
EQUATIONAL REASONING SUPPORT FOR
ORWELL

by

Stephen Paul Wilson

Technical Monograph PRG-I04
ISBN 0-902928-81-3

March 1993

Oxford University Computing Laboratory
Programming Research Group
II Keble Road
Oxford OXI 3QD
England

Copyright © 1993 Stephen Paul Wilson

Oxford University Computing Laboratory
Programming Research Group
11 Keble Road
Ox[o,d OX! 3QD
England

Equational Reasoning Support for Orwell

Stephen Paul Wilson

Abstract

This report describes the development of an interactive equational rea
soning assistant l ERA, for an Orwell type notation (Orwell is a func
tional programming language which is very similar to Miranda; Mi
randa is a trademark of Resea.rch Software Ltd). It is designed to
support both proof and program synthesjs, using either the induc
tive or purely calculational styles. Aspects of the tool include pretty
printed output, proof schemas, induction hypothesis generation, mul
tiple current proofs, rewriting modulo associativity, and the ability to
save proofs mid-stream.

Acknowledgements

I would especially like to thank Richard Bird for his enthusiastic su
pervision and much needed guidance, throughout this project. Thanks
to Mark Jones for his kind advice and also for allowing me to use
his prototype rewriting system as a starting point for the proof tool
we developed. I'm also grateful to Bernard Sufrin, Mike Spivey and
Wayne Luk for our discussions. Thanks to Jeff Sanders for his helpful
supervision during term time.

I know that there are more romantic things in life than dissertations,
but I would like to dedicate this project to my wife Claire for her
support and understanding throughout the year.

Contents

1 Introduction 1

1.1 Equational Reasoning. 1

1.2 Some Core Requirements. 11

1.3 Other Tools 14

2 Object Language 22

2.1 Laws and Definitions 26

2.2 Proofs and Syntheses 28

2.3 Case Analysis 30

2.4 Induction Hypotheses. 31

2.5 Schemas 33

3 User Interface 36

3.1 Preliminaries 36

3.2 Definitions 37

3.3 Stating Proofs and Syntheses 39

3.4 Moving Around 40

3.5 Using the Laws 41

3.6 Schemas 43

3.7 Other Commands 45

3.8 Input Output 46

4 Using ERA 47

4.1 Inductive Examples . 47

4.2 Calculational Examples. 62

4.3 Proof about Trees 66

4.4 Infinite Lists and the Bottom Element 67

ii CONTENTS

5 Aspects of the Design 70

5.1 Data. Representa.tion 70

5.2 Rewdting Modulo Associativity 75

5.3 Implementation 83

6 Conclusions 85

A Standard Prelude for ERA 91

Chapter 1

Introduction

1.1 Equational Reasoning

An important aspect of functional programs is that their properties
can be established using the simple process of equational reasoning.
Consider a very simple example, Suppose we know the definition of
the square function

square x == x * x

and we have an expression

1 + square (x+y)

then we can use the definition to rewrite the expression as follows

1 + (x+y) • (x+y)

Here we applied the law left to right, by matching the left hand side
against a subexpression of the original expression; thjs is sometimes
known as reduction or unfolding with a law. We can also apply a
law right to left, by matching the right hand side with a subexpression;
this is known as folding or unreducing with a law. Above, the left
hand side of square matched the subexpression

lSquare(x+y)

So, given some definjtions of functions and Ja.ws a.bout them, we can
ta.ke an expression and transform it over a number of steps by applying

2 CHAPTER 1. INTRODUCTION

laws and definitions, through the substitution of equals for equals. We
use the terms law, lemma and equation interchangeably throughout
the text to mean an equation relating two Orwell expressions. Such
laws may be conditional on certain assumptions.

Proof and Synthesis

We can use this process of expression transformation not only to verify
a given equation, but also to derive new laws and definitions, a process
referred to as program synthesis or program calculation. We can use
synth.esis to calculate more efficient definitions of functions, or perhaps
alternative recursive definitions.

To illustrate the style of proofs we wish to support, we give two
examples and make some comments about them.

An Example Inductive Prool

The purpose of the first proof is to illustrate how such proofs are dis
covered: we want a tool to help us calculate proofs that we haven't
done before, not one which will allow us to type in a proof after we've
calculated it, The example states that the foldr operator is equivalent
to the foldl operator on monoids,

First of all we need some definitions:

foldr f a [] = a (foldr.i)
foldr f a (x:xs) = f x (foldr faxs) (foldr.2)

foldl faD = a (foldl.1)

foldl f a (X:X3) = foldl f (fax) xs (foldl.2)

Our theorem is

foldr faxs = foldl f a X3

provided that f and a form a monoid, that is,

f x a .. x (left-id)
fax .. x (right-id)
f x (f Y z) • f (f x y) z (21.ssoc)

3 1.1. EQUATIONAL REASONING

We wish to prove that the theorem holds for all finite lists xs. For this
we use finite list induction and show that P([]) and P(xs) => P(x : IS).

We use a simple convention to show the substitutions we make. The
notation

p	 (x:xs / xs)

means that we replace all occurrences of xs with x: XS, in equation P.
'vVe work on left and right hand sides separately.

Base Case

lh. (0 / xs)

{ definition}

foldr faD

""	 { toldr.l }

a

rho (0 / xs)
".	 { definition}

foldl faD

{ foldl. 1)

a

So the left and right hand sides can be rewritten to a common form,
which establishes the case.

4 CHAPTER 1. INTRODUCTION

Inductive Case

We have the following inductive hypothesis:

foldr fax5 ~ foldl f a 1S (inductive-hypothesis)

Again we work on both sides separately:

Ihs (X:X3 / XS)

{ definition}

foldr f a (x X5)

•	 { foldr.2 }

f x Cfoldr fax5)

c	 { inductive-hypothesis}

f x (foldl fax3)

rha (x:xs / xs)

{ definition}

foldl f a (x X3)

•	 { foldl. 2 }

foldl f (fax) xs

•	 { left-id }

foldl f x X3

We cannot get any further with our definitions or inductive hypothesis,
so we are left with proving

f	 x (foldl faxs) = foldl f x X3

We prove this equation by induction on xs, again using the assumption
tha.t f and a form a monoid.

5 1.1. EQUATIONAL REASON1NG

Base Case

Ihs (0 / xs)

= { definition}

f x (foldl f • 0)

•	 {fol dl.l}

f	 x a
•	 {right-id}

x

rhs (0 / >oj

= { definition}
foldl f x 0

{ foldl.l }

x

This establishes the case.

6 CHAPTER 1. 1NTRODUCT10N

Inductive Case

The inductive hypothesis is that for all x

f	 x (foldl fax3) ~ foldl f % xs (ind-hyp)

In the proof of the inductive case we use a fresh variable x ~.

Ihs ex": X5 I xs)

{ definition}

f x (foldl f • (x' : X5))

{ foldl. 2 }

f x (foldl f (f • x') X8)

{ left-id }

f x (foldl f x X5)

{ ind-hyp (RIGHT TO LEFT) }

f x (f x' (foldl f • X8))

{ as soc }

f (f x x') (foldl f • xs)

{ ind-hyp }

foldl f (f x x') xs

rhs (x" :xs I xs)
= { definition}

foldl f x (x" : xs)

•	 { foldl.2 }

foldl f (f x x') X9

So we have established the case, and the proof of the lemma. We can
now go back to the original proof, and apply this lemma to the last
step of the inductive ca.se~ completing the proof.

Commentary

Firstly, note the form of the theorem to be proved, with all variables
present. Sometimes this style of proof is known as the pointed style, as
distinct from the pointless style shown in the next example. This style
of definition normally means that proofs about functions are carried out
using induction.

To prove an equation by equational reasoning, we worked on left
and right hand sides separately. For each side we tried to reduce

7 1.1. EQUATIONAL REASON1NG

them as fa.r as possible using our laws and definitions (reduction means
applying laws left to right), the idea being to bring them to a common
form. This makes many proofs just a simple exercise in simplification.
The conventional style for presenting proofs is as a single chain of
transformations from the left hand side, but the above can easily be
converted to this form simply by reversing the right-hand sides's steps
and appending to the left-hand side's steps. See Bird and Wadler [1] 1

pHI, for a simple example of this. Any proofs which succeed using this
process alone can easily be automated. However 1 certain properties are
required of our set of laws. The order of rewriting should not affect the
final result; any rule set with this property is said to be Church-Rosser,
or confluent. The rules should also be terminating; any rule set with
these properties is said to be canonical.

Reduction on its own is insufficient to carry out the above proof:
indeed we applied the induction hypothesis right to left when proving
the lemma. But since we know that theorem proving in general cannot
be automated, it was unlikely that reduction would be sufficient for our
purposes.

When proving by induction we have to formulate a suitable induc
tion hypothesis. For example in the proof of the lemma, we had

f x (foldl faxs) = foldl f x xs

as the induction hypothesis. It is important to note that the lemma is
asserted to hold for any x. For example, in the last step of the left hand
side we instantiated x to (f x x·). We cannot however generalize for
a as we make assumptions about them, and we cannot generalise xs,
as that is the variable being induced upon.

In the above proof we were very loose about quantifiers, but any
machine support would have to be exact about them. The variables of
a law without context conditions (or hypotheses) are implicitly univer
sally quantified:

forall a x XB : foldr f a (x:xs) • f x (foldr faxs)

However. with hypotheses (including induction hypotheses) this is not
the case. The statement that a is a left identity for f does not hold for
all f and a~ it holds only for the f and a used in our consequent.

forall x fax = x

8 CHAPTER 1. INTRODUCTION

and the lemma's induction hypothesis would therefore be quantified. as
follows:

torall x f x (foldl faxs) = foldl f x xs

where f, a, and xs are specific. If we did not generalize x then the proof
would not go through. We return to the problems about quantification
in the next chapter.

In the above example we proved two theorems, both of which were
conditional on f and a forming a monoid. When we apply such laws
these proof obligations must be discharged. For example, in the step

foldr (H) [] [xO,xl,x2]

~ { first-duality}

foldl (++) 0 [xO,xI,x2]

the following side conditions will have to be discharged:

[] ++ x = x

x ++ 0 z: X

X ++ (y ++ z) = (x ++ y) ++ z

An Example Calculational Proof

As another example, consider the theorem

filter p . map f ~ map f . filter (p . f)

It is possible to prove this law using induction, but by characteriz
ing filter in a certain way, we can prove this conjecture hy purely
equational reasoning at the pointless level. Define

filter p = concat . map (if p (one, none»

One and none can be defined by their application to variables:

one x .. [x]
none x • 0

We will not use these definitions, but rather some laws about them
(these laws can of course be proved by induction):

9 1.1. EQUATIONAL REASONING

map t . one = one . f (map .one)
none . f = none (none-fun)
map f . none = none (map.none)

We do not need the recursive definit.ions of map and concat either, just
the following:

map f map g "" map (f . g) (map-distrib)
map f concat .. concat . lliap (map f) (map-promotion)

We use a special conditiona.l form, characterized by the following laws:

if P (f. g) h • if (p.h) (f.h, g.h) (if-fun)
h	 . if P (f g) • if P (h.f, h.g) (fun-if)

Once again, we can take the left and right hand sides separately:

1h.
z	 { definition}

filter p . map f

{ filter)

concat . map (if p (one, none)) . map f

{ map-distrib }

concat . map (if p (one. none) f)

•	 { if-fun)
concat . map (if (p f) «one f). (none. f)))

""	 { none-fun }
concat . map (if (p f) «one f). none))

10 CHAPTER 1. 1NTRODUCTION

rhs

{ definition}

map f . filter (p . f)

•	 { filter}
lDap f . coneat . map Cif (p . f) (one. none))
{ map-promotion}
concat . map (map f) . map (if (p . f) (one, none))

:	 { map-distrib }
concat . map (map f . if (p . f) (one. none))
{ fun-if}

concat. map (if (p,t) «map t.one), (map i.none)))
{	 map-none}

concat . map (if (p t) «map f . one), none))
{ map-one }
coneat . map (if (p f) «one. f). none))

So left and right hand sides have been reduced to equivalent forms,
completing our proof.

Commentary

This time we cast OUl' theorem as the composition of a number of higher
order functions. We did not use the definitions at all, just properties
of the functions involved. These were expressed using functional com
position. This is known as the pointless or calculational style of
programming, and it gives rise to a dual style of proof. It is a very
concise style of programming and proof.

The most important point about such calculations is the reliance on
tbe associativity of composition. It is never given as a st.ep in the proof,
indeed it would tediously painful to do so. A list of terms composed
together is not written with brackets, such as

«f . g) . h) . i)

but always written as

f	 . g . h . i

Any segment of this list is a valid sub-expression, and therefore suitable
for rewriting. Bird [2] gives a calculation of an efficient solut.ion to the

11 1.2. SOME CORE REQUIREMENTS

maximum segment sum problem, and relies heavily on the associativity
of composition. At one point in the calculation we have five terms
composed together:

max . map sum. concat . map tails .inits

It would be terrible if we had to apply associativity of composition at
every step in this proof. There are other algebraic properties which are
sometimes assumed in proofs, such as commutativity, identities, and
idempotence. Of the other three, commutativity is probably the most
important.

There are a number of calculational style laws given in [2] 1 and some
of them make use of where clauses for auxiliary definitions. When we
apply such laws, our new expression is qualified by a new definition.
To be formal we should augment each step in the proof with these
definitions, but this would clutter a simple style of proof. Most laws
using where clauses can be written in an alternative form, and as we
shall see later this is what we propose to do.

We also note that a preferahle notation for this style of proof is
Squiggol [3, 4], which defines special symbols for functions such as we
have used here. But to provide this in a satisfactory way would require
special fonts for the operators.

1.2 Some Core Requirements

We are now in a position to state some high level requirements for a
tool to support equational reasoning about Orwell functions.

We wisb to provide support for both proof and synthesis using equa
tional reasoning in either of the inductive or purely calculational styles.
We noted that we cannot hope to automate all proofs, and so what we
need is a machine assistant which can faithfully apply the commands
we give it. It should be useful as a teaching aid so that novice func
tional programmers can learn very quickly how to conduct proofs and
calculations, without making the sort of mistakes inherent with the
manual approach.

We want help to discover new proofs of the type illustrated above.
We do not want just to be able to type proofs into the tool after we have
done them with pen and paper - we wish to replace the pen and paper.

12 CHAPTER 1. INTRODUCTION

It is to be an experimental tool, where the user does not necessarily
know beforehand how the proof is to proceed. It is possible that a user
may make a mistake, and so must be able to remove erroneous steps
from the proof, and even construct alternative proofs.

We want an equational reasoning assistant and so for convenience
we suggest the name ERA, as an abbreviation.

Laws

Firstly, we need to be able to specify named definitions and laws about
Orwell functions. The form of these laws should allow side conditions
to be attached, as in our first example. \\-'hen conditional laws are
applied, side conditions arise and so we must cater for these too.

On start-up, the tool should read in a set of standard definitions,
just as Orwell reads in its standard prelude on start-up. The user
should be able to specify definitions in other files and read these in
too. It is very important that laws can be both browsed and added to
during a proof.

Rewriting with Laws

For expressions of a reasonable size, it is very common for a human
prover to make mistakes when manually rewriting them with a law. It
is very easy to write x instead of x' and even this minor error can cause
problems. Rewriting expressions with laws is a well defined process and
so at the very least we want a term rewriting system to do this for us.
h should be possible to re-write expressions by folding or unfolding
with a named law. If it is possible to apply the law in more than one
place in the expression, then all of the options should be offered to the
user, who can then select the appropriate one.

We noted that some proofs can be completed by reduction alone,
or even partially done, and so we should provide a facility to reduce
with the laws, or a subset of them. Tbis we shall call our go button.

As we saw, calculational style proofs rely on the associativjty of
composition, and so support for such proofs must take this into ac
count. Since associativity is a property of operators other than just
composition, it should be possible to specify any binary operator to
have this property. There are other properties such as commutativ
ity, identity and idempotence. Perhaps the most important of these is

13 1.2. SOME CORE REQUIREMENTS

commutativity. It could be provided as a law as follows

X+Y"'Y+X (+.commutes)

but this obviously gives rise to a non-terminating rule set, and it would
be dangerous to use our go button if this was a law. One approach
would be to provide rewriting modulo commutativity too, but we know
that associative/commutative matching is an NP-hard problem. What
we propose is that equations can be disabled, so that our go button
will not try and use such laws. We do not propose to provide rewriting
modulo identity either, as this can easily be added as an equation
(likewise for idempotence).

Splitting into Sub-proofs

'h'e need to be able to break derivations down into sub-derivations. us-
ing either simple case analysis or induction. There should be a general
facHity for stating induction rules, or schemas.

Multiple Derivations

In the first example we proved and used a lemma, so we need to be
able to work on more than one proof at a time, and allow the user to
work on each at will. We must also aJlow the results of derivations
to be learnt for use as lemmas in other calculations. Having multiple
proofs means that we must also provide good navigation facilities to
move between the proofs and sub-proofs.

Mode of Working

We must allow the user to work on left and right-hand sides of proofs
separately and attempt to bring them to a common form. They should
be able to switch between sides at will. The tool should be able to
recognize when left and right hand-sides have been reduced to common
forms. Ideally the user should be able to see both sides at the same
time, but this is not possible with a simple teletype interface.

14 CHAPTER 1. INTRODUCTION

Input and Output

We should provjde presentable output of proofs, with the the left and
right-hand side transformations combined to form a single chain of
reasoning.

The user may not complete a proof in one session with the tool and
so it shouJd also be possible to save an incomplete proof to be finished
at a la.ter date.

1.3 Other Tools

Lindsay et al, [10], surveys some of the existing machine support for
theorem proving and identifies the following key features which char
acterize the systems:

1. Object language and underlying logic,

2. Theory building facilities,

3. Automated deduction facilities,

4. Emphasis on user interaction,

5. Ta.ctical facilities,

6. Proof Management support.

The object language, underlying logic and the theory buildjng facilities
have a great affect on the type of proofs which can be performed,
although some systems are able to simulate logics other than their
native one.

Most tools emphasize either automation or user interaction, and
Lindsay claims that "the degree of user interaction is inversely propor
tional to the sophistication of a notional estab function.'" Here estab
is a function to establish the truth of the current goal, and can return
a verdict of true, false, Or open, or even fail to terminate. Lets now go
on and look at some existing systems.

15 1.3. OTHER TOOLS

The Boyer-Moore Theorem Prover

Boyer and Moore's theorem prover, [6), 8M for short, is an automatic
one: the user supplies a theorem and 8M tries to prove it from its
axioms and already proved results. No user interaction is possible
during a proof but a brief commentary is given as it proceeds. It is
possible that 8M will not terminate for some proofs, and when this
happens, it is possjble to stop it, add a lemma and start it off again.
An overview of its proof procedure is given in [10]. It is a prime example
of a system with a sophisticated estab function.

Its object language is a Lisp type notation, which can be compli
cated to read and write. Types must be defined in a certain way, ao.d
be countable - 8M requires a count function from the new type to the
natural numbers - and recursive definitions are accepted only if the user
can identify a measure function (a partial order) which will decrease on
recursive calls. Building definitions in this way allows BM to formulate
suitable induction hypotheses for use during theorem proving.

BM, because of its lack of user interaction, and minimal commen
tary, is not suited for novice functional programmers to tryout new
proofs. It is however one of the most sophisticated automatic tools
around and has some very clever heuristics for induction and general
ization.

OBJ

OBJ [8] is a wide spectrum functional programming language based
upon order sorted equational logic. Its rigorous semantics permits a
declarative style of programming, but most importantly to us, it also
supports theorem proving. It provides sophisticated hierarchical theory
building, through the use of "'objects" and "'theories'".

The operational semantics of OBJ is reduction: programs are ex
ecuted (i.e. theorems are proved) by term rewriting. This rewriting
can be done modulo associativity, commutativity and identity. Mod
ulo identity rewriting is done by a process of equation completion, but
this can generate a large number of extra equations and even Don ter
minating rule sets. Associativity and commutativity are done using
special data structures, but Goguen [8] notes the implementation of
this rewriting is inefficient. The problem of associative l commutative
matching is an NP-complete one.

16 CHAPTER 1. INTRODUCTION

As an example, we can request OBJ to prove a theorem wjth its
reduce command:

red 1 •• (m * 0) -= (1 •• m) •• 0

This will cause OBJ to reduce the left and right hand sides of the
equality to normal form, using the equations in the natural numbers
object. Then if both sides are equal it will return the value true. Other
examples are given in Goguen [8].

By default, OBJ will just give an answer of true or false. The user
can request running commentary which gives all of intermediate steps
in the rewrite process. They are not justified by the equations used,
and so this commentary is not as suitable for presentable output as
that produced by, say, WWW (see below).

It would be possible to use OBJ for conducting proofs about Orwell
programs l we could simply define the necessary equations use the red
command above to request proof. This means the user would have to
learn OBJ, and be forced to update OBJ objects and theories.

WWW

WWW (We Wite Wules) is a tool local to Oxford, currently under de
velopment by Mike Spivey. (Since it is very recent there is no published
documenation, but [13] describes rewriting with functional languages.)
It is aimed principally at automatic proof in the Bird-Meertens formal
ism. It is written in Orwell, and indeed its interface is a set of powerful
higher-order functions that provide a very flexible approach to proof.
It is best run inside an Emacs Shell because of this functional interface.
It is worth looking at an example of its use.

17 1.3. OTHER TOOLS

) theory c map pars9_eqn [

) "Length-def: Length = Sum . (Const 1) *",

> "Sum-det: Sum" (+) /".

> "red-promote: fl. (++) / .. f / . (f /) ... ,

> "map-compose: (g. f) • = g •. f.".

> "map-promote: f.. (++) I .. (++) / . (f .) .")

?prove(reduce theory)"lemma:Length.(++) / '" Sum.Length *"

Length. C++) /

{Length-det}

Sum. Const 1. (++) I

{Sum-det}

C+) / . Const 1 + . C++) /

{map-promote}

C+) / . C++) / . CConst 1 +) +

{red-promote}

C+) / . CC+) /) + . CConst 1 +) +

{Sum-det}

(+) / . Sum * . (Const 1 .) •

{map-compose}

(+) / . (Sum. Const 1 .) •

{Length-det}

C+) / . Length +

{Sum-def}

Sum . Length *

So, we set up some equations as the function theory, and then request
proof of the lemma using those equations. WWW reduces left and right
hand sides to normal form, which should be equal, and then joins the
two derivations together to give a well presented proof. The notation
above is that used jn 13, 4].

The most important thing to note is that WWW performs the re
writing of expressions taking into account the associativity of com
position. It does this by representing composition as a special data
structure, which in Orwell notation is

18 CHAPTER 1. INTRODUCTION

expr :: =	 Canst string

Var string

Apply expr expr

Compose [expr]

Composition is represented as a list of composed expressions, so that all
segments form sub~expressions and potential matches. Because com
position is treated as a special operator, it does mean that we cannot
declare other operators to be associative.

WWW's emphasis is very much on automatic proofs, and the user
cannot intervene once a proof has been started. Its output is very
suitable for presentation and we will do well to mimic it.

Provewell

Prm'ewell [11], is an equational reasoning tool for Orwell, with a simple
tete-type interface, developed by Andy Sphyris an M.Sc. student at
Oxford in 1989.

ProveweU consists of a law compHer and a core reasoner. The com
piler is used to convert a list of named equa.tions into a large static
function to be included with the reasoner at run time. This means
that the laws are fixed, but there is a limited facility for adding other
axioms.

To use the reasoner the user can first input any extra named laws,
and once the reasoning begins no more can be added. An expression
is input, and then the user transforms it over a number of steps by
naming laws to apply. If a law is applicable in more than one place in
the current expression, the user is offered each in turn. It is possible
to delete steps and also replay the proof to the screen (user messages
oCten clutter the screen), or to a file. Once finished it is not possible to
do any more calculations without restarting the whole tool.

The tool is written in Orwell, and is best vjewed as a useful specifica
tion of a rewriting engine for expressions, although WW\V supercedes
it. It has a very crude interface which makes it difficult to use.

EQR

EQR [9] is another tool, developed by Mark Jones, also an M.Sc. stu
dent in 1989 as a small part of his project. He used it to help do

19 1.3. OTHER TOOLS

equational reasoning about an Orwell implmentation of a Prolog Com
plier. Since this was a minor part of his project, there is only a brief
one page description of its facilities.

It allows the definition of laws and the transformation of a single
expression by naming laws to apply. At the end of a transformation
a Dew law can be learnt. Laws are read in from a file at start up and
can be extended at anytime during a derivation. New constant sym
bols and operators can also be defined. All definitions can be browsed
during a calculation, which is very important. Laws can be applied in
both directions and there is a facility to repeatedly apply laws until no
further reductions are possible.

Again only one fragment at a time is allowed, no conditional laws
are allowed, it is not possible to do structured proofs (only one side
of a law can be worked on), and all laws are implicitly universally
quantified.

Jape

Yet another tool recently developed a.t Oxford, is Jape, written by
Sufrin and Bornat [5]. It is an X-Windows based proof utility and
is used to calculate proofs interactively. It is based On hypothetical
deduction and has a notion of safe snbstitution. It can be tailored to
deal with most formalisms, and this has been done for equational logic,
and then used to carry out proofs about Orwell programs.

The user edits a proof as a tree structure, by clicking on expressions
that require rewriting. The main goal appears at the root of the tree
and the user bnilds the tree by splitting this into simpler and simpler
goals. It provides very good tactical facilities, and it is possible to at
tach proof rules and tactics to mouse buttons to allow painless proving.
Induction hypotheses can also be stated for theories.

There is also a facility for performing proofs modulo associativity.
This is done by normalizing expressions with the associativity rule so
they do not require brackets when printed. Then the user can select
sub-expressions for transformation. The sub-expression may not cur
rently be a valid sub-expression but Jape will use the associativity rule
in the reverse direction to shuffle the expression into a suitable form.
Two special tactics are provided to do this.

20 CHAPTER 1. INTRODUCTION

Calculation by Computer

In Chisolm [7], the author describes a tool for interactive proof in the
Bird-Meertens style. He notes there are a number of problems with
tools based on automation, and support intended to mimic the pen and
paper approach is preferable. It is windows based and, like Jape, a.llows
the user to select sub-expressions to work On. It can be parameterized
to most formalisms.

Cnisolm argues that it is impossible to automate all proofs, and so
support should be provided for experimentation, where the user guides
the development of a proof interactively. For example the user should
be able to replace a subexpression manually. rather than be restricted
to automatic instantiation of laws at all times. This is referred to as
syntactic editing. The replacement must preserve the correct syntax of
the original expression. The aim is to use automated transformation as
much as possible, but if necessary do a syntactic edit. So the ability to
validate proofs is sacrificed, and the user decides the level of formality
and what is important in a proof.

In general an automatic proof engine will generate a number of
unproven sub-goals necessary to the proof of the original goaL The
user then finds it very difficult to relate these sub-goals back to the
original goal, and difficult to decide what is important and what js
not. If done interactively, the user controls sub-goal generation and,
provided good proof management facilities are provided, the problem
goes away.

A similar problem is that results of calculations are often left in an
expanded form, so it is difficult to relate the result back to the starting
point. We require notational abbreviations to be used when displaying
results.

This tool is very good, but we prefer to insist upon automatic in
stantiation of laws, and a simpler object language.

Conclusions

Of the tools reviewed Jape seems to offer the best approach to inter
active proof. It is very easy for the user to seJect a sub-expression to
re-write, and the tree structure of the proof is clear. However, we wish
to provide a more flattened style of proof like those in [1], with jnduc
tion and case analysis treated differently to rewriting with equations.

21 1.3. OTHER TOOLS

We also want to reason in a. forwards, rather than backwa.rds, directioD.
Also. since we are to build a. tele-type interface, the JAPE approach
to modulo associative re-writing would be inappropriate. There are no
means to seled sub-expressions from the terminal, so we need to take
an approach similar to that used by WWW or OBJ.

Can any of the other tools form a useful basis for our new tool?
WWW carries out proofs with the approach we require and its output
is in a very suitable form. It does not have an interface however and
we note that it is difficult to build effective interfaces with a functional
language.

EQR, which is written in C, is also a candidate: it has a reasonably
good user jnterface and could be extended quite easily. We would
have to modify EQR to provide proof as well as synthesjs, multiple
derivations, conditional laws, case analysis and induction, and rewriting
modulo associativity as well as provide a facility to disable dangerous
laws such as commutativity when appropriate.

Chapter 2

Object Language

\Ve base the object language of ERA on simple untyped Orwell expres
sions. This will allow us to do most types of proofs, and more impor
tantly means that we can use EQR [9] as a starting point. We make the
assumption that all expressions and definitions are built from functional
application. Orwell does have features which do not fit neatly into this
scheme. List comprehensions, conditional definitions and where clauses
are the three main problems.

Where Clauses

Where clauses are often used in function definitions, as a modularising
facility_ It is always possible to convert them to a global form. For
example, consider the definition of list difference in B\V [11:

xs -- 0 = xs
zs -- (y:yo)

remove 1:5 y -- ys
where

remove 0 y = 0
remove (x:xs) y xs. it x '" Y

X : remove X9 y. otherwise

22

23

The subsidiary function remove can be lifted to top level:

IS -- 0 :: XS

XS -- (y:yS) ~ remove xs y -- ys

remove 0 y o
remove (x :X5) y IS. if x c y

x : remove IS y. otherwise

However, sometimes the where clauses use variables that appear as
arguments to the function being defined. For example, consider the
fold-ma.p fusion law:

foldl fa. map g	 foldl h a

where h b x :: f b (g x)

Here, h, has f and g as implicit parameters. To get rid of the where
clause we must make these parameters explicit by introducing an extra
combinator:

foldl fa. map g = foldl (fmfuse f g) a

fmfuse f g b x :: f b (g	 x)

Here we define a special combinator, fmfuse, which takes f and g as
parameters. The readability of the law is compromised l but we feel
this is an acceptable a.pproach. We could define such laws using a set
of general combinators, but we feel the specially named combinators
are more instrueti ve.

Sometimes, however, where clauses are used to isolate common
subexpressions l in a definition, so that they need only be calculated
once. This can not be handled by this expansion scheme. For example,
consider the fold-scan fusion law:

foldl fa. scanl g b =	 fst . foldl h (f a b. b)

where
h (u. v) % ... (f U "'. v)

w==gV%

'Ve can make f and g explicit parameters, but cannot avoid v being
calculated twice. We can rewrite this law in the form

24 CHAPTER 2. OBJECT LANGUAGE

foldl t a.scanl g	 b • fst.foldl (fsfuse f g) (f a b.b)

fsfuse f g (u. v)	 x ,.. (f u (g v x) > g v x)

This problem will prevent ERA from supporting derivations such as
the calculation of a fast fibonacci function, see BW [1], p13L On the
other hand this does not affect the correctness, only the efficiency of
the final result.

List Comprehensions

List comprehensions are very useful syntactic sugar, but they can al
ways be converted into a form involving map, filter and concat. Be
caise they use bound variables, we will not provide them.

On the other hand, there is a useful special form for lists that im
proves readability. \Ve set up the correspondences between the two
forms:

[x] x: 011:

[x,y] x:y: []

Conditional Definitions

With Orwell, conditional definitions are specified with a special syntax
as follows:

filter p (x:xs)	 X : filter p xs, if P x

filter p xs. otherwise

Since we do not wish to provide this special form, we define a special
conditional function:

if (True) t f = t

if (False) t f = f

Then the above definition can be written as

filter p (x:xs) = if (p x) (x:filter p xs)(filter p xs)

This idea is not entirely satisfactory for definitions involving multiple
cases, such as

25

member x (BiD Y tl t2) = member x tt, if %. < Y
.. True. if x '"' y

member x t2. if x > y

This would have to be rewritteu as

member x (Bin y tl t2) = if (x < y) (member x tl)
(if (x '"' y) True (member x t2»

Types

ERA is based on untyped expressions, and this does mean that it is
possible to derive incorrectly typed expressions from valid ones, for
example applying a law such as

fst(x.y)=x

right to left. The variable x matches all possible sub-expressions, and
so is very dangerous. In fact this is a. problem whenever no constants
appear on the side of the equation being used as a match.

New variables can also be introduced when applying laws, and this
happens when there are less variables on the matching side than on the
instantiating side. Again this is a source of type violations.

To solve this problem all laws should satisfy the following definition
principle:

vars(lhs) ;2 vars(rhs)

where vars is a list of all of the distinct variables occurring in an
expression.

Then the user should always try and apply laws left to right. If the
starting expression is well typed, and we apply a well typed law left
to right, satisfying this principle, then we are guaranteed a well typed
answer. This is known as the Subject Reduction Theorem, see [12] for
more details.

I can however think of one problem, the law relating map and icl:

id = map id

Which applies when

id :: raJ -> raJ

If the law is written in a reverse form, the prohlem goes away.

26 CHAPTER 2. OBJECT LANGUAGE

User Defined Types

[f no type system is provided, then it is not possible to provide user
defined types in a sound way. We cannot have definitions such as

tree a : :=~ Nil I Bin a (tree a) (tree a)

Of course, it is still possible to reason with expressions involving new
types, but the burden of ensuring only legally typed expressions are
written is again placed ou the user. The user should just define Nil
and Bin as function constants, but give no definitions for them:

function Nil Bin

2.1 Laws and Definitions

We need to be able to specify named laws and definitions, and for
simple laws a suitable form is

law <name> <expr> = <expr>

For example the map distributivity law can be stated a.s follows:

law map.distrib : map f (xs ~~ ys) = map f xs ++ map f ys

This type of law is implicitly universally quantified over its variables:

forall f,xs.ys : map f (xs ++ ys) * map f xs ++ map f ys

where map and ++ a.re constants which will have been pre-declared.
This simple scheme is insufficient to state laws such as the first

duality theorem which depends on certain assumptions or hypotheses.
For example, in order to apply the first duality theorem we must prove
the three equations necessary to show we have a monoid. For this
kind of scheme we propose a Horn Clause Form, which is sufficiently
powerful for the sort of laws we expect to work with. A law is in Horn
clause form if it consists of a set of hypotheses, and a consequent. \Ve
make the added assumption that the hypotheses and the consequents
are just equations. Horn clauses are normally written

hI !I h, !I ... !I h. =} C

but we prefer to state the consequent first and then the hypotheses:

27 2.1. LAWS AND DEFINITIONS

condlaw <name) <expr> <expr>::II

law <name) <expr> z <expr)

law (name) <expr) .. <expr>
end

For example, the first duality theorem can be stated as follows:

condlaw FirstDuality : foldr f a IS z foldl faxs
law leftid fax::II x
law rightid f x a ~ x
law assoc f x (f Y z) = f (f x y) z

end

We assume that any variable occurring in a hypothesis which also oc
curs in the consequent refers to that variable specifically, and so a
hypothesis would not be universally quantified over such variables. All
other variables in the hypotheses are universally quantified. This as
sumption leads to the following, correct interpretation of the duality
law:

forall f a xs :

for all :z: : f a :z: = x
for all x : f x a '" :z:
for all x. y • z : f x (f Y z) .. f (f x y) z

infer
foldr f a xs = foldl f a xs

Note, however, that this does place a burden of care on the user. For
example, if the user wrote I instead of xs in the consequent, then we
would not get the correct interpretation of the law at all.

What happens when we apply such a law? Let us take the example
of the first duality theorem again, if we have the following step in a
derivation

foldr (++) 0 xs
{ First Duality}
foldl (++) 0 IS

then the following obligations will be generated:

28 CHAPTER 2. OBJECT LANGUAGE

[] ++ x .. X

% ++ 0 "" X

% ++ (y ++ z) = ex ++ y) ++ z

Note that when the law was applied we generated these three side COD

ditions by making the same substitutions necessary to unify the left
hand side of the consequent with the starting expression. They were
generated as follows (using the square bracket convention for substitu
tions)

fax = x [(++)/f, []/al
f x a = x [(++)/f, []/al
f x (f Y z) = f (f x y) z [(++)/f, []/al

2.2 Proofs and Syntheses

Statement of proofs are very similar to the the statement of laws. Sim
ple proofs can be stated as follows:

proof map.distrib map f (xs++ys) = map f xs ++ map f ys

The more general Horn Clause Form for such proofs is

proof <name> <expr> .. <expr>

hyp <name> <expr> = <expr>

hyp <name> <expr> = <expr>

We do not provide an end to complete the statement of proofs, because
we prefer to allow the user to be able to add hypotheses during a proof.
As we shall see, this is necessary for some types of case analysis and
induction.

We make the same assumptions for proofs that we made for laws.
All variables occurring in the consequent belong to a set called the
fixed variables of the proof, and any occurrences of these variables in
the hypotheses mean that the hypotheses only apply for that specific
variable. All other variables in a hypothesis belong to the set of free
variables for that hypothesis, and are implicitly universally quantified.
So for a proof we must always maintain the following condition:

29 2.2. PROOFS AND SYNTHESES

freevars(proof) n fixedvars(proof) = 0

Syntheses can be stated in a similar way, but require an initial expres
sion rather than an equation:

synth <name) <expr>

hyp <name) <expr> • <expr>

hyp <name) <expr> e <expr>

Before we can go on to describe the facilities required to provide
induction and case analysis, we must be more precise about what we

mean by a proof. There are two aspects to a proof, its statement, and
the work to carry it out.

proof == (statement. work)

The statement of a proof can be expressed as

statement (name,lhs,rbs,hypotheses,fixedvariables)
Ihs. rhs expr
hypotheses [namedeqJ
namedeq (name. Ibs, rhs, freevariables)

Note that each hypothesis has a list of its own free variables 1 but all
hypotheses refer to the same fixed list of variables.

From our examples we know that there are two ways in which a
proof can proceed, either by transforming left and right-band sides
with eqL1ations, or by breaking into sub-proofs:

work (leftfrag, rightfrag, cases)
leftfrag frag
rightfrag frag
cases [proof]

A derivation fragment is simply a list of steps, where a step consists of
an expression and the name of a justifying law (note that because some
laws can have side conditions attached we have to be able to attach
obljgations to derivation steps in a proof):

30 CHAPTER 2. OBJECT LANGUAGE

frag [step]
step (expr. law, sideconds)
sideconds [proof]

The first step is taken simply from the original proof. The last step in a
fragment does not have a justifying law l as we take the convention that
the law refers to the next step in a fragment. Syntheses have exactly
the same structure, except that we have no rhs in the statement 1 and
no rightfrag in the work component.

2.3 Case Analysis

We must be able to perform case analysis on both proofs and syntheses.
A case call be specified with a list of substitutions, or perhaps by adding
new assumptions. We can define the syntax for a list of substitutions
as:

substitutions [substitution]
substitution «<expr»/«var»)

The hyp command can be used to add new assumptions for a case. We
provide a command to form a new case specified by a list of substitu
tions l for example

case Inductive «x:xs)/(xs)) «y:ys)/(ys))

This would add another case to the cases of the current proof, building
it as follows:

name· Inductive
Ihs=fst(last(proof.vork.lfrag)) [(x:xs)/(xs) ,(y:ys)/(ys)]
rhs=fst(last(proof.vork.rfrag)) [(x:xs)/(xs) ,(y:ys)/(ys)]
hyp = proof.statement.hyps
fixedvariables~proot.statement.fixedvariablesand x and y

The new proof is formed from the last steps of the derivation fragments;
this allows us to do some equational reasoning before invoking case
analysis. Once case analysis has been invoked, the user should be
prevented from modifying the derivation fragments, as the cases rely
on them staying the same.

31 2.4. INDUCTION HYPOTHESES

Note that x and y would be added to the fi:r.edvariables of the
new proof. Normally:r. and y should be fresh variables, but the ca.se
command will allow already existing variables to be used. For a safe
case analysis the user should always use schemas, which we describe
below. Note also that we do not perform the substitutions on the
hypotheses, aB we expect substitutions to be made to variables about
which we make no assumptions.

If we require case analysis on the value of an expression, we can do
this by specifying an empty list of substitutjons, and adding a hypoth
esis for each case.

To leave a case we provide a command up which will return the tiger

to the parent proof. We use this command when we give a method for
describing proof schemas.

2.4 Induction Hypotheses

The main emphasis in [I} is on recursive definitions and inductive
derivations. We therefore need a simple facility for performing induc
tion. It is no good hardwiring one specific form of induction into the
tool, as we lIlay wish to perform natural number induction, list induc
tion, double list induction, or induction on trees.

For example, consider the induction needed to prove the theorem:

t	 x (toldl g y xs) = toldl g (t x y) xs

subject to the proviso

t	 u (g v w) = g (t u v) w

Here the induction hypothesis we require is just the original theorem,
with x and y generalized, and all other variables fixed. Deciding which
variables to generalize is done as follows:

1.	 The vadables on which the induction is being performed are not
generalized.

2.	 Any variables which are qualified in the hypotheses are not gen
eraljzed.

3.	 All other variables a.re generalized.

32 CHAPTER 2. OBJECT LANGUAGE

So if we perform induction aD XS, to prove the above theorem, then

1. we do not generalize xs;

2, we do not generalize f and g;

3. we generalize x and y.

To generalize x and y we will have to rename them and make them
into a list of free variables for the genera.ted hypothesis - since we
noted that the set of free variables and fixed variables for a proof are
non-intersecting sets. So ERA should produce the following induction
hypothesis, where xO and yO are free variables.

f xO foldl g yO X5 ~ foldl g (f xO yO) X5

Note that we prefer to rename variables to something based on the
original names, so we adopt the scheme of appending the smallest nat
ural number possible to obtain a fresh variable. This is perhaps a little
"unfriendly" and we could perhaps dash the variables instead. Tbe
general command takes the form:

ihyp <hyp-name> <list of substitutions>

This command generates an induction hypothesis from its parent proof,
using generalization and substitution.

For example, to generate the above induction hypothesis we first
invoke case analysis

case Inductive ((x;:xs)/(xs»

and when inside this case we need the induction hypothesis, we invoke
the command:

ihyp ind-hyp «X5)/(X5»

It may seem redundant to specify that xs remains the same but the
tool needs to know which variables are being induced upon to perform
generalization and also we sometimes require to replace the variable
induced upon with another value - see for example induction on trees
in a later section.

33 2.5. SCHEMAS

2.5 Schemas

Using the case and ibyp commands we now have the ability to carry
out induction on our proofs. Since it would be tedious to type these
commands each time, we provide a facility for encapsulating the se
quence of commands as a schema.

Since we do not always want to perform our induction on the same
variables our schemas must are pa.rameterized. A suitable scheme is as
follows:

schemadef <name> <parameters>

comment <text>

<command>

<command>

end

For example a simple induction schema for lists could be stated as
follows:

> schemadef Listlnduction xs x
)	 comment (P(O) & (P(xs) .) p(x:xs») INFERS P(x.)
> on xs
> fresh x
) case Base: «O)/(xs»
) up
> case Inductive: «X:X6)/(X5))

) ihyp ind-hyp : «xs)/(xs»
) up
)	 end

When generating a new case and an induction hypothesis the vari
ables whicb are substituted must exist in the fixed variables of the
proof. Also we need to check that certain variables are fresh.

1.	 On checks that the variables on which the induction is to take
place actually exist within the current proof. If they do not then
the schema will fail and not be invoked.

34 CHAPTER 2. OBJECT LANGUAGE

2.	 Fresh checks that the new variables used in substitutions are in
deed fresh, that is they do not occur in the list of fixed variables
for the proof, or occur freely in any of the hypotheses.

Then the induction is done by splitting the proof into two cases,
and once inside the inductive case we add the appropriate induc
tive hypothesis.

This example uses a command called up, which leaves the current
case and returns us to the parent proof. ERA commands will be de
scribed in the next Chapter. Note that schemas are macros which can
contain other commands and so permit a flexible approach to proof.

This form for specifying schemas is reasonably general and allows
various forms of induction. For example, assuming we have defined the
Node and Tip functions, here is an induction principle on trees:

> schemadef Treelnduction t x It rt
> comment (P(Tip x) t (P(lt) t P(rt)=>P(t))) -> P(t)
> on t

> fresh It rt x
> case Ba.e : «Tip x) I (t))
> up
> case Inductive: «Node It rt) I (t))
> ihyp ind-hyp-left «it) I (t))
> ihyp ind-hyp-right : «rt) I (t))
> up
> end

35 2.5. SCHEMAS

Here is an induction principle for reasoning about pairs of lists:

) schemadef DoubleListlnduction xs Y5 x Y
> comment (P(D ,ys) t P(x:xs,O) t
> (P(xs,ys) -> P(x:xs,y:ys)))
> INfERS P(xs,ys)
> on 16 ya
> fresh x y
> case Base «O)/(xs))
>
>
>
>
>
>

up
case Base2 «x:xs)/(xs)) «O)/(ys))

up
case Inductive «x:xs)/(xs)) «y:ys)/(ys))

ihyp ind-hyp : «xs)/(xs)) «ys)/(ys))
up

> end

A number of standard induction schemas are provided in the ERA
prelude.

Chapter 3

User Interface

3.1 Preliminaries

To start up ERA and read in a file of definitions, type the following
command a.t the Unix prompt.

era prelude. era

This will read in the named files and prompt you for a command.
Files adopt the literate script convention, so only lines prefixed with a.
greater than sign are interpreted by ERA, all other lines are ignored
and treated as comments. As we shall see, files can contain comma.nds
as well as definitions. We suggest that, as a convention, you prefix
ERA input files with a ".era" suffix. !fyou wish to read in further files
then use the read command:

read <filename> ...

To leave ERA simply type

quit

This will quit immediately, so ensure you ha.ve saved the system state
if you wish to continue the work of the current session at a la.ter date,
or ha.ve at least obtained output of your proofs.

36

37 3.2. DEFINITIONS

3.2 Definitions

Constants

All constant symbols must be defined before they are used otherwise
they will be interpreted as variables and not constants. For example,
the following declares functions, prefix operators, and left and right
associative operators. Note the higher the number accompanying an
infix declaration, the higher precedence the operator has when being
parsed. There is currently no scope for declaring mixfix or non asso
ciative operators, as is possible with Jape and other tools.

> function map filter concat
> pref ix • •
> left 110
> left 50 •
> right 40 &

Properties of Operators

It is possible to declare binary operators to be associative. If this is
done, the user should not add equations for associativity, otherwise, a
non terminating rule set will be generated. For example, we can declare
composition, addition and concatenation to be a$sociative operators:

> assoc

> assoc +

> assoc ++

If any of these declarations are made at the command line, then they
are logged to the logfile era. log. We can list the constants and thejr
propertjes with the following command:

consts <pattern>

A pattern can contain the wildcard character * whkh will match any
string. For example to list all constants beginning with a. type;

consts a,*

38 CHAPTER 3. USER INTERFACE

Laws

Named laws can be defined as follows

> law map.concat map f . concat = concat.map (map f)

> condlav FirstDuality : foldr f a %s = foldl f a xs
> law left-id f a x = x

> law right-id : f x a = x

> law assoc f x (f Y z) = f (f x y) z

> end

Any laws which are added at the command line are again logged. It
is not possible to define conditional laws at the command line; instead
the user is expected to define them in a file and read them in. You can
list from the current laws as follows:

laws <pattern>

Enabling and Disabling

Experience shows that is sometimes desirable to disable some laws dur
ing a calculation. We may wish to prove a theorem that is already
installed as a law, and arrange that our go button will not use them.
For example the standard prelude contains

> law +.commutes ; x + y ~ y + x

> disable +.commutes

Laws can easily be re-activated with the enable command:

enable +.commutes

39 3.3.	 STATING PROOFS AND SYNTHESES

3.3 Stating Proofs and Syntheses

Proof

Proofs are started with the proof comma.nd, as follows:

> proof HapDist : map f (xs++ys) = map f IS ++ map f ys

> proof FirstDuality ; foldr f a IS s foldl f a IS

> byp left-id fax • x

> hyp right-id : f x a • x

> hyp assoc : f x (f Y z) • f (f x y) z

The hyp command adds hypotheses to the current proof. Proofs are
an open structure so that hypotheses can be added at any time to the
current proof - this is necessary for an interactive style proof assistant.
In the above example, the hypotheses only apply for the specific f and
a. We can use hypotheses to rewrite expressions just as we can with
laws. We can list the hypotheses of the current derivation as follows:

hyps <pattern>

and	 we can ask what we are currently proving with

proving

Syntheses

Syntheses are started with the synth command as follows:

> synth NewHaxSegSum : mss

As for a proof, hypotheses can be stated for a synthesis.

Case Analysis

You can invoke case analysis on the current proof through use of the
case command. For example

c.se Third: «.:.5)/(XS» «y:ys)/(ys»

This will perform the substitutions to the current proof, and generate
a new sub-proof. Any hypotheses, or assumptions which the parent
proof used are copied to the sub-proof. This will then become the new
current proof.

40 CHAPTER 3. USER INTERFACE

Induction Hypotheses

Once inside a sub-proof it is possible to generate an induction hypoth
esis, and add this to the list of current hypotheses. This is done by
specifying a list of substitutions to make to the parent theorem,

ihyp ind-hyp-left ((It)l(t))

The Dew hypothesis will be generated, wjth appropriate generaljzation
of variables. Even if we do not require any substitutions, we must say
that the variable we are inducing upon is replaced by itself. You can
list the top level proofs and syntheses by simply typing

proofs

and if you are in a proof with case analysis then you can list the cases
by typing

cases

3.4 Moving Around

If you have entered a sub-proof by use of the case command, you can
return to the parent proof by typing

up

If the current proof has no parent proof, that is, it is a top level proof,
then you will now be free to select a new proof from those at the top
level. Otherwise you will be returned to the parent proof. If you are
not currently editing a proof, then you choose one with the select
command:

select FilterHap

and if you are in a proof you can select from the sub-proofs with the
same command, for example:

select Base

41 3.5. USING THE LAWS

3.5 Using the Laws

Switching Sides

On entry to a proof the user is expected to work on left and right hand
sides separately. If you are in a synthesis, then of course there is only
a. left hand side. Two commands are provided to select sides to work
on:

lhs

will switch to the left hand side, and

rhs

will switch to the right hand side.

Applying Laws

To reduce with a law we use the red command, or r for short, together
with a law name, or pattern for a. law name. For example the following
are both valid commands:

red map.l
r filter.

If no laws apply then nothing happens, if one rewrite is possible this
is made the next step in the proof, and if more than one rewrite is
possible, you can select from them by typing the appropriate option
number. UnreduetioD, or folding with a law, is very similar; again we
have two commands:

unred foldr.1
u fold

Because laws applied backwards can often apply to an expression in
a lot of ways, it is recommended that this command is not used with
a pattern for laws. Note that if any new variables are introduced as
a consequence the user will be asked to supply a value for them. For
example unreducing with the map. 1 law would require a value to be
supplied for f. Hap.1 is defined as follows:

map f 0 • 0

42 CHAPTER 3. USER INTERFACE

The value supplied wilt have to be an expression involving constants
and variables alrea.dy occurring in the proof. We can try to apply a
law in either way by use of the by command:

by foldr. 1
b foldr.1

To repeatedly apply laws, left to right 1 there is a go command which will
try and reduce an expression as much as possible, with laws matching
the supplied pattern:

go •

This will apply laws as much as possible using outermost reduction, giv
ing a commentary of steps and justifications. If a non-terminating set
of laws are provided then the tool may cycle forever. So you should be
careful wben supplying laws, and if necessary make use of the disable
feature we described above.

Deleting Steps

We can remove steps from the current side's derivation with the delete
command.

delete
d 3

]f the number of steps is not specified then only one step is deleted.

Queries

We can list tbe steps of for the current side with

steps

After you done some work on the current proof, you can ask wha.t
remains to be proven with

remaining

43 3.6. SCHEMAS

If case analysis has been invoked any cases which have not been proved
will be listed, if not then we still need to prove left band side equals
right hand side. Conditional laws generate side conditions, which are
attached to steps in a derivation fragment. The followjng command
will list an of these, if anYI and ask the user to select one:

sideconds

Again the up command can be used. to return to the parent proof.

Learning Results

After you have proved a theorem you may wish to add it to the current
rule set so that you can use it jn other derivations. For example,

learn FirstDuality

will add a new law, with the name FirstDuality, based on the current
derivation. If the user is currently in a synthesist then it will take the
starting expression and equate it to the last step in the tra.nsformation.
The resultant law is also logged.

3.6 Schemas

The schema command can be used to invoke an induction rule 01] the
current proof. If the user tries to apply it to a synthesis, then tbe cases
will be generated, but obviously the induction hypotheses will not be.
A scbema is invoked as follows:

schema Listlnduction xs x

Schemas provjde a facility for specifying induction rules, they are
parameterized. to allow them to be used for any variable. They work like
macros and we can do more than just create cases and new hypotheses,
we ca.n put commands in to actually apply laws. For example the Jist
induction schema we gave in Chapter 2 can be augmented to go with
the available laws for each side of each case generated.

44 CHAPTER 3. USER INTERFACE

) schemadef Listlnduction %9 X

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

comment [P([]) ~ P(x.) -> P(x;xs)] IMPLIES P(xs)
on xs
fresh x
case Base «O)/(xs))

go •
rho
go •
lh.

up

case Inductive «x; xs) / (x.))

ihyp ind-hyp ; «xs) / (xs))

go •
rhs
go •
lh.

up
end

This schema. specifies that to perform a proof by simple list induction,
we break it down into two cases, and for each one we try to rewrite
each side as far as possible using the a.vailable laws.

We can list the schemas with the following command:

schemas

There are a number of schemas defined in the standard prelude, given
in Appendix A. When you list them, the first comment line is displayed
on the screen.

45 3.7. OTHER COMMANDS

3.7 Other Commands

Help

The help command can be used to get help on various commands. You
simply type

help

and you will see the following menu

ERA HELP HENU

1 Starting and Quitting
2 : Definitions
3 : Starting Proofs and Syntheses
4 : Navigating the System
5 : Expression Transformation
6 : Querying

7 Input and Output

you then chose an option which will give you details 00 all of the
commands in the selected category.

Listing the Fixed Variables of the Current Calculation

The command fixed will list all of the fixed variables for the current
proof.

fixed

This is sometimes useful before adding a new hypothesis, to ensure
that we achieve the correct qua.ntifications.

Deleting Proofs

There is a command to delete cases, by specifying the name of the case
to delete:

delcase <name>

and to delete top level proofs we have

delproof <name>

46 CHAPTER 3. USER INTERFACE

3.8 Input Output

Reading Files

As we saw we can read files in as follows

> read <file-1> <file-2>

Saving the Session

This command will save the entire state of ERA, and allow you to
restart ERA with those details at a later date, by simply reading the
file in.

> save <file>

Outputting Proofs for Presentation

TbiB command will output the current proof, or subproof to a file, in
a pretty printed style. Left and right hand side derivations in proofs
will be glued together where appropriate. For example:

output FilterHap.out

Chapter 4

Using ERA

We set Qut with the aim of developing a. tool to be able to support
proofs and syntheses of the type given in the Bird and Wadler text
book [1J. In this chapter we take some example proofs from the book,
and hopefully demonstrate how easy they are to do using ERA. We
also give some other examples.

4.1 Inductive Examples

Proof

As an example of an inductive proof, consider the proof of the following
equation relating subs and map.

subs (map t zs) • map (map f) (subs IS)

The function subs returns a list of the subsequences of a list and is
defined by

subs 0 • [OJ
subs (%:%S) ~ subs zs ++ map (z:) (subs IS)

Using ERA we would type

function subs
law subs.l : subs 0 • [OJ
law Bubs.2 : subs (%:%8) • subs IS ++ map (z:) (subs IS)

Now we can state the proof, naming it SUbsMap:

47

48 CHAPTER 4. USING ERA

proof SubsHap : subs (map f IS) .. map (map f) (subs IS)

Looking at the definition of subs we can see that structural induction
over lists is required, so we type

scllema. Listlnduction IS :r.

Invoking the schema. for simple list induction (in the standard prelude)
will break the proof into two subproofs and reduce left and right hand
sides as far as possible. After ERA has read in the proof, and started
doing it using list induction, we will see some commentary of the steps!
and then, assuming we have a. terminating rule set. it will finish. We
can ask ERA if the proof succeeded by typing

remaining

We will get the answer that the inductive case has not been proven yet:

Still to prove :
Inductive: subs (map f (X:X5» = map (map f)(subs (X:X9»

Given that
lav ind-hyp subs (map fa IS) ~ map (map fO) (subs xs)

So we select that case and again use remaining to see what left to be
done:

select Inductive
remaining

and ERA will give us the following message

Still to prove ::
(map (map f) (subs xs))++(map «(f x):) .map f) (subs xs))'
(map (map f) (subs xs)) ++ (map (map f . (x:)) (subs xs))

By inspection, we can see that this equation requires the law

map «(f x):) . map f) • map (map f . (x:))

This law can easily be established by applying both sides to xs

proof maplemma : map «(f x);).map f)xscmap (map f.(x:»xs

49 4.1. INDUCTIVE EXAMPLES

and invoke list induction again, hut this time we use :z: ~ as we alrea.dy
have :z: in OUf expression.

schema Listlnduction IS :z:

We will then see some commentary and ERA will stop. We ask ERA.
if it succeeded by typing:

remaining

and it will say

Proof is complete

Out of interest if we examine our eventual output for the proof of this
lemma, we see that the inductive hypothesis was not used, and case
analysis would have been sufficient. So now lets learn this lemma as a
new law:

learn maplemma

Now let's return to the inductive case of our original proof and see if
we can get any further:

up
select SubsMap
select Inducti¥e

Rather than use the new Jemma explicitly lets just say go again (we
are on the left hand-side)

go •

We will see one more step performed and jf we type

remaining

we see that the proof is complete.
Now that we have finished we can output the proof in a presentable

form to a file. So let's leave the inductive case and do this as follows:

up
output SubsHap.out

50 CHAPTER 4, USING ERA

The file will look as follows:

SubsMap : subs (map f IS) ~ map (map f) (subs XS)

Splits into case analysis

Bas. , subs (map f 0) = map (map f) <subs 0)

lhs
{definition}
subs (map f D)

{map ,I}

subs 0
{subs ,n
[OJ

""	 {singleton}
o : 0

•	 {map. I}
o : (map (map f) 0)

•	 {map. I}

(map f []) : (map (map f) [])

•	 {map.2}

map (map f) (0 : 0)

•	 {singleton}
map (map f) [0]

•	 {subs .i}

map (map f) (subs 0)

Inductive subs (map f (x:xs»=map (map f) (subs (X:X8»

Given that

law ind-hyp: subs (map fO XS) .. map (map fO) (subs XS)

lhs
{definition}

subs (map f ex : IS»~

•	 {map.2}

subs «f x) : (map f %5))

•	 {subs.2}

51 4.1. INDUCTIVE EXAMPLES

eube (map f x.) ++ map «(f x) :)) (eubs (msp f xe))
~ {ind-byp}

.ube (map f u) ++ map « (f x):)) (map (map f) (eube xs))
• {ind-byp}

map (map f) (subs xs) ++
map «(f x):)) (map (map f) (subs xs))

• {map.5}
map (map f) (subs xs) ++
map «(f x):) . map f) (subs xs)

.. {maplemma}

map (map f) (subs xs) ++ map (map f . ex:)) (subs xs)

• {map.5}
map (map f) (subs xs) ++
map (map f) (map «x:)) (.ubs xe))

{map.3}

map (map f) (subs xs ++ map (ex:» (subs xs))

{.ubs.2}

map (map f) (subs (x : x.))

Even though the proof was calculated by working on left and right
hand sides, we can get a conventional presentation of the proof. We
can easily do the same for the proof of the lemma..

Note that ERA could do this proof automatically if we read the
following specification in from a file:

> function subs

> law sUbs.l : subs 0 = [OJ

> law subs.2 : subs (x:xs) = subs xs ++ map ex:) (subs xs)

> proof SubsMap subs (map f XS) .. map (map f) (subs IS)

We need this lemma
> law maplemma : map «(f x):) . map f) • map (map f.(.,))
> schema Listlnduction xs x

> output SubsMap.out

Synthesis

For a good example of program synthesis we can borrow a.nother exer
cise from [1], exercise 5.5.4. The task is to synthesize recursive defini
tions of list subtraction and remove from the specification

52 CHAPTER 4. USING ERA

law -- :IS -- ys ~ foldl remove xa ys
law remove remove :IS y • takewhile (./~ y) xs ++

drop 1 (dropwhile (-1- y) .s)

The definitions of takewhile, drop etc., can be seen in the standard
prelude for ERA in Appendix A. I approached this task by getting
the tool to do as much of the work as possible - seeing how far it can
get on its own, doing steps it ca.nnot do automatically and setting it
off' again. I did not try to plan this proof out before doing H, and as
a consequence it is not presented in an ideal way. We can start new
syntheses as follows:

syoth Nev-- : xs -- Y8
synth NevRemove : remove 15 y

Let's consider remove first. SynthesJs is done by instantiation on IS,

the two cases are [] and (:1::13).

To start off the base case we type

case Base (([] l/(.s»

We are now inside the base case, that is, we are in a sub-synthesis with
the starting expression

remove 0 y

We expect thjs case to be simple so we try the go command:

go •

ERA then produces the following set of steps:

.. {remove}
(takewhile ((-I-y» O)++(drop 1 (dropvhile «(-I=y» 0»

.. {dropvhile. t}
(takewhile «(-I=y» 0) ++ (drop 1 0)

.. {takevhile . t}
o ++ (drop 1 0)

.. {++.t}

drop 1 0

Now we want to use the fad that

53 4.1. INDUCTIVE EXAMPLES

drop (n+1) 0 • 0

However I ERA does not know that 1 is of the form n + 1. We can
convert into this form by unreducing with the equation

law 0+ 0 + x = x

So we type

u	 0+

and select the appropriate one from the list of options. We now have
as the next step

•	 {O+}

drop (0 + 1) []

It would be nice to he able to type go again now 1 but this would just
apply the same equation in the opposite way, something we do not
want. So we just reduce with drop (note bow we use the pattern so We

don't have to remember the exact name of the equation):

r drop.

As our result we now have

remove 0 y ~ 0

Next we consider the inductive case, hut first we must leave the
current case.

up
case Inductive «x:xs)/(xs»

Once again, let us get ERA to do the work:

go •

We get the following sequence of steps

54 CHAPTER 4. USING ERA

{remove}
(Iakewhile «'I=y)) (x : xs)) ++
(drop 1 (dropwhile «=I=y)) (x : xs)))

•	 {dropwhile. 2}
(takewhile «=I'y)) (x : xs)) ++

(drop 1 (if (('I=y) x) (dropwhile (('I'y)) xs) (x xs)))

•	 {Swap}

(takewhile «=I=y)) (x : xs)) ++
(drop 1 (if (x =1= y) (dropwhile «=I=y)) x.) (x : x.)))
{takewhile.2}

(if «=I=y) x) (x : (takewhile «=I=y)) x.)) 0) ++

(drop 1 (if (x =1· y) (dropwhile «·I=y)) xs) (x : x.)))

•	 {Swap}

(if (x =1' y) (x : (takewhile ((=!-y)) xs)) [J) ++

(drop 1 (if (x =1= y) (dropwhile «.I=y)) xs) (x : xs)))

What we ha.ve left is quite a complicated expression, but we can see
the following is present as a subexpression:

(x	 =1= y)

We ca.n perform case analysis on the value of this expression a.nd see
how far we can get.

First Sub-case

We do not need to make any substitutions so give a null list as an
argument to the case command. So we type the following sequence of
commands

case X=Y : 0

hyp assumption ex ~/= y) = False

go •

and ERA does the following steps

55 4.J. INDUCTIVE EXAMPLES

..	 {assumpt ion}
(if False (x , (take.hile ((·f·y)) xs)) 0) ++
(drop 1 (if (x ·f. y) (drop.hile ((·f·y)) xs) (x xs)))

...	 {assumption}
(if False (x , (take.hile ((·f·y)) xs)) 0) ++
(drop 1 (if False (drop.hile ((.f.y)) xs) (x : xs)))

•	 {if. False}
o ++ (drop 1 (if False (drop.hile ((·f·y)) xs) (x:xs)))

•	 {++.n
drop 1 (if False (drop.hile ((ofoy)) xs) (x : xs))
{if. False}
drop 1 (z : xs)

\Ve have the same problem with drop as we had before and so we
unreduce with the law relating + and 0, and select the appropriate
option.

u 0+

which gives us

• {O+}
drop (0 + 1) (x xs)

Now we just say go with the drop laws

go	 drop.

which gives us the final steps for this case.

•	 {drop.3}
drop 0 IS

{drop.!}..

56 CHAPTER 4. USING ERA

Second Sub-case

The other sub-case is done as follows (first we must leave this one):

up
case (X·j·y) : 0
hyp assumption : ex =/= y) = True
go	 •

This gives us the first sequence of steps

{assumptioo}
(if True (x : (takewhile «.j.y)) xs)) [J) H

(drop 1 (if (x .j. y) (dropwhile «=j.y)) .s) (x xs)))

{a.ssumption}
(if	 True (x : (takewhile «=j.y)) xs)) [J) H

(drop 1 (if True (dropwhile «.j=y)) xs) (x : xs)))
..	 {if. True}

(x	 : (takewbile «.j.y)) x.)) H

(drop 1 (if True (dropwhile «.j.y)) x.) (x x.)))
•	 {H.2}

• : «takewhile «.j.y)) x.) H

(drop 1 (if True (dropwbile «.j.y)) ••) (x x.))))

•	 {if. True}

x : «takewhile «.j.y)) x.) ••

(drop 1 (dropwbile «.j.y)) x.)))

Looking at the expression in the outer parenthesis we see that it matches
the right hand side of the definition of remove, and so we can unreduce
with that Jaw:

u remove

which gives us the final step

.. {remove}
x ; (remove xs y)

So collecting our definitions into a an Orwell form we have that

remove 0 y = 0
remove (X:X8) y "" xs, if x .. y

.. x : (remove xs y) • otherwise

This example can be quite time consuming to do by hand, but here we
can do it very quickly, without much thought.

51 4.1. lNDUCT1VE EXAMPLES

List Subtraction

Now let us turn our attention to ~ynthesising a new definjtion of list
subtraction. Synthesis is by instantiation on xs and y8, the cases being
(D. yo), «x:xs),O) and «x,"o).(y:yo)). So lets take each case
jn turn.

case 1 «O)/(xs))
go •

gives us the following sequence of steps:

{--}

foldl remove [] Y8

We cannot get any further with our available laws, although we can
see that this simplifies to 0 - because [] is a. left zero of remove. and
there is a. special law about foldl and left zeros:

condlaw foldl.leftzero : foldl faxs ~ a

law left zero : fax ~ a

end

This law holds only for finite lists. If we reduce with this law:

r foldl.leftzero

we get the foHowing as our final step

s {foldl.leftzero}
o

But since we applied a conditional law, there is a. side condition at
tached. to this step, namely

remove 0 y til 0

We can either prove this fact allover aga.in, or ignore it because we
know it holds from the synthesis of remove, or we could go back and
learn the new definition of remove, and then the proof would require
only one step to be completed. We ignore it in this example. So that
completes our first case.

58 CHAPTER 4. USING ERA

We Dote that introducing the new law about left zeros, introduces
a problem when using our go button. Since the conditions are not
checked before application, they have to he checked later, the law can
be applied when its Dot strictly applicable. So we should disable it
with

disable foldl.leftzero

a.nd DlU go command will not use it: we have to ask for it explicitly.

Second Case

Now let us consider the second case

cas.2: «x"s)/(xs)) «O)/(ys))
go •

This gives us the following steps and completes the case.

(x : xs) -- 0
= {--}

foldl remove (x xs) 0

= {foldl.1}

x xs

4.1. INDUCTIVE EXAMPLES	 59

Third Case

Now for the last case, again we must leave the current case:

up

case 3 «x,xs)/(xo)) «y,yo)/(yo))

go •

This gives us the following steps

(x , xs) -- (y , yo)
{--}
foldl remove (x : xs) (y : y5)
{foldl .2}
foldl remove (remove (x : xs) Y) Y9
{remove}
foldl remove «tokewhile «=I=y)) (x , xo)) ++

(drop 1 (dropwhile «=I=y)) (x , xs)))) ys

..	 {dropwhile.2}

foldl remove «tokewhile «=I=y)) (x , xs)) ++ (drop 1

(if «=I=y) x) (dropwhile «=I=y)) xs) (x , xs)))) yo
o	 {Swap}

foldl remove «takewhile «=I=y)) (x , xo)) ++ (drop 1
(if (x -I· y) (dropwhile «'I=y)) xs) (x , xs)))) y.

o	 {takewhile.2}

foldl remove «if «=Ioy) x)

(x , (takewhile «oloy)) xs)) 0) ++ (drop 1

(if (x -I- y) (dropwhile «-I-y)) xs) (x , xs)))) y•

•	 {Swap}

foldl remove «if (x =1= y)

(x , (takewhile «=I=y)) xs)) 0) ++ (drop 1

(if (x .10 y) (dropwhile «ol=y)) xs) (x , xs)))) ys

Again it looks as though we should perform case analysis on the value
of (x -I- y).

First Sub-case

Here, we type

60 CHAPTER 4. USING ERA

case X:o:Y : ()
hyp assumption : (x =/= y) ~ False
go •

wbkh gives us the following steps

b.ssumpt ion}
foldl remove «it False
(x : (take.hile «'I=y)) xs)) 0) ++ (drop 1
(if (x -I- y) (drop.hile «=/cy)) X5) (x : xs)))) Y5
{assumption}
fold! remove «if False
(x : (take.hile «=I=y)) X5)) 0) ++ (drop 1
(if False (drop.hile «=I=y)) X5) (x : X5)))) Y5

..	 {if. False}

f oldl remove (0 ++

(drop 1 (if False (drop.hile «c/'y)) X5) (x : X5)))) Y5

•	 {++. n
foldl remove (drop 1 (if False (dropwhile «=/~y» xs)
(x	 : X5))) Y5

..	 {if .False}

foldl remove (drop 1 (x : XS» Y5

Once a.ga.in we have the problem with drop, so we do the following and
select the appropria.te option

u	 0+
go drop.

and we get the following steps

= {O+}

foldl remove (drop (0 + 1) (x ~ IS»~ Y5
{drop.3}
foldl remove (drop 0 XS) Y5
{drop. n
foldl remove xs ya

Now we can unreduce with the definitjon of --, giving the final step
for this case -{--}

XS	 -- Y5

61 4.1. INDUCTIVE EXAMPLES

Second Sub-case

The case for «'x_/o.y) • True) is done in the sa.me way:

up

ca.e x-j-y : ()

byp assumption (x -/- y) ~ True
go •

and we get the following series of steps:

foldl remove «if (, -/- y)

(, : (takewhile «=/=y» ..» 0) ++ (drop 1

(if (, -/- y) (dropwhile «=/=y» ,.) (, : ,.»» y.

c:	 {assumption}

foldl remove «if True

(, : (takewhile «=/-y» zs» 0) ++ (drop 1
(if (, -/- y) (dropwhile «=/-y» ,.) (, : ,.»» ys

..	 {assumption}

foldl remove «if True

(, : (takewhile «-/-y» zs» [J) ++ (drop 1

(if True (dropwbile «=/-y» ,.) (, : ,.»» y•

•	 {if .True}
foldl remove «, : (tokewhile «=/=y» ,.» ++
(drop 1 (if True (dropwhile «./.y» zs) (, zs»» y.

- {++.2}
fold 1 remove (, : «tokewhile «=/=y» ,.) ++
(drop 1 (if True (dropwhile«-/-y» ,.) (, : ,.»»)) y.

=	 {if.True}

fold 1 remove (, : «tokewhile «./.y» ,.) ++

(drop 1 (dropwbile «=/=y» ,.»» y.

Now we try and unreduce with our definitions to get a. recursive char
acterization:

u	 remove

which gives us

..	 {remove}

foldl remove (I: (remove:u Y» Y8

62 CHAPTER 4. USING ERA

and this matches the rjgbt hand side of the definition of --, so we type

u -

and we get the final step

. {--}

(x ; (remove:Is Y» -- ys

To summarize we have the following new definition of remove:

o y. • 0
(x: ..) o .. (::I:::ls)

(x :x.) (y:y.) .. :IS - ys, if (x • y)
(x : (remove IS y» -- ys

Again this is a fairly complicated example to construct by hand, but
it quite easy to do with ERA.

4.2 Calculational Examples

Proof

To demonstrate a calculational example, we consider again the law
relating filter and map given in the introductory chapter. We can
specify the laws and proof in a file as follows:

> left 110.
> assoc
> function filter map concat if
> function ODe none

> lav filter : filter p = concat.map (if p (one.Done»

> lav map-distrib map f map g = map (f . g)

> lav map-prom map f . concat ~ concat.map (map f)

> law map-one : map f . one = one . f

> law none-f none . f • nOne

> law map-none map f . none = none

> law if-f , if P (f, g) . h = if (p.h) (Lh, g.h)

> law f-if : h . if P (f ,g) = if p (h . f, h . g)

> proof FilterHap : filter p.map f • map f.filter (p.f)

63 4.2. CALCULATIONAL EXAMPLES

This file is self contained and so we invoke ERA without the standard
prelude. After reading this in, we use ERA to reduce left and right
side as far as possible. After typing

go •

we get the following steps

filter p . map f
{filter}
concat . map (if p (one,none» . map f

{map-distrib}

concat map (if p (one,none) . f)

{if-f}

concat map (if (p.(f» «one. (f),(none. (f»»)

{none-f}
concat . map (if (p . f) «one. f),(none »)

If we then we do the same for the right hand side,

rhs

go •

we get the following steps

map f . filter (p . f)
{filter}

map f . CODcat . map (if (p . f) (one,none»

{map-prom}

concat . map (map f) . map (if (p . f) (one.none»

{map-distrib}

concat . map (map f . if (p . f) (one,none))

{f- if}

concat . map (if (p.f) «(map f).one),«map f).none»)

{map-none}
concat . map (if (p f) «map f one), (none i»~

= {ma.p-one}

concat . map (if (p f) «one. f),none»

If we now type

remaining

we see that the proof has succeeded, and ERA did all of the work.

64 CHAPTER 4. USING ERA

Synthesis

The example in [2] of the maximum segment sum can also be calculated
by ERA, by just using the go command. We set up the appropriate
definitions from this paper in a file as follows:

Define the tolloving operators

> lett 110.

> assoe .

> lett 100 +

> right 10 MIN MAX

Define the folloYing functions

> function toldl map concat sum 1st min max

> tunction segs tails inits

Define the following constants tor pOB infinity and neg infinity
respectively
> function posin! negint

Negative infinity is a left zero for MAX
> law MAX. 1 negint MAX :I: := :I:

> lav MAX.2 : :I: MAX negint := :I:

We have the following lavs about map. told1 and cODcat

) lav map.distrib map t m.ap g := llIap (I.g)

) lav m.ap. cODcet m.ap t concat := CODcet . llIap (map f)

) lav foldprolll toldl t a . concat =toldl t a . map (toldl t a)

Detine sum, min and max as tollovs

> lav sum sum =toldl (+) 0

> lav min : min = toldl (MIN) posint

> lav max max = toldl ("AX) neginf

> tunction scanl

> lav scanlemma : map (toldl t a) . inits = scanl t a

> function tstuBe

> lav foldscantuse : toldl t a Bcanl g b ==

fst . toldl (tsfuse f g) (t a b. b)

> lav fsfuse : tBfuBe f g (u, v) x = (t u (g v 1:). g v 1:)

> tunction mBS

> law mss ; mBS =max map Bum . aega

> law BegB ; segs == concat . map taila . inita

Horners rule, defined vitb a special combinator born

> tunction horn

> condlav horner : foldl t a map (foldl g b) . tails

toldl (born t g b) b

65 4.2. CALCULATIONAL EXAMPLES

> law distribut•• g (t x y) % =t (g x z) (g y z)

> law l.tt-id t a x =x

> end

> law horn horn t g b x Y =: t (g x y) b

This file is self conta..ined, although we could have made use of the
definitions in the standard prelude.

We can start a synthesis as follows:

Bynth NewMaxSegSum : mss

and we can just instruct ERA to simplify as far as possible with the
a.vailable laws:

go •

and we get the following steps in the calculation ...
= {mas}

max . map sum . segs
=:	 {max}

toldl (NAX) cegint map sum segs
= {segs}

toldl (MAX) nagint map sum Ganeet. map tails . inite

=: {map. caneat}

toldl (MAX) negint caneat. map <map sum) map tails . inite

=	 {toldprom}

toldl nu.X) negint map (toldl (MAX) Dagint) . liSp (map Bum) .

map tails . inite

={map.diatrib}

toldl (KiX) nagint . map (toldl (MAX) neginf) .

map (map sum . tails) inits

{map.distrib}

foldl ("AX) neginf .

aap (foldl ("AX) neginf map sum , tails) , inits

=	 {aum}

foldl ("AX) neginf <

map (foldl ("AX) neginf , map (foldl (+) 0) . taila) in its

{horner}

foldl (MAX) neginf map (foldl (horn (MAX) (+) 0) 0) inits

=	 {scanlemma}

foldl (MAX) negint scanl (horD (MAX) (+) 0) 0

{foldscantuse}

fat . foldl (htuse (MAX) (horn (MU) (+) 0» (negin:t MAX 0,0)

{MU,n

fat. foldl (tstuae (MAX) (horn (MAX) (+) 0» (0.0)

66 CHAPTER 4. USING ERA

Tbjg is the same answer as given in [2], except for the special combina.
tors that replace where clauses. Homers rule is conditjonal, so we can
ask ERA if we have any side conditions to discharge:

sideconds

and we get the following

1 SideCondition-l (x MAX y) + z = ex + z) MAX (y + z)

2 SideCondition-2 neginf MAX x ~ x

Enter choice (t-2)

The second one is easy, so type

2

and type

go •
remaining

and we see the proof is complete. The proof of the second condition is
a little more involved, and we do not give this here.

4.3 Proof about Trees

Given the definition of size and nsize on trees as defined in the stan
dard prelude we can prove the following law:

size t ~ 1 + nsize t

We state the proof and invoke tree induction as follows:

proof SizeNsize : size t ~ 1 + nsize t

schema Treelnduction t x It rt

We see some commentary and ERA stops. We ask what is left to prove:

remaining

67 4.4. INFINITE LISTS AND THE BOTTOM ELEMENT

We see that the inductive case was not completed, so we select jt and
ask again:

select Inductive

remaining

and we are told:

Still to prove ..

1 + nsize It + 1 + nsize rt

1 + 1 + nsize It + nsize rt

So all we need to do is apply the law about commutativity of addition.
Note because this law is dangerous it is disabled from use with our go
button, so we must type

r +.com.

and then select the appropriate option, and the proof will be complete.

4.4	 Infinite Lists and the Bottom Ele
ment

\\Then executing an Orwell program, any function that examines the
bottom element must return the bottom element. For example the
following are true statements about Orwell computations:

(bot •	 x) bot:II:

(x • bot) "" bot

(bot = bot) = bot

i£ bot t I = bot

These facts should be used in proofs about partial and infinite lists,
and so we need to be able to supply laws about equality, such as

(x .. x)	 .. True

But as we saw above this does not hold when x equals bot. So how
do we supply a law about equality? What is suggested is that we have
the following laws about equality:

68 CHAPTER 4. USING ERA

(bot c :r:) bot:II

(•• bot) • bot
(...) • True
«("IS) • 0) • False

«"IS) • (y'y.» • (•• y) l (.s • ys)

The laws involving bot should always be used in preference to the more
general ones.

Pattern Matching and Case Exhaustion

ERA needs to be told about the strictness of pattern matching. Con
sider the definition of zip:

zip (0, ys) [J
zip «X:X5), D) • 0
zip «. "sl . (y,ys» ('.y) Zip (xs,ys)

The value of zip(bot. ys) is bot, but it is not possible for ERA to
deduce this fact, so we should add the extra laws

zip (bot, ys) • ys
zip (X:X5, bot) = bot

Let us illustrate the above with a brief proof about pa.rtial lists.
The theorem states that if we catenate a partial list to any other list,
wejust get the partial list. We state the theorem and invoke a schema
for partial list induction as follows:

> proof Partial : xs ++ ys = :r:s
> schema partialListlnduction %s %

This will invoke the schema for induction on partial lists defined in the
prelude. The base case has tbe following steps:

bot ++ ys

c {++.O}

bot

and the inductive case is

69 4.4. INFINITE LISTS AND THE BOTTOM ELEMENT

ex : xs) ++ ys
• {++.2}

x : (xs ++ ys)
• {ind-hyp}

x : xs

as required.

Chapter 5

Aspects of the Design

One of the first decisions we had to make was which programming lan
guage we should use to implement our system. Functional languages
are excellent for symbolic computation, such as parsing, pattern match
ing, and term re.writing and since these components are needed to build
an equational reasoner, a functional language seems an ideal candidate
for this. They are not so good, however, for building user interfaces.
Provewell is a case in point. Jape and Chisholm'g tool have excellent
interfaces and the authors used the language C, together with a user
interface library. So a compromise would he to write the engine in a
functional language and the interface in C, connecting the two compo
nents by a pipe. This is the approach used for implementing Jape.

The alternative is to write the whole system in C, and avoid having
to interface two different languages. We chose to do this and use EQR
as a. basis for our implementation. EQR is a well written, structured,
system but unfortunately is not documented, and the source code min
imally commented. We still feel, however, that it is worth the effort to
try and use it as a basis for our new system ERA.

5.1 Data Representation

We can see from our requirements for ERA that we need to be able
to maintain a table of constants, laws, schemas, and proofs. We give
the representation for these structures in an Orwell type notation, and
these definitions map very neatly onto the actual implementation in C.

70

71 5.1. DATA REPRESENTATION

Constants

We define a. constant table to be a Jist of constants, where a constant
consists of a. name, a type and an jdentifier. Note that infix operators
also have an associated precedence and an associativity flag.

consttbl [constant]

constant	 (name. type, id)

type ::""	 Function I

Left precedence property

Right precedence property

Prefix

property ::z	 Associative I NonAssociative
id ==	 num
name =...	 string

We initialize the constant table to have equality and a swap function,
the later is used in the representation of right sections.

Laws

We provide the table of laws as a Jjst of laws, where a la.w consists of
a list of hypotheses (antecedents) and a consequent. Hypotheses and
consequents are just named equations, and a named equation consists
of a name, a left hand side, a right hand side and a list of variables.
We note that the name for the whole law, is the name atta.ched to the
consequent.

72 CHAPTER 5. ASPECTS OF THE DESIGN

hwlist [law]

1•• (sequent. hypotheses)
sequent namedeq
hypotheses [namedeqJ

namedeq (name. lhs. rhs, vars)
lh. expr
rho expr
vars [(name. Dum. binding))
binding expr

Variables are represented as a triple of na.me, an index, and a binding.
When we unify two terms, then bindings are used to capture the sub
stitutions made. We will see below that variables in expressions are
indices into these lists.

Proofs

In Chapter two we introduced a little of the structure of proofs in a
form convenient for our explanation of case analysis and induction. We
give the full representation here:

proofs =~ [proof]

A proof consists of a reference to its parent proof, its statement, and the
work to carry it out. We need the parent proof to allow user movement
through the proof structure.

proof =~ (parent. statement. work)

A statement consists of a name for the proof, left and right hand sides
of the equality, a Ijst of hypotheses, and lists to maintain the fixed and
free variables for the proof:

statement (name, Ihs, rhs, hypotheses, fixedvars. freevars)

fixedvars var.

freevars vars

The work for a proof consists left and right derivation fragments, some
sub-proofs jf case analysis has been performed, the current side on

73 5.1. DATA REPRESENTATION

which the user is working, and True or False value depending upon
whether the proof has been established or not. Derivation fragments
are built from a. list of steps. Steps consist of the expression rewritten
to, a justifying law, and any side conditions that have to be proved.

work == (lfrag. rfrag, cases, currentside, proven)

lfrag == [.tepl
rfng == [.tepl
step == (expr. law, sideproofs)
cases == [proofs]
sideproofs :,,,= [proofs]
currentside == Left I Right
proven z: bool

Proven will be True if left and right hand sides have been rewritten
to a common form, or if case analysis has been invoked then each case
should be proven. When the user alters a proof in any way, or types
the remaining command, this value will be recalculated.

This structure is also used to represent syntheses, but left and right
hand sides are ignored throughout, and currentside and proven have
no meaning.

Schemas

We noted before that schemas are treated ju:!!t like macros. We repre
sent our schemas in a list, where a schema consists of a name, a list of
parameters, and a list of commands.

schemas [schema.]

schema (name. [parameters]. [command])::0:","

When we invoke a schema we supply actual values for the parameter:!!,
and so we represent a parameter as pair: its name in the definition, and
the value its bound to when invoked. The bind value will be updated
each time it is used. We represent a command as a string, which has the
appropriate substitutions made before being passed to our command
interpreter.

parameter (name. va.lue)
command string

74 CHAPTER 5. ASPECTS OF THE DESIGN

Expressions

EQR has a fa.irly complex structure for representing expressions, which
in Orwell notation is as follows:

expr :;=	 Const con

Var num

FixedVar num

Apply expr expr

Infix con expr expr

Prefix con expr

Prefixsection con

Infixsection con

Lettsect ion con expr

Rightsection con expr

Tuple [exprJ

List [exprJ

Note that the representation of a variable and fixed variable is an index
into the list of variables and fixed variables respectively. So infix and
prefix operators, and sections are all represented in a special way

x + y z	 Infix + (Var x) (Var y)
p Prefix ~ (Var p)

(-) Prefixsection
(+) ... Infixsection +

(x+) Leftsection + (Var x)

(+x) Rightsection + (Var x)

This means that printing expressions is simple, but does cause us some
problems when stating laws about them. For example we know the
following laws about sections,

(+)xy=x+y

(x+) y = x + y

(+x) y = y + x

but these laws must be repeated for every distinct operator, since we
cannot have an operator appearing as a variable. A solution to this
is to adopt a simpler representation of expressions, as is done with
ProvewelJ:

75 5.2. REWRITING MODULO ASSOCIATIVITY

expr :;c Con con
Var var
Apply expr expr

a.nd have the following representations

x + Y • Apply (Apply (Con +) (Vax x)) (Vax y)
p Apply (Con -) (Vax p)

(-) '"" Con ~

(+) '"" Con +
(x+) • Apply (Con +) (Vax x)
(+x) • Apply (Apply (Con swap) (Con +)) (Vax x)

So now OUf first two laws about sections hold by default, a.nd we can
state the third one in a general way so that it applies for all operators.

swap f x y = f Y x

We modified the parser to parse expressions into this form, removed the
special cases from the matching algorithm, and made the expression
printing routine recognize these special forms and print them in the
correct way. Provewell formed a useful specification for this task.

5.2 Rewriting Modulo Associativity

Provewell provides a useful specification of how to do rewriting of ex
pressions with laws. Briefly it is to generate all subexpressioDs from
the current expression, try to unify the matching side of the law with
each subexpression to obtain a list of substitutions, apply these sub
stitutions to the other side of the law, and finally replace the original
subexpression.

We have a requirement to provide rewriting modulo associativity,
which means, for example, that terms composed together should be
treated as though they have no bracketing, and any segment from a
list of terms composed together is a legal subexpre5sion. There are two
main approaches to this.

The approach we adopt is to modify our representation of expres
sions to represent applications of associative operators as a. list struc
ture ra.ther than a tree structure. This we feel is the most natural
approach as it match~ our intuitions well.

76 CHAPTER 5. ASPECTS OF THE DESIGN

An alternative is to provide the associativity laws as special simpli
fication rules. The tool would then apply these laws as much as possible
to the starting expression to bring it to a normalized form. Then when
we wish to apply a law, we generate all possible rewrites of the current
expression using the simplification laws in the other direction, and all
of these are tried to be rewritten. This approach gets very complicated
when there a.re a number of associative operators involved. A similar
approach is adopted by Jape, as we described in Chapter 1.

Normalization

We could just treat composition as an associative operator and so just
have

expr ;;=

Compose [exprJ

This is the approach adopted for WWW, but there is no need to restrict
ourselves to <:omposition and we choose augment our representation of
expressions as follows:

expr ::- Con con

Var num

Fixed num

Apply expr expr

List [expr]

Tuple [expr]

ApplyList con [expr]

Any constant (infix operator) can be treated as an associati ve operator.
The user must declare associative operators before using them:

assoc

assoc

Such declarations will ensure that use of composition and catenation
are always treated as special operators. We convert to this form using
a normalization process, which we can define using OrwelL Constants
and variables are in normalized form, and tuples and lists are easily
defined:

77 5.2. REWRITING MODULO ASSOCIATIVITY

norm :; ezpr -> expr
Dorm (Canst c) .. (CODst c)
norm (Var v) • (Var v)

norm (Tuple es) • Tuple (map norm 8S)

norm (List 8S) .. List (map norm as)

Applications of an associative operator are not in normalized form and
must be converted into the list form. The two terms which are argu
ments to the associative operator themselves must also be normalized.

norm (Apply (Apply (Const c) 81) 82)
join head e2# • if associative c

• Apply (Apply (Const c) 81') 82', othervise
where

e1# = norm a1

e2# := norm e2

head'" join (Alist cD) e1 #

Xelse
norm (Apply e1 e2) .. Apply (norm e1) (norm e2)

Note that if after applying a law we are left with an applylist of one
element then that term is just removed from its encapsulating apply
list.

norm (Alist c [a]) e0::

Application lists themselves must be normalized: every element in the
list must be normalized, and then if any element is itself an application
list of the same operator, we just flatten it out.

norm (Alist c (91:e2:ea»

Alist c (flatten c (map norm (e1:e2:es»)

Flatten checks for elements which are themselves application lists in
volving the same operator, and just removes the encapsulating appli
cation list.

flatten :: con -) [expr] -) [expr]
flatten cD· 0
flatten c «Alist c~ ea'):es)

• e8~ ++ flatten c es • if c • c'

78 CHAPTER 5. ASPECTS OF THE DESIGN

II: (Alist c es I) flatten c es, otherwise
Xelse
flatten c (e:e9) ~ e : flatten c as

We made use of a join function which attempts to join two application
lists. If the lists are for the same operator tben we can merge the lists,
otherwise we insert the second list into the first list.

join :: expr -) expr -) expr
join (Alist c1 951) (Alist c2 962)

(Alist c1 (esl ++ 992», ifcl.o:c2
= (Alist c1 (esl ++ [Aliat c2 es2J». otherwise

Xelse
join (Alist c1 esl) e a Alist c1 (esl ++ raJ)

This completes our specification of the normalization process, It is
used whenever expressions are read in, and also after an expression has
had a law applied to it.

Subexpressions

So now any segment of an application list forms a valid subexpression.
For example if we have

f . g . h

then the following are legal subexpressions

f • g • h • f.g. f.g.h. g.h

Unification

We must also consider the unification of terms. Suppose we have gen
erated

map f (xs ++ ys ++ zs)

ali a subexpression, and we are trying to apply the law

map f (xs ++ ys) • map f %9 ++ map f ys

How can we unify the left hand side of the law with our subexpression?
By inspection we can see that there are two ways in which the above
can be matched. We can convert the original expression into two forms:

79 5.2. REWRITING MODULO ASSOCIATIVITY

map f «(xs++ys) ++ zs)
map f (xs ++ (y8 ++ zs»

and for each we have the following unifying substitutions

.1.9 •• (XS ++ ys) • Y9 ... zs

.I.eI.e • ya "'= (ye ++ zs)

It follows that we have to try all rearrangements of apply lists, and
this amounts to calculating all of the partitions. A definition of the
partitions of a list is given jn [I]:

parts :: [aJ -> [[[am
ports [l • [Ol
ports [xl • [[[xlll
parts (x:x .. :xs) .. map (glue x) (parts (x" ;X9» ++

map ([xl;) (ports (x';xs»
glue x .1.99 .. (x hd X99) : tl xes

We can describe the unification algorithm in an Orwell type notation,
but we cheat a little and allow some stale and side effects. It is not
intended to be a formal description, but rather an intuitive description.
We provide a function to unify the matching side of a law with the
current expression:

unity :: expr -> expr -> boo1

This function takes the matching side of the law as its first parameter
and the current expression as its second. We assume the existence of
some free variables for the law we are using, which we call

subs

and which has type vars. As we unify terms we build up the substi
tutions, by binding to these variables. So our unity function has the
side effect of building up a list of substitutions in subs. We proceed by
case analysis on the value of e1 and e2. Constants, applications, lists,
and tuples, and fixed variables can only unify as follows:

80 CHAPTER 5. ASPECTS OF THE DESIGN

unify (Canst c) (Canst c') = (c = c ..)

un,fy (Apply 01 .2) (Apply fl f2) = unify (01, fl) k
unify (02, f2)

unify (List as) (List es') = ('es = .es") a
(zipwith unify (e5 7 es"»

uDify (Tuple es) (Tuple es") ~	 (#e5 • 'es") k
(zipwith unify (es, es"»

unify (Fixed n) (Fixed n) = (n	 = 0)

A variable which is unbound, is bound to the value we are matching
against. If the variable is bound then its binding must unify with
the value we are matching against. Boundval returns the value of a
substitution for a variable, bound in returns True only if the variable is
bound, and bind will bind a variable to a value.

unify (Var n) f

~	 unify (boundval subs n. f). if (boundin subs n)
bind subs n f, otherwise

An apply list only unifies with another apply list of the same operator,
and the two lists of terms must be able to be matched. This match
function takes into account tha.t variables in apply lists can unify with
any non-empty segment of the list being matched against, provided the
remainder of the two apply lists also match.

unify (A!ist c es) (A!ist c# es#) z (c=c#) ~

match c es as

We define match to ha.ve type

match :: con -) [expr] -) (expr] -) boo!

Two empty lists of expressions match up

match cOD .. True

If the first term of the matching list is not a variable then it must unify
with the first term of the list being matched against.

81 5.2. REWRITING MODULO ASSOCIATIVITY

match c (e:es) (e":es") ""	 (unifye eo') .t
(match c es es'). if notvar e
matchasegment c (e:es) (e':es")

82	 CHAPTER 5. ASPECTS OF THE DESIGN

If the last term is a variable We must try and unify the variable
with all non empty segments of the list we are matching against and
also unify the remilinder of the matching list with the remainder of Est
being matched against. Once we have a successful match we return it ,
and do not try any more segments. We give a pseudo code description
of this as it would radically depart from OUf design to use a strictly
Orwell style. Note comments are prefixed with an asterix

matchasegment	 c (e:es) (e;:es') is defined as

• remember the old substitutions *

oldsubs ::: subs

• i bolds the	 length of the initial segment and
• ranges of the length of es
i : = 1

• initially we assume we have failed to match

failed : ... True

• try all non	 empty segments until we succeed or
• exhaust the list

while (i < #(e~:es~) a failed)

• we fail if we cannot unify 18 with the initial
• segment or we cannot unify es with the remaining
• segment
failed	 := not (unify 18 (Alist c (take i (e':es))) &

unify es (Alist c (drop i es)))

• if we fail then we must backtrack and use the old
• substitutions
if	 failed

subs :"" oldsubs

• try a longer segment
i :'" i + 1

endwhile

83 5.3. IMPLEMENTATION

• if failed i~ False we succeed with the unifying
• substitution in subs as required.

5.3 IInplementation

Modules

We implemented ERA as the following modules (C source files), and
provide a Make:file to build the system. All source code is under the
unix sees facility.

era.c is the main program l and provides the interface to ERA

express.c is the module for manipulating expressions

laws.c is the module for manipulating laws

consLe is the module for manipulating constants

proof.c is the module for maintaining the current proofs and sub
proofs

lexpa.rse.c is the module which provides a function to parse expressions

va.rs.c is the module for manipulating variables

app.c is a module with some general purpose routines used by the
other modules.

C Style

All of source code modules come with a header file describing the inter
face provided. We adopt a standard layout for these source files, and
also follow a consistent layout convention. All files pass through Hnt
with only trivial warnings resuJting.

The contents of C header files are ordered as follows

1. constant definitions,

2. exported type dedarations1

3. exported function declarations.

84 CHAPTER 5. ASPECTS OF THE DESIGN

The C source code files are ordered as follows

1. included hea.der files,

2. constant definitions,

3. internal type declarations,

4. global variable declarations,

5. forward declarations of static functions,

6. externally visible function definitions,

7. static function definitions.

Chapter 6

Conclusions

Successes

\Ve have taken EQR, a system for rewriting expressions, and adapted
it into a useful tool to support program calculation and proof. We
have followed the original brief for the support and provided something
simple but usable. A large number of the exercises and exa.mples given
in [1] ca.n now be done with the aid of ERA. Indeed a lot of them can
be done automatically with no user intervention.

We believe that beginners to functional programming could very
quickly learn how to use the tool, and initially check some of the given
example proofs in BW. Then, as they hecome more proficient, they can
progress to the exercises for which there are no solutions.

There are very few calculational style proofs in BW, but we ha.ve
provided support for such a style through rewriting modulo associa
tivity. This is a. much more concise style of proof, and is preferred by
more advanced functional programmers.

Allowing multiple proofs, and permitting the user to work on each
one at will permits a very flexible approach to proof1 not often found
in other tools. This is essential if a user is actually going to discover
proofs with ERA.

Limitations

There are limitations to ERA, and we highlight a of few of these here.
We have essentially provided a rewrite engine, with no underlying log
ical system. So the tool can not make simple inferences. For example,

85

86 CHAPTER 6. CONCLUSIONS

it cannot conclude :r. <- y from x < y. We have not provided type
checking or types and this allows rewrite rules to be applied in con
texts where they shouldn't be. We ha.ve also omitted where clauses
and this means that some laws have to be converted to a less readable
form.

All laws are based on equality, and it is not possible to state laws
about inequalities. If inequalities were to be allowed it is not so sjrnple
to work on left and right hand sides of a proof.

If this tool is extended in the future, we recommend that where
clauses and type checking be added. There are perhaps more efficient
methods of implementation, but because the tool is written in C and is
for interactively proving modest theorems, this is not a major concern.

We also note that there is a small amount of '"space leakage" in
the program because a full implementation of garbage collect jon is not
given. This is not a serious problem, because most freed memory is
collected, and the tool is only expected to be used for relatjvely small
proofs. The necessary extra C functions can easily be added.

Graphical User Interface

At the very outset of the project we considered building a graphical
user interface, but due to time constraints this was not attempted. We
can now however suggest a simple design which would allow a. very user
friendly approach to proofs. We can make a number of observations
about our proofs with ERA.

At each step jn a proof there only a few possibilities far rewriting
with different laws. It would nice if the user could cycle through these
in simple way, before acceptjng a particular step. This would allow the
user to easily see the different ways in which a proof could progress.

Good style is to reduce with laws as much as possible, and only
unreduce with a law when absolutely necessary. So reduction should
be a default option which is easy to do. Unreductian should be
something the user has to specifically select.

It is very nice to be able to use the go button; it relieves the user
from the tedium of a proof and allows concentration on strategy.

It would be nice if the user could see left and right hand sides at
the same time, which means we really need a window for each.

Taking these points into consideration we suggest a. graphical user

87

interface as illustrated in Figure 6.1. There is a window each for left and
right hand sides, with a set of buttons for each. Each window shows the
derivation fragment for each side. The tool will automatically calculate
all of the possible rewrites from the current expression. One will be on
display at a.ll times. The user could move through these possibilities
using the left and right arrows. When happy with the current step the
user presses the down arrow to accept it, and the up arrow to return
to the previous step. It should also be possible to use the cursor keys
for these tasks, and they will apply to the side the user last worked on.
We can say go for each side. So this makes reducing with laws very
easy to do.

The bottom window lists all of the availahle laws, and the user has
to request a specific law to unreduce with, by clicking on the appro
priate law with the right mouse button. It should also be possible to
click with the left button to reduce with a specific law.

An input line allows the user to type commands that would nor
mally be available from the textual interface.

A button for invoking schemas is also suggested.
All other commands normally available from ERA could be pro

vided at the menu bar at the top of the window.

88 CHAPTER 6. CONCLUSIONS

Equational Reasoning Assistant Theorem: FilterMap

MENU-BAR

L.H.S. R.H.S.

{} {}

Q G ¢/SCHEMA[VB ¢

D D
Command: I

, •

Figure 6.1: A Suggestion for a Graphical User Interface

I

Bibliography

[1]	 R. S. Bird and P. L. Wadler, Introduction to Functional
Programming, Prentice Ha.ll International 1988.

[2]	 R. S. Bird, Algebraic Identities for Program Calculation The
Computer Jounrnal, Vol. 32 1 No.2, 1989.

[3]	 R. S. Bird, A Calculus of Functions for Program Derivation
Technical Monograph PRG-64, Oxford University Comput
ing Laboratory, Programming Research Group, 1987.

[4]	 R. S. Bird, Lectures on Constructive Functional Pro
gramming Technical Monograph PRG-69, Oxford Univer
sity Computing Laboratory, Programming Research Group,
1987.

[5J	 R. Bornat and B. Sufrin, The Gist of Jape (draft) Program
ming Research Group Oxford

[6]	 R. S. Boyer and J. S. Moore, A Computational Logic Aca
demic Press, London.

[7J	 P. Chisolm, Calculation by Computer Department of Com
puter Science, University of Groningen.

[8J	 J. A. Goguen and T. Winkler, Introdcing OBJS Computer
Science Laboratory, SRI Interna.tiona.l, August 1988.

[91	 M. Jones, An Implementation of Prolag Thesis (M.Sc.), Pro
gramming Research Group, Oxford University, 1989.

[101	 P. A. Lindsay, R. C. Moore and B. Ritchie, A Review of Ex
isting Theorem Provers Department of Computer Science,

89

90 BIBLIOGRAPHY

University of Manchester Technical Report Series (UMCS
87-8-2)

[I1J	 A. A. Sphyris, Support for Equatinal Reasoning in OM1Jeli
Thesis (M.Sc.), Programming Research Group, Oxford Uni
versity, 1989.

[12]	 J. R. Hindley and J. P. Seldin Introduction to Combinators
and A-Calculus. London mathematical society student texts
1. Cambddge University Press.

[13]	 M. Spivey, A Functional Theory of Exceptions Science of
Computer Programming 14 (1990) 25-42. North Holland.

{14J	 P. Wadler and Q. Miller, An lntrouction to Orwell 6 Oxford
University Computing Laboratory, Programming Research
Group 1990.

Appendix A

Standard Prelude for ERA

prelude, era

Standard ERA definitions equational reasoning

OPERATOR DECLARATIONS :

<the higher the number the greater the precedence)

,. left 110.

,. right 40 I:

,. right 30 \I

)0 right 20 : ++

)0 prefix •

)0 left 100 +

)0 left 101 • I

)0 left 110 =/=

)0 a.soc
)0 assoc ++
)0 assoc +

)0 law +.commutes : I + Y =Y + I

)0 disable +.coamut••

LAWS AND FUNCTION DECLARATIONS:

> function bot

)0 121,8 • (1.g) x f (g x)

)0 function False True

91

92 APPENDIX A. STANDARD PRELUDE FOR ERA

>' function and or
>' tunctlon it

:> la'll and and toldr (t) Tru.
:> la'll or or toldr (\/) False

> law if.bot if bot :I J :: bot
> law 11. True it True x y = J:

> law i.f .Fain it False x y :: y

> lall'· .bot bot = bot
)0 lav W.True True = False
)0 1a1l - .False False = True

). lav\/.O bot \/y=bot
> 1&11'\1.1 Tru. \I y = True
>lu\l.2 False \I y = y

:> 1al1 t.O bot t Y bot
:> la, t.! False t y false
:> law t.2 True t y y

:> function id const swap
:> lall' id id x = •
:> law const const i: x = •
:> law swap swap f x y = f J x

:> tunct ion t at Bod
:> law fst fst (x,y) = :r.

:> lEl.v and lind (x,y) = J

> t'unction foldl foldr
> la'll foldr. 0 foldr f a bot = bot
:> lav toldr. 1 foldr faD =•
> lav toldr. 2 foldr f a (:1::18) = f x (lo1dr faxs)

:> lall' foldl. 0 fold! f a bot = bot
:> lav fold!.l foldl f a 0 = a
:> la'll fold!. 2 foldl f a (:I:.u) ::: foldl f (t a:l) :IS

:> function zip
) la'll zip.OO zip (bot. y) bot
) la'll zip.O! Zip (:I:.u. bot) bot
) lav zip.! zip (D. Y8) o
) la'll zip.2 zip ((x:xs). 0) o

93

> law zip.3 zip ((z:zs). (y:ys» (z. y) :zip (u, ys)

> function hd tl iDit last Hil
> law Ril. 0 Hil = 0
> lav singleton [z] = z o
> lav 1ist2 [x,y] = z [yl
> lav 1ist3 [x,y.z] = z [y,z]
> lav 1ist4 [v,z.y,z] = v [z, y,z]

> lav hd.OO hd bot bot
> lav hd.O hd 0 bot
> lav hd hd (x:u) =•
> lav tl.OO tl bot bot
> lav tl.O t1 0 bot
> law tl tl (z;u) ..
> law last. 00 last bot bot
> law last.O last 0 bot
> lav last.l last [x] •
> law last.2 last (z:y:ys) last (y:ys)

> law init.OO init bot = bot
> law init.O last 0 =: bot
> law init.l init [x) = [)
> lav init.2 init (x:y:ys) =Z : init (y:ys)

> function map filter
> law map.O map f bot =bot
> law .ap.l map f 0 = 0
> law .ap.2 map f (z:zs) = f z : map f Z8
> law map.3 map f (Z8++Y8) =mapf z8++mapf ys
> law -.a.p.4 map f . map g = map (f g)
> law aap.6 map f (map g zs) = map (f . g) Z8

> law filter.O filter p bot =bot
> law filter. 1 filter pO = 0
> law filter.2 filter p (z:u) = if (p z) (z:filter p zs) (filter p zs)
> law filter.3 filter p (n++ys) = filter p zs ++ tilter p ys
> law filter.map : map f . tilter (p.t) =tilter p . map t

> function concat
> law concat. 0 concat bot bot
> law eoncat.l concat 0 o
> law concat. 2 concat en: zas) zs ++ concat zu

94 APPENDIX A. STANDARD PRELUDE FOR ERA

> Law concat. 3 concat ex. ++ J.) :: concat ~B ++ concAt ya
> law alp, concat Illap f concat = concat lIlap (IIIaP t)
> law coneat • cone coneat aap CODcat == concat CODcat
> law filter. cone concat . map (tilter p) :: tilter p . CODcat

> law ++.0 bot ++ ,a bot

>la.++.1 [] ++ ,a y.

> lav ++.2 (:z:xs) ++ ,a x : en ++ ,a)

> lav++.3 :18 ++ 0 XB

)	 law =.botl (bot = x) bot
law =.bot2 (x :: bot) bot
lall :: ex :: x) True

>law=.l (0 = D> True
> law =.2 (0 :: (:I:U» False

>	 h .• =.3 «x:u) :: D) False
> lu =.4 «x;xs) :: (Y:J8» if (:I y) en ,a) False

> functioD takewhile
> lar talr:evbile. 1 take.hile pO:: 0
> law takewbile.2 : take_hile p (:r::XII) :: it (p x) (:z:tall;ewhile p XII) CO)

> function dropllbile
> lav dropvhile.2 dropvhile p (%:%5) :: it (p x) (dropvhile p xs) (x:xs)
> ll. drop.bile. 1 : dropvhile pO:: 0

> t1UlctioD drop
> lllw drop. 1 drop 0 :a:5 = :a:s
> law drop.2 drop (n+l) 0 = 0
> law drop.3 drop (D+l) (.::a:5) = drop n u

> function take
> In take. 1 take 0 J:ll = 0
> law take.2 take (n+1) 0= 0
> law take.3 take (n+1) (:a::xs) = :a: take 11 U

> function reverse prefix
> law preti:a: prefix xs :a: '" x :X5
)	 law reverse. 0 reverse bot = bot
) law reverse.1 reverse 0 :::: 0
)	 law reverse.2 reverse (x::a:s) = reverse xs ++ (:a:: D)

function rev shunt

9.5

> law rev : rev %8 =shunt o u
> law shunt. 1 : shunt JS [) =y.
> law shunt. 2 : shunt JS (%:%s) ~ shunt (%.Y8) %8
> law au% : shunt JS %S =reverse %5 ++ Y

> function SUDI
> law sum : sum =foldl (+) 0

> fUDction product
> law product : product =foldl (.) 1

> la'll #.1 # 0 =0
> la'll #.2 # (%:%S) ~ 1 + # %5

> function Tip Node
> function size naize depth

> law aize.O size (bot) :: bot
> law size.1 size (Tip %) = 1

> law size.2 size (Node It rt) =size It + size rt

> law naize.O naize (bot) :: bot
> law nsize.1 naize (Tip %) :: 0
> law naize.2 nsize (Node It rt) :: 1 + nsize It + nsize rt

> law +0 % + 0 :: I:

> la'll 0+ o + I: :: I:

> law foldprom foldl f a concat foldl fa. map (foldl f a)

> function length

> law length : length sum . map (const 1)

> function taila
> law tails. 1 tails 0 = (D)
> la'll tails.2 : tails (I::u) :: map (++ (x) (tails u) ++ (OJ

INDUCTION SCHENAS FOR LISTS AND ONE FOR TREES

> schemadet ListInduction I:S I:
> co_ent P(O) I: (P(u) => P(I::XS» ::> P(xs)
> OD :18
> fresh x

96 APPENDiX A. ST.4NDARD PRELUDE FOR ERA

> cale Base « 0)/(..»

> go •

> rho

> go •

> lh.

> up

> case Inductive «x::n)/(u»

> ihyp iud-hyp : «:l:S)/{:l:5»

go •

> rho
> go •
> ,..
> 'p
> end

> sehemadef DoubleListlnduction xs Y8 x Y

) comment PC (] •ysllpex: l:S. [])l(P(xs. ys)=>P(x: l:S. y: Y9» => pen. 18)

) on :1.8 1s
) fresh J: y
) case Basel: «0)/(X9»
> go •
> rhs
> go •
> Ihs
> up
> case Base2 : «%:n)/(:I:8» «O)/(,s»
> go •
> rhs
> go •
> Ihs
> up
> case Inductive «:I:::l:8)/(X8» «Y:Y5)/(Y8»
> ihyp iud-h,P : «X9)/(X8» «Y5)/(Y8»
> go •

> rho
> go •

> lh.
> up
> end

> Ilchemadef PartialListlnduction :1:8 x
> COllllllent P(bot) t (peu) => P(x:xs» => pen)
> on :1:8

> fresh x

97

> case Base «bot)/(:n»

> go.

> '["be

> go·

> Ihs

> up
> case Inductive: «x:x.)/(x8»
> ibyp i~d-byp : «X8)/(XS»
> go •
> rbs
> go •
> lhs
> up
> end

> .schemadet TreeInduction t J: It rt
> comment P(Tip x) t (P(lt) t pert) => P(Node It rt» => pet)
> on t
> fresh J: It rt
> case Base : «Tip x)/(t»
>
>
>
>
>
>
>
>
>
>
>
>
>

up
case

up

go •
rb.
go •
lb.

Inductive
ihyp ihl
ibyp ihr

go •
rb.
go •
lb.

: «Node It rt)/(t»
((1t)/(t»

««)/(t»

> end

