite process: in order to prove it, we need only
find behavioural specifications 8 J and 8", or in some cases just 8 J , such that the
premises of the inference rule hold. We will have then reduced an obligil.tion on
a composite process to requirements on its syntactic subcomponents and illogical
proposition.

Rule a --+ P

P .at S,(s,~)

s = 01\ a ¢ u(~) => S(s,~)

, = ((t, a))~s' 1\ a ¢ u(~ t t) 1\ b,g;n(s') ;> t +0 } "" S(, ~)

1\ S,(,' ~(t +o),(~ ~ (t +0))) ,

(a ~ P) .at S(s,~)

Rule a: A ~ p.

Va EA. p • •at S.(s,~)

, ~ 0 1\ a(~) n A = 0 "" S(s,~)

s = ((t, a))~s') 1\ b,g;n(s');> t + 0 } => S(s ~)

1\ S.(s' ~ (t +o),~ ~ (t + 0)) ,

a: A ~ p• •at S(s,~)

33

Rule P, np,

P, .at S,(s,N)

P, 'at S,(s, N)

S,("N) v S,(s,N) => S(s,N)

P, n P, .at S(s, N)

Rule n'EIP,
Vi E I. P, .at S,(s,N)

Vi E I. (S,("N) => S(s,N))

n'EI P, .at S(" N)

Rule PIOF,

P, .at S,(s,N)

P, .at S'(', N)

(5,("N) v S,(s,N) .} => 5(',N)

~ S, ((), N t b,gin(s)) ~ S,((), N t b,g..(s))

P, 0 P, sat S(s, N)

Rule PI liP,

PI sat S,(s,N)

P1! sat 51 (s, N)

5, (s, N,) ~ S,(s, N,) => S(" N, UN,)

PI II P, sat Sf"~ N)

Rule PI xJl y Pf

P, sat SJ!s, N)
P, sat S,(s, N)

u(",N,)<;X~u(",N,)<;y }

~u(N,)<;E-(XU y) =>S(ss,N , UN,UN,)

1\ Sl(sJ,Nd 1\ Sj!(sf,N f) 1\ 53 E 5J xlly Sf)

P, xII. P, sat S(s,N)

34

Rule P, III P,

P, sat S,(s,N)
P, sat S,(s,N)
(s E Tmerge(s"s,) 1\ S,(s"N) 1\ S,Cs"N» => S(s,N)

P, III p, sat S(s,N)

Rule WAIT I; P

P sat S,(s,N)

(S,(s ~ I, N ~ I) 1\ 1'9;"(s) " I) => S(s, N)

WAIT I; P sat S(s,N)

Rule P,; P.

P, sat S, (s, N)
P, sat S.(s,N)
(/ ¢ O"(s) 1\ 'iI E TINT. S,(s,NU(l x {,/}))) => S(s,N)

(S, (s t I~((I, /)), N r I U [0, I) x {/)) 1\ } => S(s N)
s i (I, I H) = () 1\ S,(s ~ (I H), N~ (I H)) ,

P,; p. sat S(s,N)

Rule P\A

P sat S,(s,N)

(S,(s, Il) 1\ act(A)(s, N) 1\ urN') ~ A) => S(s \ A, N- N')

P \ A sat S(s,N)

Rule 1-' (P)

P sat S,(s,N)

S,(f(s),f(N)) => S(s,N)

I-'(P) sat S(s,N)

35

Rule [(PI

P sat S,(s,N)

S,(s,j-'(N)) => S(J(s),N)

[(P) sat Sis, N)

Rule ~ X 0 F(X)

VX oX sat S,(s,NI => F(WAITb;X) sat S,(s,N)
S,(s,N) => S("N)

~X 0 F(X) sat S(s,N)

Observe in the last rule that the variable X in the first antecedent ranges over
all seh of failures, not only those sets that happen to be elements of TMr. This
means that we cannot assume that the axioms for TMF hold of X. If we wish
to use this assumption in establishing that F(WAIT 6; X) preserves S1, then we
must also establish that S1 is satisfiable:

Rule jJ X • F(X) alternative version

1/ X, TMF 0 (X sat S, (s, N) =>

F(WAIT b; X) sat S, (s, N))

S,(s,N) => S(s,N)

[3P, TMF 0 P sat S,(s,N)]

pX 0 F(X) sat S(s,N)

We provide the rule for instantaneous sequential composition. We also provide
rules (which may be derived from the basic rules) for some of the opera.tors defined
in terms of the basic TCSP operators.

Rule PJ i Pf

P1 sat Sds, l'{)

PI sat S1!(s, N)

,f ¢ "(5) /\ 1/ J E TINT. S,(s, NU (J x (J))) => Sf', N)

s"s,~(s,+t)/\,f¢,,(,,)/\ md(N,),; t/\ } =>S(s,N, U(N,+t))
S, (5, ~«t, ,f)), N, U ([0, t) x {,f))) /\ S,(s" N,)

(P, ; P,) sat S(s, N)

36

Rule PI do. P,

PI sat SI(s,N)
p. sat S,(s,N)

"9i.(s)';; I A S,(s,N) => S(s,N)

("9;'(s) " I + 0 A 5, ((), N t I) A S. (5 ~ (I + 0), N~ (I + 0))) => S(5, N)

PI 6. PI! sat S(s, N).

Rule P, i, P.

P, sat S,(s,N)
P. sat S.(s,N)
S,(stt,NtIU[O,I)xU})A./¢u(stt)A } S(N)
sj(l,t +20)=0 AS.(s~(1+20),N~(t+2b)) => s,

5, (s~((I', .I)), N t I' U [0, I') x {.I} A I' ,;; I A } => S(5 N)
./¢u(s)A./¢u(Nl l ')) ,

5 = s'~«(t",./)) A 5, (s'~((I', .I))), N t I' U 10, I') x {.I}) } => S(s N)
AI'';; t A I'';; I" A .I ¢u(s)A./ ¢u(Nj [1',1")) ,

P, i, p. aat S(s,N)

The rule for tireout simplifies considera.bly if the first proCe55 is unable to
terminate. In this case, we have.; ¢ a(PI) (which is expre5sible as a. behavioural
specification).

Rule PJ 1 PI! special case version ,
P, sat ,j ¢ u(s)

P, sat S,(s, N)

p. sat S.(s,N}

SI(stt,Nt l)ASj(I,I+20)=O} S(N)

AS.(s~(1+2b),N~(1+2b)) => 5,

P, i p• •at 5(5, N),

37

4.3 Soundness

The basic processes

The semantics of each of the processes STOP, .1., SKIP and WAIT t may be
written in the fann

FrlP] ~ {b I T(b))

for the a.ppropriate predicate T on behaviours, (traceJrefusal) pairs b. The corre
sponding law is of the form

Rule

T(b) => 5(b)

P ,.t 5(b)

The soundness of the law in each case follows from the fact that T holds of each
behaviour in P: Vb EFT[P]. T(b). Since we have T(b)=> 5(b) as a premiss,
we conclude that Vb E FT1Pl • 5(b), which may be written as P sat 5(6).

One place operators

The semantics of each of the one-place operators on processes, a _ P, WAIT t; P,
P \ A,f(P), and /-' (P) may be written in tbe form

Frlo,p] = {bl T'(b))U{C(b)I/(b)EFdPI A T(b))

and the corresponding inference rule is of the form

P ••t5,(b)

T'(b) => 5(b)

(5, (/(b)) A T(b)) => 5(C(b))

0, P ,.t 5(b)

In the cases where Vb. T '{b) = F (i.e. all those except a -t P), the antecedent
T'(b) => 5(b) is vacuous, and has been dropped from the rule. The soundness

38

proof of this rule runs as follows:

~Fr[O, p] {b I T'(b)} U {C(b) I f(b) E hip] A Tlb)}

P sat S,(b)

T'(b) => S(b)

(S,U(b)) /\ T(b)) => S(C(b))

r b' E h[O, PI => b'E {b I T'(b)}

V

b' E {C(b) I I(b) E h!P] A T(b))

r b' E h[O, P] => T'(b')V3bo(b'=C(b)A/(b)EhIPIA T(b))

r b' Eh[O, P] => S(b') V 3b 0 (b' ~ C(b) A S,U(b)) A T(b))

r b' Eh[O, PI => S(b') V 3 b 0 (b' = C(b) A S(C(b)))

r I;/b' Eh[O, P] 0 S(b') V 3 b oS(b')

r O,P sat S(b)

Two place operators

All the sema.ntic definitions for TMF for the two place TCSP operators PI n P"
PlOP" PI II Pt, PI xlly P" PI III P~, PI ; P" and also those for the two place
operators PI ; P~, PI t> p~. PI j p~. may he written in the form,
hiP, 0, p,] = {C(b) If,(b,j E hlp,] A /.(b,) E FT[P,] A R(!,b" b,)}

The corresponding rule for operator 0~ is:

P, sat S,(!)

P, sat 5,(b)

(S,(b,) A 5,(b,) A R(b,b"b,)) => S(C(b))

P, 0, P, sat 5(b)

39

and the soundness proof of this rule runs as follows:

hlp,o,P,] = {C(b) 1 f, (b,) E hiP,] 1\ f,(b,) E hiP,]
I\R(b,b"b,)}

P, sat 5,(b)

P, sat 5,(b)

(5,(b,) 1\ 5,(b,)
1\ R(b, b" b,)) => 5(C(b))

f- b'Ehlp,o,P,1 => 3 b, b, , b, 0 (b' ~ C(b) 1\ f,(b,) E h IP,II\
EJ'rlP,]1\ R(b,b"b,))

f- b'Eh!p,O,P,j => 3 b, b, , b, 0 (b' ~ C(b) 1\ 5, (b,) 1\ 5, (b,)
1\ R(b, b" b,))

f- \lb'Ehlp,o,p,! 0 3 b, b" b, 0 (b' = C(b) 1\ 5(C(b)))

f- \lb'Ehlp,o,p,! 0 5(b')

f- P1 GB P~ sat 5(b)

Hence the rule for each two place operator is sound.

Indexed operators

The semantics for the two arbitrary choice operators naEA Pa and a : A --+ Pa

may both he written in the form

h[Op,1 = {bl T'(b)}U{C(b)13aEAof(b)EJ'r!P.]1\ T(b)}
'EA

and the corresponding proof rule is given by

'Ia E A 0 P, sat 5,(b)
T'(b) => 5(b)
\la E A 0 (5.(/(b)) 1\ T(b) =>5(C(b)))

O.EAP, sat 5(b)

In the case of the nondeterministic choice we have Vb. T'(b) = F, and so
T'{ b) => S{ b) is vacuous, and has therefore been dropped from the premisses of

40

that rule. The soundness proof of each rule runs as follows:

~Fr [O'EA P.]	 {b I T'(b)}U
{C(b)13aEAof(b)Ehlp.] A T(b)}

'Va E A p. ,at S.(b)•
T'(b) => Sib)

Va E A 0 S.(b) A T(b) => S(C(b))

f- b' E Fr [O'EA P.] => b' = C(b) A f(b) E h IP.I A T(b)

f- b' E Fd O.EA p.] => Sib') V 3a,b 0 b' = C(b) A

S.(J(b)) E hlp.] A Tlb)

f- b' E Fr I O'EA P.I => Sib') V 3 a, bob' = C(b) A SIC(b))

f- '>I b' E Fr [O'EA P.] 0 Sib')

f- 0.eA p. ,at Sib)

Hence the rule for each of the indexed operators is sound.

Recursion

The recursion induction theorem for Timed CSP states that if b : TMF TMF
is a contraction mapping, and S is a continuous satisfiable specification such tha.t
SIP) => S(C(P)), then S(pX 0 F(X)). The rule (0' <ecursion i, a pMticular
instance of the recursion induction theorem, where we restrict our attention to
behavioural specifications.

We first observe that all behavioural specificatiollil are continuous or dosed in
TMF. To prove this, we will use theorem 9.6.3 from [Ree88] This tells liB that a.
specification S on TMF is dosed if

'>IP E TM, 0 (~S(P) ~ (31 E [0,00). Q(t) = Pit) => ~S(Q))

The proof that behavioural specifications Me closed then runs .as follows:

~(P 'at Sis, N))

f- 3(s,N)EP.~S("N)

f- P(end(s,N)+1)=Q(end(s,N)+1)=>(s,N)EQ

f- ~I Q 'at Sis, N))
o

The second recursion rule given above follows automatically.

41

In order to drop satisfiability of S from the premisses of the recursion induction,
to yield the first recursion rule given above, we extend the syntax of TCSP and
the model TMF. Define TF to be the subsets of TE, x RSET. The metric on TF
is defined exactly the same way as the metric on TMF , given in appendix B. Then
TF is il.D extension of TMF. Define TCSP+ = TCSP I XE, where E is drawn
from t~e set TF. We extend the function FT to the function F T as follows:

FT[XEI " E

The clauses for F T on the other TCSP+ combinators are entirely similar to the
~fining clauses for FT on TCSP, with every occurrence of FT [p] replaced by
F T [Pl. We may therefore conclude that the inference rules for the TCSP opera
tors in TMF are also sound for TF, and any behavioural specification on TF will
be closed in the metric.

Now any function F composed without any TCSP+ operators of the form XE
corresponds to a mapping Con TF. The restriction of C to TMF is tbe mapping
on TMF corresponding to F considered as a TCSP function. Hence if C is a
contraction mapping on TF and it maps processes in TMF to processes in TMFI
then its restriction to TMF will be a contraction mapping on TMF , and so the
fixed point of C will be in TMF (since TMF is a complete metric space). Now
any function F composed only of TCSP operators will map TM F into itself, 90

the fixed point in TF of the contraction mapping C corresponding to WAIT c; F
will be in TMF.

By the recursion induction theorem for TF, in order to demonstrate that
~ X • F(X) sat S(s, ~), we need only show that the specification" sat S(8, N)" is
continuous, satisfiable, and that X sat S(s,~) :::::} WAIT c;F(X) sat S(s,N). We
have already shown that any behavioural specification gives rise to a closed spec·
ification on TF. It is also trivially true that Xe sat S(s,~), since FT[Xe] = 0.
Hence any behavioural specification on TF is automatically satisfiable. This allows
us to discharge automatically the side conditions for application of the recursion
induction theorem, and leaves us only with the principle proof obligation that
S(s,N) is preserved by recursive calls on arbitrary sets of failures - we cannot
assume in any proof that the argument to the function F will be a process. The
soundness of the other inference rules does not rest on the assumption that the
arguments to the operators will be processes, and so those rules are also sound for
the clauses of FT. Hence the inference rulp's may be used to es tablish that our
candidate specification S is preserved by recursive calls

42

4.4 Completeness

We have shown that the proof system is sound, in the sense that if we can find
behavioural specifications for which all the premisses of an inference rule are si
multaneously true, then the conclusion will also be true. We will shortly show
that the proof system is complete with respect to the semantics, in that if the
conclusion of an inference rule is true of the semantics of a process, then there
are behavioural specifications which enable all the premisses of that rule to hold
simultaneously. Moreover, we provide a systematic method of producing such
behavioural specifications.

Strongest Specification

The behavioural specifications satisfied by a given process P form a complete
lattice under the order

S(s,N) c; T(s,N) ~ "'(s,N). T(s,N) =} 5(s,N)

We may therefore identify the strongest specification that holds of a given process;
it will be logically equiva.lent to the top element of the lattice. We denote the
strongest specification of process P by SS [P]. It is clear that

SS[P)(s.N) .. (s,N) E TriP)

Consider first the case of a one-place process constructor. If it is the case that
01 P sat S(b). then consider the inference rule for 01 P with SS[P] substituted
for SJ. The rule becomes

P sat 5S[pl

T'(b) ~ S(h)

(SSlp](f(b)) ~ T(b)) =} 5(C(b))

0, P sat 5(h)

The first premiss must hold, and the second and third premisses together are
equivalent to the assertion

bETdo,PI =} 5(b)

But if 0 I P sat S(b), then the second and third premisses of the rule hold. Hence
if it is the case that 01 P sat S(b) then we are able to find a behavioural speci
fication on P which enables an application of the law.

43

The same treatment applies to all the other cases (except recursion), since
In each case the inference rule is derived from the corresponding clause for the
definition of :FT. Moreover, we may use the inference rules to break down the
strongest specification of a compound process into the strongest specification of
its component processes. The rules for the basic processes STOP, .1, SKIP and
WAIT t yield the strongest specifications as follows:

SS[STOPJ(s,N) .,	 s=O

SS[.t!(s,N) .. s =	 0

SS [SKIPj(s, N) ..	 (s~OA/¢u(N))

V

(s = ((t, ,I)) A / ¢ u(N t t) At;> 0)

SS[WAITt!(s,N) .. s=OA/¢u(N1t)

V

s = ((t', ,I)) At'" t A / ¢ u(N i [t, t'))

As we would expect, the strongest specifications for compound processes are
given in terms of the strongest specifications of their component processes:

SS[a~P](s,N) ..	 s=OAa¢u(N)

V

s = ((t,a))~s' A a ¢ u(N r t) A begin(s') " t+8

A SS[P!(s ~ (t+ 8),(N~ (t +8)))

SS[P,DP,j(s,N) .. (SS[P,](s,N)VSS[P,!(s,N)

A

ss [p,! ((), N I b,gia(s)) A SS [P,! «), N r b,gin(s))

SS[a,A~p.j(s,N) ..	 s=OAu(N)nA=0

V

3 a EA. s = ((t, a))~s') A begin(s') ;> t + 8 A

SS[P.](s' ~ (t H),N ~ (t + 8J)

44

SS!p,nP£](s,N)

SS[np,](s,N)
iel

SS[P, IIP£](s,N)

SS[P, xlly P.](s,N)

SS[P, III P.]("N)

SS!P,;P.](s,N)

SS[WAITt;P](s,N)

SS[P\A](s,N)

SS[r' (P)] (s, N)

SSI/(P)]("N)

SS[p,;P.]("N)

.. SS[P,](s,N)VSSIP,](s,N)

.. 3iEI.SSIP,](s,N)

..	 3N"N,.SSlp,j(s,N,jASSIP,j(s,N.)
1\ N = NJ U N~

..	 3N"N, .SSIP,](s rX,N, rX)

A SSIP,] (s t Y, N, r Y)

AN r(X U Y) = N, rX U N, r Y A s = s r(X U Y)

..	 3s"s,. (s E Tmerge(s"s,) A

SSIP,](s"N) A SSIP,](s"N))

..	 ';ji,,(s)A'IIE TINT.SS[P,](s,NU(Ix{,;}))

V

SSIP,j(s rt~«(t"f)),N rtU[O,t) x I,;}) A

s T (t, t + 6) = () A SS[p,](s ~ (t +6), N~ (t + 6))

.. SS[Pj(s~t,N~t)Abegin(s)"t

.. 3s,.SSIPj(s"NU[0,end(s,))xA)As,\A=s

.. SS[P](f(s),/(N))

.. SS[p](s,r'(N))

..	 ';ji,,(s)A'IIETINT.SS[P,](s,NU(Ix{,;}))

V

3s"s~. s ~ Sl (S~ + t) 1\"; ¢ U(81) 1\ end(N j) ~ t

A SS IP, I (s, ~«(t"fl), N, U ([0, t) x {,;}))

A SSIP,](s"N,)

45

SSlp, ~ P,j(s,N) .. begi"I,) " I A SS!P, j(s,N)
v
begi,,(s) > l+hASsIP, j«),N tl)

ASSIP,I(s ~ (I H), N~ (I + h»

sslp,ip,j(s,N) .. SSIP,]lstt,NtIU[O,I)X{v'})AJ ¢ea(stl)A,
s 1(t,I+2h)~ 0 ASSIP,J(s~(I+ 2h),N~(t+2b)J

V

ss IP, j (s~((I',v')), N t I' U [0, I') x {,;} A I' " I A

Jii!a(s)AJii!a(Nl I')}
V

S = 8' ((t",,,I)) 1\ 3e • ./ f/. 0"(5) 1\

s5Ip,j(s'~((I',J))),N ,I'U[O,I') X {J})
1\ .; rf. O'(N T [t', til)) 1\ t'" t 1\ t' ~ t"

Recursion

Recall the inference rule for recursion:

'I X • X sat 5, Is, N) => F(WAlTh; X) sat S, (s,N)
S,(s,N) => S(s,N)

~ X • F(X) sat S(s, N)

If 5, (s,N) .. SSI~X.F(X)j(s,N), then "calling that S,(s,N) .. (s,N) E

F T [p X • F(X)], we observe tha.t the first premiss holds:

Y sat S, (s, N)

=> Frlyj £;FrI~ X. F(X)j

=> FrIF(WAlTh; YJ] <;FrIF(WAlTh;~X.F(X))j (monotonicity)

=> FTIF(WAITh;Xl] <;FrI~X.F(X)j

=> F(WAlT h; X) sat S,(s, N)

If ~X • F(X) sat S(s,N) then S,(s,N) => S(s,N), and so for any behavioural
specification satisfied by I1X • F(X) there is a predicate 51 which enables the

46

application of the law. Hence the entire proof system is complete with respect to
the sema.ntics of :Fr.

In order to prove that a recursively defined process satisfies a behavioural
specification S, we need only show that the strongest specification of that recursive
process implies S. We therefore need a form of the strongest specification that will
facilitate this.

We know that FT [J1 X • F(X)] is the fixed point of the constructive function

corresponding to F(X) = F(WAIT a; X), a.nd that F is a-constructive, in that

x rt~ Y rt=>F(X) r(tH)~F(Y) r(tH)

Since we also have that

vX, Y E TF 0 X r 0 = Y r 0

we are able to conclude that

VX, Y E TF 0 F"(X) r no = F"(Y) rno

In particular, instantiating Y with p X • F(X) we conclude that

VX E TFoF"(X) rno~~XoF(X)tno

and so, if we insla.ntiate X with STOP (for definiteness), we obtain

end(s,N) < n' => «s,N) E :FdF"(STOP)! .. (s,N) E :FrI~X 0 FIX)])

This yields a useful form of the strongest specification for a recursively defined
process in terms of the strongest specification of STOP and the operators used in
constructing the recursive function.

SS[~X 0 F(X)I(s,N) .. Vn 0 end(s,N) < no => SS[F"(STOP)j(s,N)

Since SSIF"(STOP1! (5, N) holds either for all n > end(s,N)/o or for no such n,
the strongest specification may alternatively be written:

SS II' X 0 F(X)! (5, N) .. SS [Fl'"'!>,-)/'J+' (STOP)! (s, N)

ClrJ denotes the greatest integer no larger than r)

47

Limits or Applicability

VIle have supplied a great deal of machinery for proving correctness results concern
ing behavioural specifications. However, as we saw earlier not every specification
on processes can be written as a behavioural specification. Demonstrating that a
particular specification can be written as a behavioural specification is straightfor~

ward: we need only exhibit the specification in the right form.

We require conditions on specifications that tell us when they cannot be written
as behavioural specifications, that a search for an eqnivalent specification of that
form would not succeed. We provide some snfficient conditions on specifications
that guarantee that they cannot be written as behavioural specifications.

Theorem 4.4.1 If a specification on TMF is not closed in TMF then it cannot be
written as a behavioural specification.

Tbis is equivalent to our earlier result that all behavioural specifications on TMF

are closed. This result will also be valid for the instabilities model TMF! introduced
in the next section, but it does not hold for TMFS . For example, the behavioural
specifiCAtion defined by S(s, 0:, ~) == 0: < 00 is not closed.

Theorem 4.4.2 If 3 P, Q E TMF • S(P n Q) A ~S(P) then S cannot be writtcn
as a behavioural specification.

Proof Assume for a contradiction that there is a behavioural specification T(s,~)

such that

SiP) .. P sat T(s,~)

Then weh.ve TripI ~ TT[pn QI, and so

P n Q sat T(s,~) => P sat T(s,~)

yielding a contradiction. 0

Theorem 4.4.3 If S(P), 5(Q), butS(P n Q), then S cannot be written as a
behavioural specification.

4.5 A treatment of stability

The completeness of the proof system described above rests upon the following
facts:

48

• given a	 combination of possible behaviours from subprocesses, we can de
termine whether or not they give rise to a behaviour of the process without
examining the entire semantic set of each subprocess;

•	 if a given combination of possible hehaviours of suhprocesses does give rise
to a behaviour of the process, then that behaviour is completely detennined
by the given behaviours.

The semantics is in some sense directly compositional. This is reflected in the
logical premises of the proof rules: the antecedents hold precisely when the failures
under considera.tion give rise to a failure in the composite process.

When we move to models which contain stability information, this is no Longer
the case. For example, consider the semantic equation to TMFS for the interleaving
operator:

ErlP, III P,] = SUP(I(P"P,))

I(P1'P~) == {(s,o:,N.)lsE Tmerge(sl,s.e),o:=max{O:l,o:~J

II (s"a,,~) E ErlP']
II (s" a,,~) E Edp,]

H we define

PI .= a -10 a --l' STOP

P, " a - WAlT 1 ; STOP

then we have

«(1,a)),l +0,0) E EdP,]
((O,a)),1+ 0,0) E Edp,]

and so

(((O,a),(1,a)), 1+ 0,0) E /(P"P,)

but it does not contribute to a behaviour of P1 III P, because its stability value is
superseded. by that of

«((0,a),(1,a)),f+o,0) E /(P"P,)

Consideration of the hehaviour (((0, a), (1, a)), 1 +.5, 0) in isolation will not enable
us to determine whether or not it contributes to a behaviour of PI !11 P~. In
calculating the stability value associated. with the failure (((0 1 a), (1, a)), 0) the

49

entire set [(PI' Pt) must be considered. This means tbat a behavioural proof rule
for iuterleaviug wilt not be complete. The rule is as follows:

PJ sat 5ds,Q,N)

Pt sat 5t (s,ll',N)

s E Tmerge(s/,st) 1\

} =} 5(s,max{QI,Qt},N)
5J(sJ,ll'J,N) 1\ 5t(st,Qt,N)

P, III P, sat S(s,a,~)

The rule is sound: any bebaviour of PJ III P l will be the interleaving of two
behaviQurs from the components, with a stability value corresponding to the max
imum Qf the two component stability values. However, the rule is not complete.
Consider the application of the rule to the two processes PI and Pi given earlier,
to the proof obligation 5, where

S(s,a,~) .. s={(0,a),(1,a))=>a=2+.

a behavioura.l specification which holds of PI III Pl' If we are able to find be
havioura.l specifications 51 and 5t which hold of PI and Pl respectively, then we
mu,t hm S, «((1, a)), 1H,0) and S,(((0, a)), 1H, 0), and '0 S({(0, a), (J, a)), 1+
6,0). But this is not the case. Hence, the rule cannot be used in establishing this
proof obligation.

The SUP operator presents a further obstacle: consider the set of processes
{p.) defined byP. =n ~ WAlT(J -;),thenthepwce"P= (n ,N~ P.)\N
has the behaviour (0,1,0), even though there is no behaviour of n : N ~ P.. from
which it can have come. The stability value 1 really does arise from the entire set
of stability values of the behaviours that have given rise to the failure (0,0); no
single component behaviour can give rise to that stability value. Hence it is not
possible to formulate a rule for behavioural specifications of the hiding operator.

These problems can be overcome by altering our treatment of stability, em
ploying the notion of 'instability' values introduced by Blamey in [Bla89J. In this
approach, each failure (s, N) is associated with a sel of instability va.lues, each
corresponding to a time at which the process might still be unstable, having per
formed 8 and refused N up to that time. The iustability value end(s) is always
included as a trivial instability. Hence, if process P in TMFS has a behaviour
(s, ll',~), then the semantics of the process described in terms of instability values
will contain all elements of the set

{(S,1, N) I end(s) " 1 < a V end(s) = 1 = a)

We will denote by TMFI the model which describes processes in terms of triples
(8, ...,.,~,t) which represent (trace,instability,refusal) information. Blarney demon
strates that there is a natural isomorphism between TMFS and TMFI • If 5 is an

50

element of TMFS, then the corresponding element of TMn is given by

s = {(S,1,N)13ao(s,a,N)ESA(end(s)<;1<aVend(s)=,))

Conversely, if P is an element of TMn, then the corresponding element of TMFS
is given by

p = {(s,a,N)1 3 1 o (s,1,NjEPAa=suPbl(s,'Y,NjEP))

The semantic equation £Tl : TeSp --+ TMn enjoys the property that allowed
the construction of a complete proof system for TMF: that it follows purely from
the nature of the component behaviours themselves whether or not they give rise
to a composite behaviour in the compound process. We are thus able to formulate
a complete (and sound) inference rule for each syntactic operator, so we arrive
at a proof system for behavioural specifications on TMn _ Blarney also shows
that behavioural specifications are closed in TMn (on which the obvious metric
is defined), so the side condition (or the recursion induction principle requiring
closure is automatically discharged.

The infonnation represented by (s,-y,N) E £T1[P] is that the process may
perform s and refuse N, and that internal activity may still be occurring &fter the
performance of s and refusal of Ntl. The expressive power of behavioural specifica
tions on TMn is therefore different from those on TMFS, since the triples in each
case represent different aspects of stability behaviour. Indeed, any behavioura.l
specification on TMn corresponds to a behavioural specification on TMF5 : we
have P sat S(S,I,N) if and only if P sat Ts(s,o,N), where Ts is defined by

Ts(s,a,N) '" S(s"nd(sj,NjAI/"fE[,nd(sj,ajoS(s,1,Nj

The converse is not true. For example, there is no behavioural specification on
TMn that corresponds to the behavioural specification on TMF5 :

S(s,a,N) '" a= 'nd(sj+9

since this can only be deduced from the whole set o(instabilities. As W3,$ the case
(or TMF , we can only apply the proof system to a particular kind of specific.ation on
processes: in this case, we can only treat a certain kind of behavioural specification
on TMFS - those that can be written as behavioural specifications on TMn .

51

4.6 The proof system for TMn

Rule STOP

(s = 0 1\, ~ 0) => S(""N)

STOP sat S(""N)

Rule ~

(, = 0) => S(.",N)

~ sat S(""N)

Rule SKIP

(, = 0 1\, = 0 1\';" a(N)) => S(""N)

(, = (h,';)) 1\';" a(N h)) => S(""N)

SKIP sat S(""N)

Rule WAlTt

(. ~ 0 1\ (,= 0 V, < t) 1\';" a(N1 t) => S(.",N)

,= (h,';)) 1\, ;, t 1\'; "a(N T It,,)) => S(" " N)

WAlTt sat S(.",N)

The following rules apply to compound processes. When a process variable is
present. it is more convenient to match proof obligations to consequents: the form
in which the rules are presented makes this possible.

Rule a ~ P

P sat T(.", N)
• ~ 0 1\, = 0 1\ a" a(N) => S(.",N)

.=((t,a))~('1(t+O))I\,;"nd(')l\a"a(Ntt)l\}=>S(s",N)
T(s'~ (t +o),,~ (t +o),N ~(t H))

(a ~ P) sat S(s",N)

52

Rule a ~ A __ Pia

'Va EA. Pia sat S,.(S,i,N)
(s ~ 0 /\ ~ = 01\ A n a(N) = 0) => S(s,~, N)

(s = ((t, a))~(s 1(t +,))) 1\ ~ " end(s) 1\ An a(N r t) 1\ } => S(,,~, N)
S.(s ~ (t H),~ ~ (t H),(N ~ (t H)))

a: A __ P a sat S(s",N)

Rule P, n P.

Pj sat 8 j (8, " N)

Pf! sat 8.e(S,i,N)

(S,(s,')', N) V S,(s,~,N)) => S(s,~,N)

P, n P. sat S(s,~, N)

Rule niP,

'Vi E I. Pi sat Si(8",N)
'I; E I. (S,(s,~,N) => S(s,~,N))

n"J Pi sat S(s,~, N)

Rule P, 0 P,

Pj sat 8 j (8, " N)
P, sat S,(s,~, N)
(S,(s,')',N)VS,(s,~,N)1\ } S(N)
S,(O,O,Nt begin(s))I\S,((),O,Nlbegin(s)) => s,~,

PJ OPf! sat S(8",N)

Rule P, II P,

PJ sat S/(s",N)

Pf sat St(s",N)

S, (s, end(s), N,J 1\ S, (s, end(s), N, 1\ } => S(s,~, N, UN,)
(S,(s,')',N,J V S,(s,~,N,)

P, 1\ p. sat S(s,~,N)

53

Rule P, .tli y P,

PI satSds,I',N)

p! sat S.t(s,I',N)

"('J <;: X u Y , ~ I X U Y =~, i X U~, i Y, }

5,(s(X, <nd(s I X),~,) A S,(. I Y,<nd(s I y),~,), => S(S,1,~)

(5,(s I X,1,~') V S,(. I Y,1,~'))

P, ,lI y P, sat 5(S,1,~)

Rule P, III P,

PI sat 51 (s, 1', N)

P, sat St(s,;,N)

(sE Tmerge(s"s,)'5J(s"end(s,),~)'S.(s"end(s,),~)) /\} 5(~)
(S,(s,,",~) V5,(•• ,1,~)) => s,1,

P, III P, 'at 5(',1,~)

Rule WAIT t ; P

P,at S'(',1,~)

(S, (. ~ t, 1 ~ I, ~ ~ I) , beg;n(.) ;> 1 , 1 ;> I) => S(s, 1, ~)

WAIT I, P sat 5(S,1,~)

Rule PI; p!

P, sat 5'(',1,~)

p! sat S!(s, I, N)
J ¢ "(s) A 't p. 5, (S,1, ~ U [O,P) x {J}) => 5(s, 1,~)

3t • J ¢ ,,(s I I) , 5, (. I t~« t, J)), t, ~ U 10, t) x {J}) }
A5,(s ~ (t +0), 1 ~ (t + 0), ~ ~ (I + 0)) "'" 5(',1,~)

A. 1(t, t +0) = 0 ''r'' end(s)

PI ;Pz sat S(s,I',N)

54

Rule	 P \ A

P sat 51 (s,"'I, N)
end(s) ::;:; I 1\ 381 • 5/ \ .4 1\ }

((311 > -yo 5d5,,1I, Nu ([0, max{ti, end(~)}) x A)) V => 5(s,"y,~)

(end(s) = <> 1\ 5, (5,,"'1, ~ U ([0, maxi <>, end(~)} x A»)

P \ A sat 5(s,"Y,~)

Rule	 f-'(P)

P sat 5,(5,')',N)
51 (f(s},"'I,f(N) => 5(s,"'I, ~)

f '(P) sat 5(s,"'I,~)

Rule	 f(P)

P sat 5,(5,')',~)

51 (s, "'I,f-' (N) => 5(f(,),"'I,~)

f(P) sat 5(s,"'I,~)

Rule	 ~ X 0 F(X)

1/ X 0 X sat 5, (5,"y,~) => F(WAIT 8; X) sat 51 (s,"Y,~)

51 (s,"'I,~) =? 5(s,"y,~)

~ X 0 F(X) sat 5(5,"y,~)

Observe that, similar to the corresponding rule in the proof system for TMF, the
process variable X in the first premiss ranges over all sets of instability values, not
only those in TMn. Again, we provide an alternative rule:

Rule	 I.l X • F(X) alternative version

1/ X, TMn • (X sat 5,(s,"y,~) =>
F(WAlT8;X) sat 51(""Y'~»

5,(s,"'I,N) =? 5(s,"y,~)

[3P, TMnoPsat 5,(s,"I,~)]

~ X 0 F(X) sat 5(5,"y,~)

55

We also provide some additional rules:

Rule P,; p.

PI sat Sl(s,-y,N)

Pr. sat S.t(s,-y,N)

(0' ¢ q(s) A 't {3. S,(s", N U ([0,{3) x {"'l)) => S(s",N)

,,,, s,~(s.) A,I ¢ q(s,) A ,nd(s,) " {3" b,gin(s.) A}

S,(s,~(({3,,,,)),{3,N t{3U([O,I) x {,I))) A => S(s",N)
r" 'nd(s) A S.(s. ~ {3" ~ {3,N.)

(P, ;p.) .at S(s",N)

Rule Pl ~Pr.

P, .at S,(s",N)

p• • at S.(s",N)

(S,(s",N) A b'g;n(s) " t => S(s",N)

b,g;n(s)"I+/jAS,(O,O,Ntl)A } S(N)

S.(s~(t+/j),,~(t+/j),N~(t+/j)) => s",

P, t!. P. 'at S(s", N)

Rule P, j, p.

P, .at S,(s",N)
Pr. sat Sf(s,-y,N)
(S,(s t',end(s i'),N ttU[O,t)x {o'}) }
AS.(s~(t+/j),,~(t+/j),N~(I+/j)) =>S(s",N)
As i (I, I + 2/j) = 0 A ,;> end(s)

3 I' • S, (s~(t', ,I)), I', N t I' U [0, I') x {o'}) } => S(s , N)
A ,I ¢ q(s) A ,I ¢ q(N 1 I') A , = t' ' ,

s = s'~(h, ,I)) A3 t'. S, (s~(t', 0')), t', Nt t' U [0, I') x {,Il) } => S(s", N)

A'" ¢ q(s') A 0' ¢ q(N i [I',,))

P, j P• •at S(s",N),

·56

Rule PI l P1! special case version ,
P, sat ./ '1c a(s)

PI sat Sl(s",N)

Pt sat St(s",N)

(S,(stt,end(stt),NitU[O,t)x{,f)) }

AS,(s~(t+5),,~(t+5),N~(t+5)) =}S(s",N)
A s i (t, t + 25) = () A , " end(s)

P, i, P, sat S(s",N)

4.7 Soundness and Completeness

Both soundness and completeness of the set of inference rules for TMFf follow
directly from the clauses of the semantic equation defining ETil in exactly the
same way as soundness and completeness followed for the proof system for TMF

57

5 Aspects of Good Behaviour

In this section we first define three important aspects of desirable behaviour: non
retraction, responsiveness, and promptness. For each of the definitions, we examine
which syntactic operators preserve it; whether it is expressible as a behavioural
specification and hence a subject for the proof systems; whether the defiuition is
closed; and in some cases, the circumstances under which they are preserved by
hiding and alphabet parallel, the constructors Ilsed in modelling communication.
We also examine the interaction of the properties we have defined. We make a
number of definitions which will be useful for dealing with timewise refinements,
and with communication. Many of tbese properties are defined on TMF ; they
can be immediately extended to apply to processes in TMFS, since we have the
identity F T [P] = fail([T [p]). Hence a specification on TMF will apply equally
to processes in TMFS by applying the definition to the set offailures of the TMFS
process.

One of the most useful facts we can know about a process is that it is non
retracting: that once it has offered to follow some course of action then that offer
will remain until either it is accepted or some Dther observable event Dccurs. An
imperceptible change of state will not cause the offer to be retracted. In addition
to being desirable for its own sake, we will see that this property will be valuable
(in conjunction with promptness Dr bounded stability) when cDnsidering timewise
refinements of parallel compositions (see e.g. theorem 6.3.27), timewise refinements
of nelll'Orks (e.g. theorem 7.4.5), and when chaining bnffers together.

Another useful property is responsiveness, a strong form of Ii veness. It requires
of a process that there is a bound Dn the time by which a response must be
fDrthcoming. A process is (t, A)-respDnsive if it will always offer an event from the
set A within time t. We will illustrate the use of this property in specification and
verification in chapter 8.

The specification promptness, like responsiveness, places a bound ou the length
of time it is necessary to wait for a process to respond, but it does not require that
the process is live; it specifies that if the process must respond, then it will do so
within a bounded time. This may hold of nnstable processes, but otherwise the
notion is closely related to stability; if a process responds, then it must do so by the
time it becomes stable. We later define t.stability, which holds of processes that
always stabilise within time t. Hence a i-stable process will always be prompt
(see theorem 5.6.6). As we have mentioned, this property in conjunction with
non-retraction will be useful in timewise refinement

Other specifications defined in this chapter are impartiality and limitedne.ss.
A process is impartial on a set A if it treats each element of tha.t set in the same

58

way: at any moment, either the entire set is available, or it is refusible. This will
be useful in identifying prompt buffers. A process is limited on a set if there is a
bound on the number of events it can perform from that set without performing
some event from outside the set. Limitedness is a property required to enable
timewise refinement for the hiding operator (see lemmas 6.3.31, 6.3.33).

This chapter presents a catalogue of definitions and laws concerning these con
cepts and some variants. Examples of their application in both gpecification and
verification are presented in chapter 8.

5.1 Non-retraction

The concept of non-retraction is very much a state-based concept rather than one
concerning the set of possible observable behaviours of a process. The intuitive
idea we are trying to capture is that once a process is in a particular state where an
event is on offer, then it cannot undergo an internal change of state whereby that
offer is no longer made. However, this state-based notion cannot be captured by a
predicate on the semantics of processes. Consider how the notion of non-retraction
would apply to the process

R '" STOP n ((a ~ STOP) t, STOP) n (a ~ STOP)

If we say that there are three states in which R could be, one of which will retract
the offer of a after two units of time, then clearly there is a state of R where the
retraction of an offer can OCcur.

In contrast, we would like to allow that the process Q defined by

Q '" STOP n (a ~ STOP)

is non-retracting, since there is no possible state for Q in which the retraction of
an offer is possible.

It turns out that .rT[R] is equal to .rT[Q] (even though operntionally R is
not equal to Q). Any specification that captures non-retraction must bave tbat R
is non-retracting if and only if Q is, since their semantics are equal.

This issue arises because we cannot deduce which state R is in from a given
failure. If it is possible after a particular failure to either accept or reject a (for
example, for R at time 1, after the failure (0,0)), and yet we do not offer a at
that time, then we cannot reason about the subsequent behaviour of the process
depending on whether or not it would have accepted. We think of a failure of a
process as a particular experiment on that process; the trace is the result of the

59

experiment where the refusal set has been offered to the process. Semantically, a
process is defined to be the set of all possible behaviours. Hence for any particular
failure (5, N) if (t, a) is not in ~ or in s, then we have no way of saying that a would
have happened at t, unless all possible failures which are identk..a.l to (s,~) up to
I cannot refuse a at time t. In other words, saying that a would have occurred at
t if it had been offered is equivalent to saying that there is no state in which a is
refusible at time t. So a non-retracting process will be one which, if it can refuse
an event a at time t, must have been able to refuse that event continuously since
the last visible event. Hence it is only obliged to continuously offer an event or set
of events after it is certain to have offered it.

This leads us to our definition of non-retraction.

Definition 5.1.1 A resp prOCes3 P is non-retracting iffor any u'-"w E traces(P)
such that begin(w) > iJ! > t J > end(u), and Y ~ 1: we have

(u~w,([t"t,jx YjUNjE:Fdp! ",,(u~w,([end(u),t,) x Y)UNjE:FrlP!

Example

The process
p", a ~ WAlT 3; b ~ STOP

is non-retracting. It has the behaviour

(((1,a),(5,b)),[3,4) x (b}u[9,12) x Ie})

as a possible failure, so we may conclude that

(((1,a),(5,b)),[1,4)x (b}u[9,12) x Ie})

is a possible failure. The fact that b is refusible for some time following the
performance of the event a allows us to deduce that it is also refusible from the
time the a was performed. We also have that the failure

(((1, a), (5, b)), [4, 7) x (a})

is a possible behaviour of P, and hence that

(((1, a), (5, b)), [1,7) x la})

is a possible behaviour.

It is useful to be able to identify non-retracting processes from their syntax.

60

Theorem 5.1.2 If P,Q and P(a)(a E A) are aU non-retracting, then so are the
following:

.L, STOP, SKIP, WAIT I, WAIT I; P, a ~ P, a, A ~ P(a),

P n Q, n.EA Pta), PDQ, P II Q, P xlly Q, Pili Q, j(P), j-' (P).

We show later that the specification non-retracting is dosed in TMF and so it
follows, if F preserves non-retractioD, that p. X • F(X) is non-retracting.

Observe tha.t even if P and Q are non-retracting, P \ X and P; Q need not be
non-retracting in general, since they both hide events whose visibility may· have
been necessary to ensure the non-retraction of P. For example, ((WAIT 1; a-+
STOP) 0 b -+ STOP) is non-retracting, since the offer of b will only be withdrawn
if a is performed. If we now hide the performance of a then we obtain

((WAIT 1 ; a ~ STOP) 0 b ~ STOP) \ a '" (b _ STOP),!, STOP

which retracts the offer of b after 1 unit of time. For the same reasons, timeout
and tireont do not in general preserve non-retraction.

Generalisations

We generalise the concept of non-retraction in several ways. We may be concerned
only with a subset X of the events P is capable of doing, requiring only that no
offers from the set X will be retracted. The specification non-retracting on X is
defined as follows:

Definition 5.1.3 P is non-retracting on X if for any trace u w E traces(P),
begin(w) ~ t.e > t1 ~ end(u), and Y ~ X we have

(u~w,([I"I,) x Y)UN) E hiP] =} (u~w,([,nd(u),I,) x YjUN) E TTlP)

A non-retracting process is non-retracting on any subset of E l and more gen
erally any process that is non-retracting on X is also non~retracting on any set
Y <;X.

Another form of non-retraction is strong non-retraction on a set X. A process
is strongly non-retracting on X if it will not retract an offer from the set X until
an event from that set is performed.

61

Definition 5.1.4 A process P is strongly non-retracting on X if for any trace

u"w E traces(P), begin(ul) ~ t f > t j ~ end(u), and Y ~ X we hat,e

(u~w, ([t" t.) x Y) U N) E Fdp]
'* (u~w,([end(u t X),t.) x nUN) E hip]

Example

The process

(a ~ STOP) III ((b ~ STOP) t!. c ~ d ~ STOP)

is strongly non-retracting on {a}. We have that

(((1,a),(3,c),(6,d)),[4,5) x {a})

is a failure of P, with a refusihle over an interval, so we may conclude that a is
refusible from the previous occurrence of a, and deduce that

(((1, a), (3, c), (6, d)), [1,5) x {a})

is also a possible behaviour of P.

Strong non-retraction may be generalised to the concept of non-retraction on
X until Z, where offers from X cannot be retracted until an event in Z occurs.
We iusist that X ~ Z, since we would wish the acceptance of an offered event
from X to allow the retractiou of that offer, siuce it has been accepted.

Definition 5.1.5 A process P is non-retracting on X until Z if for any u 11' E
tmces(P), begin(11') ~ tt > t1 ~ end(u), and }? ~ X we have

(u~w,([t"t.) x nUN) E Fdp]
'* (u~w,([end(utZ),t.)xnUN)EFrlP]

62

Example

Tbe process

P" (b _ STOP) III (a _ STOP 0 c _ d _ STOP)

is non-retracting on {a} until {a, ~}. We have that

(((1,c),(9,b),(6,d)),[4,5) x {a,b})

is a failure of P, so we may deduce that

(((1,c),(9,b),(6,d)),[1,5) x {a}U 14,5) x {b})

is also a possible hehaviour: the event a is refusible from the last occurrence of an
event from {a, c}. We infer nothing further about the refusal of b.

It follows that if P is strongly non-retracting on X, then (or each x E X we
have that P is non-retracting on x until X.

A final generalisation of the concept is non-retradion when 5, where S is a
predicate on traces. We may wish that a process is non-retracting only under
certain conditions, cha.racterised by 5. For example, we may wish that a buffer
is non-retracting only when it is empty. The condition on the tra.ce that captures
this requirement is that the number of outputs is equal to the number of inputs.

The notion of non-retracting when S also generalises the other versions of non
retraction. We define it for the most general case:

Definition 5.1.6 A process P is non-retracting o~ X until Z when 5 if/or any
u""'w E traces(P), begin(w) ~ tf > ti ~ end(u), and Y ~ X we have

(a~w,([t"t,)x Y)U~)Ehlpl AS(a)

=> (a~w,([,"d(a rZ),t,)x Y)U~)EFdpl

Example

The process
~X. a _ (b - X t STOP)

is non-retracting on {a, b} until {a, b} when s = () V last(s) = b.

63

This is the most general form of non-retraction; all the other forms are special
cases of it:

•	 Non-retraction is non-retraction on I: until I: when TRUE

•	 non-retraction on X is non-retraction on X until E when TR UE

•	 strong non-retraction on X is non-retraction on X until X when TRUE

•	 non-retraction on X until Z is non-retraction on X until Z when TRUE

•	 non-retraction when S is non-retraction on E nntil E when 5

•	 non-retraction on X when 5 is non-retraction on X until :E when 5; and
strong non-retraction on X when 5 is non-retraction on X until X when 5

Hence in order to show that each of the varieties of non-retraction is closed in
TMF we need only prove it for the most general case. This involves a straightfor
ward application of Reed's theorem 9.6.3 applied to TMF, which states that if a
predicate 5 is such that

~S(P) => 3t E [0,00). (Pit) = Q(t) => ~S(Q))

then S is dosed. in TMF.

Theorem 5.1.7 The predicate 'non-retracti.ng on X until Z when 5' is closed.

Proof If a process P is not non-retracting on X until Z when 5, then

3u'-'w E traces(P),begin(w)) t~ > t1) end(u),N, Y ~ X.

(u~w,[t"t,)x YU~)EFrlPI /\S(u)/\

(u~w, [end(u t Z), te) x Y U~) "hip]

Now let Q be an arbitrary TMF process such that

Q(ma.{end(u~w),t,j+l) = P(maz{endlu~w),t,} +1)

It is clear that

3u..... w E traces(Q),begin(w)) t~ > tt) end(u), Y ~ X.

(u~w,[t"t,) x Y U~) E FdQI /\ S(u) /\

(u~w, [end(, t Z), t.) x Y U~) "hIQI

64

so we conclude that Q is not non-retracting on X until Z when 5. Therefore the
predicate 'non-retracting on X until Z when S' is dosed for any X, Z and S. 0

It follows immediately that all the particular cases of it are also dosed.

Most of the constructors that preserve non-retraction also preserve the more
general non-retracting on X until Z.

Theorem 5.1.8 If P, Q and P(a)(a E A) are all non-retracting on X until Z,
then so are the following:

.1-, STOP, SKIP, WAIT t, WAIT t; P, a ~ P, a; A ~ P(a),

pnQ, n.EAP(a), PDQ, PII Q, Pxll y Q, PIIIQ

Further, if init3(P) n X = 0 then P6,. Q is non·retracting on X until Z.

In general, if P is non-retracting on X until Z, alphabet transformation function
f does not yield non-retracting on f(X) until f(Z). Consider

P '" (a ~ STOP t, STOP)

Then Pis non-retracting on {b} until {b}. But if the functionf hasf(a) =f(b) =

c, then f(P) is Dot non-retracting on {c} until {c}.

However, we do obtain the following result:

Theorem 5.1.9 If process P is non-retracting on f- 1 (X) until i-I (Z), then f(P)
is non-retracting on X until Z.

Hence, if f is one-one, then P non-retracting on X until Z does imply f(P) is
non-retracting on f(X) untilf(Z)

The case for inverse functions is simpler:

Theorem 5.1.10 If P is non-retracting on X until Z, thenf-I (P) is non-retracting
on j-' (X) until j-' (Z)

The most general form of non-retraction, non-retracting on X until Z when
5, is not preserved by the interleaving operator or by the alphabetised parallel
operator. For example, the processes

P '" a ~ STOP t, STOP

Q '" b ~ STOP t, STOP

65

are noo-retracting when s 1= 0, but the processes Pili Q a.nd P {..)II~.) Q are
not non-,etcactingwhen s ¥ 0- We have ((0,a)),[1,2) x {b)) E -'riP [[I QI
and «(O,a)) ¥ 0, but «(0,a)),[0,2) x {b)) ¢ hlp [II QI- The ,ame [ailme'
illustrate the case of the parallel operator.

The process constructors which do preserve non-retraction on X until Z when
S are given by the followiug:

Theorem 5.1.11 If P, Q and P(a)(a E A) are all non-retracting on X until Z
when 5(s). then so are the following:

.L, STOP, S[(IP, WAIT t, WAIT t; P,

Pn Q, n.EAP(a), PO Q, PI[Q

In addition, a -4 P and a A --t P(a) are non-retracting on X until Z when
S(taiJ(s)). Further, if f is one-one, then f(P) is non·retracting on f(X) until
/(Z) wh-n S(/-I (5))_

As before, if f is not one-one then this is not necessarily the case_

Theorem 5.1.12 Non·retradion cannot be written as a behavioural specification.

Proof An application of theorem 4.4.2 will yield this result. Defining

P = (a ~ STOP) i STOP
t

Q = STOP

we have P n Q is non-retracting, but P is not. 0

ft follows that none of the generalisations of non-retraction ca.n be written as
beha.vioural specifications.

Theorem 5.1.13 Non-retraction has the following properties:

f.	 If Pis non·retracting on A until B, and A ~ X\ Y, B ~ X, then P xlly Q
is non-retracting on A until B

2.	 If P is non-retracting on A until B, and en B = 0, then P \ C is non
retracting on A until B

"J.	 If P is strongly non-retrading on A and A ~ X \ C, then (P x II y Q) \ C is
strongly non-retracting on A

66

4.	 P is non-retracting on A and non-retracting on B if and only if P is non
retracting on A U B

5.	 If Q is strongly non-retracting on A J and q(p)n A = 0, then P j Q is strongly,
non-retracting on A

The following technical results will be required later (see e.g. theorem 5.3.12,
theorem 6.3.27):

Lemma 5.1.14 If P is non-retracting on Y, then

(s, N) E Frlp] => (s, N') E hIp]

where~' = Ht, a) I a E Y 1\.3 t l
;;::: t ~ end(s) • (t', a) E t{}

Proof This follows straightforwardly from the fact that ~ is a finite union of
refusal tokens, so the definition of non-retraction will apply to each of them in
turn. 0

Corollary 5.1.15 If P is non-retracting on Y, and T> end(s), T' > 0, then

Is, N) E FrlP! " A <:; <7(NT IT, T + T')) n Y
=> (s,N U [end(s), T) x A) E Fr!P!

Proof Follows immediately from lemma 5.1.14, (where [end(s), T) x A) ~ W).
o

Lemma 5.1.16 If P is non-retracting on Y, and A ~ Y, T > end(;;-), T1 > 0,
then

(s, N) E SIr!P! " A <:; <7(NT IT, T + T')) => (s, NU [end(s), T) x A) E SIdp!

Proof

Vt;> T+ T'o(s,N tl)EFTI?!" A <:;<7(N ,tT[T,T+ T')

so by corollary 5.1.15 we obtain

'It;> T + T' 0 (s,N t I U [end(s), T) x A) E Frlp]

'" (s, N U [end(s), T) x A) E SIdP!
as required. 0

67

5.2 Responsiveness

Responsiveness on a. set of events A is a particularly strong form of liveness con
cerning that set. To state that a process will respond within time t to the set of
events A is to say that it cannot refuse to perform all of that set over an interval
of length t. We call such a process (t, A)-responsive.

Definition 5.2.1 A process Pis (t, A)-responsive if it satisfies

'o'(s,N)EhIPj,TE[O,oo) 0 [T,T+t)xA<;N=>(stA)T(T,T+t)#O

Example

The process
1JXea-X

is (1, {a})-responsive (when 215 < 1).

Corollary 5.2.2 In behavioural specification form we have that a process P is
(t, A)-responsive if

P ,at 'o'TE[O,oo)o([T,T+t)xA<;N=>(stA)TIT,T+t)#O)

Recall that for a prOcess to refuse a set A over a particular time interval, on
a. given trace, does not imply that the trace performs no event in A over that
inten'al; rather it means tha.t it can perform no more events in A than it has in
fact performed. In the case of the definition for responsiveness it implies that at
least one event in A can always be performed during an interval of length t.

Clearly a process which is capable of terminating is not (t, A)-responsive for any
t,A, since after termination it will refuse A for aU time. This raises the question
of which processes are (t, A)-responsive.

Theorem 5.2.3 If P,Q and P(a)(a E B) are (t, A)-responsive for some t (> 6)
and ,4, then we have:

• a _ P is (t +6, A U{a })-responsive (which is (t +6, A)-responsive if a E A)

• WAIT e; Pis (t + t',A)·responsive

• a: B _ P(a) is (I +6, B)-responsive if A ~ B,A :f:. 0

• n~EB P(a) is (f,A)-responsive

68

•	 WAITt'; a; B -t Pea) is (max{t"lt + 6},B)-responsive if A ~ B,A-::f
0, til> t l

•	 PDQ, P n Q and Pili Q are all (t, A)-responsive

•	 If t' > t and B ;:> A then P is (t', B)-responsive

We can write (t, A)-responsive as a behavioural specificaLion, so it is continuous,
and so we obtain the result that if F 0 WAIT 6 (F composed with WAIT delta)
preserves (t, A)- responsive, then p. X • F(X) is (t, A)-responsive. .

Generalisations

As we remarked earlier, a process capable of terminating cannot be responsive.
However, in Dlany cases such a process will be sequentially composed with another
process, and in such circumstances we are not concerned with its behaviourfollow
iog tennination. We therefore generalise the notion of responsiveness to responsive
before termination.

Definition 5.2.4 A process Pis (t, A).responsive until term·jnation if

P sat '1TE [O,oo)o(([T,T+t) xAU[O,T+t) x {-,,))>:N
=> (a t A) T [T, T + ,) ¥ 0 V -" E <1(a))

Example

The process
a ~ WAIT 3 ; b ~ SKIP

is (4, {a, b})-responsive until termination. However, the process

a ~ WAIT 3; b ~ STOP

is not responsive until termination, since termination must be successful.

Theorem 5.2.5 All the process constructors that preserve (t, A)-responsitle also
preserve (t l A)-respon.sive until termination. In addition, if P and Q are (t, A)~

respon.sive until termination, and R is (t, A)-respon.sive, then we have

•	 SKIP is (t, A)-responsive until termination, for any t > 0

•	 WAIT t is (t\ A)-respon.sive until termination, for any t' > t

69

• P &Q is (2t + 6, A)-responsive until termination

•	 pi Q is (2t + 26,A)-rtsponsive until termination

"

• P; R is (et, A)-responsive

• P; R is (2t +6, A)-responsive

]f we are concerned that a process has a bound on response on set A, but we
are not concerned with the value of that bound, then we say that the process is
A-responsive.

Definition 5.2.6 A TCSP process P is A-responsive if 3 t E [0, (0) such that P
is (t,A)-responsive.

Theorem 5.2.7 If P and Q, are A-responsive then so are

a ~ P, Po Q, P n Q, WAIT t; P, P Iii Q, P; Q

To sa.y a process is responsive is to say that it will respond to some event from E.

Definition 5.2.8 A proeess is responsive if it is E-responsive.

Definition 5.2.9 A proeess P is A-responsive until termination if 3 t E [0,00)
such that P is (t, A)-responsive until termination.

Theorem 5.2.10 If a E A, then if P and Q are A-responsive until termination,
then so are

SKIP, WAITt, a ~ P, PO Q Pn Q,

WAIT t; P, Pili Q, P; Q, P r!, Q, P j Q

Purther, if A n B i- 0 then a : B -+ P(a) is A-responsive until termination.

The predicate A-responsive is not cl()8ed. For instance, if F(X) == WAIT 1 ; X
then IJ X • F(X) = ..L, which is not {a}-responsive although each of the approx
imations PR(IJ X • a -+ X) is {a}-responsive. It follows that A-responsiveness
cannot be expressed as a behavioural specification. The function P also preserves
A-responsive until termination, so it follows that the predicate A-responsive until
termination is not closed, and so it cannot be expressed as a behavioural specifi
cation.

70

Theorem 5.2. 11 Responsiveness has the following properties:

1.	 If P is an A-responsive process and A ~ X \ Y then P xlly Q is an A
responsive process

2.	 If P is an A-respon...,ive process and An B = 0, then P \ B is A·responsive

We are often interested in the responsiveness of a. process immediately following
an action, especially if the process will be used with an interrupt operator (see e.g.
section 8.2): w here we are not concerned with behaviour of the argument process
following the interrupt. We say that a process is immediately responsive if il cannot
refuse a set over an entire time interval immediately after its last event.

Definition 5.2.12 A process P is immediately (t,A)-responsive if

P sat lend(s), 'nd(s) + t) x A '" N

Example

The process
~X. ((a - X) i, STOP)

is immediately (3, {a}) responsive, since it cannot refuse a for the 3 time units
following the occurrence of an a, (or before it has done anything).

Theorem 5.2.13 If P, Q and Pea) are all immediately (t,A)-responsive, then
so are the following:

•	 a _ P

•	 a, B ~ Pta) if An B # 0

•	 np(a), pn Q, Po Q

•	 WAlTt';a,B_P(a) ift'<t,AnB#0

• Pili Q

eP&Qi/t'?:.t

Further,

e f- I (P) is immediately (t,/-1 (A)).responsive

71

•	 if P is immediately (t,f-l (A))-responsive, then f(P) is immediately (t, A)
rf8ponsive

The behavioural na.ture of its definition entails that the predica.te 'immediately
(I, A)-responsive' is closed.

The following results wilt prove Ilsefullater.

Theorem 5.2.14 If P is immediately (t, A).responsive, t' ;;;t t, B :2 A, then P is
immediately (t ' , B)-responsive.

Theorem 5.2.15 If P is immediately (t, A)-responsive, and Q is (t l
, A)-responsive,

then P £, Q is (t + t' + 26, A)-responsive

Theorem 5.2.16 If P is immediately (t,A)-responsive, and Q is immediately
(t', A)-responsive, then P £ Q is immediately (t + t' + 26, A)-responsive,

Theorem 5.2.17 If P is immediately (t,A)-responsive, and alphabet transfor
mation f preserves "immediately (t, A)-responsive", then the recursive process
I' X • P i f(X) is (21 + 96, A)-...sponsi.,,

5.3 Promptness

We define promptness a::; follows:

Definition 5.3.1 A process P is i-prompt if for any (s, N) E :FT [P] we have:

r;;>,nd(s)!I[T,T+t)xXS::N => (s,NU[T,oo)xXlESIT[P!

This definition specifies that if the process can refuse the set X over an interval of
length t, then it can refuse X for all time.

Example

The process
p" (a ~ STOP) f, b ~ STOP

is 3-prompt: from the information that

(0, [0, 1) x {b) U [9,6) x {a l)E Fr IpI

72

we may conclude that

((), [0, 1) x {b) U [S, 00) x {aj) E STr Ip]

However, P is not I-prompt; it is not the case that

((),IO,oo) x {b)U[S,6) x {aj)ESIdp]

We may not conclude that {b} is infinitely refusible from the observation that it
is refused for 1 time unit.

We generalise the definition:

Definition 5.3.2 A process is prompt if it is I-prompt for some 1.

A weaker version will be sufficient to estahlish some timewise refinement results
in the next chapter:

Definition 5.3.3 A process Pis wea.kly I-prompt if for any s E traces(Fr[PJ)
we have:

T';;, end(,) + tAT", T' - t A (" [T, T') x X) E Tdp!
"* (,,[T,oo) x X) E STrip]

Example

The process
(a ~ STOP) ~ b ~ STOP

is weakly 3-prompt. We may conclude from

«(2,b)),(/,5) x (bj)Eh[PI

that
«(2,b)),[/,00) x (b)) E STrip]

However, in contrast with the previous example, weak 3-promptness is not strong
enough to conclude

((), [0,1) x (b) U [S, 00) x (a)) E SIdP]

from
((),[O,I)x {b)U[S,6)x {aj)EhIPI

Definition 5.3.4 A process is weakly prompt if it is weakly t-prompt for some t.

73

We ma.y strengthen the definition so that event a is not possible after its refusal
for length of time t:

Definition 5.3.5 A process P is strongly t-prompt if

P sat ([T,T+/)x{a}c::N/lsl(T,T+t)=())=>first(s1(T+/))ia

It is clear that a process which iB strongly t-prompt is also t-prompt, since it
follows from the axioms of YAh that if a timed event is not possible, then it must
be refusible. However, the converse is not the case; the process

STOP t (STOP n a ~ STOP)

is I-prompt, but it is not strongly I~prompt.

Theorem 5.3.6 If P, Q, and P(a)(a E A) are t-prompt (t > 5) then we have

• pn Q, Po Q, Pili Q, n.EAP(a), f(P), f-'(P) are all i-prompt

• STOP, 1., SKIP are i-prompt

• a_ P, a: A-tP(a) aret+6·prompt

• WAIT i' is t prompt when t' ~ t

• P; Q is 2t + 6·prQmpt

• WAIT t'; P is t' + t-prompt

However, for any T, P II Q need not be T-prompt, since they could fail to
synchronise for intervals longer than T. For example, defining

P = ~ X • (a ~ STOP) r!, (STOP t X)
Q = (WAIT2;P)! a~STOP

T

we have P and Q are both 4- -prompt, but the process P II Q is not i-prompt for
any t ~ T, since P and Q are unable to synchronise within T time units but are
guaranteed to syncbronise eventually.

74

Generalisations

We may generalise the specification t-prompt in the following ways:

Definition 5.3.7 A process Pis t-prompt on X if for any (s, N) E :Fr[P]:

\IT;>end(,),Y<;Xo[T,T+t)xY<;N => (s,NU[T,oo)xY)ESIr!P]

Example

The process
a ~ WAlT 9; b ~ a ~ STOP

is I-prompt on a but not on b_

Theorem 5.3.8 t-prompt enjoys the following properties:

• P is t-prompt on A U B if and only if it is t-prompt on A and on B

• If Pis t-prompt on A and A <;;;; X \ Y then P xII y Q is tMprompi on A.

Proof The only non-trivial case is that of proving P is t-prompt on A and on B
implies Pis t-prompt on AU B: Assume P is t-prompt on A and on B. Consider
("NjETr[P] with T;>end(s)f\[T,T+t)x(AUB)<;N. Then

(s, N U [T, T + t) x AU [T,oo) x B) E SIdp]
=> \I T' 0 (" N U [T, T + t) x AU [T, T') x B) E Tr[P]
=> \I T' 0 (s, N U [T, 00) x A U [T, T') x B) E SIdp]
=> \IT'o(,,NU[T,T')xAU[T,T')xB)ETrlP]
=> \IT'o(s,NU[T,T')x(AUB))EhIP]
=> (s,NU[T,oo)x(AUB)) ESIdp]

o

Definition 5.3.9 A process P is i-prompt on X when S if for any
(s,N) E hlp],

\IT;> end(s) eS(s)f\[T,T+t)xX<;N => (s,NU[T,oo)xX)ESIr[P)

75

We may also define the notions of

• i-prompt on X when S

• strongly t-prompt on X

• strongly t-prompt when Sand

• strongly t-prompt on X when S

in the obvious way.

Example

The process
X (b ~ ((b ~ X) n a ~ X)

fl • Oc_ WAIT9;a_X)

is both l-prompt on {a} when last(s) = b, and strongly l-prompt on {a} when
last(s)= b. However, it is neither I-prompt, nor I-prompt on {a}.

Theorem 5.3.10 It is not possible to write t-prompt as a behavioural specifica
tion.

Proof Consider the processes P and Q defined by

P =0 WAIT 4 ; a ~ STOP

Q =0 STOP

Then p n Q is 2-prompt, but P is not, so the result (ollows from theorem 4.4.2. 0

It follows that none o(the generalisations can be written a.s a behavioural spec
ification. However, recall that strong t-promptness is expressible as a behavioural
specification, and so it is closed.

The other forms of t-promptness are also continuous. To prove this, we consider
only the most general form: t-prompt on X when S.

Theorem 5.3.11 t·prompt on X when S is closed

Proof Assume that P is a process which is not t-prompt on X when S. Then

3("N) E hIp], T" ,nd(,), Y <:; X.
S(,) A IT, T+ t) x Y <:; N A (s,NU IT,oo) x Y) 'I- .:FT[P]

76

But if (', ~ u [T, =) x Y) Ii! SId?], then

3T' > T •	 (" ~ u [T, T') x Y) Ii! SId?]

Define Til = 1 +mar{end(s,N), TT Then P{T") = Q(T")::::;. Q is not t-prompt
on X when S. Hence by Reed's theorem 9.6.3 (see page 41) we conclude tha.t the
specification' t- prompt on X when S' is dosed. 0

Hence all the forms of promptness are dosed.

Theorem 5.3.12 If P and Q are prompt, and P is non-retracting on A and Q
is non-retracting on B and A U B = X nY, then P x II y Q is prompt

Proof Let P be iI-prompt, and Q be tf-prompt. We will prove that P xlly Q is
t,+t,-prompt. Con,id" ("~) E SId? xII y Q], and th.t [T, T +I, +t,) ,z <;: ~
for some T ~ end(s). Without loss of generality, assume Z <;: X U Y. Define

51 = 8 t X
Sf = 8 t y

Then

3~,,~,.	 (sl,~,)ESId?JA(s,,~,)ESIdQ]A~=~,U~,A

~, t (X \ Y) = ~ t (X \ Y) A ~, t (Y\ X) = ~ t (Y\ X)

and so

[T,T+t,+t,) x(Zn(X\ V)) <;:~,

A [T,T+t,+I,)x(Zn(Y\X))<;:~,

and so

(s,,~, U [T,oo) x (Z n (X \ V))) E SId?l
A (s,,~,U[T,oo)x(Zn(Y\X)))ESIdQI

Define

Z, = xn YnznO'(~, j[T+t"T+t, +1,))

Z, = X n Y n Z n {a I [T + I" T + I, + I,) x {a J~ ~,}

Z, = Xn YnznO'(~, j[T+t"T+t, +1,))

Z, = xn YnZn{al [T+t"T+I, +1,) x {aJ ~~,)

77

Then lemma 5.1.15 yields that

(s"N,U[T,oo)x(Zn(x\ Y))U[T,T+I,] X Z,]EFT[P]
=> (5" N, U [T, 00) x (Z n (X \ V)) U [T + t" T + t, + I,) x Z, U Z,) E Frlp]
=> (s"N,U[T,oo)x(Zn(X\Y))U[T+t"oo)XZ,UZ,)EFrlP!

By symmetry we also obtain that

(s" N, U [T, 00) x (Z n (Y \ X)) U [T + t" 00) x Z, U Z,) E F rIQ]

and so

[T,oo)X(Zn(X\Y)U[T,oo)X(Zn(Y\X))) E SIrlPXllyQ]

(s, UN,UN,U[T+I"oo)X(Z,UZ,UZ,UZ,)

thus we obtain
(s,NU [T,oo) x Z) E FriP Xlly Q]

as required. 0

Lemma 5.3.13 If P and Q are weakly prompt, and P is nOll-retracting on A and
Q is non-retracting on B and A U B = X nY, then P x Il y Q is weakly prompt

Proof The proof is entirely similar to that Cor theorem 5.3.12

Corollary 5.3.14 If P and Q are prompt, and P is non-retracting 011 X nY,
then P x II y Q is prompt

5.4 Impartiality

A process which is impartial on a set A always makes all its offers from set A at
the same time.

A process P is impartial on a set A if it either offers all of the set or none of it.

Definition 5.4.1 A process P is impartial on A if

If(s,~) E SIrlpl, a EA.	 (s~«t, a)), N) E SIrlP] =>

If I EA. (s~(I, I)), NU (l(N rA) x A) E SIrlP]

78

Example

The process
pX. (a --t X 0 b --t X 0 C --t X)

is impartial on {a, b, c}, but not on {a, b, c, d}.

Every process is impartial on the empty set, and on singleton sets.

Theorem 5.4.2 If P, Q, and P(a) are all impartial on A, then so are the fol
lo'wing:

• STOP, -L

• SKIP, WAITt ;j,J¢A orA <;{,J}

• PDQ, P n Q, n. P(a)

• PIIQ,PIIIQ,P;Q, WAlT,:P

• a: B ~ P(a) ;j A <; B or A n B ~ 0

• P X II y Q ;j (A <; X V A n X = 0 and (B <; Y V B n Y ~ 0

• P \ B ;[A <; B or A n B ~ 0

• P,!. Q and P j, Q

• f-J(P) is impartialonf-I(A)

• If P is impartial on f- J(A) then f(P) is impartial on A

Theorem 5.4.3 "Impartial on A» is dosed

Proof Consider {p.. } --t P, with each p .. impartial on A. Now let

(s~((!, a)), N) E SIrlP]

Given T(> t) we have

3 NT. n > NT => p. t T = P r T
=> (s-((t, a)), N r T) E SIr[P.]
=> Vb EA. (s~((!,b)),N i TU(l((N r T) rA) x A) E SIr!P.)
=> Vb EA. (s~((l,b)),N t TU(l((N r T) rA) x A) E SIrlP]

79

This is true for all T, so

lib EA. (s~((t, b)),N U (l(N r A) x A) E SIrIPD
as required. 0

Theorem 5.4.4 If P is responsive on X, Q is responsive on Y, P or Q is im
partial on X nY, and P or Q is non·retracting, then P x II y Q is responsittc on
XUY

Proof We will prove the case where P is impartial on X n Y and Q is non
retrading. The other cases are proved in it similar way. Let P be (t"X)
responsive, and let Q be (tt, Y)-responsive. We will prove that P xlly Q is
(t 1 + tf , X U Y)-responsive.

Assume not, for a. contradiction. Then for some (s,N) E Fr[P xNy Q], and
for some TE [O,oo),wehave

([T, T + t, + t,) x xu y) <; N i\ (s r (X U Yji [T, T + t, + t,)) ~ °
and without loss of generality we may assume

end(s) :s;;: T + tJ + it f\ end(N) :s;;: T + t1 + tJ!

Hence end(s) :s;;: T. Define

s/ = siX
sr=siY

Then

3~"N,.	 N = N, UN, i\ (s"N,) E FT!P] i\ (s"N,) E FT [Q]
i\ N r(X \ Y) = N, r(X \ Y) i\ N r(Y\ X) ~ N, r(Y\ Xl

and so

IT, T+ t, + t,) x (X \ y) <; N, i\ IT, T+ t, + t,) x (Y \ X) <; N,

We have two cases to consider:

Cas. IT + t" T + t, + t,) <; I(N, i (X n V))

=> (s"IT+t"T+t,+t,)xX)EFdP]
=> (s,rXji(T+l"T+t,+t,)i"O
=> (sr(XUy))i(T,T+t,+t,)i"O

80

which yields a contradiction.

Case [T + I" T + I, + I,) Ie leN, t (X n Y))

=> 3[t',t") <;; [T + I" T+t, + t,) 0 [I',t") x (X n Y) <;; N,
~ [t ' , ('/) X }" s;;; t-l z
=> ('" lend(s,), I") x Y) E FrIQ]
=> (.,,[T,T+t,)x Y)EFrlQ]
=> (" t Y) T(T, T + 1,1 f 0
=> (. t(XUy))l(T,T+t,+tJJfO

which yields a contradiction. 0

5.5 Limited on A

A process is limited on A if there is a bound on the amount of internal chatter
from A it may perform when the set A is hidden.

Definition 5.5.1 A TCSP process Pis n·limited on A if

'Is E trac,,(Fr[P\A]),w E traces(FdPJ) 0 w \ A = s => #(w 1 end(s)) < n

Example

The process
p.Xea_b_c_X

is 3·limited on {a, b}. However, the process

p.Xea_ XOb- X

is not n-limited on {a} for any n; there is no bound on the amount of possible
internal chatter.

Theorem 5.5.2 n-limited on A is closed in TMF

Proof By an applica.tion of Reed's theorem 9.6.3 (see page 41)

Definition 5.5.3 A TCSP process P is limited on A if there is some n such thai
P is n-limited on A

81

Theorem 5.5.4 'Limited' enjoys the following properties:

• Every process is limited on 0.

• /f P is limited on A and A <;;: X then P xii y Q is limited on A

• Jf P is limited on A U B then P \ A is limited on B.

We also define a weaker notion, where the bound on chatter may depend on
the observations:

Definition 5.5.5 A TCSP process P is weakly limited on A if

VsE tracesvrlP \ AI),:J n,Vw E traces(.h[P]) • w \ A = s =} #w < n

Example

The Counter process

~ Y • (~X • up ~ (X ; down ~ SKIP) n down ~ SKIP) ; Y

has the number of possible down events it can perform bounded by the number of
'Up events that have occurred. It is therefore weakly limited on {down L but it is
not	 limited on {down}.

Clearly any process that is limited on A is also weakly limited on A

Theorem 5.5.6 If P is limited on A, Q is limited on B, and An Y = Bnx = 0,
then P xii y Q is limited on A U B

Proor We have

::J 11 _ w E traces(P) II s E traces(P \ A) II w \ A = s =} #w 1 end(s) < n

and

::Jm_wEtraces(Q)lIsEtraces(Q\A)l\w\A=s=}#w1 end(s)<m

Now consider

wE trac,,(P xllr Q) A s E traces((P xllr Q) \ AU B) A W \ AU B = s

Since
AnY=BnX=0

82

we have
s E traces(P \ A x\AII Y\B Q \ B)

so
s r X ~ s I (X \ A) E traces(P \ A)

Now w \ A u B =:> so

s tX=(w\AUBJrX=(w\AJrX=(wrX)\A

Now
tv i X E tract:s(P)

and so
#(w rX) 1end(s rX) < n

By symmetry,
#(w r Y)1 end(s r Y) < m

Hence
#(w I X U Y) 1maz{end(s rX), end(s r Y)} < m + n

and so #w 1end(s) < m + n a.s required. 0

Theorem 5.5.7 If P is limited on AU B and is wt:akly prDmpt, then P \ A is
limited on B and is weakly prompt.

Proof Let P be n-limited on AU B. We first prove that P \ A is n-limited on
B. Consider s and tv such that

s E traces(P \ A \ B) AwE traccs(P \ A) A w \ B = s

Then
3 u • U E traces(P) 1\ u \ A = tv

Then
u \ (A U B) = s

so
#u 1 end(s) < n

so#w1 end(s) <no D.

Now let P be weakly i-prompt. We will prove that P \ A is wea.kly nJ-prompt.
For s E traces(.rr[P\ AI) let

T':;' end(s)+nt,T<; T'-nt,(s,[T,T')xX)E.rrlP\A!

83

From lerruna A.1.2 we have that

3w.(w.[T,T')xXU[0,T')xA)Ehlp] Aw\A=s

Since Pis n-limited, and T' ~ end(s) + nt, we have that

3 T" • T ~ T" ~ T' - t 1\ w T(T", T" + tJ = ()

But then

(w r(T" + I), [T, T" + I) x X U [0, T" + I) x A) E Fdp]

so by weak promptness of P we obtain

(w r(T" + t),[T,oo) x X U [0,(0) x A) E SIdp]

'0 (s,[T,oo) x X) E SIrlP] as required. 0

Theorem 5.5.8 If P is responsive on B and limited on A, and A ~ B, then P\A
is responsive on B - A.

The definitions may also be extended to CSP processes:

Definition 5.5.9 A CSP process P is n-limited on A in MT if

IItrET[P] .(wE A'A winlr)=>#w <no w\A =s

A CSP process P is limited on A in MT if there is some n such that P is
n-limited on A in MT

We also define a weaker version:

Definition 5.5.10 A CSP process P is weakLy Limited on A in MT if

II s E Tip \ A], 3 n, II w E T[P] • (w \ A~ s => #Ir < n)

5.6 Bounded Stability

A process is stable if all of its behaviours are stahle:

Definition 5.6.1 A TCSP process P is stable if

(s,a) E slab(fdP]) => a < 00

84

Definition 5.6.2 A TeSp process P i.9 stable when S if

((s,a) E stab(EdPJ) A Sis)) => a < 00

A process P is t-stable if it always stabilises within length of time i of per
forming its last action.

Definition 5.6.3 A TeSp process P is t-stable if

(s, aj E stab(ET [pJ) => a'; end(s) + t

Example

The process
1J X • ((a - X) ~ b _ a _ X)

is 3-stable.

Definition 5.6.4 A process i.9 boundedly stable if it is t·stable for some t.

Theorem 5.6.5 If P,Q, and P(a) are t-stable, and t' (; i, then

• P II Q, P xlly Q, Pili Q, Po Q, Pn Q are all t-stable

• P; Q is (2t + c)-stable

• a _ P and a: A _ P(a) are (t +6)-stable

• WAIT t'; a _ P and WAIT i'; a : A _ P(a) are (t + c)-stable

• liP) and j-' (P) are t-stable

• WAITt'; P is (t + c)-stable

Further, t -stable is elosed in TMFs.

Theorem 5.6.6 If Pis t·stable then it is tl_prompt for any t' > t

85

Theorem 5.6.7 If P is boundedly stable and weakly limited on A, then P \ A is
stable.

Proof Let P he t-stable. Consider s E traces(P \ A). Then

3newEtraces{P)Aw\A=s=>#w1 end{s) < n

We will prove tha.t

(s,a,0)EErlP\AI =>a';;md(s)+nl

By the definition of the hiding operator, we have

(w,a,IO,p) x A) E ErlP]

for some Ct,f3 such that end(w) ~ f3 ~ Ct. Now if

((I"a,),(I"a,))inw1 md(s)

then axiom 8 of TMFS yields that If ~ t1 + t, since if tt > t l + t then

(w r ((I, + I, + 1)/2), 10, (I, + I, +1)/2) x A)

is a failure of P, whose stability value is less than (if + t1 + t)1 2, and so

(w r((I, + I, + 1)/2)~((t"a,)),IO,(I, + I, + 1)/2) x A)

is not a failure of P. This contradicts the fact that (w t t1!, [0, t£) x A) is a failure
of P.

Hence

end(w),;; end(s) +#(w 1end(s))I';; end(s) + (n - 1)1

and so
(w,a,0) E ErlP] => a';; end(s) + nl

so f3 defined above is less than end(s) + nt.

Therefore (s, a, 0) E Er!P \ AI => a < 00, and so P \ A is stable. 0

Theorem 5.6.8 If P i.9 boundedly stable and limited on A, then P \ A is boundedly
stable.

Proof The proof is similar to the proof of the previous theorem. 0

86

6 Timewise Refinement

In producing a. refinement relation ~ ('refined by') between the various models of
Reed's hierarchy (see appendix 8.1), we aim to provide a method of transforming
proof obligations between models. The proof strategy is as follows: in order to
prove T(Q) for a. specification T and process Q, we aim to find a specification S
on a different (simpler) model, and a process P, such that

o S(P)

opr;;Q

o If P, Q. «S(P) APr;; Q) => T(Q))

The third condition may be thought of as the corresponding refinement relation
between S and T. The establishment of the second and third conditions will
reduce the proof obligation T(Q) to the proof obligation S(Pl. We illustra.te this
proof strategy in chapter 8, where it is used: in the verification of each of three
protocols.

The projection mappings between the various models of the hierarchy represent
mappings of behavioural information. In moving from a higher to a lower model,
we restrict tbe aspects of behaviour we are able to describe. The mapping n can
be thought of as a translation of information about the possible hehaviours of a
process into a. more restricted language, which can not talk about the behaviours
in so much detail. For example, if IT is tbe ma.pping from TMFS to Mr , then
the infmmation lhat «((1,0),(9,b))",[0,9) x (b)) is a possihle hehavio", of a
process in TMps translates under the mapping n to the information that (a, b) is
a. possible behaviour in MT .

In considering refinement relations between processes in different models in the
bierarchy, we will need to use the projection mappings to translate the semantics
of the process in the bigher model into sets of behaviours in the lower model, for
comparison with the lower process. Our ability to make more detailed observations
in the higher model will enable us to make finer distinctions, and thus exclude some
behaviours allowed by the coarser model. For example, tbe information in MT that
event a is a possible first event in both P and Q yields that it is also a possible
first event in P II Q. But in models which also contain timing information, it may
be apparent that there is no time at which P and Q could synchronise on a. We
would therefore expect II(Q) ~ P (rather than the stronger condition II(Q) = P}
to be a sufficient condition for P to be refined by Q.

87

We are particularly interested in timewi.'le refinement relations: those refine
ment relations between models which contain no timing information and those
which do contain such information. Such a relation'ill hold between an untimed
process and a timewise refinement of it. We will focus attention on two timewise
refinement relations in particular, although we will define others at the end of the
chapter.

We first define a mapping 0 : TCSP -t CSP, which removes the timing
informa.tion from the syntactic description of a process. We will be interested
in conditions which yield 8(Q) ~ Q. since in those cases the production of an
un timed process P such that P ~ Q will reduce to an application of 8 to Q.

The first relation we will consider is the weak timewise refinement relation,
~f' It is a relation between the untimed traces model MT and the timed failures
stability model TMFS' We wiJl see that our definition of P ~t Q is equivalent to
D(Q) ~ P. We obtain the result that 0(Q) ~l Q for all TCSP prOCf~sses. We also
extend ~f to a refinement relation between specifications; this leads to a notion of
'translation' of un timed behavioural specifications into timed ones.

The second refinement relation. ~f' is strong timewise refinement. It will
be between the failures model MF and the timed failures stability model TMFS'
We will see that the projection mapping IT : TMFS -t MF is too coarse for the
refinement relation between MF and TMFS: while we still have that IT(Q) ~ P :::}
P ~J Q, there will also be some refinements Q of P where II(Q) <£:. P. It turns
out that 0(Q) is not ~J refined by Q in general, but we obtain useful conditions
on Q for those cases where it does hold.

We will also define a subsidiary refinement relation which is intended as an
aid to deciding when the refinement relation ~J holds between processes. The
refinement relation ~h is defined between MF and TM;s. and it is shown that for
any TCSP process Q we have

P C;,. eTl QI =} P C;, er!Q]

88

6.1 The IIlapping e
The mapping e removes the explicit timing informa.tion from the description of a
TCSP process, mapping it to a CSP process.

Definition 6.1.1 The junction e: TCSP - asp is defined as follows:

e(STOP)
ell)

e(SI(Jp)

e(WAIT t)
e(a - P)

e(. : A - p.»
e(p n Q)

e(n p;»)
.<1

e(p 0 Q)

e(p II Q)

e(p All. Q)
e(p III Q)

e(WAIT t ; P)

e(p; Q)

e(P\ A)
e(f(p»

err' (P)
e(x)

e(px. P)

~ STOP
~ STOP
~ SKIP

~ SKIP
~ a _ e(p)

~ .: A _ e(P.))
~ e(p) n e(Q)

~ ne(p;)
tEl

~ e(p) 0 e(Q)

~ e(p) II e(Q)

~ e(p) All. e(Q)
~ e(p) III e(Q)
'" e(p)

'" e(p); e(Q)

'" e(p) \ A
~ I(e(p»
'" 1-' (e(p))
~ X

'" pX. e(p)

The definition of timeout yields the definition

e(p t!. Q) ~ e(Q) n (e(p) 0 e(Q))

89

Examples

8(WAIT 5 0 a ~ Smp); WAIT 3; b ~ WAIT 41
~ (SKIP 0 a ~ SKIP) ; b ~ SKIP

8(I'X. (WAIT3;a ~ X)t b ~ X)
= rX.((b~X)n(a~XDb~X»)

Observe in the second example that without the timing information we will be
unable to deduce tha.t timeout occurs before a becomes a.vailable.

6.2 Weak Timewise Refinement

The projection mapping n : TMFS --t MT is given by

IT(S) " ts/rip(traccs(S))

We first define the weak timewise relation ~t as a relation between MT and
TMFS (both models reproduced in appendix B.2):

Definition 6.2.1 If Ql E MT and Q! E TMES , then

Q. C;, Q, " II(Q,) <; Q.

We extend the definition to a relation between CSP environm.ents and TCSP
environments, as follows:

Definition 6.2.2

u C;, p " "X, var. u(X) C;, p(X)

We will extend the notation further, and define ~j to be relation between CSP
and TCSP: if P is a CSP term, and Q is a TCSP term, then we write P ~t Q to
mean that P is weakly refined by Q. This is defined as follows:

Definition 6.2.3 If P is a CSP term, and Q is a TCSP term, then

pc;, Q " uc;,p=>TIP!uc;,£T[Q!p

90

Observe that the TCSP process STOP will refine any CSP process.

We now consider which TCSP processes bave 8(Q) ~, Q

Definition 6.2.4 A TCSP term Q preserves f;l-refinement if

~~, p => T[e(Q)I~~, CdQlp

Lemma 6.2.5 For any process Ql E My, and any process Q~ E TM,.s, the
predicates 51 on TM,.s and St on M r defined by 5/ (X) == QI f;/ X and St(X) ==
X f;t Qt are both continuous, satisfiable predicates.

Proof We deal first with 51. Let {Po} be a convergent sequence of processes in
TMFS whose limit is P. Consider s E traces(P). Then 3 i • s E traces(P;), so
tstrip(s) E Q1. Hence IT(P) ~ Ql as required. Further, we have 51 (STOP), and
so 51 is both continuous and sa.tisfiable.

We now turn our a.ttention to 5t . Let {P;j be a convergent sequence of pro
cesses in My whose limit is P. Consider s E traces(Q~). Then Vi. tstrip(5) E P;,
and so t.strip(5) E P. Hence we have St(P), so S~ is continuous. It is also satisfi
able, ,inee S,(RUN) (wbere RUN = a : E ~ RUN). 0

Lemma 6.2.6 If P f;j Q, then p.X. P r;;t p.X. Q

Proof Assume U' 1:1 p, and that P r;;, Q. Let W6(X) be the semantic function
corresponding to WAIT 6; X. Consider PI E TMFS such that

TI~X 0 PJ~~, P,
Now I1(P,) = II(W,(P,)), '0 we bave

11(W,(P,)) ~ T[~ X 0 pl~

so
~[T[~X 0 PI~/XJ~, p[W,(P,)/X!

and so

T [PI (~[T [~X 0 PI ~/ Xi) ~, CdQ](p[W,(P,)/Xi)

so

T[~ X 0 PI ~ ~, cr[QI (p[W,(P,)/ Xi)

But

£r1~X 0 Qlp=fix('\P, oCdQ](p[W,(P,)/Xi)

91

Defining
S,(PJl '" (T[~ X • PJa C;, P,)

we have from lemma 6.2.5 that 51 is continuous and satisfiable, and we have just
obtained that 51	 is preserved hy the contraction mapping above, whose fixed point
is t'T[~X. Q]p, which yields that pX. P ~j pX. Q. 0

Theorem 6.2.7	 All TC5P terms Q preserve ~j-refinement.

Proof By structural induction. We examine each ca.se in turn, assuming that the
syntactic subcomponents preserve t;j-refinement, and that a ~j p.

II(t:r1STOPJp)={()} ~ (O}=T[6(STOP)Ju

II(t:r1"-]p) = {O} ~ {()} ~ T[6("-)Ja

II(t:r1SK1PJp) = {(),(J)} ~ {(),(J)} ~T[6(SKIP)la

II(t:dWAITIJp) = {(),(J)} ~ {O,(J)} =T[6(WAITI)Ja

We next consider the one-place operators.

II(t:rla~QJp)	 ~ {O}U{(a)~lrllrEII(t:dQJp)}

~ {O}U{(a)~lrllrET[e(Q)la))

~ T16(a ~ Q)Ja

II(t:dWAITI;QJp)	 = {lr llrEII(t:r1QJp))

~ {tr I Ir E TI6(Q)]a))

~ T[6(Q)Ja

II(t:r1Q\AJp)	 = {lr\altrEII(t:r[QJp))
~ (Ir \ A I Ir E T[6(Q)Ja))
~ Tl6(Q\A)]a

II(t:r1f(Q)Jp)	 = {I(lr) I tr E II(t:r1QJp))
~ {I(lr) I Ir E T[6(Q)]a))
~ T[6(J(Q))Ja

92

I1(£r[f-' (Q))p)	 ~ (lrlf(lr)EII(£dQlp))

<:;; (Ir I f(lr) E TI8(Q)Ja))

<:;; TI8U-'(Q))Ja

We now consider the two place operators.

[](£r[Q, n Q,]p)

[](£r[Q, 0 Q.Jp)

ll(£r[Q, II Q.!p)

ll(£dQ, AIIB .Q,)p)

ll(£r[Q, III Q,]p)

= II(£r[Q,Jp)Ull(£r[Q,Jp)

<:;; TI8(Q,)JaUTI8(Q,)]a

<:;; TI8(Q, n Q,)la

= ll(£r[Q,Jp)U[](£r[Q,Jp)
<:;; TI6(Q,)]aUTI8(Q,)la

<:;; T[6(Q, 0 Q,)Ja

= tslrip(lraces(£r[Q,]p)nlram(£dQ,Jp))

<:;; [](£r[Q,Jp)nll(£r[Q,Jp)

<:;; T[8(Q,))anT[8(Q,)Ja

<:;; TI8(Q, II Q,)Ja

= tslrip({s I s = s tAu BAS t A E Iraces(£r[Q,)p)

As t B E lraces(£r[Q,]p)))

<:;; {Ir I Ir = Ir I A U B A Ir i A E [](£r[Q,Jp)

Air r BE [](£r[Q,Jp)}

<:;; {lr!lr=lrtAUBAlrIAETrI6(Q,)!a

A tr t B E TrI8(Q,)Ja}

<:;; TI8(Q, AII B Q,)Ja

= tslrip({s 13 u, v 0 u E lraces(£r1Q,Jp)

A v E Iraces(£r[Q,J p) A s E Tmerg,(u, v)))

<:;; (lr I3u,vouE[](£r[Q,Jp)AvE[](£r[Q,jp)

AS E Alerge(u,v)}
<:;; (lr I3u,vouETI8(Q,)JaAvETI8(Q,)]a

/\ s E Merge(u,v)}

<:;; TI6(Q, III Q,)]a

93

lI(frlQ,;Q,jP) <;: t8trip({sl,frt~(s)AsEtraces(fdQ,]p))

U {(8~(W + (t + b)) I ,f rt 0-(8) A

s~(t,,f)) E traces(fT[Q,J p) A

wE tram(fdQ,]p))

<;: {tr l,f rt o-(tr) A tr E lI(fdQ,]p))

U{tr~tr' l,f rt o-(tr) A tr~(,f) E lI(fT[Q,]p)

AwE II(fdQ,]p)}

<;: (tr I tr E TI6(Q,J]0- A,f rt o-(tr))

U{ tr~tr' I tr~(,f) E T [6(Q,)]0- A tr' E T16(Q,)] 0-}

<;: TI6(Q,);6(Q,)]0

<;: TI6(Q,; Q,)]o-

We next consider the indexed opera.tors.

TI(fda; A - Q.]p)	 = {OJ u {(aj~tr I a E A A tr E lI(fdQ.]p))

<;: {OJ u {(a)~tr I a E A A tr E T[6(Q.)]o-)

<;: T[6(a; A - Q.)]o

1I(£d nQ.]p) =	 U 1I(£dQ.lp)
~€A aEA

<;: U T[6(Q·)10
.eA

<;: T16(n Q.]o
.eA

The process varia.ble case is trivial:

1I(£dXlp)	 = II(p(X))
<;: o-(X)

<;: 0-(6(X))

<;: TI6(X)]0

The recursion case follows from lemma. 6.2.6 :

6(pX. Q) ~ pX. 6(Q)

~, jJX. Q

o

94

Corollary 6.2.8 Every resp process Q has 0(Q) t;j Q

For a.ny resp process Q we have a simple method for producing a esp process
which is refined by Q. This will allow reduction of proof obligations on Q to proof
obligations on 0(Q).

Observe that the ordinary sequential composition operator ";" does not pre
serve timewise refinement in general. since it can introduce tra.ces that are not
present in the untimed version, by means of the closure operator. For ~xample,

the process
(a ~ STOP III SKfP); b ~ STOP

has ((0, b), (0. a)) as a possible trace, but the corresponding untimed tra.ce, (b, a)
is not a possible trace of the untimed equivalent of that process. This problem
cannot arise when the delayed sequential composition operator is used.

The operator e extends in the obvious way to fuuctions on resp processes
built out of the basic process constructors. We immediately obtain the following
corollary:

Corollary 6.2.9 If E. is a vector of esp processes, !l. is a vector of resp pro
cesses, and Vi • .E.; (;1 Q..i' and F is a function built from TeSp process construc
tors, then l'J(F)(l') ~, F(Il)

Follows immediately from theorem 6.2.7 by considering F as a TeSp term with
free variables. 0

Specifications

We can extend the refinement relation to a relation between predicates on untimed
processes and predicates on timed processes. Our definition of the refinement
relation between specifications is motivated by our proof strategy: if we know that
51 !:t St, then in order to establish St(Q) it will be enough to establish SI(P) for
some P such that P !:j Q.

Definition 6.2.10 If SI is a predicate on elements of M T , and Sf is a predicate
on elements of TMFS , then we define:

S, !:::,S, '" IIQ.(3P.S,(P)/\P!:::,Q=>S,(Q»)

The following lemma. provides an example.

95

Lemma 6.2.11 'weakly limited on A' ~j 'weakly limited on A'

The predicate 'weakly limited on A' on MT is refined by the predicate 'weakly
limited on A' on TMFS '

Our proof strategy is then encapsulated by the following theorem:

Theorem 6.2.12 If P [;, Q, 5 [;, T and 5(P), then T(Q)

Proof Follows immediately from the definition of ~l on specifica.tions 0

The set of specifications {T I S ~l T}, for a given S, is a complete lattice
under the <= ordering. Its top element will therefore be the strongest refinement
of S: it will be denoted sr(S). Any specification weaker than sr(S) will be a
timewise refinement of S, and by its definition every timewise refinement of S
is weaker than (or equivalent to) sr(S). We therefore obtain that sr(S) is the
(unique) predicate that satisfies

5 [;, sr(5) 1\ 'I5e • ((sr(5) => 5,) .. 5 [;, 5,)

It follows from the definition of ~l for specifications that T defined by

T(Q) '" 3 P • (5(P) 1\ P [;, Q)

satisfies the above equation for sr(S). Hence we obtain a characterisation for sr(S)
that will allow us to identify the strongest refinement of a given specification. This
will be particularly straightforward for behavioura1specifications, which will make
our proof strategy immediately applicable to such specifications.

sr(5)(Q) .. 3P. 5(P) 1\ P [;, Q

The predicate sr(S) holds of precisely those processes which are refinements of
processes captured by S.

Corollary 6.2.13 If 5(6(Q)) then sr(5)(Q)

Theorem 6.2.14 If A is a predicate on untimed traces, then

sr(X sat A(tr))(P) .. P sat A'(s,o,N)

where A'(s,o, N) .. A(tstn'p{s))

96

Proof We must prove that

3 P. P sat A(tr) /\ P [;, Q ¢> Q sat A'(s,a,N)

We prove first that

3 P. P sat A(tr) /\ P [;, Q => Q sat A'(s,a,N)

We have P [;, Q, so TI([r[Q]) ~ T[P]. Also, tr E TIP] => A(tr). Now

(s,a,N) E [dQI => s E traees([r[QI)

=> tstrip(s)ETIQ]

=> A(tstrip(s))

=> A1(s, 0, N)

which yields the required result.

We now prove

Q sat A1(s,G,N) => 3 P. P sat A(tr) 1\ P (;;j Q

Any Q E TCSP will have that U = tstrip(traces(£T[Q])) satisfies the trace
axioms (immediate from axioms (1) and (2) of TMn). Now for a given trace
u = (til, tie, ... , tI,,), define

p .. = Ul -+ U.e -+ ... - u" - STOP

Defining

P~ n p•
• eU

we have T[P] = U, and so P sat A(tr) and P (;;/ Q. 0

Example

The theorem allows the tra.nslation of a behavioural specification by an alt.eration
to its syntax. For example:

sr(X sat #(tr rout).; #(tr r in)) = X sat #(tstrip(s) rout)'; #(tMrip(s) r in)

We may also define a function on timed predicates complementary to the
strongest refinement function. The set of predicates on untimed processes refined
by a given timed predicate T is a complete lattice under the implication order,
so we ma.y identify the weakest predicate refined by T. We call it the weakest
coarsening of T, denoted wc(T). We then obtain

we(THP) ¢> YQ. (P [;, Q => T(Q))

97

Theorem 6.2.15 If A is a predicate on untimed traces, then

",e(X sat A'(" Q, N))(P) .. P sal A(tr)

where A1(s,a:, N) ¢:> A(tstrip(s))

Proof If P 15at A(tr), then whenever P 1:/ Q we must have

'E trae<s(Q) => t,trip(,) E Iraw(P) => A(tstrip(s))

and sa Q sat A'("Q,N).

1f,(Psat A(tr)) then 3tr E Iraw(P) 0 ~A(tr). Let tr = (a"a" ... a.).
Then Q = aJ _ at _ _ a.. _ STOP is certainly a refinement of P, and

c1early--.(Q sat A'(s,a,N)) as required. 0

Hence for un timed behavioural specifications S we have S = tDc(sr(S)). This
is not Lrue in general ror non-behavioural specifications. For example, consider

S(P) .. (a, b) E lraces(P)

Then for any TCSP process Q we have

(El(Q) n a ~ b ~ STOP) [:, Q

so ,rlS) holds of Q. Hence srlS) = TRUE, and so we('r(S)) = TRUE.

6.3 Strong Timewise Refinement

In this section we consider two closely related forms of strong timewise refinement.
We will examine their relationship in some detail. We perform the same analysis
that we have just carried out for weak timewise refinement. However, we will find
that not all processes preserve strong timewise refinement, so for a given TCSP
process Q it will not in general be trivial to find an untimed process refined by
Q. This makes reduction of proof obligations harder for those processes which do
not have 8(Q) refined by Q. We will also see that the refinement relation can
be extended to a relation between predicates, in the same way as the I:l-relation
was extended; we are again able to easily characterise the strongest refinement of
a behavioural specification.

We think of a timewise refinement of a process in MF as the resolution of when
events are refusible as well as when they are possible; but it is not so clear what
information in TMFS corresponds to a failure in MF. An untimed refusal set does
not correspond to the set of events refused at some time during the performance

98

of the trace, nor even to the set of events refused at some time after the end of the
trace. If the process were to stabilise, then we would expect it to correspond to a
set of events refusible after stability. However, not all processes are sl.able, so we
must find some other characterisation.

We interpret the failure information (tr, X) in a timed context by saying that
there is some time, after a timed version of tr has been performed, after which X
may be continuously refused. We would expect, if P, were a timewise refinement
of PI in this sense, that

(s, [t, 00) x X) E SI(P,) => (tstr;p(,),X) E P,

We would not expect tbe converse implication, since the introduction of timing
information will in general mean that some traces are uo longer possible, and also
that some sets may never be refusible.

If PI is a process in MF, and P, is a process in TMFS, then we write PI ~J P,
to say that P, is a strong timewise refinement of PI. This is defined as follows:

Definition 6.3.1

P, r;f P, Eo	 'i(s,N) E SI(P,), X E P(:':).

3 t • ([t, 00) x X <:: N) => (t.trip(s), X) E P,

We extend the relation ~J to a relation between environments for MF and envi
rouments for TMFS •

Definition 6.3.2 If q : var -+ MF and p : var -+ TMFS are environments to
their respective models, then

"r;;,j p Eo 'i X : var. ,,(X) r;;,j piX)

Finally, we extend ~J to a relation between CSP terms and TCSP terms.

Definition 6.3.3 If P is a CSP term, and Q is a TCSP term, then

pr;;,j Q Eo ("r;;,j p) =>.:F[P!" r;;,j frlQlp

We introduce one more form of timewise refinement, which will be useful in
resolving when P ~J Q. It is a natural form of timewise refinement between MF

and TM;.s, although we must bear in mind that TM;.s does not deal satisfactorily
with unstable processes, because of its treatment of failure sets on unstable traces
(if a trace has stability value 00 then every set is refusible after that trace).

99

Definition 6.3.4 If PI E MF and PI E TM;.s, then

P, ~"P, =0 V(s,o, X) E P, 0 (thstrip(s),X) E P,

If a : 'tIcr - MF and p : var _ TM;.s then

~ ~"p =0 V X , var 0 ~(X) ~ •• p(X)

If P i,s a C5P lenn, and 0 is a Te5P term, then

p~.. Q =0 ~~" P => FlpJ~ ~,. fTlQ]p

We may now define what it means for a term to preserve strong timewise refine
ment:

Definition 6.3.5 If 0 i.9 a Te5P tenn, then

• Qpreserves [;'rrefinement if 8(Q) [;'J Q

• Qpreserves r;b-refinement if 8(Q) [;,b Q

Theorem 6.3.6 Each of the following predicate.9 on MF i.9 continuous and satis

fiable, for any 01 E TMFS, Q, E TM;.s:

S,(X) =0 X ~J Q,

S,(X) =0 X~" Q,

Proof Let {P;} be a convergent sequence of processes in MF whose limit is P.
Assume that 51 (Po) for each i. Let .9 and X be such that

3~, t 0 (s, ~) E Sl(Q,) " ([t, "") x X <; ~)

Then by the definition of [;'J we have that (tstrip(s),X) E P, for all i. and so
(tstrip(s),X) E P. Hence P ~J Ql, and so 51 is continuous. Further the process
CHAOS, defined by

CHAOS =0 ~Xo(a,E~X)n.L

satisfies 51, since it exhibits every possible (trace, refusal) pair.

The proof for the continuity and satisfiability of 5, is entirely similar. 0

100

Conversely, neither SdX) == P ~b X nor Sr(X) == P ~I. X are continuous
for general MF processes P, although they may be continuous for some P (e.g.
CHA OS). Consider

P, - WAITn;a --+ STOP

a --+ STOP [;1 p.

a --+ STOP III J~~P.=1.

a --+ STOP ~,. p.

a --+ STOP Il,. Ji..~ P" = 1.

Both a --+ STOP ~J X and a --+ STOP !:'t. X hold of each p .. , but neither holds
of limn~1X' p...

However, the predicate
S,(X) '" P [;,. X

is continuous for i-stable and i-prompt processes, since for those processes we can
deduce information about infinite behaviours in a bounded time:

Theorem 6.3.7 Each oj the Jollowing predicates is continuous Jor any P E MF ,

t> 0:

81 (X) == P!:.J X 1\ X is t-prompt

S,(X) '" P [;1 X 1\ X is I-stabl.

ProoC We prove 8/ is continuous. The proof for S2 is entirely similar. Assume
{Qij ~ Q, w;th S,(Q,) fm eacb;, Now oon,ide, ("~) E SIrlQj w;th
[i', co) x X ~ N. Then [t',t' + t) x X ~~, so

(5, [I', I' + t) x X) E ja;I(£r1Q]

and so for some n we bave

(5, It', I' + I) x Xl E ja;/(£r1Q.j

Now Qn is t-prompt, so we deduce

(5,[1',00) x X) Eja;I(£r1Q.j

and since P!:.J Qn we have (tstrip(s), X) E F [p] , as required. 0

Lemma 6.3.8 For any CSP term P, TCSP term Q and t ~ 0 we have

P [;" Q => P [; .. WAIT I; Q

P[;I Q => P[;I WAITI;Q

101

Proof Assume P ~b Q, and that a ~Ia p. Then

(,,<>,X)EfT!WAITt;Q]p	 => (,-t,<>-t,X)Efi-IQJp
=> (th,trip(, - i),X) E TIP]a
=> (thBirip(,),X) E T[P]a

SOP~1a WAITt;Q. 0

Assume P ~J Q, and that a ~J p. Then

("N) E SId WAIT t; Q)p A [i',oo) x X <:: N
=> (,-t,N~t)ESIdQlpA[t'~t,oo)xX<::N~t

=> ("trip(, - t),x) E TIP]a
=> ("tr;p(,),X) E TlP]a

,oPCJ WAITt;Q. 0

Lemma 6.3.9 Let P be a CSP term that represents a contraction mapping, and
let Qbe a TCSP term .

• [f P r:,;J Q then pX. P r:,;J pX. Q

• If P ~Ia Q then JlX. P ~11 JlX. Q

Proof .1"[Jl X • p] is the unique fixed point of the contraction mapping
C '" j Y. TIPJ(a[Y/Xj) onM,. Now Ie! a r:,;J p. Assume P, !;J frlpX. QJp.
Then from lemma 6.3.8 we have PI ~J £T [WAIT 6; Jl X • Q] p, so

alP,jXj r:,;J p[fr[WAIT8;pX. QJp/X]

so we have

Tip! (a[P,jXj) r:,;J fdQ)(p[fdWAIT8;pX. Q]p/Xj)

and so
C(P,) r:,;J fdpX. Q]p

Hence C preserves S(X) == X ~J fT [JJ X • Qlp, and we have from theorem 6.3.6
that S is continuous and satisfiable, so it follows (from the fact that C is a con
traction mapping) that S(jixC), as required.

The proof for ~l' is entirely similar. 0

We will prove that the refinement relation [;J holds whenever ~i.o holds. How
ever, the converse is not the case. Consider

a _ STOP r:,;J pX. (a - STOP) t!. X)

102

But E:r [,:.t X • «u -+ STOP) t. X)] has stability value 00 associated with the
empty trace. Hence axiom 13 for TM;s tells us that (0, {a}) is a possible failure
of the process. But it is not a possible failure of F[a -+ STOP], so

a ~ STOP Ie,. ~X. ((a ~ STOP) S X)

In order to prove that P I;;;;/a Q =? P 1;;;;/ Q, we must first obtain some subsidiary
results.

Definition 6.3.10 A trace 8 in TE~ is reflected in l'{ if

«t,a)) ins 1\ t > 0 => 3t' < t. [t',t) x {a} ~ H

When timed refusals are present, we dednce that an event happens at the instant
it becomes available from the observation on l'{ that it was refused for som~ interval
up to that time. Hence a trace 8 is reflected in l'{ if there is evidence in l'{ that
the hatted events in 8 occurred at the instant they became available. We write
R(s, l'{) to abbreviate '8 is reflected in W. The following simple consequences of
this definition will be used in the next theorem.

Corollary 6.3.11 The following hold of the relation R:

• R(s,H)=>R(s~t,H~t)

• If R(s, H) and s E Tmerge(u, v) then R(u, H) and R(v, H).

_ If R(8, l'{) and l'{ = l'{1 Ul'{r then:l 8/, 8r _ 8 = 81 V 8r 1\ R(81, l'{1) 1\ R(8r, l'{r)

We will now define a relation between semantic sets PI in TMFS alld Pr in
TM;s' Tbis relation captures the sitnation where all the possible b~haviours

described by P1 are also contained (in a different form) in Pro We may therefore
think of PI as a more precise description of a system than P2; tbe projection
II(PI) (see page 185) of PJ into TM;s is more deterministic than PII. The
relation describes the following: if (8, n, l'{) E PI, then we deduce that the events
refused after stability will be a possible refusal set (after 8) in Prj further, since 8 is
reflected in l'{, the refusal information contained in l'{ is sufficient to deduce which
events in 8 may be hatted; finally, since TM;s does not make so many dis~inctions,

the stability value associated with the failure (8, X) will in general be higher than
tha.t associated with (s, l'{) in TMFS .

Wben this relation holds between PI and Pr , we say PI follows P1 :

I P is mOle deterministic than Q if Q:::: P n Q ('more deterministic' is reflexive)

103

Definition 6.3.12 If PI. E TM;.s and PI E TMFS , then PI. follows PI if for any
a E Tt, we hat'e

(i, 0, HI E P, A R(s, H) => 3 ~ ;> o. (s,~, a(H 1oj) E P,

We abbreviate 51. follows 51 to F(51., 51) If PI : vaT _ TMFS and PI. : var
TM;.s' then PI. follows PI if for all process variables X we have F(pl.(X), PI (X)).

If P and Q axe TC5P terms, then Q follows P if

F(p" p,) => F(tT [Q] p" frlP] p,)

The next theorem tells us that the semantics of P in TMFS is always more
precise than its semantics in TMFs . This result has interesting consequences. The
projectIon mapping n : TMFS _ TM;s (see page 185) maps a process P to
the most deterministic process in TM;s that follows P. Thus we will obtain t,he
following corollaxy:

Corollary 6.3.13 Let n : TMFS _ TM;s be the projection mapping given In

[R"SSJ. Then TI(fdp]) follows fdp], and is more dderministic than fTlP]

The consequence of the next theorem that is presently most useful is that it
will allow us to conclude that ~I,-refinementis stronger than ~rrefinement" which
will aid us in establishing the presence of the ~f-refinement relat,ion.

Theorem 6.3.14 If P is a TCSP term, then P follows P

Proof This theorem is proved by structural induction on P. The difficult cases
are indexed nondeterminism, parallel combina.tion, hiding, sequential composition,
and recursion. We present the proofs for each of these.

We proceed by structural induction, assuming the result holds for the syn
tactic subcomponents of the composite processes, and that in each case we have
F(pl.,PI)' We will continue to use the notation R(s, l{) to mean that s is reflected
in l{.

Case n. P,'

Co"ider (i, 0, H) E fd ni Pi]' Then define

S = b 13i. (i,1,H) Efdp,]p,)

T = {~13i.(s,~,a(H1a))EfTiPilp,}

104

Then a ~ sup(S). Now if T # 0 then (s,sup(T),0"(~1 a)) E ETln,p,]p,. So to
prove the required result, we need only show that 'I E S =? 3 j3 ~ 'I • j3 E T

1ES
=> 3i 0 (S,1,~) E ErlP,]p,

=> 3i,j3" 10 (s,j3,0"(~11)) E E~IP,]p,

=> 3"j3"10(s,j3,0"(~1 a)) EETlp,]p,

=> 3j3"1oj3E T

as required.

Case P II Q

Now consider (s,n,N) E £T[P II QJPJ, where R(s,~). Define:

5 = {max{aJ.al'}13~J,Nt.~=~JUN!1\

(i, a,,~,) E Edp] p, A (i,a" ~,) E Er[Q]p')

T = {max{Pl,pt} 13s/,st,X1 ,Xt • S = 5J V Sf 1\ Xl U Xl' = u(N 1 a)}

Then a = sup(S). Now given Nj and Nt such that N = N1 U Nt we have from
corolla.ry 6.3.11 that there are 5J and s, such that s = 51 V Sf and R(SI'~l) and
R(SE, Nt), so

S = {m~{allat} 13N/,N t ,s/,st. N = N1 UN! 1\ S = 51 V 51' II

(i" a" ~d E Edp]p, A (i"a,,~,) E EdQ]p,

R(s" ~d A R(s" ~,)}

Consider '"(E S. Then l' = max{o[, at}, where

(i"a,,~,) EEd?)p, AR(s"~)A(i,,a,,~,lEEdQ)p,AR(s,,~)

Hence

313, "a"j3,,, a, 0 (s"j3J,O"(~,la,l) E ETlP]p, A (s"j3,,0"(~,1a,)) E E,IQ]p,

But a I ~ a a.nd at ~ a, so

O"(~, 1 a) C; O"(~, 1 a,) A O"(~, 1 a) C; O"(~, 1 a,)

so
(s" 13" O"(~J 1 all E E,lp]p, A (s"j3"O"(~, 1a)) E E,I Q]p,

Therefore, mar{j3J,p.e} E T, so 3,1 ~ /.,' E T. Hence

(s,sup(T),O"(~1 all EE,IPII Q]p,

105

and sup(T) ~ sup(S). 0

The cases for the alpha.bet parallel operator and the interleaving operator are

very similar, and again use the properties presented in corollary 5.3.11

Case	 P; Q

Now consider (s,O',N) E ETIp; Q]PJ, where R(s,N). Define:

S ~ {al'iI.(s,Q,~u(Ix{/}))EfdPJp,A/li!a(i)}

U{o + t + 0 I / Ii! a(s t t) A (i ~ (t + o),a, ~ ~ (t + 0)) E fdQ] p,

A ((s t t)~((t./)),~ t tU[O,t) x {/}) E/ail(fr[P]p,))

T =	 {Q!(s,Q,XU{/}) EfT [P!p, A/ li!a(s))

u{o + (t + 0) I (s t t)~((t,))) E traces(fT[P!p,) A / Ii! a(s t t)

(sc(t+o),a,a(~l a)) EfT[QJp')

Then a = "p(S), and if T is not empty then (s,sup(T),a(N 1a)) E &T[Q]P'.
It is sufficient to prove that I E S =} 3,' ;;<!' I .,' E T. So consider i E S. Then
either:

(s, "I, ~ U [0" + 1) x {/}) E fdp!p, A / Ii! a(s) A R(s, ~ U [0" + 1) x {/}

=> 3,';>,.(sd,a(~1,)U{/}) EfT[P]p,

=> 3,';>,. (sd,a(~ 1Q) U {/}) E f;'[PJp,

=> 3"~i.;'E T

or:

r = 11 + (t + 0) A / Ii! a(s t t)
A «i t t)~« t, /)), ~ t t U [0, t) x {/}) E /ail(fT (p! p,)

A (i ~ (t + 0),11,~ ~ (t + 0)) E fdQ]p,

A R«i t t)~(t,))), ~ t t U [0, t) x {/}))

=> Is t t~«(t,))) E traces(f;.[P!p,)

,\ 3/1';> 11. (s ~ (t + o),I1',a((~ c. (t + 0)) 111)) E fT[Q] p,

=> (s t t~«(t,))) E trac<s(fT[PjP')

.\ (s ~ (t + o),I1',a«~) 1a)) E f T [Q]p,

=> ,J' + (t + 0) ETA 11' + (t + 0) ;> ,

=> 3'''l~i.''E T

o

Case P \ A

To prove this case, we first require a technical sublemma.:

106

Sublemma 6.3.15 If (s, 0, N) E £dp I A!p II 0 < 00 then

'Iv> o. 0< ~ ,"p{flI3w. s = wI A II (w,fI,NU[O,v) x A) E £r[P)p}

Proof Consider (s,a,N) E £T[P \ A]p, and II> Q. Define

S = {flI3wos=wIAA30>fI>end(w).(w,0,NU[0,fI)xA)E£r[P!p}

S" ~ {fl13 w. s ~ w IA II (w,fI,NU[O,v) x A) E £r[P!p}

Then from the definition of hiding, Q = sup(S). Now lemma A.1.2 yields that
..., E S ::::} 3...,.' ~ ...,. l' E SI/, so we obtain sup(Slo') ;;::: sup(S)

We wish to prove sup(S,,) = sup(S). so we assume sup(Sv) > sup(S) for a
contradiction:

sap(S.) > sap(S)
=> 3f1E S".fI>o
=> 3w.s~wIAII(w,fI,NU[0,v)xA)E£r[P!P
=> 3f1';> fI, w' s ~ w I A II (w,fI',N U [0, mm{v,fI}) x A) E £dp!
::::::> min{v,,B} E S
=> sap(S) > min{v,fI} > 0

which yields a contradiction. 0

We can now handle the hiding case:

Let (s,Q,N) E£r[PIA!PJ AR(s,N). Define.

S ~ {flI3woS=wIAII30'>fI>end(w).

(w, 0', N U [0, maxi end(N), fI}) x A) E £rlp! pd

S, = {fl13 w. s ~ w I A II w is A-active II (;;"fI,N U [0,1) x A) E £r[P!PI}

T ~ (flI3(w,fI)E,tab(£;.[P!p,).wIA=,lIwisA-active)

Cafie a = 00

The result follows immediatelY, since ~ 1 00 = 0

Case a < 00

For any 1, jf {3 E S., then 3 {3' E T • /3' ;;::: /3. Hence if \f..., • sup(S-r) = 00 then
'ap(1') ~ 00, and (s, 00, a(N 1 oj) E £"Ip! p,.

If 3.., • sup(S.,.) = 0' < 00, then set /I = maxh, a', a} + 1. Then from
sublemma. 6.3.15 we obtain sup(S,,) = a, and so sup(T) > Q. Also,

fI E S"

=> 3w.s= wIAl\wisA-activell(;;"fI,NU[O,v)xA)E£T[p!p,1

=> 3w" = w I A A w is A-active A (w,a(N 1 /I)UA) E fail(fTlp]p.)

=> (s,a(N1c.))Efai/(£i-IPIA!p,)

107

0

CasepX.P

Define G(Y) = P[(WAlT6; Y)!XI. We will first prove that G"(STOP)
follows G"(STOP) for all n.

Base Case: STOP follows STOP is immediate.

Case n+l:

Assume F(G"(STOP), G"(STOP)) aud F(p" p,).

ErIG"+'(STOP)]p, = Er[G(G"(STOP))Jp,

E, [pI (p,[EHWAlT,; G"(STOP)] p,! X])

which follow, Edp)(p,[EdWAlT,; G"(STOP)]p,!X])

ET [G"+' (STOP)] p,

Hence we have that Vn 0 F(G"(STOP), G"(STOP)).

Now (G"(STOP)} has limit JJ X • P in both TMFS and TM;.s' Consider
(s,a,N) E EdpX 0 pI.
Case a < 00

Then 3 No N6 > maz{end(s, N), a). So then

V n > N 0 (s, a, N) E Ed G"(STOP)]

But V. 0 F(G"(STOP), G"(STOP)), '0

Vn > N,3~" a 0 (s,~,a(N1 a)) E E,[F"(STOPJ]

Hence we obtain

3~" a 0 (s,~,a(N 1a)) E E,[pX • F(X)]

Case Q = 00

=> sup{a" I (s, a") E stab(ErlF"(STOP)])) = 00

=> sup{~" I (s,~") E stab(E,IF"(STOP)j)) ~ 00

=> (s,oo) E stab(E,[pX 0 F(X)j)
=> (s,00,a(N1 a)) E EHpX 0 F(X)]

o

108

Corollary 6.3.16 (s,oo,N) E £dP) => (,,00) E ,tab(£;'(P))

We are now in a position to prove

Theorem 6.3.17 For any asp process P and TGSP process Q we have

P C:" Q => P C:J Q

Proof A"ume PC: .. Q. Consider ("N) E SIr[Q), with [t,oo) x X ~ N fo<
sornet. Then (s,a,0)E£T[Q] far some a.

Case a = 00

Then

(,,00) E 'tab(£;'(QIJ

=> ("X) E!ai/(£;.IQ))

=> (t,trip(,),X) E T(PJ

Case a < 00

Then from axiom 10 for TMFS we have

3/3" n. (s,/3,[t,maz{t,a] + 1) x X) E £rlQI
=> (s,X) E!ai/(£;'(QI) since F(Q, Q)
=> (tstrip(s), X) ETrPJ

o

Theorem 6.3.18 All the process constructors euept hiding, infinite nDndeter
minism, and infinite-to-one alphabet renaming preseroe !;j, refinement.

Proof By a straightforward case analysis. 0

We identify sufficient conditions on timed processes for the preserva.tion of
r;,;;:b-refinement:

Definition 6.3.19 A set of processes {Q;} has bounded stability if

sup{a I 3 i • (5, a) E stab(£;'[Q;J)} = 00 => 3 i • (5,00) E stab(£;.1 Q;])

Lemma 6.3.20 If { Qi} has bounded stability and {Pi} is such that'r/ i • P, ~1' Q.
then ni Pi !;b ni Q.

109

Proof Consider (s, 0:, X) E £1' [n. Qi]. We. have. a = sup(S), whe.re

5 = (13 I 3 i 0 (',13, X I E £;' IQ,])

Case 0: = 00

Then by bounded stability we have

3i 0 (,,00) E ,'ab(£;.IQ;))

so
("oo,X) E £;.IQ,) I

Hen" (tstrip(,), X) E T!p;l, and so (tstrip(,),X) E Tin; p;J.

Case a < 00

Then
3 i 0 (',I3,X) E £;.!Q;]

=> (t,trip(,J,X) E T!P;]
=> (t,trip('),X)ET n;p;]

o

Definition 6.3.21 A process P is bounded under A if

'i'E'races(£;'!p)) 0	 ,up{13 I 3(w,l3) E ,tab(£;.IPj) 0 w \ A ~ ,j = 00

.. 3(w,00) E ,tab(£;.IP]) 0 wI A =,
Lemma 6.3.22 If Q is bounded under A and P I;:t. Q then P \ A 1;:1. Q \ A

Proof Consider (" n, X) E £;.[QI AJ.
Case a = 00

Then by bounde.d stability we have

3(w,oo) E ,tab(£;.IQI) 0 w is A-active /I w I A =,
=> (w,oo,X U A) E £;.IQ)
=> (th,trip(w), X UA) E TIp)
=> (th,trip(w)\ A,X) E Tip I AI
=> (th,trip(,),X) E F[p I AI

Case a < 00

=> 3 w. (w,X U A) E/ail(£;'!Q]) /I w I A = 5

=> (thstrip(w), X U A) E TIp
=> (th,trip(w) I A,X) E TIP I AI
=> (thstrip(,), X) E Tip I AI

o

llO

Corollary 6.3.23 If P is such that

• if Q \ A is a .<;yntactic component of P then Q is bounded under A

• ifnier Pi is a syntactic component of P then the set {P;} is bounded/y stable

• if f(Q) is a syntactic component of P then f is finite to one

Ihw e(p) !;;.. p

Proof' Follows immediately by structural induction, using theorem 6.3.18 and
lemmas 6.3.20 and 6.3.22. 0

This yields a sufficient condition for a process to be a strong timewise refinement
of its image under 8.

Corollary 6.3.24 If P is such that

• if Q \ A is a syntactic component of P then Q is bounded under A

• ifn,el Pi i.s a syntactic component of P then the set {p.} is boundedly stable

• if f(Q) is a syntactic component of P then f is finite to one

then S(P) !;;f P

We have obtained, via ~I.-refinement, a sufficient condition for TeSp tenus
to preserve ~f-refinement. We now examine which TeSp operators preserve I,;f
refinement. We shall find that it is not preserved by parallel composition, despite
the fad tbat resp terms built with that operator do preserve timewise refinement
(under the appropriate conditions for hiding and non-deterministic choice).

Lemma 6.3.25 Each of the basic TeSp processes STOP, SKIP, WAIT t, -l,
and X satisfy e(Q)!;;J Q.

Proof Immediate, since they each satisfy EJ(Q) ~tI Q 0

Lemma 6.3.26 The following resp process constructors preserve I,;rrefinement:

a~P, a,A~P(a).PnQ, n,p,
PO Q, Pili Q, P; Q, I-'(P)

Proof Straightforward 0

III

However, the' II' and 'x IIxJJ ' operators do not in general preserve !;rrefinement.
J

Consider

P " a ~ STOP
Q, " p X • (a ~ STOP f, WAIT 3; X)

Q, " WAIT 2; Q,

Then P !;] Q1 and P !;] Qt, but

P II P fll Q, II Q,

since P JI P is unable to refuse a after the empty trace, but Ql II Qt can refuse
it. Formally:

(O,{a}) ¢ Yip II pi
(0,[0,00) x {a}) E SIdQ, II Q,!

We therefore seek conditions where !;rrefinement is preserved by parallel compo
sition.

Theorem 6.3.27 If PJ and Pt are CSP processes, QJ and Qf are TCSP pro
cesses, PJ !;] Q1, Pt !;] Qt! both QJ and Qt are prompt on Xl n Xt, QI is
non-retracting on Y1 and Qt is non-retracting on Yt , and Xl n Xt <;;; Y1 u Yt
then

P1 x1flxJJ Pt !;] QI xll1xJJ Qt

Proof Let Q, and Q, be f'-pmmpt. Consider (s,N) E SIdQ, x,lIx, Q,I, and
It, 00) x A <;; N. Then

:ls1,s!,NJ ,N1! esESJ xl llx1! St /\N =N 1 UNt /\a(N1)n(Xt \XJ) =0/\
u(N,) n (X, \ X,) ~ 0 A (8" N,) E SIdQ,1A (8" N.) E SId Q,J

We require the following definitions:

T = m""{end(s),t}+t'

T' = T+t'
B, = AnY, n (u(N, i [T, T')))

B, = AnY, n (u(N, i [T, T')))

C, = AnY, \ (u(N, i [T, T')))

C, = AnY, \ (u(N, i [T, T')))

D, = An(X, \X,)

D, = A n (X, \ X,)

112

Now B1 ~ u(N 1 1 [T, T I
)), so by non-retraction of QI on Y1 and lemma, 5.1.16

we have
(."N, U ['nd(s), T) x B,) E SIr[Q,]

so by promptness on Y1 U Yt and B/ r;;;; Y1 we have

(s" N, U [T, co) x B,) E SIr[Q,]

Now
[T, T') x C, ~ N, U [T,co) x B,

so
(."N, U[T,co) x (C, UB,)) E SIr[Q,J

Clearly
[T,co) x D, nN, = 0

and so
[T,co) X D, ~ N,

Tberefore
(s" N, U [T,co) X (D, U C, U B,)) E SIr[Q,)

By a synunetric argument, we obtain

(s" N, U IT,co) x (D, U C, U B,)) E SIr[Q,]

Hence by the definition of !;rrefinement we obtain

(Istrip(s,), D, U C, U B,) E TIP, I
and

(t>trip(.,), D, U C, U B,) E TIP,]

Now
DJ U C/ UBI U D, U Ct U B, = A

and
tstrip(s) E t3trip(SI) xjllxJI tstrip(St)

and so
(tstrip(s), A) E TIP, x, II x, p,]

as required. 0

Corollary 6.3.25 If PI ~J Qt and P, ~J Q, and both Ql and Qt are prompt,
and Q/ is non-retracting, then

P, xlly P, [;/ Q, xlly Q,

113

Proor If Q1 is non-retracting then it is non-retracting on X n Y; Ql and Q! are
both prompt on X nY, so the previous theorem applies with Y/ = X nY, Y£ = 0.

Theorem 6.3.29 If P1 ~f Q1 and p! ~J Q! and Q1 and Qf are boundedly
stable, then PI x II y P: ~f Ql x II Y Q!

Proor Consider

(s, N) E SIdQI xlly Q,], It, 00) x Z <;; N

Then Q/ x II Y Q! is boundedly stable, so

(s,a, [I, max{l,a) + 1) X Z) E cdQ, xlly Q,]

so for30me
~1,~!,01 ~ o,o! ~ a

we have
(s tX, a" NJl E cr[P] "a(ax) n (Y \ X) = 0

and
(s t Y, a" N,) E cdQ] "a(ay) n(X \ Y) ~ 0

and
~J U~! = [t, max{l,a} + 1) X Z

Let
Z, = a(N, 1a,), Z, ~ a(N, 1a,)

Then 21 u Z! = Z Now from theorem 3.6.6 we have that

(s t X,[a"oo) x Z,) E SIr[Q,]

and

(s I Y,[a"oo) x Z,) E SIdQ,]
Hence

(tslr;p(s t X),ZJl E .rIP,]
and

(tstrip(s t Y), Z,) E .rIP,]
so

(tstrip(s), Z, u Z,) E .rIP, X II y P']
as required. 0

If every semi-infinite behaviours of P \ A arises from a single semi-infinite
behaviour of P, rather than from a sequence of a.pproxima.tions, then we shall
see tha.t the operator \A will preserve ~rrefinement for P. A process with this
property is well behaved on A:

114

Definition 6.3.30 A TeSp process P is well behaved on A if

(s,[t,oo)xX)ESIr[P\Aj =>
3wo#w isjinit'A(w,[O,oo)xAU[t,oo)xX)EIriPj Aw\A=s

Observe that not all processes are well behaved on A. For example, the process

p.= n : N --+ WAIT n ; a --+ STOP

is not well behaved on N. When the set N is hidden, the choice of n made by P
is not visible, so a can be refused. for any finite length of time: V n • ((), [0, n) x
{a}) E .:FT[P \ NJ. The limit of these finite approximations is therefore a. semi
infinite beha.viour of P \ N:

((), [0,00) x (all E SIT[P \ N)

However, there is no single semi·infinite behaviour of P that gives rise to that
behaviour of P \ N: that is, there is no trace w of P such that w \ N = () and

(w, [0, 00) x (N U (aJ)) E SIT [PI

Hence P is not well behaved on N (and so we would not expect P J ~J P to imply
that P, \N[;J P\N).

Lemma 6.3.31 If Q is well behaved on A, and P ~J Q, then P \ A ~J Q \ A

Proof Consider

(s,N) E SIrlQ \ A] A ([t,oo) x X) <; N

Then
(s,[t,oo) x X) E SIr[Q\A)

so

3w.s = w\A A (w,[t,oo) x X U[O,oo x A) E SIrlQ]

Now P ~J Q, so
(Istrip(w), A U X) E F[P)

so

(tstrip(w) \ A,X) E F[P \ A]

so

(tstrip(s), X) E Flp \ A)

as required. 0

115

We now identify conditions for P to be well behaved on A.

Lemma 6.3.32 If P is weakly limited on A and weakly prompt, then P is well
behaved on A

Proof Let P be weakly t-prompt. Consider

(s, It', 00) x B) E SIdP \ AI
Then

3 now E traces(Fdp!) 1\ w \ A = s => #w < n

Define T = max { end(s), e} + nt + 1. Then

(s, It', T) x B) E Fdp \ AI
so

3 wow \ A = s 1\ (w, It', T) x B U [0, T) x A) E Fdp]
Then

#(w 1 'nd(s)) < n

so
3 T' < T - toT' > t' 1\ w 1[T', T' + II = 0

Define w' = w t T' = w t T' + t. Then

(w', It', T' + t) x B U [0, T' + I) x A) E Fdp]

so since

T' > 'nd(w') 1\ [T', T' + t) x AU B >:: It', T' + t) x B U [0, T' + t) x A

we have by weak promptness

(w',[t',oo) x B U [0,00) x A) E FT[P]

as required. 0

Observe that we require that P is weakly limited: if it is not, then the result
need not follow. Consider the following process definition:

Qn.O - b ~ STOP

Q.. ,m+l - n - Q.. ,m

Q - n: N - Q.. ,n

116

Then Q is weakly prompt, but is not weakly limited on N. We see that

((), [0,00) x {bj) E SIr[Q \ N]

since all the finite approximations a.re fa.ilures of P \ N. However, there is no finite
trace w such that

(w,[O,oo)xNU{bj)ESIrlQ] Aw\N~()

so Q is nQt well behaved on N. Indeed, although 8(Q) I;"J Q, .it is not the case
that El(Q) \ N [;, Q \ N.

Corollary 6.3.33 If P is limited on A and prompt, then P is well behaved on A

Tbe next corollary will be useful in the construction of networks of processes.

Corollary 6.3.34 If PI ~J Qt and P~ ~J Q~ and Ql and Q~ are both weakly
prompt, QJ is non-retracting on A and weakly limited on A', Q~ is non-rdracting
on B and weakly limited on B', and A U B = A' U B' = X n Y I then
(P, xII, P,) \ (X (l Y) £;, (Q, xII, Q,) \ (X (l Y)

Proof this follows directly from theorem 5.3.13 and corollary 6.3.32 0

We now present a sufficient condition for arbitrary non-deterministic choice to
preserve ~J-refinement:

Definition 6.3.35 A set of processes {P,} are well behaved if

STdn p;! ~USTrlp,]
;

Not all sets of prQcesses are well behaved. If P,. = WAIT n ; a ---t STOP then we
have

«(), [0, 00) x {aj) OTlnP;!

hut
((),[O,oo) x {aj) ¢UTr[p;]

so the set {Pj} is nQt well behaved.

Lemma 6.3.36 If {Q,} is well behaved, and 'r/ i • Pi [;'J Q, then n; Pi 1;;;/ ni Qj.

117

Proor Let {Q;} be well behaved, and Vi. p. (;J Q•. Consider

(s,N) E SIdn Q,lolt,oo) x A <::: N

Then
(s,N) E U;SIr[Q,]

=> 3io(s,N)ESI rlQ;]
=> 3 i 0 (tstrip(s), A) E FIP;]
=> (tstrip(s), A) E Fin;?;]

as required. 0

Wt have s~n that stable and prompt processes are useful because they permit
inferences concerning infinite behaviours from finite approximations to those be
haviours. This enables finitary characterisations of the (;rrefinement relation for
such processes.

Stable Processes

If Q is a stable process, then we have

P [;;, Q '" (tstrip(s),u(N1 a» E hlPI

This follows from the fact that for stable processes we have

(3(.,N) E SIrlP] 0 [t,oo) x X <::: N '" 3(s,a,N) E [rlP]- u(N 1a) ~ X

This characterisation of refinement for stable processes will be easier to work
with.

Prompt Processes

If Q is a non-retracting t-prompt process then we have

P[;;/ Q=
(s,N) E hlQ] A [<nd(s), <nd(s) + t) x X <::: N => (tstrip(s),X) E FIP]

Once a.gain, we need only consider finite observations in order to tell whether or
not a process is a refinement of another.

118

The Non-determinism Order

The non-determinism partial order I;;; [Ros82, Haa85] is defined between processes
in a semantic model (with £ <l.5 the corresponding semantic mapping) by

Definition 6.3.37

pr;Q £ £[pnQ]=£[p]

Refinement in the non-determinjsm order preserves I;;;rrefinement

Theorem 6.3.38

pr;p'r;JQ => pr;JQ

pr;JQr;Q' => P r;J Q'

Proof This follows immediately from the fact8 that

t:T[pnQ] =fdp] => fail(fdQ])~fail(fdP])

F[pnQ] ~F[P] => fail(F[Q])~fail(F[P])

o

Specifications

The treatment for I;;;rrefinement of 8pecifications is very similar to the treatment
for I;;;c-refinement. We extend I;;;rrefinement to a relation between prerlicates on
M,. and TMFS. If S1 is a predicate on MF, and S, is a predicate on TMFS then we
may define 1;;;, between specifications in an identical fashion to the cotre:lponding
definition for !;;crefinement:

Definition 6.3.39

S, r;J S, £ 'I Q • (3 P. S, (P) 1\ P r;J Q => S,(Qj)

We can also define the strongest refinement sr(S) of a given untimed predicate 5
in the same way:

S r;J sr(S) 1\ ((S, => sr(S)) .. S r;J S,)

It is given by a similar condition:

sr(S)(Q) .. 3 P • S(P) 1\ P r;J Q

119

We can again capture the 1L'eakest coarsening of a given timed predicate T. It
is given by the following:

wc(T)(P) .. '1Q. (P r;" Q => T(Q))

We can express the strongest refinement of a behavioural specification on MF

as a bebavioural specification on the semi-infinite bebaviours of a timed process:

Theorem 6.3.40

"IY sat A(tr,X))(Q) .. Q sat (~= [t,oo) x X=> A(tstrip(,),X))

Proof It is clear that Y sat (~= [t, 00) x X => A(tstrip(s), X» is a refinement
of Y sat A(tr,X). Fmther,;f Q sat (~ = [1,00) x X=> A(tstrip(s),X)), then
the set

U = ((lstrip(,),X) 13t. (s,[t,oo) x X) E SIdQ]J
satisfies the axioms of ME' (page 187) and has A(u,X) for any (u,X) E U. We
define the following processes by infinite mutual recursion, indexed by failures
(tt, X) a.nd traces v:

p(_,X),'I' a,(ini's(U1v))~P ~ ;fuT'v
(_,X),v (II)

p(_,X},.. a , (init,(U 1 v) - Xl ~ P ~ if u = v
(II,X)," {a}

Now axiom 4 for MF yields for any (tI, X) E U that

(v, X) E F[P(o,x),{}] <; U

so we obtain

U c U (P(o,XI,O) <; U
(..,X)e U

and hence

Fd n (p(o,x),{}l] = U
(II,X)eU

We thus ha.ve a process, defined in terms of infinite mutual recursion, whose seman
tics is U. It is shown in [RosS8b, p69J that there is a, simple coding trick which
converts any mutual recursion into a single one. Hence there is a OSP process
(with only single recursion) whose semantics is the set U. 0

Lemma 6.3.41

Y sat (~= [t,oo) x X => A(tstrip(s),X))
.. Y sat (([1,00) x X <;~) => A(t"rip(s),X))

120

Proof Assume Y sat (N = [t,oo) x X ~ A(tstrip(s),X)). Then consider
(s, N) E SIT [Y] such that ft, 00) x X ~ N. By axiom 10 for TMFS we deduce
(s, It, 00) x X) E SIT[Y] , and hence that A(tstrip(s), Xl), as required.

The proof in the other direction is trivial. 0

We define the weakest coarsening of a predicate on TMFS (with respect to !;;;;/)
in the way it was defined for ~l-refinement:

Definition 6.3.42

wc(T)(P) '" VQ. (P!;, Q => T(Q))

The weakest coarsening of T holds of P precisely when T holds of every refinement
of P. We obtain the following result:

Lemma 6.3.43

wc(Y sat (N = [1,00) x X=> S(tslrip(s),X)) = Y sat S(lr,X)

We again ohtain S = wc(sr(S)) for behavioural specifications on MF .

Deadlock Freedom

Following [Dat85], we approach deadlock-freedom via possibility of deadlock:

Definition 6.3.44 A TCSP process P may deadlock if

3(3, Il), I • FT[P/((8, N), I)] ~ hlp/((s, N), I) n STOP]

This is equivalent to saying that

3(8, Nj, I. (s,N U [1,00) x E) E SIT[P]

This leads to a defini tion of deadlock free.

Definition 6.3.45	 A process P is deadlock-free if

(s,N) ESIT[P] => Vt. [t,oo) x E S1: N

Lemma 6.3.46 sr(deadlock-free) = deadlock-free

l2l

Proof P is deadlock-free in MF if P sat X f- E. Hence we obtain from theo
rem 6.3.40 and lemma 6.3.41 that

sr(Y sat X l' E) ~ Y sat (([1,00) x X <:; N) c} X of E)

which is equivalent to our definition of deadlock-freedom for TMFS '

We also define deadlock-freedom for TM;s.

Definition 6.3.47 A process P is deadlock-free in TM;s if

s E Iraces(£T1P]) c} (s,E) ¢fai/(£T1P])

Lemma 6.3.48 If P is a deadlock~free C5P process, and Q is a TCSP process
such tkat P kb Q, t.hen Q is deadlock-free in TM;.s'

Proof Trivial

Lemma 6.3.49 If a TC5P process Q is deadlock-free in TM;'s then it is deadlock
free in TMFS

Proof If Q is deadlock-free in TM;'s then it must be stable (since E is refusible
after an unstable trace), and unable to refuse E after stability. Since Q follows
Q. we also have that Q is stable in TMFS 1 and unable to refuse 1:: after stability.
Hence Q is deadlock-free in TMFS ' 0

Hence we see that deadlock-freedom is preserved by both ~rrefinement and
~b-refinement.

6.4 Other Timewise Refinements

If we wish to refine processes to retain the stability infonnation, we would wish
our refinement to be unstable only if the original process were unstable. Hence we
can define a timewise refinement relation ~, relation between Ms and TMFS '

Definition 6.4.1 If 51 EMs} and 5~ E TM;s, then

51 ~,5~ ==
tSlrip(lraces(S,)) <:; traces(S,) A (s,oo) E stab(S,) c} (tstrip(s), oo) E S,

Hence this form of timewise refinement preserves stability in processes: if P is
stable, and P ~. Q. then Q is stable.

122

Definition 6.4.2 We define a lime wise refinement relation!: between Ms and
TM;s as follows: if S1 EMs, and SE E TM;'sJ then

S1 !: Sf :2:

tstrip(traces(S,)) <; tram(S,) A (s,oo) E stab(S,) => (thst.rip(s),oo) E S,

The refinement relations !:J and !:. may be combined to yield a. refinement
relation between MFs and TMFS :

Definition 6.4.3 The refinement relation!: between MFS and TMFs is defined
as follows: if Sl E MFS and SI. E TMFS , then

S, <; S, ""	 (3t. (s,[t,oo) x X) E S/(S,)) => (tstrip(s),X) E/ail(S,))

/\ (3t,VT > t. (s,oo,[t, T) x X) E S,) => (tstrip(s),oo,X) E S,

Definition 6.4.4 The refinement relation!: between MFS and TM;'s is defined
as follows: if Sl E MFS and SI. E TM;.s J then

S, <; s, "" (s,a,X) E S, =>	 (thstrip(s),X) E/ai/(S,)
A (a = 00 => (thstrip(s),oo,X) E S,)

Each of the refinement relations above extends to environments and to relations
between CSP and TCSP terms, in the same way as the relations ~r and [;;;J were
extended.

123

7 Communication

In this chapter we define the communication concepts of channels, input and
output, pipes, the chaining operator, buffers, and networks. The trea.tment of
buffers in particular provides illustrations of the specifications we ha.ve presented
in the previous chapters. We find sufficient conditions for the preservation of
~rrefinement by the chaining operator, and thereby obtain conditions on buffers
which ensure that the pipe formed by chainiug them together is a buffer. We also
consider the more general network operator: we see how to modularise networks,
and provide conditions for the network operator to preserve timewise refinement.

7.1 Definitions

We think of the event c.u as corresponding to value v being passed along channel
c. If V is the set of possible values that can pass along channel c, we define
c. V ={c.v I v E V}. When it is dear that we intend 'c' to represent a channel,
then we use c as an abbreviation for c. V.

c?x: V - P(x) c.r' c. V ~ Q(c.r) whe'e Q(c.r) ~ P(r)

c!x - P == c.x - P

c?x: V _ F(z) represents a process willing to input any message z from the set
V along channel c, and then behave like F(x). Ohserve that it is only well defined
if the set {F(z) I z E V} is uniformly bounded. If the set of possible messages V
is obvious from the coutext, then we may omit it and write c?z -+ F(z).

The construction c!z _ P represents a process willing to output message x

along dl.annel c, and then behave like process P.

In specifications we often use the channel name to denote the projection of
the trace onto the channel: the sequence of messages occurring on that channel
in the trace s. For example, c denotes tstrip(s t c). This convention will allow us
to succinctly relate the messages passed along different channels in specifications.
We therefore write out ~ in as shorthand for tstrip(s t out. V) ~ tstrip(s t in. V),
to specify that the sequence of messages passed on the out channel is a prefix of
the sequence passed on the in channel. (trl ~ tr~ means that trl is a prefix of tr~;

also, from [PS88], trl ~" trt means that trl ~ trt and #trl + n ~ #trt.)

Definition 7.1.1 A pipe is a process P such that q(F) ~ in.E U ouLE

The definitiou of the chaining operator is the same as that of the untimed operator,

124

but recall that the hiding operator forces all internal communication to occur as
soon as possible; its behaviour will therefore be somewhat different.

Definition 7.1.2 We define the chaining operator::> on pipes P, Q as follows:

P» Q = (S,.,.,(P) (i••,)I1{,.••,) S,.;.(Q)) I c

whe.re S.,b is an alphabet transformation, indued by channel names, de.fined by

S.,.(a,x) b.•

S•.• (b.•) a.'
S•.• (y) Y if Y ¢ a.1: U b.1:

Theorem 7.1.3 The chaining operator ~ is associative

Proof Lemma A.1.4 and the following previous results are sufficient 10 prove
Theorem 7.1.3:

1. P .lI yuz (Q yllz R) = (P .IIY Q) xuyllz R

2. {a,b}n <T(P) = {} => S•.• (P) = P

3. f bijective => f(P xII y Q) = f(P) l(x)lI 11 Y) f(Q) 1\ f(P I c) ~ f(P) If(c)

4. Va, b. S... ,1I is bijective

5. {a, b) n {c, d) = {} => S•.I(S,.,(P)) = S,.,(S•.• (P))

6. PIXIY=PIy\X

Lemm. A.1.4 states th.t Z n Y = 0 => (P I Z) xlly Q = (P xuzlly Q) IZ

Let ie, co, ,d, do, ide, cdo abbreviate in U c, c U out, in U d, d U out, in U d U
c, andc U d U Qut respectively. The proof is essentially the same as the proof for
associativity of chaining in untimed asp; the difference arises in the establishment
of the previous remIts, in particular lemma A.1.4.

125

(P» Q) » R

(5,.",((5••<,o(P) i,lI" 5"i.(Q)) \ ,) .,11,. 5" .. (R)) \ d (defn)

((5,.",(5,.<,,(P) i,lI" 5" ..(Q)) \ 5,.",(,)) ,,11,. 5',i.(R)) \ d (3,4)

(((5,.",(5,.",(P) i,lI" 5"i.(Q))) "J,. 5"i.(R)) \ ,) \ d (A, 1.4)

(((5 "(5,.,,,(P) i,lI" 5"i.(Q))) ",11,. 5"i.(R)) \ d) \' (6)

((((5 "(5,.,,,(P))) i,ll" 5••<"(5,, .. (Q))) ",11,. 5" •• (R)) \ d) \' (3.4)

((5,.<,,(P) i,ll". (5..",(5" .. (Q)) ,,11,. 5"i.(R))) \ d) \' (1,2)

((5..<,,(P) i,ll". (5" .. (5,.<,,(Q)) ,,11,. 5',i.(R))) \ d) \' (5)

((5...,,(P) ..II" ((5"i.(5••",(Q)) ,,11,. 5',i.(R)) \ d)) \' (A.1.4)

P» (Q» R) (defn)

o

7.2 Real-time Buffers

In addition to being interesting in their own right, huffers also provide us with nice
specification examples: their definition involves both safety and liveness proper
ties, we may impose real-time constraints on them, and we may also consider the
interaction of various types of buffer.

In [Hoa85] a buffer is defined as a process which has two channels, in and
out, and outputs on the out channel exactly the same sequence of messages as
it ha.B input from the in channel, although possibly after some delay ('delay' in
the untimed context meaning that it need not output messages as soon as they
ha.ve been input, but ma.y have the capacity for inputting further messa.ges before
outputting). This has a remarkably simple specification in the traces model - A
process P i5 a buffer if it is a pipe such that

P sat out ~ in

Unfortunately, processes such as STOP satisfy thi5 specification, not through any
fault in the specification, but rather because the traces model is not powerful
enough. to capture the essence of a buffer. All the traces model can describe is
safety properties; but we also wish to capture liveness properties.

We wa.nt a buffer to be unable to refuse an input if it is empty (that is, if
out == in, when it has output all its input messages), and to be unable to refuse

126

an output if it is not empty, when Qut < in. This leads us to tbe specification
[HaaS5, pI58],

P Bat (out (in /\ if Qut = in then in E ref else Qut E refl

if we are to call P a buffer.

We extend this definition to include time. As we decided in our discussion on
timewise refinement, we consider that a. process is able to refuse a set of events
alter a trace if there is a time alter which that set can always be refused; and it
is not able to refuse that set if there is no such time. We say, therefore, tbat a
process is a tiIlled buffer if there is no time after which it can always refnse to
output when non-empty, and that there is no time after which it can always refuse
to input if it is empty. We define a buffer formally as follows:

Definition 7.2.1 P is a buffer if it is a pipe such that

("N) ESIT[F] => (out <;; in)
/\ if out = in

then 'It E [end(,),oo),u E C. [t,oo) x in.• 1£ N
else 'I t E [end(,), 00) • [t, 00) x Qut 1£ N

where C is the set of possible messages.

Lemma 7.2.2 'timed bufferl = sr('untimed buffer')

Proof Let B(P) hold if and only if P is an un timed buffer, and C(Q) hold jf and
only if Q is a timed buffer. We have

,r(B)(Q).,. 3P. B(P) /\ P c::, Q

so we are required to show that

C(Q)'" 3P. B(P) /\ P~, Q

We prove first that
C(Q) ." 3 P. B(P) /\ P c::, Q

Can'ide< (', N) E SIrlQ) , It, 00) x A <;; R

(tstrip(,), A) E F(P)/\ Qut <;; in
/\ out = in => in. u tI. A
/\ out < in => out 1:. A

=> out (in
/\ out = in::::} [t,oo) x in.u 1:.N
/\ out < in => [t,oo) x out ~ ~

127

so Q is a timed buffer.

We now show that

C(Q) => 3P. B(P) 11 P [;J Q

Define:

BO in?x -+ B(~)

B ~ out!y -+ B.

(,) 8

n
in?x -+ B 0 out!y -+ B.

(,) i~)

P = 80

Then P is the most non-deterministic buffer. Its failUIe set is given by

TIP] = {(s,X) lout" on 11 (out = in => Ifu, C. in.u rt X)

/\ out < in =0. out !l. X}

Con,ider Q E TCSP ,uch that C(Q). Let (s,N) E SIT[Q]. Then out" in.
Now let [t,oo) x A ~~.

Case out = in

Then "tu: c. in.u 't A.

Case out < in

Then out 11: A.

Hence in either case, (tstrip(5), A) E .:r[p]. Therefore P 1;/ Q, as required.
o

Timewise refinement preserves the property tbat a process is a. buffer.

Categorising buffers

Buffers may be classified according to tbeir satisfaction of the various aspects
of good behaviour detailed in chapter 5. In particular, buffers which are non
retracting and prompt, or have bounded stability, are especially well behaved. As
we shall see, the following kinds of buffer interact in useful ways:

• prompt buffers

128

• buffers wi th bounded stabiJity

• non-retracting buffers

• buffers that are non-retracting on in, or on out

• buffers which are impartial on in

• responsive buffers

Buffers are by definjtion live, so promptness is stronger than responsiveness for
them:

Theorem 7.2.3 A t-prompt buffer is t-responsifle

Proof By contradiction. Assume that we have a t-prompt buffer that is not
t-responsive. Then

3(" N) E FT[P], T E [0,00). [T, T + t) x E <;; N " , T [T, T + t] = ()

So (, r T + t, ~ rT + t) E FTlP]. But end(,) < T, '0 by promptn"" and the
fact that [T, T + t) x E <;; N rT + t we obtain

(,rT,Nr(T+t)U[T,oo)xE)EFT[P]

which contradicts the claim that P is a buffer. 0

However, not every t-responsive buffer is t-prompt. For example, oon~ider the
buffer B defined by

B = ",X.in?n:N_(in?y_out!n_out!y_X

o
WAIT n; out!n _ X

This process is t-responsive for any t > 126, but there is no t for which it is
i-prompt.

Hence the specification 'responsive buffer' is strictly weaker than the specifica
tion 'prompt buffer'.

The next two theorems are useful in establishing that processes are buffers;
Examples of their use will be presented in the next chapter.

Theorem 7.2.4 If P sat out ~J in, and P is in U out-responsive and Impartial
on in, then B is a responsive one·place buffer

Theorem 7.2.5 If P sat out ~J in, P is a deadloclc-free pipe and P is Impartial
on in, then P is 0. one-place buffer.

129

COpy - a well behaved buffer

The process COpy has the same definition as its untimed counterpart.

COpy == 1J X • in?:t out!l' X

The results of the preceding chapters yield the following aspects of good beha.viour
exhibited by COPY:

• COpy!;, COpy

• COpy sat out ~I in, since 6(COPY) sat out ~1 in in M T

• COpy!;, COpy

• COpy is 28-stable

• COPY is non-retracting

• COPY is i'~prompt (t' > 28)

• COPY is t'-responsive (t' > 28)

• COPY is limited on out

• COpy is a. buffer

7.3 Chaining

The specification bufJer(tr) of a buffer in the traces model Mr is tha.t out ~ in.
It is clear that any timed buffer P must satisfy sr(bufJe.r(ir)), and hence that if
P and Q are two buffers, then P ~ Q sat sr(buffer(ir)), since chaining preserves
buffer(tr) in MT. Hence for any two buffers P and Q we obtain tha.t P:» Q is a
pipe with out ~ in. However, P and Q may fail to synchronise on their mutua.!
channel. Consider

P (~x. ((in?z ~ STOP) i P,) <!,, WAlT 3; X)

P, (~X. ((out!z ~ STOP) i P) <!, WAlT 3; XI,-,
P is a cyclic process of cycle length 4 + 28. Wben empty, it is prepared to input
on the first time unit of its cycle. When nou-empty, it is prepared to output on
the tbird time unit of the cycle. Hence P is a buffer, but P:» P is not, since no
synchronisations will be possible on the internal channel.

130

Our interest lies in obtaining sufficient conditions for P-;p Q to be a buffer. This
will be the cas:e for those buffers where ~-refinement is preserved by chaining. In
such cases, given buffers P and Q, lemma 7.2.2 yields that we ca.n find bllffers B 1

a.nd Bt which are J;rrefined by P and Q respectively, and hence that B1 > Bt ~J

P:» Q. Buffer law Ll in [Hoa.85, p159] tells us tha.t B, :» Bt is a buffer in MF,
so P::> Q will be a buffer in TMFS ' We therefore seek to identiIy conditions on P
and Q such that chaining preserves timewise refinement for them.

Lemma 7.3.1 If P and Q are buffers, and P has finite capacity, then

S".l,e(P) {ill,c}lI{osl,c} Si..A Q)

is limited on c

Proof Follows immediately from the fact that there is some n (the capa.city of
P) such that for any trace s of SOlll,.(P) {ill"l//{,al,.} 5;.,,,(Q) we have c ~fI. in. 0

Lemma 7.3.2 If P and Q are buffers then S".I"(P){i.,<}Il{".,,,,} SiTl,e(Q) UI weakly
limited on c

Proof Follows from the fact that for any trace s of 5"1II,.(P) {iTl,e}lI{".I,.} Si..AQ)
we have C ~ in. 0

Lemma 7.3.3 If P and Q are prompt buffers, and P is non-retracting on output
or Q is non-retracting on Input, then P :;» Q is a buffer.

Proof There exists buffers B, and B~ such that B/ J;J P and Bt J;J Q. From
theorem 6.3.27 we have that

5"111,,,(B J) {i",c}lI l ".',e} S,.,.(B1) I.;J S".l,e(P) {i",c}lI{ ".I,e] SiTiA Q)

and it follows that S".J,c(P)(i.,e}ll{o.l,c]Si"A Q) is weakly Jimitedon c and prompt,
from lemma 7.3.2 and theorem 5.3.12 respectively, so we have from corolla.ry 6.3.33
and lemma 6.3.31 that B1 :» B1 J;J P::> Q. and hence that P:» Q is a buffer. 0

Corollary 7.3.4 If P and Q are prompt buffers, and P is non-retracting or Q is
non-retracting, then P :» Q is a prompt buffer

Corollary 7.3.5 If {Pdi:l is such that each P; is a buffer, non-retro.cting on
input, and prompt., then PI » Pt :» ... :» p .. is a buffer, non-retracting on input,
and prompt.

131

Corollary 7.3.6 If {P;} ;=J is such that each Pi is prompt and non-retracting on
o'utput, then PI » PlI » ... » P" i.s prompt and non-retracting on output.

Corollary 7.3.7 If {P.'li=1 i.s such that each Pi is prompt, then

P, > COPY>P, > COPY> ... >p.

is prompt

Lemma 7.3.8 IfQI and QlI are boundedlystable buffers with finite capacity, then
Q1 ~ QlI i.s a boundedly stable buffer with finite capacity.

Proof We have buffers B1 and B: such that B1 ~J Ql and B t I;:J QlI, so from
theorem 6.3.29 we have

Soa,,c(B1) {in,e} lI{o,t,e} Sin,c(BlI) ~J So'l,c(Ql) {in,c}lI{o.l,e} So.,e(QlI)

Also, from lemma 7.3.1 we have SO"I,c(Q1) {in,e}ll{ollt,e} Si",A Qt) is limited on c, so
B1 ~ BlI ~f Ql ~ QlI. It follows from theorem 5.6.8 that Q1 » QlI is boundedly
stable. 0

Lemma 7.3.9 If Ql and Qt are boundedly stable buffers, then Q1 »QlI i.s a stable
buffer.

Proof We have buffers B1 and BlI such that B1 !;J QI and BlI ~J QlI, so from
theorem 6.3.29 we have SOlll,c(B,) {;II,e JII{ollf,c} S... ,AB!) !;J So..l,c(QJ) {;n,eJII{ood,e}

Si",c(Qf)' Also. from lemma 7 .3.2 we have SO"f,C(Ql) (.n,c}ll{o'I,C]Sin,e(Qt) is weakly
limited on e, so B,» Bt ~J Ql »Q!. It follows from theorem 5.6.7 that QJ »QlI
is stable. 0

Theorem 7.3.10 If P, Q and P ~ Q are buffers, then

• if P is strongly non-retrading on input, then so is P» Q

• if Q is strongly non-retracting on output, then so is P» Q

• if P is in-responsive, then so is P» Q

• if P is prompt on in, then so i.s P;:}> Q

132

Theorem 7.3.11 If Q1 and Qf are buffers, and P, [;;;J Ql and p! !;J Qt, and
Q1 lS non-retracting on output or Q! is non-retracting on input, and both QI and
Qf are prompt, then P1 ~ Pt ~J Ql » Qt.

Proof Every buffer has out ~ in, and SQ it is weakly limited on out. Hence
(S{Ollt,c)(Q1) {.... c}ll{o1l1,C} S{ ... ,c}(Qt) is weakly limited on c. The result follows from
corollary 6.3.34. 0

Corollary 7.3.12 If P j ~J QI and Pt ~J Qt and QJ and Qt are prompt, then
P, ;$> COPY:> P, [;J Q, ;$> COPY:» Q,

In order to ensure that Ql and Q! communicate despite their possible inability to
synchronise, we in~rt COPY along their mutual channeL

7.4 Networks of processes

We generalise the chaining operator to obtain networks of arbitrary size, with the
internal events hidden. If we have a set of (process,interface) pairs {(Pi, Xi)},
where an interlace is a subset of E, then these may be thought of as forming a
network. That network is the parallel combination of all those processes with a.ll
channels internal to the network hidden. It is defined, as in [DatS5], as follows:

PAR({(Pi,Xi)}) (lip,)
x,

X U{X, n X, 11 <;; i < j <;; n}
NET({(Pi,X,)}) PAR({(P" X,)}) \ X

We insist that any channel name is shared by at most two processes, so the set of
interfaces must be triple disjoint:

i -# j -# k => Xi n X, n X. = 0

In order for the network to be a refinement of a corresponding untimed network,
where all the components are refinements, it will be sufficient to insist tha.t each
component is prompt, and also that each internal channel has one of its two users
non-retracting on it.

133

Theorem 7.4.1 If

• IPAR({(P;,x;Jl) i,weaklylimitedonU{X;nX, II';;; <j';;n}

e VieP,!;! Q•

• PAR({(Q" X;Jl) is ".eakly prompt

then PAR({(P;,X;Jl) I;;J PAR({(Q;,X;)]).

Proo! (PAR({(P" X;)}» ;,weaklylimitedon U(X;nX; 11';;; i <j';; n),so
it follows from corollary 6.2.13 and lemma 6.2.11, and the fact that all TCSP
operators preserve !;rrefinement, that PAR({(Q"X.)})) is weakly limited on
u{X, nXJ I 1 ~ i < j ~ n}. Tbe result [oHows immediately from lemma 6.3.32 0
Coroll;ny A.loS states that

Z n Y ~ 0 => (P \ Z) xlly Q = (P xuzlly Q) \ Z

The following consequences are useful:

Corollary 7.4.2

(PxllyQ)\Z (P\(X- Y)nZ)xlly Q)\(Z-(X- Y»

Corollary 7.4.3

IX n Y n Z) ~ 0 A Z ~ (X u Y)

=> (P x II y Q) \ Z = (P \ (Z n X» x II y (Q \ (Z n Y)

This corollary generalises to a result enabling us to modularise networks:

134

Corollary 7.4.4 If the set..; I, Y/ and Yf are defined by

m •

I = U(U {(X,nX,)}
,=1 J=m+J

m

Y, = IU U(Xi\(UX,ll
,=J 1'1".

Y, = lu U (Xi\(UX;ll
;=m+1 ;,/-;

then we have

NET({(Qi, X;) 11" i" n})
= NET({(Qi, X,) I 1 " i" m}) Y, II y, NET({(Qi, X;) I m + 1 " i" n})

Theorem 7.4.5 If {P;}i=p{Q,}:=/J and {X'}:=J are such that the sei {Xi}:=l
is triple disjoint and

1. Every Q. is prompt

2. For every i,j, we have either Q; or QJ is non-retracting on Xi n X,

3. for every i, p, ~J Q;

.. (PAR({(Pi, Xi)))) is w,akly limit,d on U{Xin X; 11" i<j"n)

then NET({(Pi, X,))) !;J NET({(Qi, Xi)))

Proof We first prove, by induction on r, that

PAR({(P.. Xi) 11" i" r}) !;J PAR({(Q.. X;) 11" i" r})

The base case (r = 2) follows immediately from theorem 6.3.27.

For the inductive step, assume

PAR({(Pi,Xi) 11" i" r}) !;J P.4R({(Qi,X;) 11" i" r})

Now define the set

I = {i I Qr+l is not non-retracting on Xi n Xr+J }

135

Then from our assumptions we have that for each i E [we have that Q. is
non-retracting on X, n X1" and so from theorem 5.1.13 we obtain tha.t

PAR({(Qi, X;) I I "i" rl)
is non-retracting on U.El(X j n X1'+1)' We also have that Q1'+l is non-retracting
on UeAX, n X1' + I). Further, from the promptness conditions we have that both
PAR({(Q" X.) I 1 ~ i ~ r}) and Q1'+l are prompt on Ul"'''1'(Xi n X..+ 1), and so
we are in a position to apply theorem 6.3.27, from which we conclude tha.t

PAR({(P" X,) 11" i" r+ IJ) C', PAR({(Q"Xi) 11" i" r+ IJ)

Thus we may conclude by induction that

PAR({(P"Xi) 11";,, nl) C', PAR({(Qi,Xi) 11" i" nl)

Now, defining

A = U{Xi n X; 11 " ; < j " nI
it follows from lemma 6.2.11 that PAR({(Qi, X;) I 1 ~ i ~ n}) is weakly limited
on A, and from a generalisation of lemma 5.3.12 and theorem 5.3.8 it is also
prompt, and hence weakly prompt, so from lemma 6.3.31 and lemma 6.3.32 it
follows directly that

NET({(Pi,X;J 11";,, nJ) C', NET({(Qi,Xi) 11" i" nl)

o

136

8 Exam.ples

In this chapter, we provide illustrations of the application of the specifica1ion and
verification met hods presented earlier. We first present three examples of specifi
cation: in each case, the desired behaviour of the system is captured by a combi
nation of behavioural specifications and general properties presented in chapter 5.
We then present candidate processes which we claim meet the specification in each
case. Our verifications consist of applications of both the proof system and some
laws concerning the specifications. In the verifications of recursively defined pro
cesses we use the version of the proof rule that does not require a base case to be
established.

As an exa.m.ple of the application of further rules from the proof system, we
present a more detailed verification, that a stop and wait protocol has a particular
liveness property. The same protocol is then shown to be a buffer by the method
of timewise refinement from a previously verified untimed protocol. Timewise
refinement is also used in the verification of an alternating bit protocol, and finally
a sliding window protocol, by relating them in each case to untimed versions
defined and verified in [PS88J.

8.1 A Time Server

A time server TIME provides times along a time channeL Our specification for it
is the conjunction of the following conditions:

1. TIME is responsive on time

2. TiME Bat AGGURATE(s,N). where

A CGURATE(s. N) '" ((t, time.n)) E s=>O';; t - n < 1

Our proposed TCSP implementation of a timeserver is given as follows:

TIME == p X • (p Y. time.O _ Y) i timesucc(X)
1-96

where the alphabet transformation timesucc is defined by

limesucc(time.n) == time.(n + 1)
timesucc(a) == a ifa:j:.time.nforalln

Now timesucc clearly preserves "initially (1 - 36, time)-responsive" , so by the
orem 5.2.17 it im.mediately follows that TIME is responsive on time (in fact it is
(1, time)-responsive).

137

We will use the proof system to show that TIME sat A CCURATE(s, N). Ab
breviating A(s,N.) for ACCURATE(s,N), it will be sufficient to show that the
defining function for TIME preserves A(s,N). Assuming X sat A(.s,N) we re

quire

(fJ Y. time.O - Y) i timesucc(X) sat A(s, N.)
1-35

It is immediate that.; ¢ q(~ Y • time.O _ V), so the special case rule for tireout
can be applied. From that rule we see that we must find S1 and St such that

~ Y. time.O _ Y sat SI

timesucc(WAIT 0; X) sat	 Sf

Sd' t (I - 30), Nt (I - 30)) /\ , 1 ((1 - 30),1 - 0) = () } => A(" N)
/\5,(,~(1-0),N~(1-0))

Now we bave by assumption that X sat A(s, N), so we have

WAIT 0; X sat A(, ~ 0, N~ 0) /\ b,gin(,);;' b

Hence it follows from the rule for alphahet transformation that

iimesucc(WAIT fJ ; X) sat	 A(timesucc- 1 (s ..:... 0), timesucc- t (N: -'- 0))

/\ begin(s);;J= fJ /\ q(s) ~ ran(timesucc)

which provides us with a candidate for Sf:

5.e(s,N) =.	 A(timesucc-J(s-,-o),timesucc-/(N...:...b))

/\ begin(s) ~ 0 /\ O'(s) t; ran(timesucc)

The relevant property of 11 Y • time.O _ Y is that the value it is prepared to
output on its time channel is always 0, so we define 5/ by

S, (" N) '" ((t, tim,.n)) in' => n = 0

which may be easily established by recursion induction. We only have to establish
the logical condition to complete the prooL It reduces to

5,(, r(1- 30),N t (1 - 3011/\' 1((1- 30), 1) = ()} "" A(, N)
AA(tlmesucc-t(s ..:...l),hmesucc- I (N: ..:..1))	 ,

This may be established hy a case analysis on a typical timed event of the form
(t, time.n) which appears in the trace s. We assume the left hand side of the
implication, We are hoping to estahlish that in each case we have 0 ~ t - n < 1,

138

Case t ~ 1- 36

Then
(I,tim,.njins t(1- 3/j)

a.nd we have
S,(s t(1-3/j),~ t(1- 3/j))

SO we obtain n = 0, and so 0 :s;; t - n < 1 as required.

Case t E (1 - 3/j,1)

This Ca..'ie cannot arise since it contradicts s T((1 - 3 6), 1) = ().
Case t~1

Then we have

A(time8t1cc- 1 (s..:.. 1), timesucc-1(N -'-1) /I. O"(s) ~ ran(timestlcc)

and also
((t - 1, tim,.(n - 1))) E timesucc- I (s ~ 1)

so we obtain 0 ~ (t - 1) - (n - 1) < 1, so 0 :s;; t -. n < 1 as required.

The required result follows in ail cases, so the proof is complete. 0

8,2 Time Division MUltiplexing

When many pro<:esses are sharing a. resource, a. method is required for allocating it.
In TCSP we may represent this situation by modelling each process as a. numbered
process i : Pi, the resource by a. process RES and the allocator as a process CON
which controls access of the resource by the processes. The construction is given
by

III i: p. XIlIUR (CON 111. RES)
'~I

where

R ~ u(RES)
•

X = Uu(i: P;)
;=1

1 = xnR

I represents the interface between the processes P, and the resource RES; it is
CON whi<:h restricts the occurrence of these events, and which thereby restricts the

139

access to RES of the various processes. CON will therefore embody the algorithm
uy which access to RES is granted to the processes.

One such algorithm is time division multiplexing, where the resource is allo
cated to each process in turn for a fixed time period. The switch occurs every t, and
there are n processes. The specification to be satisfied by a process implementing
such a 5cheduling algorithm is the conjunction of the following requirements:

1. 'rim. CON is responsive and impartial on m.E

2. CON sat ((t', i.e)) in s =} i = l t' ItJmod n

We define CON as follows:

CON = ~X.F(X)

F(X) " (~Y. y: O.E ~ Y) j suee.(X)

1_96

where

succIl(m.a) == ((m + 1)mod n).a

succIl(a) == a if a ¢ m.Efor every m

We have (succIl)1I. is the identity function on E, so by considering CON as the
fixed point of the function (F 0 WAIT 6)" we have that

P, = (~Y.y:O.E~ Y)

Pm+l " P, j suee.(WAlTo;Pm)
1-96

CON ~X.P._I j X
Il1-.J6

It may be established hy induction on m that

o(r ~ m < n => Pm is immediately ((m + 1)t - 36, r.E)-responsive

The base case of this induction is trivial, and the inductive step follows immediately
from theorem 5.2.16. Hence for every m between 0 and n - 1 we have that Pn- 1

is immediately (nt - 36,m.E)-responsive. Hence from theorem 5.2.17 we obtain
that CON is responsive on m.E for each m between 0 and n - 1.

Impartiality on m.E is immediate from an application of theorem 5.4.2 on the
syntax 1)£ CON.

We next prove that CON sat A(s,N), where

A(s, N) " ((t', i.e)) in s =} i ~ It'ltJmod n

140

Assuming X	 sat A(s,N) we must find Sz and St such that

p Y • y ; O..E - Y sat S1

suee,,(WAIT 6; X) sat St

S,(s r(t- 90),Nr(t-96))~ST(t-36,t-6)=()}
~ S,(s~(t -6),N~(t-6)) => A(s,~)

The relevant property that will suffice for SI is given by

S,(s,N) '" ((t',i.c))E9=>i=O

and we ma.y use the same approach as in example 8.1 to obtain an expression for
St, since we have that X sat A(s,N):

S,(s,N) '"	 A(SUCC~'(9~6),succ~'(N~6))

1\ begin(s) ~ 6 /\ o(s) f;; ran(suee.)

The third proof obligation above can easily be established by a case analysis on
the time tt of any given (t', i.e)) in 5, the cases being tt ~ t - 36, t l E (t -96, t),
and t' ~ t. 0

8.3 A Watchdog Timer

The continuing correct operation of a process may be monitored by a process such
as a watchdog timer. The timer is set up to expire within t time units l and when
functioning correctly, the monitored process should reset tbe timer by means of a
reset event. IT it fails to do 50 by time t, then the timer withdraws the option of
resetting, and raises the alarm within a further time T.

We fonnalise these requirements as follows:

1. WTIMsat (9 rnsd)) [t"t, +tJ= ()=> (s r",sel)l t, =()

2. WTIM sat #alann = 0 => reset ¢ u(N T [end(s) + 26, end(s) + t))

3. WTIM sat s = s' (t', alarm)) ~ t' ~ end(s') + t

4. WTIM sat #alann ~ 0 => [end(s), end(s) + 1 + T) x {alann} %N

5. WTIM is strongly non· retracting on alarm

141

These specify that the timer will not allow a reset event if it has not performed
one during the last t time units; that it must be prepared to engage in a reset
before the timer expires; that the alarm cannot go off before the timer expires;
that th.e alarm will always be prepared to go off within t + T of the last reset, i.e.
within T of the timer expiring; and that once tbe alarm is enabled, then it will
remain enabled until it occurs. For convenience, we abbreviate the behavioural
specifications in the first four obligations to W" W~, W" and W 4 respectively.

The desired behaviour of the watchdog timer following the alarm will depend
very much on the nature of the monitored process. It may be possible to restart
the process following a malfunction, in which case we would wish to restart the
timer as well. There will be some cases where the alarm triggers some emergency
action from which recovery is not possihle, sllch as ejecting the pilot when the
engine fails. In these cases, the timer can terminate after the alarm has been
raised.

Our proposed implementation of WTIM will terminate after raising the alarm.
We define

WTIM '" WAIT 21i; TIM
TIM == (pX. (reset _ X) lrJ6 alarm _ SKIP

We first prove our fifth proof obligation, that WTIM is strongly non-retracting
on alarm. From theorem 5.1.8 it is enough to prove that TIM is strongly non
retracting on alarm. Siuce "strongly non·retracting on alarm" is closed we need
only prove that it is preserved by

F(X) '" (reset ~ WAIT Ii; X) ',;' alann ~ SKIP

If X is strongly non-retracting on alarm then reset _ WAIT 0; X is also strongly
non-retracting on alarm and inits(reset _ WAIT 0; X) n {alarm} = 0. We also
have alarm _ SKIP is strongly non-retra.cting on alarm, so by theorem 5.1.8 we
conclude that (reset _ WAIT 0; X) 1-r:;6 alann _ SKIP is strongly non-retracting
on alarm, as required. 0

In order to prove that WAIT 20; TIM sat WI (s, N), the rule for delay yields
that it will he sufficient to prove that

TIM sat WJ

W. = W,(s,N)!I((streset)tt-21i=()=>sireset=())

We prove this by recursion indllction. Assllming X sat Ws(s, t{), we wish to prove
that

(reset _ WAIT 0; X) 1--r;6 alarm _ SKIP sat W 5 (s,N)

142

We must find S1 and S~ such that

reset -+ WAIT 6; X ,at 5,
alarm -+ SKIP ,at 5,

begin(s) <; t - 21i A 5,(s, N) }

:} W,(s, N)~egin(s);. t - Ii A 5,((),N r t - 21i)
A S.(s~(t-li),N~(t-li))

The property of alarm -+ SKIP contributing to the correctness of the construct
is that it is unable to perform reset. Hence we may put

5,("N) '" 'fresd=()

From the rules for prefixing a.nd delay, we derive a suitable S1 :

5, (s, N) ~ s ~ () V , = ((t', res.t))~"

A W,(, ~ (t' +28), N ~ (t' +21i))

Our third proof obligation

begin(,) <; t - 28 A 5, (" N) }

~egin(s) ;. t - 8 A 5, «), N f t _ 28) :} W,(" N)
/\ 5,(s ~ (t - 8), N~ (t - Ii))

is now stra.ightforward to esta.blish. 0

We now prove that WAIT 26; TIM L!lat W~(s, N), the rule for dela.y yields tha.t
it will be sufficient to prove that

TIM sat W 6

W, =	 s = 0 :} res.t Ii' a(N f (t - 28))

/\ (, '" () A #alarm ~ O):} r."t Ii' a(N TImd(s) +28, .nd(,) + I))

We prove this by recursion induction. Assuming X sat W6 (s, N), we wish to prove
that

(reset _ WAIT 6; X) 1t:6alarm -+ SKIP sat W6 (s, N)

The structure of this proof is identical to that of the previous proof: The property
of a/arm -+ SKIP that will do for S~ is that the first action it can do must be an
alarm action. Hence we set

5, '" s '" 0 :} #alarm > 0

143

We can see that if W6 is substituted for SI then the third proof obligation may
be discharged. So we need only prove that

reset --+ WAIT 6; X sat W6

Using the law for prefixing, we need only find S3 such that

WAITh;X sat 5,(" N)

, ~ 0 II reset ¢ ~(N) => W,(s, N)

s = (t', reset))s/ /\ reset ¢ u(N t t f
) /\ begin(s') ~ t' + 6 } => W,("N)

II S,(s' ~ (t' +h), (N ~ (t' +h)))

The second of these obligations is immediately dischargeable. To find S3, we have
that X sat Wds, N), so from the delay rule we know that

WAIT h; X sat W,(s ~ h, N ~ h) II be9in(');> h

so we may define

S,(s, N) '" W,(, ~ h, N ~ h) II be9in(s);> h

Hence we have discharged OUI first proof obligation. The third and final proof
obligation is simple to discharge, using elementary set arithmetic. 0

The proofs that WTIM sat W3 (s, N) and WTIM sat W..t(s, N) are identical
in structure to the previous two proofs.

To prove that WTIM sat W3 (s, N), we reduce the proof obligation, using the
rule fOJ delay, to

TIM sat W7

W7 = #s ~ [1 => (s = i {(t', alarm)) => t' ~ end(s') + t
II s = ((t', alarm)) => t';> t - 2h

In this case, the instantiations for S1 and Sf which are sufficient to establish that
the deflning equation for TIM preserves W7 are given by

S,("N) = W,("N)

S.(s,N) = 3t,t'., <:; ((t,alarm),(t',.!))

Under the assumption that X sat W7 , it is straightforward to establish that

reset --+ WAIT fJ; X sat Sl

alarm --+ SKIP sat Sf

b'9;n(s)<:; t-2hIlS,(s,N) }

:'9;n(,);> t-hIlS,((),N ,t-2h) => W,(s,N)
II S. (, ~ (t - h), N ~ (t - h))

144

and hence that TIM sat W7 •

We finally prove that WTIM sat W~(8,~). The proof obligation is first re
duced via the rule for delay to

TIM sat w,
W, , ~ 0 "" [end(s), end(s) + t + T - 2b) x {alann} '1 N

(s i' 0 A #alann ~ 0) "" [end(s), end(s) +' + T) x {alann} 'l N

Providing T> Ii, it is sufficient to instantiate SJ and S, as follows:

5,(" N) W,(."N)
5,(s, N) s ~ 0 "" alarm ¢ urN)

A s i' 0 "" #alarm > 0

We are then able, under the assumption that X sat W8 , to establish that

reset _ ~V.4IT 8 j X ,at 5,
alarm _ SKIP ,at 5,

begin(s) " t - 2b AS, (s,N) }

W,("N)~egin(s);;>I-bA 5,(O,N rl-eb) *
A5.(, ~ (I - b), N~ (I - b))

and hence that TIM sat W8 , yielding that WTIM sat W~.

8.4 Some Simple Protocols

A protocol is a distributed algorithm for facilitating tbe communication of mes
sages between processes. CSP is particularly suitable for the specification of pro
tocolsj the enha.ncements introduced in Timed CSP allow us to address the timing
considerations that are often necessary for the correctness of the protocol.

8.4.1 The Stop and Wait Protocol I

As a more detailed illustration of the application of the proof system for TMF, we
will verify that a stop-and-wait protocol, similar to the one described in [PS88],
meets a desirable requirement of communication protocols: that an output will
always be available within two time units of an input occurring.

The proof will be performed in two stages. In the first stage we WIll place
conditions upon the sender and receiver, and use the rules to verify that these

145

conditions are sufficient to ensure correctness of tb.e protocol. In the second stage,
we will propose a TCSP implementation (or each o(the sender and the receiver,
and the rules will be used to prove that these implementations meet the conditions
placed upon them in the first stage.

The protocol consists of two processes, P and Q, communicating across two
wires: WI and W,. Together, they control the flow of data between two external
processes. This may be represented pictorially as follows:

in I pi:: :::: ~ l:J oat

In general, protocols allow for unreliable channels, by duplicating data or re
quiring acknowledgements: such behaviour is easily modelled in Timed CSP. How
ever, our purpose is to illustrate the use of the inference rules; we need not concern
ourselves with these complications. Our protocol addresses only dataflow consid
erations, and we assume that the wires WI and WJ! are reliable: (or every input,
there is a corresponding output.

There are many requirements that we could place upon the protocol, but we
will consider just one: that if a message is input, then output is ready within two
time units. Formally, we wish our protocol PROT to meet the following timed
failures specification:

SPEC(" N) '" last(s) = in '* oat ¢ urN 1(,nd(,) + 2))

We give conditions on the components of the protocol, and verify that they are
sufficient to ensure that the protocol exhihits this behaviour.

The sending process P should meet the following specification: it should per
form the three events in, 1m, rc in strict rotation; after performing an event, it
should be prepared to perform the next within a certain time; initially, it should
be ready to receive an input. We capture these requirements in the timed failures
specification SPECp :

SPECp(s,N) '" tstrip(s) " (in,lm,re)' A

last(s) = in => 1m ¢ u(N1 (end(s) + 28)) A

lasl(s) = 1m => re ¢ urN 1('nd(s) + 20)) A

last(s) = re => in ¢ urN 1(end(s) + 28)) A

, ~ 0 => in ¢ urN)

146

After accepting and transmitting a message, the sending process must await confir
mation from the receiving process before accepting another. The receiving process
will send a confirmation signal once the previous message has been output. Ini
tially, the system is empty. Hence we wish the receiving process Q to satisfy
SPECQ :

SPECQ(',N) "= Istrip(s)';; (nn,out,lc)' A

l""l(s) = nn => oul fc u(N 1 (end(s) + 205)) A
l""l(s) = oul => Ie fc u(N 1 (end(s) + 205)) A
lasl(,) = Ie => nn fc u(N 1(end(') + 205)) A

, = 0 => nn fc u(N)

The wires W, and W.r have a propagation delay of 1 time unit, and will not
be required to tTansmit more than one message at a time. However, each must be
ready to accept another input almost immediately after output. They satisfy the
specifications SPEC""'j and SPECWR respectively, where

SPECw , (s, N) "= t,lrip(,)';; (1m, ~,)' A

10"(') = 1m => nn fc u(N 1(end(') + 1)) A

lasl(,) = nn => 1m fc u(N 1(end(') + 205)) A

s = 0 => 1m fc u(N)

SPECw,(s, N) "= 'slrip(s)';; (le, rc)' A

I",,'(s) = Ie => rc fc u(N 1 (end(') + 1)) A

I"",(s) = rc => le fc u(N 1(end(') + 205)) A

, = 0 => Ie fc u(N)

The protocol is a combination of the sending process, the receiving process, and
the wires. It can be defined by means of the NET operator described is section 7.4.
We write it here in full in order to be able to apply the inference rules. If we define
the sets

x == {in,lm,rc}
Y == {out, rm, Ie}

C "= (lc,rc)

M "= {Im,nn}

A "= MuC

then the protocol may be defined:

PROT "= ((P xlly Q) xuyllMue (W, Mile W,)) \ A

147

Having formalised Our requirements, we can now use the inference rules to
demonstrate that the protocol PROT will meet tbe specification SPEC. We wish
to establish that:

PROT ••t SPEC(s, N)

The definition of PROT involves the hiding operator at the outermost level, so we
must first apply the hiding rule. This reduces the proof requirement to:

(Pxll y Q)xuyIlMue(W, Mile W.) ••t	 ,,(W)<;;AA([O,ond(a,N))xA)<;;N
=> SPEC(s \ A, N - W)

This is a proof requirement on a parallel combination, so we apply the rule for the
parallel operator. We have then to find specifications 51 and Sf 8uch that:

P xlly Q ••t S,(s,N)

W, Mile W, ••t S,(s,N)

"(s,,N,) <;; (X U Y) A "(s, ,N,) <;; (M U C))
,,(N,) <;; 1; - (X U Y U M U C)

Sl(sJ,N 1) I\S£(5£,Nr) 1\ 5!J ES J XUyJlMuc5r =>SPEC(5!J \ A,N-N:')
N=~IUNrUNj'

,,(WI <;; A A ([0, end(ss, N)) x A) <;; N

Before we continue, we note that the specification SPEC is independent of the
hidden set of events A, for consider the definition:

SPEC ~ last(s) = in => Qut f- ,,(N1 (end(s) + 2))

FormalJr, we can show that

SPEC(5, N t (1; - A)) => SPEC(s, N)

This concurs with our intuition: the correctness of the protocol may be dependent
upon hidden interactions, but our formal description of the service provided (the
specifica.tion SPEC) should abstract away from internal detail.

Taking this in conjunction with the alphabet conditions upon the failure sets,
we mar reduce the third proof obligation to

,(s"N,) <;; (X U Y) A"(s,,N,) <;; (MU C)
e(Ns) <;; 1; - (X U Y)

) => SPEC(a, \ A, N,)
Sl(sJ,N1) 1\ Sr(sr,Nr) 1\ 5!J E 5/ xuyilMUC Sf

1[0, end(5S, N, U N, U N,)) x A) <;; N, UN,

148

To identify 5/ we apply the parallel rule once again. We are then required to find
54 anti 5s such that:

P sat 5, (s,~)

Q sat S'("~)

u(",~,)~Xl\u(s,,~,)~y }

u(~.) ~ E - (X U Y) => S,(s,,~, U ~5 U~,)

5~(S~1~4) /\ Ss(5s,N s) /\ 5~ E 5. xllr 5S

We already have specifications for the components P and Q. Substituting these
for SJ and 55. and using the alphabet conditions upon the traces and refusals, we
can reduce this proof obligation to:

SPECp(s r X, ~ r X) }

SPECQ(s t I', ~ t Y) => S, (s,~)

u(s) ~ (X u I')

This yields a suitable instantiation for 51: the antecedent of the above expression.
In a similar fashion, we arrive at the following instantiation for 5f!:

SPECw, (, i M, ~ t M) 1\

SPECw,(' t c, ~ t C) 1\

u(s) <; (M u C)

Our proof requirement can then be written as follows:

u(",~,) <; (X u Y) 1\ u("'~') <; (M u C)

u(~,) ~ E - (X u Y)

SPECp(" t X,~, t X) 1\ SPECQ(s, t Y,~, t Y)
 => SPEC(s, \ A,~,)
SPECw,(s, t M,~, t M) 1\ SPECw,(s, t C,~, t C)

([O,end(s,,~, u~,u~,)) xA) <;~, u~,

5, E 51 xuyllMuc Sf!

The alphabet conditions in 51 and 5f! are subsumed in the first two conditions
above.

We have reduced the proof obligation to a predicate on traces and refusal sets:
the verification may be completed using simple properties of sets and sequences:
assuming the conjunets in the ahove antecedeut, we are trying to establish that

I=t(s, \ A) ~ in => out ¢ u(~, 1(end(s, \ A) + 2))

149

From SPECp , SPECq , SPECW1 , SPECwl.' and the properties of sequences, we
can deduce that

SJ ~ (in, 1m, rm, Qut, Ie, re)*

We then proceed by case analysi5 on the identity of the last event in 33, given that
last(sJ \ A) == in, there are three possibilities. Case: last(s3) = in

By SPECp , 1m f- ~((N, t X) 1 (end(s, t X) + 26))

In tills case end(s,) = end(s, t X)

a.nd we know that 1m f- Y

Hence 1m f- ~(N, 1(end(s,) + 26))

Similarly, as S3 E SI xuYIIMuC Sl.,

SPECwj implies that 1m f- ~(N,1 (end(s,) + 26))

Hence 1m f-~((N, UN,UNs)1 (end(ss) +26))

Howe,'er, ([0, end(s, N, U N, U N,)) x A) <;; (N, U N, U Ns)
and 1m EA

So end(N J U N1! U N3) .:::;;; end(S3) + fJli
But 8 «:. 1, so (N, UN,UN,)1 (end(ss) + 2)) = {}
We conclude that out f- ~((N, UN, U Ns) 1end(ss \ A + 2))

Case: lasi(S3) = 1m

We establish that end(S3) ~ end(sJ \ A) +26: that the 1m event occurred within

time M of the last input.

Assume otherwise: end(s,) > end(s, \ A) + 26

If we let t be the time (end(s, \ A) + end(ss) + 26)/2

Then we know that last(s, r t) = in

By the previous case 1m f- u(((N, UN, UN,) r I) 1 (end(ss t I) + 26))

From our assumptions ([0, end(s" N, U N, U Ns)) x A) <;; N, uN,

And end(s, t I) +26 = end(s, \ A) + 26 < 1

Hence ImEu(((N, UN,UNs) tt)l (end(ss rl)+26))

Forcing a contradiction.

We can show, with a similar argument to the first case, in which the event rm
replaces 1m, that end(N 1 U NI. U N3) .:::;;; end(S3) + 1. From a.bove, end(S3) :::;;.
end(~J \ A) + 26: the result follows.

150

Case: Ia5t(5j) = rm

By a similar argument, we can establish that the event nn must occur no later
than 1 + 26 after the last input. We then appeal to the specification of Q, and
the result follows immediately. 0

The treatment of hiding in Timed CSP is central to the construction of the
above proof; the hidden events 1m and rm must occur as soon as possible. Our
method of proof allowed us to include these events in our reasoning, by eliminating
the hiding operator from our proof obligation.

Only at the final stage of the proof did we identify the protocol requirement
SPEC. To establish that another property holds of the above protocol, it would
not be necessary to perform the whole proof again. We have characterised the
behaviour of the protocol in terms of the known properties of its components. To
prove that the protocol satisfies an arbitrary specification S, we have only to show
that the following predicate is true:

u(s" N,) <; (X U Y) i\ u(s" N,) <; (M u C)

u(N,) <; 1: - (X u Y)

SPECp(s, r X,N, rX) i\ SPECQ(s, r Y,N, r Y)

=> S(s, \ A,N- W)
SPECw,(s, rM,N, rM) i\ SPECw,(s, rC,N, t C)

N = N1 U N£ U Nj /\ 5j E 51 xuyllMuc s£

u(W) <; A /\ ([0, ond(s" N)) x A) <; N

For a particular specification 5, we will be able to discard most of the conditions
in the antecedent: the residual proof requirement is often easy to discharge.

We now move on to the second stage in our verification of the protocol. We
propose TCSP implementations of tbe components, and use the inference rules to
demonstrate that they meet the appropriate specifications.

The protocol consists of two components, transmitter P and receiver Q, com
municating across two wires WI and W£. The transmitter process should accept
an input on channel in, and he prepared to transmit it along WI, via channel 1m.
After this transmission has occurred, P waits for a confirmation event from wire
w.", on channel re, before repeating this behaviour. Our intuition suggests the
following as an implementation:

P =. JjX. in ---t 1m ---t rc ---t X

We have yet to establish that this implements our requirements: that it meets the
formal specification 5PECp .

A similar set of conditions applies to the recelvmg process Q. It should be
prepared to receive a signal from wire WI, on channel rm, before offering output

151

on channel out. It should then send a confirmation signal along wire We, on
channel Ie, before returning to its initial state. Our proposed solution:

Q == IJ Y • rm _ out - Il - Y

Again, we will have to verify that this is an implementation of the specification
SPECQ •

We wish to show that the transmitting process P meets the specification placed
upon it:

pX. in _lm _ rl_ X sat SPECp(s,N)

This is arecursive process; the second recursion rule requires us to find a specifi
cation 5(.'1, N) such that:

X sat	 S(s, N) => in ~ 1m ~ rc ~ (WAIT 6; X) sat S(., N)

S(s, N) => SPECp(" N)

We will show that the specification SPECp is strong enough to be preserved by
the recursion. We have to show that:

X sat SPECp(', N) => in ~ 1m ~ rc ~ (WAIT 6; X) sat SPECp(s, N)

Assume that X sat SPECp(s,N). We wish to establish that:

in ~ 1m ~ rc ~ (WAIT 6; X) sat SPECp(', N)

Applying the prefix rule three times transforms this proof obligation to the follow
ing requirement: we must find a specification U(s, N) such that:

WAIT!;X sat U(s,N)

, = 0 A in ¢ ~(N)

V

, = «(t, in))~s' A in ¢ ~(N r I,) A

s' " (t, + 6) = 0 A 1m ¢ ~(N ~ (I, + 6))

V

5'" (I, +6) = «(I" Im))~s" A 1m ¢ u(N ~ (I, +6) rIe) A => SPECp(" N)

." ~ (I, + 6) = 0 A rc ¢ ~(N ~ (I, + I, + 26))
V

s/l..:.. (t% + 6) = ((t j , rc))slll 1\

rc ¢ ~(N ~ (I, + t, +26) r Is) A
U(.'" ~ (I, + I, + Is + 36), N~ (I, + t, + Is + 36))

152

With a suitable choice of 7[, 7t, 73, this can be transfonned to:

WAIT8;X sat; U(s,N)

s ~ () A in f- urN)

V

s ~ «T" on)) AEf- a(N rT,) A 1m f- a(N 1T, + 8)

V

, ~ « T, , in), (T" 1m)) A in f- a(N rT,)

Almf-a(NT[T,+8,T.))
A Te f- a(N 1T. + 8) => SPECp(s, N)

V

S = «T" m), (T" 1m), (T" Te))~u	 A in f- a(N rT,)
A 1m f- a(N T[r, + 8, T.)

1\ TC ¢ u(k{ T{7r + 6,73))
A U(u ~ (T,+o),N ~ (T,+ 8))

Applying the second fonn of tbe delay rule, we can instantiate U as follows:

U(s, N) " SPECp(s ~ 0, N ~ 0) A begin(s) " 8

Having discharged the first proof obligation, the proof can be completed with a
simple case analysis on trace s, This becomes clear when we recall the form of
specification SPECp :

SPEC, =0 tstrip(s) " (in, 1m, Te)· A

lasl(s) ~ in ",,1m f- a(N 1(end(s) + 28)) A

lasl(s) = 1m => Te f- a(N 1(end(s) + 20)) A

last(s) = TC => in f- a(N 1 (end(s) + 28)) A

s ~ () "" in f- a(N)

The only non-trivial case corresponds to s = ((71, in), (7e, 1m), (73, rc)) u. Here
we require two arguments, one for each of the cases: u = (), u =I- (). Expanding
the specification SPECp makes the solution obvious.

This completes the verification of our transmitter process P. It will not be nec
essary to perform a similar proof for the receiver Q; we can exploit tbe symmetry
present in our descriptions.

The operator fin TCSP allows us to relabel the events performed by a process.
In the case of injective functions, this allows us to re-use a process description.
By renaming events, we can transform processes while retaining their structure.
The relationships between different events are maintained: given that a particular

153

result holds for all the behaviours of a process, we can infer a corresponding result
about the behaviours of the Image of that process under such a transformation:

P sal S,(s,N)

S,(s,N) ~ S(f(s),f(N))

[(P) sat S(s,N)

For example, we can use the result of the previous section to establish that
Q sat SPECQ, by defining injective function f such that:

fUn)
f(lm)

f(re)

'"
'"

'"

rm

out

Ie

We then observe that:

SPECp(s,N) SPECQ(J(sj,J(N))

Q f(P)

The inference rule allows us to condude that:

Q sat SPECQ(s,N)

Which completes our verification of the protocoL

8.4.2 The Stop and Wait Protocol II

A shorter verification of the stop and wait protocol can be achieved by the ap
plication of the general specifications introduced in chapter 5 used in conjunction
with timewise refinement. We have the following definitions:

S - IlX. (in?z --+lm!z --+ re?lI--t X)

As - inUlmUre

R - IlX. (rm?z --+ Dut!Z --+lc!z --+ X)

AR - rmUoutUIe

We also have specifications on the media M1 and M~: M 1 is prompt and respolllsive
on 1m and on rm, and M1 sat rm ~I 1m; and M~ is prompt and respoDlsive on
Ie and on re, and M~ sat re ~I Ie. We further define AMI == {lm,rm}, and
A Me == {Ie,re}. Then setting 1== {S,R,Mt,Mf.} we may define SAWP ~ follows:

SAWP '" NET({(P,Apj I P Ell)

154

Neither of the process definitions for Sand R involve either hiding or indexed
non-deterministic choice, so by corollary 6.3.24 we have that 8(S) ~J S, and
8(R) ~J R. It follows from the specifications of MJ and M~ that COPY 1;1 M 1 ,

COpy ~j M~. COPY ~J MJ, and COPY ~ M~. Further, the set {Ai} is triple
disjoint, every PEl is prompt, S is non-retracting on both 1m and re, and R is
non-retracting on both rm and Ie.

We define Rs " 6(5), RR" 6(R), RM, " COPY [1m, rm!;n, outland R", '"
cOPY[lc, rc!;n, ,uti. It is proved in [PS881 that any trace of PAR({(R" A,))) has

rc::S;; Ie ~1 oui ".1 rol ". 1m ".1 in and re ~1 in

so the channels in the trace appear in the cyclic sequence (in,lm, rol, oui,ic, re)".
Hence PAR({(Ri,Ai)}) is limited on 1m U rol U le U re, which is the same as
U{A,nAj I ;,j EI,;#j}.

Thus we apply theorem 7.4.5 to obtain

NET({(R"A,))) [;;1 NET({(P,A p)))

It was proved in [PS88] that

6(NET({(P,Ap)))) sat out <;, ;n

so from theorem 6.2.12 it follows that

NET({(P,Ap))) .at out <;, in

Standard algebraic techniques may be used to establisb tbat 6(NET({(R;, A,)}))
is deadlock-free, so NET({(P, Ap)}) is dea.dlock-free; it is also a pipe, impi1l'tial on
in (immediate from the syntax), and satisfies out ::S;;J in, and so from theorem 7.2.5
we conclude tha.t it is a one-place buffer I thus verifying the protocol.

8.4.3 The Alternating Bit Protocol

An untimed alternating bit protocol is presented and verified in [PS88]. In the ab
sence of timing information, the timeout required by the sender of the alternating
bit protocol is modelled as a timeout event, '0', which may non-deterministically
occur. Using Timed esp, we may refine the original description to model the
timeout explicitly while retaining the safety property proved of the original de
scription.

155

The untimed description is as follows:

5 " 5,

Sh == in?x_Im!x.b_5"",b wherebE{O,J)

Sr.6 ==	 ((re?a - (if a = b then 51_~ else 5~.b))

DO ~ Im!•. b ~ 5.,) \ {OJ

H " H,
Rb == rm?x.e - (if e =F b then out!x - Ic!e - He

else Ic!b - R6) where b E {O,l}

The conditions assumed to hold of the wires Ml and M2 are the following:

MI sat 1m:::;! rm

M2 sat Ie:::;! re

where 51 ~ St means that Sf is a (not necessarily contiguous) subsequence of
8~. T~ requirements allow the media M I and M2 to drop messages, but not
to duplicate or reorder them. The associated alphabets of the processes are the
following:

As =.	 {in, 1m, re}

A. " {out,nn,le)

AM, - {1m, Nn)

AM, " {Ie,re)

Then setting J = {5, R, MJ , Mt } we may define ABP as follows:

ABP " NET({(P,A p) I P E I))

The re6ult proved in MT is that ABP sat out "1 in.

Pictorially, the ABP is entirely similar to the 5AWP:

in I 5 I :: :::: ~ I R I Qut

We refine the sender by making the timeout explicit. Our timed sender T5 will

156

timeout at time t. The timed receiver will have the same description as the original
receiver.

TS TSo

TS. in?:t --+ lm!x.b --+ TS~.6 where b E {O,l}

TS~.6 «rc1a ~ (if a = b then TS,_. else TS•.•))

~ lm!:t.b --+ TSd)

TR TR,

TR. - rm?x.~ --+ (if ~ =I- b then out!x --+ Ide --+ R e

elselc!b ~ TR.) where b E {O,l}

Recalling from [HoaS5] the law (for the untimed models)

((a~ P)Db~ Q)\b ~ ((a~ (P\b))DQ\b)nQ\b

we obtain that e(TS) = S. We also have that 8(TR) = R. Hence we obtain
from corollary 6.2.8 that S ~I TS and R ~l TR. Then for timed media TM! and
TM2 we may define the timed alternating bit protocol as follows:

TABP '" NET({(P,Ap) IP E I))

where I == {TS, TR, TM!, TM2} , and the Ap are the same sets ~ for thecorre
sponding untimed processes.

Now if ,reX sat Im:5! rm)(TMl) and ,reX sat 1e:5! rr)(TM2), then

3M! ~I TM! • M! sat 1m SI rm 1\ 3M2 ~l TM2. M2 sat k SI rc

Hence there is an ABP such that ABP 1;", TABP and ABP sat out :::;;;, in, so we
obtain that sr(X sat out ~J in)(TABP), which is written

TABP sat out ~1 in

Hence we have a verified alternating bit protocol over wires TM! and 1M2 for
which the above conditions hold. Written another way, the requirements of the
wires are

TMI sat 1m ~ rm

TM2 sat Ie ~ rc

and we have a verification that the alternating bit protocol satisfies the safety
property that the output stream is a prefix of the input stream, of length at least
one less that the length of the input stream.

15i

In order to obtain that the protocol is live, in the sense that any input will
eventually be offered as output, we require more stringent conditions on the system.
We first require that the media be live on their iuput channels: that TMI is
responsive on 1m, and TM2 is respousive on Ie. We will also require a progress
property of the media, that they will not lose messages for ever. Since we are
presently unable adequately to model fairness withiu the Timed CSP framework,
we place the requirement on TMI and TM2 that they cannot input more than N
messages without offering one for output. These can be captured as behavioural
specifications:

TMI sat (s = u~w A w Inn = 0 A #w rim;' N)

'"' [b,gin(w), cnd(w) x nn 'b ~

TM2 sat (5= u~wAw "'c= 0 A#w ric;' N)

'"' [b,gin(w), cnd(w)) x "c 'b ~

A further modification to the system is necessary. Since TS is not nOD
retrading on rc, and since we do not insist that TM2 is non-retracting on n,
a generalisation of corollary 7.3.12 indicates that we will need to insert COPY
along re in order to ensure eventual synchronisation. We will ca.ll the modified
system TABP2.

Liveness of the ABP is not guaranteed in MF, since the timeout event may al
ways occur (non~deterministically), and no message acknowledgement received as
a result. Liveness here requires a fairness assumption, that eventually an acknowl
edgement will be received by the sender. In Timed esp, our explicit modelling of
the timeout removes the need for this assumption. However, the timewise refine
ment a.pproach to prove liveness is not open to us, since there is no corresponding
un timed result. We therefore use the proof system to establish mechanically and
laboriously that TABP2 is respousive.

The alternating bit protocol TABP2 may be described pictorially as follows:

1m

in TS TR out

We make the following new definitions, and redefine AM!

C '" COPY[mc, "c/in, out]

158

Ac == {mc,Tc}

AM! == {/c, mc}

We then define

TABPi! ;: NET({(P,Ap)IPE{S,R,MJ,M2,C)))

TABPf is clea.rly impartial on in, and since it is responsive on in U out. and we
have established that it satisfies out ~I 1-n, it follows from theorem 7.2.4 that
it is a buffer, verifying the protocol. It follows as a refinement of COPY, state
that COPY ~J TABP2. It also follows from theorem 5.1.13 that TABP2 IS

non-retracting on both in and out_

8.4.4 The Sliding Window Protocol

In [PS88] it is shown how a sliding window protocol may be considered as w alter
nating bit protocols working in parallel, controlled by a message distributer a.nd a
message collator. Diagrammatically, the structure of the sliding window protocol
is as follows:

~--~

~

1.send

DIS

n.send

O.pass
0: TABPi!

J : TABPi!
1. pass

:

n: TABP2
n.pass

out
COL

-

159

This is defined in the process algebra as follows:

Q, := i: (TABP2[in, out/i.send, i.pass])

A Q, := i.send U i.pass

DIS - D,

D, - in?z _ h.send!z -t D" ffiwl

"
A.DIS - in U U i.send

;",,0

COL - COL,

C, - J.pass?z _ out!z -t C'ffi", I

"

ACOL - out U U i.pass

;=0

SWP £ NET{(Q,AQ)!QE{Q,I0';;';n}U{COL,DlSlJ

We have from the previous section tbat COPY r;:J TABP2, and that TABP2 is
non-retracting on both in and out, so

i: (COPY[in, out/ send, pass]) r;:J i: (TABP2[in, out/send, pass])

for any i, and that i : (TABP2[in, out/seud,pass]) is non-retracting on both
i.send and i.receive. It follows from corollary 6.3.24 that

8(COL) C::J COL

8(DIS) C::J DIS

and	 we also have from theorem 5.3.6 that COL and DIS are both prompt. Defining

Pi £ ;, (COPY[;n,out/"nd,pass])

Ap, := AQ,

we define an untimed sliding window protocol SWP by

SWP £ NET{(P,A p)IPE{Pi IO';;';n}U{8(COL),0(DIS)}}

The processes DIS and COL between them participate in every action of the
parallel combination, and they both alternate between performing an internal event
a.nd an external one. Hence, no more than two internal events can occur between

160

external events. Therefore

PAR({(P,A p) I P E {P, I 0";,, nJ)U{(6(COL),u(COL)),(6(DIS),u(DIS))})

is limited on Ui=a(i.send U i.pass). We therefore obtain that

SWP <;/ TSWP

It is proved in [PS88) tbat SWP sat Qut (wH in, and it is straightforward to
prove that SWP is a buffer in the failures model. Hence we obtain that TSWP is
a.	 buffer. and that the protocol is correct.

The full structure of the sliding window protocol is as follows:

1 JIm ~ /.~ f
J.send.l 1:TS	 l:TR Il.1Jass

• _~ r-----l • _~ r-----l • ,~

;n outCOLDIS

n.lm
n:TMJ

n.~

n.send I n:TS I '----------' In:TR I n.1Ja.'J.'J

I u'm ~ u.~ I
O.send I O:TS O:TR I O.1JIUS

n ~~ r-----III _~ r-----l n 'n

This is obtained hy instantiating each of the i : TABP2 with its component
processes, frorn the diagram on page 158.

161

9 Conclusions, Comparisons, and Future Work

9.1 Conclusions

In this [!lesis, we have presented a variety of methods applicable to the verifica.
tion of real-time concurrent systems. \Ve have exhibited a sound and complete
proof system, defined a nnmber of high-level specifications and produced laws con
cerning their interaction, and produced a method for translating specifications
between the different models of the hierarchy. We have shown how operators for
introducing time-critical behaviour, STIch as timeout and interrupt, and communi
cation constructs such as channels, input and output, and chaining, can be added
to the syntax of TCSP. Finally, we have demonstrated the application of these
verification techniques to processes involving these constructs.

The restriction of our class of specifications to behavioural specifications has
been crucial for both the development of the proof system and the application
of timewise refinement to specifications. Behavioura.l specifications in the vari·
ous models are sufficient to capture safety, tiveness, and real-time specifications,
and to distinguish deadlock, divergence, and possibility of divergence. Further,
many useful results can be obtained for the class of behavioural specifications:
for example, any behavioura.l specification is continuous. However, the definition
of non-retraction serves as a reminder that not all desirable specifications can be
written as behavioural specifications.

In do specification-oriented semantics [OHS3], each process is identified with
its strongest (behavioural) specification. Snch a semantics will be compositional
when the denotational semantics are direcllycompositional, in the sense described
in section 4.5. As we have seen, this is the case for TMF but not for TMFS.
We employ a congruent semantic domain TMF[which yields a complete proof
system and a corresponding mapping from processes to strongest specifications.
Tbis may also be considered as a complete proof system for TMFS for a restricted
class of specifications: those specifications on TMFS corresponding to behavioural
specifications on TMn. Thus a compositional specification-oriented semantics may
be given for TCSP into specifications on TMFS, but the domain of specifications
will be a subset of the behavioura.l specifications on TMFS.

The proof system for TMF has already been used in a case study [JacS9]. In
this stndy, aircraft engine control software was specified using behavioural specifi
cations, and the proof rules were used to verify a proposed TCSP implementation
with respect to the requirements specified; it was demonstrated that the rules
are wable in addition to being sound and complete. It is also apparent that the
rules can be applied in a mechanical fashion, indicating that a mechanical proof

162

assistant would be both possible and useful.

The genera.l specifications presented in chapter ,) capture a few aspects of good
behaviour that we would wish to establish of systems. In particular, non~retraction,

responsiveness, and promptness are useful properties for establishing correctness.
We have seen that each can be shown to hold of a process by an examination
of its syntax. This enables us to build processes which are guaranteed to meet
specifications of this sort, by employing only those process coustructors which
preserve the desired property.

The chapter on timewise refinement showed how different models may be used
in the verification of TCSP systems, by enabling the translation of specifications
between models. The simpler model may then be used to provide a verification for
an untimed version of the system., which serves as a verification of the timed system.
This approach allows us to use the simplest model that permits a verification
of the property uuder consideration. Our verification that the sliding window
protocol described in chapter 8 met tbe specification out ~ in was much easier
in MT than it would have been in TMFS , where any proof would have involved
the manipulation of (trace, stability, refU!>al) triples. This approach also provides
the basis for a timewise refinement approach to development, since a real-time
specification may be broken down into the conjunction of time-dependellt and time
independent specifications. A CSP process may then be developed and verified
in MT (or MF) relative to the translation of the time-independent component of
the original specification. Any timewise refinement of that process will then meet
the time-independent specification, so our development task reduces to finding a
timewise refinement of the untimed process which also meets the time-dependent
constraints,

We have seen how process constructors can be built from the syntax of standard
TCSP; one advantage of this approach is that the constructors are automatically
continuous, fulfilling an essential proof obligation. Explicit time-critical constructs
such as timeout and interrupt have been defined, and algebraic laws concerning
their interaction with other process constructors have been formulated. Commu
nication constructs have also been defined: channels, input, output, chailling, and
the more general network construct, were defined in a fashion analogous to that
of untimed asp, although the timed behaviour of the hiding operator ensures
that chaining operator does not obey the same laws as its untimed counterpart.
The concept of a huffer was characterised, and it was seen that the ~pecifica
tion 'timed buffer' is a timewise refinement of the standard untimed specification
of a buffer. We have also seen that to guarantee communication, we require of
one of the two communicating processes that it be non-retracting on their mu
tual channel. Non-retraction and promptness were seen to be useful in supporting
timewise refinement of networks. Chapter 8 illustrated how the specification and

163

proof techniques presented in this thesis could be applied, with reference to the
communication constructs and protocols as well as the time critical operators,
and demonstrated that TCSP is becoming a powerful tool for specification and
verification of real-time systems.

9.2 Comparisons

Approaches to the specification and verification of real-time systems fall into three
broad groups. One method is to develop a general specification language whicb
enables reasoning about system requirements, and which is applicable to many
process description formalisms via corresponding verification methods. Another
approach is that of a process algebra with an associated operational semantics or
set of axioms for establishing equivalence between processes. Specifications may
be predicates on a graph generated hy the operational semantics (as in the case
of Petri nets). More often. a specification is a process, and a verification of a
candidate process is a demonstration that it exhibits the same behaviour as the
specifying process: that there is a bisimulalion between them. There are different
kinds of bisimilarity relations, and the particular relation used in a verification
will reftoct the aspects of behaviour we wish to verify. The third approach, taken
in this Ihesis, is to provide a process description language with a denotational
semantics. A specification will then be a predicate on tbe semantic domain, so the
nature of the specification language will be dependent on the semantics given.

There is a degree of overlap between these approaches. A general specification
languagf may be applicable to process algebras with an operational semantics,
and also to programming languages with denotational semantics. In many cases,
a process algebra may be provided with both a denotational and an operational
semantics, allowing results from the second and third approaches to be combined.

Temporal Logic

Standard temporal logic is particularly useful as a specification language, since
it can succinctly express botb safety and liveness properties; there uow exists a
large amount of work in the literature, which is beyond the scope of this section
- a survey of work up to 1986 may be found in [Pnu86]. Temporal logic has been
successfully applied to the verification of systems (see e.g. [l-.fP82], [H083J, [S187J.
among many others), and compositional proof techniques have been developed (see
e.g. [BKP84] for discrete time, [BKP85] for continuous time). We will contrast
temporal logic specifications with our specifications on TCSP processes, which are
predica.tes on TMFs or TMF.

164

Temporal logics consist of propositional atoJrul which are assigned truth val
ues at every instant, together with temporal operators such as 'eventually' (0),
'henceforth (0). 'unless' (U) and 'since' (5). The semantics rests on a time do
main, consisting of all instants together with an ordering on themj it is usually
taken to be a total order, although other models (such as branching time, and
more general partial orders) are also possible. The meaning of a temporal logic
statement thus depends on the time domain under consideration.

The propositional atoms will often be taken to be predicates on the sh.te of a
system. For example, if r bolds of a state in which the system is ready to perform
an a action, tben tbe assertion tbat Or holds at a certain time of a system means
that it will eventually he the case that the system will be ready to perform a.
Access to state information allows the easy fonnulation of operational concepts
that were not so natural to formulate as predicates on observable beha.viours.
Non-retraction may be succinctly captured in this way: if s holds exactly when a
occurs, and r holds exactly when a is ready to occur, then

O(r=> rUs) holds of P

specifies that once P is ready to perform a, then it will remain ready at least until
it is actually performed. This form of non-retraction is termed 'persistence' in
(Pnu86J. The definition contrasts with that of non~retraction on TCSP processes
in terms of observahle behaviours, because the denotational semantics of TC5P
processes does not characterise state information. For example, the two processes

(a ~ STOP) n 1.

and
(a ~ STOP(n((a ~ STOP) ~ 1.) n 1.

have the same semantics, but they have different possible states. Using the tem
poral logic definition we would conclude that tbe first process is persistent on a,
whereas the second is not. Hence the access to state information allows some
distinctions to be made that the denotational semantics of TCSP does net mAke.

Temporal logic may also be used as an assertion language on computational
mcdels which distinguisb systems only by their observable events, by taking the
propositional atoms of the temporal logic to he predicates on (finite) past histories.
This allows a direct translation between behavioural specifications and temporal
logic specifications. A behavioural specification of the form X sat 5(5) translates
to a temporal logic specification of the fonn 05(5). This says that if B is the
record of what P has performed up to a time, then 5 must hold of 5.

The work on temporal logic discussed so far is concerned only with qualitative
temporal reasoning. However, the analysis of time-dependent and time-critical

165

systems often requires knowledge about the actual times at which events occur or
become available. To say that a process is (t, a)-responsive is to say that it must
make available event a within time t. This is expressible within temporal logic
using the next operator (0), since it is equivalent to saying

VO'(a)
r=O

where the time between successive instants is one time uuit. However, this is only
possible when time is discrete, since a dense time domain will not support a next
operator; at most we can insist tbat a will eventually be available.

Koymans argues this case in [Koy89], and proposes an extension to the lau
guage of temporal logic to include temporal operators which have explicit times
associated with them. To do this, he requires that there be a metric fuuction on
the time domain which yields the temporal distance between two instants. It is
then possible to define the required operators. For example, the operator F,,(¢)
asserts of its argument that there is a point exactly 0 in the future at which ¢ will
be true. F<,,(¢) asserts that ¢ will hold within 0. Its dual, G<,,(¢» asserts that ¢
will hold at all instants within 0.

The atomic propositions may again access state information, allowing the for
mulation of more operatioual style definitions. Respousiveness of P may be defined
as follows:

C(F«(r)) holda of P

where r holds of a state iu which a is available. It says that a will be available
within time t of any instant. Promptness may also be expressed by this speci
fi.cation language: that if a is not available by time t, then it will not become
available before the next observable event. Taking s to be true precisely when an
event other than a occurs, we may specify the promptness of P as follows:

O(G<t""r :::} (...,r)Us holds of P

The metric temporal logic language presented by Koymans provides the quan
titative element we require for the analysis by temporal logic of systems whose
corredness rests on time-critical considerations. This specification language is
still fairly recent, and there are not compositional rules as yet. However, it is
claimed in [Koy89] that the development of a hierarchical method would not seem
to be significantly more difficult than that developed for standard temporal logic.

Temporal logic is not associated with any particular programming notation.
This yields the advantage that the specification and proof techniques apply to a
wide range of system descriptions. The corresponding disadvantage is that for any

166

particular description of a program we must first show that it meets the temporal
logic specification claimed of it. There are methods for establishing this wheu the
specification language is staudard temporal logic (see e.g. [BKP85], [Pnu86]), but
as yet there are few such methods for metric temporal logic ([HW891 is a notable
exception, discussed later in this chapter). The descriptions of time critical systems
will in general be complex, and it will not be immediately apparent w.hether or
not they meet particular specifications. Methods and tools must therefore be
developed which allow us to relate specifications to process description languages
(such as TCSP).

Operational Semantics

A different approach to system design and verification is to provide an opera
tional semantics for the system under consideration. This may be done either by
modelling the states of the system as a (nsually finite) graph and specifying the
circumstances under which transitions may occur from one node (representing a
state) to another, as in Petri net theory; or by using a process algebra with an
operational semantics, such as CCS, ATP, ACP, or LOTOS, to represent systems.

Graph.9

We will focus on the Petri net, since it is the most common example of the graph~

theoretic approach to analysis of concurrent systems, though there are alternatives
(e.g. HMS machines [FG89]). A safety property of a system may be expressed
as the condition that a given set of nodes is unreachable from the initial state.
Liveness properties are concerned with the ava.ilability of transitions. (see e.g.
[Mer87]). For exa.mple, deadlock freedom is expressed as the requirement that
every (reachable) state enables at least one transition.

A Petri net (see e.g. [Pet77]) consists of a set of places, a set of transitions, and
a set of directed arcs from places to transitions and from transitions to places. It
also has a marking, consisting of an assignment of tokens to places. A tra.nsition
t is enabled under a marking if all the places which have an arc to t h~ve some
token assigned to them. When the transition fires, the marking of the net alters:
the tokens enabling t are removed, and a token is assigned to each place to which
there is an arc from the transition.

There are several approaches to the introduction of time into Petri nets. For
example, delays may be associated with places (see e.g. [Sif80],[CR85]J or with
transitions. In these respective cases, a token must rema.in on a place for at least
the length of time associated with that place, or a transition has a duration. It
is claimed in [LS87] that these two approaches are equivalent. Altern~tivelYl a

167

master timing mechanism may be introduced (see e.g. [CR83)). We shall consider
a different approach, described in [LS87], originally presented in [MF76J_ The
formation of a timed Petri net here involves associating witb each transition a
minimum and maximum length of time that the transition may be continuonsly
enabled without firing. Hence a transition t may fire at time T if it has been
continuously enabled since T - min(t); it must fire if it has been continuously
enabled since T - max(t). Petri nets may be considered as a special case of Time
Petri nets, with each transition having minimum enabling time 0 and maximum
enabling time 00.

A safety property will state that particular undesirable markings cannot be
reached from the initial marking by a sequence of enabled transitions. For example,
a mutual exclusion property will be captured by the requirement that tbe place p

representing the critical section wilJ never be assigned more than one token by any
reachable marking. Safety properties are preserved by an assignment of minimum
and maximum enabling times to the transitions, which we may consider as a
'timewise refinement' of a net. It was remarked in [LS87] that such an assignment
can only reduce the set of reachable markings, in a fasbion analogous to that of
timewise refinement in TCSP, where the set of possible traces is reduced by a
l;j-refinement.

Livelles5 properties concern tbe eventnal enabling of transitions. For example,
we may say that a transition is live if there is a sequence of transitions from
any reachable marking after which the transition is enabled (see e.g. [Mer87]).
An analogue of (t, A)-responsive for Petri nets may be that at least one of the
transitions in the set A must be enabled within t time units of any moment.
Deadlock freedom is expressed as the requirement that any rea.chable marking
enables at least one transition. Some liveness properties, such as deadlock-freedom,
are preserved by timewise refinement. Others, such as liveness of an entire net
(defined in [Mer87] as the condition that every transition is live), are not necessarily
preserved. There does not appear to be a systematic way of transforming untimed
liveness properties into timed ones, in the way that CSP liveness specifications may
be transformed into TCSP ones by means of the strongest refinement operation.

Algebras

Process algebras with operational semantics provide another way of designing and
analysing systems. A syntax for the algebra is given together with rules describ
ing the valid transitions: these rules constitnte the operational semantics of the
language, and will generate a tree of possible transition sequences for any process
written in the algebra. This approach also considers a process algebra to be spec
ification language, in that a process written in a process algebra is a description
of our requirements. For example, the ideal one-place buffer in CCS is captured

168

as follows:
Buff '" in(x).out(x).Buff

We may think of a verification that a process is a one place buffer as a demon
stration that it is bisimilar to Buff. Two processes are bisimilar if they exhibit
the same behaviour. (There are a number of bisimilarity relations depending on
what aspect of behaviour we are interested in: see e.g. [MiI89].) Each process
algebra has laws consistent with its operational semantics for rewriting process
descriptions while preserving bisimilarity. Verifications of systems therefore take
the form of algebraic manipulations, which establish a bisimilarity relation (see
e.g. [LM86] for an example of a protocol verification).

There have been a number of different approaches to the inclusion of time in a
process algebra. Most of these are extensions or adaptations of untimed algebras.
For example, current research at Snssex [Reg89] is investigating the consequences
of the addition of a single WAIT statement to EPL [HenS8]. The treatment of
time is discrete, aDd actions are instantaneous.

Synchronised DeS [Mi189J considers the duration of a transition to be one time
unit. All concurrent components of a system proceed at the same rate, in lockstep;
time is thus considered to be discrete. This yields an elegant and simple calculus.
A form of 'timewise refinement' is possible, since ees processes may be'imple
mented' by sees ones. It also seems possible. for a given bisimilarity relation
between CCS processes. that there may be a weak bisimilarity relation (that ig
nores the passage of time) that holds between sees processes precisely ",.hen the
corresponding untimed ees processes are bisimilar. However, a complete set of
axioms must also be found for such a relation jf it is to be useful. I am presently
unaware of any results of this form.

The algebra. for timed processes ATP [NRSV89] treats time rather differently.
ActiDns are cDnsidered to take no time, except for an explicit synchronisation ac
tiDn X which is not present in the syntax but which appears in the semantics of the
timeout operator and the terminated process (which aHows time to pass but which
can perform no other action). Concurrent processes a.re completely asynchronous,
(although they may communicate) apart from the requirement that they must all
synchronise on a X action. Snccessive instants are identified with snccessiveoccur
rences of the X action, so time is in some sense discrete. However, processes may
perform arbitrarily many actions between two successive instants. An operational
semantics is provided for the ATP language, and a verification is a demonstration
of a bisimilarity relationship between the system under consideration and a sys
tem we know to be correct (see [NRSV89] for a verificatiDn Df an alternating bit
protocol).

Timed LOTOS [QF87J and Timed ACP [8889] a.re bDtb prDcess algebras which

169

allow continuous time. The syntax of Timed LOTOS allows the hidden action T

to be treated on the same footing as any visible action. There is also a delay
operator WAIT t (non-negative real t), which postpones the commencement of
the process following it. Thus constructs similar to the timeout construct for
TCSP may be built from the basic operators of Timed LOTOS. The existence of
an operational semantics once again allows specifications to he written as Timed
LOTOS processes, and verifications again cousist of demonstrating a bisimilarity
between a candidate process and a process we take to be the specification. Time
wise refinement of basic LOTOS processes into Timed LOTOS processes appears
straightforward, but as in the case for SCCS verifications of untimed processes
will not be preserved by timewise refiuement, unless a weak bisimulation relation
is used.

Timed ACP [BB89J is an extension of ACP [BK184) to inc1nde time, which is
considered to be the non-negative reals. Each event a is associated with a time
t, so atomic actions are of the form aU). An operational semantics is given for
the language, which provides the basis for a number of bisimulation preserving
algebraic laws, as we have by now come to expect. A process is again regarded as
a specification, and a verification consists of a demonstration that two processes
are bisimilar. It is pointed out in [BB89] tbat an implementation of an ACP
process can be imagined as a real time version of the specification. However, it is
also pOlnted out that two equivalent processes will not in general have equivalent
real time implementations, and the question is left open as to what predictions can
be made concerning the behaviour of a timed version of an untimed ACP process
from an untimed verification.

The contrast is sharp between the specification and verification techniques
of the process algebras discussed ahove, and the approach of this thesis. The
TCSP approach, in common with other approaches via denotational semantics
(as we shall see), considers a specification to be a property, and a verification
to be that the semantics of a candidate process bas that property. Any other
properties the process may have are irrelevant to the verification. On the other
hand, a proof that two processes are hisimilar will establish that t hey share every
property identified by the bisimilarity relation. Thus a verification often rednces
to algehraic manipulations of the process description we wish to verify, until a
process is obtained that is obviously correct (in the sense that it has the property
we require). The proofs of the alternating bit protocol in [NRSV89J and again in
[BB89J are examples of this approach.

TILe consideration of processes as specifications will not in general allow verifi
cations to be translated into timed verifications by timewise refinement, since the
properties we would hope to preserve are not made explicit. It also seems likely
that the addition of time into these process algebras will mean that the method

170

of proving processes correct by transforming their descriptions to ones 'which are
obviously correct will predominate over the approach whereby a process is pre
sented as a specification and a bisimulation then demonstrated. It appears that
there will be too much information contained in any process description to make
it useful as a specification; for example, the canonical one place buffer Buff given
above must perform in(x) on its first step, which may not he a property we wish
to retain. If the bisimilarity relation is weakened to ignore the passage of time,
then we may a.lso lose a property we wish to retain; for example, that it is always
ready to output the instant after input occurs.

A less common form of specification on process algebras is that of the specifying
equation: this is of the form C[P] = D[P], placing the requirement on P that when
it is placed in context C and in context D the results are indistinguishable (i.e.
bisimilar). The timed behaviour of C[J and D[] need not be the same, so there
will in general be fewer processes P satisfying the equation than in the untimed
version. For example, we may attempt to capture a class of process by requiring
of a candidate process B that it satisfies

B» Buff '" Buff» B

However, the timed behaviour of Buff requires that it perform in(x) at the first
instant, so any process B that does not allow an input at the first instant will not
meet the specification. If Buff is replaced by a more relaxed buffer which does not
insist upon input at the first instant, then a process B which does insist on such
input will not meet the specification. On the other hand, if the bisimilarity relation
ii; relaxed to allow both possibilities, then we may lose more timing information
than we wish. It seems that the inclusion of timing information often leads to
overspecification when this technique is applied.

Hennessy-Milner logic [HM85], called process logic in [MiI89], provides the
approach to specification for CCS that is closest to the denotational semantics
approach.]t would seem that the logic could equally weB be applied to other
process algebras, although I am not aware of any attempts to do this. The logic is
used to express safety properties of systems using two modal operators (which are
dual), 0 and []. The specification (a) G asserts of a process P that it may perform
a and reach a state of which G holds. The specification [a]G asserts of P that
whenever P performs a it reaches a state of which G holds.

Little work seems to have been done with process logic concerning the specifica
tion and verification of systems. In particular.] am not aware of any case studies
in which a process is specified using the logic, and then proved corred; such a
study would be useful.]t also seems likely that a form of timewise refinement will
be possible for such specifications. This is a topic for further research.

I7I

Denotati()nal Semantics

The provi3ion of a denotationa.l semantics for a programming language or process
algebra involves the association of each program with a mathematical object con~

sidered to be the meaning of the program. The possible meanings of programs are
members of a semantic domain. A denotationa.l semantics is compositional, in that
the meaning of a compoLJnd program may be deduced from the meanings of its
constituents, without any reference to their syntax. Specifications on processes are
expressible as predicates on the semantic domain. In tbe most general case, any
mapping from the semantic domain to {TRUE, FALSE} will be a specification,
but it may be considered desirable to restrict the class of specifications to make
reasoning easier. For example, the set of proof rules presented in this thesis is
complete for the class of bebavioural specifications.

The semantic domain for a process algebra is reflected in the nature of the pos
sible specifications. As we have seen, the semantics provided for TCSP processes
do not refer to state information. This is because we do not wish to distinguish
proce:':ise'i whose external behaviour is identical, even if their internal states may
be different. It follows that specifications on TCSP processes may not be con
cerned with the possible states of a process. Such specifications are permitted by
semantic domains which contain state information as a component of the possible
denotation of a process. The choice of a semantic domain for a process algebra is
concerned with the distinctions between processes we wish to rooke, which in turn
is closely associated with the kind of specifications we hope to express. Of course,
a given process algebra may be sLJpplied with different semantic domains: these
will permit different sorts of specification. For example, CSP has t he traces model
M r and the failures model Mi"' The traces model allows only safety specifications,
and cannot be used to verify liveness properties, since it is nnable to distinguish
live processes from possibly deadlocking ones. The failures model permits such
distinctions.

Methods of verification using a denotational semantics or an operational se
man tics may overlap. The denotational semantics may give rise to a complete
set of algebraic laws which allow the semantics-preserving transformation of any
syntactic process to one in normal form. Thus an algehraic proof system, of the
sort a.930ciated with operational semantics, is possihle. SLJch proof systems may
also permit the verification that one process is more deterministic than another.
(see [Br083] for an example of this.)

This approach is taken in [GLZ88], where a denotational semantics based on
discrete time is given for a CSP-based language which has a timed prefix operator:
the semantics of a process is the set of possible behaviours of that process. A

172

complete proof system is presented for finite processes (i.e. those defined without
recursion); further laws permit reasoning about recursive processes, but these laws
are not complete.

An example specification and verification is presented in [LZ88]. The speci~

fication on the system is that it is more deterministic than the process SAFE,
which is taken to be the most non~deterministic process that captures the safety
requirement. A verification that SAFE i; NUCLEAR is presented, from which it
is concluded that NUCLEAR meets tbe safety requirement. Specifications express
ible in the form P i; X (for a fixed P) are similar to behavioural specifications,
since X will be more deterministic than P precisely when its behaviours are a
subset of those of P. The requirement is therefore captured by the behavioural
specification X sat (b E E[P)), where b ranges over behaviours, and E~P] de
notes the semantics of P.

An alternative approacb is to provide an explicit specification language together
with a denotational semantics for a given process algebra. For example, in :HW89]
a denotational semantics is provided for an occam-like programming language: this
allows either discrete or continuous time. Each possible behaviour is a mapping
from time to a quadruple representing the channels on which a communication
is taking place, those on wbich tbe process is waiting to send, those on which it
is waiting to receive, and a boolean value representing whether the process has
terminated. The semantics of a program is the set of jts possible behaviours. The
specification language is based on real-time temporal logic similar to that presented
in [KR83L and compositional proof rules are presented which relate programs to
specifications. For example, we have the rule

send(c) sat c! U (c U=1 done)

for the program send(c). This states that it is ready to send on c until (weak until)
the transmission occurs; this is followed one time-unit later by termination (strong
until indexed by 'exactly one time-unit'). The rules form a sound proof system
which is also complete relative to provability of valid formulae in the specification
language.

This proof system, like the one presented in this thesis, exploits the com
positional nature of the semantics of the language. There have been denota~

tional semantics offered for a variety of real-time programming languages (e.g.
[KSRGA88],[BG87],[SN89], in addition to those already discussed). The semantic
definitions should in each case give rise to a set of sound proof rules (this is done
in [HR89]). Completeness, however, will need to be established separately, since
it does not follow in general; this was illustrated by the rules available for TMFS ,

where our inability to establish completeness motivated the move to a different
(though congruent) semantics.

173

Although many of the semantics for real-time systems are given for extensions
of established programming languages, I am unaware of any attempts to refine
specifications and verifications of programs written in the original language, in
the way that timewise refinement for TCSP allows the transformation of untimed
specifiations into timed ones. It is clear tbat any untimed program may also
be considered within the framework of time, and so properties such as deadlock
fre€dom will still hold of it; but it is often desirable to prove that such specifica
tions hold of timed programs which contain explicit timing constructs, and if such
properties do not follow from timing considerations, then a timewise refinement
relation may be useful. The hierarchy of models for CSP and resp, together
with tbe projection mappings between them, provide the fonndation for timewise
(and other) refinement relations. It wonld be interesting to see how similar results
could be established for other languages.

9.3 Future Work

The previous section has highlighted important areas where further research into
specification and verification methods would be useful. The provision of a.n oper
ational semantics for resp, either via timed Petri nets or in terms of potentially
infinite trees, would allow the approaches to establishing correctness that we have
just discussed. A set of algebraic laws which preserve some form of eqnivalence
(such il.S bisimilarity) may be obtainable, and wonld make some verifications easier.
Perhaps the most important immediate task is the development of a real-time tem
poral logic based specification language for TCSP, similar (or even identical) to
the metric temporal logic presented in [Koyg9]. This would provide an alternative
means of specifying systems, compatible with the body of research on temporal
logic that already exists, and may lead to a complete proof system similar to
that presented in [HW89]. D. Jackson, a doctoral student at Oxford, is currently
working on such a specification language.

An infinite failures model is needed to support the distinction between arbitrary
delay and infinite delay, and the distinction between arbitrarily fast and infinitely
fast. As we pointed out in the section on infinite behaviours, any model consisting
purely of finite behaviours win not be able to make this distinction. An infinite
failures model would have as its semantic domain sets of infinite (trace,refusa~

pairs. with each pair representing a possible record of the complete execution of
a process. We would expect the restrictions of these pairs to any finite time to
yield the finite behaviours of TMF , yet the (infinite) semantics of a process will
not necessarily be the set of all limits of the finite behaviours. In particular.
if Ir[P] denotes the infinite failure semantics of P, then we would expect the
semantic equations for indexed non-deterministic choice, hiding, and renaming to

174

be as follows:

Tr[np(i)]
iEI

UTr[PUlI
'EI

Ir[P\A]

rr!/(p)]

{(, \ A, ~ I("~ U [0,00) x A) E TriPI}
{(I(,),~) i (,,/-1 (~) E TriP])

We would expect to retain all of the axioms for TMF as axioIrul for the finite
approximations of behaviours in the infinite failures model, with the exception of
a.xiom 5. This axiom states that a process cannot perfoDn an infinite number of
events in a finite time, but its formulation for TMF a.lso prevents a process from
performing arbitrarily many events, since the two notions are indistinguishable in
TMF. The axiom states for any set S of behaviours in the semantic domain that

IE [O,ee) => 3n(l) E N,V, E traces(S) 0 ,nd(,)'; I=> #,,; nit)

This axiom would be too strong for an infinite failures model. We only wish to
disallow infinitely many actions in a finite time, so we may weaken the axiom to:

VI E [0,00)" E Iraces(S) 0 #(, r I) < 00

Recall that for a.n indexed choice or a prefix choice to be well defined, it was re
quired that the set of component processes were uniformly bounded. The weaken
ing of axiom 5 allows this restriction to be lifted, and so we ga.in the well-definedness
of both forms of infinite choice for all arguments_

The 'eventually' operator in temporal logic enables the distinction hetween
arbitrary delays and infinite ones (see e.g. [BKP85]). Consider the pair of processes

P " nWAlT n ; a ~ STOP
_EN

Q " pn STOP

We would expect that P satisfies t.he temporal logic specification 'X will eventua.lly
offer a', since any resolution of the choice will eventua.lly offer a; but that Q does
not satisfy the specification, since it may resolve the choice in favour of STOP,
in which case a will never be offered. However, as has previously been remarked,
both P and Q have the same semantics in TMF (and indeed in TMFS). Hence
any temporal logic specification language which wishes to distinguish between the
two processes Illust be based on a model that makes such distinctions. Clearly
the infinite failures model will make precisely the distinctions required, 9ince the
temporal logic assertions are concerned with infinite beha.viour. Process P will not

175

exhibit t.he behaviour (O,[O,oo) x {a}), so it will not be able to refuse a for all
time. However, that behaviour is possible for Q, indicating that Q does not meet
the speci~cation required. Hence an infinite failnres model will be useful for the
construction of a temporal logic based specification langnage.

The possibilities for timewise refinement are also enhanced by an infinite fail
ures modeL The reason that timewise refinement is not preserved by hiding and in
finite non-determinism in general is that infinite non-determinism is not adequately
modelled in TMF. The equations above for hiding and indexed non-deterministic
choice mean that both operators preserve timewise refinement (see lemmas 6.3.31
and 6.3.36), and hence that the chaining operator, whose definition involves the
hiding operator, will also preserve timewise refinement. This will greatly ease ver
ificatiort of pipes via timewise refinement, and more generally of communicating
networks of processes. I conjecture that an infinite failures model will yield the
result 8(Q) 1;/ Q for all TCSP processes Q. However, at the time of writing I
do not know what the structure of the semantic domain will be. nor which extra
axioms will be required, so I am unsure as to how recursion will be defined and
whether P 1;/ X will be a continuous specification. This is a topic for further
research.

A refinement calculus for exploiting the timewise refinement relation would be
invaluable. It is presently difficult to generate a refinement of an untimed CSP
process. The only systematic way of doing this at present is either to insert delays
at suitable points in tbe process description, or to resolve a. non-deterministic choice
by replacing it with a timeout construct. We reqnire more roles for algebraically
refining process descriptions, to enable us to work towards the timing reqnirements
of a specification.

A form of refinement not mentioned in this thesis is speedwise refinement,
through which processes become faster. A faster than relation between processes
could be defined, which would enable us to compare speeds of various processes.
This would provide us with the machinery to address problems associated with the
speeds of processes. For example, we would wisb to know when the speed-up of
a component of a network witt maintain correctness of the network, and whether
it will provide a speedwise refinement of the entire network; this will not be the
case in general: in the alternating bit protocol example, a significant speed np
of the sender process could result in a timeout occnrring before an acknowledge
ment could possibly arrive; this could result in a less efficient protocol, since a
second copy of the message will always be sent, even over ideal wires. The 'faster
than' relation would also enable us to examine which specifications arc preserved
by speedwise refinement (e.g. 'the process will not respond for .;s' will not be
preserved, but 'tbe process will respond within 55' will be).

176

In addition to these directions, there are other areas of research tha.t have
already heen proposed. The ma.jor extension to the hierarchy of models will be
the addition of probability to the models; this win allow the specification and
verification of fault-tolerant systems and knowledge-based systems, and will allow
the modelling of fair processes. A strategy for pursuing this line of research a.ppears
in [Ree-88l. Other lines of research into the use of rcsp for specification and
verification are currently being pursued a.t Oxford. The results of this re5earch
will make easier the task of estahlishing correctness of real-time systems.

177

A Mathematical Proofs

A.I The hiding lemma

The main result we will establish is the following hiding lemma:

Z,;(X\ Y)=> (P\Z)xlly Q=(Pxll y Q)\Z

In order to prove this, we need to establish a number of subsidiaIy lemmas.

We first of all need a technical sublemma. Let P be an element of TMFS ' Let
n, 6, t, X, N, 'Y be such that

la" 6 " end(t) " (l,a,N U ([0, max{6, end(N))) X X)) E [ripl
Then define the following:

w, I

w. if B. ~ 0

W"+I w......... ((tn+1,a..+l)) if B. i 0
{

wbere (t ..+1' an+l) E B..

t, max{6, end(N))

{ ~ome f3 where 3 a • ((3, a) E B.. if B. i 0
t,,+! if B. = 0

B, {(p,a) It. ",13",,"
a EX" (w.~((i1,a)),NU([O,p)x X)) E !ai/(£dPj)}

Sublemma A.I.1 't no (w., NU [0, t.) x X) E !ail(£r [pi),

We prove the sublemma inductively as follows:

Base Case: n = 0, the result follows from the definitions.

Inductive Step: A"ume (w" NU ([0, t.) x X)) E !ai/(£T[Pj).

Case Bn = 0

~ (w.,N U ([0,,) x X)) E !ail(£r1PI) a4
~ (w.+"NU([O,t.+,) x X)) E!ai/(£rIPj) 0

CaBe B. i 0

Trivia.!

which establishes the 5ublemma. 0

178

We are now in a position to prove

Lemma A.1.2

Vo.,fJ,t,a,l't,I.

(a ;, 6 ;, 'nd(l) A (t, a, NU ([0, max{h, 'nd(N))) x X)) E Er[P]

=> 3w,a',w\X=t\XAa';'hA(w,a',NU([0,,)xX))EET[P]l

Proof.

Case
,"; max{h, 'nd(N))

f- 3a' ;> a' (t,a', N U ([0,,) x X)) E Er[P] al

Case ,> max{h, 'nd(N))
f- 3N 0 'Is E traces(Er[Pll' (,nd(sl";, => #s"; N)

I\(w.. = W,.+I => Vk ~ r. (Wk = WHI)
f- Wl'l+l #-wN=>Vi~N.(w;:f:.W;+I)

1\ (Wi #- Wi+l => #W;+l == #W; + 1) defn Wi, ii, B;
f- (WN+l :f:. WN => #WN+t == #Wo + N + 1 ~ N + 1)

But end(W.N+I) = tN+1 ~ 1
I- #W/Il+l ~ N defn
I- WN+l = WN
f- EN ~ 0
f- tN+l =1
!- 3a'o(wN+"a',NU([O"lxX))EEr[P]

To complete the proof, it is sufficient to show that 0.' ~ fJ:

Case
Wo = WI

f WN+l = Wo 1\ Bo = 0

1f 0. =0. all

f- 0.
1 ~ fJ

Case
Wo < Wi

I- Wi = Wo • ((t1, a)) defn
I- end(WI) ~ i1 ~ to
I- 0.

1
~ end(wN+l) ~ end(wJ) ~ to ~ fJ

179

Corollary A.l.3 (s, N) E TriP I AI =} 1ft 3 w • wlA = s /\ (w, t{U[O, t)xA) E
hIp]

Lemma A.l.4	 Z <;; (X I Y) =} (P I Z) xlly Q = (P xlly Q) I Z

Recall the definitions of hiding and of the parallel operator in TMFS given in
[Ree88]:

PIX =SUP	 {(sIX,/l,N)[3a;>/l;>end(s).

(s, a, NU([0, mar{/l, end(N)}) x X)) E fr[p])

P xII y Q = SUP	 Irs, mar{ap, ao), Np U NO U Nz) [3(sp, ap, t{p) E frlpl,
(so,ao,No)EfrlQI.a(Np)<;;X /\a(No) <;; Y

/\s E (sp x II y sO) /\ a(Nz) <;; (l: - (X U Y))}

where "xllyW = {s E (Tl:):: [(s t(XU Y) = s)/\(s t X = .)I\(s t Y= w)}
The following definitions will-be useful:

S(ap,ao) ..	 3N p,No • a(N p) <;; X /\a(N o) <;; Y

(t t X,ap,Np) E frlP]
/\ (t t Y,aO,NQ) E fdQ]
/\ (Np UNo) = (N U ([0, mar{/l, end(N)}) x Z)) t X U Y

Dp,o(t,/l,N) {mar{ap,aQ) [S(ap,aO)}

Cp,Qls, N) {/I I 3 t.	 t I Z = s

/\ sup Dp,o(t,/l,N);> /I;> end(i))

SJ(s,N) {/II 3t,a.	 a;>/I;>end(t)/\tIZ=s
/\(t, a, NU([0, mar{/l, end(N)) x Z)) E fr[PIJ

Tp,Q(s, N) {mar{ap,aO) I 3Np,No •	 ap = sup SI(s t X,Np)
1\ Up ~ 0
/\(s t Y,ao,t{o) Efr[Q]
/\ Np U NO = t{ t Xu Y
/\a(N p) <;; X /\ ",(NO) <;; Y}

180

Up,Q(s, N) {m",,{h,aQ} I 3Np,NQ • hE SI(s r X,N p)

A(srY,aQ,NQ)E£T[Q]

A Np U NQ = N r X U Y

A ~(Np) <;; X A ~(NQ) <;; Y}

The definitions of these sets allow us to obta.in the following equivalences (adopting
the convention that S1tp0 = -00):

(s,O',N)E£T(P\Z] .. a = sup SP(s, N)

(s,a,N) E ed(p\Z)xlly Q] .. 0' = sup Tp,Q(s,N)

(s,a,N) E eT((p xlly Q)\Z] .. 0' = sup CP,Q(s, N)

Hence it is sufficient to prove that, for arbitrary s, N, and any processes P and Q.
that sup Tp,Q(s, N) = S1tp CP,Q(s, N). This will be done by first showing that

sup Tp,Q(s, N) ~ sup CP,Q(s, N)

and then by showing that

sup CP,Q(s, N) ~ sup Tp,Q(s, N)

We first aim to show that sup Tp,Q(s, N) ~ sup CP,Q(s, N):

A"ume Cp,Q(s, N) ¥ 0. Then let {3 E CP.Q(s, N}. Take h E Dp,Q(t,{3, N),
where t \ z = s. Then we have

(t rX,ap,Np)E£dPIA~(Np}<;;X
A (t r Y,aQ,NQ) E £T[Q] A ~(NQ) <;; Y
A (N p U NQ) = (N U ([0, m",,{{3, 'nd(N)}) x Z)) r X U Y

for some ap,oQ, Np, NQ such that max{ap,oQ} = 6. Let NR = Np \ ([0, 00) x Z).
Then

(t rX) \ Z = s rX
A (t rX, ap, NRU ([0, m",,{{3, end(N)}) x Z)) E £dp]
A (t r Y,aQ,NQ) E £dQ]
A NR U NQ ~ N r X U Y
A O'p;> end(t r X)

Case
f3 > op

I- (t r X,ap,NRU([O,mar{ap,end(Np)}) x Z)) E£dp]
I- apESI(srX,Np)

Case
f3 ~ op

I- ,BESI(srX,Np)

since p ~ end(t) ~ end(t rX)

181

So we df'duce that min{p, op} E Sj(s ~ X, Np).

We ha.ve so far established

sup Dp,o(t,j3,N) ~ j3
I\S(ap,ao) => (oNp. min{j3,ap) E Sp(s rX,Np)

f- sup Tp,o(s, N) ~ sup {max {min {ap, j3}, "0) I S(ap, 0'0))

We again have two cases to consider.

Case

VOP,OQ. (S(op,oQ) =? iJ ~ op)

f {max{min{ap,j3),aO) I S(ap,aO)) = {max{ap,aO) IS(ap,aO))
f sup (max{min{ap.j3}.aoJ I S(ap,aO)) = sup Dp,O(t,j3,N) ~ j3

Case
3Qp,QQ. S(op,oQ) I\op;) {3

f sup {max{min{ap,j3),aO) IS(ap,aO)) ~ j3

In either case we conclude that sup Tp,Q(s, N) ~ P
(and that Tp,o(s, N) i 0). 0

We now aim to show that sup Cp,Q(s,N) ~ sup Tp,Q(s,N):

A"ume Tp,o(s,N) i 0. Then sup Tp,o(s,N) = sup Up,O(s,N).

LeI j3 E UP.O(s, N)

f j3=max{c,aO}

AQ~8~end(t)

I\t\Z=sjX

1\ (I, a, Np U ([0, maxi c, end(Np)}) x Z)) E frlP]

1\ (s r Y,ao,N o) E frlQI

1\ u(Np) <; X 1\ u(No) <; Y

1\ Np U NO = N , X U Y

for some 6, Q, QQ, Np, NQ, t

f j3=max{c,aO)

I\w\X= t\X

A 0' ;;: 8
1\ (w, a', Np U [0, max{j3, end(N)}) E frlP]
I\t\X=s,X
1\ (s t Y,ao,N o) E frlQI
ANp U NQ = N ~ X U Y for some w, 0' (Lemma A.I.2)

182

Let uE(wxlly(sIY))

r (u tap, a', NR) E frlP]

lI(u taQ,aQ,NQ) E frlQI
II NR U NQ ~ (N U [0, max{iJ, end(N))) x Z) t X U Y

(defining NR = Np U [0, max{iJ, end(N))) x Z)
Now end(w) " max{iJ, end(N)}

r end(u t X) " max{iJ, end(N)}
Also end(u t Y) "iJ "max{iJ, end(N)}

There a.re two cases to consider here:

Case
max{et',CtQ}::::;: end(N)

I- Dp.Q(t,iJ,N) = Dp.Q(t,max{d,aQ},N)
I- max{a',aQ} E Cp.Q(s,N)

(since end(u) ~ max{et',CtQ})
Case

max{a',aQ} > end(N)

8ubcase p~ end(u)
r iJ E CP.Q(s, N)

subcase P< end(u)
I- max{iJ, end(N)) ~ end(N);;' end(u)

(since end(u t X) " max{iJ, end(N)), end(u r Y) "iJ,
soiJ < end(u) " max{iJ,end(N)))

I- d;;' end(N) ;;. ,
II d ;;. end(N) ;;. aQ

I- max{d,aQ} E Dp.Q(u,end(N),N)
A max{a',CtQ} ~ end(u)

I- max{d,aQ} E Cp.Q(s,N)
Also max{a',CtQ} ~ end(u) > {3.

Therefore 5UP Cp,Q(s,N) ~ sup Up,Q(s,N) = sup Tp,Q(s,N) 0

Corollary A.1.5 Z n Y = 0 => (P \ Z) xii y Q = (P Xuz II y Q) \ Z

183

B Semantic Models and Mappings

B.l Reed's Hierarchy

The semantic models are arranged in a. hierarchical structure as follows:

TMFS
-

~ •
/ MFS ~ TMFS

/ ~ I ~

TMF -M, Ms
~ TMs

~ /

~
MT

/

TMT

Some Projection Mappings

II : TMFS _ TMr is defined on processes Q E TMFS by

II(Q) = fail(Q)

The projection mapping II : TMFS _ TM;s may be expressed using our notion
of s reffected in N. It is defined as follows:

184

Let P E TMFS . For each s E Tt" let

PI,] = {(s,Il,~) E Pis is reHeded in ~}

II(P) ~ ((s,<>,X) E TEl; x TSTAB x P(l::) I

Pis] I' 0

A

<> ~ sup{1l1 (s,Il,~) E Pis])
A

(<> < "" A 3(s,Il,~) E Pis] 0 X = aW 1<»

V <> = "" A X E P(l::))

IT: TMFS -+ MF is defined on processes Q E TMFS by

II(P) ~ {(tstrip(s), X) I (s, <>,~) EPA 3(s,~) E fail(P) 0

<> <; begin(~) < "" A aW) ~ X
V

<> = 00 A X E P(l::)}

B,2 Semantic Models and Mappings

We reproduce the definitions for [Ree88] of the (un timed) trace model, the (un
timed) failures model, the untimed-failures timed-stability model, the timed fail
ures model, and the timed failures stability model.

The traces model

The Evaluation Domain Mr.

We fonnally define MT to be the set of all those subsets S of ~. satisfying:

1. 0 E S

2. s'"'w E S =} s E S.

The Complete Partial Order!; on My_

For Sj, St E Mr, let SJ !; St if and only if Sj ~ St

185

The Complete Metric d on MT'

For 5 E MT , we define

S(n) '" {s E S I#s:'O n}.

The complete metric on MT is defined:

d(S"S,) '" inf{2-· IS,(n) = S,(n)).

The Semantic Function T.

We now define a semantic function T : asp --+ MT.

TI1-] {O}'"
T[STOP] - {O}
TISI(JP] - {(),(v)}

T[a ~ PI {()} U{(a)~s I s E TIP])'"
TIPDQ] TIP] UTIQJ'"

TIP n QJ TIP] UTIQJ'"
TIP II QI TIP] nTIQj'"

TIPxllyQ] - {sis/XETIPI A srYETIQ]

AS /(XU Y) =s}

TIP III QI - {sI3uETIP], nETIQ].

s E M"g,(u,n)}

TIP; Qj - {slsETIPJ AV~S}

U{s~t I s~(v) E TIP] AtE TIQ]}

TIP \ XI - {s\XlsETIP]}

T If-' (PlJ {s I f(s) E TIP]}'"
TI~P.F(P)] - The least fixed point of the continuous ma.pping with re

spect to the complete partial order!;;;; on M T represented
by F.

or

T[~P.F(PJ] The unique fixed point of the contraction mapping with '"
respect to the complete metric d on MT represented by
F.

188

We may also add the equations

Tla: A ~ prall '" {OJ u (a)~s I a E A" s E TlP(a)))

Tin prall '" UTIP(a)]

The failures model

The Evaluation Domain MF _

We formally define MF to be those subsets S of E· x P(E), satisfying:

I. () E 1'rac<s(S)

2. s w E Traces(S) => s E Traces(S)

S. (s, X) E S " Y <; X => (s, Y) E S

,. (s,X)ES" ('I'aE Y, «s.(a),0)¢S)) => (s,XU Y)ES

The Complete Metric on MF •

If S EMF, we define

Sin) '"	 {(s,X)ESI#s<nj
U{(s,X) I#s = n" s E Iraw(S)}.

The complete metric on MF is defined:

d(S"S,) '" in/(f-Ol S,(n) ~ S,(n)}

The Semantic Function F.

We now define the serna.ntic function F: asp -t MF .

.1'11-1 ~ (((),X) I X E peE)}

.1'ISTOP] - (((),X) I X E peE)}

J'[SKIP] - {((),X) l,f ¢ Xj u («,f), X) I x E peE)}

187

FI"~ p] - {(O,X) la ¢X}

u{(.)~"X) i ("X) E FIPII

FIPDQ] - {(O,X) I (O,X) E FIP] nF[Q]}

u{(s,X) E FIP] UFIQII, f O}

FIP n QI - FIP] uF[Q]

FIP II Q] - {("x UY) I(s,X) E FIP~

A(s,Y)EF Q]}

Flp ,lIy Q] - {("ZpuzQuZ) I, r(Xu Y)=sA
Zp<;XA ZQ<; Y A Z<;(I:-(XUY)
A (s t X,Zp) E F~P~
A (s t Y, ZQ) E F Q j

Flp III Q] {("X)13u,vEI:".(u,X)EFIP]
'" A(v,X)EFIQI A'EMerge(u,v)}

,1[P; Q] - {("X) I J ¢ s A (s,X U {J}) E FIP]}

U{(,~w,X) I J ¢ s A (s~(J),0) E Flp]

A (w,X) E FIQIl

,1[P \ X] - {, \ X, Y) I (s,X u Y) E Flp]}

U{(" Y) 1'1 n 20 #', 3 w. E Traces(FIPI) •

w" < W,,+l 1\ 3 = w.. \ X}

FIJ-' (P)] = {("X) I (J(s),j(X)) E FIP]}

FIJ(p)] - {(J('J,X) I (,,j-l (X)) E F[P]}

Flpp·F(PJ] - The unique fixed point of the contra.ction ma.pping
C(Q) = C(WAlT" ; QJ, where C i, the mapping on
MF represeiited by F. '1

We may also add the equations

Fla,A~P(a)] '"	 {(O,XJIAnX=0j

U{(a)~s,X) I a E A A (s,X) E F[PIJ

FlnP(a)] '" UFlP(a)]

188

The (Untirned Failures)-(Timed Stability) Model

The Evaluation Domain TM;.s

We fonnally define TM;s to be those subsets S of Tt~ X [0,00] x ~ satisfying:

1. 0 E traces(5)

2. s w E traces(S) =>	 s E traces(S)

3. (s,a,X) E 5 => (l,a,X) E 5

4. (s,a,X) E 5 As'" w => (w,a,X) E 5
.~

5.	 s~(t,a) E traces(5) => 31' <; I. (s I 1').(I',ii)) E Iraces(5) A

(t' <; I" < 1 => (s I t").(I", a)) E lraces(S))

6. 'It E [0,00), 3n(t) E N such thai 'Is E traces(5), (end(s) <; 1 => #s <; n(I))

7. (s,a),(s, 0') E stab(5) =>	 a = d

8. (s,a) E stab(5) => end(s) <; a

9. (s,a)Estab(5)As~(t,ii))Etraces(5) => 1<;"

10.	 (s,o) E stab(S) => if t > 0, t' ~ a, a E E and

w E Tt~ is such that w = ((t, a))""" Wi,

then (s~w,a',X) E 5 => (s~(w + (I' - 1)),1,X) E 5,
where"(~ 0' + (t' - t) ~---'--

11. (s,a,X) E SAY ~ X	 => (s,a, Y) E 5

12.	 (s,a,X) E 5 A 3 Y E P(E). (Va E Y,

31;>a. (s~(t,a)),0)~fai/(S)) => (s,a,XUY)E5

13.	 (s,oo) E stab(S) A X E PtE) => (s,oo,X) E 5

The Complete Metric on TMFS

If S E TM;s and t E [0,00), we define

5(t) '" {(s,a,X)E5Ia<t)
U{(s,oo,X) I end(s) < I

A 3,,;> t such that (s,a) E stab(5) A X E PtE)).

189

The complete metric OJ) TM;.s is defined:

d(S"S.) " inf{r' I S,(I) =S.(I)}

The Semantic Function E1

We now define the semantic function Ej- : TCSP - TM;.s·

ETl1-]

ET!STOPI

ET!SKIP]

ET[WAIT tl

ET!a ~ P]

ET!?DQ]

ET!pn Q]

ET!PII Q]

ET! P ,11,· Qj

ET!PIII Q]

ETl?; Q]

~ (((I,DO,X) I X E prE)}

- {((I, O,X) I X E PIE)}

- {((I,O,X) I ~ ¢ X}
u{(IO,))),O,X) I X E P(E)}
u{((t,~)),t,X) I t ~ °A ~ ¢ X}

- {((I,t,X) I ~ ¢ X}
U{(« I,))), t, X) I X E prE)}
U{«(I',~)),t',X) I t';' I A X E prE)}

~ {(O,O,X) I a ¢ X}

U{(((0, a)).(, +6), a +6, X) I (s, a, X) E ET!p]}

u{(((t, a)n, + (t + 6)), a + 1 + 6, X) I I ~ 0

A ("a,X) E ET!P]}

- SUP({((I,a,X) I ((I,a) E ,tab(ET[Pj UET!Q])
A «(I,X) EfaiIIET/p]lnfail(ET!QIll

U{(s,a,X) EfT!p UET!QII s,.: OJ)
= SUP(ET!P] U ETIQ])

SUP({«('p V sQ),max{ap,aQ},Xp U XQ) I (sp,ap,Xp) E ET!P]" A(sQ, aQ, XQ) E ETIQ] Asp = sQ})

{(s, max{ap, aQJ, Zp U ZQ U Z) I 3(sp, ap, Zp) E ET!P]" A('Q,aQ,ZQ)EET!Q]withZp<;XAZQ~ Y.
5 E (,p ,lI y sQ) A Z <; (E - (X U Y))}

- SUP({("max{ap,aQJ,Xj 13(a,ap,Xl E ET !PI
A(v,aQ,X)EETlQI.sE Tmerge(u,v}})

~ CL.(SUP(irs, a, X) I (5, a, Xu {~}) E ETlp] A ~ ¢ ~(s)}

U{(s~(w + t),a+ I,X) Is~«(t,))) E Iraces(ET!P])
A ~ ¢ ~(s) A (w,a,X) E ET!Qj}))

190

[TIP \ xl - {(, \ X,a, Y) I s is X-active in [TIPI
1\ a = sup{~ 13(w,iJ) E [j-IPj •
wisX-active 1\ w\X=s\X}
1\ (a < 00 1\ (s,X U Y) E [ai/([;.[Pj)
V (a ~ 00 1\ Y E prE)))}
where s is X-active provided
s contains no element of the form (t, a) for a E X
(a.lJ communications in X are in the form il).

[;.[1-1 (P)j - {(s,a,X) I (f(s),a,[(X)) E [j-IPj}

[j- I/(P)j - SUP({(f(s),a,X) I (s,a,[-' (X)) E [j-IP)})

[j- [p P.F(P)) --=	 The unique fixed point of the contraction mapping
C(Q) = C(WAIT.; Q), where C is the mapping
on TM;s represented by F.

We may add the following equations

[T! n P(a)1 ~ SUP(U [j-[P(a)j)
aEA D.EA

[Tla,A-P(a)j ~ {«),O,X)IAnX=0)

u{«(O, a)ns + .),a +., X) I
a E A 1\ (s, a, X) E [j-[P(a)1 }

U{«(t, a)ns + t H),a + t H, X) I
a E A 1\ t" °1\ (s,a,X) E [j-[Pla)1l

whenever the set {P(a) 1 a E A} is uniformly bounded..

191

The timed failures model

The Evaluation Domain TMF.

We formally define TMF to be those subsets S of rE, x RSET satisfying:

1.	 () E Trac<s(5)

2.	 (,~w,N) E 5 => ("N t bcg;n(w)) E 5

3.	 ("~) E 51\ s'" w => (w,N) E 5

4.	 ("~) E [a;/(5) => 3 WE R5ET 0

1\'" 0 N" W 1\ ("W) E [a;[(5) 1\

(t' <; t 1\ (t', a) if. W)

=> (, t t'~((t', a)), W t t') E [ai/(5)

5.	 'ttE[O,oo),3n(tjENo'tsElraccs(5),(cnd(s)<;I=>#s<;n(t))

6.	 (,,~)E5I\WER5ETI\W"N=> (s,W)E5

7.	 (,Aw,N) E 5 1\ W E RSET 0 cnd(s) <; bcgin(W) 1\ cnd(N') <; bcgin(w) 1\
('t(/, a) E W, (,.((1, a)), N r I) if. 5)
=> (s,NUW) E 5

The Complete Metric on TM,.

If S E TMF and t E [0,00), we define

S(t) {("N) E 5 I cnd(,) < t 1\ cnd(N) < tl·

The complete metric on TMF is defined:

d(S"S,) "" ;nf{2-' IS, (I) = 5,(I)}

The Semantic Function FTo

We now define the semantic function FT : reS? - TMF·

192

h[l-]

hISTOP]

hlSKlP]

hiWAIT I] -

Fda ~ p]

hIPOQ]

h[pnQ] -

FTlp II Q] -

Fdp xlly Q] -

Fdplll Q]

h[p;Q]

h!P\X]

{((j,N) IN E RSET}

{(O,N) IN E RSET}

{(0, N) I ,I ~ a(N))
U{(«(I, ,f)), N, UN,) I I 2 a A (I(N,) <:; [0, I) A ,I ~ a(N,))

A I(N,) <:; It, 00))

{(0, N) INn ([1,00) x {,I}) ~ 0}
u{((1',,1)), N, U N, UN,) I t' ;;. I A I(N,) <:; [0, t)

A(I(N,) <:; [I, I') A ,I ~ a(N,)) A I(N,) <:; [t',oo))

{(O,N) I a ~ a(N))
U{((I, a))~(, + (t +0)), N, UN, U (N, + (t + 0))) I I 2 a

A(I(N,) <:; [0, t) A a ~ a(N,)) A I(N,) <:; [I, I + 0)
A("N,) E F'[P]}

((O,N) I ((j,N) E hiP] nhlQF
U{(s,N) Is" °A ("N) E h P UFr[Q]

A (0, N r beg;n(s)) E h [PI n Fr[Q])

Fdp]UhIQ]

{("NpUNo)l(s,Np)Eh[P] A ("NO)Eh[Q])

{("Np UNO UN z) 13(sp,Np) E hip]

A (sO,NO)Eh[Q] wilha(Np)<:;XAa(NO)<:; r.

s E (sp xII y sO) A a(N z) <:; (E - (X U Y)))

{("N) 13(u,N) E hiP], (v,N) E h[Q]
such tha.t!J E Tmerge(u, v)})

CL,,(Irs, N) 1,1 ~ a(,)
A ('I I E TINT, (s, NU(I x {,I})) E h [P])}

U{(s~(w + t), N, U (N, + I)) I ,I ~ a(s)
A (s~((I, ,I}), N, U ([0, I) x {,I})) E hip]
A end(N,) < I) A (w,N,) Eh[Q!})

{(s \ X, N) I (s, NU ([0, mar{end(s), end(N)}) x X) E Fr[P]}

193

Fdf-' (P)j - {("N) I (J(,),f(N)) E FrlPj}

hlf(P)j -	 {(f('),N) I (s,f-'(N)) E FrlPj}

Fd~ x • F(X)j =	 The unique fix:ed point of the contraction mapping
C(Q) ~ C(WAlT,; QJ, whe" C i, the mapping
on TMF represented by F.

We may also add the following equations:

Fri nP(a)] = U FdP(a)]
aEA aEA

Frla,A~P.J	 = {(O,N)IAn<>(N)~0)

U{((t,a))~('+(iH)),N) I
a E A 1\ t ~ 01\ A n <>(N r i) ~ 0

1\ ("N~ (I H)) E FrlP(a)]}

provided the set of processes {P(a) I a E A} is uniformly bounded.

The timed failures stability model

The Evaluation Domain TMFS •

We formally define TMFS to be those subsets S of (TI:), x (0, (Xl] X RSET satis
fying the following 12 axioms:

1. 0 E Troces(S)

2. (,~w, N) E fait(S) => (" N r b,g;n(w)) E fa.I(S)

3. ("Q,N) E S 1\ ,,, w => (w,Q,N) E S

4· ("N) Efail(S) => 3N'ERSET.
1\ i ?: 0 N ~ N' 1\ (" N') E fail(S) 1\

(t' " t 1\ (i', a) j" N') => (s I i'~(i', a)), N' r,') E fail(S)
5.	 tEIO,oo)=> 3n(i)EN,uchthat'>l,ETmce,(S),

,nd(,) " i => #'" n(i)

6. ("Q,N),(,,~,N)ES=> Q~~

194

7. (s,o, N) E S ::::;.	 end(s) (0

8. (s,a,~) E S A (s.((I,a)),~) Efail(S) A I> I' ~ a A I;> ,"d(~) =>(I',a) " ~

9.	 (s,a,t{)ES::::;. ift>o,t'~a,aEI:and

wE (TI:)< is such that w = ((t, a)).w', then

(s.w,d,W) E S A ~ <;~' t I =>

31'~a'+(t'-t).

(s.(w + (I' - IJ),~,~, U~, U (~, + (I' - t))) E S,

whe,"~, ~ Wia, ~, = [a, I') x E(~'n([a, I) x E)),

and ~, ~ Wn ([1,00) x E).

10.	 ("a,~)ESAWERSET,u,hthatW<;~

==> 3a' ~ a such that (s,a',N') E S

11.	 (s. w, Q, N) E S /\ N' E RSET is such that end(s) (begin(W) /\
,nd(~') ,; begin(w) A ('0'(I, a) E ~', (,. ((t, a)), ~ t I) " fail(S))
::::;. (s.w,a,NUW)ES

12.	 ("a,~)ES=>

('OlE TINT, I<; [a,oo)*("a,~U(IxE(~n([a,oo)x E)))) ESj

The Complete Metric on TMFS.

If S E TMFS an t E [0,(0), we define

Sr') '"	 ((s,a,~)ES[a<IA,"d(~)<t)

U{(s,oo,~) I ,nd(,) < t A ,"d(~) < I A 3a ~ t. (s,a,~) E 5).

The complete metric on TMFS is defined:

d(S"S,) '" inf{2~' I S,(t) = S,(I))

The Semantic Function [T.

We now define the sema.ntic function [T: TCSP -+ TMFS.

Er[l.l '" {(O,oo,~) I ~ E RSET)

EdSTOP] {(O,O,~)I~ERSETI

195

Er!SKlP] - {(O,O,~) 1,1 ¢E(~)}

U{(((I, ,I)), I,~, U ~t) I I) 0 A (l(~,) ~ [0, t) A ,I ¢ E(~,))

A 1(~t)~[I,oo)}

Eri WAIT IJ '" ((O,I,~) I ~n([I,oo) x {,I}) = 0}
U{(((I',J)),I',~, U~tU~,) I t') tAI(~,) ~ [0,1)

A(l(~t) ~ It, I') A ,I ~ E(~t)) A l(~,) ~ [I',oo)}

Er(a ~ PI '" ((O,O,~) la ¢E(~)}

U{(((t, a))~(s + (t + 'i), ,,+ t + "~) I
I) 0 A a ~ E(~ t t)) A(s, ", ~ ~ (t + 'i) E EdP]}

Er(PO QI - SUP({ ((), ma.{"p, "o}, ~) I ((), "p, ~) E Eri p]

A ((), "o,~) E Ed Q]}

U{(s''''~) Is;< 0 A (s''''~) E Edp] u Er!QI
A (0, ~ t begin(s)) E lai/(Er[P]) n lail(Er! Q])})

Er[pn QI - SUP(Er!P] U Er[QI)

EdP II QI '" SUP({ (s, max {"p, "0), ~p U ~o) I
(s, "P, ~p) E Edpl A (s, "0, ~o) E EdQ]})

EriPxlly QI = SUP{(s, ma.{"P, "o}, ~p U ~o U ~z) I
3(sp,,,p,~p) E Edp],(so,"o,~o) E EdQ] •

a(~p) ~ X Aa(~o) ~ Y A

sE(spxllyso)Aa(~2)~(E-(XU V))}

where

vxll y '" = {s E (TE);' I s E (X U V)' A

stX=vAstY=w}

Edp III Q] - SUP (((s,max{"p,,,O),~) 13(u,,,p,~) E ET!P]

(v,,,O,~) E ErrQI. s E Tmerge(u,v)})

196

frl P ; Q] CL.(SVP({(a,a,N)I-'~'*)A 'lIE TINT.
(a,a,Nu(lx (-'})) Efr(P]}

U {(a~(w+I),a+I,N, U (Nt+I)) I
-' ~ uta) A tnd(N,) " 1 A (w,a,N t) E fdQ]

A (a~((I, -')), N, U ([0,1) x {-'})) E fai/(fd P])}))

fr(P \ X] - SUP({a\X,,9,N)13a,,,9"end(a).

(a,a,NU([O,maz{,9,end(N))) x X)) E frlP]J)

frlf-' (P)] - {(a,a,N) ' (f(a),a,J(N)) E fdPl}

fr(f(P)] - SUP({(f(a),a,N) I (a,a,r/(N)) E fdp]})

fd~p·F(p)] - The unique fixed point of the contraction mapping C(Q)
C(WAIT 0; Q), where C is the mapping on TMFS represented
by F.

We ma.y also add:

fda;A~P(a)] "	 {((),0,N)IAnE(N)=0)

U{(((t, a))~(a + (I + 8)),a + 1 + 8, N) I
t"O AAnE(Nrt)=0)A(s,a,N~(I+8))E[r(P]}

when {P(a) I a E A} is uniformly bounded

fr(n P(al] " SUP(UfdP(a)])

when {P(a) I a E A} is uniformly bounded

197

B.3	 Semantics for TeSp with process variables

We give the semantic equations which map CSP with variables and TeSp with
variables to the semantic domains defined in IRee88].

CSP with variables

P ,,~	 .1 I STOP I SKIP I a ~ P I a' A ~ P(a)

P n Q I np(a) I PDQ I P II Q I P X II y Q

Pili Q I P; Q I P \ A I f(P) I r' (PJ
XI~X.P

TCSP with variables

P "=	 .1 I STOP I SKIP I WAIT t I WAIT t ; P

a ~ P I a' A ~ P(a) I P n Q I np(aJ I PDQ

P II Q I P X II y Q I PIli Q I P; Q I P \ A
f(P) I r' (P) I X I ~ X. P

The Semantic Function T.

The environment (T is of type var --+ M T .

We now define a semantic function T: asp -+ Mr_

198

TI.L)"

T[STOP)"

TlsK/P)"

T[a ~ Pj" -

Tla , A ~ P(a))"

TIPOQ)"

T[pnQ]"

T[np(a))"

T[PII Q]"

TIP xlly Q]"

T[PIII QJ"

T[P;Q]"

T[P\X]"

T[t-I(P)]"

TIX)"

T[/,XoPI"

{O}

{O}
{O, (-I)}

{OJ u {(a)~s Is E TIp],,)

{OJ u {(a)~s Ia E A II s E TlP(a)),,)

TIPj"UTIQj"

TIP)"UTIQ)"

UTIP(a))"

TIP]" n TIQ]"

{s 1st X E Tip]" II stY E TIQj"

II s t(XU Y)=s}

{s 13u E Tlpj", v E TIQj" 0

s E Merge(.,v)}

{slsETIP]"IIJ~s}

U{s~t Is~(J) E Tip]" II t E TIQ]")

{s \ X IsET Ip]" j

{s If(s) E Tip],,)

,,(X)

The least fixed point of the continuous map
ping ,\ Y 0 TIp) ("I Y / Xl) with respeel to
the complete partial order ~ on Mr -

Qr

TI/'X. P)" - The unique fixed point of the contraction
mapping'\ Y 0 Tip! ("IY/Xl) with respect
to the complete metric d on Mr.

199

The Semantic Function F.

We no"," define the semantic function :F: asp ---t MF.

FI.L]u '" {((), X) I X E P(I:»)

FlsTOPJu '" {((), X) I X E P(I:))

FISK/plu '" {(O,X) I J ¢ X} U ((J),X) I X E P(I:))

Fla ~ pJu '" {((),X) I a ¢ X}
U{«a)~s,X) I (s,X) EFIP]u}

1'1" A ~ P(a)]u '" {(O,X) I A nx = 0}
U{(a)~s,X) I a E A" (s,X) E l' [pJu}

FIPDQlu - {((), X) I (0, X) E Flp]u n 1'1Q] O"}
U{(s,X) E FlpluUFIQ]u I' Ie O}

Flpn QJu - FIP]u U FIQ]u

Fin P(a)]u - UF\P(a)Ju

Flp II Qlu - {("X U Y) I (s,X) E FIP]u
"(s, Y) E FIQ]u)

Flp xlly Q]u ~ {(',Zp U ZQ U Z) I s r(X U Y) ~ s"
Zp ~ X " ZQ ~ Y " Z ~ (I: - (X U V))
"(s r X,Zp) E FIP!u
"(s r Y,ZQ) E FIQ]u}

FlplllQlu '" {("X»)3a,vEI:-.(a,X)EFlp]u
"(v,X) E FIQlu ", E Merge(u, v))

Flp; Q]u '" {("X) I J ¢' " ("X U {J)) E FIPJu}
U{(s~w,X) I J ¢' " 1'~(J),0) E Flp]u

"(w,X) E FIQ]u}

FIP\X!u '"	 {s\X,Y)I("XUY)EFlp]u}
U{(s, Y) IVn 2: #s, 3w" E Traces(F[PJu).

WI' < Wn+l 1\ s = w" \ X}

1'1/-1 (P)Ju - ((s,X) I (J(s),j(X)) E FIPJu)

FI/IP)]u ~ ((f('),X) I (S,j-I(X» EFlpJo-)

FIX]u - u(X)

FI~X' P)]u ~ The unique fixed point of the contraction
mapping .I Y • Flp] (ul YI XI) on MF.

200

The Semantic Function f T-

We now define the semantic function ET: TCSP --+ TM;s.

£T[l-]p

£,,[5TOP]p =

£;.[5K/P]p

£"IWAIT tip

£,,[WAIT t ; pJp

£"la -~ PIp

£"la,A~P(a)]p "

£;.[PDQ]p ~

£;.[P n Q]p _

£"Inp(a)]p

£"Ip II Q]p

{((),oo,X) 1 X E PIE))

{((),O,X) IX E PiE))

{(O, O,X) 1J rt X}

U{((O,))), O,X) 1 X E PIE)}

U{(((I,J)),t,X) 1 1 <0 0/1 J rt X}

{(O,t,X) I J ~ X}

u{(((t,))), t, X) 1X E PIE))

U{(((I',J)),I',X) 11'<0 t /I X EP(E))

{(O, t,X) 1J ~ X}

U{(s + t, a + t, X) I (s, a,X) E £" IpI p}

{((),O,X) 1 a rt X}

U{(((0, a))~(s +0), a +<5, X) 1 (s, a, X) E £"Ip] p}

U{((I, a))~(s + (t +<5)), a + t +<5, X) 1 t <0 °

/I (s,a,X) E £"IP]p}

{((),0,X)IAnX~0)

U{(«(0, a))~(s +<5), a +<5,X) 1 a E A /I

(s,a,X) E £;.[P(a)]p}
U{(((t, a))~(s + (t + <I)),a + 1+<5, X) I
a E A /I 1 <0 0/1 (s,a,X) E £"IP(a)]p}
when {P(a) I a E A} is uniformly bounded

5UP({(O,a,X) 1 ((),a) E slab(£"IP]pU£T!Q]p)
/I ((), X) E fa;/(£" IP] p) n fa;l(c" IQ]p))

U{(s,a,X) E £"lp]pU£;.[Q]p 1 s # (i})

5UP(£" Ip] p U £;.[Q] p)

SUP(U £" Ip(a)] p)
when {P(a) I a E A} is uniformly bounded

SUP({lisp V so), marl ap, ao J, Xp U Xo) I
(sp,ap,Xp) E e;.lp]p /I (so,ao,Xo) E £;.[Q]p

/lsp =io})

201

<T[PxllyQ]p =	 {(" max{op, oQ}, Zp U zQ U Z) I
3(sp, Op, Zp) E <T!P]p ~ (sQ, 0Q, ZQ) E £T [Q]p.
Zp ~ x ~ ZQ ~ Y ~

s E (sp x II y sQ) ~ Z ~ (~ - (X U V))}

<TIP III Q]p - SUP({("max{op,oQ},X) 13(u,op,X) E <;.[Plp,

(v,OQ,X) E <;.[Q]p. s E Tm"g,(u, v)})

<TIP; Q]p ~ CLo(SUP({(s,o,X) I (s,o,X U {"'}) E q,IP]p ~ '" ¢ ~(s)}

U{(,~(w + '),<>+ t,X) I s~((t,.i)) E Tmas«T!P]p)
~ '" ¢ ~(s) ~ (VI,O,X) E <;'[QjP)))

<;.[P\Xlp - {(s \ x,o, Y) I, i, X-active in <T[P]p

~ 0 = sup{il I3(w,il) E <;.[Plp such that

w is X+a.ctive 1\ w \X = s \X}
~(o<oo ~ (s,XU Y)Efai/«;.lp]p)
V (0 = 00 ~ Y E P(~)))}

where s is X -active provided
s contains no element of the form (t, a) for a E X
(aU communications in X are in the form a).

<;'[f-I(P)]p {(s,a,X) I (f(s),a,J(X)) E fTlp]p}

crlf(P)]p ~ SUP({(f(s),o,X) I (s, O,J-I (X)) E <;.[plp))

<;.Ix]p pIX)

<T!~x.PJp - The unique fixed point of the contraction

mapping A Y • <T[p] (pi W.(y)/Xi), whe<e

W~ is the mapping on TM;s corresponding to
AY. WAlTS; Y.

202

The Semantic Function E.

We now define the semantic function t: : TCSP -+ TMFS ·

Er[.L]p'"

Er[STOP] p '"

Er!SKIP]p '"

Er[WAITt]p '"

Er[WAlTI;P]p '"

Erla~P]p '"

Ey[a;A~P(a)]p '"

ErlPO Q]p '"

Er[pn Q]p '"

Er[n P(a)]p '"

Er[PIi Q]p '"

{((),oo,N)INERSETj

{(o, 0, N) I NE RSET}

((O,O,N) 1.1 j!I:(N)}
U{ (((I, .I)), I, N, U N,) I I ;;> 0 " (l (N d ,:: [0, t) " J j! I:(N,))

" I(N,),:: [I,oo)}

{(O,I,N)INn([I,oo)x{.I})~0)

U{(((t', .I)), t', N, U N, U N,) / I' ;;> t " I (N,) ,:: [0, I)
"(I(N,),:: [I, 1')".1 ~ I:(N,))" I(N,),:: [t',oo)}

{("o,N)I(s-l,o-I,N~I)EErlPJp)

{(O,O,N)jaj!I:(N)}

U{(((I,a))~(s+(I + 8»,0 + I + 8,N) I
t;;> 0 "a~E(N tl»"(s,o,N~(I+8))EErlPlp}

{(O,0,NlIAnI:(N)=0)

U{(((t, a))~(s + (I + 8»,0 + t +8, N) I

I ;, 0 "A n E(N t I) = 0) " (s, 0, N~ (t +8)) E Er [pJ p}

when {P(a) I a E A} is uniformly bounded

SUP({(O,max{op,oQ},N) I ((),op,N) E Er[PJp

" ((),oQ,N) E Er!QJp}
U{(s,o,N) I s # 0" (s,o,N) E Er!pJpUfr[Q]p

" ((), N t b,g;n(s)) E lad(Er!pi p) () la;I(Er[Q] p)})

SUP(Er[P]pUEr[Q]p)

SUP(UErlP(a)]p)

when {P(a) I a E A} is uniformly bounded

SUP({(s,max{op,oQ},NpUN Q)/

(s, Op, Np) E Er[Pip" (s, 0Q' NQ) E Ey [QJpJl

203

I'r[Pxlly Q]p "" SUP{(s,max{ap,aQ},~pU~Qu~z)1

3(sp,ap,~p) E l'r!pJp,(sQ,aQ'~Q) E I'r1Q]p 0

u(~p) <; X II u(~ Q) <; Y II

s E (sp x II y sQ) II u(~z) <; (E - (X U Y))}

where

v X II y w = {s E (TE)' Is E (X U V)" II

srX=vlldY=w}

[rIP III QJp "" SUP	 ({(s,max{ap,aQ},~) 13(u,ap,~) E I'rlp]p

II (v,aQ,~) E I'rlQlp 0 s E Tmerge(u,v)))

[r!P; QI p "" C4,(SUP({(s, a,~) I ,/ ~ u(s) II Ii I E TINT 0

(s,a, ~ U (I x {.I})) E I'dP] p)
U {(s~(w+t),a+t,~, U (~,+t)) I

,/ ~ u(s) II end(~,)" til (w,a,N,) E I'r!Q]p
II (s~((t,'/)),~, U ([0, tl x {.I})) E fail(l'rlP]p))))

[r!P\X]p "" SUP({s\X,iJ,~)13a;'iJ;'end(s)o

(s, a, ~ U ([0, max{iJ, end(~))) x X)) E I'rlp] p}1

[r/r'(Pl]p "" {(s,a,~) I (J(sl,a,j(~)) E I'rlp]p}

I'rlf(Pl]p "" SUP({(f(s),a,~) I (s,a,r'(~l) E I'T[P]p})

I'rlX]p "" p(X)

Er[Jl X • P] p £: The unique fixed point of the contraction
mapping.l Y ol'rlP](p[W,(Yl/Xj), where
W.!" is the mapping on TMFS corresponding to
.l Y 0 WAIT,; Y.

204

Bibliography

[BB89J J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. PRG,
University of Amsterdam, 1989. (draft)

[BC87] A_ Boucher and R. Gerth. A Timed Model for Extended Cdmmuni
eating Processes. Proceedings of ICALP '87, LNCS 267, pp 95-114,
1987.

IBK83J H. Barringer and R. Kuiper. Towards the Hierarchical, Temporal
Logic, Specification of Concurrent Systems. LNCS 207 pp 157-183,
1983.

IBK84] H. Barringer and R. Kuiper. Hierarchical Development of Co'!current
Systems in a Temporal Logic Framework. LNCS 197 pp 35-61, 1984.

[BK184] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Com
munication. Information a.nd Contro160, pp 109-137, 1984.

IBKP84] H. Barringer, R. Kuiper and A. Pnueli. Now You May Compose Tem
pora/ Logic Specifications. Proceedings of the 16th ACM Symposium
on the Theory of Computing, pp 51-63, 1984.

IBKP85] H. Barringer, R. Kuiper and A. Pnueli. A Really Abstroet Concurrent
Model and its Temporol Logic. Proceedings of the 13th ACM Sym
posium on the Principles of Programming Languages, pp 173-183,
1985.

[Bla89] S R. Blarney. TCSP Processes
1989. (to .ppeas)

as "Predicates". Oxford University,

IBM5] S.D. Brookes and A.W. Roscoe. An Improved Failures Mode/Jor Com
municating Proeesses. Proceedings of the Pittsburgh Seminar on Con
currency, LNCS 197, pp 281-305, 1985.

[B'083] S.D. Brookes. A Model for Communicating Sequential Processes. Ox
ford University D.Phil thesis, 1983.

[CR83j J.E. Coolahan and N. Ronssopoulos. Timing Requirements for Time
Driven Systerna Using A ugmented Petri Nets. IEEE Transactions on
Software Engineering, SE-9, September 1983.

[CR85] J.E. Coolahan and N. Roussoponlos. A Timed Petri Net Methodology
for Specifying Real-Time System Timing Constraints. Proceedings of

205

the International 'Workshop on Timed Petri Nets, Torino, Italy, July
1985

[Dal851 N. Dathi. The Pursuit of Deadlock Freedom. Oxford University M.Sc.
thesis 1985.

[DS89] J.W. Davies and S.A. Schneider. Faetorising Proofs in Timed esp.
Proceedings of the Fifth Conference on the Mathematical Founda
tions of Programming Semantics, March 1989. (to appear)

[FG89] M.K. Franklin and A. Gabrielian. A TIV1T1.sjormational Method for
Verifying Safety Properties in Real-Time Systems. Presented at the
10th Real-Time Systems Symposium, December 1989.

[GF89] A. Gabrielian and M.K. Franklin. Multi-Level Specification and Vt.:n".
fication 0/ Real-Time Software. Tbomson-CSF, Inc. Technical Report
89-14, Jnly 1989.

[GLZ881 R. Gerber, I. Lee and A. Zwarico. A Complete Axiomatization of
Real-time Processes. University of Pennsylvania., November 1988.

[Hen88] M. Hennessy. An Algebraic TheOl·Y of Processes. MIT, 1988.

[HGR81] C. Huizing, R. Gerth, and W.P. de Roever. Full Abstraction of a
Real- Time Denotational Semantics for an occam-like Language. Pro
ceedings of the 14th ACM Symposium on Principles of Programming
Languages, pp 223-237 J 1987.

[HM85] M. Hennessy and R. Milner. Algebraic Laws for Nondelerminism and
Concun·ency. Journal of the ACM, 32, pp 137-161, January 1985.

[H083j B.T. Hailpern and S.S. Owicki. Modular Verification of Computer
Communication Protocols. IEEE Transactions on Communications,
COM-31, pp 56-68, 1983.

[Hoo!l5] C.A.R. Hoare.
1985.

Communicating Sequential Processes. Prentice-Hall,

[HR891 J.J.M. Hooman and W.P. de Roever. Design and tJerification in real
time distributed computing: an introduction to compositional meth·
ods. Proceedings of the Ninth International Symposinm on Protocol
Specification, Testing and Verifica.tion, North Holland, 1989.

[HW89] J. Hooman and J. Widom. A Temporal-Logic Based Compositional
Proof System for Real- Time MesBage Passing. Proceedings of PARLE
'89 (2), pp 424--441, LNCS 366, 1989.

206

[Ja.c89]

[Jo082J

[Koy89J

[KR83]

[KSRGA88J

[LM86]

[LS87]

[LZ87]

[LZ88J

[MF76J

[Mi189J

[MP82J

[Me;87J

D.M. Jackson. The Specification of Aircraft Engine Control Software
Using Timed esp. Oxford University M.Sc. thesis, 1989.

G. Jones. A Timed Model 0/ Communicating Processes. Oxford Uni
versity D.Phil thesis, 1982.

R.L.C. Koymans. Specifying Message pa!jsing and Time-Critical Sys
tems with Temporal Logic. PhD thesis, Eindhoven University of Tech
nology, The Netherlands, 1989.

R. Kaymans and W.P. de Roever. Examples of a real-time temporal
logic specificatIon. LNCS 207, pp 231-252, 1983.

R. Koyman.'!, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and
S. Arun-Kumar. Compositional Semant.ics for Real-Time Distributed
Computing. Information and Computation, 79, pp 210-256, 1988.

K.G. Larsen a.nd R. Milner. Verifying a Protocol Using Relativised
Bisimulation. LNCS 267, pp 126-135, 1986.

N .G. Leveson and J.L. Stolzy. Safety Analysi.5 Using Petri Nets. IEEE
Transadions on Software Engineering, SE-13, March 1987.

1. Lee and A. Zwarico. An Algebra of Communieating Time Depen
dent Processes. University of Pennsylvania, report MS-CIS-87-110,
December 1987.

1. Lee and A. Zwarico. Timed Acceptances: A Model of Time Depen
dent Proce.sses. University of Pennsylvania, January 1988.

P.M. Merlin and D.J. Farber. Recoverability of communication pro
tocols - Implications oj a theoretical study. IEEE Transactions on
Communication, COM-24, pp 1036-1043, 1976.

R. Milner. Communication and Concurrency. Prentice~Hall, 1989.

Z. Manna and A. Pnueli. Venjication of Concurrent Progrom.s: The
Temporal Framework. in R. Boyer and J. Moore (eds.) The COf"rEet
ness Problem in Computer Science. International Lecture Series in
Computer Science, Academic Press, London 1982.

A. Merceron. Fair Processes. in Advances in Petri Nets, LNCS 266,
pp 181-195, 1987.

207

[NA88]	 K.T. Narayana and A.A. Aaby. Specification of Real-Time Systems in
Real- Time Temporal Interval Logic. IEEE Real~Time Systems Sym
posium, Huntsville, Alabama, December 1988

[NRSV891	 X. Nicollin, J-1. Richier, J. Sifa.kis and J. VoicoD. ATP: an Alge
bra for Timed Processes. Submitted to IFIP Working Conference on
"Programming Concepts and Methods", April 1990.

[NS89]	 K.T. Narayana and E. Shade. Language Concepts for Real-time Con
currency. The Pennsylvania State University, 1989.

[OH83]	 E.R. Olderog and C.A.R. Hoare. Specijication-07"iented Semantics /07'
Communicating Processes. LNCS 154, pp 561-572, 1983; Acta Infor~

matica 23, pp 9-66, 1986.

(Pet77]	 J.L. Peterson. Petri Nets. ACM Computing Surveys, September 1977.

[Pnu77]	 A. Pnueli. The Temporal Logic of Pmgrams. Proceedings of Founda~

tions of Computer Science, pp 46-57, 1977.

[Pnu86]	 A. Pnueli. Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A survey of current trends. LNCS
224, pp 510-584, 1986.

[PS881	 K. Paliwoda and J.W. Sanders. The Sliding. Window Protocol in CSP.
Oxford University Programming Research Group Technical Mono
graph PRG-66, 1988.

[QF87]	 J. Quemada and A. Fernandez. Introduction of Quantitative Relative
Time into LOTOS. in Protocol Specification, Testing and Verification
VII (H. Rudin, C.H. We,t eds), North Holland 1987.

[Ree88[C.M. Reed. A Uniform Mathematical Theory for Real-Time Dis
tributed Computing. Oxford University D.Phil thesis, 1988.

[Reg89]	 T. Regan. Personal Communication. November 1989.

[Ros82]	 A.W. Roscoe. A Mathematical Theory of Communicat'ing Processes.
Oxford University D.Phil thesis, 1982.

[Ros88.]	 A.W. Roscoe. An Alternative Order for the Failures Model. Ox
ford University Computing Laboratory technical monograph PRG-67,
1988.

[Ros88b]	 A. W. Roscoe. Unbounded Nondeterminism in CSP. Oxford University
Computing Laboratory technical monograph PRG-67, 1988.

208

[RRB6] C.M. Reed and A. W. Roscoe. A Timed Model for Communicating
Sequential Processes. Proceedings of ICALP'86, LNCS 226, pp 314
323,1986; Theoretical Computer Science 58, pp 249-261, 1988.

[RR87] G. M. Reed and A. W. Roscoe. Metric Spaces a.s Models for Real-time
Concurrency. Proceedings of the Third Workshop on the Mathemati
cal Foundations of Programming Language Semantics, LNCS 298, pp
331-343, 1987.

[Sch88] S.A. Schneider. Communication in Timed Distributed
Oxford University M.Sc. thesis 1988.

Computing.

[Sif80] J. Sifakis. Performance Evaluation of Systems Using Nets. LNCS 84,
pp 307-319, 1980.

[SL87] A. U _ Shanker and 5.S. Lam. Time-dependent distributed ~ystems:

proving safety, live ness and Teal-time properties. Distributed Com
puting 2, pp 61-79, 1987.

[SL89] A. U. Shanker and S.S. Lam. A stepwise refinement heuristic for pro
tocol construction. University of Maryland Technical Report, 1989.

[SN89] E. Shade and K.T. Narayana. Real-time Semantics for Shared-variable
Concurrency. The Pennsylvania State University, 1989.

[StQ77] J.E. Stoy. Denotational Semantics. MIT Press, 1977.

[Tan8lj A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[Zed89] H. Zedan. Fonnal Modelling of Distributed Real- Time Systern.s. Dept.
of Computer Science, University of York, 1989.

209

Index of Notation

Notation

Notation on tra.ceti

TE.

in
first
last
begin
end
@

jI
tt
1t

tA
hstrip
S
tstrip
thstrip
(7

~t

lA
\A

'" xlly
III

Tmerge
V

Nolation on refusal sets

TINT
RTOJ(
RSET
I(~)

Page

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

8

8

8

8

I\lotation

begin
end

tt
1t
jl
tA
\A
~t

(7

Nota.tion on fa.ilures

begin
end
jl
it (on times)
1t
(7

~t

i A (on events)
\A
A (A-active)

Notation on processes

traces
fail
stab
SUP
CL"
(7

T
S
:F
f

Page

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

lO

10

210

Notation

Tr
ST
F T
fOT
fT
-
intts

Other notation

i :
rem;

III

;
nl
a:A--..P.. ,
[>

i
,
?
'V
iEI

1 (on untirned processes)
1 (on timed processes)
TE,
TE~
lRSET
liP)
IdPJ
SI(P)

Page

10

10

10

10

10

10

10

10

II

II

12

14

16

19

21

24

24

25

25

28

28

28

28

28

29

Notation

SIripJ
sat
TF
SS
I(P" p.)
El
~, (between processes)
~l (between predicates)
sr (on MT specifications:1
we (to MT specifications)
I;:J (between processes)
I;:b (between processes)
R(s,N)
F(P" p.)
I;:J (between predicates)
sr (on MF specifications)
we (to MF specifications)
e.•
c. V

c?x
c!x
<;;
<;;.
>
5.. ,6

PAR
NET
~

Page

29

31

42

43

49

89

90

95

96

97

99

99

103

104

119

119

120

124

124

124

124

124

124

125

125

133

133

156

211

