
Probabilities and Priorities
III

Timed CSP

by

Gavin Lowe

Technical Monograph PRG-lll
ISBN o-90292B~88-0

November 1993

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road
Oxford OXt 3QD
England

Copyright © 1993 G,win Low!;'

Oxford University Computing Laboratory
Programming Research Group
Wolfson Budding
Parks Road
Oxford OXI 3QD
England

8ledronic mail: gavin.lo\lelilcomlab.o:l.ac .uk

Probabilities and Priorities in Timed CSP

Gavin Lowe

8t Hugh'8 College

A thesis submitted for the degree of Doctor of Philosophy

at the University of Oxford, Hilary Term, 1993

Abstract

III this thesis we present two languages that are refinements of Reed and Roscoe'g
language of Timed CSP: a probabilistic language, and a prioritized language.

We begin by describing the prioritiZed language and its semantic model. The
syntax is based upon that of Timed CSP except some of the operators are refined
iuto bia..<Jed operators. The semantics for our language represents a process as
the set of its possible bebaviollnl, where a behaviour models tlIe priorities for
different actions. A number of algebraic laws for our language are given and the
model is Hlustrated with two examples.

We then describe tbe probabilistic language, which is built on top of the priori
tized language. The only cause of nondeterminism in the prioritized language is
the nondeterministic choice operator; by replacing tbis witb a probabilistic choice
operator we obtain a language where it is possible to calculate the probabilit,· of
any particular behaviour. We produce a semantic model for our language, which
gives the probabilities of different behaviours occurring, as well as modelling the
relative priorities for events within a behaviour. The model is illustrated with an
example of a. communications protocol transmitting messages over an unrelia.ble
medium.

A complete compositional proof system is presented for the prioritized language,
which can be used for proving behavioural specifications are met. This proof
system can also be used to prove non-probabiliEitic specifications are met by prob
abilistic processes, via an abstraction theorem between the two model!;.

An abstraction theorem is presented relating the Prioritized Model to the Timed
Failures Model. This enables unprioritized processes to be refined into prioritized
ones.

Finally a compositional proof system is presented for the probabilistic language.
TiIis can be used to prove specifications such as "an a becomes available within
two seconds with a probability of at least 90%". Unfortunately proofs of proba
bilistic specifications are considerably more difficult than in the unprobabilistic
case. We examine these difficultif'S and show huv.' they can be overcome. The
proof system is illustrated with an example of a communications protocol trans
mitting over an unreliable medium: we examine the probability of a message
being correctly transmitted within a given time.

Ackoowledgements

I would like to thank my .supervisor, "Bill Roscoe, for his advice throughout the
preparation of this thesis. He has provided many useful suggestions, and pointed
out errors when I was going astray.

I must tbank my examiners, Bengt Jonsson and He Jifeng, for making a number
of suggestions ~ to how the presentation of this the.9is could be improved. Karen
Seidel made many useful comments Oil an earlier paper on this subject.

Brian Scott and Steve Schneider have provided useful sounding boards for new
ideas. I have enjoyed many fruitful conversations with Jim Davies about the
form of languages for specifying timed communicating procf'&Ses. I have also
benefited from discussions with Tony Hoare and Mike Reed. I ha.ve received many
interesting comments and ideas from my colleagues on the SPEC and REACT
projects.

Tha.nks must also go to my office colleagues, especially Nacho, Augusto, Brian,
Mat, Janet, Bryan, Andrew, Katherine and Sharon, for making the attic a pleas
ant place to work, and for their friendship and support.

This work was supported by a grant from the Science and Engineering Research
Council of the United Kingdom and a scholarship from St. Hugh's College, Oxford.

Finally] must thank my friends in Oxford Univeroity Cave Club for regularly
dragging me underground, and providing much needed breaks from my work.

Contents

1 Introduction 1

2 Timed CSP 5

2.1 Syntax of Timed CSP 7

2.2 The Timed Failures Model. 8

2.3 Semantic definitions 12

2.4 The proof system 17

2.5 The specification language. 18

2.6 Recent changes 22

3 The Prioritized Model 24

3.1 Syntax for the prioritized language 24

3.2 Examples: a lift system and an interrupt mechanism 27

3.3 The semantic model 29

3.4 Semantic defillitions 40

3.5 Communication over channels 62

3.6 A deterministic language and model 64

4 The Probabilistic Model 67

4.1 Syntax for the probabilistic-language 67

4.2 The semantic model 68

4.3 Semantic definitions 71

4.4 Example: a communications prot.ocol . 76

5 Specification and Proof of Prioritized Processes 79

5.1 Specification of prioritized processes 80

5.2 Abstraction mappings 80

5.3 A language for specifying prioritized processes. 83

5.4 Derivation of the proof rules . 91

55 Example: the lift system revisited 100

6 Relating the Prioritized Model to the Timed Failures Model 106

6.1 An a.bstra.ction result 106

6.2 Using the abstraction resnlt to simplify proofs. 120

6.3 An example using thp abslral."t.ion result 126

7 Specification and Proof of Probabilistic Processes 133

7.1 Specification of probabilistic processes 133

7.2 Complications with probabili;;tk proofs 142

7.3 Derivation of the iuference rule..'l . 147

7.4 Ca..<;{' st.udy: a shople protocol 158

8 Conclusions 173

8.1 Related work 174

8.2 Future work 184

A Summary of Semantic Definitions 188

A.I Subsidiary fUnctions 188

A.2 Operations on offer relations. 188

A.:l Semantic definitions 189

A.4 DerivE'd opprators . 192

B Inference Rule!'! 194

B.I Proof rules for prioritized processes 194

D.2 Proof rules for unprobabilistic specifications on probahilistic processes 201

D.3 Proof rules for probabilistic specifications 202

Bibliography 210

Index of Notation 214

Chapter 1

Introduction

Communicating Sequential Processes [HaaSS] is a language for reasoning about concurrent
processes. This model ha5 been exteuded [RR86, RR87, Ree88] to include a treatment of
timing information. Previous models have allowed Dondeterrninism; this has prove.:! to be a
useful tool in that it allows ODe to underspecify the beha\'iour of processes, and so maintain
Ii high level of abstraction. However, previous models have failed to model the probabilities
involved in nondeterministic choices. In this thesis we aim to overcome this deficiency. and
in doing so alBa produce a model with a notion of priority.

We believe that it is important to be able to model probabilistic behaviour for a number of
reasons.

• Many	 components of computer systems display behaviour that is probabilistic in na~

ture. For example, communication media can often corrupt or lose messages; it is
reasonable to model such a medium as a process that acts unreliably with a certain
probability. Suppose we have a communications protocol that transmits messages over
such a medium. We would like to be able to prove resnlts such as "the message is
correctly transmitted within 3 seconds with a probability of 99%". In order to do this
we need to be able to model the probabitities of messages being lost. or corrupted. by
the medium.

•	 There are many problems in computer science that cannot be solved efficiently by
a deterministic algorithm but for which there exist efficient probabilistic algorithms.
Examples include consensus protocols [AH90, Sei92], mutual exclusion [PZ86]. and self
stabilization (Her90].

•	 We often want to consider a process operating in an environment that behave~ in a
manner that could be considered probabin'itic. For example, consider a server providing
a service to several clients, where each client may request the use of the server and then
release it wben it has finished. Here the clients can be considered as forming the
environment of tbe server. If we abstract away from the details of the behaviours of
the clients then it is rea<>onable to model tiIem as agents that make reqU€sts for servict'
with a frequency governed by some probability distribution. We need. to be a.ble to
model these probabilities in order to prove results relating, say, to the probability of
tbe server reacting to a request for service within a given amount of time.

2 Probabilities and Priorities in Timed CSP

We believe that a prioritized model is a useful thing because this will give us a more powerful
language for specifying prores:-.es. Certain applications naturally require di£f('rent actions to
have different priorities:

•	 When we model an interrupt mechauism we would like the interrupt ew'nt to have
a higher priority than what it is interrupting; otherwise the interrnpt event ('Quid be
ignured. This is illnstrated in section 3.2.2.

•	 Priorities are useful when modelling an arbitration protocol fOJ dealing with the case
where several clients compete for the use of a resource. Arbitration can be achieved
by giving different priorities to the different clients. If it is desired to have a fixed
hierarchy -- for example if the clients ran he ranked in order of importance -,. then
these priorities tan be constant through time. Alternatively the priorities can be varied
so as to achie\'{' fairnes~: we illustrate this in sectiou 3.2.1 where we model a lift system
whlrh gives different priorities to requestf; from different floors in such a way t.hat the
lift is guaranteed to arri\'e at a Boor witbin a (:ertain time of being reqnested.

A prioritized language is also useful because if we remove the nondeterministic thoice operator
we are left with a completely deterministic language. NOlldeterminLsm can be considered a
bad thing, in that a nondeterrq.irlistic process is unpredictable and we would like programs
that we write to always behave in a predictable way: this will be true of any program written
in our deterministic language.

The probabilistic language is produced from the prioritized language by replacing the uon·
determinL.~tic choice operator by a probabilistic choice operator. Thus, the only cause of
nOIllleWrminism in the probabilistic language is t.he probabilistic choice operator. We have
chosen to build our probabilistic model upon thi.'S prioritized model becallse it is our belief
that in order to argue about probabilistic behaviours it is uecessary to be abLe to predict pre
cisely how the non-probabilistic parts behave in a given circumstance. If a language includes
other forms of nondeterminism, hesides probabilistic choice, then it is not possihle to predict
the probability of a particular behaviour occurring. For example, consider the question:

What is the probability that the process a -----+ STOP b ------t STOP performs
an a if the environment is willing 10 perform either an a or a b at time O?

In the standard models of Timed CSP the external choice operator is nnderspecified, and so
it is not possible to answer this question. \Vi' need to refine this operator in order to produce
a deterministic version. In particular we will define two new external choice operators: a
left-bia<>ed choice operator written [] and a right-biased choice operator written []. These will
re5pectively arbitrate in favour of their left- or right-hand argument.s when the environment is
willing to perform a.ctions from either side; in the circumstauces described above the process
a -+ STOP [] b -----+ STOP will perform an a, whereas a -----+ STOP [] b -----+ STOP will
perform a b.

Some workers bave got around the problem of the underspecification of the external choice
operator by- insisting that if a process is able to perform two or more separate actions then
tlle choice is made by the environment. We avoid this because:

•	 we consider the environment to be a more passive entity than the process: it seems
strange that an environment is able to choose betwr.en two actions whereas a procf'SS
is not;

Introduction

•	 this idea clashes with our inluition nf a system (built out of smaller components) being
in an environment consisting of a user who is willing to observe any event.

Most previous probabilistic process a.lgehras have used a probabilistic external choice opera
tor, written say as p q, such that P p q Q offers the environment a choice between the actions
of P and Q; if the environment is willing to perform the actions of either, then P is chosen
with probability p and Q is cbosen with probability q (where p + q = 1). We choose to
separate the two phenomena of external choice and probabilistic nondeterminism for we be-
lieve them to be orthogonal issues. Our language will include two deterministic (prioritized)
externa.l choice operators and a probabilistic internal choice operator. Having more operators
produces a language that, while being harder to reasou about, is pasier to reason with. Our
prioritized external choice operators will be the same as the operators I 0 and 0 1: hence
in a sense the prioritized external choice is the "limit" of a probahilistic external choice. The
probabilistic external choice operator can he regained from the prioritized operators via the
identity P p q Q = (PlD Q) pn q (POl Q), where pn q is a probabilistic internal choice operator.

The rest of this thesis is structured as follows. In chapter 2 we give a hrief review of the
Timed Failures Model of Timed esp. In chapter 3 we descrihe our prioritized language and
its semantic model. We will represent a process by the set of behaviours that it can perform.
Vve will represent a behaviour, or observation, by a triple (r,~, s) where r is the time that
the observation ends, ~ records the different priorities given to actions during the h~baviour,

and s records the events performed. We give semantic definitions for all the constructs of the
language and prove the delinitiorul sound with respect to a number of healthiness ronditions
for the semantic space. [n section 3.6 we show how, by removing the nondeterminist.ic: choice
operator from the syntax, we can produce a completely deterministic language.

In chapter 4 we consider the probabilistic language. The syntax is the same as the syntax
for the prioritized language except the nondeterministic choice operator is replaced by a
probabilistic choice operator: the process P pn q Q acts like P with probability p and like Q
with probability q. The semantic model represents a process by a pair (A, I) where A is the
set of behaviours that it can perform and f is a function that gives the prohability of each
behaviour occurring given a suitable environment.

In chapter 5 we examine ways of proving properties of prioritized processes. We write P sat
5(7, ~,s), wbere 5(7,~, s) is a specification whose argument represents a behaviour, to
specify that all bebaviours of the process P satisfy S. We then describe a specification
language based upon the one in [Da\"91]. The syntax of the specification language is as near as
possible to the English language so that we can be reasonably confident that our specifications
meet our informal requirements. We present a complete compositional proof system, in the
style of [DS89b], consisting of a number of inference rules. For composite processes, a proof
obligation is broken down ioto proof obligations on the subcomponents. We illustrate the
proof system with an example. This proof system can also be u${!d to prove properties of
probabilistic processes: we can prove that all behaviours of a prohabilistic process ~tisfy

a specification by showing that all behaviours of the corresponding unprobabilistic process
satisfy the same specification.

In chapter 6 we relate the Prioritized Model to the Timed Failures Model. We investigate
wbich failures could have resulted from a particular prioritized hehaviour, and thus produce
aD abstraction result from tbe Prioritized Model to the Failure~'l Model. We then show how this
result cat! be use to prove properties of prioritized processes. We will show that if a proct'-SS

4 ProbabWties and Priodties in Timed CSP

ill the Timed FailurE>;'; Model satisfies a specification then all it.s prioritized refinements satisfy
a related specification.

In ehapter 7 we give a proof system for proving properties of probabilistic processes. 'Ve
write P sattP 5(7,1;:, s) to specify that, whatever the environment offers, thp probability
that process P performs a behaviour (T,~,S) that satisfies the predicate S(T,!;,$) is at
least p. We will also definE' eonditional probabilities' we ,,,ill write P sat;" 5(7,I;:,S) I
G(T, i;,3} to specify that the probability that P performs a hehavionr that satisfies S gIven

that it satisfies Gis FI.t least p. Unfortunately, proving propert.ies of probabilistic processes is
considerably harder rhan for ullprobabilistk processes; we explain what the main difficulties
arp and hulV these can be overcome. Vole illustrate the proof system via a case study of a
protocol trallsmitting messages over an lllueliable medium. We show that the protorol act~

hke a buffer, and perform an analysis of its performance: we prove a result that giws ttw
probability of a messagf> being correctly transmitted wit.hin a certain amount of time.

III order LO keep this thesis to <i reasonable size we have omitted a llumber of proofs t.hat have
appeared elsewhere. The interested reader is referred to the relevant papers.

Chapter 2

Timed CSP

In this chapter we give a brief overview of the syntax and semantics of Timed esp. The first
models appeared in [RR86, RR87] and [Ree88]. These have since been extended in [SehgO],
[Dav91] and ID592a]. The forthcoming hook on CSP [DRRS93] will provide a complete
overview. The model described here fits most closely with the model described in iDav91j.
although the :'lpecification language we present is nearer to that of [DRRS93].

The development of a mathematical model of a eSP-based language normally folJI)",I,'s a
particular approach;

•	 A mathematical structure is described for representing a particular behaviourar obser
vation of a process; a process is then represented by the set of such behaviouNi that it
can perform.

•	 Semantic definitions are given for aU the constructs of the language: these define pre
cisely what behaviours a process can perform; for composite processes, the semantic
definition is in terms of the semantic representations of the subcomponents.

•	 Certain healthiness conditions are conjectured: tbese express properties that we would
expect all processes to have, and outlaw pathological proc{'.sses. Proving that our defi
nitions meet tbese healthiness conditions improv{'s our confidence in the model. Alter
natively, if we find tbat a healthiness condition is not satisfied hy one of our semantic
definitions then we know something is wrong -,-. perhaps because the definition is wrong,
or perbaps because the mathematical structure we are using to represent processes does
not carry enough information.

The healthiness conditions are often used in proving results ahout specific processes,
and in proving algebraic laws - they give us extra information about how processes
behave.

•	 A proof s}'stem, consisting of a number of proof rules, is developed for the language:
rules are given for proving properties of atomic processes directly; for composite pro.
cesses, a proof rule is given that reduces a proof obligation to proof obligations on the
subcomponents. These rules are proved sound with respect to the semantic definitions.

•	 The semantic model is related to simpler semantic models: this impron'5 OUT confi
dence that our model "agrees" with existing models, and also provides a uE'-efuJ proof

5

6 Probabilities and Prjorj(.jes in Timed CSP

technique - properties can be proved to hold of processes by arguing in the simpler
model.

This is the approach we will take in developing the models in this thesis.

The semantic models of Timed CSP are ba.<;ed on a number of assumptions which we list.
here; th~ Prioritized and Probabilistic Models presented in this thesis will be based upon
much the same assumptions.

Communication Communication betw€'ell processes is achieved via. handshaking: observ
able event.s can only be performed with the cooperation of the environment.

Real time We model time using the non-negative Teal numbers. There is no lower hound
between the times of consecutive independent events. Each observation is made with respect
to a global clock: this clo,],; cannot he accessed by auy process.

Instantaneous events Event!> have zero duration; if we want to model an action with a
significant durat.ion then we should model the start and finish a.<; two distiuct events.

Non-Z~lloness \\'e assume that no process may make an infinite amount of progress ill a
fiuite time.

Maximum p['ogress If a process aud its environment are both willing to perform an event,
then the process may not idle: it must eithe.r perform this event or some other event (visible or
invisible). In the Prioritized Model presented in chapter 3 we will make the assumpti.on that
a process performs the adion offered by the environment to which it gives highest priority.

Hidden events When events are hidden they do not require the cooperation of t.he envi
raument and so occur as soon as the process is ready for them. In the Prioritized Model
WE' will make the assumption that the process performs the number of internal events that
it gives hIghest priority to. This and the previous assumption can be considered as maxi
mal progress assumptions: the process performs as many events (internal or external) as the
cuvironment allows; in the Prioritized t'.lodel the process performs whichever action it giv{'~<;

highest priority to.

Causality There is a non-zero delay between consecutive events in sequential processes, so
immediate causality is not allowed. The reader should note that the most recent models of
Timed CSP do allow immediate callsality. For simplicity we do not allow immediate causality
in this thesis.

2,1 Syntax of Timed CSP 7

2.1 Syntax of Timed CSP

The syntax of Timed CSP is as follows:

P ,,= STOP I SKIP I WAIT t I X I basic processes

a -'-., PIP P I WAIT t; P I sequential composition

pnPI ,e! P, I P P I c?d: D ~ Pd, I alternation

PIIP I pAils PIP PIP II PI paral[el composition
A

PIA I f(P) I r'(p) I abstraction and renaming

p'PIP PIP"PI transfer operators, "
I' X P I "X P I (X. = p.), recursion

where t and t" ra.nge over the set TIME of times, which we take to be non-nega.tlve real
numbers; a ranges OV'('r some alphabet 1; of events; and A and B range over r:,.X ranges
over process names. c ranges over the set CHAN of channel!>, D ranges over datatype.s, atld
d ranges over D. J is an index set ranged over by i and}. The renaming function f ranges
over functions of type r: -) E,

STOP represents the deadlocked process that can perform no visible events. The pro
cess SKIP can do nothing except terminate hy performing the event , WAIT t can tenninate
after t time units. The variable X represents a call to the proCe&i bound to X.

The process a ~ P is initially willing to perform the visible event a; once it has performed
an a, it will act like process P after a delay of length t. If we omit the parameter I we will
take its value to be 0 - a system constant. The process P Q will initially ad ILke Pi if P
terminates, the process will then act like Q after a delay of length J. WAIT t; P ads like P,
delayed by t time nnit.s.

P n Q nondeterministically chooses between the processes P and Q. The process ;€! P;
nondeterministicall.l' chooses between the processes P, indexed by the set I. The process
P Q offers the environment a choice between the two processes P and Q: as soon a.!l the
environment is willing to perform an event offered by one of the processes, that process is
chosen. If the environment is first able to perform an event offered by P at the same tirne as
it is first able to perform an event offered by Q, then the choice is made nondeterministically.

Communication of values along thannels is modelled hy the process c?d : D ~ P d : this
is initially willing to input any value d of type D on channel c, and then after a dela.y of
length td act like process Pd'

The process P 11 Q executes P and Q in lockstep parallel, synchronizing 00 every "isible
event. The process P Aj)S Q execute; P and Q in parallel; P can only perform (!vents
from the set A. and Q can only perform events from the set Bi they must synchronize
on events from the set A n B. This processes is normally written as PAils Q with the
alphabets 1'1.5 subscripts; in this tbesis we write alphabets as superscripts because we wa.ut to
use subscripts for probabilities, P Q interleaves P and Q: the two procesSes are executed
in parallel without synchronization; if the environment is able to do events of P or of Q,
hut not both, then the choice is made nondeterministically. The process P II Qis a hvbridc .

8 Probabilities and Priorities in Timed CSP

parallel operator: it forces synchronisation on the ('vents from C, but allows interleaving on
all other events.

Abstraction is achieved via the hiding operator: the process P \ A acts like P except all the
pvents from the set A occur silently: the environment's cooperation is not necessary for the
events from A to occur, so they happen as soon as the process is able to perform them. The
processf(P) acts like P except all th(> external events are renamed by the function f. TiLe
process [-1 (P) acts like P except it performs the event a whenever P can perform f (a).

Timeouts are modelled using the operator: P Q initially acts like P; if no visible event
has been performed by time t, then it times out, and after a delay of length 0 acts like Q.
With the process P I Q, coutrol is transferred from P to Q at time t, with a delay of 6,

rcgardle$~ of the progress P has made up until this time. Interrupts are modelled using tbe \J
operator: P \J Q initially acts like P except at any time it is willing to perform the interrupt

event a: if an" a is performed, rontrol is transferreu to the interrupt handler Q.
The processes t' X P and JL X P are recursive processes. They both act like P, with
X representing a recursive call. With J.l X P, there is a delay of length n associated with
all recursivc calls; wit,h J.l X P, the recursion is immediate: it is the responsibility of the
programmer to ensure that the process cannot perform iufinitely many recursions in a finite
time. Mutual recursion is modelled by (X, = P,),; this represents the Jth component of the
vcctor or processes (X, II E l) mutually defined by the set of equations {X, = P,lI E I}.

2.2 The Timed Failures Model

2.2.1 Timed failures

A timed event is a pair (t, aj where i is a member of the set TIME of times, which we take
to be non·negative real numbers, and a is a member of the set E of visible actions.

A timed trace is a finite sequellee of timed events arranged in non-decrea.5ing order of times.
For example the trace ((1 , a), (2, b), (2, c)) represents the performancf' of an a at time 1, and
a b and a c at time 2. We write TE for the set of timed events, TE~ for the set of timed
traces, and s for a typical member of TE~: -.,

TI;= TIME x L TE~o;,{SEseq(TE)I(tra)precedes(t',b)in.'J=}t n
]f a process is unwilling to perform a particular timed event then we say that it can be refused.
A refusal Nis a set of cvents thilt are seen to be refused by a process. Our assumptions about
finite speed of processes allow us to restrict our attention to sets of refusals tha.t ace the union
of a finite number of refusal tokens:

RSET ~ IU C ICE (RTOK))

where a !fruSal toke!l is the cross product of a half open time interval and a set of events:

RTOK ==p x A II E HOTINT /\ A E ~} HOTINT 0= ([t, t') I t, t' E TIME /\ t < t'}

A timed failure is a pair (s, N.) where s is a timed trace and N. is a refusal set:

TF == TE~ x RSET

2.2 The Timed Failures Model 9

Tbe pair (s, N:) represents that the proce;s performs the events in s while refusing to perform
tbe events in N:. For example, the timed failure (((1, a), (2, b)), [2, J) x {b, c}) repres€nts an
observation where an a occurs at time I and a b at time 2, and the process refuses a b and
a c during the interval [2,3). Note that a timed event can appear in hoth the trace and
the refusal: in the example the process performs one b at time 2 but refuses to perform any
more bs.

2.2.2 Notation

In this section we describe the notation we will use for reasoning about timed failures. An
index of notation appears on pages 214-218.

We use the following notation for traces: the empty trace is denoted by 0; concatenation of
traces is written using ; we write s/ in S2 if SJ is a lDntiguous subsequence of 52; we write
Sf ~ S2 if 5/ is a permutation of S2·

The function times returns the set of all times at which events are performed or refused:

timess == {t 13a ((t,a)) ins} timesN: == {ll3a (t,a) E N}

We can usp this to defiue begm and end functions that return the time of the beginning or
end of a trace:

beginO == 00 begms == inf(hmes s) if,,",O

endO =- 0 end s == sup(t1mess) if ,,< 0

Similar functions can be defined for refusals and observations:

begin{} == 00 begin N: -= inf(times N) ifN"n

'nd{} 3 0 end N: == sup(t1mes N) ifN"n

begin(s,N:) == min{begms,begmN:} end(s,N:) -= ma..x{ends,endN}

The values for the empty trace and empty refusal are chosen so as to make the subsequent
mathematics as simple as possihle.

The functions first and last return the first and last events from a trace; for the empty trace
they return the non-event c

firstO = E: ji"t«((t, aj) ,j " a

lastO -= c lasl(' ((I,aj)) " a

The functions head and foot return thp first and last timed events from a trace:

head s == (begin s, first s) foots -= (end s,last s)

The dunng operator (tl returns the part of a trace or refusal occurring during some time
interval I:

011"0
jf tEl(((t,a)) ,) I I" {((t,a)) (<I I)

'I I if t ¢ I

N I I " (It, a) E N I I E I}

10 Probabilities and Priorities in Timed CSP

Nate that in order to make N t I a member of RSET we will normally take I to be a finit.e
union af half open intervals. \Ve can use the during operator to define before (). stnctly
belorY!. (), after (), strictly after (), and at (t) operators:

,

, I ~ q [0,11 N 1= NtIO,I]
, I='t[O,1) N t = Ntlo.<)
s t =. 5t [t,oc) N t = Nt [t,oo)

l=5t(t,00) N t=Ntll,x)
dl = ,t(t) Ntt=Nt{t)

The re5trict operator () restricts a trace or a refusal to events from a particular set:

o A=O
_{I(t. a)) A)(., if a E A

(((t, a)) s) A =
sA ifai:-A

N A =((t, a) E N I a E A)

The hidmg operator (\) rest,ricts a. trace or a refusal to all eveut.s not in a certain set:

'IA=' (EIA) N \ A =N (E I A)

Traces and refusals can be relabelled by a function f : E ----+ I: in the obvious way:

f(()) =0
f(((I, a)) ,) = ((I,f(a))) f(·')

fiN) = {(t,f(a)) I (I, a) E N)

r 1(N) = ((I, a) I (I,f(a)) E N)

The alphabet operator (E) returns the set of untimed events from a trace or refu$al:

E,={aI31 ((I,a))in,) EN={aI31 it,a)EN)

The operators + amI - are used to temporally shift traces, forward!; or backwards through
time:

0+1=0
(((I',a)) ,)+1 = ((,'+I,a)) (,+1)

()-I = ()

if I' (((I',a)) ,) _ t = Cit' - I,a)) (, - t)
,- I ifl'<t

These op€rators can also be applied to refusals or behaviours;

N+I ~ (It' + I, a) I (I', a) E N}

N - I {(t' -I,a) I (t',a) E Nfl t' I}

(s, N) + t = (s + t, N + t)

(', N) - I oS: (5 - t, N - t)

2.2 The Timed Failures Model	 11

2.2.3 The Timed Failures Model

The Timed Failures Model represents a Timed CSP process by the set of behaviours that it
can perform. We define 5TF to be the set of all timed failures:

STF '" (TF)

The Timed Failures Model MTP is then defined to be those members S of 5TF so.lisfying
the following sc-ven healthiness conditions:

1.	 ((),{j) E S

2.	 (.'i UI,N) E S => (s,N begtTlw) E S

3.	 (s.NJESl\sS":w=>(w,N)ES

4.	 (s. N) E S 1\ to=>
3N'ERSET N~N'I\(s.N')ES

1\("11 ' t' tl\(/',u)iN'=>(s t' (f',a),N' t')ES)

5	 VI E [0,00) 3n(l) E V(.'i, N) E S wd 5 t => #.5 n(t)

6.	 (9, N) E S 1\ N' E RSET 1\ N' ~ N => (s, N') E S

("	 w,~) E S A~' E RSET)
7.	 1\ end s begin N' 1\ end N' begin w => (5 w,NUN')ES

(
 AV(I,a) E W (, (I,a),~ I) ¢ S

The first condition says that every process can perform the empty tra£p and refuse nothing.
The second condition says that if any particular behaviOlu can be observed, then any prefix
of that behaviour can also be ohsen"ed. The third condition states that simultaneollS E'vents
in a trace can be reordered.

Condition 4 says that any refusal set N can be enlarged to a maximal refu~al srt N' that
contains all timed events that the process cannot perform during this behaviour. The fact
that. N' is a member of the set RSET of refusals relates to our fillite speed assumptio[J: the set
of events that the process cannot perform changes only finitely often in finite time. The fifth
condition also relates to our finite speed assumption: there is a bound n(t) on tbe number
of e-vents that the process can perform within time L

Condition 6 says that jf the process can refnse all the eVf':llts of N then it can also refuse any
subset of N. The final condition says that if the refusal set N' is such that all of its elements
occm between the times of the trarE'~ sand U', and none of the events can be performed after
trace s, theu N' ca.n he added to thE' refusal set.

We place a metric npon thE' .'l(>t of timed failures by considering the first time at which two
elements can be distinguished. For S E STF we define

S I '" {(,.~) E S I md(,.~) I}

We then define the metric Ii by

diS, T)" in[({2~' I S I ~ T IlU{l})

This metric will be used to give a semant.ics to recursive processes.

12	 Probabilities and Priociti €s in Timed CSP

2.2.4 The semantic function

Tbe syntax. of Timed CSP includes the term X: a variable that can be bonlld to a process.
In order to give a semantics to variables, we define a space ENVF of environments or variable
bindings:

ENVp e. VAR -+ STF

We will write p X for the value assigned to variable X in environment p.

We can now define the semantic function:

fT: TCSP ---t ENVp ---t STF

f T P p will represent the set of timed failures that Timt-'d CSP term P can perform, given
variable binding p. If P is a process (i.e. if it has no free variables) theu it makes sense t,o

omit reference to the environment and simply to ..nite fT P In the next section we give
s<.'mantic definitions for all the Timed CSP constructs.

2.3 Semantic definitions

2.3.1 Basic processes

The process STOP can only perform tbe empty trace; it can refnse anything:

fT STOP p S (ro.~) I ~ E RSET)

The process WAIT t can perform the empty t.race as long as it does not refuse a after
time ti alternatively it can perform a at any time £' after t as long as it does not refuse
a between t and tl.

:Fr WAlT t P S ((O.~) I ¢ E(N I))

U{(((t',)),~) I t' t, ¢ E(~ t It, t')))

SKIP is the same as WAIT 0 so we have the following definition:

fT SKIP p S	 {(O,~) I ¢ E~}

u{(((t,)),~) I ¢ E(~ t))

The term X represents the process bound by the environment to the variahle X:

fT X P == P X

2.3.2 Prefixing

The proress a ~ P can perform the empty trace as long a'J it does not refwe an a:
alternativl'1y. it ran perform an a at some t.ime t' , and t.hen act like P starting from time t '+ t,
as long as it does not refu.<;€' an a before tl.

fT	 a -'-> P pS {(O.~) I" ¢ E~}
U{((t', a) Sp + t' + t, N) I a ~ ~(N t') 1\ (sp, N - t' - t) EfT P p}

2.3 Semantic defilljtjolls 13

2.3.3 Sequential composition

We assume that in the combination P Q the event is always available for P: in ather
words, P may terminate as soon as it is able. Hence P Q can perform a non-terminating
trace of P only if P is unwilling to perform a i.e. if it is always able to refuse a Similarly,1

P can terminate at time t only if it could refuse a at all earlier times; in this case control
is passed to Q starting from time t +O.

FTP Qp"{I"lll/ ¢E,/\YIEHOTINT (',Nu(lx{)))EFTPp}

u{(',NJI3' ¢E(, 1)/\(, I (I,),N luIIO")x{ }))EhPp

/\ 'i (I,' + I) ~ (I /\ I' - I - I,N - I - I) E FT Q pi

The process WAIT t ; P acts like P after a delay of length t:

F,. WAIT I; P p" {(, + I, N) I (", N - I) E FT P p}

2.3.4 Nondeterministic choice

P n Q can act like either P or Qj similarly, 'EI P, can act like anyone of the P;;

FT P n Q p - Fr P pUFr Q P

F r ,eJ
Pi p U{FT P; pi i E I}

This latter definition is sound only if the set of processes {P, 11 E I} is uniformly bounded
in the following sense:

Definition 2.3.1: The set of processes {Pi 1 i E l} is uniformly bounded iff

YI,T/ME;p,ENVF 3nll); VI:! (s,N:)EFTP.p/\ends t;=}#s net)

(>

The set is uniformly bounded if there is a uniform hound on t~ number of events that each
process can perform within time t. This condition is necessary to ellilure that condition 5 on
the semantic space is satisfied.

2.3.5 External choice

The process P Q offers the environment a cboice between the events offered by P a.nd Q.
It can perfonn the empty trace when botb P and Q can: in this case, every event refused
by P Q must be able to be refused by both P and Q. Similarly. if P Q perhnns a
nonempty trace of either P of Q then any event refused before the first visible event must be
able to be refused by both P and Q.

F T P Q"

{I(I,ll) I ((I,ll) EFT P pnFT Q p)

U{("NJI,i' (I/\I"N) EFT P pUFT Q p/\((I,N I>eg'n,jEFT P pnTT Qp)

14 Probabilities and Priorities in Timed CSP

The process c?d : D ~ PrJ is able to input any value d of type D on channel c and then,
after a delay of length td, ad like Pd. If it performs the empty trace then it mu~t not refuse
to input (rom c. Alternatively it can input some value d at time t, and then act like PrJ after
a delay of length td, a.<; long as it does 1I0t refuse to input from c before t.

FT c?d: D ~ PrJ p ==

{II), N) I ,.D n ~N ~ {}}

u{((t,c?d) .'l+I+ld,N)jdEDAC.DnE(N /)={}A(s,N-t-id)EFT PdP}

This definition is sound if the set of processes {Pdid E D} is ulliformly bounded in the ~eIl..se

of t.he previolls section.

2.3.6 Parallel composition

The proCe'lS P II Q executes P and Q in lockstep parallel. synt'hronising on every event. The
parallel composition can perform an event if both P and Q can; it can refuse an event if
either Par Q can:

FT P II Q p EO {I'. Np U NQI I (." Npl E Fr P p A I', NQ) EFT Q p}

p x II Y Q can perform trace s if P can perform the restriction of S to alphabet X. Q can
perform llH~ restriction of s to alphabet Y, and all the events of s belong to either X or Y.
It can refuse an event from X if P can refuse it; it can refuse an event from Y if Q can refu8e
it; and it can refuse any events not in X or Y.

Fr pXII Y Q pEO

{(d~pUNQUNz)l(s X,Np)EFTPpl\(S Y,NQ)EFl' Q pI\Es~XUY

1\ ENp ~ X 1\ ENQ ~ Y /\ !:Nz <;: E \ X \ Y}

P Q executes the processes P and Q in parallel wit.hout ~ynchronization. It can perform
an event if either P or Q can: it can refuse an event if both P and Q can:

Fr P Q p == {(s, N) I (sp, N) E FT P P 1\ (sQ, N) E FT Q P 1\ s E Sp '~Q}

where is defined 011 traces by

sp sQ == {s : TE~ IVt 5 t t ~ Sp t t sQ t t}

P il Q is a hybrid parallel composition: synchronisation ta.kcs place on events from C but
c

aU other €Vents are interleaved. An event from C can be performed if both P and Q can
perform it. an event from outside C can be performed if either P or Q can perform it. Hence
if P can perform trace Sp and Q can perform trace sQ then P II Q can perform any trace

C
from Sp II sQ, defined by

c

sp II sQ 2 {s I s C = sp C = sQ C 1\ s \ C E sp \ C sQ \ C}
c

2.3 Semantic deBnWoDs	 ..'5

P 11 Q can refuse an event from C if either P or Q can refuse it; it can refuse an event from
c

outside C if both P and Q can refuse it.

:Fr P II Q p =({"~) I ('p, ~p) E1'T P p" ('Q' ~Q) E1'T Q p" , E 'p II "Q
c	 c

,,~ C ~ (~p U ~Q) C" ~ \ C ~ (~p n ~Q) \ CI

2.3.7 Abstraction and renaming

The process P \ X acts like P except all events from the set X are made internal. This
means:

• evpnts from X occur silently and should not appear in the trace;

•	 the.'le events do not need the cooperation of the environmpnt; this means that the
process P should always be able to perform as many events from X as it requires: this
is equivalent to saying that it should be ahle to refuse any additional events from X.

Thus P \ X can perform trace , \ X and refuse ~ if P can perform , and rEfuse N u
([0, md(" ~)) x X),

1'T P \ X p'" ({, \ X,~) I (" N U ([0, mdt"~ N)) x X)) E1'T P pi

The process I(P) acts likp P except all events are renamed via the function I. This means:

• I(P) performs the event I(a) if P performs a;

•	 I(P) can refuse a b if P can refnse all events a snch that J(a) b, i.e. if P can
,efu",/-'(b), '

HeDce we have the following definition:

1'T /(P) p'" ((J(,), N) I("r' (N)) E:Fr P pi

The inverse image of P under I may perform a whenever P may perform J(a], and can
refuse a whenever P may refuse I(a):

1'T r'(p) p'" ({', N) I (f(,),J(N)) E1'T P pi

2.3.8 Transfer operators

The process P Q initially acts like P; jf no action is observed by time t then a tilDe out ,
occurs and, after a delay of length 0, control is passed to Q. A behaviour of P Qis either:

•	 a behaviour of P whose first event occurs no later than tj

•	 or a behaviour of P up until time t dudDg which no events occur, follawed by a
behaviour of Q starting at t + 0:

16 PmbabWties and Priorities in Timed CSP

FT P I Q p={(s,N)! bfglns I A ("~) E FT P p}

U(("~) I begm, I H A ((), ~ t) E :Fr P p A ("~) - t - 0 E:Fr Q p}

The prQces:o; P I Q is similar to P Q except control is removed from P at time t regardless

of the progress made. Thus a behaviour of P I Q must be such that:

•	 the behaviour up until t is a behaviour of P;

•	 no events are observed between I and t + 0;

•	 and the behaviour from t + b is a behaviour of Q:

F T P , Q p " (("~) I (, t" ~ t) E :Fr P pAd (I, t to) ~ () A ("~) - 1- 6 E FT Q p}

P ? Q initially acts like P except. it is always willing to perform the interrnpt event e; if

an e occurs then control is passed to Q. Thus a behaviour of P '? Q is either:

•	 a behaviour of P where an e is always available (e If- 2;/{) but no e occurs (8 If- "Es);

•	 or a behaviour of P up until some time t when an e occurs, followed by a behaviour
of Qafter a delay of 6; in this ca.~e all e must not occur before t but must be available
up :.mtil then:

F T P v Q p ~ (("~) I ' ¢ ~(,,~) A ("~) E:Fr P p}

e u{(s,N)13l S t e=«(t,e))Ae~~(l{ t)Abegm(s t,) t+6

A(S t\e,N /)ETTPpA(s,N)-t-6ETr Qp}

2.3.9 Recursion

In order t~ give a semantics to the' recursiv(' process j.j X P we need to consider the mapping
on the semantic space represented by the term P considered as a function of X. We denote
this hy M(X, P)p, defined hy

M(X,P)p~>.Y FTPpIY/Xj

R.ecursion is	 then defined by

TT j.j X P p ~ the unique fixed point of the mappiug M(X, P)p

In [Dav91] Davies shows that this is weB defined if P is constructive for X, where construc

t.ivity is defined as follows:

Definition 2.3.2: TCSP term P is t-con.5/nlcf.we for variable X if

'r/ to : TIME; p: ENV TT P p to + t = TT P pIp X tal XJ 10 + t

<)

2.4 The proof system 17

Informally, P is t-constructive for X if tbe behaviour of P up until to + t is independent of
the behaviour of X after time to.

Definition 2.3.3: Term P is constructive for X if there is a strictly positive time I such
that P ill t-construc tive for X. ¢

Davies gives a number of rules for checking whether a term is constructive for a variable.

The recursive process ~ X P differs from ~ X P in that there is a delay of length 0
associated with all recursive calls. The mapping on the semantic space associated with P
where all calls to X are delayed by 0 is denoted by M6(X, P)p and defined as follows:

Definition 2.3.4: If P is a TCSP term and X a variable then

M6(X,P)pS:. W"oM(X,P)p where W, '" >. Y fT WAIT,; X p[Y / XI

<>

The function WI" delays all calli to X hyo. Delayed recursion is defined by

:Fr JJ- X P p == the unique fixed point of the mapping M6(X, P)p

In [Ree88] Reed showed that the mapping M6(X, P)p is a contraction mapping and so always
has a unique fixed point; hence the semantics of }1 X P is well defined.

Mutual recursion is handled similarly. For 1 E I let P. he a term and X, a variable. We write
(X, = P,li E 1), to denote the jth element of the vector of processes (X. liE I) mutually
defined by the set of equations {Xi = p. liE l}. We will write E. for (Pi liE I), etc. The
vector of equations (Xi = Pi) represents a mapping on the space S~p which contains one
copy of Srp for each element of I; this mapping is written M(,K,.f..)p and defined by

M(K,E.)p '" >'x :Fr E. p[X/K]

We then define mutual recursion by

:Fr (X, =P,)j p == SJ where s.. is a fixed point of MC,K,£..)p

In [Dav91] Davies gives a sufficient condition for this to be well defined.

2.4 The proof system

In [DS89b], Davies and Schneider presented a complete proof system for Timed CSP. If P
is a Timed CSP term and S(9, N) is a predicate whose free variable represents a behaviour,
then they write P S8tp S(s, N) to specify that all behaviours of P satisfy S:

P satp S(s, N) == V(s, N) E :FT P P 5(8, N)

If P is a process then it makes sense to omit reference to the environment:

P oat S(" N) '" Y(" N) EfT P S(" N)

The argument (s, N) is dropped when it is obvious which model we are working in.

18 Probabilities and Priorities in Timed CSP

They give a proof rule for each construct of the language. These rnles are of the following
form:

antecedent

antecedent [)
5Jde condition

consequent

If we can provp each antecedent and the side condition is true then we can deducl' the
consequent.

On composite processes the proof obligation b reduced to proof obligations on Ihe subcom
ponents. For example, the proof rule for lockst.ep parallel composition is

P satp Sp
Q satp SQ
Sp(s,Np) /I SQ(s,'N:Q) '=> S(s,NpUNQ)

P II Qsat" S

To prove that P II Q satp 5(5, N) we have to find spe(;ificOotiOilS Sp and SQ for P and Q
such that whenever behaviours of P aDd Q satiEfy Sp and SQ the corresponding behaviour
of P II Q satisfies S.

Throughout this t.hesis, we will quote proof rules for the Timed Failures Model as and when
we need them.

2.5 The specification language

In order to specify Timed CSP processes, Davies int.rodnced in [Dav91] a specification lan
guage: this language was revised in [DRRS93]. The meaning of a specification written in this
language IS as near as possible to its English language meaning. This means that we can be
reasonabl.'r confident that 9pecifications written in this language meet our informal require
mellts. This also means that our specifications will be opf'n to interpretation in other models:
in section 5.3 WI' will present a similar language for specifying prioritized processps, and in
section 6.2 we will show that if a Timed CSP process P satisfies a particular specification S
written in the specification language, then, subject to certain conditions, all P's prioritized
refinements will satisfy S when this is interpret.ed as a specification on prioritized processes.

2.5.1 Primitive specifications

The predicate (a at t)(tl,N) specifies that an a occurs at time t:

(a at t)(s, N) ~ {(t, a)) in 5

This may be generalised by replacing the event a with a set of events and hy replacing the
time t with a set of times:

AatI~3aEA 3tEI aat!

2.5 The specification language 1~

A at I holds if some element of A occurs at some time during I. Note that 'W'e ace using the
convention of dropping the argument (5, N) from specifications when it is obvious from the
context in which model we are working.

These can be generalised to specify that n events happen during some interval:

(A ,to I)(,,~) '" #(, At 1) n

We can also specify that particular events do not occur:

noaatt ~ ...,(aatt)

no A at I ~ ..., (A at 1)

no A atn I 2 ..., (A atn 1)

Another useful specificatiou primitive is ref, which is used to specify that an event is refused.

(a 'Or t)(,,~) '" (t, a) E ~

We will not actually write specifications using ref: we will use it to define more useflll speci

fication macros.

We can also specify t hat an event is not seen to be refused:

no a ref t 2..., (a ref t)

Both of these generalise to a set of events:

Areft2'VaEA areft noAreft=='iaEA noareft

We will sometimes want to say that a proct'Ss acts in a particular way If we have observed
it for long enough. The predicate beyond t will he true if we have observed it until at least
time t:

(beyond t)(s,~) == end(lJ, N) > t

2.5.2 LiveneBs specifications

The live macro is used to specify that the process is willing to perform an event at a particular
time.

a live t == a at t V no a ref t

a live t is true if either an a is performed at time t or it is not refused. It will be true of
an observation of a process if that observation is consistent with the process being able to
perform an a at that time.

This can be generalised to take a set of events as argument

A live t == A at t V no A ref t

A live t is true if the process is willing to perform anyone of the events from A: it will either
perform one or refuse none.

20 Probabilities a.nd Priorities jn Timed CSP

We can also generalise tbe live macro to spedfy that an event is available throughout some
interval, until it is performed:

a live I := V tEl a at [n [a, t] Y no a ref t

a live I is true if at all times ill I, an a cannot be refnsed unless it has already been observed.
This generalises to a set of events iu the obvious way:

A live I == V tEl A at I n [a, t] Y no A ref t

It will be particularly Ilseful to be able to specify that an event becomes available at some
time t and remains available until performed.

a live from t == a live It, 00) A live from t ::; A live [t, (0)

Thus from t is simply an abbreviation for the interval [t.oo).

We can also specify that a process is able to perform up to n copies of an event.

a liven l == a at" t Y no a ref t

A liven t == A atn l Y no A ref t

a liven I == V t E [a atn In[O,t] Y no a ref /

A liven I == V /. E I A atn I n [a, tJ Y no A ref!

2.5.3 History predicates

Often wewill want to write specifications that refer in some way to the events that have been
observed. These will take the form ip(M(sj). where M ~<; a projection function from timed
traces to some type T, and ip is a predicate on T. We can define a few useful such prokction
functions M.

The functions first and last retul'll the first or last timed events observed during a behavionr:

f,rst(s) =. head s last(09) := fout s

These can be qualified with one of the terms before t, after t or during I to restrict attention
to a partiwlar set of times. \Ve can also restrict our attent.ion 1.0 a particular set of events.
For example:

(first A after t) (.~) = head(s A t)

(last A before t){s) foot(s A t)

(last during I) (oS) - /oot(, t 1)

The functions time of and name of return the time and e...-ent components of a timed event:

time of (t, a) =. t name of (t, a) := a

These can be IlSed to write predicates such as

time of first A after 2 3 name of last A = a

2.5 The specification language 21

Other functions that we will find useful are alphabet which returns the set of (untimed) events
observed, and count A which returns the number of events from the set A that are performed:

alphahet(s) £:. Es CDuntA(5)::= #(8 A)

These can be qualified with the phrases before l, after t or during I; we will omit the argu
ment A of count if we want to refer to the total number of events performed, i.e. in tbe case
A ~ E.

2.5.4 Environmental asswnptions

Often we will want to say that a process acts in a particular way 1/ the environment satisfies
some condition. In this subsection we describe a few macros for placing conditions on the
environment.

We will write a open t to specify tbat the environment is willing to perform an a at time ~:

a open t == a at t V a ref t

a open t is true if the observation is consistent with the environment being willing to perform

an a at time t: it is true if an a is either performed or refused at time I.

This can be extended to sets of events in the obvious way:

A open t == A at t V A fef t

We will say a open I if the environment is willing to perform an a at all times during I until
one 1s performed:

a open I ::= VtEl a at I n [0, t] V a ref t

A open I == VtEl A at I n [0, tJ V A ref t

As with live, it is useful to have a special form for the interval [t,oo):

a open fromt £:. a open [t,oo)

A open from t ::= A open [t,oo)

It is also useful to be able to generalise to say that the environment is able to perform Tl copies
of an event:

a open" t == a at" t V a ref t

A open" t £:. A at" t V A ref t

a open" I £:. "V tEl a at" In [0, t] V a Tef t
A open" I £:. V ~ E I A at" In [0, tJ V A ref t

The following lemma shows that the open macro does what we want:

Lemma 2.5.1: A open t 1\ A live t => A at t. Q

22 Probabilities and Priorities in Timed CSP

If the environment is willing to perform any event from A and the process is live on A, then
an event from A oc-curs.

Proof: We have

A open t /\ A live I

::::} (definitions)

(AattVV<1EA areft) /\ (AattVVaEA oreft)

::::} (predicate calculus)
A aU

o

To specify that the environment is not willing to perform an event, 'we use the closed macro:

a closed t ==..., (0 at t)

If a dosed t bolds then the observation is consi.'ltent witb the environment being unwilling to
perform an a at time t. Note that this is the same as no a at t: we will restrict the use of
closed to em'ironmental assumptions. This macro generalises iu the obvious way:

AciosedI=VaEA ViE! aclosedt

The final environmental a.<;snmption we want is to say that the environment is always willing
to perform as many events from a set A as t.he process wants. This will occur when the events
from A are hidden.

internal A == Vl beyond l ~ A ref l

Not.e thaI
(internal A)(8. N) = A opene<> [0, end(s, N))

2.6 Recent changes

The above description of Timed CSP follows mainly that described in [Dav91], although the
spl:'cificat.ion language i;; that of [DRRS93]. Recentl.y a couple of small changes have b~n

made to the semantics [DS92a]; for complet.eness. we include here a notl:' of these changes,
although the new models presented in this th~is will be based upon thl:' earlier work.

In the earlier models there Was a non-zpro lower bound J between the times at which causally
related events could ocem. More recently, this constraint has been dropped. and a prefixing
operator with a zero delay has heen introduced. For example, the process

a ~ b ~ SKIP

May perform an a and a b at the same instant, and then terminate one second later. For
l:'xample, it may perform the trace {(0, a}) (0, b)}. In order to incorporate immediate prefixing
into the semantic model, it wa.<; necessary to drop axiom 3, which aJlowl"d ~imultaneous events
to be reordered. If this axiom were retained. then the above proce.'3S wonld be able to perform

2.6 Recent cbangp,s 23

the trace {(0, b), (0, a», and so by axiom 2 would also be able to perform the trace ((0, b}),
whicb is obviously nonsense.

The other main change that has been made to the gemantic definitions is that now a dis

tributed system may terminate only when all components can terminate. Thus in the parallel

combinations

P AII B Q and P II Q
c

the event is implicitly included in the synchronization set, and the interleaving operator
may be defined by the equation

p Q ~ p II Q
"

Chapter 3

The Prioritized Model

In thi~ (~apter we present the syntax and semantics of the prioritized language. Recall that.
as described in the introduction, One of our aims is to restrict nondet{,l'mhlism to just t.hat
caused by the nondeterministic choice operator, so that when we Tcpl<ice thp uoodeterministk
choice operator by a probabilistic choice operator, we will be able to present a semantic mand
that gives the probability of a process acting in a certain way.

In section 3.1 we describe the syntax of the language. In section 3.2 we illustrate the language
with a ({Juple of examples. We describe the semantic space in section 3.3 and give semantic
definitions for all the constructs of the language in section 3.4. In section 3.5 we descrihe how
the semanti{' model cau b(' extended to monel communication of V'c\.lues over chal\n~ls, In
section 3.6 we show that by removing the nondeterministic choice operator from the syntax,
we are left with a language that is completely deterministic.

3.1 Syntax for the prioritized language

\Ve want to produce a languagf' where t,llf' only form of nondeterminism is that caus~d by
the nondeterministic choice operat.or, In order to do t.his we must first understand the ways
in which nondeterminism can arise. ~'ondetNminism can arise in Timed CSP in a number
of ways:

Explicit nondetermini.'lm: The process P n Q chooses nondetermiuistically betweeu the
processes P and Q.

External choice: Consider the process a --+ P b --+ Q. If the environment is willing
to do either all II or a b at some time, then th~! choice is made Ilondeterministically.

Interleaving: Consider the process a --+ P b --+ Q. If the environment is willing to
perform either an a or a b at some time (but not both), then the choice is made nondeter
ministically.

Hiding and renaming: Deterministic processes can sometimp.s be made nondeterministic
by hiding or renaming. For example, if the process II --+ P b -t Q is put in an
environment that offers just a b at time 0, then the b will be performed. lfhoweVl?r the process
(a -----? P b --+ Q) \ II is put in the same environment then it will nondeterministically
choose between performing th", b or performing the II silently.

24

3.1 Syntax for the prioritized language 25

The last three forOlB can all be thought of as types of underspecification; in normal Timed CSP
we do not specify how the operators behave in the situations described. We shall refine out"
operators 80 as to overcome this underspecification.

3.1.1 Biased external choice

We define two operators, a left~hiasedl choice 1O, and a right-biased choice []. The left-biased
choice PlO Q will choose P if the environment is willing to do the first ewnts of hoth P and q
(at some time). The right-biased choice P [] Q will choose Q if the eevironment is willing
to do the first events of hoth P and Q. For example, a customer who is willing to accept a
toffee. but would prefer a chocolate:

GUST 3: chocolate [] toffee

where we have written chocolate as an abbreviation for chocolate ----t STOP.

3.1.2 Parallel composition

Consider the process (a 1O b) II (a [] 6). If the euvironment offers both a and b at timl;> 0,
then the hehaviour of the process is not fuUy specified. The left hand side wants to perform
an a, while the right hand !'!ide wants to perform a b. The only sensible interpretatioD is that
the process chooses nondeterministica.lly between the a and the b. Since we are aiming to
eliminate aU non determinism, we define a left hiased parallel operator '* which arbitrates in
favour of its left hand argument. So (a 1O b) '* (a OJ b) will perform an a if the environment
offers both a and b. We can. consider the left hand side to be a master, and the right hand
side to be a .!i(ave which will do whatever its master wants, if it can.

For example, consider a vending machine which will dispense either chocolates or toffees as
its environment requires, hut would rather dispense toffees:

VMB 3: chocolate OJ toffee

If we put this in parallel with the CU.!itomer who prefers chocolates, with the customer acting
as the master, then the customer get!'! what he wants:

GUST,* VMB = chocolate 1O toffee

If however we make the machine the master, then it gets its way:

VMB,* GUST = chocolate [] toffee

We can similarly define a right biased parallel operator *" which arbitrates in favour of its
right hand argnment. For example, (a [] b) *" (a [] b) will perform a b jf the environment
offers both an a and a b.

'Throughout this thesis we will use the words bl/ued lUld prioritued ;IIi syl1onyllL'i.

26	 Probabilities and Priorities in Timed CSP

3.1.3 Interleaving

\Ve define a left hiased interleave operator +--- such that if the environment is willing to do
events of P or of Q (but not both) then P +--- Q performs the events of P. For example:

•	 if a single a is offered then a ------+ P +--- a ------+ Q will perform the a on the left;

•	 (0 +--- b) ~ (a [] b) will perform an a if an a and a b arc offered at the same time.

•	 (af-- 0) -If (a[]b) wi]] pE'rform a b ifan a ana a b arc offered at the same time, since
t.he right hand f;idE' is thE' master and it prefers the O.

•	 A greedy customer would like both a chocolate and a toffee, but if he can have only
one he would prE'fE'r a chocolat{':

GCUST =- chlJcolate f-- tlJlfe.e.

When he is placed in parallel with the biased vending machine, with him as the master.
he gets just a chocolate since t.he vending machine ~ only willing to dispense oue sweet.

GCUST~ VMB = chlJclJlale. [] tlJlfe.e.

We can similarly define a right biased itltcrleave operator ------+ such that if the environment
is willing to do ew"nts of P or of Q (but not both) t.hen P ------+ Q performs the events of Q.

Aside: The reader may be wondering why we have [Jot specified that if processes P and Q
have difJfrent initial events then P f-- Q offers these events equally strongly, and allows the
environment to decide which i" performed. This method does llot work, as can be seen by
considering the process (a +--- (b [] e)) ~ (e [] a [] bj. Suppose this process is offered hath
an a OotId a b; then the left hand side has no preference betw~n t.hem, and so the right hand
side chou,es a. Similarly, if it is offered an a and a e, the right hand side makes the choice
in favouruf c. If, however, it i" offered a b and a c, then the left hand side chooses in favour
of b. So t.~is process prefers a to 0, prefers 0 to c and prefers e to a. \Ve conclude that it is
not possible to define the interleave operator in this way.

3.1.4 Alphabet parallel composition

The ideas of the previous sectionR carryover to the parameterized parallel operators. Th{'
priorities of P A~8 Q foUow the prioritiC$ of P on events from A, and follow the prioritips
of Q on events from B \ A; events from tbe master's alphabet (A) are preferred to other
events (those from n \ A). The priorities of P A-jf;B Q follow the priori tips of Q on events
from B, and follow the prioritil.'-s of P on events from A \ B.

P 1t Q and P it Q execute P and Q in parallel, synchronising on events in C. They are

hiased towards P and Q respectively.

3.2 Examples: a lift system and an interrupt mechanism	 27

3.1.5 Complete syntax

The complete syntax for Biased Timed CSP (BTCSP) is as follows

P,,~	 STOP I SKIP I WAIT' I X I basic processes

a -'-.; PIP P I WAIT t; P I sequential composition

Pn P I "1 P, I p[]p I p[]P I alternation

P</fPI P-I>P I pA</fB PI pA-I>B P parallel composition

P<-P I P-tP I p</fp I p-I>p I interleaving , A A

P PIP ,PIP\7PI transfer operators .
P \ A	 I f(P) I abstraction and renaming

"X	 P I "X P I (Xi~Pi)j recursion

wbere t ranges over the set TIME of times, which we take to be positive real numbers;
X ranges over the space VAR of variables; a ranges over some alphabet E of events; A and B
range over E; f ranges over E -t E; and i and] range over an indexing set I.

3.1.6 The effect of hiding

Consider tbe process P == (a [) b) \ 11. It is interesting to ask whether this process can ever
perform a b. Tbe process P certainly prefers to perform an a (silently) to a b. In a previous
paper [Low91a] we took the view tbat the environment would always be willing to perform
the empty bag of events; bence P could never perform a b since it would always choose to
perform a silent a in preference. This assumption produces a model which, while sonnd, is
extremely complicated and contains a number of unusual and undesirable features.

In this thesis we adopt tbe view that there are environments that are nat willing to idle. Then
the process P ig able to perform a b. but only if its environment is not willing tD perform
the empty bag of events. Consider for example the process b4t- P. The left hand side of this
prefers to perform a b t.han to idle; it is the master and so it forces P to perform the b even
though it would prefer to perform a silent a.

3.2	 Examples: a lift system and an interrupt mechanism

In tbis section we consider two examples that make use of the biased operators.

3.2.1 A lift mechanism

We consider an example of a lift serving three floors of a building: on each floor there is a
button that can be used to summon the lift; once the bntton has been pressed, the lift should
arrive on that floor after a short delay. Tbe naive implementation in unprioritized Timed
CSP would be

SYSTEM" (LIFT AURIIRUP BUTTONS) \ R

28 Proba.bilities a.nd Priorities ill Timed C$P

LIFT .= reqo ~ arn"'eo ~ LIFT

m;/ ~ arriveJ .2....; LIFT

''''q2 -~ arrive2 ~ LIFT

BUTTONS ~ BUTTONo BUTTON/ BUTTON2

BUTTON,'= ptl.~hi.....!...;reqi~BUTTON, (~=O,1,2)

where Lhe alphabets are defined by

A-={anive,liEO .. 2} R-={req,11EO .. 2} P -= {push, II EO . . 2}

Wben button ~ is pushed, it makes a request to the lift by offering the event req,: two seconds
after the ''''qi is accepted, the lift arrives at floor 1.

Unfortuo.ately. there is a prohlem with this implementation. Suppose you are on the first
floor and the lift is on the ground floor. You press your button at the ;;ame mOIDent that
somebody on the second floor presses the hutton thel'f~. Both buttoDs offer their l'eq event.
and suppose the lift chooses in favour of the button nn the second floor; then the lift goes
straight past you to arrive on the second floor. Meanwhile, somebody arrives on the ground
floor and pushes the button there. The bnttons on the first and ground floors are now both
offering their req events; suppose the lift chooses in favollI of the one on the gronnd floor;
again, the lift goes straight past you, to reach the ground floor. This frustratiug sequence of
events could continue nntil you cventually give up and head for th(~ stairs.

Tbis is not the only problem. There is also the possihility that you are stnck on the second
floor while the lift shuttles backwards and forwards between the gronnd and first floor. It's
even possible t.hat the lift never leaves t.he ground floor, if more and marc people keep on
pressing the button there.

These problems can be overcome using biased operators. We use the following definitions:

SYSTEM (LIFT AURtft-RUP BUTTONS) \ R

LIFT LIFTo

LIFTo	 1-eqJ ~ arnvel!..-; LIFT;

[] reqz ~ a1nve2!..-; LIFT2

[] reqf) ~ arriveo ~ LIFTo

LIFTJ =	 rCQ2 ~ arnvez ~ L1FT2

[] reqo ---.?---+ arnveo ~ LIFTo

[] reqJ ...!.; arrive/!...; LIFT]

LIFT; =	 reqo ~ arnveo!..." L1FTo

[] rEq$!£... arrive$!!..-; LIFTz

[] reql£... an'it:eJ!..-; LIFTt

LIFT2 =	 reqJ£... arnvel ~ LIFTt

[] reqo ...!.; an'iveo!..." LIFTo

[] reqz£... arnve2 ~ LIFT::

BUTTONS = BUTTONo BUTTON, BUTTONg

BUTTON, ==- pWJh,!..-; reqi!..-; BUTTON, l' = 0, 1,2)

3.3 The semantic model

where the interleaving of the huttons could be either left- or right-biased. LIFTo and LIFT2
represent the lift on the ground and second Hoors respectively; LIFT] and LIFT} represent
the lift on the lirst floor where the previous movement was up or down respectively. The lift
is hia.sed in favour of next going to an adjacent Hoor; when it is on the first floor it is biased
in favour of continuing in the direction it last went. The reader may care to verify that Done
of the problems described ahove occur given these definitions.

In section 5.5 we will formally verify that if the environment always allows the arrive events
then the lift arrives at a floor within 15 seconds of the button being pressed.

3.2.2 An interrupt mechanism

We consider now an example of an interrupt mechanism, iutroduced in [eH88], and illustrated
in figure 3.1. A counter can normally continually perform the events up and down. If,

up

~'hU'-down

down

Figure 3.1: A counter with interrupt mechanism

however, the event shuLdown occurs, then it shonld be interrupted via the internal event i.
In an unprioritized model the definition would be

SYS" (CoXII Y INT)\.

INT e shuLdown ~ I ~ STOP

Co e up ~ CJ i ~ STOP

CIl+1 e (up ~ Gn+2 down ~ Gil) i ~ STOP

where the alphabets are given by X=.{ up, down, I}, Y :£ {t, shuLdown}.

It should be obvious that this could perform the trace (up, down, $huLdown, up, down):

G can choose to ignore the event i, offered by INT, in favour of ups and doums. We can get

around this by giving the i a higher priority than the up and the down:

Go ::= up ~ G1 [] i ~ STOP

Gn+ 1 ::= (up ~ Gn+.8 down -----) Gn) (] 1 -----) STOP

where the external choice could be either left- or right-biased. Now the j will be performed
as soon as it is offered, and G will he interrupted as required.

3.3 The semantic model

In this section we develop a semantic model for our language. We begin by describio.g how
we want to model a behaviour of a process. We then present some notation before prod ueing
the semantic model itself, which will represent a process by the set of behaviours that it can
perform.

30 Probabilities and Priorities in Timed CSP

3.3.1 Behaviours

As in most models of concurrency, we want our model of a behaviour, or observation, of a
process to record the events performed. Since we are interested in the different priorities
given to different actions, we also want to include some representation of these priorities. It
will ease our notation to also include the time at which the observation ends. Our model
of a bf'haviour will therefore consist of three parts: the time up until which the process is
observed, the events which it performs and the priorities given to different actions.

The trace o(a process is the collection of timed events which it performs. In standard
Timed CSP the traces (O,a),(O,b)) and «(O,b),(O,a)) are treated as distinct. In this
thesis we want to assodate these, otherwise when we come to consider probabilities we will
experience problems. For example, consider the process af---- b; iftbe environment is willing to
perform an a and a b at time 0 then this can perform the tra(;e ((0, a), (0, b)) with probahility
0111" andean also perform the trace ((0, b), (0, a)) with probability one: our probabilities will
not sum to one. In our model we ~hall say that in this environment the process performs the
bag ila,b~ at time 0 with probability one.

We represent traces as functions from an initial segmeut of the time domain t.o bags of events:

Definition 3.3.1 (Timed traces) The space TT of timed traces is defined by

TT =. is: TIME --tt bagE I:JT doms = [O.T]}

<>

We think of s(t) as being the bag of events performed at time t. Both of the above traces
are represented by A t if t = 1 then fla, bG else@. For ease of notation, we shall often
write traces as sequences within the brackets -< and >-, so I,he above trace will he denoted
by either -«1 ,a), (1 , b)>- or -<(1, b), (J, a)>-, and the empty trace is w.itten -<>-. We shall
sometime; omit the brackets for singleton traces.

\Ve say that a process offers a particular bag of ewnts if it is willing to perform t.hat bag, or,
put another way, if it offers the bag to parallel proresses.

Definition 3.3.2 (Offers) The set of offers OFF is defined by OFF :=0 TIME x hag E.

<>

The pair (t, xl represents the bag of e"'fInts \ being offered at time t. \Ve ~hall write v, w,
etc. for typical members of OFF, and \' 11" etc. for typical members of bagE.

Note: It is normal to consider a function from type a to type b to be of type (a x b). Using

this identification, w'€ can consider a timed trace to be of type (TIME x bag El, i.e. a trace

is simply a collection of offers. We will make use of this to simplify onr notation.

A process will often be willing to offer more than one particular bag of events. It will then
have som(' preference as to whicb bag of events it would rather perform. For example, the
process a+- b initially offers the bags fla, bG, flaG, flbG, and@, and prefers ~a, b~ to ~a~,

prefers ila~ to ilb~, and prefers flbG to flG. We want to model the order of preference of offers.

Definition 3.3.3 (Offer relations) We defiue the space OFFREL of offer relations to be
those relations!; of type OFF x OFF satisfying the following conditions:

3.3 The semantic model 31

1. (t, X) I;;;; (t',X') ~ t = /1 (comparable offers occur at the same time)

2. W I;;;; w' 1\ Wi S; w"::;} W S; wlJ (transitivity)

3. w r; Wi 1\ Wi I;;;; W =} W = Wi (antiBymmetry)

4. w E items r; =* w I; w (reflexivity on items 1;;;;)

5. (t,X), (t,,,,) E items I;; => (t, X) I;; (t,,,,1 V (t,,,,) I;; (t,X) (totality on items 1;;)

where itemsS; is the set of all offers made by the process:

itemsl;;;;={wI3v ws;vvvr;w}

o
Informally, if v I;;;; w then the process would rather perform w than v. For example, a '!- b

has offe' ,elation with (O,~D) I;; (O,UbD) I;; (O,~aD) I;; (O,~a,bDI·

Note in particular condition 5 which says that the restriction of an offer relation to a particular

instant is a total order on those offers that the process is willing to perform.

We introduce the follQWing shorthands:

vcw<:=}vI;wl\v=l-w v;;;]w{:)wI;v v:Jw~wCv

A behaviour will be a triple of type TIME x OFFREL x TT. The behaviour (T,~,S) will
represent an observation up until time T where trace s is observed and where I;;;; gives the
priorities on offers. We shall discuss which behaviours are possible after we have introduced
some notation.

An environmental offer is the set of bags of timed events which the process is offered by the
environment; more formally, it jll a set of offers, i.e. a set of type (OFF). We let EOFF
be the set of all environmental offers and write n for a typical member. We shall discuss
environmental offers more fully after we have introduced some notation.

3.3.2 Notation

Our notation is hased upon the notation for the Timed Failures Model, described in sec
tion 2.2.2. An index of notation appears on pages 214-218.

Our notation for bags follows that of Morgan [MargO]. We write b.e for the uurnber of times
element e occurs in bag b; e E b is true iff b.e > O. We have a number of operations on bags

(bIUbl)·e=bl.eUb~.e (b l 11 b2).e = bl.e n b2.e

(b l - b2)·e = (bl.e - b2.e) U 0 (b1ltl b2).e = bl.e + b!.e

where the operators U and n return the maximum and minimum of their arguments respec
tively. Bag enumerations and bag comprehensions are written within bag bradrets nand ~.

If a particular value of a bound variable occurs more than once in a bag comprehensio!l, then
the corresponding term occurs more than once.

The function times returns the set of times at which events occur during a trace:

tim",,, {t I 'it) "IDI

32 Pl'ObabjJjties a.nd Priorities in Timed CSP

This contrasts with the function I which returns the set of all times in the domain of a trace:

Is == dams

\Ve can define similiU' functions for offers, offer relations. and enviroumental oITers:

I(t,X) ~

Ir; == {t 13, (t,X) E items!:}

timesO == {tI3X=f:.~~ (t,xl E nj
m '" (t I 3 X It, ,) E n)

\Ve will consider only those oITer relatiolls r; and environmental offers n such that Ii; and
I n are inter\'als.

We define begin and end operators which return the times of the first and la'lt events of a
trace:

if times s == {} if times s = {}
ends == {Obegins == {:f(limeS 5) otherwise Sup(I,lmes 5) otherwise

It will also be useful to define the function begin on em"ironmental olfers: it will retuttl tILt>
time at which the environment is first willing to perform an event:

if /.Imes 0 = {}
begm n == {:f(tunes 0) if limes 0 -# {}

The first and last operators return the bags of initial or final events of a non-empty trace:

first s == s(begm ~,) last s == s(cTld s)

The head and fool. operators return the first and last nou-emptyoffers perfonned:

head s;2 (begm. s,first $) fool, s == (end s,last s)

The during operator t returns tht> subtrace of a trace that occurs during some time interval:

"I'" {I. e-; ,(tI I' E I)

We ,an define similar operators on offer relations and euvirOllmental offers:

1;tI;: ~/ wh('re(t,x)~/(t.li::)~tEI/\(t.1J~(t,1/})

n t I '" W, ,I E nit E I)

We USe these to define before (), strictly before (), after (), strictly after () aud at (tl
operator~:

, t '" ,t [0, tl c; t '" c; t 10, tl n,"'ntlo,tj
, t '" ,,[O,t) c; , '" c; t [0, t) n ,"'ntlo,t)
, t == s t [t, 00) c; , '" c; t [t,oc) n t '" n t [Loc)

t='-st(t,ooJ ~ t ;: ~t (t,oo) n t ~ nt (t,oo)
s t t == (to s(t)) c; t' '" c; t (tj nt' '" nt it)

3.3 The semantic model	 33

We define a partial concatenation operator on traces:

Sj S2 = {t.....,. Sj(t) I t E Is}} u {t.....,. S2(t) I t E Is21

if :3 7 lSI U IS2 = [0,7) 1\ '<I tl E Is} ; t2 E IS2 t l < t2

This is only defiued if the time intervals of SI and S2 follow one another without a gap and
without overlap. We define similar operations on offer relations and environmental offers:

~j 1;2 ~ 1;;1 U 1;;2 if:37 Ir; j UII;2=[0,7]I\'<ItjEII;;I;t2 Eli;;2 t l </2

OJ ,112 == OJ un2 if:37 In J Uln2 = [0,7]" '<Ill E IO J ; l2 E I02 l, <t2

We define restriction and hiding operators on offers, traces, and environmental offers:

it, xl x _	
(t,~, E , I 'E XI) it, X) I X it,O' E X 1'1 XI)
{t.-;,itl XltEl>} (t.-;,(t)IXltEbjX '" 'I X '"

n X'" {(t,X XI I (t, ,) E n} nIX {(t,x I X) I it, ,) E a)

We will define a hiding operator on offer relations in section 3.4.11.

The alphabet function E returns the set of (untimed) events from a trace or offer relation, or

the event component from an offer:

1:s = {,131 'E'it)}
1:1;; == {al:3(t,\)Eitems:i;; aEX}

!;(t,X) '" ,
The operators + and - temporally shift their arguments forwards or backwards through
time:

S + t == {t + t' ...-+ s(l.l) I t l
E Is}

s - t == {t ' -	 t...-+ sen III E Is 1\ t' t}

i;;+t == r;' where(t+tl,x) 1;;1 (t+t',W) ¢:>(t',x) I;; (t',W)

i;;-t == r;' where(/'-t,x) 1;;1 (tl-t,ib) ¢:>(l',X) I;; (t',W) 1\ t'

n + I '" {(t' + I, ,) I (I', ,I E n)
n - I '" {(t' - t, ,I I it', ,I E n A I' t)

Recall the definition of the function items which returns the set of all offers of an offer relation:

items!;:::;={wI3v wl;;uVvi;;w}

It is useful to define an operator 09: (TIME) x seq(bag1:),. OFFREL which we will use
for representing offer relations: 10 (Xo, Xl, . .. ,):n-I) represents the offer relation ~, such
that for all times t during I, (t, Xo)::J (t, Xl)::J (t, \2) ::J ... ::J (t, Xn-I).

Y /, iT/ME); d """ibag!;) / '" d ~ r;;

where (t,X) I;; (t',l/J) ¢:> t = t' E II\ 3i,j ° j < #d A dii) ~'" d(jJ = X

34 ProbabiHties and Priorities in Timed CSP

We denote the maximum elements of n under be by u~n:

LJt:::;f} := Ht, X) E n n items ~ I 'til/; (t, lj;) E items ~ nn =} (t, 1/J) !; (t,X)}

Note that ucO is a set of offers, Qne offer for each time during the duration of fl, and so can
be thought of as a trace - namely the trace where at each instant the element of n that is
maximal under s is performed. This will be the trace that a process with offer relation l;;;;
will perform when placed in an environment O.

3.3.3 Possible behaviours

Only certain behaviours (T,l;;;;,.~) are possible. We want tu limit our attention to those that
satisfy a number of healthiness conditions which express some of our intuitions aboot how
a proCl'SS should behave. Prodng that our semantic definitions do satisfy these conditions
will improve our confidence in the model. On the other hand, failure to prov{' the conditions
suggests that something is wrong: when we were first developing the semantic theory, we
experimented with several plausible-looking models, only to find that in theS€ models there
seemed to be no way of d{'fining the constructs of the language in such a way that the
healthinESs conditions were satisfied; thufl the.~e mod{'ls had to be abandoned or refined, until
we eventually hit upon what we believe to be the correct one.

We define the space BEH of possihle hehaviours to he those triples (T, !;;;, s) of type TIME x
OFFREL x TT satisfying the following healthiness condit.ions:

Al.	 1[: = I, = [0, T}

A2.	 Vt T s1 t E items!:;

A3.	 (to < tl 1\ V t E (to, t f) (t, x) E items~) =} (to, X) ~ s 1 ta :;;) s 1 to

A4.	 (ta < I} 1\ Vt E (ta,tJ) (t,l) E items~) =} (tJ,X) E items~

A5.	 (t,t) E items!:; 1\ ¢ <; X =} (I.,1/;) E items~

.1\6.	 v l!J w ~ w' ;;;; 1)' 1\ (v ~ W ~ Wi) n v' = v n v' =} (1' \;<j W :;;) v' Y v \;<j Wi .:;;) ti'}

A7.	 #S(OO

AB.	 3k: ; Ia, ... ,I,.-1 E TINT

10, ... I,.-1 partition lO,T]
f\Vi:O .. k-l;t,t'EI,;X,1/'EbagL (t,X)~(t,W)~(tl,X)!;;;(t',~,)

We discuss the eight healthinesf:i Conditions in turn:

AI.	 If a process is observed up until time T, then the time inter\'als of the trace and offer
relation must be the interval [0, T].

A2.	 it~>rns~ is the set of offers that the process is willing to perform: a process can only
perform offers from this Sf't.

3.3	 The sema.ntic model 35

A3.	 If a bag X is offered throughout some open interval beginning at to, then at to this hag
is offered along with whatever was performed at that time ((to,.\) l:!:J s t to). Further,
the process would have rat.her performed (to, X) I±l s t 10 to what it did perform.

The condition says something about the time interval over which a process is willing
to perform a particular action: namely that this interval is closed on the left. In other
words there is a particular time at which an action is made available.

This condition is necessary to avoid processes such as the one that offers a bag Xduring
(0,1); if the environment offers X from time 0 onwards, then it is unclear when it ,hould
be performed. The axiom says that if X is offered throughout (0,1) then it is offered
at °along with what was performed then.

Th understand why (to, X) I±l s t to is offered stronger than s t to consider the following
situation. Suppose the process P performs a b at time 0 then offers a.n a during (0, 1),
but offers the bag Oa, b~ weaker than Obfr at O. Suppose this process is in an environ_
ment n that is willing to perform na, b~, nbU or Oa~ at time 0, and naG at any time
after O. Then P wiU perform a b at 0, but there will then be no setlsible choice as to
when the a can be performed. This axiom (along with a similar condition on environ
mental offers, presented in section 3.3.4) prevents situations like this from arising: if
a process offers an a during (0,1) after performing a b at time 0, then it should have
offered ~a, bU stronger tban ~bG at 0; in environment n it would have performed On, b~

at time O.

[n chapter 6 we will consider the timed failures that are related to a particular behaviour
in the Prioritized Model. This condition will be used to sbow that the refusal set of a
process is open on the rigbt,

A4.	 If a procl?Ss offers a bag X at all times just before t/, then it also offers X at tl' The
condition also says something about the time interval over which a process is willing to
perform a particular action: namely that the interval is closed on the right. In other
words, the offer is still available at the moment at which it is withdrawn.

AS.	 The offers of a process are subbag dosed: if it is willing to perform some bag x t.hen it
is wilting to perform any subbag of x·

AG.	 To understand this condition it is useful to consider what it means in the prioritized
modeL for a bag of events to be refused. In the classical models of esp, events are
refused if the pror:RSS can not perform them m additiQn to what it does perform. The
ohvious adaptation of this to the prioritized model is that a process refuses a bag of
event.s); at time t if it prefers not to perform X Itl addihon to what it does perform,
that is:

,t ,"'(t,X) l" t t

The condition A6 implies the following:

v lti til ;;2;! v 1\ v lti Wi Il v =9 V l±J W l±J Wi ;;2;! V (.)

which says that if the process can refuse w while performing v, and can refuse tJ,' while
performing v, then it can refuse wand Wi when they are offered together.

36	 Probabilities and PriorjUes in Timed CSP

However, it turns out that this condition is not quite strong enough to prove directly
by structural induction. COILSider an offer relation with

na, 'G ::J n'G::J naG ::J n'G ::J@
Tltis relation sa.tisfies (.), but not A6. Ifwe were to hide e from the above offer relation
we would get an offer relation with

na,'G ::J nG::J naG::J n'G
which fails the condition (.). We therefOre take the stronger condition A6, and de
duce (.) as a consequence.

The condition (v I±J W I±J Wi) n Vi ::=: V n Vi in the statement of A6 says that v is a subset of

v I:!I w l±I Wi that contains as many members of Vi as possible (and possibly events from

ouj.~ide Vi as well). It is worth noting that this condition is always satisfied if Vi £; V.

A7.	 The process can only perform a finite number of events in a finite time. Later we will
show that for each process, there is a finite bouud on the number of events that can be
performed by a given time.

AS. Tbe offer relation changes shape a finite number of times: there is a finite number of
time intervals [0, . . , [1:_1 such that the offer relation does not change shape during
~aLh interval [•. Later we will show that for each process, there is a finite bound on the
number of times that the offer relation can change shape within a given time.

Using these conditions, we can show that the empty bag is always offered:

Theorem 3.3.4: V(7,!;,8) E DEH Vt E !O,r] (t,~~) E items!;.	 Q

Proof: By condition AI, dom s = (0,7]' so for all t E [0,7], sit E items!; by condition A2.
Now ~~ ~ L(8 i t), so by COndition AS we have (t,~~) E .items~. 0

In some Clrcuffistanl;es a process can offer a hag of events weaker than the empty bag~ the
following theorem says that a process can only do this at isolated times rather than throughout
l;ome interval. This is related to our assumption about maximal progress: as we will see later,
offering all empty bag stronger than a non-empty bag wrresponds to hidden events being
available; these hidden events must either be performed or withdrawn immediately, which
Illeans that the empty bag cannot continue to be offered stronger than a non-empty bag
throughout some intervaL

Theore013.3.5: to,ll'\ 10<tJ /\VtE(to,t,j (l,,\)C(I,~~)	 Q

Proof: Suppose for a contradiction that there is some to, t1 and x such that to < t l and

'I'E(',.',) (',x)c(l,@)	 (.)

Pick t~ E (to, t /) such that s t t~= (t~,@); tiuch a t~ exists hy condition A7. Then
Vt E (t~,tl) (1.,\) E items~.sobyconditionA3wehave sit~~(t~,\) :;J.5tt~. But this
contradicts (.) since 8 t to = lt~,~~). 0

3.3 The semantic model

3.3.4 Environmental offers

The hehaviour of a process is obviously dependent upon the environment in which it executes.
In this section we discuss how we model tbe environment. Our representation of the environ
ment will become particularly important in the next chapter when we extend our semantic
model to include probabilistic hehaviour.

We will represent an environment for a process P hy a set of offers: the set of offers that
the environment wiU allow. This set will depend upon the other components of the system,
how Pis comhined with the other components, and the environment for the whole system.

As an example, consider the process P == (a ID b) \ a in parallel with Q == b --+- STOP. with
Q the master, in an environment that allows a b at time O. It should be obvious that this b
will he performed. But in what environment does P execute? It cannot be in an environment
that allows idling, for if it were then it would have performed the a silently. We arc forced
to conclude that P is in an environment that allows a b, hut does not allow idling at time O.

We shall say that a behaviour (7,~,S) is compatible with an environmental offer n (of
type (OFF)) if (T,~, s) could have resulted from the environment offering n.

Definition 3.3.6: The beha...·iour (7,~, s) is compatible with the enviroumental offer n,
written (7,~, s) compat n, if:

1.	 m ~ [O,TI

2. VI stt=u~ntt

3,310,""1,_, E TINT,Xo, .. ,X,_, E (bag~) n ~ U{I. x Xi I; E O.. k-l}

4.	 (VtE(to,") (t,X)En)o>('o,x)l!!d'oEn

where TINT is the set off all time intervals (open, closed or half open). <>

These conditions state that:

1. The duration of the environmental offer is the Same as the duration of the behaviour;

2.	 At all times, the process performs the element of the environmental offer that is maximal
under its offer relation: in other words, the process picks the offer that it prefers;

3.	 The set of offers changes only finitely often. Note that this condition is independent of
the behaviour (7,!;;, s) - we include it here for the sake of convenience;

4.	 If a bag of events X is offered throughout some open time interval beginning at to, then
at to the environment must have offered X along with the events of Il. In other words,
the duration of an offer is closed on the left: offers become available at a particular
instant. This condition is necessary to avoid an environment such as the one that offers
an a during the period (0,1]; if a process that. is willing to perform an a from time 0
onwards is placed in this environment, then there is no sensible choice as to when the
event should be performed.

38 Probabilities and Prioritie; in Timed CSP

Of these, condition 2 is perha.ps the most important. It describes the way that a process
chooses the events it performs. At each instant the environment is willing to perform any
one of a number of bags of events; the process takes its pick from these by choosing the hag
t bat is strongest under its offer relation.

It should be noted that there is no ordering on the environmental offer: it is simply a set of
offers from which a process is able to make its choice.

In general, we will allow the environmental offer to be a function of the observed behaviour.

This .fits in with our intuition of the environment for process P being dependent upon the

other processes in the system: different behaviours of P will cause the other components to

act in different ways, and so will cause different environmental offers in the fnture. In general,

it is enough to allow the environment to depend upon the offer relation of the process. \Vhen

we want to stress that environment n is a function of the offer relation ~, we will write n(~).

\Ve shall insist that an environment cannot depend upon the future behaviour of the process

(Le. it is not clairvoyant):

!;;; t = ~' I => n(~) t = n(~')

We will only be interested in environmental offers that allow the process to act in some
manner, even if it only allows the process to idle. For example, we do not want the process
a ----+ STOP to operate in an environment that allows neither an a nor idling. We will
call the sitnation where the environment does not allow the process to progress at all a time
deadlock. We shall call an environment friendly if it does not allow time deadlock; this can
be formalized as

'i~ 'it end~ 3X (t,x)Eitems!;nf!(l;)

Whatever offer relation the process has, there is some behavionr with this offer relation that
is compatible with the environment.

It turns Ollt that, subject to a very reasonable assumption. every process execntes in a friendly
environment. We thing of a system as being built out of several components. We assume
that the system as a whole is in a friendly environment _. this fits with our intuition of a
fiystem being in an environment provided by an observer who is willing to observe anything. In
producing the semantic definitions for the operators we will ellsure that if a composite process
is in a friendly environment then the subcomponents are also in friendly environments (this
was formally proved in [Low91bJ). Hence by induction on the structure of the syst.em, we
can deduce that every component is in a friendly environment.

\Ve will therefore consider only friendly environments. This is equivalent to taking the fol
lowing definition for the space of environmelltal offers:

Definition 3.3.1:

EOFF ~ {n : OFFREL -+ (OFF) I 'i~ 3T.5' (T,~, s) campal f!(~)}

i)

There is always some behaviour that is compatible with the environmental offer.

39 3.3 The semantic model

3.3.5 The semantic space M TB

We are now ready to define our semantic space. Firstly, we give a name to the space of sets
of prioritized behaviours

STB'" (BEH)

$TB is the space of sets of timed biased behaviours. We define the space M TB (the Model
using Timed, Biased behaviours) to be those sets A of type $TB satisfying a number of
axioms. Intuitively, the set A represents a process that can behave like any of tbe elements
of A. The set A must obey the foUowing axioms:

B1. "IT 0 :3n(T) ("'-,!;,S)EA;=;}#s n(T)

B2. "IT 0 3n(T) (T,!;,S}EA*3k n(T);/o, .. ,lJ.:-l E TINT

10, . . h-J partition [O,TJ

1\ \I i , 0 .. k - I ; t, t' E 1;; X,,p E bag E (t, X) c: (t,,p) ¢> (t', X) I;; (t',,p)

B3.	 (T,(;:;,S) E A A (t,X) E items~;=;} (t,(;:; t,s t (t,X)) E A

B4.31;; (O,I;;,-O")EA

B5. "I(T,(;:;,S) E A; T
1 > T;n: EOFF In= (T,T1];=;}

3(;:;' (;:;1 T=(;:;A(T1,(;:;',S U~/t.,.n((;:;))EA

We discuss e3l:h of these axioms in turn:

B1.	 The number of events that a process can perform in a finite time is uniformll bounded.

B2.	 The number of times at wbich an offer relation can change in a finite time is uniformly
bounded.

B3. A process is able to perform any bag of events that it offers.

B4.	 The process can perform the empty tr3l:e up until time O.

B5.	 Any behaviour can be extended in time; if the process can perform SOIlle behaviour
(T, I;;, s) up until time T, then if it is observed until T', it can have some offer relation 1;.',
which agrees with (;:; until T, and at each instant after T witt perform the element of the
environmental offer that it prefers.

3.3.6 Laws

The following law can be deduced from the ax.ioms. If a process can have a particular
behaviour, then it can perform any prefix of that behaviour;

Theorem 3.3.8;

(T,I;;,s) E A AT' T;=;} (T',I;;
,

T, , T1) E A 1\ (T',~
,

T, , T' (T',UI)) E A

c:>

40 Probabilities and Priorities in Timed CSP

Proof: Suppose (T,~,S) E A /\ ,I T. Then by condition A2 on behaviours, 8 t T E'
itemsC;;;. and by theorem 3.3.4 (r\@) E items~, so by axiom B3 we have

(Tt,~ ,',8 i' siT')EA and (r',l; ,I,S " (T',{]~))EA

as required. o

3.3.7 Semantic functions

In order to give a semantics to variables we define a space ENV of en", ironments 01' variable
bindings, which contains all functions from VAR, the set of variables, to sel,,;; of behaviours:

ENV ~ VAR --t 8TB

'Ve will write p X for the value assigned to variable X in environment p.

We shall define a function ABT BTCSP -+ EN V --t STB such that ABT P p gives the

set of possible behaviours of process P given variable binding p. We can give semantics to

syntactic substitution as follows:

ABT PIQI X] p ~ ABT P p[A BT Q piX]

where p[Y / Xl is the environment obt.ained from p by setting X to Y:

if Z=X
p[YIXjZ"!Y\p Z otherwise

A BTCSP process is a BTCSP term with no free variables. Its semantics will be independent
of tbe environment, and so in this case it is sensible to omit reference to the environment.

In the following section we give definitions for ABT for eaeh of the operators; in moot cases
the crux of the definition will be the explanation of how the offer relation of a composite
process result.s from the offer relations of its subcomponents. The definitions were proved
sound (i.e. they respect the axioms) in [Low91bJ.

'Ve will state a number of laws that can be shown to hold of our proces!'>es, and also show
\vllieh laws do not hold. Most of th(' law5 were proved sound in [Lov.·91a].

3.4 Semantic definitions

Throughout this sect.ion we will take Ap == ABr P p, AQ =- ABT Q P

3.4.1 STOP

The proces.;; STOP always perform~ the empty trace ant! offers only the empty bag of events:

AnT STOP p ~ {(T, [O,T] 0 (@),-<>-) I T E TIME}

3.4 Semantic definitjons

3.4.2 WAlT'

The process WAIT t behaves as follows:

•	 for observations ending hefore t, nothing is performed and only the empty bag of events
is offered;

•	 if the environment does not offer at or after t then it performs the empty trace and
offers from t onwards;

•	 if is offered by the environment at or after t then it is immediately performed: will
be offered from time t until it is performed.

This gives the following definition:

ART WAIT' pOO{(T,[0,TJ0(ijal,-<~)IT<I}

U{IT,[0,1)0(ijal [t,TJ0(ij a,@I,-<'IIT t}

U{IT,[0,'l01@) [I,t'10(ij Hal «'.TJ01~al,-«t',)~)I

t /' T}

3.4.3 SKIP

SKIP is equivalent to WAIT 0, so we have the following definition:

ART SKIP pOO{IT,[0,TI0(~ un),-<,))

U{IT, [0, 'i 0 (ij unl II.T! 0 (@),-<(I. H I I T)

3.4.4 Variables

We give semantics to the clause X in the obviolli way:

A BT X P ='P X

3.4.5 Prefixing

The process a -E..., P should offer an a until it is performed, and then act like P. In order for
this to fit with our intuition of causality, we insist that P is unable to perform any events at
time O.

AST a -".., P p 3 {(T, [0, TJ 0 (~aMa), -<~))
U{(T, [0, tl0 I~aa,@) ~p +t, (I, a) 'p +t) I

IT-I,00(~al ~p,-<~ 'p)EApAT I}

We define the general prefix operator by a ~ P =. a ~ WAIT t ;P.

42 Proba.bilities and Priorities in Timed CSP

3.4.6 External choice

Consider the process P [] Q. We want to derive a definition for the offer relation of P [] Q in
terms (If the offer relations of P and Q. We begin hy considering an example. Suppose P has
offer rela.tion !;;;p and Q has offer relation !;;;Q' with ~aU :JP@ :::Jp ~bU and ~cU:JQ ~aU:::JQ

nG :JQ ~4 Then'

•	 If the environment offers ~aU then P will perform it;

•	 If the ~nvironment does not offer ~aU, then P may idle and Q may perform ~cU, ~U

or ~dU. Note that even if the environment doesn't allow idling at some time t - for
example if it offers only ~cU or ~dU - then P may idle at. time t while Q performs ~cU

OJ~dU. Note also that Q cannot perform~aU since if the environment offers ~aU then
it would be performed by P.

•	 Hnone of these are possible, then P will p~rform ~bU.

Hence p[] Q has an offer relation with ~aU:::J ~cU:J ~U:J ~dU:::J ~bU·

In general, the offer relation of P [] Q is formed by

1.	 taking P's offer relation (~an :::J ~n :::J ~bU in our example);

2.	 replacing the occurrence of ~U with Q's offer relation (to get ~aU :::J ~cU:::J ~aU ::::J m:::J
nd~ :::J ~ bU in OUI cxample);

3.	 for each bag that occurs twice, removing the lower copy (to get flaU :::J ~cU :::J nu :::J

ndl:J nbl)·

In general, P [] Q will perform the offer w if the environment offen; wand

•	 P would rather perform w than idle and the environment offen; nothing that P prefers
to w;

•	 P chooses to idle, Q offers 1IJ and the environment offers nothing that Q prefers to w;
or

•	 Q doesn't offer w, P would rather idle than perform w hnt the environment does not
allow idling and does not offer anything that Q could perform nor anything that P
prefers to w.

The process should offer w more strongly than v if

•	 P prefers w to idling and v is eithcr offered by Q but not P, or offcred by Pless
strongly than Wj

•	 P prefers neither v nor W to idling, Q offers wand either

- Q prefers w to Vj or

- v is offered by P hnt not Q:

or

3.4 Semantic de.finitions	 43

•	 P offers 11 weaker than w. but would rather idle, and Q offers neither 11 or w.

Hence if P has offer relation l;p and Q has offer relation ~Q then PlD Q bas offer relation
I;;;p lD I;;;Q, where the operator [J: OFFREL x OFFREL ---t OFFREL is defined by

Definition 3.4..1 (left-biased choice composition or offer relations) For all offers t'

and W, it t := II) == lw then

v(l;;;p [JI;;;Q)w ~	 w :Jp (t,@) /\ (I) l;p W V 11 E itemsl;;;Q \ items I;;;p)

V v, W 1Jp (t,@) /\ w E itemsl;;;Q /\ (v I;;;;Q W V 11 E itemsl;;;p \ items.l;;;;Q)

V 11 ~p W Cp (t,~G) /\ V,W 1- items~Q

f)

Note that items(l;;;;p[)~Q) = items!;p Uitems I;;;Q. Note also that the operator is still defined
when the durations of ~p and ~Q are different: for example if t.he relation I;;;p is empty after
time t, but ~Q extends beyond this time, then after time t the offer relation ~r[]l;Q is just
the same as !;Q.

Haviug explained how the offer relat.ion of P [J Q is derived from the offer relation.s of P
and Q, we can now derive the semantic definition of the process. The pro('..ess P lD Q can

•	 perform the empty trace if both P and Q can;

•	 perform a non empty trace s if P can perform sand Q can perform the empt)' trace up
until time t = begin Si if the bag X performed at time t is below the empty bag in P's
offer relation, then Q must also be able to reject it (or else Q would have performed X)i
i.e. stt:Jp (t,UG}VsjtrJ-itemsI;;;;Q; or

•	 perform a non empty trace S if Q can perform it and P can perform the empty trace
up until time begin sand P prefers idling to the initial events of s, i.e. s j t ;i1p (t,{]G).

This gives the following definition:

A8T PlDQ po=,

{(,,~p[)!;Q'-<>-) I (I,!;p,-<>-) E Ap /\ (T'~Q'-<>-) E AQ}

U{(,,!;P IT] ~Q' 5) lsi- -<>- /\ begin s = t /\ (I, ~p, s) E Ap

'("<;;Q'~~) E AQ , (d I c:Jp (I,UI) v, t' ¢ ite""~Q)}

U{(" I;;;p [] ~Q' 5) I s i= -<>- /\ begin S = t /\ (t, ~p, -<>-) E A p

'(T'~Q") E AQ' ,t I 1Jp (t,um
We define POI Q by POI Q ~ Q [J P.

We have a number of laws for tbe choice operators:

Law 3.4.2 (Associativity or external choice)

(P[]Q)[]R~P[](Q[]R) and (P[]Q)[]R~P[](Q[]R)

6.

44 ProbabjJjties and Priorities in Timed CSP

Law 3.4.3 (STOP is an identity of external choice)

P[)STOP = P and STOP[)P = P

6

Note 3.4.4; The following laws do not hold:

p[] (Q [DR) ~ (P[] Q)[] R; P [] (Q [) R) ~ (P [D Q) [) R

Let P = a ----+ STOP, Q =- b ----+ STOP, R == c ----+ STOP. Then P [] (Q [] R) and
(P ED Qj [] R win perform an (\ in preference to a c, whereas (P [] Q) CD Rand P ED (Q lD R)
will perform a c in preference to an a. 0

Note 3.4.5: The external choice operator is not idempotent iu this model. Let P =- a ---1

STOP n b -----1 STOP. Then P lD P can have an offer relation with (0, ~bP) :J (0, flap) :::J

(O,~~), IIthereas P cannot have this offer relation. 0

3.4.1 Parallel composition

We conaider now the parallel composition of two processes. We start by considering the
left-biased parameterized parallel composition, P xift Y Q. The offer relation of P x4t- Y Q is
derived From the offer relations of P and Q. P x,* Y Q will offer w if

• P offers w X;

• Q offers w Y; and

• all the events of w are in either X or Y.

w is offered more strongly than v if

• P offers w X more strongly than v X; or

• w X == v X and Q offers wYmore strongly than v Y.

Hence if P has offer relatiou r;p and Q has offer relation ~Q then the offer relation is
r;p x~ Y I;Q, where the function X~Y : OFFREL x OFFREL ----;I OFFREL is defined by

Definition 3.4.6 (Left-biased parallel composition of offer relations) For all offers
v and w,

v(t;p X~Y r;Q)w ¢:}

(v XCpw XVv X==w Xl\v Y r;Q III Y)

1\ v X.w X E itemsr;p 1\ lJ Y.w Y E iteIIlS!;.Q 1\ I;lJ,!:W <; X u Y

o

3.4 Semantic definitions

Note that items(r;pX4\-Y~Q)= {w I W X E itemst;;;:p II w Y E itemst;;;:Q II Ew 0;;; XUY}.

P X 4ft Y Q will perform trace s if

• The alphabet of s is contained in X U Y;

• P can perform s X; and

• Q can perform s Y.

Hence, we have the following definition for parallel composition:

ART P X4ft Y Q P So

{(r, t;;;:p X4t- Y t;;;:Q, s) I (T, t;;;:p, s X) E A p II (T. t;;;:Q, s Y) E AQ II Es 0;;; Xu Y}

We use tbis definition to define tbe other parallel operators:

P xI> Y Q =Q Y4I- X P P4I- Q =P "41-" Q P-II+Q=p"-II+"Q

This gives the following

ART P<H- Q p ~ {(T, C;p41- C;O, ,) I(T, C;p, ,) E Ap A (T, C;O' ,) E Aol

where the parallel composition of offers is defined by

1I(t;;;:p 4t- t;;;:Q}w <=> II t;;;:p w II v, wE items t;;;:Q

Note that items([;;p 4t- t;;;:Q) = items t;;;:p n itemst;;;:Q.

A number of laws bold for the parallel operators:

Law 3.4.7 (Associativity of parallel composition) The following laws bold:

X p 4t-
YUZ (Q Y4t-

z R) (pX4I-Y Q) XUY4I- z R
pX-II+ YUZ (Q Y-ll+ z R) (px-II+YQ)xUY1I>zR

P -11+ (Q4I- R) (P -11+ QI4I- R

P4I- (Q4I- R) P4I- (Q 11> R)

6,

Law 3.4.8 (STOP is a zero of parallel composition) P 41- STOP STOP and P *'
STOP ~ STOP. 6,

Law 3.4.9 (Communication) The following laws for communication hold:

(a ----+ P)4I- (a ----+ Q) ~ a ----+ (P4I- Q) (a ----+ P) 11> (a ----+ Q) ~ a -+ IP -l> Q)

(a ----+ P)4I- (b ----+ Q) ~ STOP (a ----+ P) 11> (b ----+ Q) ~ STOP

/:;

46 Probabilities and Priorities in Timed CSP

Note 3.4.10; We do not haw tbe following laws;

pX1jrYUZ(QYt/t- Z R) (pX-II+ Y Q)XUY<\I-z R

p X t/t-YU2 (Q Yt/t-z R) p xift YuZ {Q Y*z R)

Let Pi: 0 ---4 STOP, Q co b ---4 STOP, Reo 0 ---4 STOP, X co {o}, yeo {b}, Z" {oj.
Then:

•	 pl("* YuZ (Q Yt/t-z R) prefers a c to an a, whereas (P x"* Y Q) XuY t/t-z R prefers an a

to a c;

•	 pXt/t-YUZ (Q Yt/t-z R) prefers a b to a c, whereas P xift Yu2 (Q Y i\rz R) prefers a c
to a b.

o

Note 3.4.11; We do not have the law P t/t- (Q *R) = (P t/t- Q) *R. Let P ~ a [] b,
Q == a [lb, R == a OJ b. Then pt/t- (Q"* R) prefers an a to a b, whereas (Pt/t- QJ"* R prefers
a b to an a. 0

3.4.8 InterJeaving

We want t.o derive a definition for the offer relation of P f-- Q in terms of the offer relations
of P and Q. We begin by considering the question

If pf-- Q offers w, then what do P and Q offer?

It is dear that P must offer some suboffer of w, and Q must offer the rest of ttl. Let wp be
the suboffer of W tbat P offers strongest subject to the condition that Q can perform the rest
of w. Let. UlQ be the rest of w. We make the assumption that p f---- Q offering w corresponds
to P offering 1/Jp and Q offering wQ: since P is the master, it cbooses the suboffer of w
that it prefers. We define an operator tc which returns the subset of its argument that-p,l;;;Q
is offered ~trongest by !;;;p subject to the condition tbat the rest of thp argument is offered
by ~Q'

(3wp E itemsbP,wQ E items~Q w ~ wpl±lwQ) =>
t c c w = U!;;;p{w~ E items~p I wp t; W 1\ W - w~ E iteID5!;Q}

-P,-Q

It will be useful to define an operator that returns the rest of the offer:

(3 Wp Eo item.s~p, WQ E items I,;;;Q W = Wp I±I wQ) => -L w~w-'" w
'V!;;;p,!;;;Q T!;;;p'!;;;Q

Let Wp and wQ be tht> suboffers of w performed hy P and Q respectively, i.e. tc c wand
-P'-Q

..1. w. Let tip and VQ be I he corresponding suboffers of v. Thefl P f---- Qoffers tv more
'V!;;; P '!;;;Q
~trongly than v if

3.4 Semantic definitions 47

• P offers wp strictly stronger than vp, 0,

• wp = vp and Q offers wQ stronger than vQ.

Hence, if P and Q have offer relations C;:p and !;Q, the offer relation for P f-- Q is C;:p+-- !;;;Q
where +-- is defined by

Definition 3.4.12 (Interleaving of offer relations) For all offers v and w, if

3t,~ E items(;p, vQ E items!;Q U= vp ttl vQ
1\3wp Eitems!;;;p,wQEitems!;"Q w=wpttlWQ

then
U(!;;;p +-- ~Q)w.;:} up Cp Wp V up = wp 1\ vQ!;Q wQ

wbere

W Wtlp:= 4-c e U vQ = We e v Wp=4-e e wQ=We e
_P'-Q _P,_Q -P,-Q _P,_Q

<>
Note that items(l;:p +-- !;;;;Q) = {wp ttl wQ I wp E items!;p 1\ wQ E items (;Q}.

P +-- Q can perform trace s if, at all times t, P can perform some subbag of 8 t t and Q
can perform the rest of s t t. In particular, P performs that subbag of ~. i t that it offers
strongest subject to the condition that Q can perform the Test. of sit. \Ve e;..:tend the

4-e e and Wee operators to traces:
-P'-Q _P,_Q

+e e '~(t>-++e e('tt)II.El» +e e '~{'"'+e e('tt)I'EI,)-P,-Q _P,_Q _P,_Q _P'_Q

\Ve then have the following definition:

ABTP'-Qp~{(T'[;P'-[;Q,'))I(T,[;p'+e e ,)EApA(T,[;Q'+e e')EAQ)
-P,-Q _P'_Q

The right biased interleave operator is defined by P --Jo Q ~ Q +-- P.

We have a number of laws for int.erleaving:

Law 3.4.13 (Associativity of interleaving)

P.- (Q +- H) = (P.- Q).- Hand P -> (Q -> R) = (P -> Q) -; R

'"
Law 3.4.14 (STOP is an identity of interleaving)

P +-- STOP = P and P --Jo STOP = P

'"
Note 3.4.15: We do not have the following laws:

P.- (Q -> H) = (P.- Q) -> H P -> (Q.- HI = (P -> Q) f- R

Let P == a ---+ STOP, Q == b ---+ STOP, R == c ---+ STOP. Tben P +-- (Q -----r R) and
(P ---+ Q) f-- R prefer a to c whereas (P +-- Q) --Jo R and P --Jo (Q f----- R) prefer c t.o a.

o

48 Probabilities and Priorities in Timed OSP

3.4.9 Communicating parallel

The process P ~ Q executes the processes P and Q in parallel, synchronising on events
from C, and interleaving on all other events. It can be defined by

Bpit Q '" '(lIP) A<tI- '(QII

where

c(u) ::= a if a E C
if a E C if a E C

'I,) '" { a '(a) '" { a c({.a) =a if, ¢ G
I., ot,herwise La otherwise

c(r.a) ::= a if a ¢ C

amI
A '" I(I: - G) U G B '" 'II: - G) U G

aud we assume l(I:) n C = r(~) n C = D.
In order to give a semantic definition to this operator, we first consider what offers P and Q
perform when P ~ Q performs some offer v. By analogy with the definition of interleaving,

we claim that P and Q perform +e e v and We v, respectively, where the operators
c-P'-Q c-P,f;.Q

+e:: e and We:: e:: are defiued by
c-p'-Q c-P,-Q

Definition 3.4,16: For all offers v and w, if

3vp E iterD.B!;;;p; vQ E itemsl,;;;:Q VI' C = Vo C = v C 1\ vpl:':l (vQ \ C) = tJ

then

U~p(vp <; v I VI' C = tJ C 1\ 11 - (VI' \	 C) E iternskO}'" " T~p·r;q

..L " ~ "-(4'c c ")\G\j!e::p,r;Q C_p,_Qc

</

P perform, a snbbag of v that. contains aU of v C, and such that Q can perform the rest of v
along with v C; subject t.o these conditions, it performs the Eiubbag of v that is maximal
with respect to its offer relation. Q performs all of v except for those ewnts outside the
~ynchronisation set that are performed by P.

If P and Q have offer relations G p and kO then P ~ Q will ha~-e offer relation ~p ~ !;;;Q,
defined by

Definition 3.4.17 (Sharing composition of offer relations) For all offers v and IV, if

3v~,wp E items!;;;p; vQ,wQ E jtems~Q	 vp C = vQ C = v C
I\wp C=wQ C= w C

1\ vp ~ (vQ \ C) = v

1\ wp~(wQ \ C) = w

3.4 Semantic definitions

then
v(!;;;P1t" ~o)W ¢} Up Cp IUp V Vp = Wp 1\ Vq r;;O WQ

where

Vp = tCP'~QV Wp = tcp.l;;;OW VQ = WCP'~QlI IUQ = WCP'~OW c- c- c- c

<>

~p 1t" i;Q is the lexicographical ordering on the corresponding projections of its arguments.

We can now give the semantics for the ~ operator.

ABT pt!t-Q p={(T,i;pt!t-!:Q's) I (T,i;p,tc c sjEApl\(T,i;Q'W c s)EAQ}cc C c _P'-Q C -P,_O

where the t _ c and tee operators are extended to traces by
c'=-P._Q c-P,-Q

'!'c c ,={t"",,!,o c('ttlltEb} +0 c ,=(t>->+o 0('ttll"/'}
c-P,-Q c-P'-o c-P'-o c-P'-o

We can define a right- biased communicating parallel operator by

P*Q=Q<II-Pc c

Note that if EP ;;: A and EQ ~ B for some sets A and B such that A n B = C then
pit Q ~ P A<II- B Q and P -jIt Q ~ P A*B Q.

3.4.10 Nondeterministic choice

The process P n Q either acts like P or like Q. Therefore the set of behaviours of P n Q is
the union of the behaviours of P and Q;

A BT P n Q p == A BT P p U A BT Q P

The following laws hold for the nondeterministic cboice operator;

Law 3.4.18 (Commutati.vity of nondeterministic choice) P n Q = Q n P. 6.

Law 3.4.19 (Idempotence of nondeterministic choice) P n P = P. 6.

Law 3.4.20 (Associativity of nondeterministic choice) P n (Q n R) = (P n Q) n R.
6

50 ProbabiJjties and Pr-iorities in Timed C$P

Law 3.4.21 (Distributivity) All operators excPpt recursion distribute through nondeter
ministic choice:

Prefixing:	 a ~ (P n QJ = a ~ P n a ~ Q

External choice;	 P [] (Q n R) = P [] Q n P [] R

IP n Q) [] R ~ P [] R n Q [] R

Parallel composition:	 pXit- Y (Q n R);;: pXit- Y Q n P x4t- Y R

IP n Q) X;lfY R ~ pX<ifY R n Q x<ifY R

Interleaving:	 P '!-- (Q n R) = P +-- Q n P +-- R

(P n Q) +-- R = P 0(-- R n Q 0(-- R

Hiding,	 IP C' Q) \ X ~ P \ X n Q \ X

Renaming'	 !Ipn Q) ~!(P) n!IQ)

Sequential composition:	 (P n Qj R = P R n Q R

P IQnR)~p Qnp R

and similar laws for the right biased operators.	 [',

Infinite nondeterministic choice

The semantic definition for the infinite nondeterministic choi~ operator is similar:

ART 'EI P, p =- U{ABT P, pit E l}

As in the Timed Failures Model, we need a restriction upon the sets of processes over which
the choice can Le made.

Definition 3.4.22: The set {P, I tEl} is l.llllJorm!y bounded if

VT 0 :3n(1') VtEI;pEENV (T,~,')EABTP,P=r-#!l n(T)

and

VT 0 :3n(T) V1E[;pEENV

(T.!:,!l) EABT P; p~:3k n(T);Jo, ... ,Jl:_J: TINT

Jf), ... ,Ji<_J partit.ion[O,1']

/\VJ:O .. k-l:t.t';J};x,¥';bagI: {t,X)~(L~)~(t',X)!:(t',ljJ)

<)

Thesf" two conditions correspond to .axioms ill and B2 of tbe semantic space. The first
condition states that there is a uniform bonnd on the number of events that any of the
processes can perform within time T; the second condition states that there is a uniform
bound 011 the number of times that the offf"r relation can change shape within time T.

3.4 Semantic definitions

The reader should be aware that this method does not always effectively model nondeter
minism that does not manifest itself in a finite amount of time. For example, consider the
process Pn that can perform n as:

Po'" STOP Pn+1 == a ~ Pn

Let P be tbe process that chooses nondeterministically between the Pn :

P== Pn
"eN

P can perform any finite nnmber of as. We would expect this to be different from the
process pi that can perform an arbitrary number of as:

pi == (a ~ P') n STOP

However, our semantics gives tbe same value to both of these processes.

3.4.11 Hiding

In order to define the operation of hiding on processes we must first define hiding on offer
relations. A bag of events w being offered by P \ X corresponds to P offering a bag of events
Wi sucb that w' \ X = w. In general, P may be able to perform several bags Wi such that
Wi \ X = w. We make the assumption that it performs the one that is maximal with respect
to its offer relation. This can be thought of as a sort of maximal progress assumption in that
the process performs as many hidden e....ents as it wants.

We want an operator that, given an offer of P \ X, returns tbe corresponding offer of P. It
will turn out that our semantic definition of renaming will be very similar to that for hiding,
so we define an operator that can be used in both cases. The operator itt : OFF-tt OFF is
such that it~ w is the ~-strongest offer w' such that gw l = w:

l l3w l E items!;; gw = w 1lfw = UdWI E items!;; I gw = w}""
Hence, w being offered by P \ X corresponds to itc'x w being offered by P. The operator

itc'x can be though of as a sort of "inverse hiding" ~perator in the sense that _ \ X 0il"c'x =

id~ The offer it~'x w is the !;;-maximal member of (_ \ X)-l (w).

P \ X will prefer w to v if P prefers itc\X w to itc\X v. Hence we have tbe following definition
for hiding on offer relations: -

Definition 3.4.23 (Hiding on offer relations) For all offers v and w, if

3v',w' Eitems!;; v' \X = v/\ w'\X = w

then
v(!;; \ X)w ¢} it~\X v !;; it~\X w

<>

52 ProbabjJjties and Priorities in Timed OS?

Note tbal items(~ \ X) = {v \ X I v E items~}.

An offer relation ~ of P \ X must have resulted from an offer relation ~' of P, such that

~t \ X =:0 1;. Then for P \ X to perform trace s, P must perform trace itcY s where the it
operator is defined on traces by

lI~d = {t ~ lI~l(s t nit E is}

This exists only jf for all t there is some v E items [;;;1 such tbat v \ X = s t t: this is
equivalent to saying Vt s t t E items 1;. Thus we have the following definition:

A8T P\X p:::O{(r.r;,s)IVt stt Eitcms!;!\ 3l;;:/ r;1\x=r;/\(T,r;/,lr~)XS)EAp}

The following laws relate to the hiding operator:

Law 3.4,24 (General laws for hiding) P \ {} = P and (F \ X) \ y = p \ (X u y),

'"

Law 3.4.25 (Distribution of hiding) Tbe followiug two laws hold:

(a --!...t P) \ X {
WAIT'; IP \ XI

a ~ (P \ X)

if a E X

if a rf: X

IP A<\f" Q) \ X IP \ Xl A<\fB IQ \ Xl if X ~ A \ BuB \ A

'"
3.4.12 RenaIIling

The definition of renaming is. in many ways, very similar to the definition of hiding. To define
renaming on processes, we must first define renaming on offer relations. The process g(P)
performing t! corresponds to P performing ltt l' (assuming of course that there is some
1/ E items~ such that g,l = v). Hence tbe offer relation renaming operator, which \W" write
as 8, has the following definition:

Definition 3.4.26 (Renaming of offer relations) For all offers v and 10, if

:3 v', Wi E items [;;; gv' = V 1\ gil)' = III

t.hen

v(g 0 ~)w ¢:> 1t~ 11 ~ lt~ IV

()

3.4 Semantic definitions	 53

Note that item.s(g '3 ~) = {gt! I t! E items ~}. We shall sometimes choose to write 9 0 ~

as g~.

A behaviour (T,~, 5) of g(P) must correspond to a behaviour (T, ~/, it~, s) of P, such that
90 r;;' = \';;. This is well defined only if V t s t t E items!;. Hence we bave the following
defio..ition:

ABT9(P)P={(T,~,.s)IVt sttEitem.s\';;1\3\';;/ g0\';;'=~I\(T,~',it~'S)EAp}

For bijective 9 , we have

ABT ,IP) p ~ {(T" 0 <;",) I (T, <;,') E Ap}

Where in this case 901;= {(gtJ.gw) I t!~w}.

The following laws bold for the renamiug operator:

Law 3.4.27 (Successive renaming) f(g(P)J = (J g)(P). !',

Law 3.4.28 (Distribution of renaming) g(o ---+ P) = ga ------jo g(P). !',

Law 3.4.29 (Distribution of renamiug by bijective functions) If 9 is a bijection then
the following distribution laws hold:

,(P X<jfY Q) ,(P) 'X<jf'Y ,(Q)

9(pX FX) P Y ,(F(,-I Y))

,(P \ X) ,(P) \ ,X

,(P [J Q) ,(Pi [J ,(Q)

,(P <- Q) ,(P) <- ,(Q)

!',

3.4.13 Sequential composition

A behaviour (T, ~, 5) of P Q can come about in three ways:

•	 a behaviour of P that does not terminate before time T;

•	 a behaviour of P that terminates between times T - 0 and T; or

•	 a behaviOllr of P that terminates successfully before time T - 0 followed by a beb.Rviour
of Q.

54 ProbabiJjties and Priorities in Timed CS?

~ote that we have to hide the event from any behaviour of P in order t.o make sure that
it happens (silently) as soon &<; possible. "\\'(' have the following definition:

A Br P Q p ==
{(T.~p,5p)IVt spi/Eitemsl;"

/\ 3r:~ i;'p \ = I;p f\ (T,r:'P,lIc)'" .~p) E AI' II ~ I:(lIc}/ spJ}
-p -I'

Uj(,.~p «.rI0(~I).'p) I
I T<t+6/1Vt ' .~ptl'EitE'm.'i(~p (t,T]@(~~))

!\3~/> r:~\ =l;;;p!l(t.l;;;p,lIc)v'8p)EAp/\begm((1I'c)'/·~p))=t}
-p -I'

l'{(T, r;:p (t, t + 0) & (~~) l;Q + t + 0, Sp sQ + t + 0) I
I T - 6 II V t' S1' t t' E items r;;;;p
!l3r;:'p l;'p \ = 1;1' II (t,r;;;;lp,lIc;'" sp) E Ap /\ f>egm((i'lc;'" .~p)) = I.

-I' -f'

II (T - (t + 6),l;;;Q"~Q) E A Q }

\Ve have the following laws for sequential composition

Law 3.4.30 (Associativity of sequeutial composition) (P Q) R = P (Q R) and
(a -+ P) Q ~ a -+ IP Q) 6,

Law 3.4.31 (STOP is a lert zero of sequential composition) STOP P = STOP.
6,

3.4.14 Delay

Consider a behaviour (7.~, s) of WAlT t; P:

• if t > 7 then the process can perform and offer nothing;

• if t 7 then the proces:l can act like P. t('mporally shifted by t.

This gives the following definition:

ABT WAIT', P p'" {(r. [0.rI8 W~).nl) I, > r}
u{(7.[O,t)e)({I~) f;;;;+f,-<'>- s+f)lt 7/\(7-t,f;;;;,s)EAp}

The foJIowmg laws hold:

Law 3.4.32 (Effect of SKIP) SKIP P = WAIT,i; P. 6,

La.w 3.4.:13 (Successive delays) WAIT t: WAIT t' : P = WAIT I. + 1/ ; P. 6,

3.4 Semantic de.finitions	 55

3.4.15 Timeout

In [Sch9D], Schneider defines a time-out operator by

P Q ~ (P WAIT t; trig ---+ QJ \ tng

where trig is an event not in the alphabets of P or Q. This begins by acting like P; if no
visible event has occurred by time t thrn the process times out by performing the event trig
silently, and after a delay of length 0 acts like Q. If P is able to perform its first visible event
preci~ely at time t, tben it is nondeterministic whether or not the timeout occurs.

We will define our timeout operator hy refining the external choice in the process definition
to either a left- or right-biased choice. We consider the effects of these two different choices.

•]f we choose a left-biased choice, then if the process P is willing to do its first event
precisely at time I, then that event is offered stronger than the silent trig, and so will
occur if the environment is willing to perform it.

•]f we choose a right-biased choice, then if the process P is willing to do its first event
precisely at time t, then that event is offered weaker than the silent trig, and so will
occur only if the environment is not witting to idle.

The first choice seems to be more useful in practice. The timeout operator is often used
where the process is initially waiting for an event to be offered by the environment; if the
event is not offered within a certain time then it times out and acts accordingly. It seems
sensible to give the environment as much chance as possible to respond; we therefore specify ,
that P Q will be willing to accept the events of P at all times up to and including t.

The first choice also produces the simpler Operator: it turns out that with this choice the ,
offer relation of P Q at time t is simply the offer relation of P at that time; if we were to
make the second choice then the offer relation would be somewhat more complicated.

We therefore have the following definition:

Definition 3.4.34 (Timeout) The process P Q is defined by

P I Q == (P ID WAIT t; trig --+ Q) \ trig

where trig is an event not in the alphabets of P and Q.	 o
We can use this definition to give a semantic equation for the timeout operator.

ABT P Q P =	 {(7,!;, s) I (7 I v begin s t) A (T,!;, .,) E Ap}

U{(T,!;; (I,TJ0 (UI,-<>-) 11 < T < 1 +0 A fI,!;;,-<>-) EAp]

U{(T,!;;p (1,I+o)0(U) ~O+I+o,-<>- '0+1+011

7 t+.5A (t,!;p,-<>-) E ApA (T -t --J,!;;;q,SQ) EA Q }

A hehaviour of P Q can either he:

• a behaviour of P that eitner ends before time t or wh~re a visible event has Qccurred
by time t;

56 Probabilities and Priorities in Timed CSP

•	 a behaviour of P in wbi('h no visible events arp observed up until time t, followed bya
short period during wbi,h mntral is being transferred to Q; Of'

•	 a behaviour of P in which no visib]p pvents are observed up until time I, followed by a
snort delay, followed by a. behaviour of Q.

3.4.16 Timed transfer

The process P I Q acts like P up until time t, at whicb time control is passed to Q (after

a short delay) regardless of thE;> progress made by P This differs slighLly from the definition<

given ill [Srh90J, where control was not transferred to Q if P terminated normally before
time t. The semantic definition is a.<; follows .

.ABT P j Q p';: {(T,~.S) ITt 1\ (T,~,S) E Ap}

U{(r,~ (l,r]0(ijll,' ~~III<'<I+OI\(I,~,'IEAp)

U{(" ~p (I, t + ojoHijl) ~Q + I + 0, 'p ~>- 'Q + I + 01 I
T t+81\(t,[;::p.sp)EApl\(T-t-O'~Q,sQ)EAQ}

A behaviour of P Q can be either:

•	 a behaviour of P that ends no later than t;

•	 a behaviour of P up to time t, followed by a short delay during which rontrol is being
tra.usfered to Q; or

•	 a behaviour of P up to time t, followed by a short delay, followed by a behaviour of Q

starting at time t + o.

3.4.17 Interrupts

The process P 'Y Q initially acts like P except it is ah....ays willing to perform the int.errupt

event t. If an j ~ccurs, control is passed to tbe interrupt handler Q, after a delay of length O.

We assume that P cannot perform the event i-it cannot interrupt itself,

Before tht ewnt i occurs, the process should always offer i; it should be willing to perform

an ~ m addItion to whatever actions P offers. For example, if P has an offer relation ~ with
(I, ~ b~) ::J (t, ~ a~) :J (t,~~), then P y Q should have an offer relation ~/ with

(I,ij;,bll CJ' (I,ij"al) CJ' (I,N) CJ' (l,ijbUI CJ' (I,ijall CJ' (l,ijll

In genf'ral. if P has offer relation ~, then before the interrupt occurs P V Q should have

offer relatiDn ~;B i given by ,

~ Ell, =; ~ ---> (l~ @(N,ijI))

3.4 Semantic definitions	 57

The semantic definition of P '? Q is

ABT P YQ p ==
{(7,I;EB i,s) I (7,I;,s) E Ap /\ j fJ. Es}
U{(T,[;E!)i (/,']0(@)" -«/,.)>-)1' T<I+oAi¢E,A(/,[;,')EAp}

U{(T, [;p Ell i (I, 1+ 0) (') (lli [;0 + I + 0, 'p -«I, ,)>- '0 + I + 0) I
7 t +0 /\ if/. !:sp /\(t,r;;;p,.~p) E Ap /\ (7- t-O'!;;;Q,SQ) E AQ}

A behaviour of P? Q can be either:

•	 a hehaviour of P where an additional ~ is offered at all times, and no ~ occurs:

•	 a hehaviour of P where an additional i is offered at all times and an i first occurs at
time t, followed by a sbort pause during which control is being transferred to Q; or

•	 a behaviour of P where an additional ~ is offered at all times and an I first occurs at.
time t, followed by a behaviour of Q after a delay of length 6.

3.4.18 Recursion

In order to define recursion, we first define a metric on the space MTB. We do tills by con
sidering the first time at which two processes may be distinguished. We define an opera.tor
on behaviour sets which gives tbe behaviour of a process up to a certain time.

A I=((T,[;,,)EAIT I)

We define the metric on M TB by

d(A p ,AO)=inf((2-' lAp '~AO I}U{1})

The semantics of a BTCSP term P is a function of the free variables appearing in the
definition of P.]f P is tbe body of a recursive process, then the recursion is well defined if
P corresponds to a contract.ion mapping in A1TB. For this to be true it is sufficient for P to
be constructive for the bound variable.

Constructive processes

We define constructive terms as follows:

Definition 3.4.35: Term P is t·amstructive for X iff

V to : T ; p: ENV ABT P p to + t = ABT P p[p X tol XJ to + t

»
P is t-constructive for X if its behaviour up until time to + t is independent of the vallie of X
after to.

Definition 3.4.36: Term P is construetwe for X iff there is some strictly p08it,ive t such
that P is t-constructive for X. <)

58	 Probabilities fuJd Pdorities in Timed CSP

From the semantic equations for the BTCSP operators we can derive a number of results
about constructiv£' terms.

Lemma 3.4.37: For any X aDd t,

1.	 STOP, SKiP and WAIT t' are I-constructive for X;

2.	 X is o-constructive for :<, and t-constructive for Y # X;

3.	 Il X P is t-constructive for X

o

Lemffill 3.4.38: If P is l-constructive for X then

1.	 a ------;I P and WAfT t' ; Pare t + ('-constructive for X;"
2.	 P Y P, P \ A and f(P) are t-constructive for X;

3.	 Pis e-constructive for X, for any e< t.

o

Lemma 3.4.39: If P is trconstructive for X and Q is l2-constructive for X then

1.	 POQ,p[]Q,p,n,Q,p<\fQ,P1f;Q,p A<\f8 Q ,p A1f;8 Q,P<-QandP---;Q
are all t1 n lQ"constructive for X;

2.	 P Q is tl n t2 + o-constructivl:' for X.

o

Recursive processes

The semantics of a term P with rree variable X may be thought of as a function of the
spmantic; of X; it is the function that associates with each member Y of the semantic
space STB_ the value of P evaluated in an enviroumeut where X is bouud to Y. We represent
t.his functIon by M(X, P)p:

M(X,P)p">'Y A8T Pp[Y/XI

Note that the environment p supplies the bindings for any variables other than X. We use
this ma.pping to give a semantics to the immediate recursion operator:

ABT P X P p == the nnique fixed point of the mapping M(X, P)p

We will show that jf P is constructive for X then the mapping M (X I P)p is a contraction
mapping, and hence the sema.ntics is well defined.

Lemma 3.4.40: If tenn P is constructive for variable X, then M(X,P)p is a contraction
mapping on the sema.ntic space STB. 0

3.4 Semantic definitions <}":1

Proof: Let F == M (X, P)p. F is a contraction mapping iff

3r<1 YS,T,ST8 d(F(S),F(T)) d(S,T)

where d is the metric defined by

d(S,T)"inf({2-'IS t~T t}u{1})

Pick S and T in 5TB. If S = T then both sides of the above equation are zero. Otherwise,
let d(S, T) = 2- 1. Now F is constructive, so there is a strictly positive t l such that

S t = T I ~ F(S) t + e= F(T) t + t'

'0
d(F(S),F(T)) 2-('H') = 2-"d(S, T)

Hence F is a contraction mapping because 2-1
' < 1. o

We have shown that the mapping corrp.sponding to a constructive term is a contraction
mapping on 5TB. To show that it ha<i a unique fixed point, v.-e require the following result
from [Sut75]:

Theorem 3.4.41 (Banach's Fixed Point Theorem) Let (M, d) be a complete metric
space, and let F : M --t M be a contraction mapping. Then F has a unique fixed point
jiL(F). Furthermore, for all S EM we have fix(F) = lim,,--+co F"'(S). 0

In order to apply this, we need the following lemma.

Lemma 3.4.42: MTB is a complete subspace of 5TB' Q

Proof of lemma: For all n E ,let A ... be a member of MTS, and let (A" I n E) have
limitA. WemustshowAEMTB. Letd"=:d(A,,,A). Then d... --t O,so"l7" 3NT 'in
Nor d" < 2-"', Le.

"In N.,. A" l' = A 7"

The axioms of M TB can now ea<iily he proved. We prove axiom B5 for illustration. Let
(7",~,s) E A, 1" > 1', n E EOFF such that ID = (7",7"1). Let n Nor', so A 7"' == A.... 7"'.
Then (7",~,s) E A" and since A... E MTB there is some ~' such that ~I 7" == I;;; and
(7"',~',S U~'lr 0) E A Hence (7"',~',5 Ut;;;'lr D) E A as required. 0

Corollary 3.4.43: If F: 5TS ---t 5TB is a contraction mapping that maps Mrs into itself,
then F has a unique fixed point. which lies in MTS' Q

Proof: This follows immediately from Banach's fixed point theorem, because a contraction
mapping on 5TB is a contraction mapping on M TB. 0

60

0

Probabilities and Priorities in Timed CSP

Lemma 3.4.40 and corollary 3.4.43 can be combined to give the following result:

Theorem 3.4.44: If term P is constructive for variable X, then the semantics for
A BT /1X P p is well defined in all environments p,

The semantic definition givP$ rise to the following equivalence.

Theorem 3.4.45: Il X P = P[p. X PIX] Q

This result justifies the use of recursive equations, such as X ~ a ---.!......,. X, as proceBs defini
tions.

Delayed recursion

To give a semantics to tIl(' delayed rpcursiOll operator, we consider the composition of the
mapping M (X, P)p with the fuuction W6 which delays its argument by b.

Definition 3.4.46: If P is a term, X is a variable, and Y is a member of STB, then

MI(X,P)p == M(X,P]pc W.l where W, =A Y AST WAIT J ,X pi Y / XI

o
The W~ reflects the delay a.'lsociated with this recursion. We may now give semantics for the
delayed recursion operator:

ABT J.l X P p == the unique fixed point of the mapping M", (X, P)p

It is very easy to prove that M",(X, P)p is always a cont.ractiou mapping, and hencp delayed
recursion is always well defined.

Mutual recursion

We can define a DTCSP term iu terms ofa vector of mutually recursive equatiolls: (X, = P, I

~ E 1)j represents the jth component of the vector of terms defined by the set of equations
{X; = P,}. We shall write E.. for the vector (P, 11 E I), etc.

In order m give semantics t.o (X, = P. 11 E I)J we consider the semantic domain S~B' i.e.
the product space with one copy of STB for each element of I. We define a metric on this
space by

411L.1') =,"p[d(U" V,I I' E 1)

If E.. is a vector of BTCSP terms, .K is a vector of variables, and X a vector of memhers of
STB, all indexed by set I, then the mapping on S~B corresponding to E is given by

M(X,E.)p =AX: AST E. p[Y;/X, I, EIj

We can now give a semantics to mutual recursion.

Definition 3.4.47: U E is a vector of BTCSP terms, then

A BT (Xi = P; 11 E I}J P == 5J where s.. is a fixed point of M(X,E.)p

o

3.4 Semantic definitions 61

This is 'Nell-defined when all fixed points of M(X,E...)p agree on the jth component. In the
rest of this section, we study under what circumstances M(K,E....)p has a umque fixed point.

We will need some definitious relating t,o partial orders.

Deflnition 3.4.48: A partial order -< au a set 5 is a well-ordering if there is no infinite
d€:3cending chain (5, I IE) such that 5,+1 -< s" for all i E . The initial segment of 5 iu
(5, -<) is the set of elements less than s; i.e. seg(s) ~ {s' E 5 I s' -< s}. 0

We can now define what it means for a vector of terms E.... to he constructive for a vedor of
variables X. Thi9 will tnrn ant to be a sufficient condition for the existence of a unique fixed
point.

Definition 3.4.49: A vector of terms (P, liE 1) is I-f'..ouslruchve for vector of vari
ables (Xi liE I) if there is a well-ordering -< au I such that

Vi,j : I J 1- .~eg(i) '* P, t-constructive for X)

o
Definition 3.4.50: A vector of terms E... is construdwe for vector of variahles X if there is
a strictly positive t such that E.... is t-constructive for X. 0

If E.... is constructive for X then allnnguarded recursive calls from term P, are to a variable X
J

~uch that J -< i. Any sequence of nngnarded recursive calls must correspond to a decreasing
sequence of I, and EO must he finite.

It will normally be possible to show that all terms P, axe constructive for all variables XJ •

Definition 3.4.51: A vector of term.'> (P, liE I) is uniformly t-construdive for the veetar
of variables (X, II E 1) if P, is i-constructive for Xl' for all i and j iu I. 0

Definition 3.4.52: A vector of terms E. is uniformly constructive for vector of variahles .K
if there is some strictly positivp t such that E.... is uniformly t-constructive for X. 0

Lemma 3.4.53: If E is uniformly constructive for X. then E is constructive for X. Q

We can now state the following theorem:

Theorem 3.4.54: If vector of terms E... is coustructive for vector of variables X, then the
mapping M(X,E)p has a Iluiqlle fixed poiut iu StB. Q

Proof: The proof of this theorpffi follows closely the work of Davies and Schneider [OS90]
and was given in [Low92a]; thp intprested reader should refer to that paper for detaili_ The
proof proceeded as follows; we defined a Sf.'(:oud vector of terms 9.. by

Q, CO P,[Q,/X, I J E ''9(.)J

we showed that this vector is well defined; we showed that thp corresponding map
ping M(X, Q)p is a contraction mapping and so has a unique fixed point; we S~Q';l,·Pd tha.t
this fixed p~t is also a fixed point of M(X,E)p; we showed that this fixed poiut is unique.

o

62 Probabilities and Prioritjes in Timed CSP

From this theorem, we cau deduce the following corollary:

Corollary 3.4.55: If vector of processes P is eonstrurtivp for vector of variables X, then

the 5('mantics of (X, ;:: Pi)] is well defined. "
3.5 Communication over channels

In the final two sections of this chapter we con~idcr two variation~ on t.hp Prioritized :\lodeL
In thb S('ctioll we consider how we can model the communicatiOll of val lies over channels;
in the next section we consider what happens when we remove the nondeterministic choice
operator from the :;yntax of the language.

Some modf'b of coucurrency have modelleu communicatioll by considering communications of
different va!u<'.s to be fundamentally different f'vents. For example if c is a channel inputting
integers. then the events c?1 and c?2 woulrl be treated as completely different. This is not
adequate in a model where we want to place priorities upon actions: we do not want 10 have
to make arbitrary decisions such as specifying that the process would prefer to input a 1 than
a 2. V..'e want to mouel tbe fad that processes have no preference as to whieh P\"ent they
input alollg a ehannel. We will therefore arrange that the offer relatiou just recorrl~ the fact
that the process is willing to input somethm,g on a channl'! and says nothing a.bout tile values
pa."spd.

Another problem arises from processes such as

(c!l ~ P +-- c!2 ~ PI) x4f- Y (c?x ~ Q(I) +-- c"?g ~ Q'(y))

Here it is impossihle to tell which proeess on the right inputs the 1 and which inputs the 2. To
overcome this we shall insist that no praces;:; tries to write two things onto the samf' channel
simultaneously or tries to read two things from the same channel simult.anE'Ously. This seems
a reasonable assumption when one considers the physical nature of the channeLs: no wire
can pass two message; simultaueously, It will be a requirement of anyone writ,jng a process
uefinition in nTCSP to check that this conrlition is ~atisfied. Fortunately the following lemma
simplifies this.

Lemma 3.5.1: If a process P is such that

•	 no interleaving within the definition of the process has both sides able to writp to the
same ehannel, or has both sidps able to read from the same channel; and

•	 all renaming wit.hin the process definition is one-one on channel namf'B

then P does not try to write twa things to any channel simultaneou:>ly or try t-O read two
things from a channel simultaneou:>ly. "
One further prohlem arises from hiding of input channels. In normal Timed CSP we have
t.he identilv . .

(c?x ; X ---+ p.J \ c = WAIT 1; "'EX P",

However, when we corne to extend our model to incluue probabilities we will want to avoid

such processes, h€'f:ausp we will be unable to assign probabilities to the nondeterministic

3.5 Communication over cbannels

choice on the right. We therefore will not allow input channels to be hidden: again this
seems a reasonable assumption.

We let CHAN be the set of all channel names. If type(c) is the type of data transmitted over
channel c then we insist that

Vc:CHAN;x:type(c) c.xEE

i.e. all communications are visihle events. We will write c?x to represent the input of value x
on channel c.

We define an action to be a pair consisting of a bag of events and a set of channels.

Definition 3.5.2: The set A CT of actions is defined. by

ACT" bagl: x (CHAN)

¢

We will write 0:, j3 for typical members of ACT, X, 'If; for typical members of hag E and (,
''/ for typical members of (CHAN). The pair (X, () will represent the performance of the
events of X, and the input of events from the channels of C. We can now define the space OFF
of offers, which are basically timed actions.

Definition 3.5.3: The set OFF of offers is defined by

OFF -= TIME x ACT

¢

We will write u, w for typical members of OFF. The pair (t, (X, 0) will represent that the
process is willing to perform the events of X and ioput on t.he cha.nnels of Cat time t. So,
for example, we will write (3, (~a, a, b~, {c, d})) to represent the willingness of a process to
perform two as and a b, and to input on channels c and d at time 3. For ease of notation,
we will often write the elements of a particular action within bag brackets, marking input
channels with a '?'; so, for example, we will write the above offer as (3,Oa,a, b, c?,d?~).

As in the model without communication, we can now define the space OFFREL of offer
relations as being those relations ~ of type OFF x OFF satisfying

1. (t,o:) !: (t l ,j3) =? t = t' (comparable events OCCtil' at the same time);

2. w!: Wi 1\ Wi !; w/I =? w ~ wit (transitivity),

3. w!: Wi 1\ Wi ~ w =? w = Wi (antisymmetry);

4. wE items!; 00=> w !: w (reflexivit.y on items~);

5. (t,o:),(t,J3) E items!: =?- (t,O:) ~ (1,/3) V (t,/3)!; (t,a:) (totality on items~)

whereitems~-={wI3u u!;wVw~u}.

Similarly, we now define the space TT of timed. trac{'.s by

TT={:J: TIME-ttACTI:3r doms=[O,rJ}

64	 Probabilities and Priorities in Timed CSP

i.e. fllnctions from times to actions.

Our semantic model for our language remains largely unchanged by this extension, the only

change being the new definition of the space OFFREL.

We can now define a new operator, prefix choice. The process c?d : D ~ PrJ is willing to

input any value d on channel c, and then act like the process Pd, where PrJ will, in general,

depend on the value d input. In order to fit with our intuitions about causality, we will

insist that the processes P Ii are unable to perform any events at time O. A behaviour of

c? d : D ~ Pd will be either:

•	 .a behaviour where nothing is performed, and the process is willing to input on channel c
at any time; or

•	 a behaviour where an elt'ment d of D is inpllt at time t. and the proces.~ then acts
like P;r

This gives the following definition.

A BT ,?d, D ~ P, p ~ {(T, [0, TI Gl IldU,Dn), ~~I I T E TIME}

U{(T, [0, 110 (ldUrrl c:: + t, (I, 07,1) ,+ II I
dEDA' TA(T-t,(O}0(IUI C::,,)EABT P, p}

This definition is well defined (i.e. it satisfies the healthiuess conditions of the semantic space)
if the set of processes is uniformly hounded in the sense of section 3.4.10.

We can now define the general prefix choice operator. The process c?d D ~ Pd. inputs a
value d OIl channel c, and then acts like process Pd. after a delay of lengt h td, where td may
depend on the value d input. We can define this process by

CId: D ~ Pd == c?d: D ~(WAIT td ;Pd)

3.6 A deterministic language and model

In this section we show how we can produce a completely deterministic language by removing
the nondeterministic choice operator from the syntax of BTCSP. The results of this section
also say something about the Prioritized Model: if a process in BTCSP is cOll.'ltructed without
using the nondeterministic choice operator then it is deterministic in the following seme: jf
we know what the environment offers then there is only one way that the process can behave.

3.6 A deterministic languag", and model	 65

We define the syntax of Determin.istic Timed CSP (DTCSP) by

P,,~	 STOP I SKIP 1 WAIT t I X I basic processes

a~P I P P I WAIT t; P I sequential composition

P[JP I PmP I c?a:A~P" I alternation

P <if PIP -\I> PIP A<if BpI P A II> BpI parallel composition

P +- PIP --+ P I P~ PIP t P I interleaving ,
P PIP,PIP?PI transfer operators

P \ A	 1 I(P) I abstraction and renaming

"X	 P I "X P I (X, ~ P,), recllrsion

This is the same as the syntax for the biased language, except the nondet"'rministic I.:hoice
operators have been removed.

We define the space MDTB (the Deterministic Model using Timed, Biased ~haviours) to be

thooe sets A of type 5TB satisfying the following healthiness conditions:

Dl.\::IT 0 3n(T) (T,I;;;,S)EA=>#s neT)

D2. \::IT 0 3n(T) (T, 1;;;, 8) E A => 3k n(T); 1o, .. ,Ij,_J E TINT

10, ... 1,,-1 partition [O,T]

1\ \::Ii: 0 .. k -1 j t,l.' E I, ;X,'!/J E bagE (f,X) [;;; (t,1,b) ~ (t',X) [;;; (t',1,b.l

D3. (T,~, s) E A 1\ (t, X) E items ~ => (t, ~ t, s t (t, X)) E A

D4. \::10: OFFREL ----} EOFF 3} r; (end O,~, U~O(!;;;)) E A

Axioms DI-D3 are tb", sam", as axioms 81-83 for the Prioritized Model. The fourth axiom
says that the process is d",t"'rministic: given the way the environmental behaves, there is a
unique offer relation that it can have; it will perform those members of the environmental
offer that are mux..imal with respect to t.his offer relation.

We define a semantic function ADT DTCSP -+ ENV -+ M DTB such A DT P P is the
set of behavionrs that P cau perform in variable binding p. The semantic definitiollS for the
constructs of the language are the same as in the Prioritized Model, except references to A BT
should he changed to AnT; for example

AnT pX,*YQ p= {(T.!;;;pX,*Y !:Q's) IEs<; Xu YI\(T,[;;;p,S X)EADTPp

1\ (T, ~Q' 8 Y) E ADT Q p}

In [Low91b] we showed that the semantic definitions respect the healthiness conditions of
the semantic space. In particular, from condition D4 w", see that this language is comJ>letely
deterministk.

The Deterministic Model lies inside the Prioritized Mod",l in th", s",ns", that allY set of be
haviours that satisfies the axioms of M nTB also satisfies th", axioms of MTB. To see this
let A E M DTB' Then A mnst satisfy the first three axioms of M TB because t.hese ue the

66 Probabilities and Priodties in Timed CSP

same as the first three axioms of .A..1DTB' Taking f2 = {(O,~n)} in axiom D4 we see that
:3!; (0.1:;,-<>-) E A so axiom B4 is satisfied. For axiom B5, let (T,~,S) E A, r t > 7,
n E EOFF such that In == (T,T']. Let 11' == {(t,s(t)) lOt r} un. Then by axiom D4
there is a unique offer relation 1:;' such that (7', ~/, Ucfl') E A. By axiom D3 and the unique
ness condition we have ~I T = r;:, and by the definition of n' we have U[;,fl' = s u!:'\, fl,
so (7', ~', S Ui;'lr OJ E A as required.

All the algebraic laws that hold in the Prioritized fo..todel also hold in the Deterministic to.1odel,
except of course those laws relating to the uondeterministic choice operator. We also have
that the external choice operators are idempotent: P [] P = P and P [] P = P; this is a
conseqllence of the language being completely deterministic, so couuter-examples such as the
one in 3.4.5 do not occur.

Chapter 4

The Probabilistic Model

4.1 Syntax for the probabilistic language

We will now discuss the probabilistic language and model. The syntax is the same as the
syntax of the biased language, except the nondeterministic choice operators are replaced by
probabilistic internal choice operators, and we add a probabilistic external choice operator.
The process P pnq Q will act like P with probability p and like Q with probability q. The

process 'EI [P.lP. wiU act like process Pi with probability p,. The process P P Q Qwill be
biased in favour of P with probability p and hiased in favour of Q with probability q. In
the biased model, all nondeterminism was caused by the nondeterministic choice operators;
hence the only place where nondeterminlsm arises in the probabilistic language is :hrough
the use of the probabilistic operators.

The complete syntax is

P,,~ STOP I SKIP I WAIT t I X I basic processes

a ~ PIP P I WAIT t; P I sequential composition

P pnq P I iEJ[P;jP; I probabilistic internal cboice

PfIJP I PrJP I P p qP I c?d:D..!.!4P(j external choice

P<!tP I P-/lfP I p'<!tB PI pA-/lfB P parallel composition

P +--- PIP --> P I p<!t PIP -/If P I interleavingA ,,
P PIP,PIP?PI tra.nsfer operators

P \ A I f(P) I abstraction and renamiog

"X P I "X P I (X.~p.); recursion

where t and t(j ra.nge over the set TIME of times, which we take to be positive real numbers;
X ranges over the space VAR of '..ariables; and a rangl'S over some alphabet E of events. J
ranges over indexing sets, and is rlUlged over by i and). p, q and p, (for i E I) range over the
interval (0,1), with the properties that p + q = 1 and L:;~J PI = 1. c ranges over channel
names; D is the type of tbe data passed on c and is ranged over by d. A and B [an~e over

E; f ranges over E -+ E.

67

68	 Probabilities and Prjoritjps in Timed CSP

4.2 The semantic model

As before we define a behaviour or an observation of a process to be a triple (7, l;;;, s), where

•	 T is the time up until which the process is observed.

•	 ~ is a partial order on tbe space OFF (= TiME x bagI:) of offers. We say a process
offers X stronger than tJJ at timp t, and write (t, tJJ) !; (t, X), if the process gives a bigher
priority to tbe bag of event.s :\. than tbe bag of events 1/-' at time t.

•	 s is a timed trace, of type TiME -1+ bagE: s(t) is the bag ofevcnts performed at time t.

Ilecall the definition of the space 5TB of sets of prioritized behavionrs:

STB'" (BER)

We alsu want to be able to discuss the space P'FTB (Probability Functions on Timed. Biased
behaviours) of probability functions:

P:FTB '" BER -; [0. IJ

We will often need to sum probabilities. We will write L~f(x) Ip(x)~ to represent the sum

of tbe 1(1), wlIere the sum is taken over all x sucb that p(x) holds.

We will represent a process by a pair (A,I). As before A E S'rB gives the set of behaviours
tbat a process can perform. I E P:F TB is a probability function: f(T, !;, s) is the probability
of (7, ~,s) occurring, given a suitable environment, i.e. any environment n such tlIat (7,!;, s)
is compatiblp with n (in the sense of sedion 3.3.4). We define the space PPTB (Probabilistic
Pairs using Timed Biased Behaviours) to bp all such pairs:

'PPTB .£ STB x P:F TB

Note that if (T,~, s) is compatible witb two different environments, nand fl', then the
probability of (7, ~ ..~) occurring is the same ill environment n as ill environment fl'. This is
because to say that (7, !;, s) is compatible with fl and fll means that both environments offer
everytbing performed in traces, but neither offers anything that is offered stronger under the
offer relatiun !;: the rest of the environmental offers do not bave any effect on the behaviour
of the prucess, so the probability of (7,~, s) is the same ill each environment.

It is worth stressing again the relationship between the probability function f and tbe envi
ronment fl. 1(7, ~, s) is the probability of the process performing (T, J;;;, s) given that (7,!;, s)
is compatible with n. We can use tbis to define a probability function In (for each environ
ment 0) which gives the probabilities of eacb behaviour, given tbat the environment offers n.

~ If(T,!;,S) if(7,~,s) r.ompatn
f,117,C,S() =

- 0 otberwise

In tbe nex1.section we illustrat,E' this with an el\ample; in tbe following section we will formally
define our semantic space.

4.2 The semantic model 69

4.2.1 Example

We present a process that models a biased coin being tossed once:

COIN =. head ----+ STOP J/an2ja tail ----+ STOP

Here is a list of some of the possible behaviours of GOIN when it is observed up until time 2:

b, = (2, [0,2]" (ijh",dUD) , ~~

b, = (2, [0,2]" (ijtai/UD) ,~~

b, = (2, [0, 1]" (ij~dUD) (J, 2J" (ijD), ~(I,h",d)~)

b, = (2,[0,1],,(ijlai/UD) (1,2],,(nD) ,~(I,lad)~)

In behaviour bJ the probabilistic choice is made in favour of the head, so a head is offered,
but nothing is performed: this mllBt correspond to an environment where no head is offered.
Behaviour b2 is similar, except the choice is made in favour of the tail. In behaviour bj the
choice is made in favour of the head, which is performed at time 1: this must correspond to
an environment where a head is first offered at time 1. In behaviour b4 the cltoice is made in
favour of the tail, which is performed at time 1.

The probability function f associated with this process associates the following probabilities
to these behaviours:

f(b,) ~ 1/3 fib,) ~ 2/3 f(b,l = 1/3 f(b,) = 2/3

The two behaviours where the probabilistic choice is made in favour of the head are given
probability 1/3, while the behaviours where the choice is made in favour ofthe tail are given
probability 2/3.

Consider now an environment n with duration [0, 2] where neither a head nor a tail is offered.
The behaviours bj and b2 are compatible with this environment, but behaviours hs a.nd b4
are not since in both of these an event is performed that was not offered by the environment.
In fact bj a.nd b2 are the only behaviours that GOIN can perform in this environment. The
probability function associated with this environment has

fn(b,)~1/3 forb,) ~ 2/3 fn(b3)~0 fo(b,)~O

and all other hehaviours are given probability zero. Note that the sum of the probabilities is
one.

Consider now an environment n that first offers a head at time 1, and does not offer a tail.

Now behaviours b2 and ba are the possible behaviours. Behaviour bl is incompatihlewith n

because at time 1 it offers a head stronger than the empty bag, but performs the empty

bag despite the fact that the environment is willing to perform a head: it disobeys the rule
that says that at each instant the process must perform the member of the environmental
offer that it offers strongest (i.e. is maximal in tbe process's offer relation). The probability
function associated with this environmental offer therefore has

°
 fn(b,)=O fn(b,) ~ 2/3 fo(b,) ~ 1/3 fo(b,) =

Finally, consider an environment that offers a head and a tail at time 1, but offers neither
earlier. In this case behaviours ba and b4 are possible; the other two are incompatible with

70 Probabi1ities and Priorities in Timed CSP

the em'ironmental offer. Hence the probability fnnction associated with this environmental
offer has

fn(b,) ~ 0 !n(b,) ~ 0 !n(b,)~JIJ !n(b,) ~ 213

~ote that the choice of whether the process offers a head or a tall is made at time 0, before
either is actually offered by the environment.

4.2.2 The semantic space M PTS

We deno.e the space /'v1PTlJ (the Probabi15stic Model using Timed Biased behaviours) to be
those pairs (A,f) in 'PPTS satisfying the following axioms:

Plo'rIT 0 3n(T) (T,~,S) E A ~ #s n(T)

P2. 'rIT 0 3n(T) (T,~,s)E A==}3k n(T);lo, .. ,h-J E TINT

10, ... 1,:-1 })artit.iou[O,T]

A'rIi:O .. k-l;l,t'E/,iX,'\bEbag.E (1',X)~(t,'\b)~(t',X)~(t','Ij;)

P3.	 (T.~,.5)EAA(t,X)Eitems!;;;'*(t,1;;; /,,5 t (t,X»)EA

P4.	 f(T,~,j) > 0 ~ (T,~,S) E A

P5.	 Li!(O, C;, -<>-) I C; E OFFReL~ ~ 1

P6. 'rI8: TT; l;;;: OFFREL;n: EOF'F ;T.T': TIME I dOffij = [O.TJ 1\ In = [T,T'J

f(T,l;;;'S)=L~f(TI,l;;;I,S , u~,n)I[;;;1 T=l;;;~

The first three of these axioms are the same as the first three axioms in the Prioritized Model.
\Ve discuss the otber three axioms in turn:

P4.	 If the probability of a process having a certain behaviour is non-zero, then that be
haviour is possible.

PS.	 If the environment offers no events at time 0, then the empty trace occurs with proba
bilityone.

P6.	 The probability of a process displaying some behavionr up to time T is t.he i'iame as the
sum of the probabilities of the extensions of this behaviour that. could have resulted
from the euvironment offering 0. between times T and ,'.

It is worth noting that in any envirollIUent there is a couutable number of behaviollrs that
a process can perform: this is a resll!t of the syntax we have rllosen, which only allows
countable probabilistic choice. This fact means that summing over probabilities (rather than
integrating) is a valid technique.

4.3 Semantk detinjHons 71

4.2.3 Laws

The following law, which was proved in section 3.3 for the Prioritized Model, also hold in
this model.]f a process can have a particular behaviour, then it can perform any prefix of
that bebaviour.

Theorem 4.2.1: (r,!;;,s)EAI\T' T::}(T',!;;; T',S T')EA. <;>

In addition, the following law holds in this model.]f the environment offers 0, then the sum
of the probabilities of all possible behaviours is one.

Theorem 4.2.2: "In: EOFF "IT endn E~f(endn,I;;,Uon) I I;; E OFFRELI 1.
<;>

Proof: Pick 0 and let T := end O. We have

Ellt(endn,l;;,uOn) I I;; E OFFREL~
(rearranging; taking !;;;/ = ~ 0)

E~E~f(r, 1;;", UO"n) I 1;;" 0 ~ I;;'~ I end 1;;' ~ O~

(taking 8 = -<~ in axiom P6)

E~f(O, 1;;', -<>-) I end 1;;' ~ O~

jaxiom P5)

o

4.2.4 Semantic functions

We define the space of variable bindings for the Probabilistic Model by

ENVp:= VAR --+ 'PPTB

We shall drop the subscript P where it is obvious from the context which model we are
working in.]n the next section we shall define functions APBT: PBTCSP --+ ENVp --+ STB
and PPBT : PBTCSP --+ ENVp --+ P'F TB sucb tbat in variable binding p, ApBT P (J gives
the set of possible behaviours of process P and PPBT P p gives the behaviour probabil
ity function. We define the semantic function FpBT : PBTCSP --+ ENVp --+ MpTB by
FpBT P p:= (ApBT P p, PPBT P pl. In section 4.3.8 we discuss which algebraic laws hold
in this model. The semantic definitions were proved sound in [Low91bJ.

4.3 Semantic definitions

In this section we derive the semantic definitions {or each of our basic processes and Cor each of
our operators. For most of the processes (all except the probabilistic operators and recursion)

72 Probabilities and Priorities in Timed OSP

the de£nition of the set A of possible behaviours is the same as in the biased model; for these
processes we derive the definitions (or the probability functions from the definition of A. For
the probabilistic operators, the definitions are easy; for recursiou, the definitions are very
similar to those in the biased modeL

The definitions are summarized in appendix A.

4.3.1 Basic processes

The proCC8Ses STOP, SKIP and WAIT t are completely determinL':itic. The semantic defini
tions for their sets of possible behaviours are t.he same as in the biased modeL Each of theie
semantic definitions are of the form

ApBT P pC: {(r,C;"j I S(r,C;,')}

for ISO me predicate S. Behaviours of this fOfm occur with probability one; all other hehaviours
have probability zero. This gives the following definition:

PPOT P p:;:; fillout{(i,~,s) H- 1 I S(T,~,$)}

where the function fillout : (BEH --» [0,1]) -t (BEH -t [0,1]) extends partial behaviour
probability functions to total probability functions:

(-r,~,s) E dom!
V!,{i,r;;,S) fi11out! (T,~,S) = {~(i'!;'S)

(T, r;;, ,1') ¢ dom!

All behaviours not defined in! are assumed not. to occur, and so are giveu zero probability.

4.3.2 Unary operators

Let F be one of the unary operators prefixing, hiding, renaming, or delay. For each of these
operato~. the definition of the .set of possible behaviours from section 3.4 carryover to the
Probabilistic Model. In each case the semantic definitioll can be put into the form

A pBT F(P) P ~ Hi,!;, s) I3il
, !;', S' (ii, ~I, ,1") E APBT P P 1\ 8(i, i l ,!;, ~I, 5, s')}

for some predicate S. The probability of F(P) performing a behaviour (i,~, s) is the proba
bility of P performing some corresponding behaviour (ii, 1;1, ,1'1) such that 5(i, T',!;, ~', S. 5')
holds; hence we want to sum over all such behaviours. This gives the following definition

PPBT F(P) p(T,~,S) ~ L~PPBT P p(i',I;', ,1'1) I 5(T,T',~,i;',s,SI)~

Note that this can normally be greatly simplified using the one-point rule,

4.3.3 Binary operators

Let _ffi_ b~ one of the binary operators on t.he syntax, other t.han the probabilistic operators.
Again, for each of these operators the semantic defiuition from section 3.4 carries over to the
Probabilistic Model. The definition for the set of possible behaviours can be put in the form

A pBT PEB Q P 20 {(T,~. s) I 3ip,iQ, !;:P, I;Q' Sp, sQ

(ip, !;p, sp) E ApBT P P 1\ (TQ, I;Q, sQ) E ApBT Q P

1\ 8(i, Tp, iQ, 1;;:, !;p, !;Q' ,1', Sp, sQ)}

4.3 Semantic defjDitioIlS 73

for some predicate $. The probability of P (!l Q performing such a behaviour (T,~, s) is
the probability of P and Q performing some corresponding behaviours (Tp, ~p, sp) and
(TQ, ~Q' sQ) such that 5(T, TP, TQ,~, ~P, ~Q' ..'I, Sp, sQ) holds; hence we want to sumovet' all
such hehaviours. This gives the following definition:

PPBT P(!lQ p(T,~,3)=-

E~PPBT P p(Tp, ~p, 3p) X PPBT Q p(TQ, ~Q,3Q) I S(T,TP,TQ'~, ~p, !;Q' s,Sp, 8Q)~

4.3.4 Communication

The definition for the set of possible behaviours for the prefix choice operator is

ApST e? ,A 3.... Po p '" {(T, [O,TJ 0 (ijd.UG)' -<>-) IT E TIME}

U(T, [0, II 0 (ne?UG) ~ + t, (t, e?a) ,+ t) I
aEAAt TA(T-t,{O}0(nG) ~,')EApBTP. p}

For the probability function, behaviours of the first sort occur with probability one, if the
environment is unwilling to communicate on c. The probability of a behaviour of the second
sort is the probability of Pa performing the corresponding behaviour starting at time t when
the first communication the environment is willing to make is an a at time t.

PPBT c?a: A ~ P a P =
{(T,[O,T] 0 (ne?·UG), -<>-) >-> 1 IT E TIME} 1
U{(T, [0, tl0 (ne?UG) ~ + t, (I, e?a) ,+ I) >->

flUout

(
'PPBT p. p(T - t,{O} 0 (@) ~,,) I

aEA!\t T}

As in the Prioritized Model, we can use this to define the general prefix choice operator:

c?a:A ~ P a =c?a: A ~ (WAITta ;Pa)

4.3.5 Probabilistic internal choice

The process P pnq Q acts like P with probability p, and like Q with probability q. It will
have behaviour (T, ~, ..'I) if

• P is chosen and P has behaviour (T, ~,s),

• or Q is chosen and Q has behaviour (T,~, ..'I).

We therefore have the following definitions, assuming p =f:. 0, q =f:. 0, and p + q = 1:

A pBT ppnq Q P .= A pBT P pUA pBT Q P

PPBT P pn q Q p(T,~,.s) .= p.PPBT P p(T,~,S) + q,PPBT Q p(T,~,S)

74 Probabilities and Priorities in Timed CSP

Infinite probabilistic choice

If! is a counta.ble set, and LtE I p, 1 then we will write iE'[P,]P, to represent t.he process c-=;

that, for all i, acts like process P, with probability p,_

We give a semantics to this process in the obvious way:

Ap8T 'EI[P,jP, P ~ U{hBT P; pi; E I)

PPBT ,El[P,jP; p(T,~, s) L~p. X PPBT P, p(T,~, s) liE !~

This is well defined only when t.he set of processes {P, ,I i E J} is uniformly bounded in the
sense of seclion 3.4.10.

As in the Prioritized Model, this method does not always effectively model noncleterminism
that does not manifest itself in a finite amount. of time. For example, consider the process P
which can perform any finite number of as:

P" "E.[(lIB)"+')p" where Po == STOP P"+l == a"'!""'" P n

\Ve would expect this to be different from the process pi that can perform an arbitrary
number of as:

pi == a!...-t pi Ijtnl/2 STOP

However, our semantics gives the same value to botb of these processes. It is interesting
that the behaviours of pi that our model does not adequately represent - namely where an
infinite number of as are performed -- occur with zero probability.

4.3.6 Probabilistic external choice

In tbis section we describe a probabilistic external choice operator P 9 such that P P 9 Q
offers an external choice between P and Q tbat is biased in favour of P with probability p.

and biased in favour of Q with probability q. The probabilistic external choice operator is
defined by

P, ,Q" IP [] Q) ,no IP [] Q)

p P 9 Q acts like P [J Q with probability p, and like P CD Q with probability q.

This operator is very !ilmilar to the probabilistic choice operator defined in most probabilistic
models of CCS, for example in [vGSST90J. There, an external cboice between processes P
a.nd Q is written [PjP + [q] Q: if the environment can perform events of both P and Q then
the choLe'" is made in favour of P with probability p and in fa.vour of Q with probability g,
This can then be used to define a probabilistic internal cboice between two processes by
[p]r.P + [q]r.Q, where 7 represents an internal action. Our approach has been the otber way
round: WI:! have defined biased external cboice operators and a probabilistic internal cboice
operator, and used these to define a probabilistic external choice operator. ,,"'e believe that it
is more natkllal to define separate internal and external choice operators since these are very
different operations. A language with more operators, while being harder to reason about, is
easier to reason with.

4.3 Semantic defiwtioDS 75

4.3.7 Recursion

Our definition of recucsion for probabilistic pro<:es6e5 follows closely our approach for pri
oritized proce8SeS. We define a metric on the space MpTB by coIlBidering the first time at
which two processes may be distinguished. We define an operator on behaviour sets a.nd
behavlour probability functioIlB which gives the behaviour of a process up to a certain time.

A 1={(T,C;,,)EAIT t) I t = {(T, C;, ,) H I(T, C;, ,) ITt}

We define the metric on MpTB by

d«(Ap,/p),(AQ'/Q))=;nf({r'IAp t~AQ tAlp t~/Q t}U{l})

We define the mapping on the semantic space corresponding to a term:

M(X,P)p=), Y FPBT P plY/XI

We can then define recursion by

:FPBT IJX P =theuniquefixedpointofM(X,P)p

As in the Prioritized Model, this is well defined when P is cOIlBtructive for X.

Delayed recursion

For delayed recursion, we define a mapping WJ which delays it argument by 6:

W,=),Y F pBT WAlT;;X plY/XI

We can now define delayed recursion by

:FPBT IJ X P p == the unique fixed point of M (X, P)p 0 W6

Mutual recursion

In order to give semantics to (Xi = Pi I J E I), we consider the semantic domain 1'P~B' i.e.
the product space with one copy of 'PPTB for each element of I. We define a metric on this
space by

d.(lL,JD =,up{d(U" V,) I; E I)

H l!.. is a vector of PBTCSP terms, X is a vector of variables, and Y a vector of members of
'PPTB, all indexed by set I, then the mapping on 'PP~B corresponding to £. is given by

M(X,E.)p =),1:: FPBT E. pIY,/X, I; E Jj

We can now give a semantics to IOutual recursion. If £. is a vector of PBTCSP terms, then

:FPET (X, =P, liE I}j p == S, where fi. is a fixed point of M (X, £')p

As in the Prioritized Model, this is well defined when the vector of terms P is constructive
for vector of variables X. The proof of this appeared in [Low92a] and is very similar to the
proof sketched in chapter 3. We defined a second vector of terms 5l by

Q, =P,[Q,/X; Ii E ''9(')1
we showed that this vector is well defined; we showed that the corresponding map
ping M(X, Q)p is a contraction mapping and so has a unique fixed point; we showed that
this fixed pOint is also a fixed point of M (X,E..)p; \lie showed that this fixed point is IInique.

76 Probabilities and Priorities in Timed CSP

4.3.8 Algebraic laws

III this section we discuss which algebraic laws hold in the probabilistic language. The proofs
of these laws are similar to the proofs for the Prioritized Model.

All the laws that were described. above for the Prioritized Model carry forward to this model

(exC(>p(of course those laws involving the nondeterministic choice operator). In addition, the

followiD~ laws hold fOr the probabilistic choice operator:

Law 4.3.1 (Commutativity of probabiHstk choice) P pnq Q = Q qnp P. {,

Law 4.3.2 (Idempotence of probabilistic choice) P pnq P = P. {,

Law 4.3.3 (Associativity of probabilistic choice)

P pn q+r (Q q/q+rnr/q+r R) = (P p/p+qnq/p+q Q) p+qn r R

{,

Law 4.3.4 (Distributivity) All operators except recursion distribute through probabilistic
choice:

Prefixing: a ~ (P pnq Q) = a ~ P pnq a ~ Q

External choice: P [J (Q pnq R) = P [J Q pnq P [J R

(P pnq Q) [J R = P [J R pnq Q [J R

Parallel composition: PXtfj-Y(QpnqR}=pxtf+-Y QpnqpX~Y R

(ppnqQ)xtfj-Y R=pxtf+- Y RpnqQxtf+-Y R

[nterleaving: P <f--- (Q pnq R) "'" P <f--- Q pnq P +------ R

(P pnq Q) <f--- R = P <f--- R pnq Q t-- R

Hiding, (P ,n, Q) \ X ~ P \ X ,n, Q \ X

lknaming' !(P ,n, Q) ~!(P) ,n.J(Q)

Sequential composition: (P pnq Q) R = P R pnq Q R

P (Q pnq R) = P Q pnq P R

and similar laws for the right biased operators. {,

4.4 Example: a communications protocol

We con.<;ider a very simple communications protocol tralliimitting over an unreliable medium.
For simplicity, we abstract away from the actual COntents of the communication and just
concentrate on whether the message is transmitted.. We also only insist that tbe protocol is

4.4 Example: a communications protocol 77

~
in~out

Figure 4.1: The coIDmunicatiOIl5 protocol

able to handle a single message. We are interested in the probability of the message being
correctly transmitted. within a certain time.

The protocol is as in figure 4.1. Messages are received on the channel in. They are then

passed along the wire W, which loses a proportion of its inputs. If Q receives the mes

sage, it acknowledges it on the channel ack and outputs on out. If P does not receive an

acknowledgement within a certain amonnt of time, then it tries retransmitting.

The processes P l Q and W are defined by

P ~ in ---Jo Jl X 1m ---Jo (ack ---Jo STOP [J WAIT 1 - 26; X)

Q ~ rm ---Jo ack J~.!!l out ---Jo STOP

p. X 1m ---Jo ((nn ---Jo X) pn q X)W "

The protocol is then given by

PROTOCOL" «P A<II- B W) AUB<II-
C QJ \ Y

where A, B, and C are the alphabets of P, W, and Q, and Y is the set of internal actions:

A == {in,lm,ack} B" {Im,~} C ={nn, out, ack} Y == {lm,nn,ack}

For simplicity we rewrite P and W by

P = in ---Jo PJ

P j = 1m ---Jo (ack --+ STOP [J WAIT 1 - 6; PJ)

W = 1m ---Jo (nn ~ W pn q WAIT 6; W)

Then using laws for communication and hiding we have PROTOCOL = in ---Jo PROTOCOL'
where PROTOCOL' =((PI A4t B W) AUB4tC Q) \ Y. Now

PROTOCOL'
(laws of communication; parallel composition distributes througb probabilistic choice)

(1m --+ ((ack ----t STOP [) WAIT 1 - <I; PJ) A4t B (rm ~ W))

AUBotttC(nn ---Jo ack J~6 ,out ---Jo STOP)

,n,
«aek ---; STOP [] WAIT I - J; P,) A<II-

B (WAIT J; W))

AUB4tC(nn ---Jo ack 1~6 ;oul ---Jo STOP)) \ Y

78 ProbabilitieF, and Priorities in Timed CSP

(laws of communication nnd bidiug)

(1m ---t (rm ---t ack 1~!l out ---t STOP pnq WAIT 1 ; (PI A4f-8 W) AUB,*C Q)) \ Y

(laws of biding)

WAIT 1 - J; Ollt pn q WAIT 1 ; PROTOCOL'

Let q" be the probability that PROTOCOL' is not willing to perform out within n-II" seconds
(n E J. Evidently 90 :::= 1 and q,,+1 = q.q". Hence q" = q" and so the protocol IS willing to
perform out within n sC{'onds of receiving an input with probability 1 - q". Letting n tend
to infinit.y we see that the protocol is eventually willing to perform out with probability one.

In chapter 7 we will study a somewhat more rea::;onable protocol, which is able to handle
more tho one message. Weill prove that it acts like a one-place buffer and will present a
probabilistic investigation of the time taken for me~sages to be transmitted.

Chapter 5

Specification and Proof of
Prioritized Processes

In chapter 3 we gave a semantic model for a language using prioritized operators. Unfortu
nately, the semantic equations are rather compliCated and so hard to use for reasoning about
processes. In this chapter we present a proof system, in the style ofthe proof system described
in section 2.4, which will euable us to prove that a process meets its specification. The proof
system will comprise a number of inference rules; these rules will allmv proof obligat.ions on
composite processes to be reduced to proof obligations on the subcomponents.

In section 5.1 we describe the form of our specifications. If 5(7,~, 5) is a predicate on
behaviours, we will say that a process P satisfies 5(7,~, s) in environment p, writtffi P satp

S(T,~, s), if 5(7,~, s) is true for all behaviours (7,!;;;, 5) of P We will normally drop the
argument (-r,!;,s) of 8 and simply write P satp 8 when it is obvious from the context in
which model we are working.

This method can be extended to the Probabilistic and Deterministic Models. In section 5.2
we will present abstraction mappings from these two models to the Prioritized Model and
show that a probabilistic or deterministic process satisfies a behavioural specification if the
corresponding biased process satisfies the same specification. Note that this proof system will
ollly relate to non-probabilistic specifications, i.e. specifications that state that all behaviours
of a process satisfy some property. In chapter 7 we will present a proof system that aHows
us to prove probabilistic specifications on processes, for example specifications such as 'an a
is offered within 3 seconds with probability 80%'.

In section 5.3 we present a language for specifying processes. This will be based on the spec
ification language described in section 2.5, extended so as to be able to talk about priorities.

We derive inference rules for each of the constructs of the language in section 5.4. We also
show that they are complete in the sense that if, from the semantic definitions, a predi
cate 8(7,~, s) can be shown to be true of all the behaviours of a process P, then P satp S
can be proved using the proof system.

In section 5.5 we apply our proof system to the lift system introduced in section 3.2: we show
that the lift always arrives on a particular floor within 15 seconds of being summoned.

79

gO Probabilities iUld PrioriUes in Timed CSP

5.1 Specification of prioritized processes

We define a behavioural specification to be a predicate S(-r,!;.,s) with free variable rep
resenting a possible behaviour. Our basic specificat.ion statement will be of the form
p satp S(T,~,S) inMTB. This will mean that in environment p all behaviours (-r,~,s)

of P will satisfy the predicate S(-r,~, s):

DefinitionS.i.l: PsatpS(-r.1;,.5)in.AATB~VtT,I;,s)EAPBTP p S(T,!;.,S). <)

If P is a process, Wf" may omit reference to the environment:

Definition 5.1.2:

Psat S(-r,r;;;;,s)in.MTB~VpEENV V(T,r;;;;,S}EApBT P p S(-r,l;:,s)

<>

We shall omit this qualification' in .M TB' and the argument (T , !;,.5) of S where the model
we are working in is obvious from the context.

5.2 Abstraction mappings

In the following two subsections we give abstraction mappings from the Probabilistic and
Deterministic Models to the (unprobabilistic) Prioritized Model. These abstraction results
will allow us to prove results about probabilistic or deterministic processes by proving corre
sponding results about the corresponding process in the Biased Model. In chapter 6 we will
also give an abstraction mapping from the Prioritized Model to the TimC'd Failures Model of
Timed CSP. The relationships between the probabilistic, det.erministic and prioritized lan

guages and modets are shown in fig;ure 5.1. The mappings 'f~~) and B~Bl remove probabilities

but keep oiase:s; the mappings "p':) and e~) remove determinism but keep biases.

PBTCSP DTCSP MPTB MOTB

(8("P(B). e(B) e(B)
pP D

BTCSP MTS

Figure 5.1: A hierarchy of lang;uages and models

5.2.1 Abstraction from the Probabilistic Model

In this section we give all abstraction mapping from the Probabilistic Model to the Prioritized
Model. We define a mapping "P<:) PBTeSp ----+ BTGSP that removes all probabilities

5.2 Abstraction mappings	 81

from the syntax: ip}!) maps probabilistic choices to nondeterministk choices and distributes
through all other operators:

",,:)(P ,n, Q) " ",':)(P) n ",':)(Q)

",,:)('EliP,IP,) " .E! ip~l(p;)

iptt)(P p q Q) == P' [] Q' n pi rn Q' where pi == ip<J!l(p) and QJ == ip<J!){Q)

",,:)(P) " P for P = STOP, SKIP, WAIT t, or X

",':\F(P)) " F(",(P)) [0' F(P) ~	 a --'-t P, WAIT t; P, P \ X,

f(P),~X P, or Jl X P

",':\p fB Q) " ",(P)cIJ<P(Q) fortB= ,[],rn,4t-,*"x4t- Y ,x*,y,
+--,--t,~, *', I, , or 'Vc • •

ip~l(c?a : A ~ PIJ) == c?a: A ~ ip<:'(p,,)

",,:)«X, ~ P,);) " (Xi ~ ",':\P;));

The corresponding semantic map O~Bl : M PTB --+ M TB is easy to define: the process with set
of possible behaviours A and probability function 1 maps to the procffis with set of possible
behaviours A.

O':)(A,f) "A

so ott) is the projection 'Ttl- We can show that O~) maps MPTB into MTB.

Theorem 5.2.1: 9~l{MpTB) ~ MTB.	 <:>

Proof: We must show that for all (A,I) E MPTB, the set A satisfiffi the healthiness con
ditions of M TB. The first three conditions are easy as they are the same as the first three
healthiness conditions of MpTB. For condition B4 note that by axiom PS of MPTB we have
some offer relation 1; such that/(O,~,-<>-) > 0, so by conditjonP4 we have (O,~,-<>-) E A.

For condition BS, suppose (r,~,s) E A, r' > r and 0 E EOFF with 10 = (r,r'). Then
I(r,~, s) > 0 by condition P4. Let 0' == {(r, s(r))} U 0; then by condition P6

L~f(r',~I,s r u!;'l".n/)I~' r=~~>O

Hence there is some offer relation ~' such that l(rl,~',5 r UC 'l'" rt) > 0 and!;;,' r =~.

But s r U!;'l1'" 0 ' = S Ui;',,,. 0; 80 by condition P4, (r', ~', s - U!;'l1'" 0) E A, as required.
o

We will now prove an abstraction theorem that says that O~B)(:FPOT P p) = ABT '{J':) (P) pi
for suitable environments p and p'; the condition on the environments is that 11" 1(p X) =
p' X for all variables X; this can be written as pi = 1tlOP_

Theorem 5.2.2: If p' = 11"1 0 p, then

O~)(:FPBT P p) = APBT P p = ABT ip<:\P) pi

<:>

82 Probabilities B.Ild Priorities ill Timed OSP

Proof: This can be proved by structural inductioll; all cases arf' easy because the .'>{>mantic
definitions are very similar in the t\l/O models. We prove the result for probabilistic choice as
an example. Assume p' = J'r 1 C' p; then

A PBT P pn q Q p

(semantic definition in MPTB)
ApBT P p U ApBT Q p

(inductive hypothesis)

A BT 'P~)(P) p'UAB'r 'P~)(Q) pi

(semantic definition in MrB)

A BT 'P~)(P) n 'P~)(Q) pi

(definition of 'Pr:1)

'Ptt1(P pnq Q) r/A BT

o

If we define a satisfadiol1 relation in M PTB by

P S8.tp S in MPTB # '<I(T,~, 8) E APRT P 5(T,~, s)

then we have the following inference rule

Rule 5.2.3:

'P~)(P) satp' Sin MTB
[p'~rrJop]

P satp S in MPTB

"
Proof: We have

l{J~)(P) satp' Sin MTB

¢} (defiuition of gat in M T8)
V(T,~,8) E ABT 'Pr:1(P) p' 5(7,1;,8)

<=} (previous theorem, using the side condition)

"i(T,~,S) E ApBT P P S(T,~,S)

¢} (definition of sat in ."vi PTB)

P satp S in MPTB

as required. o

To prove that a probabilistic process satisfies a. hard specification, it is enough to prove that
the corre5ponding lIuprobabilistic proC(>ss satisfies the same specification.

5.3 A language for spedIying prioritized processes 83

5.2.2 Abstraction from the Deterministic Model

The Deterministic Model sits strictly inside the Prioritized Model so our abstraction mappings

1fJV!) : DTCSP -+ BTCSP and O~l : M DTB -+ M TB are simply the identity functions.

~V}l(p) £ P OV}l(A) £ A

The following theorem was proved in se<:tion 3.6:

Theorem 5.2.4: O~)(MDTS) ~ MTs· o

The following theorem i6 trivial to prove by strnctural induction:

Theorem 5.2.5: For all DTCSP processes P and environments p,

OV!l(A DT P p) = ABT lfJV!l(p) P

o

The following proof rule can be derived from this result in the same way that the proof rule
in the previous section was derived from the abstraction result there:

Rule 5.2.6:

1fJ~}(P) satp S in MTS

P satp S in MDrB

b.

Thus we have shown that proving that a specification holds of a proces6 in either the Proba
bilistic or Deterministic Model can be reduced to showing that a corresponding process in the
(unprobabilistic) Prioritized Model satisfies the same specification. The rest of thi! chapter
will be devoted to methods of showing that a prioritized process satisfies a specification.

5.3 A language for specifying prioritized processes

In order to write readable specifications for prioritized processes we need a specification
language; this will be based upon the language described in section 2.5.

5.3.1 Primitive specifications

We write (a at t)(T,~, s) to specify that event a occurs at time t:

(a at t)(1". ~,3) == a E 3(t)

As in section 2.5, we generalise thiB to specify that some event a from a set A occurs a.t some
time t during the interval 1:

Aatl==3aEA 3tEI aatt

84 Probabilities and Priorities ill Timed CSP

We also generalise the at macro in ordN to specify that n events from some set occur during
some interval:

A at" 1==#(8 At J) n

And 'we can specify that events do not occur:

noaatt == .. (aatt)

no A at I == (A at 1)

no A at" J == ..., (A at" 1)

We will sometimes want to be able to specify that a process acts in a particular way 1/ we
have observed it for long enough.

(beyondt)(T,!;;;,S)'= T > t

¥/{' will use the offered macro to specify that a process is willing to perfonll a particular
event:

(a offered tHr,!;, s) == beyond t =} (t, a) E items ~

We can aLso specify tbat an event a would be refused at time t jf it were offered by the
environment in addition to what was performed. This is true if the process does not prefer
an extra a in addition to what it performs at t (5 i t l±I (t,~a~)) to what it performs (5 t t).
This give'S the following definition:

(a ref t)(T, !;, s} 2: beyond t 1\ s t t ~ (t, na~) tJ S t t

As in the Timed Failures Model, we will not use this predicate directly in specifications: we

will use iL t.o define more useful macros.

We can also specify that an event is not refused:

no a ref t =--. (a ref t)

'0
(noareft)(T,l:::;,S)=t TVsttl±/(t,na~)::Jstt

And we can generalise both these predicates to sets of ev~nt.s:

Areft 3:'r/aEA areft noAreft=VaEA nOl1reft

5.3.2 Liveness specifications

Recall the definition of the offered macro:

(a offered t)(T,~, s) == beyond t =} (t, a) E items!;

This genC'r-<tJisei to say that the proCf'SS offers one of a set of events A at time t:

A offered t == 3 a E A a offered t

We can also say that an event is offered throughout some interval, until it is performed:

a offered I =Vt E I a at fn[O,t) V a offered t

5.3 A language for specifying prioritized processes 85

a offered I is true if at all times t during I, if an a has not yet been observed, then a offtred t.

It will be useful to say that an event is offered from some tim{' until it is performed:

0. offered from ~ == a offered [l, 00)

Thus from t i.s an abbreviation for It, 00).

We can also specify that events are not offered:

no a offered to=:....., a offered t

no A offered I ~ Va E A Vt E I no a offered t

If the set I is omitted, we will take it to be the set of aU times:

no A offered 0=: no A offered [0,(0)

The live macro is used to specify that the process is wiDing to perform an event at a particular
time. Its definition is the same as in the Timed Failures Model:

alive to=: a atl Vno a ref t

a live t is true if either an a is performed at time t or it is not refused.

This can be generalised to take a set of events as argnment:

A live t 0=: A at t V no A ref t

We can also generalise the live macro to specify that an event is available throughout some
interval, until it is performed:

aliveIo=:VlEI aatIn/O,tjvnoareft

a live I is true if at all times in I, if an a has not yet been observed, tben it is a'..ailable. This
generalises to a set of events in the obvious way:

A live I o=:Vt E I A at In[O,t] V no A ref t

It will be particularly useful to be able to specify that an ('wnt becomes available at some
time t and remains available until performed:

a live from t == alive [l,oo) A live from t == A live [t, 00)

We can also specify that a process is able to perform n copies of an event:

a live" t 0=: a at" t V no a ref l

A live" t == A at" t V no A ref t

a live" I 0=: "VtE! aat"In[O,tjvnoareft

A live" I -"'- V lEI A at" In [0, tj V no A ref 1

The two macros offered and live are quite closely wlated. By condition AS on behaviours we
have

a live I =} a offered t

86 Probabilities and PTioritie<> in Timed CSP

and b)' condition A3 we have

a offered (to, tl] * a live [to, /d

so if we restrict our~elVt'.s to half-open intervals, the two macros are equivalent:

a live [to, /}) ~ a offered [to, tJ)

Another specification technique that will prove useful is to say that two events a and b cannot
both be offered at the same time:

0, b separate I ::= a offered t * no b offered t

Tbi.-, can be generalised in the obvious way~:

A,B separate I == 'ria E A; bED \it E J a,b separate t

Al,' .. ,A n separateI::= 'r/~,J: 1 .. n t =l-j:::} A;,AJ separate 1

5.3.3 Prioritjes

We extend our specification language to allow us to specify that certain priorities hold. We
write D: preferred to {3 @ t to specify that the process prefers a to 13 at time I (if we have
observed the process until time t):

(0 preferred to /3@ t)(T,~, s) s. beyond t * (I.,o):::J (t, j3)

If the bags 0 and /3 are singletons then we will omit bag brackets to improve readability. We
can generalise this to include severa2 preferences:

00	 preferred to QI preferred to ... preferred to On @ t ==
Vi: 0 .. n - 1 CJ, preferred to 0,+1 @ t

We generalise this further to specify that certain priorities bold throughout some interval,
until one of the events occurs:

Q prefl!rred to /3@ I == V t E I CJu/3 at I n [0, t) v CJ preferred to /3@ t

00 preferred to CJ J preferred to ... preferred to CJ" @ I ==

VIE I (UOi) atI n [O,l) V CJo preferred to CJI preferred to ... preferred to on@t

00 preferred to 0, preferred to.,. preferred to On from t ==

Qu preferred to OJ preferred to .. preferred to On @ [1,00)

where ° at / for bag 0 has tb(' obvious meaning:

o at I == :3 a E CJ l E / a at t

5.3 A la,nguage for specifying prioritized processes 87

5.3.4 History predicates

As in section 2.5, we will often want to write specifications of the form lp(M (s)), where M is
a projection function that extracts some information from a trace, and cp is a predic"te. In
this section we define a few useful projection functions.

The functions first and last return the first or last timed events observed during a behaviour.

fjrst(s) ~ head s last(s) ~foots

Note that this is a pair consisting of a time and an aclton: more than one event could have
occurred at the same time. These can be qualified with one of the terms before t. after t or
during I to restrict attention to a particular set of times. We can also restrict our attention
to a particular set of events. For example:

(first A after t)(s) head(s A I.)

(last A before t)(s) foot(s A I)

(last during l)(!» /00'(' t I)

These operators will allow us to write specifications such as lastA before 3 = (2.Ua, ba).
Omitting bag brackets for singleton actions will make our specificatious more readable, for
example last A before 3 = (2, a).

The functions time of and name of return the time aud action eomponents of a timed action:

timeof(t,a} =. t nameof(t,a) =a
These fnnctions can be used to write predicates of the form time of first A after 2 3 or
name of last A = a.

Other functions that we will find useful are alphabet which returns the set of (untimed) events

observed, and count A which returns the number of events from the set A observed·

alphabet(s):£ "Es countA(s} == #(s A)

These can be qualified with the phrases before t, after t or during I; we will omi1 the argu
ment A of count if we want to refer to the total nnmher of events performed, i.e. In the case
A~E.

It will sometimes be useful to say that no events are performed:

silent(s) == s = -:;>...

This can be qualified. in the normal ways. for example

(silent before t)(s) == s t = -:;>

5.3.5 Environmental assumptions

Often we will want to say that a process acts in a particular way If the environment satisfies
some condition. In this subsC<'tion we describe a few macros for placing condJtinns on the
environment. The definitions of these macros areery similar to in the Timed. FaJllIres Model.

88 Probabilities and Priorities in Timed CSP

We will write a open t to specify that the environment i.s willing to perform an a at time t;
it is true if either an a is actually performed, or if the behaviour is consistent with the
envllODlIwnt being willing to Perform an additional a, but which the process can refuse.

a open t == a at t V a ref t

a open I is true if an a is eitlJer performed or refused at time t, Any such behaviour is

consistent with t.he environment being willing to perform an extra o.

This macro can be extended to sets of events in the obvious way:

A open t == A at t v A fef t

We will say a open I if the environment is willing to perform an a at allY time during I until
one is performed:

a open I "It E I a at In[o,t] V a ref t
A open I = "'It E I A at I n [0, I) V A fef t

As with live, it. is useful to have a special form for the interval [t, ao):

a open fromt == a open [t,oo)

A open from t == A open [t,oo)

It will also be useful to be able to specify that the environment is able to perform n copies
of an event:

a open" t == a at" I V a ref t

A open" I == A at" t V A ref I

a open" I == V tEl a at" III [0, tl V a ref t
Aopen"l == VIEI Aat"/I1[O,tJVAreft

'Ib specify that the environment is not willing to perform.an event, we use the closed macro:

a closed t == (a at t)

Any behaviour that satisfies this specification will be consistent with the assumption that
the environment is not willing to perform an a. Note that this is the saine as no a at 1: we
will restrict the use of closed to environmental assumptions. This macro generalises in the
obvious way:

Aciosed/:2'iaEA 'ViEI aclosedt

The specification internal"A say~ that the environment is alwaY$ willing to perform as many
events from a set A as the prOfess Wants. This will occur when the events from A are hidden:

(internal A)(T.I;, s) :2 $ = it~\A($ \ A)

internal A is true if t.he proces~ performs as many (or as few) events from A as it wants. In
particular it is true if the environment is willing to perform arhitrary man.y events from A,

5.3 A language for specifying prioriti2ed processes 89

such as happens when the events of A are hidden. Put another way, there is no offer v such
that v \ A ::;0 sit \ A and the process would rather have performed v to wbat it did perform:

"It v v\A=stt\A/l.v:Jstt

In particular

(internal A)('1",!;, 8) ::::} aEA;t '1" sttl:!:l(t,~(l~):Jstt

(internal a)('1",!;, 8) ::::} V, nt~(t,llo~);>I'tt

so the process would never have preferred to perform another member of A. If A i~ a singleton
set we will omit set brackets to improve readability.

ooNote that we do not have the law internal A = A open [0, '1"]. Consider the proCf'$ b f-
(a [] c) \ c. This initially has an offer relation with ~b~ :J ~a, b~ :J @ :J Oa~. Suppose it
performs ~a, b~ at time O. Then this behaviour satisfies a open oo [0, '1"J, since it will refuse an
extra a, but it does not satisfy internal a since it would rather perform one fewer a. However,
we do have internal A =? A open oo [0, '1"].

It is worth noting that internal A /I. internal B f;. internal(A U B). Consider th~ process
(c lD (a +- b)) \ c. Initially this has an offer relation with @ :J ~a, b~ :J ~a~ :J ~b~. SUppose
it performs ~a, b~ at time O. Then it satisfies internal{ a} /I. internal{b}, but it doesn't satisfy
"""'I{0, b) since (0, ll~) \ (o, b) ~ , t 0 \ {o, b) and (0 ,ll~) ::J , t o.
Note though that we do have the law internal(A U B) ==> internal A /I. internal B.

Another useful specification technique is to say that the environment is willing to perform
a particular bag o. An observation is compatible with this if 0 is not offered stronger that
what is performed:

(0 accessible t)('1",!;, s) =(t, a) ;2l s t t

(0 accessible t)('1", 1;;;;, s) is true if the offer relation of the process does not have (t, 0) stronger
than s t t. This fits with our intuitions becanse if the environment is willing to perform 0,

then we should not have (t,o) :J [} t t, or else the process would have performed a in
preference to s t t.
Tbis specification macro can be generalised to say that an action 0 is offered by tbe environ
ment throughout some interval unless an event from a is performed:

o accessible [=- 'r:I t E [oat [n [0, t) V (0 accessible t)

As normal, it Ls useful to specify that an 0 is available from some time t until it is performed:

o accessible from t == ° accessible [t, 00)

We can also generalise to specify that a set of actions is offered by the environment:

A accessihle [="10 E A 0 accessible [

The specification macros 'internal a' and 'a accessible [0,00)' are suhtly different: cc>nsider
a bebaviour with (O,Oa~):J (O,~b~) where a b is performed at time O. Tbissatislies tbe
specification internal a but not a accessible o. The specification internal a slates that no
more as could be performed by the process; the specifiration a accessible 0 state; that ~a~ is
not offered stronger than what is performed. The following lemma relates these two concepts
and will be useful in later sectioDS.

90	 Probabilities and Priorities in Timed CSP

Lemma 5.3.1: Let ~ = I;p A*B ~Q and c E C ~ An B. Then if (c live t)(7, !;Q' S B)
and (internal C 1\ {e},A \ C separate 1)(7, [;;;;,S) then (c accessible t)(T, !;;p,s A). 0

If the events of C are internal, and the slave of a parallel composition is willing to perform c E
C at / then, under certain circumstances, the master is in an environment that is willing to
perform a c at t. The circumstances are that if the process can perform a c then it cannot
perform allY event from A \ C.

Proof: Assume the premises. From (c live t)(T, !;Q' S B) we have

cEr;(stt B) V stt Bl:'::I(t,~c~):JQstt B

$0 in either case we have

st/ B\CI±J(t,nc~)Eitems!;Q	 (.)

using condition AS.

SUPPO&' for a contradiction that ---. (c accessible t)(7, !;p, s A). Then

(t,U'~):::Jp ,t' A

andsoE(st/ A\ C]={}because{c},A\Cseparatet. Define v by

v""'t'l C~(',U'~)

Then v A = (t,~e~)::Jp s t t A and v B = s t t B \ Cl:':l(t,~c~) E items!;Q by (*); hence
v ::J S t t by the definition of parallel composition of offer relations. Also v \ c = s t t \ C,
contradicting the definition of internal C. 0

We have the following corollary.

Corollary 5.3.2: Let !;=!;p A4t- B !;QandcE CO;;;; AnB. Thenif(c liveJ)(T'!;Q's B)
and (internal C 1\ {e}, A \ C separate 1)(T,~, s) then (c accessible 1)(T, ~p, sA). 0

The internal macro tends to be of use when evellts are hidden. In section 5.4.8 we will show
that if we can prove P sat internal A :=> 5(T,!;,S) then, under certain circumstances, we can
deduce tha.t P \ A sat 5(T. ~,s). The accessible macro is often introduced when we consider
parallel composition, as sbown by the above lemma.

The specification language presented in this section is very similar to the specification lan
guage presented in section 2.5. In chapter 6 we will show that if

•	 S ~ a piece of syntax in the specification language satisfying certain properties, for
example if it is made up of ats and lives {without any mention of priorities}, combined
using conjunctions, implications and negations; and

•	 we can lind an unprioritized TCSP process P sllch that P satisfies the failures specifi
cation represented by S,

then any BTCSP refinement of P will satisfy the specification represented by 5 in the priori
tized model. This will allow us t.o refine processes from the Failure:; Model into the Prioritized
Model.

5.4 .Derivation of the proof rules 91

5.4 Derivation of the proof rules

In this 5e(:tion we derive a complete proof system for behavioural specifications on prioritized
processes. The proofs follow very closely those of Schneider [SchOO] and Davies [Dav91] for
tbe proof rules in the Timed Failures Model. The rules are summarized in appendix B.l.

5.4.1 Auxiliary rules

The following rules can be proved directly from the definition of the satp relation.

P satp 8 P satp 8
P satp T 8(T, C, 5) ::} T(T, C, 5)

P satp tnle P satp 81\ T P satp T

Every process satisfies tbe null specification; jf a process satislies two p:redicateE. then it
satisfies their conjunction; and if a process satisfies some specification, then it satk-lies any
weaker specification.

5.4.2 Basic processes

The semantic equations for the basic processes STOP, SKIP and WAIT t are all orthe form

AST P P =[b I T(b))

The corresponding proof rule is of the form

T(b) => S(b)

P satp 8(b)

This is sound since, from tbe semantic equation, 'rib E ART P P T(b); then from the
premise, 'rI bE ABT P P S(b), so P satp S(b).

5.4.3 Unary operators

The semantic equations for the unary operators prefi...'cing, delay, abstraction, and renaming
can all be written in the form

AST F(P) p= {b I T'(b)) U {C(b) I/(b) EAsT P P A T(b))

The corresponding proof rule is of the form

P satp 8
1(b)

T'(b) => S(b)
S'U(b)) A T(b) => S(C(b))

F(P) .at, S(b)

92 Probabili6es and Priorities in Timed CSP

In the cases of hiding and renaming, TI(b) is falfje and so the corresponding antecedent can
be dropped. The rule can be proved sound as follows. Assume the antecedents of the rule;
then

bE A BT F(P) p

~ (semantic definition)

T'(b)v:Jb' b~C(b')A/(b')EABTPpAT(b')

=> (first and secoud premises)

Sib) V 3b' b ~ C(b') A S'(j(b')) A T(b')

=> (third premise)

Sib) V 3b' b ~ Clb') A S(C(b'))

=> (predicate calculu$)

Sib)

So Vb EABT F(P) P Sib). ;.e. F(P) ..t, Sib)

5.4.4 Binary operators

The semantic definitious for the binary operators may be written in the following form:

A BT P (jJ Q p'" {C(b) I fp(b,) E ABT P pA/Q(bQ) E A BT Q P A R(b, bp, bQ)}

The corresponding proof rule is of the form

P satp Sp(b}

Q satp SQ(b)
Sp(j,(bp)) A SQ(jQ(bQ)) A R(b, bp, bQ) => S(C(b))

PEEl Qsatp S(b)

The rule may be proved as follow~. Assume the antecedents hold. Then,

b' E ABT PEEl Q p

=> (semantic definition)

3bp,bQ,b jp(bp)EABT Ppl\!Q(bQ)EABT Qp/\R(b,bp.bQ)l\bl=C(bj

=> (first and second premises)

:Jbp,bQ,b Sp(fplbp)) ~ SQ(jQlbQ)) A R(b,bp,bQ) A b' ~ C(b)

=> (third premise)

3bp,bQ,b S(C(b)) A b' ~ C(b)

=> (predieate calculus)

Sib')

SoVb'EABT PEElQ p S(b'), i.e. PEflQsatpS(b).

5.4.5 Indexed operators

The semantic equations for the two indexed choice operators, 'EI P, and ~.1 : I ~ Pi can
be writteu in the form

AoT (fJ,,,P, p" {b I T'(b)} U {C(b) I:J, E J lib) E AnT P, p A T(b))

5.4 Derivation of the proof rules 9.

The corresponding proof rule is

'r:/I E I P, satp S.(b)
T'(b) => Sib)
V, E I Si(j(b)) 1\ Tlb) => S(G(b»

$iEIP. satp S(b)

In the case of infinite nondeterministic choice, the predicate T' (b) is ja[8e, so the correspond
ing premise in the inference rule is dropped. The rule can be proved sound as follows. Assume
tbe premises of tbe proofrule hold. Then we bave

bE ABT GJ'EIP, p

=> (semantic definition)

T'(b) V 3 b' b ~ G(b') A 3; E I J(b') E ABT P. p A T(b')

=> (premises 1and 2)
Sib) V 3 b' b ~ G(b') A 3; E I S,(Jlb')) A T(b')

=> (premise 3; predicate calculus)

Sib) V 3b' b ~ G(b') A S(G(b')

=> (predicate calculus)
S(b)

Hence, 'Vb EAsT (fJ'EIPi P S(b), so CB.EJP, satp S{b).

5.4.6 Recursion

In order to derive a proof rule for recursion, we reason about the topological space on which
the model is based. The following theorem is taken from [Ros82];

Theorem 5.4.1; Let M = (A, d) be a complete metric space, and let TV be the topological
space ({true,jalse), T) where T= {{}, {jaI8e},{true,ja[8e}}. If:

• F: M -+ T is continuous with respect to the d-open topology and T,

• the set {a E A I F(a) = true} is non-empty,

• the function C ; M -+ M is a contraction mapping, and

• 'Vx: A F(x) == true => F(C(x)) = true,

tben F(fix(C)) = tnle. <:>

We define a predicate to be satisfiable if it is satisfied by some element of STS:

Definition 5.4.2: The predicate R is satisfiable if 3A; STS R(A). <:>

In the following subsections we prove the soundness of the proof rules for immediate recursion,
delayed recursion and mutual recursion.

94 Probabilities and Priorities in Timed CSP

Immediate recursion

If P is constructive for X then we have the following proof rule for immediate recursion:

Rule 5.4.3:

IIY'STB R(Y)=>R(A8T Pp[Y/XIl
[R continuous and satisfiable]

R(Aar ~X P p)

{o,

Proof: Jr P is constructive for X then tbe mapping AX A8T P p[Y / XJ is a contraction
mapping. By hypothesis, R is continuous and {A: STB I R(A) = tT1le} is non-empty. We
have assumed that

II Y • STB R(Y) => R(AB> P pi Y / Xl)

Hence we may apply theorem 5.4.1 to show that the result holds. o

We are only interested in behavioural specifications; this allows our proof rule to be simplified:

Rule 5.4.4:

X sat, S => P satp S

J1 X P satp S

(o,

We need. the following result adapted from [Ree88J;

Theorem 5.4.5: A specification R is continuous if for aU X in STB such that R(X) :=: false:

3 t : TIME 'if Y : ST8 Y t = X t => R(Y) = fal.~e

Q

We can now prm-e the inference rule sound:

Proof: III order to use rule 5.4.3 we only need to prove that the predicate

R(Y) ""(r,~,,) E Y S(r,~,,)

is continuous and satisfiable. It is satisfiable since R({}) obviously holds. 'Ib show continuity,
suppose that X E ST8 and R(X) =jalse. Then 3(T,~,Il) EX...., 8(T,(;,o9). Pick t 1".

Then for all Y E ST8:
Y t = X t ~ (1",~, s) E Y

But, S(T,~, a), so R(y) = jaloge, as required. o

Note that in proving X satp S '* P sat p S we cannot assnme that X is a member of MTB:
we may not assume that any of the axioms are satisfied by X, This is rarely a problem.

5.4 Derivation of the proof rules	 95

Delayed recursion

The following proof rule holds for tbe delayed recursion operator:

Rule 5.4.6:

X sa', (S((T, C, s1 - bj A b<g;n, b A C b ~ [O,b) 0 1M)) => P sa', SIT, C, ,)

p.X	 PsatpS(r,!;;,s)

t>

Proof: The proof of this is similar to the proof of the rule for immediate recursion.

Mutual recursion

We restrict our attention to recursive equation sets that have a vector of terms that is
constructive for the vector of variables. The following rule shows that if a vector of closed,
satisfiable predicates 11 is preserved by the semantic mapping, then it is satisfied by tlte fixed
point.

Rule 5.4.7;

(V; R.(Y;)) => Vj R,(ABT P, p[Y/X])
[Ri closed. satisfiable]

Vj Rj(ABT (X; - P;); p)

t>

Proof: Recall that in the proof of soundness for mutual recursion, described in chapter 4,
we defined a secondary vector of processes 9... by

Q; 3 P,jQ,/X, 11 E "g(;))

W, d,fined M(X,E.)p by M(X,EJp OO,1Y ABT £. p[y/X], and defin'd M(X,Q)p ,imi
lady. We showed that M (X, Q)p is a contraaion mapping, and that its unique ~ed point
is also the unique fixed point cl" M(X,f!..)p.

Assume, tben, the premise and side condition of the proof rule. We claim that

(Vi,] R.(Y;))=>Vj R;(ABT Q, p[x/X))

we prow this by transfinite induction. Define J by

J 3 {k,] I lV,,] R.(Y.)) => R.(ABT Q. piX/X])}

We assume seg(k) ~ J and prove that k E J. Assume that

V,,] R,(Y;j (.)

0

96 Probabilities and Priorities in Timed CSP

Then by definition of ii,

ABT Q, p[Y/XI ~ABT P, p[Y/X][AsT Q, p[Y/XI/X,11 E "~(k)]

Define the vector z.. by

ZI={YI ifl¢.seg(k)

ABT Q, plY/Xl if I E "!I(k)

Then

ABT Q, p[y/Xl ~ AllT P, plZ)Xl
Now, by the inducti\'e hypothesis and (*), VI: I R/(Zd, so from the premise of the proof
rule, Rl(A BT Pk p[z../X]), i.e. RA;(ABT Q/r; pry/X]). This proves our claim, and shows that
M (X, Q)p preserves Ji.

Now, each R, is closed and satisfiable, so the vector of predicates .B. is closed and satisfi
able. Hence we may apply theorem 5.4.1 to deduce that .B. is satisfied by the fixed point
of M (X, Q)p. But this fixed point is the sa.me as the fixed point of M (X, E..)p, so we dednce
that the ~le is sound. 0

We can use this rule to derive the following rule for beha.vioural specifications:

Rule 5.4.8:

(VI:1 Xi satp 3d ~ v]' / P. satp S;

(X; - P;), satp 5,

6.

This rule follows from th~ previous rule in the same way rnle 5.4.4 followed from rille 5.4.3.

5.4.1 Completeness

Vv'e claim that the proof systeru is complete in the s~nse that if some behavioural sp~cification

5{T, [;;;, 5) is true of all behaviours of a process P, then the inf~rence rules given in this chapter
are sufficient to prove that P sat S. We proceed via the following lemma:

Lemma 5.4.9: If P E BTC5P is such that ~very recursion if; constructive, then we mar us~

the proof rules to establisb
P satp (..,., ~,5) E ABT P p

<;)for any environment p.

Proof: We proceed hy a structural induction Upon the syntax of BTCSP. The result is easily
established for the hase ca.'>ffi. For example, consider th~ process STOP. The inferenc~ rille

S(T, [O,T] 0 (ijl), -<>-)
5TOPsatp 5

5.4 Derivation of the proof rules	 97

allows us to establish that STOP satp ~ = [0, T]0 (n~) 1\ 5 = -<>-. From the semantic
definition we have that

c; ~ [0, TI0 (M) A' = -<>- => (T, C;, ,) E ABT STOP p

So	 the inference rule

P satp S
S(T,C,S) => T(T,C,oi)

P sat" T

allows u.s to establish that STOP !5atp (T,~, s) E A BT STOP p

For composite processes we assume the result holds for the subcomponents, and apply the
appropriate proof rule. For example, consider the left-biased lockstep parallel operator. By
induction, we know that the proof rules are strong enough to prove

P satp {T,!;.s)EABT P P

Q satp (T,!;, s) E A8T Q P

The semantic equation for P tft- Q gives us that

(T,~p,S) E ABT P P 1\ (T,!;Q,oi) E AnT Q p => (T, ~Pt/t r;;;;Q,s) E ABT Pt/tQ p

Then the inference rule

P satp Sp

Q satp SQ

Sp(T, ~p, s) 1\ SQ{T, ~Q' s) => SeT, ~Pt/t !;Q' ,~)

P*QsatpS

Instantiated with

Sp(T,!;,S) -= (T,I;;,5) E ABT P P

SQ{T,~,S) == (T,I;;,s)EABT Q P

S(T,~,S) =. (T,!;,S) E A BT Pt/t Q p

allows us to prove
pt/t Qsatp (T, 1;;, s) E ABT Ptft- Q p

as required.

For recursion we prove the result for the immediate recursion operator; the other types of
recursion are similar. Recall that the semantics of /-1 X P is defined to be the unique fixed
point of the mapping M(X,P)p where

M(X,P)p£ ~ Y AST P plY/Xl

Let S(T,~, oi) .= (T,!;, oi) E A BT /-1 X P Pi we will sbow

X satp S => P satp S

98	 Probabilities and Priorities in Timed CSP

Assum~ X satp 5. Then \I'(r,~, s) E p X (r,~, s) E A BT }1X P p, Le.

p X ~ A BT }1 X P p

Beca.use of the way the semantics for each opE!rator is dE!fined, t.he mapping on M TB corre
sponding to any STCSP term is monotouic with rE!spect to tbe subs€t. relation. So

M(X,P)p(p X) >; M(X,P)p(ABT pX P p)

Hence, expanding the dE!finition of M (X, P)p, we have

AnT P PiP X jX] >; M(X,P)p(ABT pX P p)

*	 (definition of substitut.ion)
ABT P P >; M(X,P)p(ABT pX P p)

*	 (ABT j.l.X P pis the fixed point of M(X,Pjp)
ABT P p ~ ABT }1 X P p

:=)- (definition of sat p)

Psat p (r,~,~) EABT}1X P P

So P satp 5. Hence we can use thE! proof rule

Xsat p 5*Psatp 5

}1X P sat p 5

to infer that}1X P satp (r, 1;;;;, .'1) E ABT}1X P p as rE!quired. This concludes the proof
o

We have shown that our proof rules are enough to establish P satp (r,~, s) E ABT P p. If
a specification 5(r,~, s) holds of a process P, then (r, ~, s) E ABT P P => 5(r, ~, s). Then
thE! proofrule

P sstp 5'

5 1(r,e,s) *5(r,C,sj

P satp 5

with 5'(r,~,~) instantiated with (r,~, 5) E ABT P p can be used to prove that P sstp 5.

5.4.8 Hiding

In this sul:Aection WE! consider a way of simplifying thE! rule for hiding. We definE! a specifi

cation 5 to bE! A-independent if the rE!moval of A's E!VE!nts from thE! trace and off"E!r relation
does not affect the truth of 5.

Definition 5.4.10; A behavioural specification S is A-indepE!ndent iff

Y(T,C;,')	 S(T,C;,') => S(T,C; \ A,' \ A)

<>

5.4 Derivation of tbe proof rules 99

We have the following inference rule:

Rule 5.4.11;

P satp internal A ~ S [S is A-independent]
P \ A aatp S

{O

If S is A-independent and P satp internal A::::;. 8 then we can deduce P \ A aatp S.

Proof: Assume the premise and the side condition. Then we have

(T,[;,s) EA8TP\Ap

::::;. (semantic definition)

3[;;',i ~/\A=I;1\s'\A=s1\s'=1'tC)A(s/\A)1\(t,l;l,s')EABTPP

::::;. (from the premise, definition of internal A)
3l;;',i 1;;/ \ A =!;; 1\ 5' \ A = s 1\ S(T,!;;',S')

::::;. (S is A-independent)

5(T. !;;,s)

Hence V(T, 1;, 5) E ABT P \ A P S(T, 1;, 5), i.e. P \ A satp S. o

5.4.9 Arguing about probabilistic processes

Up until now we have heen discussing proof rules for unprobabilistic prioritized processes.
If we want to prove that an unprobabilistic specification is met by a probabilistic process,
then we can use the abstraction result presented in section 5.2 to reduce the proof obliga
tion to proving a specification on a BTCSP process, and then apply the proof rules for the
unprobabilistic, prioritized model.

Alternatively, we can derive proof rules for arguing directly about probabilistic proc£8Ses. The
proofrules for un probabilistic operators take precisely the same form as in the unprobabilistic
model. For example, we have the following rule for lockstep parallel composition:

P satp Sp in M p T8

Q satp SQ in M PT8

8p(T, Cp, 5) 1\ SQ(T, C Q , S) ::::;. 8(T, Cpo!Jt [;;0, .'I)

Po!Jt Q satp 5 in MpTB

This can be proved as follows. Recall that in section 5.2 we proved the foUowing result:

l{)~B)(p) satp' Sin MTB {:} P satp S in MPTB if pi = lrJ 0 P (0)

Assume the premises of the above rule. Then if p' = 1rJ 0 p we have

l{)~l(p) satp' Sp in MTB rpf()(Q) satp' So in MTB

100	 ProbabiJities and Priorities in Timed CSP

by r.), Applying the proof rule for parallel composition in .MTB, we have

'P~)(P)~ 'P~;n(Q) = 'P~)(P *QJ satp' 5 in MTB

so P~Q sat p 5 in MPTB, by (.) again.

The probabilistic internal choice operators have the following rules:

P satp Sp

Qsat p SQ V 1 E I P, satp 5,

Sp(T,C,5J V SQ(-r,C.s) => 5(,-,C,s) VIEl S,(T,C,S)=>S(T,C,.~)

Ppnq Q satp 5	 lEI [P,]P, satp 5

These tan be proved in exactly the same way as the rule for parallel composition, above.

Fur probabilistic ext.ernal choice we have the following rule:

P lD Qsatp S

p [DQ satp 5

P p q Q satp 5

This call b{' proved using the proof rule fOr binary probabilistic internal choice and the fact
that P p q Q is by definition equal to P lD Q pnq P [] Q.

Thus, we can prove a probabilistic specification holds of a process either by applying the

abstraction result aud arguing iIi Mys, or by applying these inference rules for probabilistic

processes directly.

5.5 Example: the lift system revisited

In this section we consider the lift system that was introduced in section 3.2. Rf'call that the
lift system was defined by

SYSTEM ~ (LIFT AUR4tRuP BUTTONS) \ R

LIFT ~ LlFT()

L1FTo ~	 req! ~ arrivE, ~ LIFTJ

[Jreq2 ~ arriVE!! --2..., LIFTE

[Jm1O ~ arnVEO ~ LIFTo

LIFTJ ,:	 rEq2 ~ arrlliE!! ~ LIFT!!

[Jreqo ~ arriveo ~ LIFTo

[Jr'f.qJ ~ arriVE} ~ LIFTJ

LlFTT ==	 reqo ~ arrivEo ~ LlFTo
[Jreq!! ~ arnVE2 ~ LIFT!!

[JreqJ ~ arrive! --.!..;. LIFTT

5.5 Example: tbe lift syslem revisited	 101

LIFTl,	 reqt ~ arnve] ~ LIFTt

lDTl'.qO ...!.. arriveo ~ LIFT0
, 1

lDTl'.q2 -----1' arnve2 -----1' LIFT~

BUTTONS BUTTONa BUTTONj BUTTON:!

BUTTON, - push; ~ reg, ---4 BUTTON, (i = 0,1,2)

where the interleaving of the buttons could be either left- or right-biased, and

A"{amv" I 'EO .. 2} R"{req, [iEO .. 2} P" {push, liED .. '}

LIFTo and LIFT2 represent tbe lift on the giound and second floors respectively: LIFT}
and LIFTt represent the lift on the first floor wbere the previous movement was up or down,
respectively. The lift is biased in favour of next going to an adjacent floor; when it is on the
first floor, it is biased. in favour of continuing in the direction it last went.

We will show that the lift arrives within 15 seconds of the button being pressed if the envi
ronment always allows the arnve events.

SYSTEM satp SPEC

where SPEC e internal A 1\ push, at / 1\ beyond t + 15 => arnve, at [t + 3, t+ 15)

Using the proof rule for hiding, we can reduce our proof obligation to

LIFT AUR*RUP BUTTONS satp

. . (PUSh; at t 1\ beyond t + 13 => reg; at [t + 1, t +13))
Internal A 1\ Internal R =>

1\ ref[i at t 1\ beyond! + 2 => arrive; at t + 2

A reg; occurs within 13 seconds of a push;, and arrive; occurs 2 seconds after the reg;.

We will use the proof rule for parallel composition to reduce the proof obligation to

LIFT satp SPECL

BUTTONS satp push; at t => no reg, at [t, t + 1) 1\ Tl'.q; live from t + J

wbere

SPECr. e	 A, R separate

1\ req; at t => arrive; live from t + 2

1\ internal A 1\ Tl'.q, accessible from t 1\ heyond t + 12 => ref[, at [t, t+ 12)

The lift offers req and arnve events separately; two seconds after performing a ""};, it offers
arrive;; and if the environment is willing to perform any arrive events and is offering regi,
then the lift performs Tl'.q; within 12 seconds. The buttons offer reg; one second after per
forming push;. We have the following proof obligation:

Lemma 5.5.1: Let ~ 3: I;r. AUR~RUP ~8' Then

SPECr.(T'!;L'S AUR))
(1\ (push; at l => no reg at [t,l + 1) 1\ req, Iivefrornt + I)(T,~8,S RUP) =>

internal A 1\ internal R =>)
push; at t 1\ beyond t + IS => 1"fi/, at (t + 1, t + 1!J)) (T, ~,.l)

((1\ ref[; at t 1\ beyond t + 2 => arrive. at t + .2

"

102 Probabilities and Pdorities in Timed CSP

Proof of lemma: Let l;;;; £, ~L AUR4t-RUP !;B' Suppose

sPEed" !:Ll s Au R)

1\ (push,.at t => no req at [t,l + 1) /\ req,livefrom t+ 1)(7,1;;;;8. s RUP)

/\ (internal A II. internal R)(T, !;, s)

\Ve want to show

PWJh, at t A beyond t + 13 => req, at [t + 1, t + 1S)) (T, C, 5) (.)
(/\ ,"eq. at t /\ beyond t + 2 => arrivE, at t + 2

For the fir!!t conjunct. suppose that (push, at t /\ beyond t + 13)(T, ~, s). Then we have
(push, ilt 1)(7, 1;;;;8. s fl U P) so by BUTTONS' specification, (reg, live from / + 1)(7, !;;;H,.5
Ru Pl. We will show (req, accessible from t+ 1)(T, !;L, S A URI. Recall corollary 5.3.2 which
said:

Let l;;;; =!;p A*R!;Q and c E C ~ An B. Then if (c live I){T, ~Q'.'l B) and
(internal C /\ c, A \ C separate 1)(T, 1;;;;, s) then (c accessible I)(T, !:p, sA).

Taking [= ,eq" C = R, we must 5how that (internal R /\ TeIj" A separate 1)(7,~, .'l), Th('
first dallSE' holds by hypothesis; the secoud holds because A, R separate. Hence we have

(req, accessible from t + 1)(7, !;L, S Au R)

Also, (internal A)(7, C;;;, s) so (internal A)(7, !;L,S AUR). Hence from the third clause of SPECL
we see (nq, at [t + 1, t + 13))(7, C;;;L, 5 AU R), so (req, at [t +1, t + 13))(7, 1.;., 5), as required.

For the second conjunct, of (_), suppose that (req; at t 1\ bey<Jnd t + 2). Then (req, at
t)(7, t;;L, ,j AU R) so (arrive, live from t + 2)(7, !;L, 5 AuR), by the second clause of SPECL.

But (internal A)(7, t;, 5) so (internal A)(7, !;L, 8 Au R), so (flmve, at t + 2)(7, ~ L, 5 Au R),
which gives (arnve, at l + 2)(7, !;,.'l), as required. [I

\Ve now prove that the two suhcomponents satisfy their specifications. The result for the
buttons is easiLy proved: we can use the proof rule for interleaving to reduce the proof
obligation to

',i~ BUTTON, satp push; at t => no req at It, t + 1) 1\ req, live from t + 1

which can be proved using the proof rules for prefixing and recnrsion.

We show that LIFT satisfies the specification SPECL by proving that

LIFTo satp SPECo LIFT] satp SPEC!

LIFTt satp SPEcf LlFTr satp SPEer

where

SPECo ~ SPECL

reqO accessible from t => reqo at It, t + 9J)

A (internal A 1\ silent before t) =>

1\ reql accessible from t => f'eqJ at t
1\ beyond I + 9 (

1\ reqr accessible from t => reqr at [I, t + 3]

5.5 Example; the lift system revisited 103

SPEC] 3: SPECL

. .) (""" ,«es,;ble (,om t => """ at [t, t +6])IntemalA 1\ 5i1ent before t
1\ (::} 1\ reqJ accessible from t =:> relJl at [t, t +3]

1\ beyond t + 6
1\ relJt accessible from t =:> relJ2 at t

SPEC} =: SPECL

(".,n'l A ~ ,;Ien' belme t) (""" ~«"",;ble Imm t => """ a' t)
1\ =:> 1\ relJl accessible from t =:> relJl at It, I + 3]

1\ beyond t + 6
1\ relJ: accessible from t ~ req2 at [t, I + 6]

SPEC: =: SPECL

C .) (''''' 'cm,;ble I,om t => """ at [t, t +3])Internal A 1\ sIlent before t
1\ ~ 1\ reql accessible from t ~ relJl at t

1\ beyond t + 9
1\ relJ2 accessible from t '* relJl! at [t,! + 9]

Note that SPECo => SPECL and LIFT is defined to be LIFTo, 50 this will be enough to
deduce LIFT satp SPECL .

We prove these results using the inference rule for mutual recursion, noting that the recursions
are uniformly 3-constructive. We assume

LlFTo satp SPECo LIFT] satp SPECJ

LIFT; satp SPEC} LIFT" satp SPEC"

and we need to show

""" ~ am." ..2.., LIFT;)
[)relJt --; arnve: ~ LIFT! satp SPECo(
[)relJo --+ arnveo --+ LIFTo

""" ~ am." ..2.., LIFT,)
[)reqo ~ arriveo ~ LIFT0 satp SPEC;

(
[)relJl ~ arrive1 ~ LIFTJ

""" ~ am." ..2.., LIFT,)

([)ffi]! -; arrive! -7 LIFT: satp SPECt

[)reql --+ arnve/ --+ LIFT}

reql ~ amvel ~ LIFT})

[)reqo ~ arriveo ~ LlFTo satp SPEC:

(
rrJreq:!.;. arrivel! ~ LIFT:

We prove the first result; the rest are similar.

We begin by proving that SPECL is satisfied. For the separate clause it is enough, by the
proof rule for external cboice, to show that

retlj!.;. arnvej ~ LlFTr satp A, R separate

104 Probabilities and Priorities in Timed CSP

where LIFT; ~ LIFTo, LIFTj == LIFT], etc. This is ea.sily proved using the proof rule for
prefixing and the assumption that LIFT]· S&tp A, R separate.

For the second clause of SPEeL it is enough, again by the proof rule for external choice, La
show tbat

re<JJ ~ arrive) ...!...,. LIFT; satp req, at t =* arrive, live from t + 2

Suppo!ie (reqi at t)(T, ~,~). Then either

•	 this is thp first event of req, ~ afTlv€l -..!.--..,. LIFT)*, in which case l = J. Then using
the proof rule for prefixiug, we haw' (<1fT1ue, live from t + 2) (T, i;;;, s); or

•	 this is not the first event, in which case it must be an evcnt of LIFT]·. In this caBe, we
(au deduce the result from the corresponding clause of the assumption about LIFT]*.

For the third clause of SPEer, suppose

(internal A 1\ reqi accessible from t /\ heyond t + 12)(T, [;, 5)

We want to show req, at [t, 1+12). Note that (t', reqI) :::J (tl, TelJ.ld :::J (t', reqo) :::J (e ,D~) for aU
times eup until wben tbe first. event occurs. Expanding the definition of req, accessible from t,
we see that an event must occur by time t at the latest. We have a number of cases to consider.

•	 Suppose no event occurs before time /, and req, occurs at t: in this case the result is
immediate.

•	 Suppose the first event to occur is re'h at. time I., and j -# 1: by the definition of [J,

and since req. accessible from t we must have J := 2 and l '= 0 or j = 1 and i of 1. We
consider these two subcases:

- Case j = 2 and i = 0: because (internal A)(T,~, 5), by assumption, and by the rule
for prefixing, we have arrive£ at t + 2, and the process acts like LIFT2 from t + 3.
Now by assumption.

LIFT!! satp

internal A /\ silent before 0 /\ beyond 9 /\ reqo accessible from 0 =) reqo at [0, 3]

so in this case we have reqo at [t + ,1, t + 6].

- Case j = 1 and i -# 1: because of the assumption (intemal A)(-r, ~,5). and by
tbe rule for prefixing, w£ lIave arrivel at t + 2, and the process acts like LIFT;
from t + :1. Now by assumption,

LIFT; satp (internal A /\ silent before 0 /\ beyond 9) =?

f'f.qO accessible from 0 -=) reqo at [0, 61)

(/\ req2 accessible from 0 =) req2 at 0

so in either case WP have req, at [t + 3, l +- 9J.

5.5 Example: tbe lift system revisited	 105

•	 Suppose the first ev~nt to occur is re~ at some time t' with [' < [< t' + 3: then
we have arrive; at t' + 2 and the process acts like LIFTj" from time t' + S. Now by
assumption,

internal A 1\ sireot before °) [I
LIFT)"' satp	 *reqiat 0,9(1\ beyond 9 1\ req. accessible from 0

so req, at [(+ 3, e+ 12], i.e. reqi at (t, t + H!).

•	 Suppose the first event to occur is rellj at some time e with [I + 3 t: then we have
arrivej at tl + 2 and the process acts like LIFTl from time [' + 3. Now by assumption,

LIFT]"' satp internal A 1\ reqi accessible from t 1\ beyond t + 1£ =} req, at [t, t +12)

so reqi at It, t + 1£).

Hence in each case we have req, at [t, t + 1£), so the second clause of SPECL lli satisfied.

We now turD our attention to proving

reqO accessible from t =} reqo at It, t +9])
internal A 1\ silent before l 1\ beyond t + 9 =} 1\ reql accessible from t :::} req, at i

(
1\ req2 accessible from I=} req! at [t.1 + 3)

Assume internal A 1\ silent before t 1\ beyond t+ 9. We prove the first clause of the consequent;
tbe other clauses are easier. Suppose then that (reqO accessible fromt)(T,~,8). By the
definition of ID we have (t, req1) :J (t, req2) :J (t, reqo) :J (t,@), and expanding th~ definition
of reqo accessible from t we have (t, reqo)]18 it, so a reqi occurs at t. We consider the three
possibilities:

•	 Case reqo at t: the result is immediate.

•	 Case req} at t: then arrive} at t + 2, and tbe process acts like LIFT} from time t + 3.
Now by assum ption

(internal A 1\ silent before 0) [ILIFT1
' satp	 :::} reqo at 0,6

1\ beyond t + 9 1\ reqo accessible from 0

so reqo at [t + 3, t + 91.

•	 Case req2 at t: this case is similar to the previous case.

So the result holds in each case.

H~nce we have shown that LIFT satp SPECL and so SYSTEM satp SPEC. o

Chapter 6

Relating the Prioritized Model to
the Timed Failures Model

In tbts chapter we want to relate the Prioritized 110del of BTCSP to the Timed Failures Model
of Timed CSP. This will help us to understand the Prioritized Model, and also allov.' us to
prove properties of prioritized processes by proving results about corresponding unprioritized
proceSSe<i.

In section 6.1 we produce the ahstraction mapping from the Prioritized Model of BTCSP to
the Timed Failures Model of Timed esp. We present a syntactic mapping '{! that removes
aU priorities, and derive a corresponding semantic mapping e. We show that under the
abstraction mapping 8, thf' set of failures corresponding to a prioritized process P is a subset
of the failure-; of the process ;p(P).

In section 6.2 we use this abstraction result to show how. nnder certain circumstances: we
can translate specifications in the Prioritized Model into corresponding specifications in the
Timed Failures Model. If we can find a TCSP process that satisfies a failures specification,
then any BTCSP refinement of that process will satisfy a corresponding specification in the
Prioritized Model. We deVl:!lop a number of mles for translating specifications written in our
specification language The Timed Failures Model is a simpler model thafl the Prioritized
Model of BTCSP. so the proofs are normally simpler.

We can also use this refinement method as follows; often a specification will consists of a num
ber of conjuncts; normally it is possible to find a failures specification corresponding to mo~·t

of these oonjuncts. If we can find a TCSP process satisfying this failures specification. then
we only nt'ed to investigate which of its BTCSP refinements satisfy the rest of the conjuncts
of the original specification. We illustrate this method with an example in section 6.3.

6.1 An abstraction result

In chapter 5 we presented abstraction mappings from the probabilistic and deterministic
languages and models to the prioritized language BTCSP and model M TH. We now present
abstraction mappings from BTCSP to TCSP, and from the Biased Model M TB to the Timed
Failures ~10del }vlT/i'. The abstraction mappings are shown in figure 6.1. The mappings

~if) and e}fll remove probabilities while keeping biases: the mappings '//i l and e~) remove
determini~m hut keep biases; Ihe mappings 'PH aUG eB remove bia.'ies.

106

6.1 An abstracUOD result lOT

PBTCSP DTCSP MP'l'R ftJDTB

~~)

V
~W/ lJ~B) O~)

"T 'I TS

0"]
Tesp MTF

Figure 6.1: A bil."rarchy oflanguagcs and models

We define the obvious mapping from the syntax of STCSP to the syntax of TCSP which
removes all priorities:

Definition 6.1.1: We define lpB : BTCSP --+ TCSP by

~B(PID Q) '" ~dP) ~dQ) ~B(P [] Q) '" ~B(P) ~B(Q)

~8(P -'<It Y Q) '" ~B(P) X II Y ~B(Q) 'B(pX-I>Y QJ '" ~B(P) XIIl' ~B(Q)

~8(P<It Q) '" ~8(P) II ~dQJ ~B(P -I> Q) '" "B(P) II ~B(Q)

'B(P f- Q) '" ~H(P) 9B(Q) 'B(P ---> Q) '" ~B(P) ~B(Q)

~8(P<tt Q) '" ~B(P) II ~B(Q) ~B(P t Q) '" "B(P) ~ ~B(Q)
c c

~B(P) '" P for P = STOP, SKiP, WAiTt, orX

~B(F(P)) '" F(~B(P)) forF(P) = a~ P, WAiT t; P,P\X,

!(P),"X P, DC"X P

9B(Pill Q) ~ ~B(P) ill '8(Q) for EB =n, . " ,or \J, .
o

6.1.1 The abstraction mapping

Having produced a mapping betwCE'n tbe syntaxes, we now seek a corresponding mapping OB

between the semantic spaces so that the diagram in figure 6.2 commutes.

We might na'ively expect to be able to produce a result of the following form:

if V X OB(P X) = pi X chell 0B(ABT P p) =:FT ({!B(P) pi

However, it is not possible to produce such a mapping BB. Consider tbe two processes

P == a ----+ b ----+ STOP ID a ---t c ---t STOP and Q == a ----+ b ---t STOP

108 ProbabiHties and Priorities in Timed CSP

'PH
BTCSP TCSP

AHTI
JFT

MTH MTF88

Figure 6.2; The syntactic and semantic maps

In MTB these two processes are equivalent, so we have 8 8{ABT P p) = BB(AsT Q p),
whereas FT 'PB(P) pi t- FT 'Ps(Q) pi (for any environments p and pl We shall give a
function Be such that for all BTCSP processes P,

if VX BB(P X) = pi X then £le(ABT p p) ~ FT 'PHCP) pi

To begin with, we want to be able to convert between traces in the Prioritized Model and
traces in the Failures Model. In the prioritized Model, traces are represented as functions
from an initial segment of time to actions: TT == {s : TIME -t+ ACT I 3 T dorn s = [0, iJ}.
In the Failures Model they are represented as sequeoces of timed events: Tr;~. We therefore
require the following definition. ""

Definition 6.1.2: We define a relation _ "" _: TL(x TT by

0-'\1 @
(t,o) S"" s'EEl{tr-ti(t)ttlnaG}, ifs,....,i

<>

Informally, !j ""' .'i' if sand i represent the same trace.

An event (t, a) will be refused during a behaviour (T, ~,s) if the process would rather not
perform an extra a: in other words, if the process prefers what it performs (i.e. s t t) to
(t, a) added to what it performs (i.e. s t t ttl(t, all. Formally, this condition can be expreslied
as s t tl!!(t,a);2l.'i t t.

Note that if s t t ttl (t, a) ;2l s t t and s t t ttl (t, b) ;l1 s t t then s t t ttl (t,na, bG) ;2l s t t, as
can be easily verified from axiom A6. In other words, if a process can refuse an a, and it can
refuse a b, then it can refuse the a aJl.d the b together.

However, it turns out that it is not enough to take the set {(t,a) I t < 7 /\ s t tl;tl(t,a);2l s t t}

as the total refusal of the behaviour (7,1;, s). Consider the behaviour

(I, [O,O]0(~aH') (O,1]0(@), ~>-)

of (a [] b) \ b, where a b is performed silently at time O. Thr this behaviour, if we put
N:= ({t,c) I t < 7 /\ s t tttl(t,a) 11 s t t}, then we have (0,1) x {a} t:;;: N, but (0,£1) ~ N
contrary to our expectations. To fit in with the Timed Failures Model, we will require that

6.1 An abstraction result 109

the total refusal relating to a behaviour is closed on the left; this means that the total refusal

for the above behaviour will include [0, 1) x {a}.

We can now define a function giving the total refusal relating to a beha.... iour.

Definition 6.1.3: The total refusal of a behaviour (T,~, s) is given by ref(T, [;;;, 5) where t.he

function ref : BEH -+ RSET is defined by

ref(T, [;;;,5) == closure{(t,a) I t < T 1\ 5 t t ~ (t, aj tl s t t}

where closure S is the left-hand closnre of S

dosureS={(t,a)13c:>D (t,t+f:)x{a}~S)

<>

The following results about. the total refusal of a process will prove useful. The tot.al refusal
is oven on the right in the sense that if the timed eveut (t, 0) is refused, then (t', 0) is refused
for all times t' 'just after' t.

Lemma 6.1.4: (t, a) E ref(T,~, s) ~ 3c: > 0 [i, I. + f:) x {a} ~ ref(T, r;;" s) o

Proof: Suppose (t, 0) E ref(T,r:;;"S) and suppose for a contradiction that the consequence
of the lemma does not hold. Then by the definition of ref(T, r:;;" s) aud the finite variability
condition on offer relations (axiom AS), we must bave for some E > 0 that 'V t' E (I, t + E)

S t [' ~ (t', oj ::J 5 t e. Hence by the sub-bag closure condition on offers (condition A5),
'V t' E (t, t + E) (t ' , 0) E items r;;;,. Then by COndition AJ we have that s t t l:!::I (t, o)::J 5 t l,
contradicting our assumption that (t, 0) E ref(r, r:;;" 5). 0

We use this result to prove that. ref (r, r:;;" s) is a member of the set RSET of refusili.

Lemma 6.1.5: re/CT,!;;;, 5) E RSET. o

Proof: re/{r, r:;;" s) is closed on the left by definition, open on the right by the previous
lemma, and satisfies the finite variability coudition by the corresponding condition on offer
relations (axiom AS). 0

We claim tbat a timed failure (5', ~) could have resulted from a prioritized behaviour (T,!;, 5)
precisely when S' 5 1\ N ~ ref(T,r:;;,,5). We will write (s',N) ~ (T.[;;',5) and say (s',N) is
compatible with (T. [;;',s) ifthiB holds.

Definition 6.1.6: For all (s',N) E TF and (r,[;,s) E BEH,

(s',N) ~ (r,r:;;"s) $:> 5' "-' ,,/I N ~ ref(r,~,s)

<>

llD	 Probabilities and Priorities in Timed CSP

If (s', N) ~ (T, !;, ,) then (5', No) is compatible with (7, ~,s), in the sense that

•	 J and a' represent the same trace, i.e. " s; and

• all the members of N. are refusals of the behaviour (7, ~,.'l), i.e. N <;;; ref(r.~, s).

We can now give the mapping between our semantic spaces.

Definition 6.1.1: The function (}B : 5 TB --t STP is given by

OB(A) " H,', N) , TF I 3(T, <::, ,) E A (,', N) '" (T, <::, ,)}

<>

(}B(A) B the set of all timed failures that are compatible with some member of A.

Recall our definition of failures environments:

ENVF =VAR --+ STF

We write a for a lypical member of ENVF, and l7 X for the set of failures associated with
variable X. The priorities environment p and failures environment a are compatible, in the
sense that they associate the same processes with each variable, if 'V X : VAR ()B{P X) =
a X ; this can be written more concisely as C7 = OB 0 p.

The composition of ()B with ABT will be sufficiently important that we give it a name:

Definition 6.1.8: The function AFT : BTCSP -+ ENVf -+ 5Tf is given by

AFT P C7 == ()B(ABT P p) where (J = ()B 0 P

<>

Note that although there may in general be several environments p satisfying the condition
that a = ()BOP, this definition is independent of which one we choose: the only place where p
is used is when giving a semantics to a variable; in this case we have

AFT X C7 = ()B(ABT X p) = ()B(P X) = C7 X

so the choice of p makes no difference.

In the following subsections we will study the image of M TB under the mapping ()B and show

that it ili contained within the Failures Model MTf. We will then consider the effect of the

mapping AFT on the syntax of BTCSP.

6.1.2 The space 8(M TB)

AU members of ()(M TB) satisfy the healthiness conditions of M TF.

Theorem	 6.1.9: For all S in ()(MTB)

L (O,{})ES

6,1 AD abstraction result	 HI

2.	 (s w,N) E 5 => (5,N begmw) E S

3.	 (5, N) E 51\ 5 ~ W:::::;' (w, N) E 5

4.	 (s, N) E 51\ to=>
3N'ER5ET	 Nt;;;WI\(5,N')ES

1\ (f t 1\ (t',a) rt N' q. (5 II (tl,a),W i l
) E 5)

5.	 VIE[O.oo) 3n(t)E V(s,N)E5 end5 I=>#s net)

6.	 (5, N) E 5 1\ Ni E RSET 1\ Wc.;;; N => (5, N') E 5

('	 w, N) E SAN' E RSET)
7.	 1\ end s begm N' 1\ endW begm w :::::;. (s w,!{UN') E 5

(
 A ~(I.,a) E l<'	 (, (I.,a),N I) ~ S

<:>

Proof: We prove each result in turn. Let 5 = OB(A).

1.	 Axiom B4 of M TB states that there is some offer relation!;: such that (O,~, -<>-) EA.
Then 0 - -<>- and () <;; "'f(O, r;, -<~) eo ((), (}) E S.

2.	 If(s Wi)w,N)ESthenforsomesl,w',T,~wehave5"-'sl,w"-'WI,N~fYJ(T,~,5'

and (T, J;;;, 5' Wi) E A. Then by axiom B3, (begm w, ~ begm w, 51) E A. Also N
begmwc.;;;ref(begiTlw,!;: beginw,51)andso(5,N begmw)E5.

J.	 It is sufficient to show that if s '"" s' and 5 ~ w then W '"" 51, which follows directly from
the definition of ""'.

4.	 Suppose (5,N) E 5 1\ t O. Then there is some (T,~,SI) E A such lhac (s,N) ~

(T,~,51). LetT1=Tut. Then3!;:1 [;1 T=!;:I\(TI,!;:I,SI -<>-)EAb.yaxiomB.'5.
Let N' 3: ref (TI, 1;1, s' -<>-). Then NI E R5ET by lemma 6.1.5; N ~ NI b.y conBt.ruetioo;
(s, NI) E 5 by definition of (JB: a.nd if t' t 1\ (tl, a) rt N theu 5' t t l:tI (tl, a):J' 5' t t
by definitionofref,s05' t tl:tl(t',a) Eitems!;:' and so (II,!;:' t',s' t' (t1,a))EAby
axiom83,andhence(s t' (t',a),N /'jE5since(s t' (t',a),N t')~(t',!;:' t',s'
i' (t', a)).

5.	 This follows directly from axiom B1.

6.	 Suppose (s, N) E 5 1\ N' E RSET 1\ l{1 ~ No Then 3(T, r;, s') E A (5, N) ~ (T,!;:, S').
Hence N' c.;;; ref(T,~, 5') so (5, Nil ~ (7,~, 5') and so (s, W) E S.

7.	 Suppose the antecedents hold. Then 3(7,1;,5' Wi) E A 5""" 5' 1\ W ,....,wl 1\ N <;
ref(T,!;:, s' Wi). Then V'(t, a) E N' (I, ~ t,5 (t, a)) ¢ A so 5 t t t!j (t, a) ¢ items~,

from axiom 83, so N' c.;;; roef(T, !;:,5' w'). Hence (5 W, NU Ni) E 5.

o

112 Probabilities and Priorities in Timed CSP

HenceO(MTB) lies within MTF.

Recall that the metric on M TF is defined by

ddSp,SQ)=inf({r'ISp '~SQ t}U{J)) whee' S 1={(">l)ESlend(,,N) t}

\Ve state a series of lemm.as concerning this metric. If two processes "agree" up until some
time in the Prioritized Model, then they "agree" up until that time in the Failures Model.

Lemma 6.1.10: If Ap t = AQ t then BB(Ap) / = BB(AQ) t. Q

Proof: This follows immediately from the f3l:t that the failures of a process up to some time t
depend only upou the prioritiled bebaviours up to time t, i.e. (09 B(A)) t = (}B(A t). 0

Proces.ees are "closer" under the failures metric than uDder the priorities metric.

Lemma 6.1.11: For all sets Ap and AQ of prioritized behaviours,

d,(OB(Ap),OB(AQ)) dB(Ap,A Q)

where dB is the metrie in MrB- 0

Proof; This follows immediately from the previous lemma and the definition of the metrics.
o

Lemma 6.1.12: The mapping fiB is continuous with respect to the met.rics dp and dB.
Q

Proof: Suppose (Xi 11 E) has limit X in MTB. Then we claim that (BB(X,) I f E) has
limit 8B(X). Pick c > 0; then there is some N such that V1 > N dB(Xi,X) < t, so by the
previous lemma, V! > N dp(8 B(X,),fiB(X)) dB(X"Xj < Eo 0

6.1.3 The mapping AFT

The following theorem describes the effect of AFT on the syntax of BTCSP.

Theofl!'rn 6.1.13: The function APT satisfies the following properties:

AFT STOP a ~ {(O, N) IN E RSET)

AFT W.4IT I a = flO, N) I $ ~(N I)} U {(itt',)),N)lt'IA ¢ l:(N t It, I'))}

AFT SKIP a ~ {(O, N) I $ l:N} U ((((I,)),N) I $ l:(N t)}

AF1' X a = a X

6.1 An abstraction result 113

AFT a ~ P 13=

{(O,~) I a ¢ 1:N} U {«(t, a) 'p + t, N) I a ¢ 1:IH I) A (,p, N - .) E AFT P a}

ApT a --.:.., P 13=

{(O,N) I a ¢ 1:N} U {«(t',a) 'p +' + I',N) I a ¢ 1:(N t') A (,p,N - I - t') E AFT P a}

APT? QaC;
{(',N) I ¢ 1:,,, VI E TINT ("NUl x (}) EA FT P a}

U{("N) 131 ¢E(, ')A(,' (I,),N IU[O,,)x{ })EAFTPa

A ,t 1','+0) ~ 0 A(, - t -o,~- t -0) E AFT Q a}

An WAIT t; P a = {(s + t,N) I (s,N - I) E AFT P a}

AFT P n Q a = AFT P a U AFT Q a

AFT P, a ~ U{A FT P, a I ' E I}
IE[

AFT PlDQ a,AFT PCDQ aC;
{(O,N) I IO,N) E AFT P anAFT Q a}

u{I"N) I'" 0" ("N) E AFT P auA pT Q a
1\ W,N begtns) E AFT P anAFT Q a}

AFT c?a: A ~ Po. 13=

{(O,N) I cAn 1:N ~ {}}
u{((t, c?a) s + t + '0., N) I a E A 1\ c.A n E(N t) = {} 1\ (s, N - t - to.) E AFT Po. a}

AFT P,* Q a,AFT P 1jl. Q a c; {(s, Np u No) I (s,Np) E AFT P a 1\ (5, NQ) E AFT Q a}

AFT pX,*Y Q a,A FT pX1jl.Y Q a c;
{(s,NpuNQUNz)l(s X,Np)EAI'"T Pal\(s Y,NQ)EA FT QaI\EsC;XUY

1\ ENp c; X 1\ I:No C; Y 1\ ENz C; E \ X \ Y}

AFT P f-- Q a, AFT P -----t Q 130;;

{(s, N) I (sp, N) E AFT P a 1\ (sQ, N) E AFT Q a 1\ s E Sp sO}

AFT ptQ a,AFT pt Q a~

{(s, N) I (sp, Np) E ApT P a 1\ (sQ' NO) E AFT Q a 1\ s E Sp II sQ
c

AN C~(NpUNQ) CAN\C~INpnNQ)\C}

ApT P \ X a = {(, \ X, N) I (" N U [0, end(" N)) x X) E AFT' P a}

ApT I(P) a = ((J(,),N) I ("rJ(N)) E AFT P aJ

An P Q a c;
{I"N) I b,,!!ins tl\(s,N)EApT Pa}
u{(s, N) I begin s t + 0 1\ W, N t) E A.n P 131\ (s, N) - t - 0 E AFT Q a}

AI'"T P t Q a c;
{(',N) I b,,!!,n(, I) t+01\(8 t,N I)EAFT Pal\(s,N)-t-oEAFTQa}

AFT P 'V Q a c;
{("N) I' ¢ E("N) A ("N) E APT P a}
U{(s, N) 13 t .~ t e = ((L e») 1\ e ¢ E(N t) 1\ begin(s t) t + 0

1\ (s t \ e, H t) E AFT P 131\ (s, N) - t - 0 E AF'r Q a}

114 Probabilities and Priorities in Timed CSP

<:>

The reader will have spotted a great similarity between the expressions in this theorem and the
semantic equations for the Timed Failures Model; this is because in developing the semantic
equations for the Prioritized Model, we have at all times tried to follow the Failures Model.
In SODle places in the above the relationships are those of inclusion rather than equality; this
is a result of our operators being refinements of the corresponding TCSP operators.

Proof: Most of the proofs are straightforward; we prove three cases for illustration.

Case external choice:

Let 0 =6B 0 p. Then we have

AFT P[)Q a

::: (definition)

OB(HT,!;p ID !;Q' -<>-) I (7, !;p, -<>-) E ABT P P 1\ (r, I;Q''':>-) E A BT Q p}

U{(T,l;p[)!;Q'.s) Is#- -<>- A begins = t 1\ (T,!;p,S) E .4BT P P

A (t'(;;Q'-<~) E A BT Q pA (, t t:Jp (t,~D) V, t t '/0 item'(;;Q))

U{(T,!;p [] l;Q, s) I s 1:- -<~ 1\ begin s ;::: t 1\ (t, [;p, -<>-) EAsT P p

A (T'(;;Q") E ABr Q P A' t t;llp (t,~D)})

~ (definitionofOa)

{lO,~) , TF I ~ <; "'/(T, (;;p [] (;;Q' -<~)

1\ (7, kP, -<H E .A8T P P 1\ (7, ~Q' --::>-) E A8T Q p}

U{(l, N) : TF Is' #- {} t\ begm s' = t 1\ (s', N) ~ (7, l;p [] !;Q' 8)

1\ (7, [;p, s) E ABT P P 1\ (t, !;Q' -<>-) E .ABT Q p}

U{(s', N) : TF I 51 i- 0 t\ begin s' = t 1\ (s', N) '::' (7", l;p [] !;Q' s)

1\(t,!;p,-<>-)E.,4BT P pt\ (7"'(;Q's) EABT Qp}

<;:	 (definitioDBof re./, !;P[)!;Q)

((O,~) I (O,~) E AFT P anAFT Q aJ
UU"~)I',,OA""'in'~tA(,,~)EAFTPaAlO,~ t)EAFT Qaj

UU"~) I'" 0 A begin' ~ t A lO,N t) E AFT P a A ("N) E AFT Q aj

=	 (rearranging; part 2 of theorem 6.1.9)

UO,N) I lO,N) E AFT P anAFT Q aj

u{("N) I'" 0 A ("N) E AFT P QuAFT Q a

1\ ({),N begins) E.AFT P unAFT Q u}

o

Case hiding:

6.1 An abstraction result 115

Firstly, if ~' \ X = ~, we have

reJ(T,~,S)

= (definition of ref)
closure{[t,a) I t <Tl\stil!J(l,a);zlljtt}

= (definition of ~I \ X)
c1osure{(t,l1) I t < T 1\ (lj t t l!J (t, a) ¢ items~ V irc)x (lj t t l!J (t, all C' 'ftc? (lj i I))}

S;; (definition of ft~~X) -
closure{(t, a) I t < T 1\ (l'fI'c:X (s t i)) l!J (t, a) ¢ items ~I

V (~c)X (, t tll ~ (t, 0) c' ~c:x (, ttl)}
(rearranging) -

closllre{(t, a) I t < T 1\ (irc)X s) t t l!J (t,a) tJ' ('ftc)x 5l t t}

(definition) -

reJ(T,~I,1'i~>X s)

Now, let a = (JB 0 p. Then

AFT P \ X C1

(definition)

(JB{{T,~,5)l\Jt sttEitems~/l.3~' ~'\X=~/I.(T,~I,irC>XS)EABTPP}

(definition of (J B)
{(S', N): TF I (s',N) ~ (T,~,S) /I. 'r:/ t S t t E items£;;;

1\ 3!,;;' 1;' \ X = ~ /I. (T,(;',fl'C>X s) E ABT P p}

S;; (using the above result)

{(S', N) : TF I s' '" S /I. 3~' N S;; reJ(T,~I,1'ic)x s) /I. (T,£;;;',1'iC? sl E ABT P p}

putting s'" = 'ftc:X s, s' = s" \ X for appropriate 51/ such th~t :J" '" Sill;)

S;; ([0, end(s, N)) x -X S;; reJ(T, (;', ir~>X s) by definition of ir~)x Ii

({Ii" \ X, N) I s" '" Sill /I. l'..: E RSET

1\ 3 [;;;' N U [0, end(s, N)) x X S;; rei (T, [;;;', Sill) /I. (T, ~', Sill) E ABT P p}

(definition of AFT)

({s" \ X,N) I (s", N U [0, end(s,N)) x X) E AFT P a}

o

Case variables:

Let a = 8B 0 Pi then AFT X a = (JB(p X) == X o(J .

This completes the proof. o

116 Probabilities and Priorities in Timed CSP

6.1.4 The abstraction result

We are now able to prove our abstraction result.

Theorem 6.1.14: 'r/ P: BTCSP AFT P a ~ fr rpP (]"	 o

Proof: We prove the result by structural iuduction. All cases except for recursion follow
easily frllm theorem 6.1.13. We give the proofs for paralll."j composition as an example.

Case parallel composition:

(',N) E AFT P<jf Q a)

=}	 (theorem 6.1.13/
3Np,NQ l'l:= NpUNQ/I, (s,Np) EApT P a/l.(s,NQ)EAFT Q C1

=}	 (inductive hypothesis)
3Np, NQ N = Np UNa /I. (s,Np) E fr rpP a /I (s,NQ) E Fr !pQ a

{::}	 (definition of parallel composition in M TF')

I"N) EFT ~PII~Q a

{::}	 (definition of rp)

("N) E F T ~(P<jf Q) a

D

We now prove the result for recursion.

Case immediate recursion:

Let a"" 88 0 p. Then we have

AF'TJ.1.X Pa
(definition;
OBIjix(MA(X, P)p))
(Banach's fixed point theorem)

OB (.!'~"",IMAIX,P)p)"ISTOPB))

(continuity of (J 8)

}!.m~ 08«(MA(X, P)p)"(STOPB))

where .W"A (X, P)p = A Y AnT P p[Y / Xl and STOPa = AnT STOP p. Similarly,

FT ~I"X P) a~ }!."",IMFIX,wP)a)"(STOPF)

where Mp(X, Q)a = A Y fr Q a[YjXj and STOPI' = fr STOP a. To prove our result,
we rnakl:' use of the following lemma:

6.1 An a.bstraction result 117

Lemma 6.1.14.1; If a = OB 0 p, then for all natural numbers n

9B(MA(X,P)p)"(STOPB)) <:: (MptX,~P)a)"(STOPF)

"
Proof of lemma: We proceed by numerical induction. The base case follows immediately
from theorem 6.1.13. For the inductive step, assume tha.t

9B«(MA(X, P)p)"(STOPB) <:: (MF(X,~P)a)"(STOPF)

Then we have

9B((MA(X, P)p)"H(STOPB))

(rearranging)
9BIMAIX, P)p((MA(X, P)p)"(STOPB)))

(definition of MA{X, P)p)
9B(A BT P p[(MA(X, P)p)"(STOPB1/Xj)

(definition of APT)
AFT P a[9BIIMA(X, P)p)"(STOPB))/Xj

~ (structural inductive hypothes~)
Fr <pP a[9B((MA(X, P)p)"(STOPB))/Xj

numerical inductive hypothesis;)
(~ monotonicity of FT rpP with respect to the subset relation
:Fr <pP a[(MF(X,~P)a)"(STOPF)/Xj

(definition of Mp(X,rpP)tr)
MptX, ~P)a((MF(X, ~P)a)"(STOPF))

(rearranging)

(MF(X, ~P)a)"+J (STOPF)

D

Hence, by continuity of the subset relation, we have

,,11~ 8B«MA {X,P)p)"(STOPB)) !"; J1~(Mp(X,r,pP)a)"(STOPp)

So we have shown
AFTPX PO~FTr,p(ltX P)o

D

Case mutual recursion:

We only consider the case where the vector of terms £. is constructive for the vector of
terms X. Recall from chapter 4 that

AST (X, = P,)] p == SJ where S- is a unique fixed point of M{l{,£')p

118 Probabilities and Priorities in Timed CSP

In that chapter we defined a subsidiary vector 9.. by

Q, CO P,IQ,j X, IJ E "q(ill

and showed that M(X, Q)p is a contraction mapping whose unique fixed point is also the
unique lL'(ed point of M(X,E.)p. As in the previous case, we can show that

APT (X, ~ P,), a ~ "~8B (MA(K,!l)p)"(STOPB)),

where STOPB == (ABT STOP pi i E I); and

fT <p«X, ~ P,);) a ~ Ji.."!o (Mp(K.<p!l)a)"(STOPp)),

where STOPF = (FT STOP a liE I). As in the previous case, it is easy to show

8B (MA(K,!l)p)"(STOPBI), ~ ((Mp(K.'i'!l)a)"(STOPp)),

(for all J E 1) by numerical induction, thus completing the case. o

This completes the peoof. o

6.1.5 On recursion

10. this section we study the semantic value of the recursive process jj X P in the space M TF.

We will show that if a = 88 0 p then AFT J.l X P a is thE' unique fixed point of the relation
OB 0 MA(X,P)p 0 Of/'

Note that. (}B 0 MA(X, P)a 08// is not always a function. Let Xl == AnT (b [] d [] a) \ d p
and X2 == A 8 T (a [] d [] b) \ d p. Then OB(X1) = 0B(X.li)j call this image' Y'. However,
consider MA(X, P)p(Xd and MA(X, P)p(X2) where P == X [] (b f-- c). Note that these
are both members of (MA{X,P)p o8;J)(Yj. It is easy to see that MA(X,P)p(X/) can
perform a. b and refuse a c (having an oHer relation with ~b~ ::J ~b, c~ ::J {]c~ ::J @ ::J ~a~ ini
tially), whereas MA(X, P)p(X2} cannot (having an oHer relation with ~ a~ :J ~b, c~ :J ~b~ :J
(Ic~ :J D~ initially, and ~c~ :J DV after performing a b). Hence we have 08 (MA(X, P)p(X1)) #
08(MA(X ,P)p(X2)). So (08oMA(X, P)p)(XJ) and (OBoMA(X, P)p}(X2) are distinct mem

bers of (98 0 MA(X, P)p 0 0;1}(V).

We show that APT JJ X P a is a fixed point of 8 8 MA(X,P)p 0 Oi/:
0

Lemma 6.1.15: If a = 88 0 p then

AF'TJJX PaE(OBoMA(X,P)poOiJl)(AFTJJX P a)

Q

Proof: ~t Q == AFT jJ X P a and let Q' == ABT JJ X P p. Then from the definitions
of OB aIld recursion we have Q' E O'f/(Q) and Q E (08 0 MA(X,P)p)(QI) so we have
Q E (OBoMA(X,P)ao0"81)(Q). 0

6.1 An abstraction result 119

Th show that AFT IJ X P 0 is the unique fixed point is a little harder. RecaJi that w€ only
define the recursive term IJ X P for terms P that are constructive for the variable X, b.ere
P is t-constructive for X in M TB if

Vlo:TIMEiP:ENVB ABTPp to+t=ABTPp(pX to/X] to+l

We shall say tb.at BTCSP term P is t-oonstructive for X in M TF if

Vto:TIME;a:ENVF AFTPo to+t=AFTPo[oX lo/X] io+t

The following lemma relates these two concepts:

Lemma 6.1.16: If Pis t-constructive for X in MTB, then P is t-constructive for X in ...\I{TP.
<:>

Proof: Note that for any Y E MTB we have

8B(Y) '~OB(Y I) 1'1
by the definition of Os. Suppose then that P is I-constructive for X in MTB and let 0::: 98 0Pi
we have

AFT P 0(0 X to/X] to + t

(definition of AFT1 using (*) applied to p X)

OB(ABT P PiP X t,/X]) I, + t
(by ('1)
8B(ABT P PiP X t,/Xl', +I)

(p is l~constructive for X in M TB)
9B (A B T P p to + t)
(by ('1)
9B(ABT P p) to + t

(definition of AFT)
AFT P 0 to + I

o

Suppose then that Y is any fixed point of 9B ° MA,(X 1 P)po()'8 1 • The following lemma shows
that it is also a fixed point of >. Y AFT P o[Y/ X], where 0 = ()8 ° p.

Lemma 6.1.17: If 0 = 98 op a.nd Y isa fixed point of9BOMA (X,P)po()'8 1 then

Y ~ AFT P a[Y / Xl

<:>

120 Probabilities and PriorWes in Timed CSP

Proof: For some Y' E MTB we have Y = BB(Y') = (88 oMAtX, P)p)(Y'). Hence we have

Y
(hypothesiS)

(eB 0 MA(X, P)p)(V')

(definition of MA(X, P)p)

eB(ABT P p[Y'IX])
(definition of AFT; Y = BB(Y')

AFTPa[YIXj

o

We can now show that the fixed point is uuique.

Theorem 5.1.18: AFT Jl X P (1 is the unique fixed point of BE 0 MA (X, P)p 0 BE I where
O=BB~P. IV

Proof: We have already shown that AFT J,JX P (1 is a fixed point ofBa 0 MA(X,P)po
8E/. For uniqueness, suppose Y E .\1 TF is an arbitrary fixed point. Suppose that P is
t-constructive for X and assume that

Y to = AFT J.!X P (l to (.)

it is enough to show that Y to + t = AFT Jl X P (l to + t. We have

Y to + t
(previous lemma)

AFT PolY/X) to+t
(p is t-constructive for X)
AFT P a[Y to/XJ to + t
(from (.)
AFT P a[AFT JlX P (1 til/X) 10 + t
(p is i-constructive for X)
AFT P a[AFT IlX P a/X] to + t
(previous lemma applied to AFr 11 X P a)
AFT 11 X P a t(J + t

as rE'qwred. o

6.2 Using the abstraction result to simplify proofs

\Ve now prove a result which will allow us to translate specifications on BTCSP processes
into specifications on TCSP processes. We claim that the failures specification S(s,~) can
be translated. into the priorities specificaliotJ 8BS(-r,~, s), where we define the mapping
as: (rF --+ Bool) -+ (BEH --+ Bool) by:

Definition 6.2.1: 8 S S(7, 1;, 5) == V(tl, N) : TF (~I, N) ~ (7,1;,5) => S(tl, ~). 0

6.2 Using the abstraction result to simplify proofs 121

The specification 8 B S is true of a behaviour ("~' s) if all corresponding failures (S',~)

satisfy S(i, N).

We can now state our abstraction resnlt.

Rnle 6.2.2 (Abstraction)

'PBlP) sat<7 S(s, N) in M TF
["~9BOP]

P satp eaS(.,!;;, .'1') inM TB

6

If a TCSP process satisfies specification S(:I, N), then all its prioritized refinements satisfy
the specification 8BS(T.~, ,~), Put another way, in order to show that a BTCSP process P
satisfies a specification S' (.,~, :I), we need to find a failur('.$ specifieation S(5, N) such that
eBS = S', and then use the proof rules for the Failures Model to show that the TCSP
abstraction of P satisfil:'.$ 5(5, N).

Proof: Assume the premise. Then we have hy the definition of sat:

"I(s',~): TF (l,N)EFT 'Pn(Pj (T~S(l,N)

~ (theorem 6.1.14 using the side condition)

"1(.'1", N) : TF (5', N) E ea(ABT P p) '* S(S', N)

<=> (definition of eB)

"I(.~I,N): TF (3(.,~,s) E AnT P P (i,N) ~ (T,~,S» ~ S(s',N)

~ (predicate calculus)

'i(T,~, s) E AnT P P "I(S', N) : TF (s',~) =::: ("~' 5) ~ S(s', N)

<=> (definition of sat; definition of ens)
P sat I' 8BS(',!;, 5)

o

The following version of the rule will prove to he more useful:

Rule 6.2.3:

'PB(P) sat<7 S(s, N) in M TF
8BS(" C, 5) ~ 5'(., C, :I)

["~9BOP]
P satp S'(T,!;, .~) in MTB

6

This can be proved using the previous rule and rule B.1.3.

The following rule provides a way of redueing proof obligations on probabilistic processes to

proof obligations on processes in the Failures Model.

Rule 6.2.4:

('Pn ° 'P~))(P) sat.". 5(5, N) inM TF
8BS(T,C,S)::::} S'(T,e,S)
P satp S'(T,~, s) in MPTn

[9]
(7= B07rJOP

6

122 Probabilities and P60rities in Timed CSP

This can be proved using the previous rule and the abstraction rule from section S.2. Note
that !.PB 0 t.plJl is the mapping that removes all prohabilities and priori tips from the syntax
ofPBTCSP.
To make it easier to use these rules, we would like ways of translating specifications from the
Prioritized Model to the Failures Model: given a specification S'{T,~, s) we want to be able
to find a corresponding specification 5(5, N) such that eBB:::::} 51. In the next section we
develop a number of rules for aiding us in this.

6.2.1 Translation of priorities specifications into failures specifications

In tbis subsection we investigate which specifications tranElate easily under aB: givpn
a specification S'(T,~,S) we want to be able to find a specification S(s,N) such that
e B S(7,~, s) => 5/(7, ~,s). In particular, we give a number of results which show that many
predicates writtl>n in our specification language will not change form when traJL'lformed by eBi

for example, we will show that 8 B(a at t => b live from l + 1) => (a at t => b live from t + 1).
Most of the results of this section were proved in [Low92b].
The at operAtor is preserved hy SB since if s, s' then s and s' contain the same events.

Lemma 6.2.5: 8B(A at" 1) = A at" J and SB(no A at" 1) =no A .ltn f. o

Our re.su!t for the live operator is slightly weaker:

Lemma 6.2.6: eB(A liven I) => A live" J. o

Fortunately this implica.tion is strong enongh for our purposes so long as we do not use live
in negated form or on the left hand side of implications. If the interval I is open on the right
then we have a stronger result:

Lemma 6.2.7; If J is open on the right then SB(A liven 1) = A live" f. o

So in particular

Lemma 6.2.8: SB(A liven from t) = A liven from L 0

For the beyond macro, note that (s',N)!:::' (7,1;,5) => end(s',N) 7 so we have

Lemma 6.2.9: 8B(beyond t) => beyond t. 0

History predicates

Many of our specificatioDB are of the form S == <p 0 M where M is a projection mapping from
traces 1J) the prioritized model to some type T, and 'P is a predicate on T. If there is a similar
projection mapping function M from traces in the Timed Failures Model to T, giving the'
same lalue as M on related traces, then 5 translates to <p 0 M'.

Lemma 6.2.10: If the projection mappings M TT --+ T and M' : TE~ --) T are such
tha.t ...,

Sl, S => M(s) = M'(s')

thenlfoM =8B (<poM'). o

6.2 Using the abstraction result to simplify proofs 123

We will be particnlarly interested in those mappings M and M I that take the same form in
our two specification languages. For example, the projection functions count and alphabet
do, so we have for example

eB(count A during 1 < 3) count A during 1 < 3

8B(alphabet <;; A) alphabet <;; A

The operators first and last need some care. In the Prioritized Model these operators return
a pair consisting of a time and an action (which could contain more than one event), whereas
in the Failures Model they return timed events, Le. pairs consisting of a time and a Single
event. However, we have

SI'I => (first A during 1)(.'1') E (first A during /)(.'1)

and so
eB(firstAduring/=(t,a)):= (t,a) E first A during 1

where we define the E operator on offers by (t, a) E (t',O) <=} t = t' A a E 0. The following
lemma is slightly stronger. Let a" denote t.he action containing n as.

Lemma 6.2.11: eB(firstA during 1 = (t, a)) = 3 n: + first A during 1 = (t, an). 0

If the first timed event of a trace in the Failures Model is (t, a), then the trace of the
corresponding prioritized behaviour must have started with a number of as at time t. Note
that some other part of the specification will often be enough to ensure that only one a
occurs. A similar result holds for the last macro.

The name of and time of operators hehave as one would expect. We have

eB(time of first A during 1 = t) time of first A during 1 := l

8B(name of first A during 1 = a) 3 n: + name of firstA during 1 = an

Similar results hold for the last operator or when the '=' is replaced hy an inequality; so, for
example, we have

e B (time of last A during 1 3) = time of last A during 1 3

Environmental assumptions

Recall the definition of the environmental condition internal in the Failures Model:

(internal A)(s, N) == [0, end(s, N)) x A <;; N

If we calculate 8 B (internal A)(7, !;;;, s) we see that it is equivalent to false (for A t- {}) because
8 B(internal A)(T, !;;, s) is the condition that all refusal sets relating to hehaviour (7, !;;;, s)
including the empty refusal - contain the elements of A at all times. A similar result holds
for the open and accessible operators. Thus we find that we cannot translate these predicates
directly.

However environmental conditions are normally used on the left hand side of implications,
for example in specifications such as internal A => a at 11. It is normally the case that the

124 Probabilities and Priorities in Timed CSP

consequent of the implication does not talk ahout the elements of A beiug refused. In this
cas!:' we can show that 8B(internal A =:> S) implies internal A :::;. BBS. We say that the
specificaiion S(s, N) is A-refusal independent if the addition of elements of A to the refusal
set makf'\; no difference to the truth of S.

Definition 6.2.12: The .specification S ; TF -+ Bool is A-refusal independent iff

V(" N) ; TF VN1
: RSET EN' ~ A => (5(9, N) ~ 8(9, N U NI

))

<>

In this case, the specification (internal A =-- 8)(T, ~,s) translates ea.'lily.

Lemma 6.2.13: If S is A-refusal independent then

8B(internal A=> S):::;. (internal A=:> 8sS)

Q

A similar result holds for the open operator. We say that the specification S("N) is (A,/)
refusal independent if the addition of E'lements of A during the iuterval I to the refusal set
makes no difference to the truth of S.

Definition 6.2.14: The specification S ; TF -+ Boal is (A,I)-refusal indepeudent iff there
is some J 2 I such that J is a finite union of half-open time intervals and

V(s,N): TF VN' : RSET Nt ~ J x A ~ (5(s, N) {::} S(s, NU N'))

<>

We thell have the following result:

Lemma 6.2.15: If 5 is (A, I)-refUsal independent then

eB(A open" I => S) ~ (A open" I => eBS)

Q

The closed macro translates very easily:

Lemma 6.2.16: eB(A dosed I) = (A closed I). Q

The accessible cr predicate is highly dependent upon priorities, and so it is harder to translate
it into a specification without priorities. We give a partial result for when 0: is a singleton
act.ion. Firstly We define a failures specification accessihle by

(a accessible I){Il,N) ~ ('lit E I a at/n[O,t] V a ref t)(8,N)

We have the following result:

Lemma 6.2.17: If the interval I is open on the right, and 5 is ({ a}, f)-refusal independent
then

eB(a accessible I => S) => (a accessible I=> ess)

Q

6.2 U5ing the ab5traction result to simplify proofs 125

In particular we have

Lemma 6.2.18; If S is ({a}, [i,oo))-refusal independent then

9B(a accessible from t ~ 5) ~ (a accessible from t => 9 B5)

"
Boolean operators

Recall tbat we have Iift.ed t.he booleau operators, so that (5 1\ 5 1)(s, N) = 5(s. N) 1\ 5'(s, N),

for example. Tbf' predicate 9 B(S 1\ SI) is the same as 8B5 1\ 8B5/.

Lemma 6.2.19: 8B(S 1\ 5') = 9B5 1\ 9 BS'. <::I

For implication, our result is not quite so !;trong.

Lemma 6.2.20: 8 B (S ~ SI)(T,~, s) ~ (8 0 5 ~ 8BS/Hr,~, s). "
Luckily this implication is strong enough for use with rule 6.2.3.

For negation, we have a rule of similar strength

Lemma 6.2.21: 8B(..... 5) => --, (9B5) "
Unfortunately, we do not have such a result for disjunctions. For example, let

S("N)" (0, aj EN S'("N)" (O,a) ~ N

It is easy to see that (S Y S/)(.~,N) = true so 8B(S Y 5')(r.~, s) = tme. However.

8B5(T,~.S) ¢:} \iN ~ ref(T,r;;"S) (O,a) E H ~ false

and
8BS'(T,!;,S) ~ \iNSref{T.~,S) (O,a)~N ¢:} (O.a)~ref(r,~,s)

so 9 B(5 Y 5') #- eB5 Y 9 B5'.

Summary

These rules will be enough to translate most of our specifications into failure spocificatiolls.
We are not claiming that t.bis is a complete set of rules for translating specifications - indeed
we helieve that there are many more such rules. A library of more rules could be built up
by pursuing further case studies. Also, whenever we add a new const.ruct to our spe6fication
language we will have to give it a definition in both the Prioritized and Failures Models, and
investigate how the COnBtruct translates from one model to the other.

126 Probabilities and Priorities in Timed CSP

6.3 An example using the abstraction result

III this SPCtion we deal with an example of a dock that will offer a lIck every second, except for
every T seconds when 1t will prefer a tock (where T > 1). Although this example may seem
rather artificial, we believe that it demon~tratC5 one particular a::;pect of priorities quite well,
namely interrnpts: the tocks can be seen a::; interrupting the "normal" behaviour represented
by the tICks.

\\Then modelling an interrupt mechanism, the iutenupting event should be given a higher
priority than the thing being interrupted. Wc nced a prioritized model in ord{'r to describe
this; hollt~ver, th{' process beililg interruptC'd and the interrupt handler will often not make use
of prionlies, and so in order to argue about them it is simplest if Wf! use tht' Timed Failures
:\·1ode!'

The clock can only perform the events I.ick and tock:

alphabet ~ {tIck, lock)

Initially. it will offer both tick and tock:

ttck, tock live from 0

It cannot perform two events within one second of each other:

tick, tock at t => no hck, lock at (t, t + 1)

tocks must occur at least T seconds apart:

tock at t => no tock at (t, t + T)

If the dock hasn't performed either a ttck or a tock in the last second, then it should offer a
Itek - ie. it is willing to perform a tick one sl"{'ond after the previous event:

no tick, tock at (I - 1, l) => lick live t

If the clock ha::;n't performed a tock in the la::;t T seconds, and hasn't performed a lick in
the la::;t second, then it will be willing to perform a lock:

no tock at (t - T, t) 1\ no lick at ~t - 1, t) => tock live t

If the process is able to perform either a ltck or a tock, then it prefers the tock to the tIck:

tick offered t 1\ tock offered t => tock preferred to tick @ t

Putting these t.ogether, we get the following spp-cification:

s ~ alphabet ~ {tick, lock}

1\ tick, tock live from 0

1\ tick, tock at t ~ no lick, tock at (t. t + 1)

1\ tock at t ~ no tock at (I., t + T)

1\ no tick. tflck at (t - 1, I) => lIck live I

1\ no tock at (t - T. t) 1\ no tick at (t - 1. t) => tock live t

!'I tick offered t 1\ tock offered I => lock preferred to tick '.Q: f

6.3 An example using tbe abstraction result	 127

Our method oC implementing this will be to firstly produce a TCSP process which nearly
satisfies the above specification: more precisely we will produce a TCSP process all of whose
BTCSP refinements satisfy all but the last conjunct of the specification. We will then study
which of the refinements also satisfy the final conjunct.

6.3.1 TCSP "implementation"

We seek a TCSP process CLOCK(j all of whose BTCSP refinements satisfy the predicate

S/(7, 1;, s) == alphabet <;;; {tJck, lock}

1\ tick, tock Jive from 0

1\ tick,tock at t:=} no tick, tock at (t, t + 1)

1\ tock at t:=} no tock at (t, t + T)

1\ no trck, tock at (t - 1, t) :=} tick live t

1\ no lock at (t - T, t) 1\ no tick at (t - 1, I):=} tock live t

Using rule 6.2.3 we see that we waut a specification So(s, N), such that eSr; ::::} S', and a
TCSP process CLOCK(j such that CLOCKo sat So(s, N) in MTF. Using the results of
section 6.2.1, we see that So can take the obvious form:

S(j(s,N) == alphabet l:: {ilck, tock}

1\ tick, tock live from 0

1\ tick, tock at t:=} no ttck, tock at (t, t + 1)

1\ tock at t ::::} no tock at (t, t + T)

1\ no lick, tock at (t - 1, t) ::::} tick live t

1\ no tock at (t - T, t) 1\ no tick at (t - 1, t) ::::} tock live t

We implement CLOCKo as the parallel comp~ition of two processes, P and Q. P will
ensure that the events are available at tbe desired intervals; Q will ensure that two events
are not available within one second of each other. Recall the TCSP proof rule for parallel
composition from (DS89h]:

P sat Spes, N)

Q sat SO(s, N)

Spes, Np) 1\ So(s, NO) => S(s, Np U NQ)

P II Q ,at SI" ll)

L,t

Spes, N) ==	 alphabet ~ {tick, tock}

1\ tick, tock live from 0

1\ tJck att::::} no tick at (t,t + 1)

1\ tock at t ::::} no tock at (t, t + T)

1\ no tick at (t - 1, t) ::::} tick live from t

1\ no tock at (t - T,t)::::} lock live from t

128 ProbabjJjtjes and Prioritjes in Timed CSP

SQ(S, N) =:=	 alphabet <; {tick, tack}

1\ tlek, tock live from 0

1\ tiek,tock at t => no tlck,tock at (1,/ + 1)

1\ no tick, tock at (t - 1 . i) => lirk, tock live from t

Then it. is ~asily seen that Sp(s, ~p) 1\ SQ(s, NQ) => S(s, Np U NQ).

\\'e now seek a process P satisfying Sp. We implement P as an interleaving, PI P2; t.he

process PJ will provide the ticks, while P2 provides the locks, Recall the proof rute for

intedeavin:r; from [DS89bJ.

PI satS/(s,N)
P2 sat Sods, N)
sEu VI\S/('!LN)I\S2(V.N)=:>S(5,N)

P Q!'Oat S(5, N)

Let

S/(5, N)	 alphabet <; {tICA:}

1\ hek live from 0

1\ lIck at t => no t1ck at (I,t + 1)
1\ no tick at (t -I,l) =} ttck live from t

5,(" ")	 alphabet <; {tock}

1\ tock live from 0

1\ tock at I. => no tock at (I, l + T)

1\ no tock at (t - T, t) => tock live from t

Then Yif have 5 E 'is V 1\ 51 (u, N) 1\ S2(1i, N) ::::> 5(5, N). It is also an easy exercise to show

that /.IX hck ----!.-.t X sat Sds, N) and /J. X tock -2:.t X sat S2(5, N). Hence

/.I X lick ----!.-.t X /.IX toeA: ---'!'...t X !'Oat Sp(5, N)

We nOli seek a process Q satisfying SQ. We will implement Q as a recursion, I-J.X P. Recall
the proof rule for recursion from [DS90]:

X sat S(5, N) =:> P sat S{.~, N)

/J..\ Psat S(5.N)

So \<.-e need to find a term P (dependent on X) such that P !'Oat SQ(s, N) whenever X sat
5Q(5,~;. We implement P as an exteCllal cboice. P = PI P2' 'The proof rule {or external
choice is

Pi sat 51 (,~, N)
P2 sat S2(5, N)
(5/(5, N) V S2t5. N)) 1\ 51 (0, N begm s) 1\ S2((),N beg1n 5) => S(8, N)

PI PI: sat S(5, N)

6.3 An example using the abstraction result	 129

Let

Sr{s,N) ==	 alphabet~{tick,tock}

/\ tie-k live from 0

/\ tick, tock at t :::} no tick, tock at (t, t + 1)

/\ tick, tock at [0, t - 1]/\ no trck, tock at 0 - 1, t) ;;=} tick, tock live from t

S,8{s,N) ==	 alphabet~ {tlck,tock}

/\ tock live from 0

/\ I,ie-k, tock at t :::} no tick, tock at (t, t + 1)

/\ tick,tock at [0,1- 1] /\ no tick,tock at (t - 1,t):::} t'ick,tock live from t

Then it is easy to show that

(S,(,,~) V S,(,,~)) A S,((),~ beg,",) A S,((),N begin,) => S(,,~)

Hence it only remains to find processes P1 and P2 such that P j sat S1 (8, N) and P2 sat
S2(S, N) whenever X sat SQ(S, N). Our intuition suggests

P j == tick ~ X P2 == lock -!.-, X

These definitions can be shown to satisfy the specifications by a simple application of the
proof rule for prefixing.

Hence we have shown that the process

CLOCKo =p.X tick -l-, X p.X tock ~ X

II
p.X tick ~ X tock ~ X

satisfies the specification So (s, N), and so all its BTCSP refinements satisfy the specification
5'(,,1;, s).

6.3.2 First BTCSP implementation

We seek a BTCSP process CLOCK such that 'PB(CLOCK) = CLOCKD and CLOCK sat
S(7,~, s) in MTO. We already know that any prioritized refinement of CLOCKo will satisfy
all but the last conjunct of S; bence it is enough to find a refinement that sati.sfi~ S(" 1;, 8)
where

S -== hck offered t f\ tock offered t :::} tock preferred to tick @ t

Our first implementation will make CLOCK the left biased parallel composition of two pro
cesses P and Q where

~B(P) p.X tick~X p. X tock ---4 X

~B(Q) pX tick~X tock -~ X

130 Probabilities and Priorities in Timed CSP

From the proof rule for left-biased para!lp\ compositiou, given in appendix 8.1, we see that
we need wfind predicates Sp and So for P and Q such that

Sp(7,!;p.S) /\ 50(7'(;;0,5) => S(T,~p1#- (;0,5) (.J

We set Sp = S and set So == true. Thea by the definition of parallel composition of offer
relations we see that (.) is satisfied. Also Qsat So for any Q. Heuce it only remains for us
to find P such that P sat Sp,

\Ve shall implement P as the right biased interleaving p. X !td ~ X --+ JJ X tock ~ X.

Recall frmn the previous section that p.X tick ~ X sat alphabet ~ {tiCk}; hence

J1. X tu.Ji;.....!...t X sat no toek offered

Similarly

11- X tock ~ X sat no tick offered

It is eas)' to show

"x tock -t
T

X sat tock offered l => tock preferred to ~ ~ @ t

From the proof rule for right biased interleaving we see that we must prove

{nOiOCk offered)(7'~I'We c s))

(1\ (~O hck offered 1\ (tock-;ir;:ed t ~ toekpreferred to~~ @ t»(T,r;;;;g,t!;;;2'!;;;Js) ~
Sp(7, ~J -+ I;f, s)

If (tick offered t 1\ tock offered 1)(7, [;;J -+ ~8, s) and (no toek offered)(7, I;J, We c s) and
_j,_1

(no itck offered)(7, J;3, te e s) then we must have that (tick offered t)(7", I; J' We e s) and
~'.l	 _2,_1

(tack offered I)(T,J;g,te c 9). Thus (tack preferred to@ @ t)(7,1;2, te e s). Hence by
_~'_1	 _f'_1

the definition of interleaving of offer relations, (toek preferred to tlck @ t)(T, (;1 -----1' ~2, s),
as required. Hence

p.X	 tick...l...tX-+p.X toek~XSftt

hck offered t 1\ tock offered t ~ lock preferred to lick @ t

Thus, we have shown that both of the proCl'SSes

(p.X I.ick...l...t X -+p.X tack ~ Xl '* (p.X tIck ~ X [} toek...l...t X)

and

(p.X tick...l...t X -+p.X tack ~ X) tit- (p.X tick ~ X []I toek ~ X)

satisfy our original predicate S.

6.3 An example using tbe abstraction result	 131

6.3.3 Second BTCSP implementation

We will now try to implement the dock using a right biased parallel composition of processes P
and Q such that

'Pe(P) JlX tick ~ X JlX tock""'!"-" X

'Pe(Q) JlX tick.....!..-.. X tock ~ X

Examining the proof rule for right biased parallel composition we see that we mllSt find
predicates 8 p and SQ for P and Q such that

8p(7", !;p, s) 1\ 8Q(T, !;;;;Q' s) => 8(7", r;;;.p "'"" !;;;;Q' s)

We instantiate Sp with tme and SQ with 8. As in the pre..... ious subsection, it only remains
for us to find a process Q satisfying SQ.

Following the results of section 6.3.1 we implement Q as a recursion Jl X Q' such that

ipB(Q') = tick ~ X tock ~ X, and if X sat 8 then Q' sat 8. We then implement Q'

as the right hiased choice tick ~ X Ol lock ~ X. We seek specifications Sp for tick ~ X

and SQ for tock ~ X that allow us to prove that tick ~ X [] tock ~ X sat S. We

instantiate Sf, and So by

Sp 02	 tick preferred to @ from 0

1\ tick offered t 1\ tock offered t => tock preferred to lick @ t

8Q 02	 tock preferred to@ from 0

1\ tick offered t 1\ tock offered t => tock preferred to tick @ t

From the proof rule for right-biased choice we see that we have the following proof obliga
tions:

8 p(7", !;p, -<~) 1\ 8Q(7", !;;;Q, -<r) :::} 8(7", l;p [] !;;;Q, -<~)

s 1:- -<r 1\ begins = t 1\ Sp(7",!;;;p,.s) 1\ SQ(t'!;;;;Q' -<~) 1\ S t t:;zlQ (t,~~) => S(T,!;;;;p[]!;Q,s)

s 1:- -<r 1\ begin S= t 1\ Sp(t, !;p, -<r) 1\ SQ(T, !;:Q' S)) '()
:::} S T,Cp[]CQ,S

(A (, t':JQ (',@) V q' ¢ items(;p)	 -

These are easily proven using the definition of right biased choice of offer relations.

It remains to show that hck ~ X sat 8 pand tock ~ X sat SQ. We prove the former

r~ult; the latter is identical. From the proof rule for prefixing, remembering that X sat 8,

we see that we have the following proof obligations:

S~(T, [0, TJ 0 (~'i,kMI), ~~)

" T < " + 1 => S~(T, [0, "]0 (~'iokMI) (t', T]0 (~I). ~(t', ti,k)~)

S(7"-l-t',r;;;.,s)l\7" t' +l::::}

S~(T,[0,t']0(~'"kHI) (t',"+1)0(~I) l;;+t'+I,I,',",k) '+"+1)

132 Probabilities and Priorities in Timed CSP

These call be proved by careful checking. Hence tick ~ X sat S~, and so we have shown
that both of the processes

(pX tick ~ X t-pX tock ~ X) *" (,uX tick ~ XDltock ~ X)

and

(pX tIck ~ X ~pX tock ~ X) *" (pX tick ~ X CDtvek ~ X)

satisfy our original predicate S.

Chapter 7

Specification and Proof of
Probabilistic Processes

In chapter 5 we developed proof rules that could be used for proving that a probabilistic
process satisfies an unprobabilistic specification, i.e. a specification that is supposed to hold
of all behaviours of a process. OUf proof rules allowed us to translate a specification on a
composite process into specifications on its subcomponents. In this chapter we aim to extend
the proof system so that it can deal with probabllullc specifications.

In section 7.1 we will describe the form of our specifications: we will "''Tite P satlp 5(7, ~, s)
to specify that, whatever the environment offers, the probability that process P puforrns a
behaviour (7,/;,8) that satisfies the predicate S(T,!;,S) is at least p. We will also define
conditional probabilities: we will write P sat~P S(T,S,S) ! G(T, ~,s) to specify that the
probability that P performs a behaviour that satisfies S gillen that it satisfie.", G is at least p.
We will present a number of proof rules which are independent of the syntax of our language.

In section 7.2 we will explain, via a number of examples, why proving specifications [or
probabilistic specifications can be considerably harder than in the un probabilistic case: a
number of factors introduce difficulties not present in the unprobabilistic case. We will show
how to produce proof rules that overcome these difficulties. In section 7.3 we derive proof
rnles for all the constructs of the Language.

III section 7.4 we present a large case study. We describe a protocol transmitting messages
over an unreliable medium. We show that it acts Wre a buffer, and perform an analysis of
its performance: we prove a result that gives the probability of a message being correctly
transmitted within a certain amount of time.

7.1 Specification of probabilistic processes

In this section WP introduce the form of our probabilistic specifications and give a few basic
rules for manipulating them which are independent of the syntax of the language. We be
gin by considering the basic specification statement; we then go on to consider conditional
probabilities.

133

134 ProbabjJjties and Priorities in Timed CSP

7.1.1 The basic specification statement

We will write P sat~P 3(7,~, II) to mean that in all environments the probability of P
performing a behaviour (T,~,II) that satisfies the predicate 3 is at least p. To define tbis
formally we want to be able to discuss the probability of a process P satisfying some be
havioural specification S(T,~, II) in a given environment n and with variable binding p; we
will write ~his as ~,p S(T,~, s) Recall that ..ve allow the environment to be a function of
the offer relation of a process: we write n(~) when we want to stress this.

Definition 7.1.1 (Probability of satisfaction) If P E PBTCSP, n E OFFREL --+
EOFF, pE ENV, and SEBEH --+ Bool, then

~P S(T,~, 5} == L~PPBT· P p(T,~, 8) I S(T,~, s) 1\ (T,~, 5) compat n(~)~

<>

~,p S(1,~, 5) is the probability, given variable binding p, of P performing a hehaviour
that is compatible with n and that satisfies S. We will drop the P, the n, the p, and the
argument (7, ~,5) of a predicate where this will not cause confusion.

We can now formally define our sppcification statement:

Definition 7.1.2 (Probabilistic satisfaction) If P E PBTC3P, p E ENV, SEBEH -t

Bool, and p E [0,1], then

0"P sat~P S(T,~, 8) {o} vn: EOFF p S(T,~, sJ p

<>

P sat;? 8(T, ~,Ii) if in all environments !1 thp probability that P performs a behaviour that
satisfie! S is at least p. If P is a process (as opposed to a term) then its sl?mantic value is
independent of the variable binding so in this case it makes sense to omit referl?nce to tbe
variable binding and to write P sat;"P S(T,~,3). We will also drop the argumpnt (T,~,8)

of S where this will not cause confusion.

7.1.2 Conditional specifications

We will sometimes want to say that with some probability a process satisfies some specification
S given that it satisfies some other specification G.

Definition 7.1.3 (Conditional satisfaction) If P E PBTeS?, Sand G are predicates,
P E ENV, and p E [0,1] theu

Psat~P 8(T,~,S) I G(T,i;,8) {o}

V!1:EOFF ~,p S(T,l;";,8)I\G(T,~,8) p. ~,p G(7.r;,S)

<>

7.1 Specification of probabiUstic processes 135

In the case where ~.P G(T,~,S) > 0 this reducf'rS to the more familiar

n.,
p S(T,~, s) 1\ G(T,~, s)

p
~.P G(T,~,S)

We shall normally adopt tbe convention of writing G, GI etc. for the Given predicate.

The reader should 110te tbat conditional specification is different to specification of an impli

cation, i.e. P satr S(-r,~, 5) I G(T, 1:;, -'I) Ls not the same as P sat?" G(T, 1:;, s) => S(T, l:;, s).

Consider the process P =. (ll --Jo (b pn q c)) p,n q, STOP. Let Sa be the specification that an

a is performed: let Sb be the specification that a b is offered. Then P sat?p Sb I S. (but it

doesn't satisfy this with any higher probahility) wbile P sat?PP'+q' Sa => Sb. In section 7.1.4

we will give some rules relating these two concepts.

In the following section..~ we give a number of proof rules for probabilistic specifications that
are independent of the syntax of the language.

7.1.3 Basic proof rules for probabilistic specifications

If a process satisfies a specification with some probability, then it certainly satisfies that
specification with any lower probability,

Rule 7.1.4 (Lower probabilities)

P sat~P S I G [, p q]
P sat?q S I G

6

Every process obeys every predicate witb probability at least zero.

Rule 7.1.5 (Zero probability)

P sat?O S I G

6

The following rule allows us to weaken the given predicate and strengthen the conjunct of
the two predicates.

Rule 7.1.6 (Weaken and strengthen specifications)

P satiP SI I GI

S'{-r, 1:;, s) 1\ G'(T,!;, s) => S(T.!;, s) 1\ G(-r,!;, s)
G(-r,~,s) => GI(-r,~,S)

P sat?" S I G

6

136 Probabilities and Priorities in Timed CSP

The following rule can be derived from the above by taking G == C' ,

Rule 7.1.7 (Weaken specifications)

P sattr 5' I G
S'(r,r;,s):::} S(7,[;;.,.!l)

P sat;' S I G

[:,

A process satisfies specifications Sand G whenever it satisfies G and S I G.

Rule 7.1.8 (Conjunction of specifications)

p 8at~P G
p SBt~q S I G

P satfN S /\ G

[:,

The following is an easy corollary of t.his:

Rule 7.1.9:

p sat~P G
P sat~q S I G

p 9at~pq S

[:,

7.1.4 Relating conditional and unconditional specifications

The following rule shows that the specifications S I ~rue and S are equivalent:

Rule 1,1.10:

P Ilflt~P

P sat~P

S

S I true

P sat?'
p sat~P

S I true
S

[:,

Proor: This foLlows from the law of PBTCSP that states that in any environment the sum
of thl' probabilities of all possible behaviours is one, i.e. ~,p true == 1. 0

This ru.le can be used to adapt many of the other rules so as to apply them to unconditional
specikations. For example taking G ;=:: G' ;=:: true in rule 7.1.7 we get t he rule

Rule 7.1.11:

Psat~P S'

8'(7, C, s) => S(7, C, s)

F sat~P S

[:,

7.1 Specitication of probabilistic processes 137

We can relate conditional specification to specification of aD implication:

Rule 7.1.12:

Psatr'SIG

PsattP G => S

!:>

Proof: It is enough to shov.· that

SAG
G~S

G

which follows easily via algebraic manipulations. o

In the case where p = 1 we also have tbe converse:

Rule 7.1.13:

P satp G => S.

P satt1 S I G

!:>

Proof: Suppose P satp G '* S. Then for all environments 0:

~'PS"G
(definition)

L~PPBT P p(T,~,.!i) I S(T,~,S) /\ G(T,[:,S) " (T,[:,S) compat O~
(p sat" G=> S)
L~PPBT P p(T,~,S) I G(T,!;;;,S) /\ (T,~,.!i) compat n~
(definition)

~'P G

Hence ~'P S" G lx ~.P G soPsat;JSIG. o

If a process always satisfies some predicate, then it satisfies it with probability one.

Rule 7.1.14 (Certainty)

P sat Sp

P sat,?1 S

!:>

138 ProbabilWes aD.d Priorities in Timed CSP

Proof: This follows by taking G = true in the previous rule, and making use of rule 7.1.10.
o

If we kOQ\ll" that all behaviours of a process satisfy a particular predicate, then we can add
this predicate to a probabilistic specification without affecting its truth:

Rule 7.I.l5:

P satp S
Psat;"S'1G
Psat;"S/\SIIG

'"
Proof: Assume the premises; then for all environments n,

~'PS/\Sl/\G

(definition of)

"E~PPBT P p(T,!;;;, II) I (7",~, II) compat n /\ 8(7", ~ •.i) A S'(r,!;, s) /\ G(r, !;;;.s)~
PPBT P p(T,!;, s) > 0 ~ (T, !;,s) E APBT P p ~ S(T,~, S))

(
by axiom P4 of the semantic space aI),d premise 1

I:~PPBT P p(T,!;, II) I (7",!;, II) compat n /\ S'(T,!;, II) /\ G{T, !;, s) ~
(p..mire 2)
p. ~,p G

So Psat~P S /\ 8/ I G. o

This is a particularly useful rule: often in proving a probabilistic result one begins by proving
a number of lemmas that do not involve probabilities; one proves properties that hold of all
behaviours of a. process. This rule means that we can make use of the lemmas by adding
tbeir results to any probabilistic r£"Sults we can prove about the processes; for example,
if we know that all behaviours of P satisfy 5, and we want to make use of the fact that
P sat~" 5 /\ 51 I G then it is enough to prove P Ilat~" 51 \ G. In section 7.4 we will consider
a prolocol; we will begin by proving that it acts like a one place buffer; in doing this we will
prove a number of results, for example a.bout the order in which events are performed, that
will prove useful when we consider the probabilistic aspects of the protocol.

7.1.5 Simplifying conditional specifications

The following two rules allow us to simplify conditional specifications. It will ohen be the
case that the left hand side of a conditional specification is of the form E ~ S for some
environmental condition E, and the right hand side also has a conjunct depending on E. i.e.
of the form E:::} G. In this case we can drop the E from the right hand side.

7.1 Specification of probabilistic processp.s 139

Rule 7.1.16:

P sat~P E .:::} 5 I G 1\ G'

P sat~P E ==} 5 I (E ==} G) 1\ G'

b.

Note that not all of the right hand side hM to depend upon the environmental condition E.

Proof: It. is enough to show that,

(E.:::} S) 1\ G 1\ G' (E => S) A (E => G) A G'

G 1\ G' (E ==} G) 1\ G'

which can be easily proved by algebraic manipulations. o

If a conjunct appears on both sides of a conditional specification then we can drop it from
tbe right hand side.

Rule 7.1.17:

P sat~P S 1\ 5' I G

P sat~P S 1\ 5' I G 1\ S'

b.

Proof: Assume the premise of the proof rule. Then we have

(5/\ 5') 1\ (G 1\ S')

(predicate calcnlus)
(5/\ 5') 1\ G

(premise)
p. G

(predicate calculus)

p. G /\ 5'

So P sat~P 5 1\ 5' I G 1\ 5'. o

7.1.6 Disjoint specifications

We define a vector of predicates to be disjoint if no t.wo of them can be true at the same time:

Definition 7.1.18 (Disjointness of specifications) For aU tEl let Si be a predicate of
type X ----t Bool; then we say that the vector of predicates (5,(x) I t E I) is disjoint iff

i,J : I; x: X t 1: J 1\ S,(x) 1\ Sj(x)

<>

140 Probabilities Wid Priorities in Timed CSP

We use this definition in the following rule:

Rule 7.1.19 (Disjoint specifications)

Vi: I P sat~P. 5 i I G;
Vi: I Si(r,~, s) 1\ G.(r,~. s) =* S(T,~, s) 1\ G(T,~, s)
Vi: I G(r,e,s) => G;(T,C,3) [•]

>.E. - (Si(T, 1;, s) I J E J) disjoinl
PSlltp- ,P, S I G

where 5,(7,1;,5) == S,(T,I;,s) 1\ Gj(-r,(;,s). {:;

The rule allows us to add the probabilities of a Dumber of disjoint specifications to obtain
the proba.bility of ODe of them occurring.

Proof: Assume the premises of the proof Tule. Then for any environment n we have

~PSI\G

(definition of)

L~'PPBT P p(T,I;, Ii) I S(r,i;,s) 1\ G{T,I;,s) 1\ (T,~,S) compot n~

(partitioning using the side condition)

I:fl LflPPBT P p(T,!;, ,) I S(T,!;, ,) A G(T,!;, ,) A S,(T, !;,,) RIi oR
~ ~ 1\ Ci(r, 1;, s) A (r, 1;, s) wmpat n ~ ~

{premise 2)
I:nLnpPBT P p(T,!;,,) I S,(T,!;,,) A G;(T,!;,,) A (T,!;, .•) rom".t n~ /_ E I~

(premise I)
L:np,· LnpPBT P p(T,!;,') I G,(T,~,,) A (T,!;,') romp.' n~ liE I~
(premise J)
[~P'. Ln'PPBT P PiT, !;,,) IG(T,~, ,) A (T,!;,,) rompat nIl i Ell

= (rearranging; definition of)

Lnp, liE I~ ~.P G

Hence p sat~E, P. 5 I G. o

The following rule is an easy corollary of this;

Rule 7.1.20 (Disjunction)

PMt~P 5
Psat)f 5'
P sattP+f 5 V 51 [(5(7,!;, s), 5'(7, 1;:, 3)) disjoint]

{:;

7.1 Spedncatjon of probabWstic processes 141

7.1.7 Inductive proof rules

W(> baw an inductive principle foc oue specifications:

Rule 7.1.21:

P sat~P So I G

'Vm; P satt9 Sm+l ISm 1\ G

P sattp q" STl I G

6.

Proof: By numerical induction on n. The base cas(> follows immediately from the first
premise. For the inductive step,

STl+! 1\ G

(strengthening predicate)

5Tl+1 1\ (STl 1\ G)

(premise 2)
q. STl 1\ G

(inductive hypotbesis)
q.p.qTl. G

So P sat~p·9"+1 S..+1 I G. o

The following version or tbe induction rule will prove useful:

Rule 7.1.22:

P sat~P' So I G
"1m: P sat;9 S"'+1 15m 1\ G
P sat~P S~+1 I 5n /\ G

P sat~p'·p·q" S~ + 1 I G

6.

This will be used as follows: G will represent some initial state; the S~s will represent. some
'desirable states'; the Sns will repres(>nt states from which it may still be possible to reach a

desirable state. The rule then gives the probability of a desirable state being reached. This
is illustrated in figure 7.1.

Proof: Using the first two premises and tbe previous proof rule we have tbat P sat~P,.q"

S" I G. Then as above, using the third premise,

S~+l /I. G S~+I 1\ (Sn 1\ G) p. S" /\ G p.p'.q". G

So P sattP'.P.q" 5~+1 I G. o

142 Probabilities and Priorities in Timed CSP

/'
G

)/o~
81 S~

y~
82 82
y~

s;

Figure 7.1: Repreeentation of rule 7.1.22

In section 7.4 we will apply this to a protocol transmitting over a medium that correctly
transmib messages with probability p. G will represent the state where an input is received;
Sn will repre;ent the state where it tries transmitting for the n+ 1th time. With probability p

the memge is correctly transmitted, which is represented by state S~+l; with probability q,
the message is not correctly transmitted and the protocol will try retransmitting, i.e. it
will go into state 8 ..+/. The rule then gi\1eS the probability of the message being correctly
transmitted at the n + lth attempt.

7.2 Complications with probabilistic proofs

The reader may not be surprised to find that proving probabilistic specifications of proce88eS
is considerably harder than proving unprobabilistie specifications; there are a number of
complications which make the proof rules more difficult to use. In this sectioll we give
a numher of examples which demonstrate these complications and show how they can be
overcome.

Recall the proof rule for proving that an unprobabilistic specification holds for a parallel
compnc;ition;

P satp Sp
Qsatp 8Q

s l; Au B A 8p(1", f;p,s A) A SQ(1", C Q , s OJ => 8(1", C p A4t-B ~Q' s)

p.44t- B Q satp 8

By analogy with this, we would expect the following proof rule for probabilistic specifications
to hold

Psat~P 8 p

Qsat~q SQ
s£;; Au 8 A Sp(1",f;p,s A) A SQ(T,!;Q,S OJ => 8{T,~p A4t- B CQ,s)

P A4t-B Q sat?p·q 8

7.2 Complications witb probabilistic proofs 143

P A4t- B Q satisfies some specification with probability p.q if P and Q satisfy corresponding
specifications wit h probabilities p and q. This rule is indeed true. However, we shall Sl"e that
this rule is not strong enough for all our purposes

7.2.1 Conditional specifications

Consider first of all conditional specifications. Vie would like to be able to reduce a conditional
specification on a parallel composition to conditional specifications on tbe subcomponents.
The following rule does this for us:

P sat;" Sp I Gp

Q satr SQ I GQ
s ~ Au D t\ Sp(T, ~p, S A) t\ Gp(1', ~p,s A) t\ SQ(1', !;;;o' s B) 1\ GO(1', ~Q's B)

::::} S(1', I;:p A~B ~Q' s) 1\ G{1', ~p A4t- B ~Q' $)

s ~ Au B 1\ G(T,!;;;p A4t- R ~Q' s) => Gp(1', ~p, $ A) 1\ GQ(1', !;;;Q, s B)

P A4t- B Q sat;pq S I G

Informally, if G holds oC a behaviour of P A4t- B Q then premise 4 tells us that Gp and GQ
hold of the corresponding behaviours of P and Q. Premises 1 and 2 then tell us that with
probability p, tbe behadour of P satisfies Sp and Gp, and with probability q, tbe behaviour
of Q satisfies SQ and Go- Premise 3 is then enough to deduce tbat Sand G hold of pAifl--B Q's
behavionr.

The fullowing sligbtly simpler rule is an immediate corollary of this:

P sat~" Sp I Gp

Q sat~q So I GQ

$ ~ A u B t\ Sp{T,~p,S A) 1\ SQ(T'!;;;Q, $ B) => S(T,~p A4t- B

~Q's)

s ~ Au B t\ G{T,!;;;p A4t- B

~Q' s) ¢} Gp(T, !;;;p, $ A) t\ GQ(1', ~Q"~ B)

P A4t- BQ sat~pq S I G

7.2.2 Multiple possibilities

Consider the process P4t- Q where P ~ a II SnO.7 band Q ~ a O.6nO.i b. We would IiJu. to be
able to be able to prove that this deadlocks immediately with probability 0.3 x 0.4 +0.7 x
0.6 = 0.54; i.e. P <tit Q satr 54" silent where silent(1', r:, s) ~ $ = -<>-. However, there are
not predicates Sp and SQ that allow this to be proved USing the above rule. The reason for
this is that a deadlocked behaviour can come about in two ways: either from P offering a
aud Q offering b, or vice versa.

The following proof rule mrets our requirements: a proof obligatiou on P A4t- B Q i'i reduced
to a number of proof obligations on the subcomponents.

Vi: I P sat;'" SP,.

Vi: I Q sat;q· SQ,.

Vi: I 5 ~ A U B t\ Sp,.(1',~p,S A) 1\ SQ,;(1', ~Q' s B) =*"

_ S(1',!:;;p
A

4t-
B

r:Q's) [(S'(1"~P,r::Q'3)}]
P A4t- B Q sat~E, M, S di5j{JInl

144 Probabilities and Priorities in Timed CSP

where
5;(r, !;p, !;Q. s) 3: 5 ~ Au B A Sp,i(r, ~p, 5 A) A SQ,i('f, ~Ql S B)

Any pair of specifications Sp,. and SQ,' 1s enough to ensure that S holds of P A~8 Q. Note
that our original proof rule i~ a special case of this where I is a singleton set. We need
to avoid double counting: bence we need the side condition, which ensures that we never
consider the same pair of behaviours (for P and Q) twice.

We illustrate this proof rule by applying it to our example. Define the predicate only offers
by

only oHeri C == c live from 0 A no E \ coffered

only offers c is the predicate that specifies that the process is only willing to perform the
event c. Let

Sp,l == only offers a Pi == 0.3

Sp,2 == only offers b P2 -"0. 0.7

SQ,1 == only offersb q/ = 0·4
SQ.! == only offers a q2 2: 0.6

Then it is easily seen that

VI E {f ,2} P sat;P' Sp,i A Qaat: q, SQ,.

and
ViE {1 , 2} Sp" (T, !;p, -'I) A SQ,'(T, !;Q' s) => silent(T,!;p 4t- ~Q' -'I)

So we ca.n use our rule to show that

P~ Q sat:O,54 silent

since L Piqi = 0.54, and SP,l and SP,2 are disjoint so the side condition bolds.

Larsen and Skou [LS92] have a)..,o investigated compositional verification of probabilistic

proces..<e8, and tbey also find that they have to reduce a proof obligation on a composite

process to a number of proof ohligations on the subcomponents.

7.2.3 Combining multiple possibiUties with conditional specifications

If having to deal with one of the above complications is not enough, we have to he able
to deal with the case where both apply. The following proof rule covers both conditional
speci6cations and multiple possibilities:

't/l : J P sat:P' Sp" I GP,.

't/I : J Q sat: q
, SQ,' I GQ.•

Vi: J Au B A SP,t(T, !;p,s A) A Gp,.(T, !;p, SA)) ""
(3 ~
ASQ,,(T,!;Q,3 B)AGQ,i(T'!;Q,3 B)

S(T.!;p A~B ~Q,!j) A G(T,!;p A~B J;;;Q' s)

Vi: I s ~ Au B A G(T,!;p A4f-B ~Q' 3) =:}

Gp,.(T, C p , 3 A) A GQ .• {T, C Q , -'I B) [(S'(T'.C;;;.P' !;Q, 3))]
P A4f-B Q sat~E,p;q, S I G dl-'l}omt

7.2 Complications witb probabilistic proofs 145

where
S;(T, ~p, l;q, 8) == 8 <; Au B 1\ Sp,,(T, ~p, 8 A) 1\ Sq,,(T, ~q, 8 B)

It is our sincere hope that we never have to use this rule, but that we can always make do
with a simpler one

7.2.4 Universal quantification

Note that the specification 'r/ t : I P sattP S, is not the same as the specifir.ation P sat~P

'r/ i : I S, - universal quantification does not commute with probabilistic specification. This
is rather unfortunate a~ it means that we have to make a lot of our qllilntifi(:ations explicit
when in a non-probabilistic setting we would normally make them implicit.

For example, consider a medium that loses a proportion of its inputs:

w == J.l X tn -----t (out -----t X pn q X)

Let SI (for t E TIME) be defined hy

SI == In at t => out live from t + tS

SI is the condition that jf an m occurs at time t then it is correctly transmitted. It is
certainly true that "It: TIME W sat?p St: the prohability of an input received at time t
getting througb is p. However, it is not the case that W satt" 'r/ ,. : TIME St. This latter
specification says that the probability of all messages getting through is at least p.

It is interesting to note that this latter specification is satisfied by

wl=(J.lX in-----tout-----tX)pnq(pX tn-----tX)

The difference hetween the two specifications is related to the fact that recursion does not

distribute through probabilistic choice.

We will sometimes want to prove that. a composite process satisfies a number of related

specifications; we can reduce this obligation to proving a number of specificatiom for the

suhcomponents, for example by using the following rule:

'r/ i : I P sat~P. SP,i

'r/ t : I Q satl q
, SQ,i

VI : I .~ c Au B 1\ SP.,(T, C p , 5 A) 1\ Sq,;(7, C Q ,.9 B) => S,(T, Cp A4t-
B CQ,s)

T/ I : I P A4\-B Q sat~P' q. S,

When we have quantification of this form we will oftl"n make it implicit: we will pick an
arhitrary 1 E I and prove that P A4\- B Q satlP' q, Si via thl" proof rule

P sat~P' SP.•
Q sat;q; SQ,i

seA u B 1\ SP.i(T, Cp, s A} 1\ Sq.;(7", C q , s B) =>- S,(7, C p A4t-
B C q , 5)

P A4t- B Q sat?P, 9, S.

146 Probabilities and Priorities in Timed CSP

For example, considet" what happens when we chain two unreliable media together. For
simplicity, assume the media are eacb only able to deal with Doe message; let

W j ~ in...l...." (mid --t STOP pnq STOP)

W2 == mid ~ (out ---+ STOP p,nq' STOP)

W == WJ A4t-B W2

where A 0= {in, mid}, B == {mid, out}. We would like to show that if the environment always
allows mld to occur, then out is offered within 2 seconds of an in with probability pp'. Pick
t E TIME; we will show

W sat;ppl S where S == internal mid A in at t => out live from t + 2

Let

51 == in at t ==} mId live from t + 1 52 == mid at t + 1 => out live from t + 2

£t should be obvious that we can reduce the proof obligation to

W, 5at~P S/ and W2 51attP' 52

since if~3 <; Au B then SdT, 1;1' s A)" 52(7, 1;2, S B) '* S(7, 1;1 A4j-B 1;2. s). Not.e that
we hav€ had to choose W1!'s predicate very carefully so that the consequence of 51 matches
the antecedent of 52'

As another example, suppose W2 is a.', above but WI outputs after either one or two seconds:

W j == in ---!...." (mid ----) 5TOP pn q WAIT 1 ; mid ------+ 5TOP)

We witishow
WI A,,#- B We sat?pl 5

where
5 == internal mid 1\ m at t => out live from t + 2 V out live frorn t + :1

where we are implicitly quantifying over t. Let

51 ,1 == in at t => mid live from t + 1

51,e == mat t => no mid offered [t + 1, f + 2) A mJd live from t + 2

Se,l == mid at t + 1 => out live from t + 2

52,2 = m1d at t + 2 => out live from t +:1

It should be obvious that

WI Sllt~" 51,1 WI sat~q 5 1 ,2 Wll sat;pl 52,1 W 2 sat~"" 511,2

and

VI E {I, 2} s ~ A u B 1\ 51.,("-, ~I,S A) A 52,,{r'!;2,s B) => S(7,~J Atif'B ~2,$)

so WE can use the rule for parallel composition with multiple possibilities, as in section 7,2.2,
to deduce that WI A*8 W2 sat~pl 5 since pp' + qp' = pi, and 5/.1 and SJ,ll are disjoint.

7.3 Derivation of the inference rules	 147

7.2.5 Simultaneous proof of several specifications

For recursion it is often not easy to prove that a process satisfies some probabilistic specifi
cation directly; it is more convenient to infer it from some more general result.

For example, consider the process P ~ p,X a ~ STOP 1/2nl/2 WAIT 1; X. We want
to prove that this process offers an a within 3 seconds with a probability of at least 90%,
i.e. P sat?0.9 S where S ~ 3 t E [0,3] a live t. We will prove this as a corollary of the
following	 more general result:

':II : P sat;P' S,

where
S, ~ 3 t E [0,1] a live t Pi" 1 - (1/2)'"

Si is the specification that an a is offered within I seconds. Note that Ss(r,!;, s) => S(T,!;, s)

and P3 > 0.9 so this will prove our requirement.

We have the following proof rule for recursion:

(V I X sattP' Si) => (V I P sat~P' S;)

VI p.X Psat~P'S,

Assume then that 'V i X sat;P' S, and pick IE; we must show P sat?p, S,. We have the
following rule for probabilistic choice:

P sat;;'P' Sp, ,
Q sat;q SQ
Sp(r, C, s) Y SQ(r,!;, s) => S(r, C, s)

P pnq Q sat;p·p' +q.q' S

Let Sp ~ So, pi ~ 1, SQ ~ S, and q' ~ 1 - (1/2)'. Evidently Sp(r.!;, s) Y SQ(r,!;, s) =>
S;(r,~, s), and p, = 1 /f.pl + 1/2.q' so we have reduced our proof obligation to

a ~ STOP sat~1 So and WAIT 1 ; X sat~1-(1/2)' S;

To prove the first of these, we can use rnle 7.1.14 to reduce our proof obligation (0 a ~
STOP sat p So, which can be easily proved using the proof mle for prefixing. When I = 0
tbe second proof obligation follows from rule 7.1.5; for i > 0, we use the proof rule for

delay to reduce the proof obligation to X sat;1-(1/2)' S,_1, which we have by the inductive
hypothesis.

7.3 Derivation of the inference rules

In this section we derive proof rules for some of the constructs of our language. Rules for
the rest of the constructs can be derived similarly. We handle the constructs in the following
order:

• the basic processes STOP, WAIT t and SKIP;

• the one-place operators of prefixing, delay, hiding and renaming;

148 Probabilities and Prjoriti~ in Timed CSP

• prob!l.bilistic choice;

• the two-place operators of external choice, parallel composition and interleaving;

• the !ransfer operators: sequential composition, timeout, timed transfer, and interrupt;

III recursion.

Most of the proofs were given in lLow92cJ. Rules for all the operators are given in ap
pendix B.3.

7.3.1 Basic processes

The basic processes STOP, SKIP and WAIT t aTe all completely deterministic, so the rules
have the ~ame form as in the unprobabilistic model. For example. we have the following rule
for STOP.

S(T.[O, T]0 (~D>, .(>-)

STOP sat;} S

7.3.2 One place operators

In this section we state a theory that can be used to derive a proof rule for the one place
operatOis for pr€fixing, delay, hiding and renaming.

TheOT€ffi 7,3.1: Let F he a oue place operator on the syntax of PBTCSP where if the
environment condition b compat n is satisfied the semantic equation for F is of the form

PPBT F(P) pb =

if RI!1) A b ~ fl!1)

if R(!1) A b # fl!1){h~1'PHT P pb' I b ~ C(b',!1) A Tlb') A b' compa! !1'(!1)~ if ~ R(!1)

for SOTlle functions R : EOFF --+ BooI, f : EOFF --+ BEH and n' : EOFF --+ EOFF such
that

---, R(fI) /\ b/ compar ~l(n).:::} TWl /\ C(b',fI) compat n I')
Then (he following proof rule is sound:

Psat~P Sp(b) I Gp(b)
R(R) A b ~ f(!1) A G(b) ~ S(b)
Splb) A Gp(b) A Tlb) ~ S(Clb,!1)) A G(C(b,!1))
G(C(b)) A T(b) ~ Gp(b)

FIP) ••qP S(b) I G(b)

Q

7.3 Derivation of tbe inference rules 149

In tbe case of some of tbe one place operators, the behaviours of F(P) may not always depend

upon the hehaviours of P. For example, a behaviour of a ~ P ending at time 7 will not

depend upon any behaviour of P unless the environment offers an a no later than time 7 - t.

We will define R(O) to be the predicate that is t.rue precisely when the environment is such

that the hehaviour of F(P) does not depend upon the behaviour of P. When R(o.) bolds, the

behaviour of P will be a function of the environment, i.e. for some f'e have b = [(fl.) with

probahilityone. Premise 2 of the proof rule eosures that in this case S(b) holds whenever

G(h) holds. For the hiding and renaming operatorB the behaviour of F(P) will alway; depend

upon the hehaviour of P so we will take R(O) = false.

If R(O) does not hold, then a behaviour of F(P) will be a function of the cOITe~ponding

behaviour of P and of the environment: h = CW, OJ. Only certain behaviours of Pare

allowed: for example, if F(P) = P \ X, then P can only perform those behaviours where

elements of X occur as soon as they are offered. The behaviour hi of P will be compatible

with some environment 0' which is a function of 0; the condition (.) relates 0 to 0.1

• In

this case, premise 4 ensures that Gp holds of P's hehaviour whenever G holds of F(P)'s

behaviour; premise 1 then ensures that with probability p, Sp holds of P's behaviour; in this

case, premise 3 then ensures that S holds of F(P)'s behaviour.

This theorem was proved in [Low92c].

We can use tbe theorem to derive proof rules for the one place operators. For example,

taking

R(I1) " Jab,

C((T,[;,,),I1) " (T,[; \ X" \ X)

T(T,[;,,) " '~1\,?(, \ X)

11'(11) " {, I '\ X E 11)

we get the following rule for hiding:

P S&t~P Sp I Gp

SP(T,~,itC\X 5) /\ GP(T,!;,itC\X s) ~ S(T,!; \ X,s) /\ G(7,!; \ X,s)

G(T,~ \ X,s) 0:::> GP(T,!;,itC\X s)

P \ X 8at~P S I G

Since R(O) = false, the second premise in the general proof rule, above, disappears.

The above rule can be simpHfied to deal with unconditional specifications b;r' taking

G(T,!;,5) = Gp(T,~, s) = true:

P sat~P Sp

Sp(T, C, itc\X s) 0:::> S(T, C \ X, s)

P \ X sat~P S

150 Probabilities and Priorities in Timed CSP

7.3.3 Probabilistic choice

We have the following proof rule for unconditional Sipecifications.

p sal.~P' Sp, ,
Q Bat~q SQ
Sp('j,[:",s) V SQ(7,[:,5) ~ S(T,C,S)

P pn, Q sat~P p'+q.q' S

The probability of Ppn q Q performing a behaviour that satisfies 8 is the probability of P being
chosen (p) times the probahility of P performing a behaviour that satisfies S (at least p')
plus theprohability of Q heing chosen (q) times the probability of Q performing a behaviour
that satisfies S (at least q'").

For conditional specifications, the rule is slightly different.

P S8t~P' Sp I Gp

Q S8.t~P' SQ I GQ

Sp(r,!;.5) 1\ Gp(7,!;,S) V SQ(T,!;,S) 1\ GQ(T,I;;;,s) ~ 8(T.[;;;,5) 1\ G(T,[;;;,5)

G(r.C,s) ~ Gp(7, [;;;, s) 1\ GQ(T,C,S)

P pnq Q sat~P' S I G

The reader may have been expecting a stronger rule than this, for E'.xample of the form

P S8.t~P' Sp I Gp

Q sat~q' SQ I GQ
Sp(r, [;;;, s) 1\ Gp(T, ~, s) V 8Q(7,~, 5) 1\ GQ(7, 1;;;, s) ~ SeT, [;;;, 5) 1\ G(T, [;;;, .~)

·G(1,[;;;,5):::} Gp(T,I;,s) 1\ GQ(T,I;,s)

P rnq Q sattPP'+~q' S I G

The r~a.son we do not have a rule of t.his form is that given the premises and given that G
holds of a behaviour of P pn q Q, we can say nothing about wbether this is a behaviour of P
or of Q. For example, let

P =(a ---.!.-+ (b p,n J _ p' c)) p"n J _ p" STOP Q == (a ---!;. (b q,n l _ q, e)) q"n J _ q" STOP

and let
Sp = SQ = S = b live 1 Gp = GQ = G = a ;;It 0

Then dearly aU the premises of tbe above rule are satisfied, but for an enviroument n that
offers an a at time 0

~pnqQ S 1\ G pp' pJl + qq' qlJ

n G ppll + qql'ppnqQ

whkh could be anything between pi and q' depending on the choice of l' and qll.

7.3.4 Two place operators

In this section we state a theorem that can he used to derive proof rules for the external
choiCl', parallel eomposition and interleaving operators.

7.3 Derivation of the inference ru1€5 151

Theorem 7.3.2; Let f11 be a binary operator OIl the syntax of PBTCSP that has a semantic
equation with the following form:

PPBT P@ Q pb = L~PPBT P pbp.PPBT Q pbQ I b = bp <$ bQ i\ T(bp , bQI~

where ~ is some binary operator ou bebaviours such that w!wnever T(bp , bQ) holds we have

b" cot1lpal Il:p(ll:. bp,bQ) i\ bQ cot1lpal Il:Q(Il:,bp,bQ) ¢:} T(bp,b Q) i\ bpE:bQ COt1lfXl/ Il: (*)

for some functions {)p alld Il:Q' Then the following proof rule is ~ound;

V1: I P sat~Pl Sp,db) I Gp,,(b)

V1: I Q sat~q· 5Q,i(b) I CQ.,(b)

v; ,I Sp.,(bp) A Gp,,(bp) A SQ"lbQ) A GQ"lhQ) A T(hl" bO) 0>

S(hp EBba) A Glhp@hQI

V" I G(hp 8 bal A Tlhp, hQ) 0> Gp"lbp) A Ga,,(hQ) [(S,(bp , bQ; Ii, I)]
PEB Q sat~E,p.q, 5(b) I C(b) disjoint

wh"e S,(hp, ha) =0 T(hp, hQ) A Sp"lbp) A Gp,,(hp) A Sa,,!hQ) A GQ,,!hQ). "
If a behaviour of P ffi Q satisfies C then premise 4 eJlsures that the corresponding b€haviollrs
of P and Q satisfy Gp,; and GQ,,, for all i. P and Q are evaluated in envirollmeuts fl p
and flQ; (*) relates these to the euvironment for P $ Q. Premise 1 then ensures that the
behaviour of P satisfies 5p,; with probabilit.y p" and premise 2 elL';ures that the behaviour
of Q satisfies 5Q,. with probability q;. Premise 3 then t.ells us that the behaviour of P EP Q
satisfies 5. Because of the side eoudition, it is valid to sum over all f, so we see t,hat the
behaviour of P ffi Q satisfies 5 with probability at least E. p, q,.

The proof appeared in [Low92c].

We can use this theorem t.o derive rules for the two-place operators. For example, taking

(Tp,l;;p,sp) iB(TQ'~Q,~Q) .= (TP,~p4f- ~Q's)

T((Tp, !;p,sp), (TQ'~Q' ~Q)) .= TI' = TQ 1\ Sp = sQ

Il:p(fl, (TPt !;p, sp), (TO, ~Q' ~Q)) .= fl n items l;;;Q

Il:Q(fl,(TPt!;p,Sp),(TQ'~Q,~Q))'= {(l,ur;;;p(flttniterm~Q))lt Tp}

we have the foDowing proof rule for parallel composition

Vt Psat~P'Sp,.IGf',t

VI Q sat~q, SQ,.I GQ,;

V. (5p,.(T, [;;;p, 5) 1\ Gp,,(T, ~f', S)) (S{T, l;;;p 41- l;;;Q'~))

I 1\ 5Q,.(T,I;;Q'S) 1\ GQ,.(T'~Q'S) ~ 1\ G(T,~F'4I- ~Q's)

Vi G(T,!;;;p4I- !;Q,s) =} Gp,.(T,l;;;p,~) 1\ GQ,,(T,l;;;Q'~)
 (S,(T, C;P,c 0"))]
P4I- Q sat;E,p,q, 5 I G [disjoint

where 8.(T, !;;;p, !;;;Q , s) ~ 5P,.(T, ~p, s) 1\ 5Q,.(T, l;;;Q' s),

Note that there are simpler forms for this rule wbere we consider unconditional specifications,
or we reduce the proof obligation to a single proof obligation on the subcomponents'

152 Probabilities and Priorities in Timed CSP

• where we consider unconditional specifications:

V I P !lat~P. Sp,.

'<11 Q 5at~q, SQ,.

'<11 SP,.(T,Cp,S) A 5Q,.("'-,[:0,5) =? S(r,Cp-+tt- [;0,5) (S,(T, [;p, [;Q' ' JI]

P+H- Q sat~:£IP.q. S [dlSjomt

where S,(T, !;/,. ~Q' s) == Sp,.(r, !;p, s) 1\ 5Q,.(7, ~Q' s).

• where we reduce the proof obligation to a singl£> proof obligation on the subcomponents:

P sat~P Sp I Gp

Q sat~q SQ I GO

SP(T, ~p, s) f\ Gp(T, .C;p, s)) =? 5(7, ~p 4t- C;Q> s) f\ CIT, f;p 4t- C;Q' s)
(f\ SQ(-',C;Q's) f\ GQ(T,C;Q'S)

G(T,C;P-+tt- C;Q,s) =? Gp(T,C;p,S) f\ GQ(-r,C;Q,s)

P4t- Q sat~pq S I G

• where WP make both simplifications:

P sat;P Sp

Q saqq SQ

Sp(..,-, Lp, 5) 1\ SQ("", CO' s) =? S(-r, r;:::p 4t- CQ, s)

P-+tt- Q !lat~pq S

7.3.5 Transfer operators

In this S('(:tiOD we state a theorem that can be used to derive rules for the sequential compo
sition, timeout and timed transfer opp.rators. If we write for one of these operators, then
p Q initially acts "like" P (strictly the behaviour of P """ Q is derived from a behaviour
of P); then, according to certain circumstances, control is transferred to Q. Writing Ip
for PPBT P p and IQ for PPBT Q p, the probability function for pach of these operators can
be written as

PPBT P--- Q p(T,!;;;,8) ==
"'~ ()IOk(rp,l;;;"p'SP)lInotrall."fer(TP,~p'8P)~
'-' Ip TP, (;p, sp

II (T,(;,8) = C(Tp,C;p,Sp)

"~ (1IOk(TP,!;;;.p,SP)II(TP.l;:p,sp)transferatt ~ +i...J Ip Tp,Lp,SP
- /It T<t+OIl(T,!;;;,8)=C(Tp,[;p,Sp) emptYrt,T]

fP(TP' [;p, 'p)Io(TQ' c;Q' 'Q) I ~
+L Ok(Tp,[;;;p,Sp)/I(Tp,l;;;;.p,Sp) transfer at t/lt+o T~ A (T,J;;;,S) = C(Tp,!;;;p,Sp) ernptY(t,I+<lj {TQ'!;;;Q,SQ)+t+o

The prediUlte (T, i;;;;, s) transfer at t is trup if control should he removed from P at time t;
for sequential composition it is the condition that t = T and a occurs at t. The predicate
no transfer(T, r;, s) is equivalent to V/ T -, (T,!;;;., 8) t transfer at t: it is true if control

7.3 Derivation of the inference rules 153

should remain with P throughout the behaviour (T,~, Ii); (or sequential composition it is the
condition that no occurs. The function C changes a behaviour of P into one of p Q;

for sequential composition it hides all s. The predicate ok(bp) is true if op is a b~haviour

that P could perform while in the combination p Q; for sequential composition it is the
condition that a is never refused. empty! is the empty behaviour during time interval I:

for example, (/,!;, s) emptY{I,T] = (7, ~ (t, T]0 (~~}, s --<>-).
For each of these operators there is a function 0 1 EOFF -t EOFF such that whenever
ok(bp) holds,

C(bp) compat 0 ¢:} bp compat 0'(0)

C{bp) empty(I,T] wmpat 0 ¢:} bp compat 0'(0)

C(op) emptY(t,t+J) bQ + t + 8 compat 0 ¢:} bp compat 0 1(0) t 1\ oq campat 0- t - 8

Informally, OJ(O) is the environment that P encounters up until the time of transfer when
p Q is iu environment O. For sequential composition it is the environment tbat offers
whatever 0 offers along with as many s as P can perform.

We have the following proof rule:

Rule 7.3.3 (Transfer operators)

ViP sat~P' SP,1 (b) I Gp,,(oj 1\ ok(b) 1\ no transfer 0

>,'

Vi P sat;; , S;' i(b) I Gp,(b) 1\ ok(b) 1\ b transfer at t

y, Q ,.t:" SQ',,(b) I G;,,(b)

y, Sp,;lb) A Gp"lb) A ok(b) A no In,,,,,l,, b => SIGlb)) A GIG(b))

y' (Sp,(b) A Gp,lb)Aoklb)) (SIGlb) emply{<.j))

1 1\ btransfer ~t t 1\ t 7 < t + 8 => 1\ G(C(b) emp~(t,TJ)

Sp ,Ibp) /\ Gp ,(bp) A SQ ,lbQ))V1' , ' =>(1\ Ga,.(oQ) 1\ ok(b) 1\ bp transfer at t

S(C(bp) emptY(u+<l"j oQ+t+8))

(
 1\ G(C (bp) emptY(I.l+<l) bq + t + 8)

Vi. G(C(b)) 1\ ok(b) 1\ no transferb => Gp,,(b)

y, (GIGlb) empty«,.j) A oklb)) => Gp,lb)

1\ btransferat tl\t 7<t+8 .

y; (G(C(b) emptY(t,t+<l) bq+t+8l)=>G1 oll\G '(b) , ..
l\ok(o)l\btransferatt P.• (a" Q [(~'(O)}dIS)Omt]

(S'(O)) disjoint
P Q8at~I;,p,S(b)IG{b) r:'p'q E.p'.. , "

where i. ranges over some set 1 and

Silo) == ok(o) 1\ no transfer 0 1\ Sp,.{ol 1\ Gp,,(b)

Silo) :=. ok(b) 1\ b transfer at t 1\ Sp,,(oj 1\ G~.,(oj

""

154 Probabilities and Prioritie; in Timed CSP

This rule was proved sound in [Low92c]. The first three premises give predicates satisfied
by P aDd Q: Dote that we give different predicates for P in the cases where transfer does
or does not. happen; in many applications we will take these predicates to be the same.
The next three premises say that if behaviours of P and Q satisfy their predicates then the
resulting behaviour of p Q satisfies its predicates. The last three premises say that if a
behaviour of p Q satisfies G then the corresponding behaviours of P and Q satisfy their
"given" predicates (Le. the predicates appearing on the right hand of the 'I' in the first three
premi>es).

We will now use this rule to derive a rule for the timed transfer operator, P t Q. We take

(T,!;.,s)transferatj' ¢} t=e=T
no transfer(7, ~,J) ¢> 7 < t

ok(7, 1;, s) ¢> true

C(7, r,;;, S) (7,~, s).<:0.

11'(11) =0 11

This gives Ul;; the following rule:

Vi PsattP' Sp,;(T,1;,s) I Gp,.(7,1;,s) /\7 < t

V 1 P sat~P; Sp,;(7, 1;, s) I Gp,;(7,~, 5) /\ 7 = t

Vi Qsatt
q

, SQ,,(7,1;,s) I GQ,,(7,!;,S)

Vi Sp,.(7, 1;, s) /\ Gp,,(7,!;, 5) /\ 7 < t 0::::> S(T, 1;, s) /\ G(7, 1;, s)

V1 Sp,,(t,!;,s)/\G~,.(t,I;:;:,s)l\t T<t+O=:}

S(t,!;;;, s) emptY(i,..-j) /\ G((t, 1;:;:, s) emptY(t,..-J)

Vi (Sp,,(t,!;;;p,Sp) 1\ Gp,,(t,l;:;:p,sp)) =>

/\ SQ,;(7QJ~QJSQ) /\ GQ,.(7Q,r,;;Q,SQ)

SUt, !;;;p, sp) emptY(t,IH) (7Q, !;;;Q, SQ) + t + 0))

(/\ G((t, !;;;p, sp) emptY(U+dj (70, !;;;Q, sQ) + t + 0)

V: G(T,~,S)/\7<t=:}Gp,i(7,[;;,5)

Vi G((t,!;;, s) empty(l,..-j) /\ I T < t + 0 ~ Gp;(t,!;, s)

V t G((t, I;:;:p, sp) emptY(l,t+J.l (TQ' !;Q, SO) + t ~ 0) =:} [(S,. (7, ~,s)}

Gp,,(I,!;p,sp)/\ GQ,;(7Q,LQ,SQ) _ disJomt

P Qsat~~'P' S I G - (S:(7,.~,S))

t P dlsJomt

where ~ ranges over some set 1 and E; p:q; E; Pi

5.(7,I;:;:,S) ~ 7<t/\Sp,;(T,C;;,S)/\Gp,,(7,~,S)

5;(7, !::, s) =- 7 = t /\ Sp,,(7,!;;;,S) /\ Gp,,(7,~,S)

The above rule can be sjmplified in the normal ways by considering unconditional specifica
tions, or by considering only single specifications for the components.

Interrupt!

Dy analogy with the previous operators, one might expect to have a proof rule for the j nterrupt
operator oftbe following form, ignoring conditional specifications and considering only a single

7.3 Derivation of the inference rules 155

specification for l".ach component:

p sal;~P Sp

Qsat~q SQ

Sp(r, ~,s) /\ e fi- EB :=? S(7, ~ EEl e, B)

Sp(t,~, s) /\ e fi- EB /\ t 7 < t + fJ:=? S«l, ~ EEl e, S (t, e)) emptY(l,rj)

Sp(t,C,s) /\ e fi- EB /\ SQ(bQ) => S«t, C EEl e,s (t, e)) emptY(I,I+6) bQ + t + 5)

P YQ sat~pq S

However, tbis k; not the case. Consider the processes

P == (a ----.!...., SKIP J/2nl/2 WAIT 1) ;JlX a -~ X Q S STOP

It is easily seen thaI; in an environment that is always willing to perform as, the probability
that P perform<l an even number of as is 1/2:

P sat~1/2 Sp where Sp ~ internal a:=? count a even

and Q performs no as:

Q sat~ 1 Sq where Sq == count a = 0

If we define S by
S == internal a => count a even

then it is easy to see that the third, fourth and fifth premises of the "proof rule" are satisfied.
However, we do not have the consequent, for consider an environment that always offers the
interrupt event after one a has been performed - an environment that cao be 3l:hj~ved by

placing this proce.'1S in parallel with a ~ e -----10 STOP, for example: in this Ca.:le the process
always performs precisely one a, so S is never satisfied. In a sense this is because t.he interrupt
mechanism conspires against the predicate S, forcing the interrupt at a time that. makes S
false.

However, the above rule is correct if we restrict Sp to being a safety predicate: a predicate
such that if it ill true of a behaviour is al'lo true of any prefix of that behaviour. We formally
define safety predicates by:

Definition 7.3.4: A predicate S is a safety predicate if whenever S(7,~, s) holds and t 7

then we have S(t, ~ i, s t). <>

We have the folluwing rule, which was proved in [Low92c].

P sat~P Sp

Q 8al;~q SQ

Sp(7,~,S) /\ e ¢. EB => S(7, ~ tIl e,8)

Sp(t,~,S) 1\ e ¢. E5 /\ t 7 < t+fJ=>

S«t, ~ EEl e, s (t, e)) emptY(t,r])

Sp(t, ~,s) 1\ e ¢. EB /\ SQ(b q) =>

S((l,(;;;EBe,s (t,e)) emptY(l,t+6) bq +t+6) [. .]

~ Sp IS a safety predIcatePy Qsatp""l' S

156 Probabilities and Priorities in Timed CSP

7.3.6 Recursion

In this section we derive proof rules for immediate recursion. R.ules for delaYed recursion and

mutual recursion can be derived similarly.

If P is constructive for X then we have the following proof rule for immediate recursion:

Rule 1.3.5:

~Y'PPTB R(Y)o>RIFpBT Pp[Y/Xj)
[R continnous and satisfiable]

R(:FPBT IJX P p)

LI

Proof: The proof of this is identical to the proof of rule 5.4.3. o

We have the following proof rule for probabilistic specifications:

Rule 1.3.6 (Recursion)

('tii X sat;P' S; I G;) :::::} ('tit Psat;P' Sj I G,l
'tii IlX P sat;P' S; I G,

for P constructive for X. where 1 ranges over some set 1. LI

We need the following result adapted from [R.ee88]:

Theol'Pffi 7.3.1: A specificatidn R is continuous if for all X in 'PPTB such that R(X) = false:

:3 t : TIME 'ti Y : 'PPTB Y I = X t:::::} R(Y) = false

Q

\Ve can now prove the inference rule sound:

Proof of rule 7.3.6: In order to nse rule 7.3.5 we only need to prove that the predicate

R(Y) == 'ti i 'ti 11 ~ S, /I. G, p. r;,. G,

is coutinuous and satisfiable, where the notation is extended to arbitrary members of 'PP TB
in the obvious way:

~ S ==L~1I'~X(7,~,.'l)1(7,!;,S)COmpatI1I\S(7,!;,S)~

To show continuity, suppose that X E 'PPT8 and R(X) = false. Then for some n E EOFF
and i E I

~ Sj /I. G; < p. ~ Gi

7.3 Derivation of the inference rules 157

Let t == e.ndn and pick Y E 'PPTB such that Y l = X t. In order to apply theorem 7.3.7
we must show R(Y) = false. For any behaviour (T,~,S), if (T,~,S) cornpat n then T = t

and so 11"2 Y(T,~, s) = 1I"J!X (T,~, 5). Hence for any predicate T,

n
y

T L~1I"J! Y(T,~, 5) I (T,~, 5) cornpat n!l. T(T,~, s)~

L~7r2X(T, C;;;, s) I (T,~, s) cornpat n!l. T(T,~, s)~

~ T

so in particular

~ ~ S, 1\ G, ~ S,!I. G,

< p. ~ G,

p. ~ G.

so R(Y) = false, as required.

For satisfiahility, consider X := ({},'\(T,~, 5) 0). Then for ,)..!I i E I and n E EOFF we
have ~ G. = 0, so ~ Si 1\ Gi Pi. ~ G,. Hence R(X) holds. 0

Note that in proving the premise of the proof rule we cannot assume that X is a member
of 'PPTB: we may not assume that any of the axioms are satisfied hy X. This i~ rarely a
problem.

For unconditional specifications we have the following proof rule:

Rule 7.3.8:

(Vi Xsat~P;Si)::::}('v'i Psat;P'S,) ['v'i 'v'O 3b bncornpatnI\Si(bnl]n
VI p.X Psat;P'Si

6

where P is constructive for X. The side condition says that for each environment we can
find a behaviour that satisfies So'

Proof: As in the previous case, it is enough to show that the predicate

R(Y):="Ii 'v'O ~ S, Pi

is continuous and satisfiable. The proof of continuity is as before. For satisfiability. consider
X == ({},'\(T, C;;;, s) 1). For all environments 0 and for all I, we have, by the side condition,
~ S, 7r2X(bn) = 1 p•. Hence. R(X) holds as required. 0

The form of the side condition is not very convenient. The following rule has a side condition
that is generally easier to prove.

Rule 7.3.9 (Delayed recur-slon)

("I i X :.at;P, S.) ::::} ("I i P sat;P' Sol
['v'I 3P:PBTCSP PsatpSi]

VI p. X P sat;P' S,

6

158 Probabilities and Priorities in Timed CSP

It is enough to find, for each !, a process that satisfies S,.

Proof: We will show that the side condition of thi~ rule implies the side condition of the

previous rule. Pick I; then there exists a process P such that P sat" S,. Now for aU
environments n,

L~PPBT p p(T,~, s) I (T,!;, s) campa! n~ = 1

by theorem 4.2.2. In particular, there is some behaviour bn sllch that bo compat nand
PPBr P p(bn) > O. Then bn E A pBT P P by axiom P4 oftbe semantic space, and so S,(bn)
sin~P~p~' 0

Note that all the above ru!",s can be simp15fied by taking I to be a singleton set.

7.4 Case study: a simple protocol

In this section we consider a very simple communications protocol, illustrated in figure i.2.
Messages are input on the channel in. S then tries transmitting t.hem over the medium M,
which loses a proportion of its inpl.lts. If the message is received hy R then it L'l acknowledged
and then output. If S does not receive an acknowledgement within a certain time then [t
times-out and re-transmits.

o

""

in5 tRout
con ~

Figure 7.2: A simple protocol

We shall write ill for {m.x I x EX}, etc., where X is the type of the data transmitted. We
shall also feel free to abuse notation by \!'Titing, for example, 1m, rm for im U rm.

The definitioILS of the processes are

PROT" PROT' \ A

PROT' " (5 <It R) <It M
roni 1m,"'"

5 =: m?x ----j. Im!x ----j. S/(x)

S'{x) == con/1 ----j. con/2 ----j. 5 IQ lm!x ----j. 5'(x)

M e Im?x ~ (rm!:1: ----+ M pn q WAIT 0; M)

R == rm?x ----+ 0011/1 ----+ out!X ----+ ('.on!2 ----+ R

where A == {lm,rm,con/}. The length of the time out is chosen to ensure that 5 docs
not time out before the acknowledgement can get through For convenience we name the
alphabets of S and R:

As == {in, 1m, COll/} AR =: {rm, out, con/}

7.4 Case study: 8. simple prot.ocol 159

In section 7.4.1 we will prove that the protocol acts like a one place buffer, i.e. the output
stream of data is a prefix of the inpnt stream of data and is at most one item shorter. This
proof will not require any treatment of probabilities: it can be carried out using only the
proof system presented in chapter 5. In section 7.4.2 we will examine the performance of the
protocol and prove a result giving the probability of a message being correctly trao5mitted
within a certain time. It will turn ont that tbis latter proof will make use of many results
proved during the former proof: in section 7.4.1 we will prove many results about the ordering
of events that will prove useful in section 7.4.2.

We introduce (l piece of notation which will be usefnl in the proofs. We want to De able
to talk about. the order in which events occur witbout mentioning the times expliritly. We
shall write untimed u. where u is a sequeuce of untimed events, to specify that e1'('Ills are
performed in the order given by u:

(untimed u)(-r,~, s) =- 'II i E l5tnp s s/ u

where t~lnp.9 returns the set of all sequences of untimed events corresponding to the trace s,
and i.., the prefix relation on traces.

7.4.1 Safety

We begin by showing that tbe protocol acts like a one place buffer:

Theorem 7.4.1: PROT satp 5 where

5 =-::In: ;Xl X,,: X untimed (m.J"J,olll,xJ, .. . tn.In,oul.Xnl

<:>

Proof: We nse the proof rule for hiding (rule 13.1.25) to reuuce the proof obligation toghowing
t141.t PROT1 satisfies the predicate

internal A =} ::J n : ; Xl, X,,: X untimed {in,oul} (m.xJ,out,Xl, ... ,tn.xn,out.x,,)

Note that the predicate on the right hand siue of the implication is A-independent and
implies S. This predicate can be strengthened to

rm.x at /, => 1m.]: at t - /0

S' =- internal A=> 1\ :3 n: ;]:1,"" In : X; nl'.'~' nn: + untimed ,SI 52
('n)wbere Si = (m.x,) ([m.x,) ' (1771.x"con!1,out.X.,Coll!21

All nns must have been c.aused by an 1m to time nnits previously; the protocol repeatedly
performs t.be events tn, one or more Ims, nn, con!l, out, con/2, in that. order.

We now sPek sp('{"ific:ations for M a.nd S +tr R. Let SM and SSR be given by
Cdn!

SM =- 1771.X at t => name of last before I = Im.x

1\ Im.x at t => (1771.X live from I + to V no 1771 offered (t. time of first after til
1\ 1m. ml separate

160 Probabilities a.nd Priorities in Timed CSP

,ntemal con! J
' ~ /\ rrn.x at t ::::;. name of last 1m, rm before t = Im.x
5m=	 ~

rm.x accessible from t + tv)
[/\ Im.x at t => (V no rrn at (t, time of first [m, rm after t]

em.x at t => Im.x at t - to)

/\3n: ;x/, ... ,x,,:X;n/, ... ,n.. : + untimed .'II SI. .'In

(
where .'I, = (m.x.) (Im.x,)'" (nn.x;,con!l,out.::t"con/2)

/\ 1m, con!, out separate

/\ 1m at I /\ in rive from t' > t ::::;.

3 tl, t2, t3 t < tj < t2 < t3 < t' /\ con!] at t l /\ out at t2 /\ con/2 at t3

The three conjuncts of 5M state that

•	 nilS must be preceded by corresponding lms;

•	 if <111 1m is performed, then eithl?r an m~ will be offered until it is performed, or no rm will
be performed until after another 1m -- i.e. the message is either correctly transmitted
or loot; and

•	 the medium offers Ims and rms separately.

The first conjunct of 5SR states that if the environment is such that

•	 con! is always available;

•	 all rms are preceded by corresponding Ims; and

•	 after an 1m occurs, an 1m is eithf'r offered until accepted or not offered at all;

then

•	 each 1m occurs to after a corresponding 1m; and

•	 the trace is of the required form.

The second and third conjuncts say that at most one of rm, can! and out are offered at a

time, and that con!J, out and con!2 occur between each 1m and m.

We want t.o reduce our proof obligation to proving that M satp 8 M and 5 4t- R satp 5SR.

~()nJ

From the proof rule for parallel composition, it is enough to prove the following:

Lemma 7.4.1.1; If 1;$ ~ {In, 1m, rrn, con!, out} then

SM(T, ~ M,.'I {1m, 1m}) /\ 5SR(7, r;SR,') ::::;. 5/(7, r;SfI ,4t- bM, .'I)
m.~

"
Proof of lemma: Let I;; = I;;SJi Im~rm r;M' Suppose the premises of the lemma bold, and

suppose internal A(7. 1;;, .'I). Wf> will aim to prove

rm.:t at t ::::;. lm.::t at t - to

/\:In: ; x/, ... ,x.. : X; nj, ... ,n,,: + untimed $1 $2 .. S") (T, 1;;, 5)

(

where fl, = (m.x,) (Im.xi)n, (rm.x"am/J,out.xi,confrd

7.4 Case study: a simple protocol 161

by induction on tbe number of events in ,.
Suppose then that the lemma holds for all trares of]pngth lpss than 1, and let #5:= I. We
begin by showing

;o"m'l conf 1
1\ T"Tn.~ at t::::>- name of last 1m, rm before I = Im.x ()

. T,[:;;;sn,S (.)
rm.x accessible from t + to)(1\ lm.~ at t::::>

(v no rm at (t, time of first after t]

The crux is the third conjunct, for which we need the inductive hypothesis. (.) matches the
left hand side of the first conjunct of SSR, which willl"nable us to deduce the result.

The first conjunct of (.) follows immediately from the assumption and the second conjunct
follows from the first conjunct of SM. For the third conjunct, suppose (lm.x at t)(T.~SR'S).

Then thp spcond conjunct of 8M gives us

(rm.x live from t + to v no nn offered (t, time of first after t])l T, ~M, 5 {in, au!})

If (no rm offered (t,timeof fjrst after t])(T,I;M,5 {in, out}) then we havp (norm at
(Ctime of first after t])(T, ~sn,5), as required. So suppose (nn.x livl" from t + to)(T.~M, 5
{in, out}); we will show (rm.x accessible from l + to)(T, ~SR, 5). Taking c = rm, C = {rm}
in corollary 5.3.2, we need to show

(internal rm)(T,~, 5) (7.1)

rm, {in, out, conI} separate from t + to (7.2)

(7.1) follows from the hypothesis internal A. To show (7.2), SUppOSl" for some t' 1+ to we
have (t\ nn) E items (;;;; then from the second conjunct of Ssn we have (t ' , oul), (e ,conf) 1
items~. It remains to show (t', in) 1- items t;;;. Suppose otherwise: in this case, the rm must
bave been caused by au earlier 1m, but for S to be willing to pl"rform In, there must have
beeu a con!l. out, con!:! in bptween the tm and in (by the third conjunct of Ssn):

S<llR, 1m wniJ Ollt con/2 In
CO"/

M, 1m rm

Suppose the out occurs at time T'. Consider the behaviours (T', ~M T', 5 {1m, rm} r' } and
(T' , !;SR T',5 T'). These satisfy .'1M and SSR respectively, so by the inductive hypothesis the
behaviour of the composite process. (T',~ T' ,5 Ti

). should satisfy the result of the lemma.
However, it clearly doesn't as a COTl!1 follows an 1m. Hence we reach a contradiction and so
conclude that (7.2) holds, and so (rm.x accessible from t + to)(T, (;;;SR. 5).

Hence we have proved (.) and so can use SSR to deduce

nn.x at t ::::>- lm.x at t - to

l\:Jn: ;X1, ... ,X,,:Xin1 ... ·,TI": + untimed 5152 .. ,") (T,C;SR,')

(

where 5, = (In.x,} {[m.x,)'" (rm.x" con!1' out.x" con!2)

and heuce

rm.x at t * lm.x at 1 - 10

l\:Jn: : Xl •... ,x": X; nJ n". + untimed 5, 5Z . ,") (T·C;.'I
(

where s, = (in.x,) (Im.x,}"' (nn.x" con!I' out.x" con!z}

162 Probabilities and Priorities in Timed CSP

as required.	 o

We now prove that M and S ~ R satisfy their speci1kations. We start by proving M satp SM.
~"J

\Ve assume X satp SM and nse the proof rule for recursion to reduce the proof ohligation to

Im?x ~ (rm!x ---jo X pnq WAIT 0; Xl 5atp SM

Using the proof rule {or prefixing, it is enough to prove that

rm!x ---Jo X pnq WAIT 0; X satp (nn.x live from 0 Y no nn at [0, time of first])

1\ name of first = nn.y => y = x

nn.x ,t t)
1\	 ~ name of last before t = 1m.x

(1\ t > time of first

nn.x live from t + to)
1\ lm.x at t =>

(Y no nn offered (t, time of first after tJ
1\ lm, nn separate

We now use the proof rule for probabilistic choice to reduce the proof obligation to

nn!x ---t X satp	 nn.x live from 0

1\ name of first = nn.y => y = x

1\ nn.x at t > time of first => name of last before t = 1m.x

1\ 1m.x at t => (rm.x live from t + to y no nn offered (t, time of first after I.])

1\ lm, nn separate

and

WAIT O;X aatp no nn at [0, time of first)

1\ name of first == nn.y => y;::: x

1\ nn.x at t > time of first => name of last before t = 1m.x

1\ lm.x at t. => (rrn.x live from t + to y no nn offered (t, time of first after t))
1\ 1m, nn separate

These ar~ easily proven using the proof rules for prefixing and delay, making use of the
asflumption about X.

We uow turn our attention to praying that S ~ R satp SSR. We seek specifications for S
caut

and R. Let

Ss == 3n: iXj, ... ,xn:X;rll,.··,nn: + untimed 51 52 5"

where 5i == (m.x;) (lm.x.)'" (ClmfJ,con!2)

1\ Im.x at t => conft live [t + 0, t + t(J +0] 1\ no 1m offered (t, t + to + 6J

SR ==	 nn?x at t => coniJ live from t + 0

1\ Clm!2 at t => nn live from t + 0

1\ nn live from 0

1\3n: ;Xj, ... ,x,,:X untimed 5152 5"

where -'Ii = (nn.x" con!I' out.Xi, conh)

1\ nn, con!, out separate

7.4 Case study: a simple protocol	 163

We have the following proof obligation:

Lemma 7.4.1.2: If L!i ~ {1m, nn, in, out, conj} then

SS(T,~S,!j As) A SR(T'~R,5 AR) => SSR(T,!;;;S 4t-, !;;;R,S)
""

"
Proof of lemma: The second conjunct of SSR follows from the last conjunct of SR; the
third conjunct of SSR follows from the first conjunct of Ss and the fourth conjuDct of SR.
We concentrate on proving the first conjunct of SSR·

Let!;;; ==!;.s 4I- !;;;R' Assume the premises of the lemma, and suppose
00"J

;O"mal ronf J
A rm.x at t => name of last 1m, nn before I = Im.I

.	 (T, C::,') (.)
r71l.x acceSSible from t + to)

[A lm.x at t ::::}
(V no nn at (t. time of first 1m, rm after tJ

We want to prov{'

rm.x at t ==;0 lm.x at t - to

1\3n: ;Xl, ... ,x,,:X;n/, .. ,n,,: + untimed 5152 ,") (T,c::,,)

(where .~; = {in.:Ti} (lm.xi)'" (nn.I" coniJ, out.Xi, con!2)

We concent.rate on the second conjunct; the first conjunct is proved in passing. We consider
in what order the parallel composition performs events.

Tbe first event (if it performs any eveuts) of s As is in.xI for some Xl and the fir~l event

of 5 AR is nn.X for some I. But from (,,) we have rm.x at I => name of last 1m, rm before

t = Im.x so nn.x cannot be the first event. Hence the first event must be in.xl for some XJ.

We consider now the identity of the second event (if there is a second event). The nen event

of 5 As is 1nl.xj, while the next event of 5 AR is rm.x for some x. But, as in the previous

paragraph, an rm cannot yet be performed. Hence the second event is 1m.xl'

Suppose the process performs Im.x, at some time t, and an rm ha'3 not yet been performed.

Then from (,,) we have

(rm.x accessible from 1+ to V no nn at (t, time of first 1m, rm after t])(r,!;;;, s)

We consider these two disjuncts separal,ely.

•	 If the first disjunct holds, then since (nn live from O)(r, !;;;R"~ AR) we have rm.I 3111+ to.
From the s{'cond conjunct of Ss we hav'P no 1m at (t, 10J so thl? next event is rm.I. Note
that this rm occurs to after a corresponding 1m, a.s r{'quired by the first clause of our
desired result .

•	 If no rm at (t,timeof firstlm,nn after ll)(-r,~ ..~) then tbe next event must be an
oth{'r lm.x, by the first clause of Ss and the fourth clause of SR.

164 Probabilities and PriorWes in Timed CSP

Suppo:;e then tbat the first 1m.X oCcurs at some time t. Then from the previous paragraph,

we must have had Im.x at t - to. So from the first conjlJDct of SR we have (caniJ live from t +

J)(T'~R,5 AR)' Also from the second conjunct of 5s we have (con!l live [t - to +J,t +<5] /\

no 1m 3t (t - 10, t + 8]) (T, ~s,.~ As) so the next event is canh which occurs at time t + J.

since ~e have internal crm! by assumption.

Now suppose that a con!! occurs at some time and the previoU$ event was rm.X. Then the

next two events of s AR are out.x and canh and the next event of s As is cor/h, so the

next two events are Qut.x and con/2

Now suppose a con12 occurs at some time. Then the next event of s AR is rm.x for some x,

and th~ next two events of s As are in.x and 1m. x for some x. But as abow, the rm.x

cannot occur before the im, so the next two events are in.x and lm.x.

Supp~ now that an lm.x occurs at time t, and au 1m has occurred previously. Then from the

above a COr/If must have occurred at some t.ime t', before l. Then from the second conjunct

of SR we llave (rm live from t' + 6)(7, ~R'.i AR), so (n1l live from t + 6)(T, ~R,' AR)' Also,

from (.J we have

(nn.x accessible from t + to V no rm at (I,time of first 1m, rm after t])(7, ~,5)

Then as above, we either have the next event an rm.x at time t + to, or the next event is

another Im.x. Note that in the case where the rm.x oc-curs, it happens to after a correspond

ing lfll. as required by the first clause of our desired result.

Finall)', suppose an 1m.X occurs at time I. and this is not the first nn. Then from the previous

paragraph, we must have had an 1m at t - lo. So, as above, the next event mu~t be a con/I.

o

It remains to show that Sand R meet their specifications. These are easily shown using the
proof rules for recursion, prefixing and time out. This completes the proof. 0

7.4.2 Liveness

We will now consider the liveness properties of the protocol. We want to calculate the
probability of a message being correctly transmitted within a certain time. For r/ E let

T =to + 26 T,,=nT+6

T is the lime between successive attempts at transmission; T" is the time taken for the
mL'Ssage to get through if the nth attempt at transmission 1s successful. Let G be the
predicate that an x is input at time t; let S" he the predicate that the output occurs within
time T" (for r/ > 0):

G3jr/.:ratt Sri == out.:r rive from(t, t + T,,]

where we OIPrlOad the Jive from construct to specify that an event hecomes available at som~

time during an interval:
a live from I == 3 tEl a live from t

Informally, S" 1s true if the me,;sage is transmitted within n attempts. We want to prove (for
all t and z):

Theorem 7".4.2: V n : + PROTsat?/-qn S" I G. "

7.4 Case study: a simple protocol 165

Proof: We fix n and attempt to prove PROT sat~l-q" Sn I G. We consider the case where
the message is correctly transmitted on the mth attempt; for m E +, let

S~ == no out offered (t,t + T..._ J] II ou1.x livefrom(t + Tm~l,t + T...]

S~ is the condition that the message is correctly transmitted on the mth attempt. We use
rule 7.1.19 to reduce our proof obligation to

'1m PROT sat~P.¥"'-J S:.. I G

using S} ... S~ to prove Sn' We have the following proof obligations:

• '1m n S;"(T,!;,S) II G(T,!;,S) ~ Sn(T,!;,S) /\ G(T,!;,S);

• (SHT,!;, s) II G(T,!;, s), ... ,S~(T,!;, s) A G(T,~, s)) disjoint;

"• E p.qm-I 1 _ qn

...=J

These are all trivial.

We fix m E + and seek to prove PROT sattp·qrn-J S:., I G. We use the proof rule for

hiding to reduce our proof obligatiou to PROT' sat~p·q""-J S::' I G where

S::. == internal A => no out offered (t, r. + Tm-l J II out.x live from(t + Tm- f, t + Tml
To prove this specification, we introduce the following specification (for IE):

S;II == internal A ::::) no out offered (t, t + Til II (beyond t + TI::::) Im.x at t + TI)

Sf" is the condition that the first I attempts at transmission are unsuccessful, a.nd the protocol
tries transmitting for the l + lth time at t + Tl. We use rule 7,1.22 to reduce thl' proof
ohligation to the following:

1. PROT' sat? 1 So'l G;

2. '1[; PROT' sattq S:~l I Sf" II G;

3. PROT' sat~P 5::'+J I S:;: II G.

We prove each of these in turD.

Condition 1: We can rule 7.1.13 to reduce the proof obligation to

PROT' satp in.x at t::::) no out offered (t, t + d] /\ [m,x live from t + J

By the results of section 7.4.1, if an in occurs at time t, then out does not occur during
(t, t + JJ, and the medium must be ready to receive an 1m from time t + J, so we can use the
proof rule for parallel composition to reduce the proof obligation to

S * R sstp In.X CIt t 00) Im.x live from t + J
con!

We can use the proof rule for parallel composition again to reduce the proof obligation to

S sstp In.X CIt t ~ Im.x live from t + J and R sstp tnle

The proof obligation for R is trivial; the proof obligation for S can be discharged l.l.Sing the
proof rules for prefixing and recursion. 0

166 Probabilities and Prio6tie:s in Timed CSP

Condition 2: \Ve must prove VI : PROT/ sat~q S;~J I Sf" 1\ G. Pick 1 E . The
condition S{~ I I Sf" 1\ G is equivalent to

internal A =} internal A =}

no out offered (t, t + T/+
1

]) (no out offered (t, t + Til)

(1\ beyond i + Tl+j =} Im.x at t + T'+ 1\ beyond t + Tl => Im.x at t + T{
1

1\ m.x at I

which is the condition tbat the first 1+ 1 attempts are unsuccessful given that the first I are
unsuccessful. By rule i.1.16 we' can reduce this to S:~I I G{ where

G, == no out offered (t, t + Til 1\ (beyond t + .T, =} Im.x at t + Ttl A in.x at t

We will reduce the	 proof obligation to

S tit- R sat~l S~m I GSf/. and M sat~q 3M I GM
~~"J F	 F

where

SSR internal con! 1\ no nn. at [t + TI, t + T{ + tol =}

no out offered (t, t + TI+l] 1\ Im.x live from t + T'-t J

GSR == no out offered (I, t + TJlA (beyond t + TI =} Im.x at t + Td /\ in.x at t

3M == Im.x at t + T1 =} no rm offered [t + T/,t + T/ + to]/\ lm live from t + T, + to +8

Gu == tru,

SSR I GSR is the condition that, given that all 1m occurs at t + T" if a.n rm does not occur
within the next to, then an 1m is offerl?d at time t+ T,+ 1 , i.e. the condition that the protocol
tries to retransmit as it should. SM I GM is the condition that the medium looes a message
that is input at time t + TI, and then becomes ready for another input.

'Ve ban! the following proof obligation:

Lemma 7.4.2.1: If I:s ';;;; {in, out,lm, ,.,n, con!} and ~ = ~SR ,'* ~M tben
m,TTl"

SSR(T, !:SR, s) /\ GSR(T, !;;SR, s)
() '* Sm ({lm,rm}) - 1+1 T,I;;;;;, 9) /\ G/(T,!;;,S)

/\ SM(T,~M,S {lm,rm}) /\ GM(T,~M,9

and
GI(T,~,9) =} GSR(r'~SR,9) /\ GM(T,~M,9 {lm,rm})

<:>

Proof of lemma: For the first obligation assume

SSR(T,c.;SR,S)/\ GSR(T,~SR,9) /\ SM(T,~M,S {/m,rm}) /\ GM(T,~M,5 {lm,rm})

Then G l rollows immediately from GSR. To prove S{~l' assume (internatA)(T,~,9). \\'e
must show (no out offered (t, t + TI+1] /\ (beyond t + T'+J =} /m.x at t + Tl+l))(T, b, 5).

7.4 Case study: a simple protocol 167

If .., beyond l + Tl then the result is trivial from the first conjunct of GSR. So suppose
beyond t + TI ; then from the second conjunct of GSR we have Im.x at t + Tj. Then from SM
we have no rm at [t + T I , l + TI + to], so SSR gives us (no out offered (t, t + T'+I]lIlm.x live
from t + TI+ 1)(T, (;:;;SR, s). Also, SM gives us (1m live from t + T, + to +0)(T, ~M, .'I {1m, rm}),
and so we have

(no out offered (t, t + Tl+ 1] /\ (beyond t + Tl+ 1 :::} lm.x at t + Tl+ 1))(T,~, s)

from the assumption (internal A)(T, ~,.'l) and the definition of parallel composition of offer
relations.
For the second obligation, assume G,(T,!;., .'I). Then GM (T, ~M, S {1m, rm}) is tri"ially true
and GSR(T, ~SR, s) follows immediat.ely from the assumption. 0

We now prove that S 1ft R satisfies its specification: S tit R sat~/ SSR I GSR. By rule 7.1.13,
conJ ronJ

we can reduce the proof obligat.ion t.o S tit R satp (GSR ::::} SSR}' The predicate GsR ::::} SSR
ronJ

can be strengthened to ShU + TJ) where

SSR (t') == internal (;on! /\ Im.x at t' /\ no rm at [t', t' + to J :::}

no Ollt offered (I', t' + T]I\ Im.x live from t' + T

We show that SSR(t') is met for all t'. 'Ve reduce the proof ohligations to pro"ing that
S satp Ss and R satp SR where the predicates Ss and SR are given by

Ss == lrn.x at t' 1\ no coniJ at [t', t' + to + 6] :::} Im.x live from t' + T
SR == no rm at [time of last con! before til, til - d] :::} no coniJ at til

S's specification says tbat if it does not receive a wn!1 within to +6 of performing an 1m, then
it tries retransmitting. R's specification says that if a wn! occurs t.hen it cannot perform
another con!l until at least 0 after an rm occurs.

We have the following proof obligation:

Lemma 7.4.2.2:

SS(T,!;;;S,S {m,lm,conJ})/\SR(T'~R's {rm,con!,out})::::}S~R(T,~s t1tf~RIS)
<00

"
Proof of lemma: Let L == LS 1ft LR and assume the premises. Suppose

- - conJ

(internal con! 1\ Im.x at t' /\ no rm at [t l , t' + to])(T,~,.'l)

We will show (no out offered (t', t' + T] 1\ Im.x live from t' + T)(T,!;., ,). From the re...
sults of section 7.4.1 we have no rm at [time of lastwn! before t', t']. and from t.he as
sumption we have no rm at [e,ll + to]; hence for all til E It',t' + '0 + oj 'l\'e have
no rm at [time of last COil! before til, til - 6], so from SR we have no COIl!S at tit. HeDce
we have no con!l at [t', t' + to + 6), so from Ss we have lm.x live from t' + T. Also. from
the results of section 7.4.1 we have out offered til :::} nn at (time of last 1m, t" - 26J. hence
no out offered (t', t' + T], as reqnired. 0

168 Probabilities and Priorities in Timed CSP

The proofs that Sand R satisfy their specifications are completely routine.

We now prove that M satisfies its specification: M sat~9 8M I GM. Since GM =" truc, the
proof obligatioll can be reduced to M sat;q 8M(t + T1) where

s~ en ~ lm.x at t' => no rm offered [t', t' + tol 1\ 1m live from tt + '0 + 6

We US€ the proof rule for recursion to show V 1/ M sat;q 8M(t'). Note that STOP satp

8M(t') so SM (t') is satisfiable (so the side condition of the proof rule for recursion is satisfied).

We assume Vex sattq s~ (t'); we must show V t' Im?x ~ (rm!x -----7 X prl q WAIT 6 ;
X) sat;q 8M-Cn. The following result about M is trivial to prove and will be I1seful:

M satp 1m live from 0 (.)

Pick t' and suppose lm.I at tl. We have two cases to consider.

•	 If trre 1m at time t' is the first tm then we use the proof rule for prefixing to reduce the
proof obligation to

rm!x ---+ X pn q WAIT d; X sat;q SM
where SM ~ no rm offered 0 i\ 1m live from t5

We can then use the proof rule for probabilistic dlOice to reduce the obligation to

rm!x ---+ X sat~O S'fJ and WAIT d; X sat~q SM

Thdirst obligation follows from rule 7.1.5; the second ohligation follows from (*) and
the rule for delay.

•	 If the first 1m occurs at some time til < t' tb.en we can use the proof rule for prefixing
to reduce the proof obligation to

rm!x ---+ X pn q WAIT 6; X sat;q S~(I,' - til - to)

The proof rule for prohabilistic choice can then he used to reduce this to

rm!x --i X sat~q S:W (I' - til - to) (7.3)

WAIT d; X sat~q S~(tl - til - to) (7.4)

For (7.3), suppose the first rm occurs after a delay of t '''; then tbe proof rule for prefixing
can be used to reduce the ohligation to X sat;q S:WU' - til - to - till - 0), which follows
immediately from the hypothesis. For (7.4), we can use the proof rule for delay to reduce
the proof obligation to X sat~q S~(t' - til - t[J - 0), which again follows immediately
from the hypothesis.

This completes the proof of condition 2.	 o

7.4 Case study; a simple protocol	 169

Condition	 3: We must prove

PROT' sat~l' S::'+1 I S::: A G

The condition S::'+ J IS::: A G is equivalent to

internal A ==>

no out offered (t, 1+ Tm))

(A ouLx li....efrom(t+ Tm,t+ Tm+1]

intemal A ==>

no oul offered (/, t + Tm])
(A beyond t + Tm ==> lm.x at t + Tm

A trI.X at t

which is the condition that the m + lth attempt at transmission is successful, given that the
first m are unsuccessful and another attempt at transmission is made. We can use rule 7.1.16
to simplify this to S::'+1 I Gm where

Gm ~ no out offered (t, t + Tm] A (beyond t + Tm ==> lm.x at t + Tm) 1\ in.x ~t t

We will use the proof rule for parallel composition to redure the proof obligation to showing
5 '* R sat~l SSR I GSR and M sat~P SM I GM wbere

con! P

internal can! A no nn at [t + Tm, t + Tm + to)) I'
55R	 ==> ouLx Ive from I + Tm+1(A rm.x accessible from! + Tm + to

C5R no out offered (t, t + Tm] A (beyond t + Tm ==> Im.x at t + Tml A in.x at t

5M ~ Im.x at t + Tm ==> no rm at [I + Tm,t + Tm + to) A rm.x live fromt + T",+ to

CM tru,

SM I GM is the condition that the input is correctly transmitted. SSR I GSR is the mndition
that if an nn is offered by the medium at time t + Tm+ to, then it becomes ready fm output
from t + Tm+ 1 . We have the following proof obligation:

Lemma 7.4.2.3: ICY:5<;{m,out,lm,m.,con!}and~=!:;sRI'*~M then
m,~

SSR(T,!:SR,5l A GSR(T,C;:;;SR,~l
({Im,nn})) ==> S::'+l(T,C;:;;,S) 1\ Gm('r.~,s)

A SM(T,!:M,~ {lm,rm}) 1\ GM(T,!:M'~

and
GmCr,~,s) ==> GSR(T,C;:;;SR,S) A GM(T,!;M,5 {lm,m.})

o

Proof of lemma: For the first obligation, assume

SSR(T,J;;;SR,.'l) A GSR(T,!:SR,5) ASM(T,!:M.S {lm,nn}) 1\ GM(T,!;M,5 (lm,nn})

Then Gm follows immediately from GSR. To prove 5::'+1' snppose internal A. Then from GSR
we have no out offered (t, t + Tm]. It remains to show out.x live from(t + Tm, t + Tm+I]' If
--, beyond l + Tm then this is vacuously true, so suppose beyond 1+ Tm . Then from GSR we

170 Probabilities and Priorities in Timed CSP

havelm.:r at t+Tm and so from 8M we have (no nn at [t+ T"" t+T.... +to) 1\ nn.:r live from t+
T m+IQ)(7, kM,.'l (1m, nIl}). We want to prove (rm.x accessible from t + T.", + to)(7, ~SR, s):
but this follows from corollary 5.3.2 by taking c = rm.X and C = {rm} and using the results
of section 7.4.1. Hence the premises of SSR are satisfied, so we have out.x live from t + Tm+J .
The second oblig:\tion follows trivially from the definitions. 0

We now prove that S 4t- R satisfies its specification: 5'* R sattt SSR I GsR. By rule 7.1.13
conI ,Qn!

we can reduce the proof obligation to S 4t- R satp GSR => SSR' The predicate GSR => SSR
<:0'1/

can be strengthened to SSR(t + T.,.,), where

, (') _(Im.I at e 1\ internal conI) => ou/.x live from t' + TSSR t =
1\ no rm at [t' , I.' + IQ) 1\ rm.X accessible from e + to

We will prove S o!/ R satp S.~R(I.') for all t'. We reduce the proof obligation to S satp S8

and R satp SR, where

Ss ~ lm.x at t' => conll lie [t' + 15, (' + to + 0]

, (amll lie from t' + to + 0)
SR :S n71.X at t + to =>

/\ conlI at t' + to + 0 => out.x lie from L' + T

We have the following proof obligation:

Lemma 7.4.2.4:

Ss(r·l.;s,s {in,lm,conf}) /\ SR(T,l;;;R,S {rm,conl,out}) => S~Jl(T,bS 4t- bR,.'l)
'""f

"
Proof of lemma: Let C ~ C s '* CR and assume the premises. Suppose

- - con/

Im.x at [' /\ internal conl/\ no n71 at [e, i! + to) /\ n71.X accessible from tl + 10

We must show out.X lie from t' + T. By the results of section 7.4.1 we know that R is
ready to perform an n71 from time l' + to, so n71.X at t' + to. Hence from SR we have
(conIJ live from t' + to + 0)(7, ~R, S {rm, conI, out}) and from Ss we have (conlI lie [t' +
0, t' + to+6])(r, I.;s, S {111, fm, con/}) so conll at " + to +15 since internal conI. Then from SR
we have out.x lie from t' + T, as desired. 0

It is very elUlY to show that Sand R satisfy their specifications using sta.ndard techniques.

We now prove that M satisfies its specification: M satt" SM I GM. Since GM = tnle. the
proof obligation can be reduced to M sat~" Sw(t + Tm) where

S~(t'):s lm.x at t' => no rm at [t', t' + to) /\ rrn.z li....e from t' + to

We use the proof rule for recursion to prove Vt' M saq" S~(t'). Note that STOP satp

S~ (t') 50 the side COndition of the proof rule is satisfied. Assume V [I X satt" SM (t'); we

will show "/t' lm?x ~ (rm!x ----? X pn q WAIT,5; X) sat~P SkU'). Pick I'. We hawl two
CaBeS to consider:

7.4 Case study: a simple protocol	 171

•	 If the first 1m occurs at t' , then we can use the proof rule for prefixing to reduce the
proof obligation to

nn!x --+ X pnq WAIT 0; X sat~P nn.x live from 0

We can then use the proof rule for probabilistic choice to reduce the proof obligation to

nn!x -j. X 8at: 1 rm.x live from 0 and WAIT 0; X 8at~0 nn.x live from 0

The first result follows from the rule for prefixing and the second result follows from
rule 7.1.5.

•	 If the first 1m occurs at time t" < t' then \\"C can use the proof rule for prefixing to
reduce the proof obligation to

rm!x --+ X pnq WAIT 0; X sat~P S~(t' - t" - to)

We can then use the proof rule for probabilistic choice to reduce the proof obligation to

nn!x --+ X satlP S~(e - t" - to) (7.5)

WAIT 0; X satlp SM(t ' - t" - to) (7.6)

For (7.5), suppose the first rm occurs after a delay of t'1I; then we can use ihe proof
rule for prefixing to reduce the proof obligation to X sat~P SM(t' - til - to - tIll - 0),
which follows immediately from the hypothesis. For (7.6), we caD use the proof rule for
delay to reduce the proof obligation to X satlP Sk(t ' - t'l - to -0), which again follows
immediately from the hypothesis.

This completes the proof of condition 3. o

This completes the proof. o

7.4.3 Lessons learnt

We believe that we have learned a lot about doing proofs concerning probabilistic processes
during the course of the above case study. Firstly, it's hard! One hag to consider condi
tional specifications, which makes all our predicates more complicated than in unprobabilis
tic proofs. This factOr also complicates our proof rules, as dol'S the problem of sometimes
having to reduce a proof obligation on a composite procpss to several proof obligations on
the subcomponents. One also has to be very careful about quantification, because of I,he fact
that universal quantification does not distrihute through probabilistic specification; to get
around this one hag to be fairly explicit about when one is quantifying.

We believe that there are a number of ways that proofs invnlYing probabilitips can be made
easier. Firstly, doing proofs about non-probabilistic aspects of the system can often halp. In
the example of a communications protocol, we began by pro\'ing a safety property that did
not involVE' probabilities. During this proof we proved various results - particularly about
the ordering of events - that were useful in the liveness proof.

It is also worth keeping the predicates in\'ol~ as simple as pos~jble. In particular, the
right-hand sides of conditional specifications should be simplified wberever possible. For

172 Probabilities and Priorities in Timed CSP

example, when using the proof rule for para.llel composition to reduce an obligation of the
form Pt#- Q sat;pq S I G, one normally seeks predicates Sp, Gp, SQ and GQ such that
P sattP Sf' I Gp and Q satt9 Sa I GQ, and such that

Sp(T,~p,~) 1\ Gp(T,!;;p,5) /I SQ(T,!;;Q'S) 1\ GQ(T, [;Q'S) =} S(T,r;;p4t-r;;Q'S)

and
G{T,t;;p tit- I;Q, 5) ~ Gp(r, !;;p, 5) 1\ Cdr, !;Q' 5)

It is th~ last condition that seems to cause the problems. If G is a complicated predicate
it is often not possible to tind suitable predicates Gp and GQ. This is because one can
often not prove results about thE' behaviour of P simply from knowledge about the behaviour
of p fit Q: one needs to know about the behaviollr of Q as well. Fortu nately t.he right hand
side of conditional specifications can normally he simplified, for example via rules 7.1.16
and 7.U7.

Parameterization of predicates is a nseful technique: this allows a result to be deduced
as a parGicular instance of a more general result. For example, in proving condition 3 in
section 7.4.2 we had t.o show that the medium satisfied the condition that if an input wa.<;
received at time t + Tm then Il.iith probability p it was offered for output after a delay of
length tg:

M sat;P lm.x at I + Tm =} rm.x live from t + T m + to

where
M S lm?x ~ (rm!x ------; M pnq WAIT 6; M)

We dedllced this from the more general result

VII M sat;P 8M(n where 8M(tI) s. lm.x at [I =} rm.x live from e+ to

Using the proof rule fOr recursion we assumed V t ' M sat~P 8M (t') and sought to prove

ve lm?x ~ (rm!x ------; M pnq WAIT 6; M) sat;P 8M (n
To do this we had to consider the case where the lm.x resulted from a recursive call to M;
if this recursive call started at time til then we used 8M(t' - til) to deduce our result. The
point is that we could not have done this witbout the generalization of the result we were
seeking to prove.

Chapter 8

Conclusions

In this thesis we have produced two languages based upon Timed CSP which can be IIsed for
arguing about priorities and probabilities in limed, communicating processes,

We have produced a language where many of the CSP operators have been refined so as to
introducp a notion of priority. We have given a semantics for this language which models a
process by the set of behaviours that it can perform, where the representation of a behaviour
includes a record of the priorities given to different actions.

We have then extended the language to include a probabilistic choice operator. Tbis has
allowed us to present a semantics which models the probabilities of different behaviours
occurring.

We presented a proof system for proving that a prioritized process meets its specification. We
have also presented abstraction theorems from the Probabilistic and Dptprministic Models to
the (unprobabilistic) Prioritized Model, and have shown that a uon-probabilistic specification
on a probabilistic or deterministic process can be proved by sbowing that the corresponding
prioritized process meets thp same specification.

We have presented a specification language that allows one to make statements about when
a process should perform eW'nts, when it should offer events, and what priorities different
actions should bave. Tbe language is structured so as to make our specifications as readable
as possible. It also has the advantage that the syntax is fairly independent of OllT semantic
model - indeed much of the syntax is thp same as the specification lauguage in [DRRS93]
- which means that most of OllT specifications can be interpreted in other models.

We have presented a complete set of proof rules for proving that a prioritized process meets
its specification. These allow a proof obligation on a composite process to be reduced to
proof obligations on its subcomponents. We bave illustrated the proof system with several
examples.

We have investigated how the Prioritized Model relates to tbe Timed Failures Mo.1el, and
used this so show how results about prioritized processes can be proved by arguing in the
Failures Model. We described which failures could have resulted from a particular prioritized
behaviour, and used this to give an abstraction mapping from the Prioritized Modf'l to the
Timed Failures Model. We derived a proof rule that allows us to prove that a BTCSP
process satisfies SOme specification i{ its unprioritized abstraction satisfies a corresponding
specification. The Timed Failures Model is easier to reason with, and so this method should
simplify many of our proofs. We then showed that our specification language was designed

173

174 Probabilities and Priorities in Timed CSP

in suell a. way that the forms of many of OUI specifications were unchanged when translated
into the Failures Model. This method was illustrated by an example where we implemented
a BTCSP specification by firstly finding a TCSP process tlIat satisfied nearly all of the
canjuncts of the specification, and then examining wweb of the BTCSP refinements satisfied
the rest of the specification.

Finally, we presented a proof system that can he used for proving that a process meets a
probabilistic specification, Proofs of probabilistic processes are considerably harder than in
the unprobabilistic case. \\'e have de.'lcribed various difficulties that arise when one has to
consider probabilities, and have shown how these can be overcome. \Ve have illustrated the
proof system by usiug it to analyse the performance of a communications protocol.

We hope that the work presented in this the8is will make it easier to rea.<;on formally about

priorities and probabilities in timed communicating processes.

In this fiual chapter we make some comparisons with related work, and give some pointers

to future work using the models presented in t11is thesis.

8.1 Related work

In this section we discuss other models of concurrency that include either probabilities or
prioritie.g.

8.1.1 Probabilistic models

The work nearest to our own is Karen Seidel's [Sei92]. She has produced a proba11ilistic model
of untimed CSP. She defines a semantics for her model in terms of probability measures on
tbe spa({~ of infinite traces. Sbe writes P A for the probability that process P performs a
trace from set A. For example, the process STOP is defined by

if (r)- E A
STOPA= {~

otherwise

where {r)'" is the infinite sequence of invisible events 7'"_

Operators are defined as transformations on probahility measures. The probahilistic choice
operator p n chooses in favour of its first argument with probability p and in favour of its
.second argument witb probability 1 - p. It has a semantic definition given by

P, n Q A'" p. P A + II - pl. Q A

The probability of P p n Q performing a trace from A is tbe probability tbat P is cbosen
times the probability that P performs a trace from A. plu.'i the probability that Q is chosen
time8 the probability that Q performs a trace from A.

The prefixing operator is defined by

a -> P A '" P (preM;' (A)) where Vu prefix~(I.l) = (a) II

The process a ----t P can perform a trace from A if P can perform a trace from prefix;;! A.

8.1 Related work 175

Parallel composition is defined hy

P II Q A =(P x Q)(1"',-' (All

if u = v

where "tu,v par(tJ,v)={U
(u n) (T)" ifu n = v n 1\ Un -:f:. Vn

where P x Q is a product measure. P II Q can perform a trace w from A jf P and Q can
perform traces u and v such that u = v = w, or U and v first differ in the nth position and
w consists of their common prefix followed hy TS.

However, she is unable to give a definition for external choice in this way, for much the same
rea."lons that external choice caused us problems: it. is not possible, for example, to give the
prohability of a ---+ STOP b ----+ STOP performing an a.

In order to give a semantics to external choice she defines conditional probability mea..'lures.
For all processes P, sets of traces A, and traces y, the expression ~PD(A,y) reprl'Sents the
probability that P performs a trace from A given that the environment is willing to perform
the trace y (and not bing else). For example, prefixing can be defined by

~PD(P"fiX;' A, y'l ify = (a) yl

~a ---+ PD(A,y) = 1 if Yo -:f:. a 1\ {Tl'" E A { o otherwise

Using this model, she defines an external choice operator. Informally, the process P s Q

behaves like P when offered a trace in S, and like Q when offered a trace not in S. The
semantics for this process is given by

{ ~PD(A, y) if YESqP s QD(A, yl = ~QD(A, y) if y ~ S

This is only defined in the case tbat for all finite traces!

yES A x ~ S A y,x E A => ~PD(A,y) ~ ~QD(A,x)

wbere A = {t tJ I u is an infinite trace}

otherwise the probability of an action occurring could depend on what the environmeut offers
at some time in the future. This definition effectively refines the external choice operator so
as to make it deterministic.

Unfortunately, it is not possible to give a semantic definition for hiding in this way: for any
trace y offered by the environment to tbe process P \ X, there is not a unique y' that is
offered to P: when X is hidden, the process P flhould be able to perform any trace y' such
that yl \ X = y.

It is intcresting that - as in the language presented in this thesis - her languages are ba..'led
upon deterministic subsets of esp.

Most otber probabilistic process algebras are based upon ees [MiI89], with operational
rather than denotational semantics. For example, Giacalone et al. [G-lS90] have introduced
a probabilistic version of sees, called pees. The nondeterministic process summation is

replaced by a probabilistic counterpart: L'E,[P.]E. (where P. E (a, J], LP. = I) is the

176 Probabilities and Priorities in Timed CSP

process that offers a probahilistic choice between thp processes Pi. If more than one process
could be cbosen, then they are chosen with relativp probabilitie. Pi· If the choice is being
made betwren two processes then this is written IpjP + [q]Q. Their work differs from the
work described in this the.is by not differentiating between internal and external choice; they
use the probabilistic cboice operator for both. For example, our process P "n q Q would
be written [p]T.P + [q]T.Q, where the T is an invisible action which can he thought of as
representing the choice being made.

Van Glabbeek et aL [vGSST90] discnss f'eaetive, genemtive and stratified models of proba
bilistic processp.s .

• They define a	 reactive model to be one where the environment may only offer one
e\·ent at a time. If the process can perform the offered event then it makes an internal
state transition according to some probability distrihution. For example, the process
~a. P + ia. Q + b.R will. after an a, act like P with probability 1 and like Q with

probability i- They give an operational semantics for this language, writing P ~ pi
to mean t.bat P can perform the action a and with probability P become P'. For
examplp, the probabilistic choice operator is gi~n a semantics hy

'Ip.]a E 0.['.1',] EL.J • •. • '-----+ i i where ri = L~PJ I j E I 1\ oJ = a,~
'EI

Here r , is tbe sum of the probabil.)ties associated with all ai-transitions; the probability
of acting like E, after performing a, is therefore pi/ri. The subscript i on the arrow is
to distingnish between two otherwise identical transformat.iorul; for example:

J 1 1 alII:?)!...a,rul + !...a.ntl a[1/2I1 nil "ia.nil + 2a.nil ~--).2 nil
2 2

•	 In a generatUJe model, the environment can offer a choice hetween two Dr more events,
and tbe process makes the choice according to SOme probability distribntion. For ex
ample, if the process ta.p + ta.Q + ib.R is offered an a OT a b then it cho05es the a
with probability t and the b with probability i; if the a is chosen, then the process
acts like P with probability 1, and like Q with probability l If it is offered just an a,
then the a will be performed (with probability 1), and it will then act like P with
probability 1, and like Q witb probabi15ty i. The give an operational semanticS for

this model, writing P ~ pi to mean that with prohability p, P will perform an Q

and then act like P'. The rnle for cboice i'i

Q"lq] E IEi --'-'..:..Jok L(P,jEi ~lJ k E' (j E I)'*
'EI

In order to give a rnle for the restriction operator, they define a function VG such that
vG(E, A) gives the prohability of process E perforrning an event from the set A:

VG(E,A)=I:ijp,13a,E, E~,E"aEA~

Restriction is then defined by

E ~-4, E E A~,EI A (a E A,I'" = vc(E,A))' '*

8.1 Related work	 177

• A	 stratified model allows closer control over probabilistic choices. Considl'l' a process
that should choose an a with probability t, and otherwise choose between b and c
with equal probabilities. The obvious definition of this is P 2. ta + tb + te. Consider
however the case when the c is unavailable; with this definition, the a and tbe bare
each chosen with probability t, rather than the desired t and ~. The process we
require is Q == fa + t(tb + tel. If the e is unavailable then tbe a is chosen with
probability 1-, and the b with probability j. The stratified model allows probabilistic
choices between arbitrary processes. However it has no mechanism for allowing the
environment to make a choice between processes. The operational semantics is defined
via two transition relations:

an action tnmsltion relation, written P ~ Q: this has the normal definition
except there is no rule for summation;

a probabtlity transltion relation, written P!'-+ Q, meaning that, witb probability p,
P will act like Q.

The rule for t he choice operator is

l)p.]E, A. E;
'EI

For the restriction operator, they define a function /.Is sucb that vs(E, A) giVe! the sum
of the probabilities associated with t.ransitions from A.

{

I

"s(E, A)" 0

:L~p; I E A, E; A "s(E;,A) " O~

ifE~,

ifE~,
otherwise

for erE A

forf3~A

Restriction is then defined by

E 8; E' 1\ vs(E',A) #- 0 => E A t.l!+, E' A where r = vs(E,A)

The clause Vs (E', A) #- 0 prevents the process from making a probabilistic tn.usition
into a state from where it can make no further A-transitions.

For each model they use the operational semantics to define strong bisimulations. They then
give abstraction mappings between the three models.

The model described in this thesis does not fit comfortably into any of these categories. We
can model the two processes P and Q that the stratified model is designed to distinguish by

P ~ a 1/3n2/3 (b J/2nJ/2 e) Q ~ a 1/3n2/3 (b 1/2 J/2 c)

We can distinguish these prOCf$es because we have included separate operators for int,ernal
and external choice. However, unlike in the stratified model, we are able to describe proceSS€S
that offer the environment a chOice between actions.

Tofts [TornO] uses a weighted version of sccs [Mil83]. For example, he writes mP + nQ
(m, n E) for the process which will perform m occurrences of P for every n occurrences of Q.

178 Probabilities and Priorities in Timed CS?

The advantage of using weights rather than probabilities is that it makes renormalization
unnerec;sary. For example, the rule for restriction is

E~E'

doesA(E 1
)

E A~E' A

wheT" doesA(E 1
) is true if E' can perform all event from Aj it is defiued by

E~E'

doe~'A(EI)
~-'->,~: [aEA]

doesA(E)

JOIl and Smolka PS90] discus,; various notions of process equivaleuce for probabilistic pro
cesses. They lift til", notions of trace [BoaS5], maximal trace [8\\'82], failures jBHR84J, max
imal failures, ready [OH83] and bisimulation [Mil89) equivalence to the probabilistic case.
They show that, unlike in the unprobabilist.ic case, maximal trace equivalence is no stronger
than trace equivalence, and maximal failure equivalence is no stronger than failure equiva
lence. They also show that trace equivalence and failures equiveUeDce are Dot congrueoces.
For example, consider the processes

P £ a.(~a+~b+~c)
1 (1 1 1) 1 (1 1 1)

Q £ "2 a. 3a +:2 b+fjc. +2"G. Sa+6"b+2"c

P and Qare trace and failures equivalent, but P {a, c} and Q {a, c} are not since P {a. c}
will perform the trace (a,e) with probability 1/2 while Q {a.c} will perform this trace
with probahility 7/15. This rf'sult explains why we were not able to give a compositiolJal
denotational semantics based upon failures for our language - the result can be adapted to
any language with a probabilistic external choice operator. .lOll and Smolka then go on to
give a complete axiomatization of probabilistic bisitnulation,

Christoff [Cbr9Q] defines three equivalences based on testing. He defines a test to be an
unprobabil;stic transition sysh>m that offers events to a process; he defines a sequential I,est
to be a t"..st that offers at most one eveut at a. time. Note thaI r.he probability of a process
performing a particular trace depends upon the test that provides its environment. He defines
three equh-alences as follows.

Probabilistic trace equivalence: He writes S ""IT i if, for all traces a and all sequential
tests t, processes sand Sl have the same probability of performing trace a in environment t.
Note tbat the restriction to sequential tests means that this is equivalent to the reactive
model of [vGSST90].

Weak prohabilistic test equivalence: He writes s """'l~ s' if, for all tests, after performing
trace a tbe processes s and i have the same probability of deadlock.

Strong probabilistic test equivalence: He "'Tites S ""$te S' if, for all tests, sand s' have
the same probability of performing any trace (Y.

8.1 Related work 179

He then defines tbree denotational function~. He defines an offering 0 to be a sequence of
~ets of events: intuitively these are the sets of event~ offered to a process at each stage. He
defines a function JJ such that J1.(j, 0 L, (1 0) is the probahility tbat process s, ghen that it
performs trace (1 when offered 0, goes on to perform an a when offered L. He uses this to
define three denotational models, each representing a process by a probability function.

Probabilistic trace result systems: He defines the probability function J1.jr by

ILtr((1) == p(j, Sets(u). 0-)

where for example Sets(a, b, c) = {{a}, {b}. {c}}. Intuitively this gives the prohlbility of
performing the last element of (1, given that tbe environ1.tlent offers tbis but nothing else, and
given that the process has already performed the rest of a.

Weak probabilistic test result systems: He defines the probability function Pwte by

J1. w te(O L,u) =:= EnJ1.(s,o L,a 0) ,I 0 E L~

Intuitively this is the probability of not deadlocking when offered L alter performing trace a

when offered o.

Strong probabilistic test result systems: He defines the probability function P,le by

lL'lc(o,a) ==J1.(j,O,o-)

Intuitively this is the probability of performing trace 0- when offered o.

For eacb denotational model and corresponding testing equivalence, he sbows that till) pro
ces~es are equivalent in the denotational model if and only if they are equivalent under the
testing equivalence.

Hans HaMson [Han9l] has produced a di~cretely timed probabilistic process algebra. based
upon CCS, called TPCCS. Processes in his language alternate between probabilistic states
(denoted by P, pi, etc) and action states (denoted by N, N I

, etc). In action states, the pro
cess offers the environment a choice between a number of different actions; after performing
an action, the process evolves into a probabilistic state; the environment is only aUawed to
offer one action at a time, so this i~ a reactive model in the terminology of [vGSS'T90J. In
probabilistic states, processes evolve into action states according to s01.tle probability distribu~

tion. Like us, he differentiates between external and probabilistic cboice, writing L'EI a,P,
for an external choice and ~'EI[P,]N, for a probabilistic r:hoir:e.

He begins by discussing an untimed language. Writing Ep for the probabilistic states and
EN for the action ~tates he defines two relations~: EN x (Act U {r}) x Ep and 1----7:

Ep x [0,1] X EN, such that N y P means that N can perform an 0: and become P, and
P ...!.t N means that P can act like N with probability p. For example, the probabilistic
choice operator is given a semantics by

Elp,)N. >-4 N• where p = EnPJ INJ == N, 1\ J E I~
• ,J

Ber:ause his probabilistic choice operator is, like ours, internal rather than external. the
definition for restrktion is very straightforward:

180 ProbabiJities and Priorities in Timed CSP

P8N N.!...P [p,~1'"J
P\a~N\a N\a~P\a

He then extends th.is language to a timed language by adding a special actiou X which
represents the passage of one unit of time. For example, he has the rule

:La;.P, ~ [11:La,.P,
tEl ;El

(The [1] here is to maintain the aJternation between action and probabilistic states.) He then
defines a timeout operator by

N p~p

N p~pl

N~P' [aix]

If N call perform an action to become pI then N P can perform that action to become pi;
alternatively the process can timeout by performing a x, and then act like P.

Unfortunately, the semantics defined by this relation does not satisfy the maximal progress
assumpdon: a process may perform a X when it could aJternatively have performed a 1". To
overcome this he defines a new relation -10: EN x (Ad U {1",X}) x Ep by

N..2--,.P
N<~P [aix] N...!f+
N~P

N~P

Now N can only perform a X if it is unahle to perform a 1".

He then defines a branching time temporal logic TPCTL, based upon CTL [CES83j, which

allows one to specify properties such as "'after a request for service there is at least a 98%

probability that the service will be carried out within 2 seconds". He describes an algorithm

for checking whether a TPCCS process satisfies a TPCTL specification.

Fang et. aL [FZHS92] have produced a probabilistic version of PARTY [HSZFH92]. They

define three transition relations:

• they write P ~ Q to denote that P can perform an a to become Q;

• the)" write P ~ to denote that P can perform an a and terminate;

• the} write P :::£:;,. Q to denote that with probability p, P acts like Q.

The definitions of these are quite straightforward. For example

:LiP;IP, ~, P;
, €I

8.1 RpJated work 181

Tbpy specify tbat probabilistic choices take one unit of time to be resolved. They use this to
define a process (t) that terminates after t time units by

(1) = IJj,
(t) =[1](1 -1) fort>!

Larsen and Skou [LS92] have investigated compositional verifica.tion of probabilistic processes.
Tbey define a logic, Probabilistic Model Logic (PML) with syntax givpn hy

F ,,~t~, I FA F I - F I (a),F

Intuitively (a)pF specifies that a process can perform a.n a, and then with probability at
least p go into a state that satisHes F. They define a simple reactive probabilistic language
and then attempt to produce a SystCDJ for dpcomposing logical spccifications wilh respect
to the unary operators of the language: for each unary operator 0 they seek a specification
transformer Wo sucb that for any specification S and process P

0IP) F S if and only if P F WoeS)

In other words they sepk to find the weakest specification WoeS) for a component P that
implies tbat a sppcifica.tion S holds for a composite process O(P). Howewr they shaw that
this is not always possible using PML, for much the samp rpasons that in chapter i we were
not always able to reduce a probabilistic specification on a composite process to a smgle
specification on the subcomponents. They therefore introduce Extended Probabilistic Logic
with the following 8y ntax:

F::=t.,.ue I FIIF I...,F I [(a)"'IFl, ... ,(a)x,,Fnwherecp(xl, ... ,Xn)]

The final clause has the intuitive meaning that the process can perform an a, and then with
probability x, go into a state that satisfips F, (for each i), where tbe XiS satisfy the formula
CP(XI, .•• , :r. n). They then show that this extended logic does support decomposition.

Jonsson and Larsen [JL91] have studied refinement between probabilistic processps, and used
this M a method of proving that processes meet specifications. They represent a specification
as a probabilistic transition system where each transition is labelled with a jEt of probahilities.
They tben dpfinp a satisfaction relation hetween processes and relations with the intuitive
meaning that P sat S if the probability that labelc; a transition of P must be a memher of
the set. of prohabilities that labels the corresponding transitioll of S. They define refinement
hetween specifications by saying that S refines T (writtPll S ~ T) if P sat T whenever
P sat S. In the CMe where S can he considered a proCe&i (i.e. if transitions are labelled with
a !lingle probability) then S sat T precisely when S l:; T. They present a complete, although
complex, method of verifying that a process meets a specification. They then define another
relation on specifications: T simulates S if whenever S can do a probabilistic transition,
T can do likewise (but not necessarily vice wrsa). They show that if T simulates S tben
S l:; T. The advantage of nsing simulation over the previous wrification method is that it is
easier to test.

182 Probabilities and Priorities in Timed CSP

8.1.2 Prioritized models

In this subsection we discuss other models of concurrency that include priorities. ill [CH88],
Cleavtland and Hennessy describe a process algebra that uses prioritized actions rather than
having prioritizing operators. They write Q for a prioritized version of the action a. They
define the semantics of their language in two stages. In the first stage, they define a relation
-----i which gives the normal semantics of CCS, ignoring priorities. They then define a relation
--c> which takes account of priorities by

1. if p ---.!4 q then p ~ q;

2. if p ~ q and there are no q' and jJ such that p L q', then p ~ q.

This allows unprioritized events to happen only if no priorit.ized event can be performed.
Note that the prioritized event Q. can synchronise only with the prioritized event Q: and so
they a\"oid the problem of opposing priorities on either side of a parallel composition. A
strong l>isimulation p is defined from this relation in the normal way. However this is not a
congruence because it identifies processes that can intuitively be distinguished: for example,
Q.p + b.q "'p Q.p but (Q.p + b.q) \ !l 7-p (Q.p) \ .(! (where \ Q is the CCS restriction operator
that prevents Q from occurring) because the former process can perform a b whereas the
latter cannot. They therefore define a new relation ;>---{> by

1. ifp ~ q then p ~ q;

2. if V ~ q and there is no q' such that p ---E..t q', then p ~ q.

As before prioritized events are not constrained, but now unprioritized events are pre-empted
only by L. This relation is used to define a strong bisimulation, which they show to be a
congruence.

Baeten et aI. fBBK85J have produced a prioritized version of ACP called ACPe. They assume
the existtnce of a partial ordering> such that a > b if a has a higher priority than b. They
defi ne an auxiliary operator <J by

PI a <J b = a if lIot (b > a)

P2 a<Jb=8ifb>a

where 8 denotes deadlock. a <l b is equal to a unless b has a higher priority than a. They
introduce a priOTity operator 8 such that 8(x) gives the behaviour of x in the given context.
They define ACPe by adding the axioms PI-P6 and THI-TH3 to ACP:

P3 x <J y.z = x <J Y

P4 x <J (y+ z) = (x <l y) <J Z

P5 x.y <J z = (x <l z).y

P6 (x + y) <J z = x <l z + Y <J z

THI 9(a}= a

8.1 Related work	 183

TH2 8(x.y) ~ 8(x).8(y)

TH3 8(x + y) = B(x) <l Y + 8(y) <l x

This means that in a context where a ha.... a higher priority than b (a > b), we ha....e

O(a + b) = 8(a) <I b + O{b) <I a = a <I b + b <I a = a + 15 = a

so the a takes precedence over the b. The difference between this and other models is that
priorities between actions caunot. change: if a > b in some state then a > b in all states.

In /CamS9}, Camilleri defines a version of CCS [MilS9] with a left biased choice operator,-I1
(confnsingly, his arrow points away from the prioritizlO'd process, contrary to our convention
of having arrows pointing towards prioritized processes) He defines the acceptances of a
process: t acc A if A is the set of complemellts of the events that t can perform. He then

defines the semantics of his language in terms of a transition system where f- R to ~ t~
denotes that ifthe process Io is placed in an environment that refus~ to perform e'ents from
R, then it can perform the event Jl and then act like t~. He defines t.he biased l:hoice operator
by

I-Rto~t&	 f- R t1 ~t~

to ace A [A<;:;:R]
f-R/O-l1tl~t~

f-Rlo-J1tJ~t~

The non·prioritizlO'd process can only perform an event if the environment refuses to synchro
nise with any of the event.s of the priorit,ized process. So for example

I- R a.to-J1 b.tl ~ to for any R

I-R a,to -J1 b.t l -.!!....". tl if 1i ¢ R

This relation is used to define a strong bisimulation "'p, which turns out to be a congruence.
The problems of Cleaveland aud Hennessy, described above, do not arise because I-{o} a.p-I1

b.q -.!!....". q, whereas a.p cannot perform a b, so a.p-J1 b.q fp a.q. This model fails, however,
to adeqnately model the case where processes with opposing priorities are placed in parallel:
the process (a.? -t1 ;3. Q) I (i).QI -t1 a.pl) deadlocks immediately despite the fact that both
sides of the parallel composition are able to perform either an a or a b.

Smolka and Steffen [55901 consider priority as an extreme form of probability. Their work
is based upon the stratified model of PCCS described above, but extended so as to allow
zero probabilities. For example, la.P + Ob.Q will perform a b with probahilit.y 0, which they
equate with impossibility. Hmvever (1a.P + Ob.Q) b can perform a b. Thus this is a sort
of prioritized choice in that la.P + Ob.Q can only perform a b in a context where an tI is
unavailable. However. as in the stratified mOdel, process.es cannot give the environment a
choice between events. They give an operational semantics to this language in the same way
as for the stratified language. The rule for restriction is

£ 8. £' 1\ vdE',A) ¥l. =:} E A......4. E' A (r = pc,(E, A,p)) (.)

184 Probabilities and Priorities in Timed CSP

Informally, v,(E',A) gives the sum of the probabilities of transitions from E' labeUed with
events from A, where the empty sum is taken to be.1; hence the clause v,(E',A)~.l is true
if E' can do SDme A-transition (possibly with probability 0). LJ(is defined by

J jfE~ fOTaEA

v,(E, A) '" .l ifE~ forlJ¢A
{ L:~p; I E A, E, /\ v,(E" A) ".l~ otherwise

The term p«E, A, p) which gives the probability of the transition in ("') is then defined by

if v«E,A) =.1

p,(E,.4,p) '" {~ if v«E,A) = 0 where n == #{i I E ~i E,,,, v«E"A) #l-}
plvdE, A) if v,(E, A) > 0

If no A-transitions are available for E then the right band side of (.) is uever applied. so in this
case Pc is defined to he ..L If only 0 probability transitions are available then the transitions
are (arbitrarily) given equal prohabiHties_ Otherwise, the probahilitiffi in the non-restricted
case are divided by the normalization factor V'<;.

Tofts [Tof90] extends the calculns of relative frequency, d~scribed above, to allow infinite
weights. For example, he writes wP+ IQ for the process that performs P infinitely more often
than Q, i.e. the process that has an absolute priority towards P. The semantic definitions
for this Ia.nguage are the same as for the language without infiuite weights.

The programming language occam is closely based upon esp. Therefore, it is useful to
formally relate the two languages, and to use our experience of huilding models for CSP
to produce models for occam. Brian Scott (Sc092J is currently working on this, and in
particular he is working on a prioritized model of occam, based upon the prioritized model
in this tbesis.

8.2 Future work

The languages and models described in this thesis have opened up many directions for future
work. I would lik£ to:

• undertake further case studies;

• refin~ the models so as to make them easier to use;

• extend them so as to make them more expressive; and

• develop a tool for aiding reasoning about probabilistic processes.

In this thrsis I have developed a numher of techniqUe> and useful rules for arguing about
prioritized and probabilistic procffises; hov.-ever, I do not helieve that our armoury is yet as
complete as it could be. In order to further develop the craft of proving specifications fOr
prioritized and probabilistic processes, and to find where further infereuce rules are needed, it
will be na:essary to carry out more case studies. In particular, proofs of probabilistic systems

8.2 Future work 185

seem to be very different from proofs for unprobabilistic systems, so I would like to concentrate
on these. There are a number of candidates for possible case studies, such as probabilistic
consensus protocols [AR90, Sei92], mutual exclusion [PZ86], self stabiHzation [Her90], and
communications protocols such as the alternating bit protocol [PS88, DS92b].

When proving that a process satisfil;'B a specification, we are often faced with a situation
where the specifications for the process and its subcomponents are expressed in terms of the
specification language. To show that the specifications for the subcomponents are enough
to imply the specification for the composite process we expand tbe macro definitions for the
specifications - so as to express them in terms of our semantic representations of behaviours
- and then apply the relevant proof rule, arguiug at the level of the semantics. For example,
if we want to show that the process P A~ B Q sat a live from t, where a E A \ B, we might
try to reduce this to proving that P sat a live from t. We cau do this by expanding the
specification a live from t to

\:leE [t,oo) (3t Il E[!,t'] aEs(t"))VI.t
TVsit'l±l(t',~aG)::J!jtt'

In order to use the proof rule for parallel composition, noting that wc must have Qsat true,
we have to show that

VI' E [t,oo) (3t N E [t,e] a E s«(') A) V /' TVS Atfl±l(I/,~aG):::Jps Ai t) =>
(I\. true

V I.' E [l,oo) (3 til E [t, I'J a E S(e')) V t' T V stt'l±I(t',~aG)::J sttt

A simpler way to argue would be if we had a rule of the form

P sat a live from t [a E A \ B]
P A4t-B Q sat a live from t

Then this rule could be applied directly. This would make our proofs easier to carry out, and
easier to read. Equally, it would be useful to have similar rules for the Probabilistic Model,
such as

P sat"'P a live from t [\]
aEA B

P A4t-BQ sat"'p a live from t

It would be useful to produce a library of such derived proof rules that argue at the level of
the specification language. Jim Davies and Steve Schneider are currently developing rules of
this form for the Timed Failures MOdel; these rules could be adapted to the prioritized and
probabilistic models, and rules particular to these models could be developed by pursuing
further case studies.

The probabilistic language described in this thesis is based upon a prioritized language;
however, it is normally the case that when studying a particular probabilistic process, the
choice of priorities upon the operators is completely arbitrary. It would therefore be useful
to consider a language that includes probabilities but not priorities. In order to do this we
will have to find a way of modelling nondeterminism in a probabilistic setting. I belie,'e that
in order to do this we will have to represent a process as a se! of probability fnnctions, one
function for each way the nondetenninistic choices CM be made. As we will no longer have

186 Proba.bilities lllJd Priorities in Timed OS?

to model priorities, it may be possible to base our [('presentation of behaviours upon timed
failures. However, dewloping the semantic definitions is likely to be particularly difficult.

These changes will considerably complicate the semantic model, but may lead to a proof
system that is easier to use. For example, recall how the probabilistic rule for parallel
composition

P Bat~P Sp

Q sat? 9 Sq

Sper, Cp, 8) 1\ BQer, CO' 8) =} S('T, Cpt/f- Cq,s)

p4ft- Q sat;pq S

-- is relatE'd to the corresponding rule in the unprobabitistic, Prioritized Modpl

P satp Sp
Q satp So
Sp(r, Cp,.'!} A BOCr, CO,s) => S(7, Cp-t/t- Cq,s)

P~Q satp S

Similarly, I believe that we should be able to adapt the rule for parallel composition in the
Timed Failures Model -

P satp Sp

Q satp SQ
Sp(s,/{p) II SQ(s,NQ) => S{s,/{p UNQ)

P II Qsat, S

- to a corresponding rule for a probabilistic model based upon timed failures-

P sat"'P Sp
Q sat~q SQ
Sp(s,N p) II SQ{s,N Q) =-? S(s,Np UN Q)

P II Qsa.t~pq S

The models described in this thf":>is have been timed. However, many systems can be ade

quately described without including timing information. It would bl' useful to have untimed

models of probabilistic behaviour since this will m.a.ke reasoning about such systems easier.

In this thesis we have only dealt with processes that can choose probabilistically between a

countable number of behaviours. In order to reason about proCl'SSeB that can probabilistically

choose between an uncountablp number of behaviours - for example, the process tbat will

perform an a after a random amount of tiD:lp between 0 and 2 seconds with a uniform

probability density - it will be necessary to pxtpnd the semantic model.

Proofs using the proof system for the probabilistic model tend to be extremely complicated.

It would therefore be useful to have a proof toot to assist in these proofs.

I belipve tha.t it would also be useful to have a tool ba.<;ed upon the notion of refinement be

tween probabilistic processes. The Failures, Divergences Refinement Checker (FDR) is a tool

developed at Oxford for automatically testing whether a CSP process meets its specification.

187 1:1.2 Ftlture work

Formally it takes two untimed processes P (the specification) and Q (the implementation),
and tests whether Q refines P (written P!; Q), in the sense that Q can only behave in ways
that P can behave. This corresponds to Q being more deterministic tban P, or formally
that Tu P :2 Tu Q and'D u P ;;:J'Dr; Q where the functions Tu and Du give the nn
timed faHurf'..s and divergences of a process. I would like to extend FDR in order to model
probabilitif'..s.

Since the tool is basl'd upon an operational - rather than a denotational - semantics, I
will have to develop all opl'rational semantics for a probabilistic language. There wilt be no
real need to include priorities in t,his language: Wl' included priorities in the language in this
thesis only in order to rid ourselvl'S of nondeterminism, so that we could actually predict
the probability of an:y behaviour in a givl'n situation: with au operational semantJcs tbere is
no need to do this: indeed, sincl' onr notion of refinement, is that of one proCf'..ss being more
deterministic than another, it is essential for ns to include nondeterminism in our language. I
therefore intend to base the synt,ax upon untiml'd esp, ex;tended with a probabilistic choice
operator. Producing an operational semantics for this language should be straight forward,
following, for example, the work of Hansson [Han9l].

I will also need to formally define what it means for one probabilistic process to refineanotber.
I believe the correct definition will be to make the refinement relation the smallest relation
such that

• P n Q Pj

• P n Q Q;

• P n Q P pn q Q for any probabilities p and q such that p + q = 1;

• all the CSP operators are monotouic with respect to

Looking at this another way, we will have P Q if there is some way of replacing some
of the nondeterministic choices of P with probahilistic choices so that it is indistinguishable
from Q: i.e. after any trace they have the same probability distributions on refusals,

This definition of refinement will, I believe, prove useful in allowing us to write specifica
tions as probabilistic processes. For example, modelling the passage of time by the visible
event tock, we can test whet.her a process performs the event a within 2 seconds with a
probability of 99%, by testing whether it refines the procf'..ss

(a ----t CHAOS n lock ----t a ----t CHAOS)

.99n.Ol

CHAOS

where CHAOS is the most nondeterministic process. This specification says that with prob
ability 99% an a must be performed after at most one tock.

Appendix	 A

Summary of Semantic Definitions

A.I Subsidiary functions

~ {f(T'~, s) if (7, r;;;:,,<;) Edam!
filloutj (7,1;,5) o if(T,r;;;:,.'i)rtdom!

+!;;P'~QW == U!;p{w~ E items!;p ,I w~ ~ III /\ W - w~ E itemsl;Q}

if 3w? E items!;p,wQ E items!;Q W = wp~wQ

-L w - III -	 4- III
"¥l;;;p,[;;Q , !;;p'[;;Q

if 3w? Eitems!;p,wQ E itemsl;Q W = IlIp tJ:j IlIQ

fr~ III == udW' E items!; I gw' = w}. if 3w' E itemsr;;;: gw' = w

M(X,P)p "), Y :FPBT P plY/X)

w, =), Y :FPBT WAn 0; X plY IX)

M,(X,P)p " M(X,P)po W,

MULE.)p"),}: :FPBT!,p[Y,jX,I;Elj

A.2 Operations on offer relations

tJ(~p!D !;Q}w {:;>	 U I;p III

V w E items I;p /\ Ew i=@ II V E items I;Q \ iu"nls l;p

V u, w rI- items I;p /\ v l;Q W

v(l;p xtij-Y !;Q)w {:>	 (u X Cp w X V u X = w X /\ u Y I;Q W Y)

/\u X,w XEitem8l;p/\u Y,w YEitems!;Q

1\ LV, Ew f;; X u Y

188

A.3 Semantic definitions	 189

u(r;;;;p+-I;Q)w <=}	 :3u~Ejt.('msl;p,vQEit€msI;Q u=v~~vQ

/\ :3w;' E itemsl;p,wQ E Hemsl;Q W = w~ ItiWQ

/\ lJp Cp Wp V Vp = wp /\ uQ~QwQ

where Up =4'c v vQ =o/c e u
-P'~Q -_P'_Q

Wp = 4'c c W wQ = We c W
_P'-Q _P'_Q

u(r;;;;\X)w {=} :3u ' ,w/Eitemsl;;; u/\X=u/\w/\X=w/\il--~\Xu~~t){w

u(g8i;)w {::) :3u ' EitemsC;: gu'=u/\3w' Eit €msi; gW'=w/\it~u~it~w

C;E!Ja " C;->lC;@IOo~,@)

A.3 Semantic definitions

Let A p == ApBT P p, AQ ~ A PBT Q p, fp == Pf'B1' P p, fQ ;;: PPBT Q p.

A pllT STOP p" (IT, [0, T] 0 10~),Im

PPBT STOP p" fillout{(" [0, T] C, 10~),@) "' J}

APBT WAIT t P =

{(T,[D,T] @ IO~),O~) IT < t)

U{(T,[D,t)010Gl [t,T]010 U~),-<~)IT I)

U{(T,[D,t)01O~) [t,t']010 U~) (t',T]("(O~)·-«t', HII t' T)

PPBT WAIT I, P 0:=

fillout ({(T, [0, TJ @ IO~). -<~) "' J I T < t)

U{(T,[D,t)@IO~) [t,TJ@IO H~),-<~)", liT t)
U{(T,[D,t)@IO~) [I,I'I@IO ~,@) (t',T]@IO~),-«t'.)~)",Jlt t' T}I

FPBT X P == P X

APBT a --.!!.-+ p P ~

{(T, [0, TI0 IOo~, @), -<~))

U{((T,[0.110100H~) C;P + 1.(1,0) ,p+t)1

(T~t,D@(@) C;p"p)EApAT t)

PPBT II ...E...t P p ==

fillout I{(T, [0. TJ 0 Ilo~. @), -<~) "' 1)

U{(T,[D,tJ@IOo~,@) C;p+t,(t,o) ,+tl"'Jp(T~I,D@I@) C;p,,) 1

T t))

190 Probabilities and Priorities in Timed CSP

APBT P Q p=

{{q;;;p,sp)! 'VI Sp t t E items!;p

1\3~p l.;'p\ =~p/\(T,[;;;~,1fC).I5P)EApl\ ¢E(1tc;"sp)}

-p -p

U{IT,C::p (t,Ti"(~fr)·'p) I
lt T < t + 0 /\ 'r:I t lip t t' E items ~p

/\ 3l.;p l.;lp \ =:!;p 1\ (t, l.;p, il"c).1 yp) E Ap /I. begin((itc)"I sp)) = /}

-p -p

U{(T, C::P (I, t + 6) " mfr) C::q + , + 6, ,p 'Q + , + 6) I

t 7- 0/1. 'v't' sp t [, E items!;p

1\ 3!;p i;p \ = l.;p /\ (t,i;;;p,11'"c;-' sp) E A p 1\ began«ltc)'.1 sp)) = t

-p -p

A(T-(t+6),C::Q"O) E AO}

PPBT P Q p ==
(,,1;,5) >-t

L~fp(T, !;p, iI~': s) Il.;p \ =!; 1\ 1: E(it~~ s)~

,,~ '" IC ~ C p \ (t, T] " (~fr) ,~
+ L..~fp(t,!;p,1t~p s) ~ begin«it~~ 5)) = t 1\ t T < t +o~

fillout
!P("c::P'tc;;:(, '))./0(T-('+6),C::0,,-1-6) I~

+L: c::~c::p\ (t,'+6)0(@) C::0+'+6~ 1\ begin«1tc-P
""' s)) = t 1\ t T - 0

'r/t sitEitemsl.;

APBT WAIT t; P p =:
{(T,[O,Tj0(~fr),@)I'>T}U{(T,c::+t,'+t)lt TA(T-t.C::,s)EApj

PPBT WMT t ; P p ::;:

fillo"({(T, [O,TJ 0 mfr),~fr) e; 1 I' > T}

U{(T,c::")e;!p(T-t,c::-,,,-,)!t TA' '~-<~Ac:: t~IO,')0(~fr)})

APBT P pn q Q p == Ap U A Q

PPBT P pn q Q p(1,1;, so) == p.fp(T, 1.;, s) + q.!Q(T, 1;, s)

AnT ,,,[p,jP; p;: U{APBT P, pi i E I}

PPBT ,e/[p;jp. p(T,!;,S) == L:~Pi XPPBT P, p(T,~,S) I i EI~

A PBT PIDQ p=
{(T, ~1' lIJ~q, -<>-) I (7, ~p, -<>-) E Ap /\ (T, [;;;Q, -<>-) E AQ}

U{(T, ~p IIJ ~Q' s) lsi- -<>- /\ begin s = t /\ (t, ~p, -<>-) E Ap}

A (T,C::O") E AO A' T';zlp (t,~m

U{(7,~p[]!;q,s) I

s -:f -<>- /\ begm s = t /\ (T,!;p,S) E Ap /\ (t, [;;;Q' -<>-) E AQ

/\is i t::Jp (t,m) V s t! ¢ items~Q)}

PPBT P lD Q p(T,~, -<>-) == L:~fp(T, ~p, -<>- l.fQ(T, !;Q, -<>-) I ~ = ~p ID [;Q~

A.3 Semantic definitions

PPBT p[JQ p(T,~,S) ~

I:~Jp(l, !;p, -<~).]Q(T, !;Q, 'I I !; ~ !;p []!;Q A, t t 1Jp (t,~a) ~

+ I:~Jp(T,o;;p,')lo(I'!;Q,-<~1 1 R
~ r; = ~p [J!;;;;Q 1\ (8 t t :::Jp (t, ~~) V 8 t t ¢ items !;;;;~.) ~

if 5 #- "'0"'- 1\ begm 5 =:- t

A pBT c? a : A ...!!-}- p .. p ~

{(T, [0, TI '" (~"aa, @), -<~) 1 T E TIME}
U{(T, [a, II e (~"aMal !; + t, (I, ,'al ,+ t) I

aEAAt TA(T-t,{a}@(~a) !;,'IEApBTPoP}

PPBTc?a:A~P(Jp~

filloo'({(T, [0, TI @ <U"aHII, -<~) "' I IT E TIME}

U{(T, [0, II @ (~,?al,1I) I; + t, (t, ,'a) ,+ I.)
",PPET P,p(T-t,{a}@(1I) 1;,')1

aEAAt T})

ApBT pXtftY Q p:=

{(T,!;;;;p ~Y~Q,S)I(T,~P,$ X)EApA(T'!;;;;Q,$ Y)EAQAE$~XUY}

PPBT P X,* Y Q p:=

fillout{(T'!;;;;,S)O----+L~fp(T,~p,$ X).fQ(T'!;;;;Q's y)1~=~}'X~Y~Q~1
Es~XUY}

A pBT P ~ Q p == {(T,!;;;;}' ~ !;;;;Q's) I (T·r;;::,',4~ c $) E Ap
_P,-Q

/\(T'!;Q,tc c '5)EA Q}
-P'-Q

PPBT P ~ Q p(T,!;,S) =.

L~fp(T, !;p, +t;p,r;:;QSl.fQ(T, ~Q' Wr;:;r.!:::;Q,5) I r;;::p ~ !;Q =!;~

A pBT P \ X p =.
{(T,I;,s) I"It 5 t t E itemst;:; 1\ 3r;;::' t;:;' \ X '= r;;:: /\ (T,!;;;;',1t~)X s) E Ap}

PPBT P \ x p ==
fiIJout{(T, r;;::, s) H L~fp(T, !;', 1t~)X s) I r;;::' \ x =: !;~ I"Its t t E items r;;:::}

ApBT9Pp={(T,~,$)IVt sttEitems!;1\3!;;;' 9\:1!;'=~I\(T,~',1t~IS)EAp}

P PBT gP p ~ fillout{(T, 1;, $) 1---'1 L~fp(T, r;;::', 1t~1 ,~) I 9 G:j!;;;;' =:- r;;::~ I"Its t t E itemsr;;::}

ApBT P ! Q P= {(T,!;,S) ITt 1\ (T,r;;:::,S) E Ap}

U{(T,I; (t,TJ@(~I),' -<~)lt<T<t+eA(t,I;,')EAp}

U{(T,l;p (l,t+61@(~I) I;Q+'+o,'P -<~ '<Q+I+6) I

T t+OI\(t,!;p,sp)EApl\(T-t-O'!;;;Q,sQ)EAQ}

192 Probabilities and Priorities iII Timed CSP

PPBT P I Q p(7,~,S) =:,

fp(r,~, s) ifT

fp«T,~, 'I ') ift<T<t+OAs l= ':

,~ '~It, T] 6l 1m
fp«(T,~,S) t).fQ«7,~,.~)-t-J) ifT tAst(t,t+ti)=-<,:

, ~ tit, t + 0) ~ It, , + 0) '" InUl
otherwise

APBT P \l Q P os.
({T, ~ $ e, 51) I (7, !;;, 51) E A p " e ¢ :Es}
U{(T,~"" (t,TI0(m" 'It,e)~)lt T<t+o'dE,,(t,~,')EAp)

U{iT,!;ptDe (t,!.+6)®(~U) ~Q+t+o,sp --<(t,e)~ 8q+t+o)1
T t+Jl\e¢Esp/\(t,t;;p,.~p)EApl\(T-/-O'(;Q,sQJEAQ}

PPBT P '? Q p(T, 1;, 51) =
Jp(T,~p,S) if [;; = i;p EB e 1\ e ¢ :Es

jp(t,i;p,sp) ift r< t/\s=sp -«t,e))-- /\e¢ :Esp

,~~ ~P Ej" (t,T) '" (nU)
J,(t, ~P, ',)lo(IT,~,,) - t - 0) if T t + {) 1\ e ¢ Esp

1\5 t+o=sp -<(t.e)>

,~ t + 0 ~,EIl e~ (t,' + 0) GJ(nn
o otherwise

:FPBT J.I X P P :2: the unique fixed point of the mapping M6(X, P)p

:FPBT J.I X P p =- the unique fixed point of the mapping M(X. P)p

:FPBT (X, = P, I' E I)J p 0:= 5J where £ is a fixed point of M(K, Elp

A.4 Derived operators

SKIP'" WAIT 0

a ~ P = a ~ WAIT t; P

p[]Q'" Q[]p

P p ,Q '" IP[]Q),n,IPrnQ)

P<If Q '" P "<If"O
P 11> Q '" Q E<lfEP

p X1I>Y Q '" Q Y<lfx P

P--+Q == Q_P

p t Q 2. (P [) WAIT t; tn9 --+ Q) \ trig

AA Derived operat,o~,,=-- _ 193

aDd

P<j!; Q" ,(I(P) A<\I-B '(Q)) Pi!' Q ",(lfP) A-tt>B 'fQ))

c(a) == a if a E C
a ifaEC Oi[OEC

where l(a) E=; r(a) =:	 c(l.a) == a if a f/:. C{	 {l.a	 otherwise r.a otherwise
c(r.a) == a if a f/:. C

and A'= I(~ - C) U C B" 'fE - C) U C aDd I(E) n C ~ '(E) n C ~ {}

Appendix B

Inference Rules

B.I Proof rules for prioritized processes

In this appendix we give a complete set of proof rules for proviug specifications on BTCSP
processes.

B.l.I Auxiliary rules

Rule B.l.l (Null specification)

P satp true

b.

Rule B.1.2 (Conjunction)

P satp S
P satp T

P satpS /\ T

b.

Rule B.l.3 (Strengthen specification)

P sat Sp

S(r, ~,j) '=0} T(T,!;;;, 8)

P satp T

b.

194

B.l Proof rules for prioritized processes 195

B.1.2 Basic processes

Rule B,I.4 (STOP)

5(7, [0, 7]" (~G), ~>-)

STOP satp S

"
Rule B.1.5 (SKIP)

S(7,[0,r!0W HG),~>-)

I 7=>S(7,[O,I]"(U HG) (1,7J0(UG),~(I, J>-)

SKIP satp S

"
Rule B,I.6 (WAIT I)

7 < I => S(7,[O, 7] 0 (@), ~>-)

7 I=>S(7,[O,I)0(UG) [1,710(U HGI,~>-J

t t' 7=>S(r,[0,IIQ(UGI [1,1']0(U HG) (I',7J0(iGI,~(I', J>-)

WAIT t satp S

"
B.l.3 Sequential composition

Rule B.1.7 (a ~ P)

5(7, [O,r) ® (UaG,@), ~>-)

P satp Sp
Sp(7-1,{O}®WG) C p "p)A7 t.,*S(7,[O,t.)&(Ual,UII Lp+I,«,a) ,p+I)

a ~ P satp S

"
Rule B.1.8 (a!...t P)

5(7, [0,7] Q (Ual,M), ~>-)

I' 7 < I' + I => S(7, [0, 1'1 Q (UaHG) (1',7] Q (~G)' ~(I', aJ>-)
P satp Sp
Sp(T-/-t',~p,Sp)/\T t'+t~

5(7, [0, I')" WaHl) (I', I' + II Q (UI) <;;p + I' + I, (I', al 'p + I' + II
a!...t P satp S

"

196 Probabilities and Priorities in Timed CSP

Rule B.1.9 (P Q)

P satp Sp

Qsatp SQ

!;'\ =~I\Vt .~ttEitems~J\ tl.I;(it~~';S)/\SP(T,~\it~~./.'i)o::}S(T,~,.'i)

i 7<t+6/\C'\ =C/\Vt' sttlEitemsc)

1\ begm((1t~:'; 5) -) = t;: Sp(t.i;I,lr~:J s) - '* S(7,!; (t, T]0 (~~),~)

t T -6J\[;;;'p \ =~p/\Vt' sptt'Ettems!;p
[

A"gmrrt<); ,pi) ~ I A Sp(t, c:;', t<)" ,) A SQ(T - (' + 0), C:;Q' 'Q») =>

SrT,C:;p (t,t+o)"'(~rr) C:;O+t+o,'P '0+1+0)

P Qsatp S

/',

Rule B.l.lO (WAIT t ; P)

T < I => S(T,[O, TJ '" (~rr), -<~)
P 9atp Sp
Sp(Tl~,j") => S(r + t,~..j... t,s + t)
WAIT t; P satp S

/',

B.1.4 Nondeterministic choice

Rule B.l.ll (P n Q)

P !3atp Sp

Q satp So

Sp(T,l;;,.'i) V SQ(T,r;;-,.'i) 0::> S(T,e,S)

P n Qsatp S

/',

Rule B.l.12 (iEI p.)

'tIEl p,satpS.

"tIEl S,(T,C,.'i)=>S(T,C,S)

;EJ P, satp S

/',

E.1 PmCJ[rules [CJr priCJritized prCJcesses	 197

B.1.5 External choice

Rule	 B.Ll3 (P [j Q)

P satp Sp
Q satp SQ
Sp(-rI~P,-<>-) /\ SQ(T'~Q'-<>-):=} S(T,~p[]~Q'-<>-)

s '" -<>- /\ begin s = t /\ Sp(-r, ~p, s) /\ SQO, ~Q' -<>-))
:=} S(T, C p In LQ, 5)

(/\ (8 i t:::lp (t,~D) V sit ~ itellls~Q) -

s '" -<>-/\ begms = t /\ SP(I,~p,-<>-)))::::} S(T, c p In LQ, s

(A SQ(T, c;Q, 'I A' T' 7lP (I,nll -
p[] Q sat" S

6,

Rule B.Ll" (P OJ Q)

P sat" Sp
Q satp SQ
Sp(T, (;p, -<>-) /\ So(-r, (;Q, -<>-) ::::} S(T, ~p [] ~Q' -<>-)

s '" -<>- /\ begin 8 = t /\ Sp(T, ~p, S)) ()
:=} S -r,Lp[]CQ,s

(ASQ(l,c;Q,~>-)A<TI71Q('.nll -
s '" -<>-/\ begins = t /\ Sp(t,~P,"""'>-) /\ SQ(T,(;Q,S)) S(
::::} T,Lp[]CQ,s)

(/\(8it:::lQ(t,U)V8it~itellls~p)	 -

p[] Q sat Sp

6,

Rule B.l.IS (c?a : A ~ Pa)

Va E A Pa satp Sa

SIT, [0,TI0 (n,?aUII, ~>-)

VaEA I T<'+'oo>S(T,[0,1]0!Gc'al,m (t,TI0!GII,-<ll.a)>-)

VaEA T t+t,,/\S,,(T-t-ta,~,S)::::}

S(T, [0, 'I 0 (ij,?aUI) (I,' + '°10 WI) c; + t + 'o,-«',a)>- ,+' + '0)

c?a: A ~ P a sat,,, S

6,

B.1.6 Parallel composition

Rule B,Ll6 (P<\I- Q)

P sat", Sp
Q sat", So
Sp(-r, C p, 8) /\ SOCT, LO' s) ::::} S(T, S;::p,* C Q , s)

P,* Q sat" S

6,

198 Probabilities and Priorities in Timed CSP

Rul, B.1.17 (P 11> Q)

Psatp Sp

Qsatp So

Sp(r, r::;p, 5) 1\ Ba(T, r::;Q' s) =? S(7, r::;p 110 r::;Q' 5)

P *" Q satp S

to.

Rule B.l.IS (P X4/- Y Q)

P satp Sp

Q satp Sa

Sp(T,r::;p,S X) 1\ SQ(r, r::;Q, 5 Y)I\:Es~XUY=?S(T,r::;pXf\t-Yr::;Q,5)

p X4t- Y Q sat p S

to.

Rul, B.l.I' (P x 11> Y Q)

P satp Sp

Q satp So

Sp(r.r::;p,s Xl 1\ SQ(T,r::;Q'5 Y) 1\ Es ~ Xu y ~ S(r,C;p X *Y 1;0,5)

p x t Y Q satp S

to.

B.1.; Interleaving

Rule B.1.20 (P f- Q)

P satp Sp

Q s8tp SQ

Sp(T,!;p, t c s) 1\ BQ(T, r::;Q' We c: s)::> SeT, r::;p +-I;;;Q, 5)c--P'-Q _P'_Q

p 0(-- Q sat p S

to.

Rule B.1.21 (P --+ Q)

P satpSp
Q satp So

SP(T,~p,WC c: s) 1\ SQ(T,r::;Q,tc c s) => S(T,C;p --+ r::;Q,s)

Q,-P _Q,_P

P --+ Q satp S

to.

199

/C /

8.1 Proofr!lles for prioritized processes

Rule B.L22 (p4I- QJc

P satp Sp

Q satp SQ

Sp(T, !;;p, tee s) /\ SQ(T, !;;Q, t c L s)::=} 5(7, ~p,* ~Q' s)

c-P'-Q c-P'-Q c

Pf Qsatp S
£:>

Rule B.L23 (P *Q)c

P satp Sp

Qsatp SQ

SP(T,~p,tc c S)/\SQ(T'~Q,tc c: ,Y)::=}5(T'~P"*[;Q's)
 c -Q'-P c _Q._p C

p -It Q satp S c

£:>

B.l.8 Abstraction and renaming

Rule B.L2. (P \ X)

P satp Sp

~'\X = C /\'r/t sit E items!;; /\ 5P(T,~I,fic? s)::=} S(T,C,S)

P \ X satp S

£:>

Rule B.L2S (P \ X)

P satp internal A =} S(T,!;;, s) [S is A-independent]

P \ A satp S

£:>

Rule B.I.2. (f(PI)

P satp Sp

= C /\ "It sit E itemsC /\ Sp(T,C/,f1fS)::=} S(T,C,S)

J(P),,'pS

£:>

200 Probabilities and Priorities in Timed CSP

B.l.9 TTansfer operators

Rule B.1.21 (P t Q)

P satl' 5p

Q satl' 5Q

7 t /\ Sp(r, (;,.'1) => 5(7, (;, s)

begln.'l t/\Sp(r,s.,.'I)=>5(7,(;,S)

t <T < t+, A Sp(t'b' ~>-) => S(T'b (t,T] 0(m,~>-)

7 t + 0 /\ Sp(t. (;p, -<>-) /\ 5Q(7 - t - 0, (;Q, SQ)::::}

S(T,bP (t,t+')0(@) ,+t+,,~>- 'O+t+,)

P Q satl' 5

""
Rule B.1.28 (P t Q)

P satp Sp

Q satp 5Q

7 t /\ Sp(7,~, S) => S(r,!;, s)

t < r < t + 0 /\ 5p(l,!;,s) => S(r,!; (t,7]8 (~~), 5 -<>-)

7 t+o/\Sp(t,~p,sp)/\Sdr-i-o'!;Q1SQ)::::}

S(7,!;p (t,~+0)0(M} !;Q+i+o,sp -<>- sQ+l+o)

P t Q satp S

""
Rule B,1.29 (P "7 Q). ,

P satp 5p

Q satp 5Q

e fJ. 2;8/\ 5p(7,~, S) => 5(7, ~ EB e, s)

t 7<t+o/\e¢Es/\5p(t,(;,s)=>5(7,!;EBe (t,r]0{UD),s -«t,e)>-)

7 t +0 /\ e ¢ Esp /\ Sp(t, !;p,sp) /\ 5Q(7 - t - o,!;Q,sQ) =>

S(',bP (t,t+')0(Ufr) bO+t+",p ~(t,,)>- 'O+t+,)

P YQ satp 5

""
B.t.tO Recursion

Rule B.1.30 (~X P)

X satl'S::::} Psatp 5

J.tX Psatp S

B.2 Proof rules for unprobabilistic specifications on probabilistic processes 201

Rule B.1.31 (fJ. X P)

X satp (S«7, C, s) - 6) 1\ begm s 15 /\ ~ <5 = [0,6) (9 (@)) ~ P satp S(7,~ . .'l)

JjX PsatpS

6

Rule B.L32 (eX; ~ P. I, E I),)

(If 1 : I	 X, satp S,) ~ vJ : I P, satp S,

(X. __ P,), sat p S,

6

B.2	 Proof rules for unprobabilistic specifications on proba
bilistic processes

The following rule can be used to reduce a proof obligation in MpTB to a proof Dbligation
in .Mys:

Rule B.2.1 (Abstraction)

'fI':l(p) satp' Sin MTB
[.X,VAR ,,(pX)~p'X]

P satp S in MpTB

6

All tbe rules from appendix Rl can be used for proving that [lrobabilistlc processes satisfy
hard specifications, except the rules for nondeterministic choice should be replaced by the
following rules for probabilistic choice:

Rule B.2.2 (P "nq Q)

P satp Sp

Q satl' SQ

Sp(r,C,s) V SQ(7,C,S) ~ 5(7,C,S)

P pn q Q satl' 8

6

Rule B.2.3 (."iP.jP.)

"11 E I P, sat p So

VI E I S;(7,C,S) =} 8(7,C,S)

,E/[P.jP, satl' S

6

202 ProbabiJJtles and Priorities in Timed CSP

Rult' B.2.4 (P p q Q)

PI] Q satp S

PGl Q satp S

P, q Q satp S

f',

B.3 Proof rules for probabilistic specifications

8.3.1 Basic processes

Rule B.3.! (STOP)

SI,·[O,,] 0({In-<~)

STOP 5at~1 S

f',

Rule B.3.2 (WAIT t)

, < I=> S(T,[OJ) ~({III,-<~)

T t=>S(T,[0,t)0(~11 [1,T],g({lH II,-<~)

t t' T=>SIT,[O,t)@(~11 (l,t')0({IH II (t','J0(~II,-«I', H

WAlT t sat;l S

f',

Rule B.3,3 (SKIP)

S(',IO·*O)(~U I),-<~I
I T'" S(T,[0,1]0({1U II 11,,) 8 ({III,-<II, H
SKIP sat~ I S

f',

B.3.2 Sequential composition

Rule 0.3.4 (a ~ P)

P sattP Sp I Gp

G(T, [O.T/t" (~aHI), -<~I => S(L [O,TJ c: ({IaHII, -<~I

SI'I" 0 g (m c;;, "~I t, Gpl', 0 0 (~II ~,'I =>

SIHI' [0,1]8 ({IaHII ~+t, II,a) ,+1))
(A G(T + I, [0, I)" (~aHII ~ + I, (t,ol HI)

GIT + t. [0, II C (Hal,HII C + I, It, a), + t) => GplT. °t" (UII C;;, ,)

((--.!!...." P sat;P S I G

B.3 Proof rules for probabilistic specifications 203

Rule B.3.5 (a ~ P)

PsattP Sp I G p

CIT, [0, T] '" (~"G,~GI, ~~) => SIT, [0, T] G (~aG,IG), ~~)

t' T < t+ t' ACIT, [o,"]®I~aHII It',TI0(IGI, ~(t',a)~) =>

SIT, [o,t'J,"(~aHII (,',T] o (IG), ~(t',a)~)

SPiT, 00 WGJ c;, ,) A CPIT, °0 lUll C;, ,.) =>
S(T+t+t', [0,"]0IUaHGI It',t+t')0(~G) C;+'+t,', (t',a) Ht+t'))

(ACIT + t + ", [0, "10 l~aHG) (t', t + t') e, (~G) C; + t + t', (t', a) s+ t + t')
CIT + t +t', [0, t'J e (~aHI) It', t + t'l ®lUll C; + t + t', (t', a) ,+' +,') =>

CpIT, 00 (tlG) C;, 'I
II ~ P sat;P S I G

Rule B,3,6 (P Q)

Vt P sat;P' SP,. I Gp,i II ~ Ej J\ internal

VIP sat~P: SP.; I Gp,; /\ internal /\ time of first = T

V1 Q sat~q, SQ,; I Gq,.

Vt SP.; /\ Gp,. /\ internal /\ ~ Es::::}

S(T,C;\ ,')ACIT,C;\ ,'I
Vi (Sp,,(t,I;:,S) /\ Gp,.(t, l;, s) /\ (internal)(t,I;,S)) =>

J\begin(s)=t/\/ T<t+6

Silt, c; \ "\) empty",,]))
(/\G«t,l;\ ,s\) l'mptY(lJj)

V, (Sp,,(t, l;:, s) /\ Gp,;(t,1;,5) /\ Sq.,(bq) /\ GQ .• (b q)) =>
1\ (internal)(t,l;,s) /\ begin(s):0:: ~

S({t, ~ \ ,s \) emptY(t,t+J) bQ + t + 6))
(/\ G((t, I; \ ,5 \) ernptY(t.t+J) bQ + t + 6)

Vt G(T.~\ ,s)/\[internal)(T,I;,5)/\ ~Es::::}Gp,,(T,i;,s)

CII', C; \ "\) empty",,]))
Vi 1\ (internal)(t,b;,s) ::::} Gp,,(t,~,s)

(
I\begin(s)=;t/\t T<t+6

Vi (G((t, I; \ ,s \) empty(t,t+J) bQ + / + 6)) =>

1\ (internal)(t, h, s) /\ begm(s) = t

Gp,.(t,h,S) J\ GQ,.(bq)

P Q sat;E.p, S I G

where i ranges over some set J and

!',

(S,(T, c;, ')1]
dujo-int

(SilT,C;"n
disjomt

~.P~qi E.p,

S;(T, 1;, 5) == (internal)(" C;;;, s) /\ ~ Es J\ SP,.(T, C;;;, s) J\ Gp,;(T, 1;, s)

5';(T, c. s) == (internal)(T, C;;;, s) J\ begm(s) = t J\ Sp,;(" 1;, 1) II Gp,,(', 1;, s)

!',

204 ProbabJUties and Priorities in Timed CSP

Rule B.3.7 (WAIT t; P)

Psat;;" Sp I G p

T<tO CIT, [D,T]0(@), ~,"I,*S(T, la,TI"'I~i), ~'")
Sp{T,!;, s) A Gp(T,!;, s) ~

"(T+I" ID,II,,(@) C;+', ,+t)OC(T+t. la,1101~i)

G(T+ I, [a, I) 0 (~I) C; + t, ,+ I) '* Gp(T,C;,')

WAIT I : P sat;" 5 I G

C;+I, .<+1)

6

f3.3.3 Probabilistic choice

Rule B.3.8 (P pn q Q, unconditional specifications)

P sat;;/" Sp
Q satjq' SQ
Sp(T.C,S) V SQC"-,C,s) => S(T,C,S)

P pn, Q sat;P ,1" +q.q' S

6

Rule a.3.9 (P pn q Q, conditional specifications)

P saqpl Sp I Gp

Q saq"pl SQ I GQ

Sp{T,r;. s) II Gp(T, ~, s) V SQ(T,!;, 5) II GQ(T, 1;, 8) => 5(7.~, 5) A G(T,!;, s)
G(T,~, s) 0::;. Gp(T,~, 5) /\ GQ(T, ~, s)

p pn q Q satt'" 5 J G

6

Rule B.3.10 (,E/[P.]P" un<:onditional specifications)

v ~ P, satj;'q, 5,
Vi 8,(7.1;;,5) 0:::} S(T,!;,S)

'E/WI]?' sat;l::p,q, S

6

Rule a.3.Il (IE/iF.]?" conditional specifications)

Yi P, satr Si I G;
Vi S,(;-,C;;;,~) A G,(T,C;;;,S) => S(T,C;;;,S) A G(r,i;,s)
VI G(r,C;;;,s) 0:::} O,(T,I;;;,5)

'Edp,]p. sattP S

6

B.3 Proof rules for probabilistic specilicatjolls 205

B.3.4 External choice

Rule B.3.12 (P [) QJ

VI P sat~P. SP,i I Gp,.

V I Q 5at~q, SQ,; I CQ,;

V (SP,,{T, ~p, -<>-) 1\ Gp,,(T, ~p, -<>-)) ~

i\ SQ,.(T'~Q' -<>-) i\ GQ,,(T'~Q'-<>-)
I

'/~: ~Pb:~~'::) "GiT. ~P [] ~Q)' -<~)

[i\ (8 t t ~p (t,@)Vjtl fi- items~Q)
Vi . 0:::}

i\ Sp,i(T,~p,S) i\ Gp,i(T,~p,S)

i\ SQ,.(t, ~Q' -<>-) i\ GQ,,(l, i;Q, -<>-)

S(T,~p[]~Q's) i\ G(T, i;p [Jr;;:::Q's)

' i -<~ A t", t t /Jp (,,@))
b'9,n, ~

"'It 1\ SP,.(t, ~p, -<>-) i\ Gp,,(t, !:;p, -<>-) ~

(

i\ SQ,,(T, I;Q,s) i\ GQ,i(T,t;;;Q'S)

S(T, ~p [] i;Q' 5) i\ G(T,!:;p [] !;Q'S)

Vi G(T, t;;;p IT] ~Q' -<>-) 0:::} Gp,.(T, !:;p, -<>-) 1\ GQ,i(T, I;Q, -<>-)

V, (s =f:. -<>- /\ begm 5 = t i\ G(T, t;;;p [] ~Q' j)) ~

i\ (5 t t ~p (t,~rr) V j t t fi- itemst;;;Q)

Gp,,(T, !:;p, j) 1\ GQ,,(t, i;Q, -<>-)

V, (s =f:. -<>- /\ beglns = l) ~ (GP,;(t,l;p,-<>-))
_ i\ 5 t t]jp (t,@) 1\ G(T, C p IT] LQ, s) i\ GQ,,(T, C Q , 5) [(5',(T, t;;;p,I;Q, j))]
P [J Q sat~l:, P. 'l, S I G di5jomt

where i ranges over some set J and

5',(T, !;p, ~Q' 5) == Sp,I(T, I;p, -<>-) i\ SQ,,(T, r;;:::Q' -<>-) i\ j = -<>

V SP,.(T, S;p, s) 1\ SQ,,(t, i;Q' -<>-) i\ s =f:. -<>- i\ begm 5 = t
II (head s ~P (L@)Vheads fi- itemst;;;Q)

V Sp,i(t,l;p,-<>-) II SQ,;(T,I;Q,5) II 5 =f:.-<>

II begms ==: t II head 5 tJp (Tp,~rr)

to.

206 Probabilities and PriOl-ities in Timed CSP

B.3.5 Parallel composition

Rule B.3.13 (P<tl- Q)

VI P satj;'P; SP,. I Gp ,.

V, Q satj;'q, SQ.; I GO,;

V (SP.,(T.C;P.,) A GP.• (T,C;P.,)) (S(T.L;p<tl-t;Q.'))

I 1\ SQ,,(T'~Q'S) 1\ GQ,t(T'~Q'S) => 1\ G(T,C;;;p,* ~Q's)

VI G(T,Cp4t-CQ'S) => GP,,(T,Cp,S) 1\ CQ,i(T,C Q ,5) [(S'(T'~P'kQ'S»]
P-JI- Q sat~~' F,q, S I G disjoint

where 5i (T, ~p, !,; Q"~) == SP,1l T, !;p, sJ 1\ SQ,'(T, kQ, s). 6

Rule B.3.14 (P x<tI- Y Q)

ViP satj;'P, Sp" I Gp,.

VI Q sat;q, SQ,. I GO,i

(1:5 ~V, Xu y 1\ SP,i(T, ~p, Ii Xi /\ Gp,.(T, I;p, Ii X») =>

/\ SQ,.(T, !';;'Q' II Y) 1\ 0Q .• (T, kQ' Ii Y)

S(T,kp x,*Y !;Q,5) /\ G(T,!;pX*Y kQ's)

E' t; Xu Y) (GP.,(T.t;P .., XI)
\1'1 X Y => ~(

1\ G(T,C p '* CO,s /\ GQ,,(T,CQ,S Y [(S;(T,!;P,!;Q,S»]
p x;jf-Y Q satr~:' p,q, S I G disjOint

where S;(T,l;p, hQl II) == Es ~ Xu Y 1\ SP,i(T, l;p, Ii X) /\ SQ,;(T, kQ, S V). !2.

B.3.6 Interleaving

Rule B.3.15 (P <- Q)

V 1 P sat~P' Sp" I Gp"

(
V1 Qsatt'l' SQ,' I GQ"

SP,'(T,~r,.+c c ... J 1\ Gp,,(T,!;p·+C c $))

V,. -P,-Q. _P'-Q :::::}

t\SQ,,(T,!;q,o/C C .s)1I GQ,,(T'~Q'WC c $)
_P,-Q _P,_Q

S(T, [:p +--- f; Q, s) II G(T, f;p +-- !;Q' s)

GI'.,(,.t;P.'I'c c 'I)

'r:I1 G(T,f;p+-~Q,5)=> -P'-Q

(
1\ GQ,,(r, [:q,tc",c l/ r(Si(T'[:P'~Q'S))]

p ~ (; sat:l:, p,q, S I G l d1SJ011lt

where S.(,,~p,r;Q,5):5 Sp,,(T,[;;;p,+C c s) II SQ,.(T'!;;;Q'o/C c s).
_P'-Q _P,_Q

6

8.3 '"Proof rules for probabilistic specification, 207-"',o

B.3.7 Abstraction and renaming

Ride B.3.16 (P \ X)

P satr SP I Gp

Sp(T,~, irc\X s) /\ Gp(T, 1;, lIc\X $) 0=> 5(T, (;;; \ X, s) /\ G(T, I; \ X, s)

G(T.r;; \ i,s) =* Gp(T, I;,lIc'X $)

p \ X sattP S , G

b.

Rule B.3.11 (I(P))

PsatrSp! G p

Sp(T,I;,rr'c:s) /\ Gp(T,I;,rr'c: s) => S(T,/I;,s) II. G{T,/~,S)
G(T,/I;,s) =* GP(T,!;,-n{ ,;)

f(P) sat~P S I G

b.

B.3.8 Transfer operators

Rule B.3.18 (P Q)

(

V I P sat~P' SP,. I Gp,. /\ (T < t V begzn s t)

wv l P satp~P: S'p.' I G'P,' /\ T = t /\ s := -(>
V ~ Q sat~q, SQ,; I GQ"

Vi Sp,,(T,(;;;,s)/\Gp,,(T,~,s)/\(T<tvbegzns t)=*

S(T,~,S) /\ G(T,I;,s)

V1 Sp,;(t, 1;, -(r) /\ Gp,;(t, 1;, -<>-) II. t T < t + 0 '*

5((t,~, -<r) emptY(I;rj) /\ G((t, (;;;,-<>-) emptY(,;rj)

Vi (Sp,,(t,!;p,-<r)/\Gp,,(t,I;P,-(>-))"'"

/\ 5Q,;(TQ, ~Q' sQ) /\ GQ,,(TQ' !;Q, sQ)

S((t,~p,-<r) emptY(i,t+<l") (TQ'~Q,SQ)+t+O"))

/\ G((t, !;p, -(>-) emptY(t,t+6j (TQ, !;Q' sQ) + t + 0)

Vi G(T,!;,S) /\ (T < tV begms t):=) Gp,i(T,I;,s)

V 1 G((t, l;, -(r) emptYU"j) /\ t T < t + 0 => Gp,,(t, 1;, -(>-)

Vt G((t,l;p,-<r) emptYU,t+6) (TQ,(;;;Q,SQ)+I+O")=>
 A

Gp,.(t,!;p,-(r) /\ GQ,i(TQ,I;Q,SQ} [(~:(T,I;,s)) d~J.o~nt]
t >E (5,(T,~, s)) dts]omt

P Qsatp-'P'SIG E;p;q; E,p,

where 1 ranges over some set I and

S,(T, (;;;, s) ~ (T < t V begin s I) /\ 5p,i(T,~, s) /\ Gp,i(T,~, s)

S:(T, 1;, s) == T:= t /\ s = -(i- /\ Sp,.(T,!;, s) 1\ Gp,,(T, 1;;;, s)

b.

208 Probabilities and Priorities in Timed CSP

Rule B.3.19 (P t Q)

VI P sattp
, SP,' I Gp ,. A r < t

V I · P satp <OP: S'p, I G'p .. /\ T = ,
q

(

VI Q satt , SQ',; I G~,.

Vi Sp,,(T,~, s) 1\ Gp,;(r, r;;;:, s) /\ r < t => 5(7, r;;;:, s) 1\ G(T. r;;;:. s)

'rI1 S~,,(t,r;;;:.s) /\ G~,;(t,l;.s) A I T < t +3 =>

5«t, (;;;,5) emptY(I;rj) /\ G«t,r;;;:,s) emptY(I,.,-j)

S~,(I,r;;;:P'SP) /\ G",(t,r;;;:p,sp))
VI' , =>
1\ 5Q,,(1"Q' r;;;:Q,SQ) /\ GQ,;(TQ, r;;;:Q,SQ)

S(t,r;;;:p,Sp) emptY(/,!+~) (TQ,r;;;:Q,SQ)+I+J))

(
 1\ G«t,r;;;:p,sp) emptY(t.l+Jj (TQ, r;;;:Q, SQ) + t +3)

VI G(T,r;;;:,S) /I T < t => Gp,,(T,r;;;:,S)

VI G«t, r;;;:, s) emptY(t"j) /\ t T < t + J => Gp,,(t,!;, s) .

VI G«(t,r;;;:p,sp) emptY(t,t+J) (TQ,!;Q,SQI+t+Jj => [(SdT,r;;;., ,5)).]
G'(C JG() dlSJomt

P,> t, _p, Sp 1\ Q,' To, r;;;Q' SQ (3' C

P Q. "",,, S I G ,(T,_,,)

I sa p dlSJomt

:E, p: q, E, p,

where I ranges over some set I and

S,(T,r;;;:,S) =::= i < t /\ $p,,(i,(;;;,3) /\ Gp,,{T,~.3)

S:(T,~,S) ~ T = t /\ Sp,,(T,(;;;,S) /\ G~,.(i,(;;;,S)

/',

Rule B.3.20 (P YQ)

P sattp 5p

Q saQ'1 So

5p(T.~,S) /\ e r;. Es => 5(T.~ ft e,s)

5p(I.~,s)/\er;.r:s/\t T<t+J=>

S((t,(;;;ffie,s (t,e)) C'mptY(t,'T])

Sp(t,~,s) /\ e r;. ~s /\ 5Q(bQ) =;.

5((t,CEBe,s (t,e)) empt.YU,I+dj bQ+t+J) [5Pisasafet.v]

P ? Q sat~pq 5 predicate

/',

B.3.9 Recursion

Rule B.3.21 (,lX P, conditional specifications)

(''it XsatfP' 5,' G,) => (\It Psat~P' 5, I G,l

\11 pX PsattP'S,IG,

D.3 Proof rules fo! probabilistic spedJications 209

6

Rule B.3.22 (J-! X P, unconditional specifications)

('r:/ i X sat;P' S~) =:> ('r:/ 1 P sat;P' 5,) ['r:/ I 3 P: MJ'TB

'r:/ 1 Jl X P satpP, 5, P satp S.

6

Rule B.3.23 (IJ- X P, conditional specifications)

'r:/i Xsat;;op, (5 1 ((T,[;;;;,S)-0) 1\ begins ,[G,((i, [;;;;, s) - 6) 1\ begin fj

(, AC; ,~[O,'J')({IIJ A C; '~[O,,) 0 (~I) ')) ~
('r:/ i P Batt'" 5, I G,)

VI jJ.X P sat;P' 5, I G,

6

Rule B.3.24 (J! X P, unconditional specifications)

. :;:,,,. (5,((T, [;;;;, s) - 0) 1\ begm s
(

V I X satrr • ')) ~ , AC; '~10,,)0(lI)

(V t P satt'''' 5,) [V 1 3 P : MpTB

Vi J-! X P sat;'" 5, P satp Si

6

Rule B.3.25 «X, = p.h, conditional specifications)

(VI: I;J: J Xi sat;PI'J S',i I G';,J) =:>

(V t : I ; j : J Pi sat~P'J Si,] I G,,])

Vj : J (X, = Pi)J: 8at~PI<'J Sic,) I GIc ,]

6

Rule B.3.26 «(Xi = Pi)lc, unc::onditional specifications)

(V 1 : I ;) : J Xi sat;P"J 5",) =:>

(Vi:I;j:J P,sat;P'JS,j) [Vi:I;j:J 3P:/Vf PTB]

Vj : J (X. - Pi)J: satp 51:" P sat 5",

6

Bibliography

[AH90)	 James Aspnes and Maurice Herlihy. Fast randomized consensus wing shared
memory. Journal of Algonthms, 11:441,··461, 1990.

[BBK85)	 J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining eqnations
for an interrupt mechanism in process algebra. Tf'Chnical R~port CS-R8503,
Centre for ~Iathematics and Computer Science, Amsterdam, 1985.

[BHR84]	 S, D. Brookes, C. A. R. Hoare, and A. Vol. Roscoe. A theory ofCSP. Journal of
the ACM, 31(3):560-599, 1984.

[8W82)	 M. Bray and M. Wirsling. On the algebraic specification of finitary infinite
communicating sequential processes. In D. Bj6rner, editor, Workmg CO'rlference
on Formal Description of Programming Concept II, Amsterdam, 1982. Nort.h
Holland.

[Cam89J	 J. Camilleri. Introducing a priority operator to CCS. Technical Report 157,
Cambridge, 1989

[CES83]	 E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications: A practical ap
proach. In Proceedings of 10th ACM Symposium on Principlrs of Programming
Languages, pages 117-126, 1983.

[CH88J	 R. Cleaveland and M. Hennessy. Priorities in process algebras. In Pmc. J"d
SymposlUm on Log!c In Computer Science, Edmburgh, 1988

[Chr90]	 Ivan Christoff. Testing equivalences and fully abstract models for probabilistic
processes. In Concur '90, LNCS 458. Springer Verlag, 1990.

[Dav91]	 Jim Davies. Spedjicahon and Proof m Real-Time System.s. D. Phil thesis, Oxford
University, 1991. Published as Oxford University Computing Labs, Technical
Monograph PRG-93.

[DRRS93]	 J. Davies, G. M. Refti, A. W. Roscoe, and S. A. Schneider. Real Time CSP.
Prentice Hall, 1993. Forthcoming.

[DS89a]	 Jim Davies and Steve Schneider. An introduction to Timed CSP. Technical
Monograph PRG-,S, Oxford University Computing Labs, 1989.

IDS89b)	 Jim Da\'ies and Steve Schneider. Facrorising proofs in Timerl CSP T('chnieal
i1-1onugrapll PRG-75, Oxford University Computing Labs. 1989.

210

Bibliography	 211

[DS90J .lim Davies and Stevp Srhneidpr, \\'aitillg for Timed CSP.
PRG-TR-3-90. Oxford L1nivpn;ity Compnting Labs, 1990.

Technical Report

[DS92a] Jim Davies and Steve Schneider. A brief bistory of Timed CSP.
Monograph 96, Oxford University Computing Labs, 1992.

Technical

[DS92b] .lim Davies and Steve Schneider. Using CSP to verify a timed protocol over a
fair medium. In CONCUR '92, LNCS 6.'10, 1992.

[FZHS92j M. Fang, H. S. \1. Zedan, and C . .1. Ho-Stuart. A throry for timed-probabilL<;tic
behaviours. Report YCS 175, University of York, Department of Computer
Science, 1992.

IG.1S90j A. Giacalone, C. .lou, and S. A. Smolka. Algebraic reasoning for probabilistic
concurrent systems. In Proceedmgs oj Wm'kmg Conjerence on ?mgrammmg
Concepts and Methods, IFI? TC 2, 1990.

[Han91] Hans A. Hansson. Time and ProbabJlily m Formal DesIgn oj DlStnbuted SyYlems.
PhD thesis, Swedish Institnte of Computer Science, 1901. Published ~ SICS
Dissertation Series, number 05.

[H,,90] Ted Herman. Probabilistic self-stabilization.
35(2):63 -67, Jnne 1990.

IrljonTlaftoTl Proce,5sing Letters,

[Hoa85] C. A. R. Hoare. Communicatmg Sequentlal Processe.s. Prentice Hall, 1985.

[HSZFH92]	 C. J. Ho-Stuart, H. S. M. Zedan, M. Fang, and C. ~1. Holt. PARTY: A pro
tess algebra with real-time from York. Report YCS 177, Un.ivernity of York,
Departmpnt. of Comput.er Science, 1992.

[JL91]	 llengt Jonsson and Kim G. Larsen. Specification and refinement of probabilistic
processes. In Proc. LICS '91, 1991.

[JS90]	 Chi-Chang .lou and Scott A. Smolka. Equivalences, congrnences and complptp
axiomatizations for probabilistic processes. In Concur 'gO, LNCS 458, 1990.

[Low~llaJ	 Gavin Lowe. A probabilist.ic model of Timed CSP. D. Phil qualifying thesis,
Oxford, 1991.

[Low91b]	 Gavin Lowe. Prioritized and probabilistic models of Timed CSP. TecLnical
Report PRG-TR-24-91, Oxford University Computing Labs, 1991.

[Low92a]	 Gavin Lowe. Some extensions to the Probabilistic, Biased Model of Timed CSP.
Technical Report PRG-TR-9-92, Oxford Universit.y Computillg Labs, 1992.

[Low92b]	 Gavin Lowe. Relating the Prioritized Model of Timed CSP to the Timed Fillure:s
Model. Technical Report PRG-TR-18-92, Oxford Univprsity Computing Labs,
1992.

[Low92c)	 Gavin Lowe. Specification and proof in probabilistic. prioritized, Timed esp.
Techllical Report. PRG-TR-23-92, Oxford Universit.y Computillg Labs, 1992.

212 Probabilities and Priorities in Timed CSP

[LS92] Kim G. Larsen and Arne Skou. Compositional verification of probabilistic pro
cesses. In Concur '92, LNCS 630, 1992.

[Mil83] Robin Milner. Calculi for synchrony and asynchrony.
Science, 25(3):267-310, 1983.

Theoretical Computer

[Mil89] Robin Milner.
1989.

Commumcation and Concurrency. Prentice Hall International,

[Mo,90] Carroll Morga.n. Programming from SpeCificatIOns. Prentice Hall, 1990.

[OR831 E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for commn
nicating processes. In J. Dia:t, edit.or, 10th lCALP, LNCB 154, pages 561-572,
1983.

[PS88] K. Paliwoda and J. W. Sanders. The sliding window protocol in CSP. Technical
Monograph PRG-66, Oxford University Computing Labs, 1988.

[PZ86) A. Pnneli and L. Zuck. Verification of multiprocess probabilist.ic protocols. Dis
tributed Computmg, 1(1):53-72, 1986.

[R,.88] G. M. Reed. A Uniform Mathematical Theory for Real-Time Distnbuted Com
putmg. D. Phil thesis, Oxford University Computing Labs, 1988.

[Roe821 A. W. Roscoe. A Mathemattcal Theory of Communicating Processes.
thesis, Oxford, 1982.

D. Phil

[RR861 G. M. Reed a.nd A. W. Roscoe. A timed model for CSP. In Proceedmgs of
lCA LP86, LNCS 226; Theoretical Computer Setence 58, page.s 314-323. Springer
Verlag, 1986.

[RR8'1 G. M. Reed and A. W. Roscoe. Metric spaces as models for real-time concur
rency. In Proceedings of the Third Workshop on the Mathematical Foundations
of Programming Semanltes, LNCS 298, pages 331-343. Springer Verlag, 1987.

[Schgol Steve Schneider. COrTee/ness and CommumcatJon m Real Time Systems. D.
Phil thesis, Oxford Universit.y, 1990. Published as Oxford University Computing
Labs, Technical MODograph PRG-88.

[Sco92] Brian Scott. Denotational semantics for occam
Oxford, 1992.

2. D. Phil qualifying thesis,

[Sei92] Karen Seidel. Probabilutlc
University, 1992.

Commumcating Processe.~. D. Phil thesis, Oxford

[SS90] Scott A. Smolka and Bernhard Steffen. Priority as extremal probability.
Concur '90, LNCS 458. Springer Verlag, 1990.

In

[Sut75] W. A. Sntherland. lntroductton to Metrie and Topological Spaces.
versity Press, 1975.

Oxford Uni

[Tornol Chris Tofts. A synchronous calcnlm; of relative fn'quenc)'. In Concur '90, LNCS
458. Springer Verlag, 199(t

Bibliography	 213

[vGSST90]	 R. J. van Glabbeek, S. A. Smolka, B. St.effen, and C. Tofts. Reactive. generative
and stratified models of probabilistic processes. In IEEE Sympostum on LOglC in
Computer Snence, 1990.

Index of Notation

Syntax

STOP deadlock 7 []	 left-biased choice 25

SKIP successful termination 7 OJ	 right-biased choi~e 25

WAIT delayed termination 7 <It	 left-biased lockstep 25

--t prefixing 7

25

parallel

11>
 right-biased lockstl'p
sequential composition 7

parallel

WAITt;P delay 7

n nondeterministic choice 7 parallel

A<lt B left-biased alphabet 26

A1I>B right-biased alphabet 26indexed 7

nondeterministic choice parallel

external choice 7
 <- left-biased int.erleaving 26

iEI Pi

da:A-----tP" prefix choice 7 --t	 right-biased 26

7

interleaving

II lockstep parallel
<It left- biased sharing 26

AII B alphabet parallel 7 c

parallel

interleaving 7 11> right-biased sharing 26
 c
parallel

c ,n, probabilistic cboiel' 67

\ hiding 8

II sharing parallel 7

'EIlP.jP, indexed probabilistic 67

f(P) renaming 8
 choice

f-'(P) inverse renaming 8
 probabilistic external 67,	 ' ,
chokl'
timeout 8

timed transfer 8

terms

'V interrupt 8
. nTCSP Detl'rministic, Timed 65

BTCSP Biased, Timed CSP 27

"X
 P delayed recursion 8 CSP tE'rms

I'X P immediate recursion 8 PBTCSP Probabilistic, Biased, 67

Timed CSP terms

(X, ~P,), mutual recursion 8

TeS? Timed CSP terms 7

214

Index of Notation ----- 215

Semantics

TIME

E

Tl:

HOTINT

non-event

termination event

the time domain 10, =)

all viBible ev~nts

all timed events

half-open time intervals

9

7

8

8

8

8

TINT

d

VAR

p

M(X.P)

M,(X,P)

all time intervah>

distance metric

pron~5S variables

a variable binding

mapping for /1. X P

mappiug for I' X P

37

11

12

12

16

17

Timed Failures Model

a timed trare 8 TF all timt>d failures 8

()

~

T'"...... ..,
RTOK

the empty trac~

a refusal set

all timed traces

all refusal tokens

9

8

8

8

STF

"~TP

ENVp

FT

all sets of timed failures

Tim~d Failures Model

variable bindings

timed failures

11

1l

12

12

RSET all refusal sets 8

Operations on timed failures

cOllratenation of traces 9 after 10

;n

'"
t1mes

begin

'nd

jiT'St

last

head

Jool,

1

contiguous subsequence

permutation of traces

time values present

start time

end time

first event

last event

first timed event

last timed event

during

before

9

9

9

9

9

9

9

9

9

9

10

1

\
E

+

II
C

strictly beforE'

strictly after

at

restrirtion

biding

events present

temporal shift forward6

temporal shift
backwards

interleaving of traces

interleaving of traces
sbaring C

10

10

10

10

10

\0

10

10

14

14

216 Probabilities and Priorities in Timed CSP

The Prioritized Model

, a timed trace 30 TT all timed traces 30

~~ the empty trace 30 OFF all offers 30

X,,p
a,p

bags of events

actions

30

63

ACT

OFFREL

all actions

all offer relations

63

30

v, w

c::

C

;J

:J

offers

an offer relation; offered
less strongly than

offered strictly less
strongly than

offered stronger than

offered strictly stronger
than

30

30

31

31

31

BEH

EOFF

STB

..\.1TB

ENV

all prioritized
behaviours

all environmental offers

all sets of prioritized
behaviours

Timed Prioritized
Model

variable bindings

34

38

39

39

40

T end time 31 A BT prioritized behaviours 40

~ an environmental offer 38

The Deterministic Model

lV(DTB Deterministic, Timed
Model using Biases

65 ADT detenninistic
behaviours

65

The Probabilistic Model

P:F TB

'fYP TB

.AA pTB

probability functions
on timpd biased
behaviours

probabilistic pairs
using timed biased
behaviours

Probabilistic, Timed
Model llsing Biasf's

68

68

70

ApBT

PPBT

:FPBT

fillout

behaviours of
probabilistic process

probability functions
on prioritized
behavIours

probabilistic pairs

extend partiaJ fnnction

71

71

71

72

217 Index of Notation

Operations on prioritized behaviours

'" bag union 31 compat behaviour compatible 37

bag subtraction 31 with environmental
offer

concatenation 33
!:p[]!:Q biased choice composi '3

I time interval 31 tion of offer relations

times time values present 31 !:p At/t-B!:Q biased parallel compo- "
begif! start time 32 sHion of offer relations

end pnd time 32 ~~P'~Q part of offer performed
by master of

'6

jirli/ first action 32 interleaving

Lalit

htad

last action

first timed action

32

32
W~P'~Q part of offer performed

by slave of interleaving
'6

fool last timed action 32
!:P of- ~Q biased interleaving

composition of offer
'7

t during 32 relations

before

after

32

32

'1'c cc -P'-Q
part of offer performed
by master of sharing
parallel

'8

strictly before

strictly after

32

32
+c!;;;p,!;;Q

part of offer performed
by slave of sharing

'8

t at 32 parallel

re1:itriction 33 !:P'tt !:Q biased sharing parallel
composition of offer

'8

\ hiding 33 relations

E

+

events present

temporal shift forwards

33

33

~_\X
C '

offer performed by P
when P \ X
performs v

51

temporal shift
backwards

33 itf:v offer performed by P
when f(P) performs v

51

items set of all offers made 31
C:\X hiding on offer relation 51

Ii) enumeration of offer
relation

33
f ~l r;; renaming of offer rela

tion by f
52

u~n preferred elements of n 34 !: ffi i addition of event to of 56
fer relation

218 Probabilities and Priorities in Timed CSP

Specification

Timed Failures Model

,.t	 satisfies 17 before before 20

satp	 satisfies in variable 17 during during interval 20
binding p time of time of timed event 20

" performance of events 18
name of name of timed event 20

refusal of evellts 19"I alphabet set of all events 21
beyond time at least 19 performed

live	 willing to perform 19 count number of events 21
events performed

from	 all times after 20 open offered by environment 21

first first timed event 20 closed	 not offered. by 22
environnwnt

last last timed event 20
internal internal events 22

after	 after 20

Prioritized and Probabilistic Models

,at satisfies 80 separate	 two events not offered 86
at the same time

S8tp	 satisfies in variable 80
binding p preferred to priorities on actions 86

~,p S	 probability of 134 first first timed event 87
satisfying S last last timed event 87

sat;3p satisfies with 134
after	 87aft"probability p

p before before 87satt satisfies with 134
probability p in during during interval 87
variable binding p

time of time of timed event 87
5!G conditional 134

name of name of timed event 87specification
alphabet set of all pvents 87dIsjoint specifications disjoint 139

performed

at performance of eyents 83

count number of events 87
"f performedrefusal of events 84

beyond time at least 84 open	 offered by environment 88

offered event offered by process 84 dosed	 not offered by 88
environmentlive	 willing to perform 85

events internal internal events 88

from all times after 85 accessible	 action offered by 89
environment

Index of Nota.tion 219

Abstraction

'Pr.;)

(8)
'PD

~8

nf

closure

unprobabilizing
syntactic abstraction

nondeterminizing
syntactic abstraction

unprioritizing sYIltactic
abstraction

equivalence of traces

total refusal set
relating to prioritized
behaviour

left hand closure of
refusal sets

81

83

107

108

109

109

~

(J(B)
p

8(8)
0

98

AFT

6.

compatibility of timed
failure wit.h prioritized
behaviour

unprobabilizing
semantic abstraction

Ilondeterrninizing
semantic abstraction

unprioritizing semantic
abstraction

timed failures of
prioritized process

abstraction mapping
for specifications

109

8'

83

110

110

120

