
- f"""i'""" "',"'J L:'~G,:::!-JrY

- ."J
, •__.--1

VA"Jl'" UJ\> ~ul)

DATA REFINEMENT IN A CATEGORICAL
SETTING

by

He Jifeng

CA.R. Hoare

Technical Monograph PRG-PRG-90
ISBN 0-902928-68-6

November 1990

Oxford University Computing Laboratory
Programming Research Group
11 K eble Road
Oxford OXI 3QD r' . - , [,,·::'-EEngland ,-..., ~ - - '~" -' - .. ~'.
 I

/' I
,

'22 FEB 200?
,------ -- - -- ---' -

"'" ,"-._' ':.'~~.

O~~oiO

IIIWI~IIIIII
303387005U

M
O

 .
...

'"
tl

O

:
:
1

>
:
-
"

'>
:

~
O
'
~
~

0'

~

...

,
to

..

.
..

.
Q

.
0"

"
;I

l
Q

.

c-
m

E3
c::

O
 ><
 "

'
e.

~.
""""

g
~

~
.0

Q
.

?:
'
~o

o

~
~

~

("

)
"

0
~
3

Cl

og a
c-.

.,,

'" t-<

"
" • 7 ~ ~

("
)

0 ."

'< JJo

;':

@

~

~

~

0 •=

~

~

!l
'• ("
) ;.
 i" •= ~ •

Data Refinement in a Categorical Setting

He Jifeng a.nd C.A.R. Hoare

August 15, 1990

Contents

1 Introduction 1

2 Preliminaries 7

3 Data Re:8neDlent By Natural Transformation 10

4 Data RefineDJ.ent by Simulation 16

5 Language Constructors 24

5.1 Composition 24

5.2 Disjoint Union . 26

5.3 Product 28

5.4 Higher Order Functions 29

5.5 Recursive Programs 30

6 Conclusion 30

1 Introduction

Data refinement is one of the most effective formal methods for design and development of
large programs and systems [6, 8, 11, 12, 15]. Design starts with a grtapg D, whose nodes
are names {b, c, .. , d} of basic types. and whose arrows are the names {p. q, .. , r} of primitive

operations on values of the type. We introdnce the notation Ii to stand for the source node of

p in Dr and P for the target node. A program text over graph D in a language L is tbe text
of any syntactically valid and strictly typed program whose primitive types aIld operations
are named by objects and a.rrows froID the graph D. There are assembled into a program by
means of the constTIlctoIS of the language L.

An interpretation of a graph D is given by a graph morphjsm A, mapping each type names
(objects) of D to a set of mathematical values, and each operation name of D to som~ math

ematical function. The domain of the function Ap is just A(P) and the image is included in

A(p), i.e., the target of Ap. This is becanse A i~ a graph morphism, and so respects type
structure.

A large program can now be designed as an abstract program, which applies mathemati
cal fnnctions to set of mathematical values. In the text of this program, the names b, c, .. ,d
are nsed to denote the types Ab, Ac, .. Ad; and the names p.q, .. ,r denote the functioD6 Apt
Aq,..Ar. Full advantage can be taken of tbe simplicity and generality of mathematics to ensure
correctness of the design.

In the programming language available implements directly all the mathematical concepts
used in the abstra.ct program, this can now be compiled and run directly on a computer, and
no refinement is necessary. More nsuaUy, a general. purpose implementation of mathematical
concepts is impossible, or impossibly inefficient. So it is necessary to select a specialised im
plementation of D, taking advantage of the special characteristics of the particvular abstract
program. Such a concrete implementation takes the form of another graph morphism C, C
maps the type na.Dles of D to bit·pattern which can be held in the store of a computer, and
tbe operation names of D to subroutines which manipulate these bit-patterns. The program
text designed abstractly at the earlier stage is now given this new concrete repr~sentation, so
that it can be compiled and executed efficiently on a computer,

An operation with several arguments can be represented by a simple arrow from a node repre
senting a cartesian product of the types of all the arguments; other arrows from this node to
the nodes denoting types of argnments represent projections both in abstract and in concrete
ipterpretations. A similar encoding is used in sketches [1]. So without loss of gereraJity, the
complexity of mntiple arguments can be ignored.

Dut of course it is esseutial to prove that replacement of the abstract interpretation A by
the concrete interpretation C maintaius the correctness of the program. In data refin~ment,

this is done witb the aid of a coUection n of abstract functions, one for each type-name d of
D. The function nd maps the values of tbe concrete set Cd to the corresponding abstract ste
Ad. Tbe abstraction functions are proved to commute with all the primitive operations p of
D, in the following sense:

To apply the abstract function n Ii after a concrete operation Cp gives the same

result as applyiug the abstrart function n P behre the corresponding abstrad
operation Ap.

This description presuppose that the sets and functions over which C and A range are inclUded
in a homogeneous mathematical space M on which functional or sequential cornpQ!)ition (here

denoted by semicolon) is defined for type-compatible functions. In other words, M j~ a categoTjf.
The commuting principle described in the inset above can thll5 be expresw by tllle algebraic
laws:

nd Cd

nd Ad

Cp; n P n P; Ap

In category theory, the abstract and concrete interpretations are functors from the graph D
to category M; and a collection of functions n which satisfy these laws is called a natural
transformation from functor C to functor A. Tbe lawl! are often abbreviated to the notation

n: C ~ A

or expanded to a. commuting diagram

~

AP --------------------> AP

np "	 p

Cp --------------------> ci
o

In data. refinement, the commuting equation is proved to hold just for the primitive opera
tions p in D. It is then believed to hold also when p is allowed to range over all programs in
some much more powerful progr&mllling language L. The purpooe of this paper is to explore
the condition under which such a belief is valid. It will be shown in later section that these
conditions can be expressed a,s algebraic laws, which must be satisfied by the constructors of
the programming language L.

For this reason, the validity of data r@finement depends crucially on the details of the se
mantics of the programming language L. Here we tak@ an algebraic approach to semantics [4,
18), which matches well to the description of data refinement given above. The semantics is
specified in three relatively independent parts; the first of these is called the inner 3ynfa.r of
the language, and the third is the outer syntax [18] .

•	 A finit@set of names of primitive data types, and the narnes of the o()erations that may
be performed upon them; some of them map on type to another. The set is structured as
a diagram D (a dirut graph), which defines the type constraints of the context-dependent
syntax of the primitive operations of tbe language. This diagram is sinillar in structnre
and purpose to that described above for designing concrete representa.tions for abstract
data. types.

•	 An abgtract interpretation A of the graph D is a function which maps each node name
(type) of D to a mathematical set, and each arrow name (operation) of D to a function
from ih SOllJ'ce &et to its target set. For some languages, the arrows are mapped by A to
partial functions or (in the ca,se of non~determinism) to relations. The image of A can
be made into a category M, by inclnding all type-consistent finite compositions of the
operations. Consistency of syntax with semantics requires that A ~hould preserve the

2

structure of the graph D; in other words, A must be a graph morphism from D to U M,
where U is the forgetful functor from the variety within which M resides to the category
of graphs. La.ter we will need its free. adjoint F .

•	 Tbe syntax and type constraints of the outer language are specified as a heterogeneous
signature E, conta.i.njng symbols for all the construtors of the language (such as sequential
composition, conditional, or recursion), and sorts for its types. The set oC sorts may
themselves be defined by means of the type constructor (e.g., products and disjoint
sum~) in the set E, so that the number of sorts is denumerably infinite. An aJgebraic
semantiC6 for the language is given by a set of equations E governing the COllstructors in
E. This defines a variety V, whose object~ are heterogeneoul:l (many sorted) algebras that
are closed with respect to syntactically consistent application of the constructors of E,
and sati~fy the equation in E; and whose arrows, say h: B C, are E-homomorphisrns
preserving all the constructors of E in the sense that

h(O'B(Xt, .. ,X,,) = O'c(hxt. .. ,hx,,)

Cor all constructors 0' with arity n and all Xi in the carrier of B, where O'B is the inter
pretation of the constructor 0' in the E-algebga B. The variables Xi are constrained to
sorts which :make terms meaningful.

We define the meaning of the langnage in a manner which ta.kes as parameter the interpretation
described in (2). For a given graph D defining the inner syntax and given varlet)' V defining
the outer ~ynta.x, the language is defined as F D, the free category in V corresponding to Din
the category of gra.phs. Subsequently, we may choose an object of V as the target semantic
category M; and then choose a fnnction A from D to M, which is represented as a graph
morphism from D to UM. as deKribed in (2). Then the concept of freene.ss ensure~ that
for any given interpretation A there is an unique homomorphl~m 8A in V which map~ each
program of FD to its meaning in M:

A •
D --------------------> UM

FA

FD --------------------> FUM

8A	 'M

M

where 8 is the adjunction and #: the counil. Since V is a variety, 8A is a denotational Sl:!mantics
in the sense that it respect~ the structure of the language. Thu~ we have preserved the greatest
possible independence in the choice of V, D and finally A.

In all programming languages of interest, there exists a composition operator (denoted here
as pjq elsewhere q • pl. This is always associative and has both a left and right unit. It will
usually be a partial operator, defined only between certain compatible sorts. There sorts play
the same role as homsets in a category. To cu.t a long story short, the composition operator

3

of our programming languages will make each object of the 'o'ariety V into a small category;
(usua.lly with additional structure), and each homomorphism into a functor (which respects
the additional ,lructure); so V itself is a snbcategory of eAT, the categoryof small categories
and functors.

This method of defining a 6emantics for a programming language makes it potisible to use
data refinement as a method of establishing correctness of an implemenh.tion of the whole
language. Suppose a particular choice A : D M is made, which is niaJy abstract and so
easy to understand and use; but perhaps it is impossible or unacceptably inefficient to im
plement directly on a computer. Instead, we propose to implement the semantics associated
with a more de'o'er and complicated concrete interpretation G : D M. This proposal is
accepta.ble if we can show that the two semantics are isomorphic, that is, if there exists a
natural isomorphism from (JC to (JA. In many cases, the isomorphism may be weakened to a
projection, or i. natural transformation, or other e'o'en weaker form of simulation.

Let M be a category CUld let A,C : D UM be graph morphisms, and n C...:. A a
natural transformation. The induced implementation of the whole language is ec. In order to
prove the correctness of the implementation, we need to find a natural transformation called
(In from ec to eA:

8n : (JG ...:. 8A

Consider now the 'o'ariety V = GAT. In this nriety, tbe free category FD is just the path
category over D, which will henceforth be denoted D"'. A simple and familiar induction shows
that n : fJC"':' fJA is also a natural transformation; and so C is a 'o'alid refinement of A. To
prove this, it is sufficient to pro'o'e the commutati'o'ity property of the natnral transformation
just for the small set of arrows of the graph, which is a simple task compared with pro'o'ing it
for alI programs in the language F D. In more formal terms, the adjunction 9 can be extended
to all such natural tranri'ormations by defining

(J+(n: C:.. A) ~ (n: C...:. A)

for all C, A: D UAPin GRAPH, j.e., the same function n (collection of arrows in M) ser'o'es
a.s a natural transformation in both GRAPH and V. We summarise this fact by stating that
the 'o'ariety GAT respeds natural transformation.

Lemma 1.1
Let 1,9 : D -+ E be graph morphisms, and n : I ~ 9 a natural transformation. Then n
is also a natural transformation between functors I'" and g'" where r and g"" are the unique
extentjons of f and 9 on the path category D~.

Proof: DO< and D have the same set of nodes (objects), thus the domaln of n is unchanged.
Consider any path r = Plj .. jP/r in the graph D, one has

f"'rj n r
!Pi.; .. ;!p/r;npj.

n PI; 9Pi.; ···gP/r
n r;g"'r

The language F D described in the pre'o'ious paragraph is a tri'o'al one, in which the only way
of combining programs is by &equential composition. A more interesting and useful language
will ba'o'e means of constructing conditionals, loops, and structured data typES. Consider, for
example, a typed lambda.-calcuJus over a graph D. This can be defined [13] ali the free object
over D in the 'o'ariety GeG of cartesian closed category. The important question therefore
adses, can the programmer in this language safely use data refinement as a program de'o'el
opment technique 1 The answer is DO for natural transformations, but yes fDr certain other

4

kinds of simulation, namely Scott retractions. The proof of this requires us to extend the
adjunction 8 frorrl, jnst functors to all appropriate kinds of simulation in GRAPH. This will
be more complica.ted than before, because a free cartesian closed category usually has many
more objects than the graph D, and 8+n must be defined for those constructed objects as
well. So it is far better to rely on some general theorem that guarantees the ('.xis(..ence of 8+n,
without going to the trouble of finding it in each case. That is the te<:hnical <:ontent of the
rema.iuder of this paper.

The general technique of defining e+ is based on the concept of horizontal composition of
verlical arrows in a 2.category. A 2-category is a category under horizontal composition,
where each of its homsets is also a category under vertical composition [5]. The classic. exam
ple is NAT, the category of small categories, whOBe vertical objects are functors, and whose
\'ertical arrows are natural tram,forma.tions; in this case, horizontal and vertical compositions
ha.ve their usual meanings. Other examples are obta.ined by restricting the arrows of the ver·
tical category to natural isomorphisms, retractions, or other kinds of simulation. A 2-fundor
is a function between 2-categories that respects both vertical and horizontal comp06itions and
identities.

If ee is a 2-category, its thinning ee- is. defined as the subcategory whose objects are
tbe horizontal objects of ee, and whose arrows aN! the vertical objects. If FF is a. 2-functor,
its thinning F F- is defined as the result of thinning its source and target. A i-functor F is
sa.id to respect a certa.in category (for example, natural transformations) if it is a. thinning of
a 2-functor F+. A adjunction < F,G,(,6 > between I-ca.tegories ee- and DD- is said to
Tf'.specl the 2-category ee if F does 50.

The ca.tegory GRAPH can be seen as a thinning of the 2-ca.tegory GRAPH+, whose ver
tical objects are graph morphisms, and whose vertical a.rrows are simulations beiug used for
data refinement. In a similar way the E-variety V can be regarded as a thinning of the 2
category Y+, whose vertical objects are E-homomorphisms, and whose vertica.l arrows are
simulations. In the diagram below, we assume that the 2-functor F+ : GRAPH+ _ Y+,
which maps graph morphisms to E-homomorphisms, and simulation!; to simulations, has the
free functor F as its thinning. The required vertical arrow between ee and 9A is provided by
defining 9+n similarly to ge and 9A as the horizontal compositjon of F+n a.nd the couDit {M,

which is a vertical identity in the 2-category Y+, 50 9+n : fJe:. eA.

--------FA-------->
FD Fn FUM

--------FC-------->

(M (M

e+n 9A

BC M

In general. given a variety V and given one kind of simulation between graph morphisms, if
we can prove

1. GRAPH and V are the thinnings of the 2-category of the given kind of simulation.

2. the free functor F : GRAPH V is respectful

then the adjunction 9 between GRAPH and Y can be extended by defining

B+ Jej F+ •= n, {M

5

where ; is the horizontal composition in V+. Consequently, data refinem.ent based on the
given simulation can be used safely as a program development technique in the language with
V as their outer syntax. In this case we say that the variety V (or the signa.ture ~ together
with the equation E) respects that kind of simulation.

The general wa.y to prove respectfulness of a free functor F is by constmcting the free 2
functor F+ in a ffiCUlner which mirrors the standard construction of the initial E-aJ.gebra. The
construction is complicated by the need to keep account of the object structure, which defines
the sorts of the heterogenerous E-algebra. Usually, there will be many more of these than in
the original graph D. Consequently, FD mnst expressed as a colimit of the follov.ing chain in
the category CAT

V" ~ ~(V) ~ ~'(V) ~ ...

where. is afllnctor from GRAPH to CAT, and ~(D) is defined as the path category over
the graph L(D), where nodes are identified with formal terms 0"(b1, .. ,b,i,) where 0" is a type
constructOr ofarity A: in the set E, and all b, are nodes in D, and whose arrows are identified
with formal tenos 11(PJ., .• ,P,i,) where 0" is a constructor of arity k and all Pi are arrows in D.
These formal terms are considered as quotiented by equations in E. In this case, as the colimit
of the chain, FD is actually the union of the categories ~i(D). The main theorem in section
2 shows that jf to is respectful so is F. Thus the proof task (2) mentioned previously will he
replaced by showing that the functor to is respectful; this greatly simplifies our job.

This paper investigates a series of constructors which enrich the simple programming language
D", including least upper hounds, zero morphisms, coproducts, products or smash products,
and higher function order spaces. Relying on the following fact (lemma 4.3)

IT LI and E~ respect simulations of the kinds 8 1 and E2 respectively, then the
signature E1 U E~ will respect simnlations in 81 n 8~

we can treat each enrichment separately in section 4, so that the proofs apply to the widest
possible variety of languages_

The remainder of this paper is organized as follows. The next section is devoted to presenting
the relevant concepts of category theory, and exploring the cocontinuity of the thinning func
tor. The proofs of the general theorems are postponed to the third section. Section 4 describes
the concept of simulation and investigates a. variety of constructors. We apply the theoretical
results of section 4 to a. selection of constructors in a range of familiar languages in section 5.
The final section suggests a valuable criterion for the design of programming languages.

6

• •

2 Preliminaries

We presume familiarity with the standard notions of category, morphlsms, functor, limit, col
imit and adjunction [14]. For the concept of 2-category, we refer reader to [5], but we shall not
presume familiarity with it. The Bet of morphisms from object :r to object y in category C is
denoted C(:r:, y). We will equate an object with its identity arrow, even in the case of a graph.
We compose morphisms in diagram order: if k E C(:r:,y) and I E C(y,z) then k;l E C(:r:,z).
We write functional application in the conventional way: if I : B -- C and 9: C _ E are
lunolo", and k E B(%,y), then g(l(k)) E E(g(l(%)), g(l(y»).

Let B and C be small categories, 1,9 and h be Cunctors from B to C. Let m 1"":'" 9
and n : 9 -...:.. h be natural transformations

~-------h------->

•
B --------g-------> C

m

--------/------->

The vertical composition (m; n) : I"":"" h is defined by

m;n i.;! ~b.(mb;nb)

Note that functor 1 is a vertical object, a.nd the associated identity arrow is 10 :I:.". 1 where
10 is the object function of I. 1 and ! will denote the target function and SOUTee function in
the vertical composition.

Given functors and natural transformations as below

~-----h-----> --~---h'----->

B - - - - - -g - - - -- > C - - - - - - g' - - - -- > D ,
m m

- - - - - - / - - - -- > - - - - - - I' - - - -- >

the horizontal composite (m ; m'): (/; /)....:.". (g;g') is defined by

m; m' '# Ab.(m'(lb);g'(mb))

We now summarise a Cew familiar Cacts about N AT. If I D(C) ; C -,> C is the identity functor
for the category C, and its restriction to objects ld(C)o : ld(C):,. Id(C) is the identity
natnral transCorma.tion oC that functor, one has

m; fd(Clo = m
Id(C)o; m = m

Each category C will be caJ..1ed a horizontal objecl, and I d(C)o will be called the horizontal
identity in the 2-ca.tegory NAT [14].

The composition ; and ; in NAT are readily S~n to be a5sodative. Moreover, they are
related by the interchange law

(m;n); (m'in') "" (m; m');(n; n')

7

Let CC and DD be 2-categories. A 2-functor / /: CC -+ DD sends objects of CC to objects
of DD, arrows of CC to arrows of DD, pretierving source and target and all 1;ypeti of identity
and composition. A 2-natural transformation {1 : / /:.. gg : CC -+ DD assigns to each
horizontal object:l: of CC an arrow {1(z): //(%) -+ gg(:I:) in DD, which is not only natural in
the ordinary sense that, for any vertical ohject p : % -+ y, we have

ff(p); Pig) = p(r); gg(p)

but also 2~nat\lral in the sense that, for each vertical arrow m: p":'" q where p,q E CC(%,V),
we have

ff(m) ; Pig) = p(r) ; gg(m)

We will use EE to denote the 2·category with horizontal objects aJ.l small 2-categories, and
vertical objects all 2-functors and luTOWS all 2-natural trandormations bet-ween them. We
define a thinning functor from EE to N AT, and show that this preserves the colirnit of the
right chain in EE. This is needed to ensure that the thinning of a free 2-adjunction is a free
adjunction.

If CC is a smaJ.l 2-category (an object in EE), its thinning CC- is defined as the subcat
egory whose objects are horizontal ohjects of CC, and whose arrows are the vertical objects.
I{ / / : CC DD is a 2·functor (a vertical object in EEl, its thinning f f- is defined as
the result of Hinning its source and target. Similarly, a 2.patural transformation is mapped
to an ordinary one in NAT. It is clear that JJ- : CC- -+ DD- is a functor. A functor
f: CC- -+ DD- is said to be respectful if it is the th.inning of a 2-functor f+ : CC -+ DD.

Let hh : NAT -+ NAT he a 2·functor. Suppose that a family of inclllBion (unctor9 {incI(C) :
C - hh(C) 1Ci.sa.smallcategoryJ ill a 2-natural transfonnation from thejdentity functor to
hh. Consequently, for any small category C there is a right chain in NAT

C ~ hh(C) ~ hh'J(C) ~ .-.

where in; J.~ hhi(incl(C)) is an inclusion functor. In this case, the coUIll..it of the chain,
denoted by Limihhi(C), is a.ctuaJ.ly the union of the categories hhi(C)

L;,n,hh'(C) = Uhh'(C)

For any functor f,g : C -+ D and any natural trapdormation n: / ..:... g, one has the foUowing
commuting diagram

Limihhi(C)

C - - - - > hh(C) - - - - > hh'(C) - - - - >

n hh(n) hh'(n)

D - - - - > hh(D) - - - - > hh'(D) - - - - >

Lim;hh'(D)

We define Lim,hhi(n) a6 the mediating arrow from the coUmit Lim;hh'(C) to the cocone
Lim;hh'(D), i.e., for aJ.l k ~ 0

hhl;(n); tD. = te. ; Limihhi(n)

8

where te" : hhk(C) --+ Lim,hh'(C) and tD" : hhk(D) --+ Lim;hh'(D) are inclusion functors. It

is easy to show tha.t Lim,hhi is a 2-funclor defined on NAT

When h : CAT --+ CAT is a functor, and the family of indnsion functors indc :C -. h(C) is

a natural transforDlation from the identity functor to h, the colimit Lim,h' can be defined in

the same way as L1m;hhi •

The following theorem tells UB that the thinning operator is a cocontinuous fundor.

Theorem 2.1 Lirn;hh' = Lim.(hh-)'

Proof: Direct from the definition of the thinning operator.

9

3 Data Refinement By Natural Transformation

A graph of primlthe types a.nd opera.tions would be a. very primitive language, which offers
no method at all of combining built-in operations into useful programs. The introduction of
it. constructor denoting composition greatly increases the power of the language, since it per~

mits operations to be assennbled into sequences. We will use :E to denote an arbitrary set of
constructors one of which is composition. Without loss of generality, we also assume that the
identity constrll.ctor is in E. If a is it. constructor (binary, say), then u(x,y) is taken as the
text formed from texts x and y separately by commas, prefixed by a and open bracket, and
terminated by close bracket.

A E.category is defined as it. sm<ill heterogenerous E-aJ.gebra.. One of its sorts is the set of
all its objects. The remaining Borts are identified with a homset, i.e., a pair of objects. Each
object is either a node in the graph or built from nodes by the means of the type constructors
in E. All constrnctors in E are in principle indexed hy the homsets of their operands and
results. All terms of the algebra can therefore in principle be checked for type consistency.
The carrier of a E-category is defined in the usual way a.s the smallest set containing all con
stants denoting each object and arrow in the graph, and dosed with respect to syntactically
consistent application of the constructors of E. For a given E-category M and any constructor
a of E, aM will stand for the interpretation of a in M.

Let M and N be E-categories. A E-homomorphism h : M --; N is a function on the car
rier sets which preserves all the constructors of E in the sense that

haM(:rI, .. ,:rIr.) = aN(h:rI,··,hxn)

for ill a E E and Xi in the carrier of M. Since the compositIOn is included in E, a ~
homomorphi~m also preserves composition, and therefore is a functor in t.he usual sense. We
shall be particularly interested in cases where aM is a function on M, who~ defining properties
are expresBed by categorical concepts; for example, it may be an endorfullctor, or a natural
transformation. The variables Xj are (implicitly here) constrained to sorts whkh makes these
terms meaningful.

A ~-variety IS defined as a category V whose objects themselves ~-categories, and whose
arrows are E-homomorphisms. Since ~_homomorphisms are functors, a E-variety is a sub
category of CAT. A E-variety is nsuaHy defined by a set of equational laws governing the
constructors of E, Oond its objects are just those ~-categories in which the law5 a.re valid. CAT
itself is a ~.variety, with composition and identity as the only members of E, and familiar
axioms of category theory as equations. Cartesian dosed categories form another variety, with
product and exponential endofunetors serving both as 50rt constructors and operators of E.

Let ~ be a set of constructors in a programming language. A representation of E is a pair
(~,H), with ~ a functor from GRAPH to CAT, and for ill ~.categories M, 11M a functor
from ~(UM) to M where U is a forgetful functor from the variety If to the category GRAPH,
such that for all graphs D,E and graph morphisms f: D....., E.

1.	 ~(D) i; the path category over the graph ~(D), whose nodes are identified by a(~, .. ,b,,)
wheref1 is a type constructor of arity k in the set E, and all b; are nodes in D, and whose
arrows are identified by a(PJ, .. ,Pk) where a is a constructor of arity k and all P, a.re arrows

in D.

2_	 (~J)l7[PI, .. ,Pk) = l7(JPI' -·,JPk) for a E ~ and p, ED.

3. aM(PJ, .. ,Pk) = HM(a(PI, .. ,Pk)) for a E E and P, EM

10

E is said to be representable if such a representation exists. In this case 4i is called a represen
tation junctor of :E. Since E contains the identity constructor, there is a right chain for any
graph D

D'" ~ 4i(D) ~ 4i 1 (D) ~ ..

where in; d.;l4i;(incl(D)) and ind(D): D'" 4i(D) are inclusion functors. ---t-

E is said to be respectable if the representation 4i is n!spectful.

Let (4i,H) he a respectful repre6entation of E. Define

F	 d:;j Lim;4i;
fig; >.D.tD

'o(M) d~ Id(M)

£1<+l(M) d~ 4>(,,(M));HM lor k ~ 0

where tD is the inclusion functor from D to lJF(D).
Lemma 3.1 {£I«M) I k ~ O} is a cocone of the right chain

M ~ 4i(UM) ~ 4i'(lJM) ~

where in; d.;l4i'(ind(M)) and incl(M): M -+ 4i(lJM) are inclusion functors.
Proof: From the definition of HM it follows that for all P E M

P :=	 HMP

(ind(M); HM)P

which implies £o(M) = inO;£l(M).
Assume that £i: = inl<;£I<~:(}-f), one has.

£1<+I(M)	 4>«.(M»;HM

4i(ini:; H+l(M)); HM

4>(in,); 4>("~+lIM)~; HM

ini:+l; £i:+l(M)

This completes the proof.

Define
£ d.J! >.M.[co, £}, ••]

where [co, £1> .•J is the mediating morphism from the colimit Limi~i(UM) to the weone {(i: I
k ~ O) satisfying for all inclusions tMl : 4i1« lJM) -+ Lim;4i'(UM)

'M,; ['o(M)",(M), ..J = ,,(M)

Now we a.re going to show that < F, U. 0, (> is a respectful adjunction.

Lemma 3.2 F is a. respectful functor from GRAPH to the variety V.

Proof: Here we first wish to prove that for any graph morphism I : D ---t- E, FI is a E

homomorphism. Let rY he a constructor of arity k, and PI, .. ,Pi: are arrows in D

F!(a(p" .. ,p,))

4>(/)(a(p" ", p,)

a(/p" .. ,!p,)

a(F!Pl, .. ,F!p,)

II

When PI, .. ,PIt are elements in ()'(D), onE' ha5

F !I_("" ",p,))

~'+>U)(-(p" ", p,))

-WIJ)"" ", ~'U)p,)

-IF!p" ",F!p,)

From the definition of F and theorem 2.1 one concldes that F js respectful.

Lemma 3.3 ((M) : FU(M) -- M is a functor.

Proof: Since all (,,(M) are functors, so they are the vertical identity in the 2-category NAT.

The conclusion follows from the fact [14] that the horizontal colimit of vertical identities is a

vertical identity.

Lemma 3.46: Id __ UF is a natural transformation.

Proof: For any I : D __ UM one has

!;~ !
l;tuM {f ,D ~ UM and de! o!~}

tD;UFI {d,! o! F}

= ~ !;UF! {f ,D ~ UM and d,! o!~}

Lemma 3.' !(UM); U,(M) = Id(UM),
Proof:

LHS

'UM; ['o(M)",(M), ...] {del 01 6 and (}

,,(M) {d,! o! If,g, ..]}

RHS (d,! o! ',1M)}

For any graph morphism I : D --t UM define

O! ';f F !;,IM)

Lemma 3.8 fJ is an injection.

Proof: Here we want to show that for all graph morphism5 I : D ...-,. UM

! = ~ !;U(OJ)

This can be shown as follows

~ !;U(OJ)

~ I; UF/; U,(M) {d,! o! OJ

!;' !; U,(M) {lemma 3.4}

!;'(UM); U,(M) {f,D~ UM}

! {lemma 3.5}

~ow it is easy to see that fJI = 8g implies 1-= g.

Theorem 3.1 < F, U, 6, f. > is a respectful adjunction provided i1i is respectful.

12

Proof: We wa.nt to show that for any !:-rl1orphism h : F D M, there exists f : D _ U M
such tbat

h =Of

Define 1 Ii.;! tD; U h. Then we wish to show that

~;(f); li = t,; h

where l, : (l'(UM) -+ M abbreviates li(M), and ti : (li D --+ F D stands for the inclusion from
~"D to FD. When i = 0 one has

LHS

f;Id(UM) (d'f of ,,(M))

~D;Uh {def of f}

RHS {t, = tv}

Proceeding ind ucti vely, for a.ny constmctor (1 of arity It and all P1, .., Pic E (In (D)

hCT(PI, .. ,plc)

(1M(hpl, .. ,hp,,) {h is a !: - homomorphl,m}

HMO(hP1, .. ,hplc) {d'f of HM)

HMO((""(f); ,,)1'1, .. (""; ,.),,) {induction hypothesis}

HM"'(""(f); ,.)o(p" .. ,p,) {delining property 01 ~)

(01' (,,); H..,)(01"+'(1)0(1'1, ..,p,» {(l is a lunctor)

(~n+t(f);ln+l)(1(PI, .. ,p,,) {In+l ~ ~(ln);HM)

So we deduce
(l".lU); In+l = tn+l; h

On the other hand~ we know that (o! aJ.l i ~ 0

t;;81

t,; (F f;,(M)) {def of 0)

to; Limi~'(f);l(M) {d'fof F)

""(I);t,;,(M) {d'f of L''''iol'i(f))

""(1);,,(Mj {d'f of ,(M))

""(1);" {d'f of ,,}

By the universal property of the colimit it follows that

h = Of

Furthermore, from lemma 3.6 we conclude that 8 is a bijection.

For any natural transformation n : 1~ g, define

F+ Ii;! Lim,(~+)'

8+n Ii.;j F+n; l(M)o

where 41+ is a 2-functor whose existence is postulated by the respectfulness o(41, and l(M)o :
l(M)"':" l(M) is the identity natural trans(ormation on l(M).

13

Theorem 3.2 9+n: 6f ...:. 8g
Proof: From t.he definition o(the vertical composition in the 2-category NAT, one has

16+n

I F+n; I «M)o {def of ; ;n NAT)

F+(I n); I «M)o {p+ i.'J a 2 ~ Iunctor}

F+9;«M) {d'f of nand «M),)

F9;«M) {F i.'J the thinning Df P+}

99 {d'f of 9)

In a. similar way one can show that! 8+n = 8f.

In the remainder o(this section we will deal with natural trandormations. It will be shown
that they Me respect(ul; Le., they have a respectful representation (4), H).

Let m : hI ...:. k'l be a natural transformation constructor, where hi and h2 a.re endofunctorial
constructors, and their meanings are specified by cova.riant endof'unctor hi and h z respectively.
The interpretation o(mis given by a natural transformation m : h1 ...:. h2 • Suppose that all the
constructors but the composition in L are endo(unctors or natural tranmormations between
them. Then ror any graph D. E(D) will be the graph with each node identified by h(~, .. , bit)
where h is an endo(unctorial constructor of arity k in L, and b1 , •• , bit are all nodes in graph D,
and with each arrow identified by a(Pl' .. ,p",) where 0 is a constructor o(arity k in L and all
Pll"'P'" all are arrow!> in D. The target and eouree (nnction in the path category over L(D)
is defined as usual, for example, one has

(mb) = h2 b

(mb} = hlb

(hp) = h(P)

(hp) = h(P)

Finally come5 the main result o(this section.

Theorem 3.3 The set o(natural transformation constructors between covariant (unctors has

a respectful representation (~, H).

Proof: For any graph morphisrns f,g : D --+ E and any natural trandormation n : f ...:. g,

define

~+(n}h(bl, ..,blt) ~ h(nbl,.·,nblt)

Consider th~ cases:
(1) C1 is a covariant endoCunctorial constructor h

"'(J)h(P" ··,P.); ",+(n) h(PI P.)

~(JP"'" fp.); ",+(n)h(p;, p;) {d'f of "')

h(fPl • •. , fp",)jh(n Pi, ", n Pi) {d'f of ",+)

h(fPl j n~, .. , fp",jp,.) {h i.s a functor)

h(n Pi ;gPit .. , n p;.; gp",) {n,fC,9)

",+(n) ~(P,:-::,P');"'(9)h(p" .. ,p,) {by a mirror argument}

(2) a is a na.tural transformation m: hi ...:. h2

"'(J)m(bl b.);"'+(n) m(bl~.,b.)

[4

>n(fb" ", fb,); ~+(n)h,(b" .. ,b,)

m(~l' .. ,nd..I;);h2(bt, ..,b.l;)

It)(nbtl .. , nb:1); m(nb1 • •• , nb/o)

o)+(n) m(b~" b,); ~(g)m(b" .. , b,)

(3) rr is the composition constructor;

~(f)(p,; p,); ~+(n) (P1-;-p,)

(fp,;/p,);np;

fPti n P]i9P2

n P1;9Pti9Pl

~+(n)(p;;p,);~(g)(P1; p,)

{d'f of ~)

{d'f of ~+)

{m ; h, -'. h,)

{by a miTToT aTgument)

{d<fof~)

{n;f-'.g)

{n;f-'.g)

{d'f of~)

So 4>+(n) is really a natural transformation from ~(f) to iIl(g). It is routine to check that 1)+

respects horizontal and vertical. compositions of natural transformations. Therefore ~ is the
thinning of 2-func'tor 1)+.

15

4 Data Refinement by Simulation

In program de\'elopment, it is not neceSSilTY to insist on absolute identity of the effect of the
[oncrete and abstract programs. It is certainly enough to require that the concrete program
is better than \he abstract one in all releva.nt respects, and in aJl contexts of UBe. We there~

fore introduce a preorder c;;: into tne homsets of the ma.tbematical categories, to denote its
right operand is an improvement on the left operand (which must have the same domain and
eodomain). In the mathematical theory, t;;;: is an arbitra.:ry preorder, and may be interpretated
as any kind of improvement. To eIUiUrc that the improvement is maintained in all contexts,
we postulate that all operators, constructors a.nd functors under cOD8ideration are monotonic.
As osual, =: denotes the equivalence induced by the preorder.

Let M be a Bmall category in which for each pa.ir (b,c) of objects M(b,c) is a preorder,
and moreover the composition; is monotonic, Define M M ali the collection of all pairs (p, q)
of elements p,q of M with p!;;;; q. It is well known that MM is a 2.category. The horizontal
comp06ition j in M M is defined by

(p,g); (",) '1 (p;"g;,)

provided that p=q=r='; in M.

The vertical composition; is defined by

(p,g); (g,') 'j (p,,)

Both definitions are valid since!; js a preorder and the composition; in M is monotonic.
The compositions; and ; are readily to be associative. Moreover, they are related by the
interchange law

((p, g); (g,,)); ((p',g'); (q',.')) = ((p,g); (P',if»; I(g,,>; 10',,'»

Now the commuting equa.tion defining natuality can be replaced by an inequation, expressing
the superiority of the concrete functor. This can be done in two different ways, leading to two
definitions.

Let /,9 : L -+ M be functors, an up-simulation u is defined a.s a transformation from /
to 9 such that

ub; Ib ~ gb for all objel'.ts b in L

u p;gp!; /p;u P /0.,. all elemenb pin L

It will be denoterd u; / < g.

A down-Mmulation d is defined as a transformation from 9 to / such that

db; gb ~ Ib for all objed3 b in L

gp;dP!;;;;d P;/p / Q1' all element3 p in L

It will be denoted d: 9 > /. clearl)', a ~atural transformation n f ---:.... 9 is both an up
simulation a..nd a down-simulation from / to g.

One way of combining the two definitions is in lhe definition of a totlll simulation, this is
a pair (d, II), where

16

2. d is a down-simulation from 9 to I.

3. db; ub = gb a.nd ub; db C. Ib for all objects b in L.

It will be denoted (d,u): I -t g.

The following lemma shows that each component of a total simulation uniquely determines
the other, up to equivalence.
Lemma 4.1 Ld (d, u) and (if, u') be (otal simulations from I to g. Then

d == tf ill u == u'

Proof: Assume d == if. For any object b one has

ub

ubi9b

ubi (d'b; u'b)

ub;db; u'b

!;;; Ib;u'b

u'b

The proof that u'b !; ub is similar. The proof of the reverse implication is similarly similar.

Let (d, u): I -t 9 a.nd (e, v): 9 -t h be total simulations. Define

(d,u);(e,v) ~;f (e;d,u;v)

where e;d ~ Ab.(eb;db) and u;v ~ AC.(UC;vc).

Lemma 4.2 (e;d, u;o) is a total simulation from I to h.
Proof: For all elements p in L one has

hpj (e;d) P
hp;ep;dP

!;;; e P;gp;d P
!;;; e P;dP;lp

(,;dj P;lp

{d'i 01 d; u}

("h>g}

(d;g>!l

(d'i 01 ';d}

In the similar way we can prove

(u;v) P;hp [; Ip;(u;v) P

Moreover we have

(e;d)d;(u;v)b

eb; db; ub; vb {del 01 u;u and e;d}

eb; gb; Db (db; ub = gb}

eb; vb {gb is an identity}

hb (,b;vb=hb}

17

(u;v)b;(u;d)b

ub; vb; eb; db {de! of u;v and e;d}

!;; ub;gb;db {vb;eb[,::;; gb and; i~ monotonic}

ub;db {gb i.!l an identity}

!; fb {ub;db!; fb)

So (e;d, u;v) is a. total simulation from f to h.

Given functors and total simulations as below

------h------> ------h'-----~ >

L (d, u) M (d', ut
) N

------f------> ------t------ >

the horizontal composit.ion (d, u) ; (d', u') is defined by

(d,u); (d',u') '2 ()'b.h'(db);d'(fb).),b.u'(fb);h'(ub))

Lemma 4.3 (d,u); (d',u/) cis a total simulation from j;t to h;h'.
Proof: Similar to lemma 4.2.

Because neither the collection of total simulations nor the collection of up(down)-sirnula.l:ions
6atisfies the interchange law, they are not 2-categorie5. ThereCore we need to modify the results
in the previous section to take this into account: we develop a theory of quasi 2~cate90ry which
characterises the mathematical properties of simulations. By a quasi 2.category is meant a.
collection of arrows with two different compositions; and ;, in which every identity arrow for
the first composition is also a.n identity for the second composition. The interchange law is
weakened to a.n inequation. From the previous lemmas we know that 81M U, the collection
of all total simulations, is a quasi 2-category. It is also ohvious that the collection of down
simulations and the collection of up-simulations are quasi 2·categories as well.

Let QC and QD be quasi 2-categories. A quast~functor qf ; QC -- QD sends objects
of QC to objects of QD, arrows of QC to arrows of QD, preserving source and target and all
types of identity and composition, In a similar way to section 3 we can define the thinning
category QC-, a.nd the thinning functor qf-. A functor I: QC- _ QD - is said to be re
spectful if it is the thinning of a quasi 2-functor f+ : QC -+ QD. If QC a.nd Q D are categories
of total simulations (down-simulations, up-simulations) f is said to respect total simulations
(down-simulations, up-simulations). It is easy to see that theorem 2.1 still holds in the case of
quasi 2-categories.

A E-preordered category is a E-category whose homsets are endowed with preorders, and all
operators in E are monotonic. The equatious E may include inequations as well as equations.
As for natural transformation constructors, we can define up-simulation and down-simulation
and total simulatjon coustructors in a E-preordered category N by the inequations that they
satisfy

9N(P);dN P!;N dN P; hN(P) faT all dements PEN

UN P;9N(P) !;N hN(p);u P lOT all element8 PEN

dNb; uNb =N 9N(b) for all objects b of N

uNb;dNb t;;N IN(b) for all objects b01 N

18

where dN and IJN are the interpretations of d and IJ in N, and!;;N IS the preorder defined on
the homsets of N.

A E-proordered vo,.ieLy is defined as a category V with E-preordered categories as its objects,
and with monotonic E-homomorphlsms as its arrows. Since E-homomorphisms are functors,
a E·variety is a tmbcategory of CAT.

E is said to respect total simulations (down-simulations, up-simulations) if its representation
functor ~ doe; so, i.e., ~ is a thinning of quasi 2-functor ~+ defined on the qn;u;i 2-category of
total simulations (down-simulations, up-simulations). In this case, following tbe same approach
presented in the previous section we can construct a respectful adjnnction < F, U, b, £. >. It
indicates that the introduction of constructors of E into a programming languagemmaintain
validity of total simulation (down-simulation. up-simulation) as a data refinement rule_

In the rest of this section we are going to investigate a nnmber of language constructors
and work out their respectful representation. The following lemma enables us to treat them
individually so tha.t the results apply to various kinds of language as far as the validity of
simulations in data. refinement is concerned.

Lemma 4.4 If E 1 and E2 respect simulations of the kinds 51 and 52 respectively, then the
signature E l U E:2 respects simulations in 51 n 52'
Proof: Let (~l, HI) and (~". H2) he the respectful representations of E1 and E2 respectively.
It is obvious that the union set E l U E2 is also representahle by the pair (~, H) deftned as
follows

<I>(D) ';/ (E,(D) U E,(D))"

<I>(/)"(p,,»,Ph) ~ ~,(f)a(pt, ··,P"J if a E Eo

HM(a(PI,,·,Pk) ';/ (H;)M("(P" .. ,p,)) if a E E;

Define for any simulation (E 51 U 52

<I>+(t)b '~ <I>;(t)b ;fbE E;(D)

Because both E1 and E2 respect simulation t, so ~t(t) and ~j are the extention s of the
simulation 1 in the categories ~1(D) and ~2(D) correspondingly. From the definition of ~+ it
follows that ~+(l) is the extention of t in the category (E1(D) U E2(D»*.

Lemma 4.5 If E 1 and E" respect simulations of the kinds 51 and 52 respectively, then th.e
s;guature 1:1 n E" respects simulations in 51 U 52'
Proof: Dual to lemma 4.4.

Similar to a natnral transformation, a down-simulation (or an up-simulation or a total simu
lation) defined on graph (D, !;;;D) can he seen as a down-simulation (or an up-simulation or a
total simnlation) on the path category (D*. ~iJ) where !;;iJ is defined as the minimal binary
relation satisfying

1. P !;;;iJ P

2. P ~iJ q, q ~D r implies p !;;'D r

3. P !;;;D q implies P !;;;h q

4. p!;;;iJ q, rI;;;o sand P=r implies (p;r) ~D (q;s)

19

Theorem 4.1 Composition respects all kinds of simulation.

Proof: Similar to lemma 3.7.

Now let us examine down-simulation constructors.

Theorem 4.2 Do'Nn-simulations respect up-simulation and total simulation.

Proof: Lel A,e : D E be functon <Ul.d d : A > C a down-simulation. For any object

h(~, .. , bJ,) in ~(D) define

ot+(d)h(b"",b,) ~ h(db"",db.)

Now we are going to prove that ~+(d) : ~(A) > ~(C).

(1) (1 if; an endofunctorial constructor h.

ot(A)h(I", ", ..); ot+(d) h(I", ", ..

h(Ap" ", A..); ot+(d)h(P;, .. ,Pi) {d'f of ot)

h(Apl • .. , Ap.); h(d P;, .. ,d Pi) {d'f of ot+)

heAp,; d P;, ", Ap,; d Pi) {h isd a functor}

!; h(dPi;CPJ., .. ,dP;jCp.) {d'A>C)

lJ+(d) h(p·:::.,P.); ~(C)h(PJ., .. ,Ple) {by a mirror argument}

(2) (1 is an. up-simulation constructor m : hI < h'J.

ot(A)m(b" ." b,); ot+(d) m(b,-;"b,)

m(Ab" ", Ab,); ot+(dlh,(b" ", b,) {d'f of ot)

m(d P;, ", d p,); h,(db" ", db,) {d'f of ot+)

!; h'J(dht, .. ,db.): m(d P;, .. ,d p;) {m: hi < h~}

~+(d) m(~, .. ,b.);lJ(C)m{ol, .. ,b.) {by a mirror argument}

(3) (1 is the composition constructor ;.

ot(A)(1"; ",); ot+ (d) (1"7",)

(AI";A",);d p; {d'f of ot)

(;; API; d P2; CP'l {d,A>C}

~ dPt:CPJ.jCP'l {d'A> C)

ot+(d) (p;;-",); ot(C)(p,;",) {by a mirror argument}

From theorem 4.1 it follows that ~+(d) is a down-simulation from ~(A) to ~(C).

If (d, u) is a total simulation frorn C to A, define

ot+(d)h(b"",b,) ~ h(db"",db.)

~+('l)h{o},.. ,o.) J;! h(ubt, .. ,ubn)

Because h is a covariant functor we have

ot+(d)h(b" .. , b,); ot+ (u)h(b" .. , b, I

h(dbt. .. , dOle);h(ub l , •• , 'lb.)

h(db l j ub1 , .. ,dble ; 'lbll,)

h(Ab" ..,Ab,)

ot(A)h(b" .. ,b,)

{d'f of ot)
{h i~ a functoT}

{(d,u),C- A)

{d'f of ot)

20

~+(u)h(b" "", b,); ~+(d)h(b" '" b,)

h(ub" .. , ub,); h(db" .. ,db,) {d'i o/~}

h(UbI; dbt , ", ubl:i dbk) {h is a functor}

l::: h(Cb" .. ,Cb>l {Cd, u); C _ A}

~(C)h(b" .. ,b,) {d'lo/~}

Moreover, the previous argument shows that 4t+(d) : ll>(A) > 4t(C). By appealing to lemma
4.1 it follows that (41+(d), ~+(u» is a total simulatiou.

It is routine to check that 1)+ preserves horizontal and vertical compositions of down-simulations.
Therefore 41 is the thinning of a quasi 2-functor 41+.

The following theorem is dual to theorem 4.2.

Theorem 4.3 Up-simulations r~pect down-simulation and total simulation.

A covariant natural tra.nsformation can be regarded as both a down-simulation and an up

simulation. From lemma 4.5 it (OUOW5 that it respects all kinds of simulation.

Theorem 4.4 Covariant natural transformations respect all kinds of simulation.

Let us now consider a function h which satisfies the distributive law:

hp: h p-+ h p
h(p; q) : hp; hq

Because distribution of h through composition reverses the order of the operands, it is known

ali a contravariant fundor.

Theorem 4.6 Contravariant functorial constructors respect total simulation.

Proof: Let (d, u): C -+ A be a total simulation. Define for any contravariant functor h

~+(d)h(b) ';1 h(ub)

~+(u)h(b) ';1 h(db)

Then one has

~(A)(hp); ~+(d) hp

h(Ap);~+(d)(h P} {d'lo/~}

h(Ap);h(u P) {d'i 01 ~+}

h(u P;Ap) {h is contravariant}

<; h(Cp;up) {u;C<A}

~+(d) ;;;;;~(C)(hp)

~+(d)hb; ~+(u)hb

h(ub); h(db) {d'i 01 ~+}

h(db;ub) {h is contravariant}

h(Ab) {Cd, u) ; C _ A}

~(A)(hb) {d'i o/~}

~+(u)hb; ~+(d)hb

21

h(db);h(ub) (def of <)+}

h(ub;db) {h i~ wntravariant}

~ h(Cb) lid, u) ; C _ A}

<)(C)(hb) {defof <)}

From lemma 4.1 it follows that (It+(d), 4J+(u)) is a total simulation.

Theorem 4.7 Contravariant natural transformations respect total simulation.
Proof: Similar to theorem 4.6.

Let f : L -+ M and 9 : M --+ L be covariant functors. We define a junction as a weaker
fonn of an adjunction, which does not need to be a bijection. A n'ght jundion 0 from f to 9
is a function of three iUKUmentsj the first is an identity in L, the second is an identity in M,
and the third an arrow in L. The result of e is a.n arrow of M. More precisely, if q : b -+ gc
in L then 9btq: fb -+ C in M. Furthermore, e satisfies

1. e pt; (pjq) = Iv;E> pq q for all p, q in L of appropriate type.

2. e qr (q; gr) = (9 i"'r- q); r for all q in L and r in M of appropriate type.

Having defined a preorder in the homsets of the categories L and M, the above equations
can then be repla.ced hy inequation.s. A right-down.junction ado",7O from f to 9 is a function
pos6e5sing the following properties:

1. Iv; 9down pq q !;;; 9 dow7O pq (p;q)

2. 9 do"," 'qr" (q; gr) !;;; (9d0107O 'q-r q); r

A right-up-junction 9 up from I to 9 satisfies

1. 9"p 'Pi (p;q) !;;; IPi9up pq q

2. (9 ..p iT q);r !;;; 9"p qr (q;gr)

It is clear tha.t a right junction 9 is hath a right-up-junction and a right-down-junction.

The concept of a left jundion ~ from 9 to I is dual to that of a right junction. For any
arrow q: Ib- c in the category M, ~bcq is an a.rrow in L with b as its source, a.nd with gc
as its target. ~ satisfies

1. 'l' q, (q; ,) = ('l' q, q); g'.

2. 'l' p, Up;q) = p;('l' pq q)

In analogy with what we did for right junction, we can definea 50-called left-down-junction
and left-up-junction. the former satisfies

1. p; ('l'"",_ pq q) b 'l',=_ p, Up;q)

2. "d""'" qr (q;T) !;;; (~down qr q);gr

The la.tter possesses the following properties

1. 'l'.p pq (fp;q) ~ p;('l'.p PO q)

2. (~"p qf: q);gr !;;; ~"p qr (q; T)

22

The introduction of jnnctional constructors into a programmlng language maintains validity
of simulations as shown below.
Theorem 4.8 Down-junctional constructors respect up~simulation and total simulation.
Proof: Let u be an np~simulationfrom C to A. Define for any right-down-junction 8 d""," from
f to g

-~ .1.4
~+(u) 8dour",bcp = uc

- .I.e}
~+(u) e"""",bq> = fub

Then one has

~+(u) e'::bep;~(A)(e"",,,.bq>l
f(ub); ed~.(AbAeAp) {def of ~+}

~ 8donun(CbAc(vb;Ap)) {the property (1) of right - down - junction}

i; 0"'w.(CbAe(Cp;g(ue))) {uoC< A}

~ 0 d"",... (CbCcCp); uc {the property (2) of right - down - junctJOn}

~(Cl(E)dow.bep); ~+ (u) e"",,,.bep {def of ~+}

as required.

Left-down-junction can be treated in a eimilar way.

Theorem 4.9 Up-junctional constructors respect down-simulation and total simulation.

Proof: Similar to that of theorem 4.8.

Theorem 4.10 Junctional constructoI'5 respect all kinds of simulation.

Proof: Direct from lemma 4.5, theorem 4.9 and 4.10.

The concept of junction can extend to the contravariant fnnctors. Snppose that f isa covariant

bifunctor, and g is contravariant in its first argument and covariant in the second argument.

A contravariant junction T from f to 9 is a function satisfying the following properties

1. If q: f(b,c) _ a in M then Tbcaq; b -+ g(c, a) in L.

2. TPq,(!(p,q);,;,) = p;TPq";g(q,,j

Theorem 4.11 Contravariant junctional constructors respect total simulation.
Proof: Define for any contravariant junction T from f to g

ot+(u) Tbcap ~ g(dc, va)

ot+(v) Tbcap ~ ub

.Ijot+(d) Tbcap g(uc, da)

ot+(d) T~ap ~ db

The conclusion can be established by the techniques similar to those used in the previous
theorem.

23

5 Language Constructors

In this section we show that maIlY con~tructors in a range of programming languages have
familiar categorical interpretations. For simplicity, we will suppre.ss mention of types (objects)
wheuever possible.

5.1 Composition

Iu all progra.mming languages of interest, there exists a composition operator (denoted here as
Pi q, elsewhere p'" q). Execution of such a composite program usually (but not always) involves
execution of both of its components. In a procedural programming la.nguage like PASCAL,
we interpret this notation as sequential execution: q does not start until p has successfullY
terminated. In a fundionallanguage it denotes functional composition. This operator is as·
sociative

(p; q);" ~ p; (q;,)

It has both a. left and a right unit. In Dijkstra's language [1], the unit is the command skip

skip; p = Pi skip == p

In a typed la.nguage, the composition of programs is nndefined when the type of the re
sult of the first component differs from that expected by the second component. Tltis can be
treated in ca.tegory theory by associating source and target types with each program_ (p; q)

is then well.defined iff P=q.

ln the rest of this section we assume without explicit mention that all type constra.ints have
been observed.

A zero of composition (if it exists) is denoted by 0. It is the program that fails to termi
nate. The defining property of the zero program is

p;0 ~ 0 ~ 0;q

In words, a. program which starts by failing to terminate is indistinguishable from one willch
ends by failing to terminate.

In Dijkstra.'s language, this role of zero program is played by the program abort willclt is
the bottom elemenf in its hOIDset. It may fail to terminate; or being non-deterministic it may
do even worse: it may tenrunate with the wrong result, or even the right one (sometimes, just
to mislead you). To specify the execution of q after termination of abo.t cannot redeem the
situation, because abort cannot be relied on to terminate. To specify execution of p before
abortion is equally ineffective, because the non-termination will make any result of executing
p inaccessible and unusable. In other words, composition in Dijkstra's language is slricl in the
sense that it gives bottom if either of its arguments is bottom. Tlte above defining equation
states that zero program is a natural transformation.

A language like CSP [4J couta.ins commands for input aud output, wLich have results ob
servable before the program terminates (or fails to do so). Consequently~ the aLorting com·
mand chaos does not satisfy the above equatiou. However it has the weaker property that

24

non-termination after performing the inputs and outputs of 'P cannot be worse than immediate
non-termination. So for esp, the defining property oCthe aborting command must replaced b)'

0;. ~ 0 ~ p;0

which states that 0 is an up-simulation.

In a lazy functional programming language like Miroanda 19], the call of a function will not
evaluate an argument unless the value of the argument is actually needed during execution
of the body of the function. As a result, it may terminate even when applied to a non
terminating argument. However, the wholly undefined function always fails. On the principle
the failure is worse than any kind oC success, the property of zero program has to be replaced by

p;0 ~ 0 ~ 0;.

i.e., zero programs become a down-simulation in this case.

We use p n q to denote the best common approximation in the !;; ordering of hoth p and
q, if H exists. It Can be defined by the single law

T ~ (p n q) iff T [;;; P and T ~ q

We are going to explore the way in which composition interact6 with the n operator. From
the defining property of n and the monotonicity of composition we can derive the following
weak distributive law

T;(pnq);s l;;; (riPiS)n(TiqiS)

III Dijkstra's language (and other truly non-deterministic language like CSP), n denotes non_
determinism; and the law CUl be strengthened to Ul equation

T;(pnq)iS == (T;p;S)n(T;q;S)

This law states that it makes no difference whether the selection between p and q is ma.de
before execution of the first operand of a composition (e.g., at compiler time), or whether it
is ma.de (at run time) after execution or the first opera.nd. In other words, the n is a. junction.

However, in a functional or deterministic language it is better to postpone the a.pplication
of n as long as possible, becan.se it somehow worsens iLs argument. The above strengthening
is not valid, instead we have

(pn.);, ~ (p;,)n(.;,)

T; (p n q) (" p) n (,;.j

In this case, the n operator is a quasi-junction.

25

5.2 Disjoint Union

The c.oproducl (disjoint uuion) constructor will be denoted by an infix +. b + c is the dis
criminated union type, which appear.'l, for example, in PASCAL as a variant record. (p + q)

is a case discrimination. When applied to a \"a.lue of type (p + q) it first tests which variant

it comes from. If it is the first variant, then p is applied, obtaining a result of type P, which

is then Injected into the first variant of (P + q). The treatment oftbe second case is similar.
Thus

(p + q) p + q

(p + q) Ii + q

Furthermore, it is easy to see that the above description of the case discrimination satisfies
the other defin.ing property of a hifunctor

(p+q);(,+,) = (p;,)+(q;,)

The discriminated union provides a convenient method of modelling the fa.milia.r conditional
construction of a programming language. For example, the test "even", which tests whether
a number is odd or even, can be regarded as a function from the natural number N to tbe
disjoint union N + N. When applied to an even number, say 2'1, lts result (0, 2'1) is the
same number tagged as in the first alternative of the discrlminated unioIl; whereas an odd
number 2n + 1 is mapped into (1,2'1 + 1), the same number tagged as in the second alterua.
tive. To halve a number if it is even, or add one if it is odd, can be achieved by tbe composition

even; (halve + add)

But it still remains to map the result of this conditlona! from the discrimina.ted union N + N
back to the single natural number type N. For this we need for each type b. a merge operator
symbolised by Vb, which maps a disjoint union (b + b) onto the type b, simply by forgetting
the tag which determines from which of the two (identical) types its argument haa originated.
Thus to achieve the effect

ifeven(x)thenx:= x/2elsex:::: x + 1ft

the conditional described above should be completed as foHows

even; (halve + add); VN

If P mapti b to c, p may be applied after the merging operation Vb, or it may be applied to
both alternatives before the merging operator Vc; the final result of each of these applications
will be the same. Thus merging operator satisfies

(p+p);VP= VP;p

The above algtlbraic law states that V is a natural transformation between the identity functor
and the functor that maps p to (p + p).

In a programming langua.ge, there are two extreme conditions for each pair or types band
c. trueb,c: b (b +c) and Jafseb.c : c -> (b +c):

26

• tTueb.~ which tags its argument as the first alternative of type b+ c,

• falAeb.c which tags its argument as tbe second alternatives of type b+ c

These a.re called insertion functions. Thus if (p + q) is executed after true_ -, the first alter,..
native p is invariably selected; so the effect is the sa.m.e as if p had. been applied bl'foreha.nd

true_ -; (p + q) = Pi true__
P,1l	 P,1l

Similarly

false- -; (p + q) = qi false-
P.1l	 P,1l

Thus both condition true and condition false are natural transforma.tions. Furthermore they
satisfy

trueb,b i Vb = idb

fa1aeb.b; Vb = idb

(true~,c + falseb,c); V(b + c) = idHc

where i,;4 stands for the identity fnnction on the type b.

However, in a non-strict progra.mming language the discriminated union of types band c
is not simply the disjoint sum of band c as described before, but is defined by

b + c d~ {.L} U Hz, 0) Iz E b} U {(y, 1) lyE c)

where a new element .1, represents the bottom element of the union type. The program p + q

will ma.p (z, 0) where z EP to (px, 0), and (y, 1) where y Eq to (qy, 1), and ne bottom
element .1 to 1.. The merging operator V win be defined by

Vb , (b + b) ~ b

(z,O) :l:1-+

<y,	 1) ~ Y

.L ~ .L

In this language, + is a quasi. coproduct (51, in a sense defined up to equivalence by the laws
previously given for coproduct except that the merging operator is a. downward simulation,
and governed by

(p+p);VP[; VP;p

This is because the program (p + p): V Pwill map .1 to .1, but V p; p win not so when the
program is non-strict.

27

5.3 Product

A similar treatment can be given to the product bifunctor p x q, where programs p and q are
assumed to be run in parallel without interference. The associated natural transformations
are the projedions 1I"b,~ (b x c) band jjb,c i (b x c) -+ c, and the duplicating operator
D..b; b _ (b x b), which maps ~ of type b to the pair (x, x). In a category of total functions,
they satisfy

(pxq);<-_ 11"-,,.-; P,.,
(p x q) i IJ-P,q jj- - i q

','
" p; (p x p) Pi6P

Let p and q be programs with P=q, we define their product < p, q > to be a program which
makes a secOlld copy of the current argument, and execute p on one of the two copies and q on
the other one, and delivers the two results as a palr. [n a functional programming language
with lists as a data structure, this can be defined:

< p, q > ~ A;r. cons(px, q;r)

In a categorical setting it can be formulated by

dof < p, q > = 6, p; (p x q)

From the defining properties of D.. and bifunctor x it follows that

< P;qiT, Pis;t > = P; < q, 8 >; (r x t)

This state!i that the product function is actually a left junctiou from the duplicating functor,
that maps p to a pair (p, p), to the bifunctor x.

But in ma.ny language the above equations do not hold. Suppose that the calculation on
q fails to terminate. Then the execution of (p x q); r_ - in a strict language like LISP wW".also fail to terminate. The program 11" _ ~ ; P does not involve an operation on the discarded al

".ternativeq, and will therefore tenninate in cases (p x q); 11"- - will not. This can be expressed ".mathmatically by inequations stating that the projections Jr and IJ are downward simula.tions
from the prodnct bifunctor to the Mfuuctor that selects one of its operands,

(pxq);<__ !;; rp,q i P'.'
(p X q); ~-- !;; jj- - i q,.. ,..

The strong equations, of course, remain true for a lazy functional language, in which no result
is computed until it is known to be needed.

In a programming language which permits uon-determinism, the duplicating operator does

not satisfy the equation f::::.. Pi (p x p) = p; 6 "P. If p is non-deterministic, the two occur
rences of p on the left hand side may produce different results, even when starting with the

28

same value. However, equaJ results on the left hand side are still possible (by chanc~, say). So
the left hand side can only be inferior in the sense that it is more non· deterministic. The right
hand side is still a valid optimisation, as expressed by the upward simulation property [3J

6, ;;; (p x p) [; p; 6, ;;

Consequently one ha.s

< p;q, p;r > ~ p; <q,r>

<q;r,s;t> < q, S > ; (r X t)

5.4 Higher Order Functions

As useful example of a bifunctor of mixed variance is the exponental bjfunctor, denoted by
=>. (b => c) is a function spal;e of functions from b to c. (p => q) is an operation which when
applied to a function / delivers the function (p; f; q) as result. So the type consistency equires

that / must be in (p => q) and the result will he in (p => qJ. So

(p'" q) , (p", q) (p", q)

Furthermore (p =? q); (r =? s) applied to / is

r; (p; f; q); s = (r; p); f; (qj")

which is the same as (r j p) => (q; s) applied to f. So we deduce

(p'" q); (, '" ,) = ('; p) '" (q; ,)

In summary, the bifunctor ::} is contravariant in its lirst operand, covariant in its second.

Consider a function / ; (b x c) -+ a, which lakes apair of arguments. The curried version of /
is the same as f, except that it takes its arguments one at time. Thus (curry f) b -+ (c => a)
is a function which expects an argument :r of type b, and delivers as result another function
from c to a. When this latter function is applied to an argument y in b, it delivers lhe same
result as / does when applied to the pair (x, y). More simply, in symbols

(W"y/I')Y) = fer, y)

In category theory use of variable is forbidden; furthermore. the operator needs to be sub
scripted by the types of its operands and is characterized by the following laws

CltrrYb,c,d(f) : b -+ (c ~ a) for / : (b x c) a
CltTry- - _«p x q); f; r) = p; curry- - _(/); (q ~ r)

p,q,,, P.q, r

29

This statl's that curry is a contravariant junction from the covariant bifllDctor X to the mix
variant bifuf)c\or :}.

The currying operator has a.n inverse called uncun-ying. Its defining propertie6 are

uncurrYb.c,d(f) : (b X c) --> a for I : b -> (c :} a)
uncurry- - _(P, I; (q:} r» = (p x q); curry- - _(/); r

p,q,~ p,q,r

5.5 Recursive Programs

Let q; be a continuous constructor 6atisfying for any program p

~(p),P~P

The recursive program jlXb,c' iI'(Xb,c) is defined in e.g., [8J as the least upper bound of the
ascending chain

0,,< C; ~(0.,,) C; ~'(0.,,) C;

where 0b,c denotes the worst program with the source type b and the target type c.

From the property of the least upper bound operator U" we can derive for any ascending
chain {p,,}

Un (Pn; q) C; Un(Pn); q

This law states that the least upper hound operator is a quasi-junction.

In Dijksua's la.nguage the loop program dob pod is defined as the least fixed point of
the recursive equation

x = it b then Pi x else skip ft

6 Conclusion

This paper has looked at a categorical approach to the theory of data. refinemeut. The goal is
to explore the sufficient conditions for the validity of data refinement by various simulations,
and to relate them to familiar ca.tegorica.l concepts.

Data refinement is known to be an iroporta.nt method for designing computer programs as
well a.5 implementation of computer programming languages. It is therefore important to have
simple proof methods to proof its correctness, and to know what methods are valid for various
kinds oflanguage in use. For exa.mple, in a first-order progra.mming language (without proce
dures or functions as parameters) thll simple proofs work for natura.l transformations, but in

3Q

a higher-order la.nguage they work only for the more restricted class of total simulations. We
have investigated the relationship between tbe validity of data refinement and the properties
of language constructors. After ~lting a dea.r view of many useful featu~ of programming
llUlguages, we know the redSon why those constructors a.re to be recommended and why sorne
other are not. The result of this pa.per provides an important criterion for design of a new
programming language, that it should maintain tbe validity of some dearly defined technique
of data refinement.

Acknowledgement

To Wim Hesselic.k, Joseph Goguen, Martin Hyland, Peter Freyd and Samson Abramski for
assista.nce, encouragement and advice of various kinds. Also to the Admiral B.R.]nma.n Cen
tennial Chair in Computing Theory at the University of Texas at Anstin for support during
the studies which led to this paper. The research was aJso supported in part by the Science
and Engineering Research Council of Great Britain.

References

[11 E.W. Dijkstra, A Discipline of Progmmming. Prentice-HaJJ, Englewood Cliffs. NJ, (1976).

[2]	 J.W. Gray, Fonnal Category Theory: Adjointness for 2.categories. LNM 391, Springer
V,,)og, (\974).

[3)	 M. Hennessy, The semantics of call. by-value and call-by.name in a non--delerminiBtic
environment. SIAM J. Compo (1980), 67-85.

[4) C.A.R. Hoare, Communicating Sequential Processes. Prentice-Hall, (1985).

[5J	 C.A.R. Hoare and He Jifeug, Two-categorical Semantics for Progrumming Lafl9UagfS. in
preparation.

[6J	 J. Lambek and P.J. Scott, Introduction to higher order categoricallO!}ic Cambridge Uni·
versity Press, (1985).

[7J	 Sanders Mac: Lane, Categories for the working mathematicians. Springer-Verlag, New
York Inc. (1971).

[8]	 0.5. Scott, The laUiCt of flow diagrams. Symposium on Semantics of Algorithmic Lan
guages, LNM 118, E. Engeler (ed.), (1971) 311-366.

[9]	 D.A. Turner, Miranda, a non-strict funclionallanguage with polymorphic types. LNCS
201, Springer-Verlag, (1985) 1-16.

31

Prespecification and Data Refinement

He Jifeng, C.A.R. Hoare

September 4, 1990

Contents

Introduction

Data Types 4

Refinement 5

Completeness 7

Conclusion 10

1 Introduction

A data type is generally denned, in a manner similar to an algebra, as a set of values together
with a family of operations on these values. The operations are indexed by procedure names,
usnally with pa.rameters for conveying values and resnlls between the data type and the using
program. It is only by employing these procedures that the using program can update and
interrogate the value of a variable of the given type.

One data type (call it concrete) is said to refine a data type with the same index set (call
it abstract) if in all circumstances and all purpose& the concrete type can be validly used in
place of the abstract one. The practical benefit of this arises when the abstract data type can
be specified, understood and used in an applications program but can not directly or efficiently
represented on a computer; whereas the concrete type is some efficient representation of the
abstract one involving perhaps a complicated collection of bitmaps, pagetables and file blocks,
which can be economically stored and updated.

Data refinement technology plays a crucial role in designing programs. It enables us to write
programs based on abstract data type easily and elegantly, and to derive efficient programs
based on sophiscated concrete data types effiectively. Much research in this area has prodnced
various kinds of refinement rules [2,3,4,7,8]. An early suggestion for a method of data refine·
ment was given in [4]. The method was based upon

(1) an invariant predicate which must be proved true after initialisation and after every oper
ation on structure, assuming that it was true beforehand.

(2) an abstract function which maps the current value of the concrete data type onto the
abstract valne which il stands tor. The abstract function must be proved to comml/t.e with all
the operations of the data type in the following sense:

To apply the abstract function after a concrete operation gives the same result
as applying the abstract function before the corresponding abstract operation

This is sometimes expressed as a commuting diagram in which abs is the abstract function

abstract operation

.b, .b,

concrete operation

This method was adopted and developed in the VDM techniqne of data refinement [7}. In
VDM, certain additional properties of a data type are considered desirable.

(1) The abstrac.t da.ta type should be fully abstract. This means that any two distinct values
of the abstract data type can be distinguished by some sequence or operations on the data.

(2) The concrete data type should be adequate to represent every value of the abstract data
type, that i5, the abstraction function should be surjective.

In this paper we attempt simultaneously to generalise and simplifY the notion of data re
finement in the following ways

(1) Both the abstract and the concrete operations may be nondeterminstic. We will use
relations to represent the commands over the data type.

(2) There is no need for the concepts of full abstraction or adequacy.

(3) The relationship between the concrete and abstract data types does not have to be func
tional; the invariant and the abstraction relation will be combined into a single relation called a
simulation. A simulation may be either upward (concrete-to-abstract) or downwa.rd (abstract
to concrete). The two kinds of simulations are sufficient for data refinement and together they
are necessary. This js a new result for nondetenrllnstk programs.

(4) The simulations rules. will enable us to calculate the weakest specifica.tion of each op
eration on the concrete type from the operation on the data t!pe and the simulations.

The following relational notation will be used in the later discussion. Let S be the set of
states of a. system. We shall describe an operation on the system by using a binary relation
on 5: the state of the system before the operation is denoted Jj and the sta.te after denoted Jj'.

Important notations include

Us = S x S

Is ={("i),SxSI,=i)

ii = {(i,,) , S x S I (.,,') E R}

R =(("i)' S x S 1(',.') ¢ R}

RUT, R n T, R ~ T and R;T denotes the union, intersection, containment and
forward relatioual compootiou of R and T respectively.

Our definitions and proofs will be considerably simplified by confining a.ttention to total rela
tion, in which case R ~ T means simply R 1s at least as deterministic as T. Tbe jU6tificat10n
for this simplification can be found, for example, in [5].

We find it convenient to have notion for the weakest amongest both the first and the sec
ond of a pair of relatioD6 whose comp06ition meets some specification. We define the weake6t
postspecification of relations (see (5J) as

R/T = (1';71)

The definition i5 difficult to explain and to use; for most purposes. it is sufficient to recall that
weakest postspecification i6 an approximate left inverse of composition in the follow1ng sense
[5)

T;X<;;R=X~R/T

2

Analogously the weakest prespecification is defined [5J as

T\R ~ (R; 'FJ
which is characterized by the law

X;T"R" X"T\R

:I

2 Data Types

A data type A is defined in a fairly COD ventional ma.nner to be a quadruple

A = (AVAL,AI,A,AF)

where A\-' AL is the space of values of the t.vpe. AI is an initialisation operation, which is a
relation from some global data space to AVAL; and AF is a finalisatiou operation which is 3

relation from AV AL back to the same global data space. A == {aopi liE I} is an indexed set
of relations over AVAL; total relations in A represent commands that update or interrogate
the data, and partial relations represent guarded commands, guarded by a. condition that is
just true on the domain of relation. Nontermination must therefore be represented by some
fictitjous value -.L appended to the set AVAL and mapped to everything by each command.

A data type A is said to be canonical if all the operations aopi and AI are functions (to
tal or partial). Programs will be written in an anologue of guarded commands [lJ. This is
restrictive enough to be implemented efficiently yet po.....erful enough to include nondeterlllin
ism and recursion. The set of programs over the data type A is defined to be the smallest set
DC A) containing

(1) the uni~ersal relation U and the identity relation lover the related data space
(2) all opera.tions aop. in A
(3) PjQ and PUQ for any P and Q in VeAl
(4)nn Pn where the Pn form a descending cbain of total elements of VeAl; that is, for all n,

Pn+I ~ P"

A complete program over the data type A is one which begins with initialisation a.nd ends
with finalisation. The space of all complete program over A .is thus defined to be

T'109(A) = {AI; P;AF I P E V(A))

A non-empty subset of a data type is called finitary.if it is either finite or the whole type. A
relation on the type is called finitary if the image of each element is finitary. In order to ensure
proper convergence under clause (4), we insist that all relations in A be finitary; this property
is preserved by all programs in VCA) and 'PR09(A)

This paper is concerned with various forms of correspondence hetween one data type and
another. We consider abstract and concrete data type respectively

A = (AVAL,AI,A,AF)

C = (CVAL,CI,C,CF)

and we shall assume that these two types are conformaJ in the sense that

(1) their global data spaces coincide

(2) the indexing sets of A and C coincide.

If peA) is in veAl, we write P(C) for that member of V(C) which is constructed from
the corresponding indexd set C in the same way that peA) was construct.ed from A. Similarly
for any complete program PA in PR.09(A) we can construct the corre8ponding complete pro
gram Pc in PR.09(C). We shall use the subset ordering on indexed sets, with the obvioui'i
meaning,

C ~ A =CI ~ AI A CF ~ AF A Vi E t. cap, ~ GOp.

,

3 Refinement

Definition. A data type C refines a data type A if r~placemenl of A by C in any complete
program only reduces that program,that is,

CI;P(C);CF ~ Ai; P(A);AF

fa< all PIA) E VIA)

Two type!i that refines each other are said to be equivalent.

Relational containment is used here as a correctness-preserving transforma.tion whose only
effect is a possible reduction of nondeterrninism. The insistence that all commands are total
a.nd the use of a data. value 1. to represent nonteIminalion means that total correctness is
preserved.

Theorem 1. If C ~ A then C refines A
Proof: An operators of the language used in constructing complete programs over C and A
are monotonic in all their a.rguments. 0

Theorem 2. Refinement is transitive; if C refines Band B refines A, then C refines A.
Proof: The proof follows by traD/;itivity of relational containment. 0

Refinement is a powerful tool in the design and development of programs, since it permits
an abstract algorithm to be designed over some simple abstract type A, which is then validly
replaced by some complex but efficiently implemented type C. However, the definition of re
finement gives no indication of how to develop the concrete type: it is something which ca.n be
verified, with difficulty, when both A and C are known. We start by giving two simple proof
obligations [3], which can he readily checked and which prove to he sufficient for refinement.

Definition. A downward simulation is a relation R from AVAL to CVAL satisfying

CI ~ Ai;R

R;CF <; AF

Ri cop, <; aop;; R for each index i E I

Here We insist that R be strict, that is ,

(.L}xCVAL~R

In terms of weakest specification, the inclusions in the above definition become

CI ~Ai;R

CF (;AF(R

cop; ~ (aoPi; R)/R for each index i E I

which provide methods for calculating the specific.ation of C from the abstract type A anJ
the downward simulations using relational algebra.

Oar next concern is with the correctness of the definition of downward simulation for proving
refinement.

5

Theorem 3. If there is a downward simulation R from A to C, then C refines A.
Proof. A typical complete progra.tn over C has the form

CI;P(C);CF	 C; (AI;R);P(C),CF the monotonicity of ;

C; A/;P(A);R;CF lemma 1 in appendix

C; AI; peA); AF the monotonicity of;

which is a complete program over A	 0

Theorem 4. If R is a downward simulation from A to B, and T a downward simulation
from B to C, then R; T is a downward simulation from A to C.
Proof: For each index i E I we have

[R;T); CDPi C; R; bOPi;T

T is a downward simulation from B to C

C; oop,;(R;T)

R is a downward simulation from A to B

Other part5 can be proved similarly.	 0

Definition. An upward simulation is a relation L from CV AL to AVAL saHsfying

GI;L C; AI

CF C; LjAF

cop;;L C; L;aop; f OT each index i E I

We insist that L be strict and finitary. The inclusions in the definition are equivalent to

CI C; L\AI

CF C; L;AF

cop; S;L\(L;aopi) for each index i E I

Similarly we ca.n show

Theorem 5. If there is an upward simulation from C to A, then C refines A.

Theorem 6. If L is an upward simulation from C to B, and N is an upward simulation
from B to A, then L; N is an upward simulation from C to A.

6

4 Completeness

This section is devoted to the study or the converse property of soundness, namely complete
ness. The question being asked is therefore: given a. refinement C oC A, does there exist a
(downward or upward) simulation between A and C.

The conclusion is: wnen the data type A is canonical, there does exist a downward simulation
between A and its refinement. Therefore fOT the canouical data type, downward simulation is
both sufficient and necessary for refinement. In general, if the data type A is refined by C.
then there is a data. type CA such that there are an upward simulation from CA to A and
a downward simula.tion from CA to C. This means that downward simulation ,;lId upward
simulation together are necessary for data refinement.

First we wish to prove that refinement A by C implies the existence of a downward simu
lation from A to C if the data type A is canonical.

Theor.em 7. When A is canonical, downward simulation aJ.one is necessary for refinement.
Proof. Define that for each P(A) in V(A)

R(P) = (P(C);CF)\(P(A);AF)

and let R = nPEV R(P)

We shall show that R is a downward simulation from A to C

(1). for all P(A) in 1J(A) we have

(CI; P(C);CF) £; (AI; PtA); AF)

by the assumption. It leads to

CI £; (P(C);CF)\(AI;P(A);AF) d'f of \

£; AI;«(P(C);CF)\(P(A); AF) lemma 3 in appendix

AI;R(P) d'f of R(P)

Which implies that

CI ~ n(AI; R(P» .'let theory
PED

AI; n R(P) lemma 5,6 in appendix
PED

AI;R d'f of R

(2) Since the identity relation I is a program in V(A), we conclude

R £; R(I) set theory and def of R

(/;CF)\(I;AF) d'f of R(P)

CF\AF I is tht>. unit of;

which leads to
R;CF £; AF d'f of \

(3). From lemma 7 a.nd lemma 8 in appendix it follows that for each index i E I

R;COPi 0:;;; aopi; R

7

This completes the proof. o

In what follows we will explore a technique by whicb from any data type A, a. canonical
data type CA can be derived such that there exists a.n upward simulation from CA to A
satisfying fQf all P in V

PA '= PCA

Definition. For any subset B of 5 and any relation P on 5, we define B1P as tbe image
under P of ~hese states in B, Le.,

B1P~{TI3pEB. pPT}

Now we introduce a relation L from FAVAL to AVAL, where FAVAL is the family of aU
finitary subsets of AVAL. L is defined by

{B}lL ~ B

for all finitary subsets B of AVAL.

Having defined the reLation L we proceed to construct a data type CA from the data type A
and relatiQn L. Here we define

CAVAL = FAVAL

The initialisation operation CAl is I5pecifed by

AI= CAI;L

This equation can determine a function CAl by virtue of the fonnuIa:

{'}lCAI = {{'}lAI}

for all global data 8. Moreover it is strightforward to show that for all global data li

{'}lAI {{,llAI}lL d,! o! L

({,}lCAI)lL d,! o! CAl
{,}l(CAI;L) by law (fj) in appendix

Le., CAl really satisfies the given equation.

The finaJ.isation operation C AF is defined by

CAF=L;AF

Finally, for each index i E I the operation caapi is spedfed by the equa.tion

caOPi; L = Lj aop.

The existence of a deterministic solution caop, is obvious .since caoPi can be defined in the
similar wa.y as CAl.

Now we have a canonical data type CA, and can .show

Theorem 8. CA refines A by the upward simulation L, and for all P in V

PA = PCA

8

Proof: Direct from the definition L and CA, and lemma 8 in appendix. 0

We are now ready for the main theorem of this section.

Theorem 9. If C refines A then there are a.n upward simulation L from CA to A, and
a downward simula.tion from CA to C.
Proof: If C refines A, C thus refines CA by the fact that PA'::: PeA . By applying
theorem 6, we can find a downward simula.tion from CA to A. Tills complete. the proof.
o

9

5 Conclusion

We have introduced two simulation conditions which guarantee that a concrete data type re
fines an abstract one. These simulation conditions are more general than the rule used in
VDM: the downward rule alwaJs applies if the YDM rule does, but there are situations to
which the downward rule applies though the VDM does not, In cases where botb rules apply,
the VDM relation is total and surjective though the downward fiimulation need not to be;
when the downward simulation is a bijedion, the two rules coincide.

The simulation relations recommended in section 3 eM be used not only in treatment of
the total correctness of a design, but also jn the deri valion of a concrete data type from an
abstract data type. The effective way of using the the result of this paper is as follows

(1) First design a.nd maybe use the abstract type A

(2) Choose some suitable simulation relation R

(3) Calculate the weakest specification of concrete data type as follows:

CI ~ Al;R

CF ~ AFjR

cop, =(aop);R)jR for each inde:c i E I

or

CI ~ RIAl

CF ~ R;AF

cop; ~ RI(R;aop;) for each index i E I

(4) Check that the domain of the concrete operations are weak enough (for example, total
command6 are still total).

The use of calculation in step (3) is a promising innovation. If A is an abstract operational
semantics of a programming language, the method may be useful in deriving the concrete
machine code \.0 be produced by a compiler for a concrete machine.

One problem in this paper is that refinement for a restricted language does not imply re
finement for the more general language, which might have more powerful tests to discriminate
data types. So, although the methods described in this paper are perfectly valid, they might
not shong enough to prove every refinement in more powerful languages. This problem is
investigated in [6J.

Acknowledgement

To ma.ny members of the Programming Research Group for helpful a.dvice and suggestions

10

of varioRs kinds. The researcb is supported by the Science .a.nd Engineering Research Council
of Great Britain.

References

[IJ E.W. Dijkstra, A Diseipline of Programming, Prentice-hall, Englewood Cliffs, NJ, 1976.

[2]	 D. Grles and J. Prins, A New Nolion of Encapsulation, SIGPLAN Notices 20 (7) (1985)
131-139.

[31	 He, Jifeng, C.A.R. Hoa.re and J.W. Sanden;, Dala Refinement Refined, (Resllme) LNCS
213, (1986) 187-196.

[41	 C.A.R. Hoare. Proof of COrTectne.9,IJ of Data Representation, Acta Informatica. 1 (1972)
271·281.

[5]	 C.A.R. Hoare and He, Jifeng. The Weake.'ilt Prespecifkation, Inform. Process. Lett. 24 (2)
(1987) 127-132.

[6] C.A.R. Hoare and He, Jifeng, Data Refinement in Categoricnl SeHing, to appear.

[7]	 C.B. Jones. Software Development: A Rigorous Approach, Prentice·Hall, Englewood Cliffs,
NJ,1980.

[8]	 T. Nipkow, Nondeterminstic Data Jype, Acta Informatica 22 (1986) 629-661.

11

Appendix

The following laws presented in 15] will be used in the later proofs.

(1) If b is a condition, that is b;L'=b, then

P;(bnQ) =(pn b);Q

(2) (P; U) nIs" P;P

(3) If f is a partial function then f;f" Is

(4) let < = {L} x S where 1 denotes the undefined state.
Then U\K = ".

(5) SlP=S if <"P

(6) Bl(P;Q) = (B1P)lQ

(7) {'}l(n,P;j = n.r,lP;J

(8) (P;Q)\R =P\(Q\R)

De8nition. For any relation P we define

domP = {p I 3T.pPT A "pp L}

and ranP = 51 P

Lemma 1. H R is a downward simula.tion from A to C then for all peA) in peA)

R; P(C) " PtA); R

Proof: The proof is based on .'!Itructural induction.

(a). Base case. let P = X. For each index 1 E I

R;P(cop;) ,,;;: R;COPi de! of P

~ aop;;R def of downward 3irnulation

P(aop;);R def of P

When P = lor P =U l the conclusion is obvioU3.

(b). Assume that

R;P(C) " P(A);R and R;Q(C) " Q(A);R

TheIl it is easy to conclude that

R;(P(c);Q(C) =

"

"

(R;P(C);Q(C)

P(A);R;Q(C)

P(A);Q(A);R

the 11.'i.'iociativity of

by the a33umption

by the a33umption

12

R;(P(C)U Q(C))	 ~ R;P(C)UR;Q(C) ; distribute through U

~ P(A);RUQ(A);R by the assumption

~ (P(A) U Q(A)); R ; distribute through U

(c). Assume that fDr all n~ 0 P.. .2 P"+1 and R;P,,(C) ~ Pn(A);R

then we ha.ve

R;(npo(C) ~ n(R;po(C» the monotcmicity of ;
o

~ n(Po(A); R) by the assumption
o

~ (n Po(A)); R the cocontinuiity of
o

Lemma 2. P;(Q\R) ~ QI(P;R)
Proof:

LHS;Q P;(QIR;Q) the assoaativity of

~ P;R del 01 I
LHS~ RHS del 01 I o

Lemma 3. If f is a partial fundion, and Q; U == U, then

Qllf;P) = I;(QIP)

Proof:

X;Q ~ I;P

~ X;Q;U ~ fjP;U the monotonieity of ;

=> X;U~/;U Q;U::: U and F;U ~ U

Moreover we have

X;Q ~ I;P

=> I;X;Q~P by law (3)

=> I; X ~ QIP by del 01 I
=> (f;UnIs);X ~/;(QIP) by law (2)

=> (f; Un X) ~ I; (QIP) by law (1)

=> X ~/;(QIP) X~X;U and X;US; f,U

which irnplie.s that
QI(f;P) ~ I;(QIP)

From lemma. 2 it follows that
I;(QIP) ~ Qllf;P)

which leads to the conclusion.	 o

13

0

Lemma 4. If P is a total fin.Hary relation, and {Qil is a descending chain satisfying for
all i 2: 0 k r; Q; then

p;(nQ;J = n(p;Q.)

Proof: Here \\'e dinstingujsh two cases:

C..,., l; {sJ1P = S

(s}1(P;nQ,) SHnQ;} by law (6) and the assumption

S by law (5)

n{SlQ;). by law (5)

n({sll(p;Q.)) by law (6) and the atltlumption
;

{s}l n(p;Q;J by law (7)

Case 2. {sJlP = {to, ... ,tn}

(sJ](p;nQ;) = U (tj)HnQ,) by law (6) and the assumption
1<" ,

U(n{t,llQ;) I>y law (7)
;50" ;

n(U {t;}lQ;) finite union ditltributes throuyh

i JS"

the intersection of a descending chain

n«{s}lP)lQ;) I>y the assumption

(sll n(p;Q,) by law (7) o

Lemma 5. If f is a partial function, for all i 2: 0 k ~ Q. then

[;(nQ;) = nU;Q,)

Proof: Similar to lemma 4. o

Lemma 6. For a.I1 P in D
• <;; R(P)

Proof.

LHS = U\. I>y law (5)

<;; «P(C);CF)\(P(A);AF) S1nCf: P(C);CF ~ U

and P(A); AF .2 K:

RHS def of P 0

Lemma 1. If C refines a canonical data type A, then for all i E I

R;COPi ~ aop.; R

14

R C;; (cop,; pre); CF)\(aop,; PtA); AF) de! 0/ R

~ R C;; aop;;«cop,;P(C);CF)\(P(A);AF)

lemma 3 and since A I,'; wnonical

~ R C;; aop,;(cop,\R(P») by law (8)

~ RjCOPi ~ aop,;(cop.\R(P));cop; the monotonicity of

=> H; cop; ~ aop;; H(P) def of \

~ R;cop, C;; n(aop,; R(P») .dd theory
PeD

=> Hj cop, ~ aop;; R lemma 5 and lemma 6 0

Lemma 8. For all P in D
PA = PeA

Proof: It is similar to lemma 1, and omitted. o

15

