An Operational Semantics for FOOPS

by
Panlo Borba
Joseph A. Goguen

Technical Monograph PRG-115
November 1994
Oxford University Compnting Laboratory
Programming Research Group
Wolfson Building, Parks Road
Oxford OXl 3QD
England

Copyright (c) 1994 Paulo Borba, Joseph A. Goguen

Oxford Universily Computing Laboratory
Programming Research Group
Wolfson Bualding, Parks Road
Oxford OXI 3QD
England

Contents

1 Introduction 5
2 Overview of Order Sorted Algebra 6
2.1 Siguatnres 6
2.2 Algebras 7
2.3 Terms 8
2.4 Eqnations 10
2.j Order-sorted Equational Deduction 10
2.6 Theory Presentations 11
3 Overview of FOOPS 12
3.1 Functional Level. 12
3.1.] Retracts 14
32 Object Level 15
3.2.] Axioms 16
3.2.2 Method Combiners 18
3.2.3 Object Creation and Deletion 20
3.2.1 Other Aspects 21
3.2.5 Pratected Objects 22
3.2.6 Aspects of FOOPS Operational Semantics 23
4 Signatures and Specifications 26
5 Database States 29
5.1 Operations on Database States 31
5.1.1 Updatíng Databases 31
5.1.2 Adding Objects to Databases 32
5 1.3 Removing Objects from Databases 32
6 Methods, Attributes, and Functional Expressions 33
6.1 Fnnctional Expressions 33
6.2 Attributes 34
6.2.1 Qualified Notation for Altributes 35
63 Methods Specified by DMAs 36
6.4 Methods Specified by IMAs 39
6.5 Arguments 40
7 Method Combiners 41
7.1 Sequential Composition 42
7. 2 Parallel Composition 43
7.2.1 "True Concurreucy" 44
7.3 Nondeterministic Choice 49
7.4 Result 51
7.5 Conditional 51
7.6 Atomic Evaluation 52
구 Method Combiner Definition 53
8 Object Creation and Deletion 54
8.1 Object Creation 54
8.2 Object Deletion 55
9 Protected Objects 55
9.1 Attributes, Functions. and Identifiers 57
92 Arguments 57
9.3 Methods 58
9.3.1 Methods Specilied by DMAs 58
9.3.2 Methods Specified by IMAs 58
9.1 Object Creation and Deletion 59
9.5 ('omparison with Other Auproaches 60
10 Evaluation in the Background 61
11 Conclusions 62
11.1 Related Work 63
11.2 Further Research 64

An Operational Semantics for FOOPS

Paulo Borba* Joseph A. Goguen ${ }^{\dagger}$

November 1994

Abstract

FOOPS is a concurrent object-oriented lauguage. We give a structural operaional semantics for FOOPS, considering features such as classes of objects with associatedmethods and attributes, object ideutity. dynamic object creation and deletion, overloading: poymorphism, inheritance with overridiug, dyuamic biuding, concurrency, nondeterminism, aiomic execution, evaluation of expressious as background processes, and object protection.

1 Introduction

FOOPS is a concurrent object-ariented specification language with an execntable subset [18, 40]. FOOPS includes a functional language derived from OBJ [21], which is a firs order, parely functional language supporting an algebraic style for the specification, rapid prototyping, and impleneatation of abstract data types.

FOOPS extends OBJ by providing a simple declarative style for object-orientel programming and specificatiou using (couditional) equations. It supports classes of objects with associated methods and attributes, object identity, dyuamic object creation and deletion. overloading, polymorphism, iuheritance with overridiug, dyuamic bindiug, and many additional features.

Here we consider a natural exteusion of FOOPS for specifying systems of conturrent, distributed, and autonomous objects $[12,35]$. Essentially, this extension allows the definition of non terminating (autonomous) methods, and has explicit constructors (called methoc combiners) for expressing concurrency, nondeterminism, atomic execution. and evaluation of method expressions as background processes. Furthermore, these constructors may be used to define more complex ones, by using the facilities for method combiner definition. Those featnres are necessary for modelling processes in a natural way.

This extension of FOOPS also provides a nuechanism for object protection; in general terms, it's possible to specify which objects are allowed to directly invoke methods of a protected object. In fact. this can be used for defining private references (object identifiers); that is, references that.

[^0]can only be used by a particular object. This mechanisn seems to be essential for specifying and reasoning in a practical way aboul systems consisting of arbitrary object graphs [26].

All those aspects are considered by the structural operational semantics [39] that we describe in this paper. However, we concentrate on the object level of FOOPS. An operational semantics for the functional level may be found elsewhere [28].

Along witb the semantic description, we give commems that clarify many concepts and phenomena related to object-oriented languages. In particulat. We show how the semantics suggests an appropriate programming style for FOOPS, and indicates how inconsistencies in FOOPS specifications may be avoided. We also justify tbe semantics allopted for some constructs, relating it to alternatives. In special, we discuss the "truly concurreut" and interleaving semantics for parallel composition. It curns out that these approaches are equivalent in the context of FOOPS. given some muld assumptions on the notion of eqnivaleuce of progratis used for the langnage.

We adopt a special approach for modelling states of the operational semantics Following some ideas from [18], we use order sorted theory presentations [19. 16] to represent states This bas the advantage of using all the power of the theory of ATDs for defining operations on states and reasoning about them. As states are represented by au abstract siructure. the semantics is defined in a simple way In fact, lots of complicatious are avorded aud a concise semantic definition can be obtained, although the language supports many fratures. Also, the use of this approach clearly facilitates the definition of the semantics, since the original FOOPS design used concepts from order-sorted algebra (OSA) [19].

Tbis text is structured in the following way. First, we give an overview of OSA. Second, we introduce most aspects of FOOPS. After that, we give the basis for the semantic definition; we introduce formal definitions and operations for FOOPS signatures, specifications, and rnntime database states. Lastly, we gradually describe the semantics; we give rules for function, method and attribnte evaluation. followed by rules for method combiner. creation and deletion of objects. and a mechanism for object protection.

2 Overview of Order Sorted Algebra

We introduce some notation, definitions and basic results of order-sorted algebra (OSA) as originally presented in [19]. Most of the material in this section is copied from [19], [16], and [15]; here we also introduce some extra notation. This geueral overview of OSA is necessary because tt is the mathematical theory supporting fOOPS functional level, anil it is used to define the semantics described in this text.

OSA is a nathematical theory snpporting multiple inheritance, overioading, polymorphism. error handling, partial functoons, and multiple represeutation in an algebrar framework The main idea to soive tbese problems is the definitiou of a partial order on the set of sorts of a given specification. This is interpreted as subset inclusion tu the algebras that are inodels of this specification. More motivation and the history of OSA cau be found in [19. 16]. Here we directly introduce the basic concepts.

2.1 Signatures

Signatures indicate the sorts and operations in a specificatiou This notion is formalized in this section.

The notation of sorted (also called "indexed") sets greatly facilitates the technicaldevelopment of OSA. Given a "sort set" S, an S-sorted set A is just a family of sets A_{0} for each "sort" $s \in S$: we write $\left\{A_{s} \mid s \in S\right\}$. Similarly, given S-sorted sets A and B, an S-sorted function $f: A \rightarrow B$ is an S-sorted family $f=\left\{f,: A_{s} \rightarrow B, \mid s \in S\right\}$. For a fixed S, operations on S-sorted sets are defined component-wise. For example, given S-sorted sets A and $B, A \cup B$ is defined as $(A \cup B),=A, \boldsymbol{B}_{\text {, }}$, for each $s \in S$. We write $|A|$ for the distribnted union of all sets in A; that is, $|A|=\bigcup_{s \in S} A_{s}$. Also, $e \in A$ is an abbreviation for $\varepsilon \in|A|$.

In order-sorted algebra. S is a partially ordered set, or poset, i.e., there is a bnary relation \leq on S that is reflexive, transitive, and antisymmetric. We will often use the extension of the ordering on S to strings of equal length in S^{*} by $s_{1} \ldots s_{n} \leq s_{1}^{\prime} \ldots s_{n}^{\prime}$ iff $s_{i} \leq s_{1}^{\prime}$ for $1 \leq i \leq n$. Similarly, \leq extends to pairs $\langle w, s\rangle$ in $S^{*} \times S$ by $\langle w, s\rangle \leq\left\langle w^{\prime}, s^{\prime}\right\rangle$ iff $w \leq w^{\prime}$ and $s \leq s^{\prime}$.

Definition 2.1 A many-sorted signature is a pair (S, Σ), where S is called the sort set and Σ is an $S^{*} \times S$-sorted family $\left\{\Sigma_{w, s} \mid w \in S^{*}\right.$ and $\left.s \in S\right\}$. Elements of (the sets in, Σ are called operation (or function) symbols, or for short, operations. An order-sorted signature is a triple (S, \leq, Σ) snch that (S, Σ) is a many-sorted signature and (S, \leq) is a poset.

An order sorted signature is monotone iff the operations satisfy the following monotonicity condition,

$$
\sigma \in \Sigma_{w 1, s 1} \cap \Sigma_{w 2, s 2} \text { and } w 1 \leq w 2 \text { imply } s 1 \leq s 2 .
$$

When the sort set S is clear, we write Σ for (S, Σ), and when the poset (S, \leq) is dear, we write Σ for (S, \leq, Σ). When $\sigma \in \Sigma_{u, s}$ we say that σ has rank $\langle u, s\rangle$, arity w, and ivalne, resnlt, or coarity) sort s. A special case is $w=\lambda$, the empty string; then $\sigma \in \Sigma_{\lambda, s}$, a constant symbol of sort s. Notice that the monotonicity condition excludes overloaded constants, becanse $\lambda=u 1=w 2$ implies $s 1 \leq s 2$.

An important observation is that the theory of OSA can be developed without the monotonicity condition for signatures [I6]. In fact, it's necessary to avoid this condition in order to model FOOPS database states, as we will see later (see [16] for more motivation for not enforcing the monotonicity condition).

Given a signatnre (S, \leq, X), we say that X is a ground signature iff it is formed only by distinct constant symbols; that is, $X_{\lambda, s} \cap X_{\lambda, s^{\prime}}=\emptyset$ whenever $s \neq s^{\prime}$, and $X_{w, s}=\emptyset$ unless $w=\lambda$. For a siguature Σ, the notation $\Sigma(X)$ abbreviates $\Sigma \cup X$, if X is a gronnd signatne disjoint from Σ (i.e.. $X \cap \Sigma=\emptyset$). In this case, we may call X a Σ-variable family.

2.2 Algebras

We now turn to the models that provide actual functions to interpret the operation symbols in a signature.

Definition 2.2 Let (S, Σ) be a many-sorted signature. Then an (S, Σ)-algebra A is a family $\left\{A_{s} \mid s \in S\right\}$ of sets called the carriers of A, together with a function $A_{\sigma}: A_{\omega} \rightarrow A_{s}$ for each σ in $\Sigma_{w, s}$ where $A_{w}=A_{s 1} \times \cdots \times A_{s n}$ when $w=s 1 \ldots s n$ and where A_{u} is, one point set when $w=\lambda$. Let (S, \leq, Σ) be an order-sorted signature. An (S, \leq, Σ)-algebra is a many sorted (S, Σ)-algebra A such that $s \leq s^{\prime}$ implies $A, \subseteq A_{s^{\prime}}$. When the sort set S is clear. (S, Σ)-algebras may be called many-sorted Σ-algebras; similarly, when (S, \leq) is clear, (S, \leq, Σ)-algebras may be called order-sorted Σ-algebras.

We say that Ω is a signature of non-monotonicities for $\Sigma i f \Omega \subseteq \Sigma$. Then, an order sorted之-algebra A is monotone except on Ω, H
$\sigma \in \Sigma_{w 1, \Omega 1} \cap \Sigma_{w 2, s 2}$ and $w 1 \leq w 2$ and $s 1 \leq s 2 \mathrm{mply} A_{v} . A_{w 1} \rightarrow A_{s 1}$ equals $A_{\sigma}: A_{w / 2} \rightarrow A_{s 2}$ on $A_{w 1}$, unless $\sigma \in \Omega_{w 1, s 2}$

An order sorted Σ-algebra A is monotone iff it is monolone excepr on the empty signature.

Definition 2.3 Let (S, Σ) be a many-sorted signature, and let A and B be (S, Σ)-algebras Then an (S, Σ)-homomorphism $h: A-B$ is an S-sorted function $h=\left\{h_{s}: A_{s} \rightarrow B_{s} \mid s \in S\right\}$ satisfying the following homomorphism condition
(1) $h_{s}\left(A_{\sigma}^{u, s}(a)\right)=B_{\sigma}^{u, s}\left(h_{u}(a)\right)$ for cach $\sigma \in \Gamma_{u, s}$ and $a \in A_{u}$
where $h_{w}(a)=\left\langle h_{s 1}(a 1) \ldots . h_{s n}(a n)\right\rangle$ when $u=s 1 \ldots s n$ and $a=\langle a 1 \ldots, a n\rangle$ with ai $\in A_{s}$ for $i=1, \ldots, n$ when $w \neq \lambda$. If $w=\lambda$, condition (1) specializes to
$\left(1^{\prime}\right) h_{g}\left(A_{\sigma}^{\lambda \cdot \Delta}\right)=B_{\sigma}^{\lambda . s}$.
When the sort set S is clear, a ($S . \Sigma$)-homonorphism may be called a (many-sorted) Σ. homomorphisms

Let (S, \leq, Σ) be an order-sorted signature, and let A and B be order-sorted (S, \leq, Σ)-algebras. Then an (S, \leq, Σ)-homomorphism is any (S, Σ)-homomorphism. If A and B are monotone. a monotone (S, \leq, Σ)-homomorphism $h: A-B$ is an (S, Σ)-homomorphism satisfying the following restriction condition:

$$
\text { (2) } s \leq s^{\prime} \text { and } a \in A_{s} \text { imply } h_{s}(a)=h_{s^{\prime}}(a) \text {. }
$$

When the poset (S, \leq) is clear, $(S, \leq, S$-homomorphisms are also called (order-sorted) Σ homomorphisme.

2.3 Terms

The algebra whose carrier sets are formed by the terms we can construct from a given signature Σ is called the term algebra: it's denoted by \mathcal{T}_{Σ}. In this sectiou we describe an inductive construction defining the term algehra. For an order-sorted signature (S, \leq, Σ), the term algebra is the least family $\left\{T_{\Sigma, g} \mid: \in S\right\}$ of sets satisfying the following conditions:

- $\Sigma_{\lambda, s} \subseteq T_{\text {, }}$ for $s \in S$;
- $\mathcal{T}_{\Sigma, s^{\prime}} \subseteq T_{\Sigma, s}$ if $s^{\prime} \leq s$,
- if $\sigma \in \Sigma_{w, s}$ and if $t i \in \mathcal{T}_{\Sigma, s 1}$ where $w=s 1 \ldots s n \neq \lambda$, then (the string) $\sigma(t 1 \ldots t n) \in \mathcal{T}_{\Sigma, s}$.

Also,

- for $\sigma \in \Sigma_{w, s}$ let $\mathcal{T}_{\sigma}: \mathcal{T}_{u} \rightarrow \mathcal{T}$, send $t \ldots \ldots$ tn to (he string) $\sigma(t 1 \ldots t n)$.

Thus we can write $\sigma(t 1, \ldots, t n)$ for $\sigma(t 1 \ldots t n)$. It's now easy to check that \mathcal{T}_{Σ} is an order-sorted Σ-algebra.

The terms cousidered above are ground terms, in the sense that they involve novariables. In fast, terms with variables can be seen as a special case of ground terms, by enlarging the signature with new constants that correspond to variable symbols. Given an order-sorted signalure (S, \leq, Σ) and a Σ-variable family \boldsymbol{X}, we can obtain a new order-sorted signature ($S, \leq, \Sigma(X)$) and form $\mathcal{T}_{\Sigma(X)}$. This can be viewed as an order-sorted Σ-algebra, by forgetting the constants in X : let's denote this algebra $\mathcal{T}_{\Sigma}(\boldsymbol{X})$. This gives the algebra of Σ-terms with variables in X.

A terin may have many different sorts. In particular, if $t \in \mathcal{T}_{\Sigma}$ has sort s then it also has sort s^{\prime}. for any s^{\prime} such that $s \leq s^{\prime}$. A condition on signatures called regularity guarantes that every rerm has a well defined least sort [19]. Here is the formal definition:

Definition 2.4 An order sorted signature (S, \leq, Σ) is regular iff it is monotore, and given $\sigma \in \Sigma_{u 1,91}$ and $w 0 \leq w 1$. there is a least rank $\langle w, s\rangle$ such that $w 0 \leq w$ and $\sigma \in \Sigma_{u, 1,}$.

So, given a regular order-sorted signature (S, \leq, Σ) for any $t \in \mathcal{T}_{\Sigma}$ there is a least $s \in S$ such that $t \in T_{\Sigma, s}$ this is called the least sort of t and it's denoted by $L S(t)$.

In practice, regularity is not a strong restriction since non regular signatures can be translated iuto regular ones where the rank of an operatiou ts considered to be part of its nane.

Considering Σ-variable families X and Y, given an S-sorted map $a: X \rightarrow \mathcal{T}_{\Sigma(Y)}$, there is a unique Σ-homomorphism $\bar{\pi}: T_{\Sigma(X)}-T_{\Sigma(Y)}$ which substitutes a term $a(x)$ for each variable $x \in X$ into each term t in $\mathcal{T}_{\Sigma(X)}$, yieldiug a term $\bar{a}(t)$ in $\mathcal{T}_{\Sigma(Y)}$ (see [19]). Hence a is called a substitution and $\bar{\pi}(t)$ denotes the application of this substitution to a term t. lsually, we use the alternative notations

$$
t\left(x_{1}-t_{1}, x_{2} \leftarrow t_{2}, \ldots, x_{n} \leftarrow t_{n}\right) \text { and } a(t)
$$

instead of $\bar{a}(t)$, where $|\boldsymbol{X}|=\left\{x_{1}, \ldots, x_{n}\right\}$ and $a\left(x_{1}\right)=t_{i}$, for $i=1 \ldots, n$. Moreover, we omit the pair $x_{i} \leftrightarrow t_{i}$ whenever $t_{i}=x_{i}$.

The key for developing OSA without the monotonicity condition for signature, is to consider typed (parsed) terms; that is, terms together with their sort information. We introduce the term algebra P_{Σ} of fully parsed terms associated to Σ. We let P_{Σ} be the least S-sorted set such that $\sigma \in \Sigma_{w, s}$ and $t i \in P_{\Sigma, s 1}$, for $i=1, \ldots, n$, where $w=s 1 \ldots s n$, and $s \leq s^{\prime}$ imply $\sigma . w s(t 1, \ldots, t n) \in \mathcal{P}_{\Sigma, s^{\prime}}$. The definitions iutroduced so far and the ones to come car be extended in an obvious way for parsed terms, but for simplicity we ouly consider unparsed te:ms. Moreover, parsed terms have least sorts even if the related signature is non monotonic or not regular.

Now. giveu a regular signature Σ, we can define a parsing function $\rho_{\Sigma}: \mathcal{T}_{\Sigma} \rightarrow \mathcal{P}_{\Sigma}$ which transforms au untyped term t into a fully typed term t^{\prime} such that the sort of t^{\prime} is the least sort of t. When not confusing, we drop the subscript from ρ. Here is the formal definitict-

$$
\rho\left(\sigma\left(e_{1}, \ldots, e_{n}\right)\right)=\sigma . w u\left(\rho\left(\epsilon_{1}, \ldots, e_{n}\right)\right),
$$

where $\rho\left(e_{1}, \ldots, e_{n}\right)=\rho\left(e_{1}\right) \ldots \ldots \rho\left(e_{n}\right), u=L S\left(\sigma\left(e_{1}, \ldots, e_{n}\right)\right)$, and w is the least sequence of sorts of size n such that $\sigma \in \Sigma_{w, u}$ and $L S\left(e_{1}\right), \ldots, L S\left(e_{n}\right) \leq w$. It's easy to extend ρ to equations (see Section 2.4), set of equations and variable families. Here we omit the details. Also. for simplicity, we let unparsed terms be used in places where parsed terms are expected. i : the associated signature is regular. In those cases, we assume that an unparsed term t abbrevistes $\rho(t)$. In the same way, au uuparsed equation might be used when a parsed equation is expected.

2.4 Equations

In this section we give a formal definition for equations.
Definition 2.5 For a regular order-sorted signature (S, \leq, Σ). a Σ-equation is a triple $\left\langle X^{\prime}, t, t^{\prime}\right\rangle$ where X is a Σ-variahle family and t, t^{\prime} are in $\mathcal{T}_{\Sigma(X)}$ wilh $L S(t)$ and $L S\left(t^{\prime}\right)$ in the same connected component of $(S, \leq)^{1}$ We will use the notation $(\forall X) t=t^{t}$. When the variable set X can be dednced from the context (for example, if X contains just the variables that occur in t and t^{\prime}. with sorts that are uniquely determined or have been previously declared) we allow it to be omitted 2; that is, we allow unquantified notation for equations. We also say thal an equalion is unquantified if $X=0$.

Order-sorted conditional equations generalize order-sorted equations in the usual way, i.e., ithey are expressions of the form ($\forall \mathrm{Yj}) t=t^{\prime}$ if C. where the condition C is a finite set of unquantified Σ-equations involving only wariables in X (when $C=\mathfrak{O}$, conditional vequations ar" regariled as ordinary Σ-equations)

For conciseness. sometimes we use variations on the notation for equations: (X.l.r.C) stands for $(\forall X) l=r$ if $C ;(l, r, C)$ is used when $X=\emptyset$: and we write $l=r$ if $X=C=\emptyset$.

2.5 Order-sorted Equational Deduction

This section gises rules of deduction for OSA with conditional equations. This yields a construction for initial and free order-sorted algebras as quotients of term algebras by the congruence generated by the rules of deduction from given equations. The details can be found in [19]: here we just introduce the rules of deduction.

Given an order-sorted signature ($S . \leq, \Sigma$) and a set Γ of couditional Σ-equations. we consider pacit unconditional equation in f to be derivable. The following rules allow deriving further (unconditional) equations:
(1) Refertvity. Each equation of the form

$$
(\forall X) t=t
$$

is derivable.
(2) Symatrg. If

$$
(\forall X) t=t^{\prime}
$$

is derivable, then so is

$$
(\forall X) t^{\prime}=t
$$

(3) Transitauty. If the equations

$$
(\forall X) t=t^{\prime} \cdot(\forall X) t^{\prime}=t^{\prime \prime}
$$

are derivable, then so is $(\forall \mathrm{K}) t=t^{\prime \prime}$.
(4) Congrutnce. If $\theta, \theta^{\prime}: X-T_{\Sigma}(Y)$ are substitutions such that for each $x \in X$, the equation

[^1]$$
(\forall Y) \theta(x)=\theta^{\prime}(x)
$$
is derivable, theu given $t \in \mathcal{T}_{\Sigma}(X)$. the equation
$$
(\forall Y) \theta(t)=\theta^{\prime}(t)
$$
is also derivable.
(5) Substatutivity. If
$(\forall X) t=t^{\prime}$ if C
is in Γ, and if $\theta: X \rightarrow \mathcal{T}_{\Sigma}(Y)$ is a substitutiou such that for each $u=v$ in C, the equation
$$
(\forall Y) \theta(u)=\theta(v)
$$
is derivable, then so is
$$
\left(\forall Y^{\prime}\right) \theta(t)=\theta\left(t^{\prime}\right)
$$

Although these rules are rather compactly formulated, they correspond exactly to intuitions that we feel should be expected for equational deduction. Of course, there are nany possible variations on this rule set; for example. see [41].

Given a set of equations Γ. there is a congruence $=\Gamma$ relating two terms iff we can prove that they are equal from the equations in Γ and applications of the rules above. Furhermore, this congruence splits the term algebra juto equivalence classes of terms modulo Γ. Hence, given a term $t,[t]_{\Gamma}$ deuotes its equivalence class under Γ, and $\llbracket t \rrbracket \Gamma$ denotes the representative of this class (this can always be freely chosen without problems [20], so we do not give any mor details of its definition).

Lasily, note that the concepts introduced here can be easily extended to considerparsed terms.

2.6 Theory Presentations

Specifications are modelled by the concept of theory presentation.
Definition 2.6 An order-sorted theory presentation (hereafter, presentation is an ordered 4-tuple. $(S, \leq, \Sigma, \Gamma)$. where (S, \leq, Σ) is an order-sorted signature and Γ is a set of Σ-equations.

For a presentation $P=(S, \leq, \leq, \Gamma)$, we let $t=P t^{\prime}$. $[t]_{P}$. and $\left.\llbracket t\right]_{P}$ respectively mean $t=\Gamma t^{\prime},[t]_{\Gamma}$, and $\left[[t]_{\Gamma}\right.$. Also, given a signature $\left(S, \leq, \Sigma^{\prime}\right)$, we use $P \cup \Sigma^{\prime}$ for the presentation $\left(S, \leq, \Sigma \cup \Sigma^{\prime}, \Gamma\right)$.

Now, we exteud the definition of presentation to allow non-monotonic operatiens.
Definition 2.7 An order-sorted presentation with a signature of mom-monotonicities is an ordered 5 -tuple, ($S, \leq, \Sigma \Omega, \Gamma$), where (S, \leq, Σ) is an order-sorted signature, Γ is a set of parsed Σ-equations, and Ω is a siguature of non-monotomeitses such that $\Omega-\Omega$ is monotone.

For reasoning aboul this kind of preseutation. we assume default equations relating monotonic operations having the same name and related ranks. This is necessary because parsed equations are used (the related operations don't uecessarily agree on the intersection of thelr arities). The default equations are in the form: $\sigma . w s(\bar{x})=\sigma . w^{\prime} s^{\prime}(\bar{x})$, for any $\sigma \in \Sigma_{w, s} \cap \Sigma_{w^{\prime}, s^{\prime}}$ such that $w \leq w^{\prime}$ and $\sigma \notin \Omega_{w, s}$. where \boldsymbol{X} is a Σ-variable family, $x_{i} \in \boldsymbol{X}$. for $i=1 \ldots k, \bar{x}$ stands for r_{1}, \ldots, x_{k}, and $u=L S\left(x_{1}\right) \ldots, L S\left(x_{k}\right)$. We let Γ^{*} be the union of Γ with default equations.

Hence, for a presentation $P=(S, \leq, \Sigma, \Omega, \Gamma)$, we let $t=p t^{\prime},[t]_{p}$. and $\llbracket t \rrbracket_{P}$ respectively mean $t=\Gamma^{*} t^{\prime},[t]_{\Gamma *}$. and $[t] \Gamma_{\Gamma^{*}}$. Lastly, given a signature $\left(S, \leq \Sigma^{\prime}\right)$, we use $P \cup \Sigma^{\prime}$ for the presentation $\left(S, \leq, \Sigma \cup \Sigma^{\prime}, \Omega, \Gamma\right)$.

3 Overview of FOOPS

FOOPS extends OBJ with some concepts from object-oriented programming. This motivates two central design decisions (see [22, 18, 40, 42] for more details about FOOPS design): data elements are not objecti, and classes are not modnles.

The first distinctiou is based on the fact that data elements (e.g... natural numbers) are stateless, but objects (e.g., buffers) have an internal stave that can change witb time. In this way, FOOPS provides different constructs for defining abstract data types and classes of abjects. Consequently, there are two constructs for specifying inheritance. In fact, overloading, polymorphism, and inheritauce are also available for the specification of ADTs, by the definition of subsorts (snbtypes).

The second design decisiou recognizes tbe necessity to have a construction where related classes and abstract data types can be defined lagether. In FOOPS, this is provided by modules, which are the main programmong nost of the langnage. This is one of the main aspects of FOOPS (also derived from $O B J$); it includes a powerful module interconnection lauguage, supporting parameterized modnles with semantic interface requirements, which allows the programming style known as "Parameterized Programining" [10].

Further justification for both decisions is given in [22], where this approach is compared with others.

This clear distinction between data elements and objects divides the langnage in two parts: the functional level and the object level. In each level, there are two kinds of modules: one of them is nsed to define executable code, and is simply called modult: the other one, called theory, is nsed to specify properties ahout the operations of an abstract data type or a class. Essentially, programs are written in modules and specifications are written in theories. Furthermore, theories are also used to specify the syntactic and semantic restrictions that must be satisfied by the actual arguments of a parameterized modnle. In order to specify how a theory is interpreted (satisfied) by another theory or module-necessary, for example, when instantiating a parameterized modulethe language provides views, which are bindings indicating how the classes, sorts, and operations symbols of a theory are interpreted in another theory or module.

The acronym FOOPS stands for Functional and Object-oriented Programming System, but We usually use it for the language provided by the system. FOOPS was first presented in [18]. but [40.42] describes the language in detail. including some ideas about different approaches for its Sormal semantics (reflective semantics based on order-sorted algebra [18. 19]. hidden order-sorted algebra [11, 17], and sheaf theory [44, 14]).

Here we briefly describe the functional level of FOOPS and some of its parametcrized programming fealires. Following this. we give a detailed description of the object level and intuitions about its operational semantics.

3.1 Functional Level

The functional level of FOOPS is a syntactical variaut of OBJ. At this level it is possible to defiue abstract data types, which are sets of data elements together with associated operations. A FOOPS functional module defines one or more abstract data types. where the keywords sort and In respectively introduce the name of the set of data elpments, abd the associated operations (functions) symbols.

A very simple functional theory is
fth TRIY is

```
    sort Elt.
endfth
```

lt introdnces the sort Elt, but it has no coustraints about the operations associated to it. Hence, the only requirement that actual arguments to a module parameterized by TRIV must satisfy is to have a defined sort.

As an example of a parameterized functional level module, we consider LIST, defining lists of elements of a given sort:

```
fmod LIST[E :: TRIV] is
    pr Nat.
```

This module is parameterized by the sort of the elements in a list (parameter E). Iu order to define an operation giving the nnmber of elements in a list, we use a built-in module defining natural numbers: the keyword pr indicales that the module NAT is imported and we don't add or identify data elements of the sorts defined in the module.

The following declaration introduces a sort for nonempty lists and another for lists,

```
sorts MeList List .
subsorte Elt < NeList < List .
```

where elements are considered singleton (nonempty) lists and nonempty lists are, of course, lists, as indicated by the subsort relationship (<). This is what specifies inheritance at the functional level: for example, as all elements of Elt are elements of List, all functions associated to List can also be nsed for the elements of Elt.

The empty list is represented by the constant nil, aud .. - denotes the function that concatenates two lists.

```
In nil : -> List.
fn _._ : List List -> List [assoc id: nil].
fn _. - : NeList List -> NeList .
fn _._ : NeList NeList -> MeList
```

The underscores in ..- serve as placeholders for the arguments of this functiou. Hence,

```
nil . nil
```

is a well formed term; that is, the application of _. , tonil and nil. Note that _.- is overloaded, aud concatenatiou of nonempty lists results in a nonempty list. As indicated by the attributes, thes fuction is associative (assoc) and has nil as identity (id: nil).

Some other functions are head, which gives the first element of a non empty lis \mid tail, which maps a nou empty list to one obtained by removing its first element; and \#, which gives the number of elemeuts in a list. These are introdnced by the following declarations:

```
fn head : MeList -> Elt .
fn tail : MeList -> List.
fn *. : List -> Nat.
```

The functionshead and tail are only defined for nonempty lists．This gives the effect of partial functions，by defining them as total ou specific subsorts restricting their clomain．

The meaniug of those functions is given by axioms（equarions）．In a module defining code， equations are interpreted as left－to－right rewrite rules．For the example being discussed，the following equations are necessary：

```
    var E : Elt.
    var L : List.
    ax head(E.L) = E .
    ax tail(E , L) = L .
    ax # ail = 0.
    ax # (L.E)=*L+1.
endimod
```

The keywordear introduces varlables of a given sort，whereas ax precedes an axiom，aud ondfmod iudicates the end of a fnnctional inodule．

Instead of writing the first axiom for＊－，we could have written the equivalent couditional axiom（cx iudicates that the axtom is couditional）：

```
cx # L=0 if L == mil.
```

where the condition for which the axiom is valicl（or may be applied）follows it．Note that every modnle in FOOPS automatically imports a builtin inodule of booleans containing the usisal operations，and the overloaded equality（ $==-$ ）and iuequality operations（ $=/==_{-}$）．

3．1．1 Retracts

An interesting point of FOOPS is how expressions（terms）such as head（tall（1）），for a given lerm 1 of sorl leList（written l：MeList），are parsed．In fact，tail（1）：List，but head requires an argument of sort ⿴囗十⺝丶ist．Thus，we should conclude that head（tail（1））is not a well formed expression．However，as tail（1）may be equal to an element of HsList（when has more than one element）．FOOPS is flexible enough to allow us write this hind of expression which is actually parsed as

```
head(r:List>MeLiat(tail(1)))
```

wherer：List＞ReList is a special finction，called retract，which lower the sort of an expression of List to the required subsort BeList．It is defined hy

```
In r:List>HeList : List -> HeList.
var IL : HeList.
ax r:List>|eList(HL) = HL .
```

In this way，an expression formed by the application of a retract is only reduced if the argumeut of the retract has the required subsort．Otherwise，the retract remains as an error message， indicating that the expression is not well parsed．In FOOPS，relracts are automatically defined between related sorts，aud inserted in expressions whenever necessary．In a similar way，relracts are also available at the object level．

3.2 Object Level

At tbe object level, it is possible to define classes, which are collections of (potential) objects with same attributes and methods. Attributes correspond to properties of objects, they represent the internal state of objects. Methods are operations that objects can perform; they modify the state of objects. In addition to modifying states, methods may also yield results.

Attributes are atomically evaluated. Methods may be atomically evaluated or not: invocation of methods is synchronous and can be understood as remote procedure calls. An object can be evaluating many non atomic methods at the same time, including different instances of the same method. Naturally, there are operators for controlling the interference of methods executing in parallel.

FOOPS has a general computational model where objects are naturally distributed and (internally) "truly concurrent" Objects are dynamically created and deleted, and there are special operations for performing these actions. Furthermore, each object has an unique identifier, which is used by other objects for access. In this way, methods and attributes have at least one object identifier as argument. indicating which method is going to execute the corresponding operation.

An object level module defines one or more classes and related abstract data types. In addition to that, abstract data types defined in functional modules can be imported by object modules. This is how the two levels are integrated. Let's consider an object module BUFFER defining a class of bounded buffers. Tbis module is parameterized by the capacity of buffers (a positive natnral number), specified by the functional requirements theory max:

```
fth mAX is
    pr #AT.
    fn max: -> NzNat.
endfth
```

 module BUFFER is also parameterized by the sort of the elements to be stored in buffers:

```
omod BUFFER[E :: TRIV, M :: MAX] is
    pr LIST[E] .
```

Here the elements of a bnffer are stored in a list; so. it is necessary to import the functional module LIST, instantiating it with the argument module giving the sort of elements. In this instantiation, no view is specified since there is a trivial interpretation-the identity-from the theory constraining the arguments of LIST (i.e.. TRIV) to the theory constraining E.

The class Buffer of bounded buffers is introduced by the declaration

```
class Buffer.
```

Inheritance could also be defined at the object level. by a subclass declaration (similar to subsort). This implies that any attribnte or method associated to a class is also available to its subclasses, since objects of a subclass are also objects of an associated superclass.

Attributes are defined as operations from an object identifier to a value that denotes a current property of the related objecl. Multi-argument attributes have other arguments in addition to an identifier; this means that this attribute's associated property depends on the extra arguments. Objects of Buffer have the attribute elems, corresponding to the list of elements in a buffer.

```
at elong_ : Buffer -> List [hidden].
```

As indicated by the declaration [hidden], the attribute elems is only visible inside BUFFER; so, clients of the objects of Buffer cannot directly look at the elements stored in buffers. Alternatively, we could have added the declaration:

```
hidden eloms_ : Buffer -> Ligt.
```

In addition to elems, two more attributes are associated to Buffer:

```
at empty?_ : Buffer -> Bool.
at full?_ : Buffer -> Bool .
```

Tbe altribute ompty? indicates whether the buffer is empty, wherpas $\mathbf{f u l l}$? indicates whether the bnffer contains the maximum number of elements.

Like attributes, methods are defined as operations having an object of its claso as parameter. They might also have some extra parameters. Methods culher evaluate to a special result or to the identifier of the object that performs it. For objects of Buffer, the available methods are the following: reset, which removes all elements from a bnffer; get, which removes the first element of a non empty buffer and gives it as result; pue, which inserts an element at the end of a buffer. if it is not full; and del, which removes the first element of a non empty buffer. The following declaratious introduce those methods:

```
me reset : Buffer -> Buffer.
me get: Buffer -> Elt.
me Put : Buffer Ele -> Buffer .
me del : Buffer -> Buffer [hidden]
```

The last one ss hidden becanse we do not allow clients to remove an element from a bnffer unless it is going to be nsed, what can be done with get.

3.2.1 Axioms

Attributes can be classified as stored or dermed. The value of a stored attribute is kept as part of the local state of an object. On the other hand, the value of a derived attribute is not stored by an object. but can be computed from the valnes of other attributes. Hence, one must specify how this is done; in FOOPS, we nse equations for that. If no equation is given for an attribute, it is considered a stored attribute.

For Buffor, we define elems as a stored attribute. The others are derived; so, we introduce the following equations:

```
var B: Buffer.
var E: Elt.
ax empty? B = (elems B) == nil.
ax fall? B = #(elemg B) == max.
```

Tbis indicates that the buffer is empty if the list of the elements stored in it is empty; also, the buffer is fullif the size of its associated list is max.

Equations defining attributes can only contain fractions. attribntes, and object identifiers. This kind of equation is interpreted as left-to-right rewrite rules. bal. attributes are atomically evaluated. Without interfereuce from the execution (evaluation) of methods.

The behavior of methods can be specified by two different kinds of axioms. A direct method axiom (DMA) specifies how a stored attribute is updated by a given method. In fact, a DMA is an equation such that its left band side (LHS) indicates its associated attribnte and method, whereas its right hand side (RHS) is an expression specifying the new value for the attribute to be npdated. For instance, the behavior of reset is given by tbe DMA

```
ax eloms(reset(B)) = mil.
```

which specifies that after the execution of reset by an object B, the value of elems, for B, is nil.
Further examples of DMAs are

```
cx elems(put(B,E)) = (eleme B).E if not(full? B).
cx elems(del(B)) = tail(elems B) if got(empty? B).
```

where the metbods are only executed if the (enabling) conditions are satisfied; oherwise, the evaluation is suspended. The new value for the specified attribute is computed in terms of the method arguments and the current attribute values. If there is no axiom specifying the new value for a stored attribute after the execution of a given method, this method doesn't update that attribute. This is called the frame assumption; it avoids writing equations indicating that some attributes are not updated.

The evaluation of methods specified by DMAs is atomic and yields the identifier of the object which executes the method; only this objects is modified, and its attributes are updated as specified. As for attribute equations, the axiom's RHS and condition must be formed by functions, attributes, and object identifiers.

Alternatively to DMAs, indirect method axioms (IMAs) may be used for defining metbods. IMAs are equations that specify how a metbod is defined in terms of other operations; this is indicated by a method expression, i.e., an expression formed by methods, attributes, functions, object identifiers, and method combiners (operators on method expressions). For example, the method get is specified by the IMA

```
acz get(B) = result head(elema B) ; del(B) if pot(empty? B).
```

where result_; is a metbod combiner which evaluates its first argument (from left to right) and then evaluates the second one, yielding the value resulting from the evaluation of the first argument.

Similarly to DMAs, no method symbol or method combiner is allowed in an IMA's condition. IMAs are interpreted as left-to-right rewrite rules. Whereas the evaluation of the IMA's con dition is atomic, the evaluation of the IMA's RHS is not atomic and may be interfered by the execution of other metliods. However, alomicity can be achieved by using the atomic evaluation operator [_], which atomically executes its argument, without interference from the execution of other methods. We assume that IMAs introduced by the keyword acx (or aax) have their condition and RHS atomically evaluated. In fact, an IMA in the form

```
aax m(0) = e.
```

form : $\mathrm{C} \rightarrow \mathrm{C}^{\prime}$, is an abbreviation for

```
ax m(0) = [e].
```

and an IMA like

```
acx m(0) = if c.
```

stands for the following dectarations:

```
mg m': C -> C'
ax m'(a) = if c.
ax m(0) = [m'(0)].
```

where m ' is a new symbol. This is necessary if an expression has to be evaluated without interference from others. Sometimes, non atomic methods are useful. mosiuly when efficiency is essential; bnt they sbouldn't be arbitrarily nsed becanse it's very difficult to reason about programs consisting of the parallel execution of many non atomic niethods (it's necessary to reason about all possible interleaved mterferences caused by those methods).

Lastly, we introduce a (weak) class invariant to Buffer; that is, a condition that must be satisfied for all objects of the class. independently of therr state. In order to express that all bounded baffers can have at most max elements, wr introduce the declaration

```
    inv #(blems B) <= max .
endomod
```

In fact, this kind of invariant is also considered valin if all attributes used in the predicate are not defined. For example, immediately after an object of Buffer is created, elems has no associated value (the built-in object creation operation doesn't initialize attributes, see Section 3.2.3); even so, we consider that the invariant is valid in this initial state

After creating a buffer, the only possible operation is reset because elems is not defined; the method reser clearly enforses the invariant, sirice \# nil is 0 . W's also easy to check that the other operations related to Buffer preserve this invariant

A stronger kind of invariant requires all attribntes used in the predicate to be defined. (This can be introdiced by the keyword str-inv, instead of inv.) For example, the predicate

* (elems B) <= max
isn't a strong invariant for Buffer, since the object creation operation doesn't respect it. In this case, we would have to hide this creation operation and introduce a customized opetation that enforces that invariant. Note that in order to check whether a strong invariant is preserved for an object o, we shonld consider the effect cansed by the deletion of other objects in the system, since some altribntes of o might be undefined after that.

Constraints like class invariants are jnst annotations. they have no effect for the semantics of a FOOPS module. In fact, ilrey just document properties of a given specification. They can be seen as proof obligations which, if discharged. might help a lot to reason abont specifications.

3.2.2 Method Combiners

In addition to result_; and [_]. FOOPS provides other method combiners: sequential composition, _; (interleaving) parallel composition, _ll_; (external) nondeterministic choice, ,[]_; background evalnation, z_{-}and conditional. if_then_else_fi.

The semantics of these combiners is given later. Here we informally describe some of them: we suppose the reader has a general intuition about the others, since they are usually available in other programming languages.

Result

The resnlt method combiner (rosult t_{-}) fully evaluates its first argument (from left to right) and then evaluates the second. When hoth arguments are fully evaluated, the first one is given as resnit.

This operator is mainly useful when an expression should yield a specific value, but this value bas to be evaluated before other operations are executed. For example, consider the method get, defined in Section 3.2.1. Its behaviour could not be easily expressed without result in

Indeed, result_; can be used to simulate some of the behaviour provided hy the return statement in languages such as C and $\mathrm{C}++$, and special conventions for variables names in Pascal and Eiffel for indicaling the value to be returned by a function For mstance, the $\mathrm{C}++$ code roriesponding to the "F OOPS like" method definition

```
m(0) = e ; X := I ; g ; return X.
```

and the Eiffel code corresponding to

```
m(0) = e ; Result := f ; g.
```

could be represented in FOOPS by

```
m(0) = 0; result I ; g.
```

where e, t and g are method expressions.

Method Combiner Definition

New metbod combiners may be introduced as abbreviations for complex method expressions. This can be done by equations. For example, the internal nondeterministic chcice operator Dr_ is defined in terms of external choice by the axiom

```
ax P Or Q = (skip ; P) [] (skip ; Q).
```

where P and Q are variables, and $s k i p$ is any functional constant. In this axiom, the arguments n []_ may be immediately evaluated; so, the external choice will be nondeterministic. As desired this implies that the internal choice doesn't depeud whether its arguments are ready for evaluation or not.

Evaluation in the Background

Here we introduce a method combiner that resembles the UNIX operator \& for evaluation of a program in the background. This means that the operator starts the evaluation of an expression but doesn't wait until it terminates. Instead, expressions following this operator are evaluated concurrently to the expression in the background. Also, the result generated by the expression in the backgronad is discarded; this expression is only executed for ite side-effects.

The FOOPS metbod combiner - k - starts the evaluation of its second argument (from left to right) in the background, and then yields its first argument. In fact, the UNIX unary postfix operator -k may be defined by

```
ax P&=skip& P.
```

In FOOPS, $\mathrm{P}:$ is a method expression (not a command or program, in UNIX terminology [5]), so it must yield a value; that's the role of the dummy constant skip in the axiom above.

The main application of tbis operator is to start the execution of non terminating methods. For example, if m is non terminating, invoking m like in $m(0) ; n(0)$ is not very useful because $n(0)$ will never be evaluated. Instead, we can use $m(0) \geq n(0)$. In this way, the evaluation of $m(0)$ starts and $n(0)$ is concnirently evaluated.

3.2.3 Object Creation and Deletion

Dynamic object creation and deleton are respectively provided in FOOPS by the following operators:

- nev.c() : -> C.
- nev : 6 \rightarrow C. and
- remove : C -> C.
for each class C.
For a given class C, the operator nes. C() creates an object of C whih a nondeterministically choosen identfier that is not already being used for another object This identifier is given as the result of the evaluation of the operator.

The operator nex creates an object of the same class as the object identifiergiven as argnment, If this identifier is not associated to another object (otherwise, the operation cannot be executed). This identifiet is used for the created object and yielded by the operator.

The operator remove receives an object identifier as argument, removes its associated object from the database state, and yields this identifier. If this identifier doesn th correspond to an object int the state, the operation is not evaluated. Contrasting to new, the argument of remove might be an arbitrary expression, it doesn't have to be an ohject identifier; however, it's supposed to y ield an identifier.

The operators for object creation don't assign intial values for atributes Hence attributes should be explicilly sel by special methods, since a non inilialized attribute cannot he evaluated. Automatic intialization is not provided here because it can be eassly sinmulated by the operators introdnced above together with method combiners and methods for setting altributes. For example, suppose that a class C has two stored attrihutes a and a ', and nethods set-a and set-a' for assigning values to those attributes. A creation operation for C that also initializes those attribntes is given by the method combiner create, defined by

```
ax create(0) = [nev(0) ; set-a(0,v) ; set-a'(0,\mp@subsup{v}{}{\prime})] .
```

where 0 is a variable of class C, and \mathbf{v} and \mathbf{v}, are chosen initialization values for the respective attributes. The atomic evaluation operator guaratees that the created object can only be accessed after its attributes are initialized. Similarly to nem, the operator create is not executed by an object; in fact, it should be executed even if its argument is an object identifier that is not in the state. So, it is modelled as a method combiner Also, in order to belave properly. create should only be invoked with an object identufier as argument.

Contrasting to the simplicity of the approach used above, it might be problematic to initialize objects of recursive classes, multi-argnment attributes, and to find default values for attributes
in general. In fact, it might be the case that some attributes cannot be automatically initialized. 'That's another reason for not trying to automatically initialize attributes.

We can also easily simulate creation operations having attribute initialization values as arguments. For instance, the method combiner

```
mc create(_,a = _,a' = _) : C 5 S' -> C .
```

can be ured to create objects of class C, assigning the values received as arguments to the attributes a and a' (respectively assumed to be of types S and S^{\prime}) This is formalized by the following axiom.

```
ax create(0,a = V,a'= '') =
    [neg(0) ; set-a(0,V) ; set-a'(0,V')] .
```

where O:C, V:S, and V': 5'.

Auto-methods

Auto-methods are automalically invoked in the backgronnd when objects of their corresponding classes are created. They may be used to define imtialization operations for objects, but their main application is the specificetion of autonomons (active) objects: that is, objects that automaticalty perform some operations, inslead of waiting for requests from other objects. In fact, autonomous objects can simulate (non terminating) processes in an object-oripnted framework.

Here auto-methods can be modeled by standard methods ant the operator for background evaluation. For this, we have to provide a customized operation for creation of objects; based on i.he pre-defined operation nev. Basically, this customized operatiou should invokeney with the related auto-methods as expressions to be evaluated in the background.

For example, suppose that we want to define m, associated to class C, as an automethod. The customized creation operation could be defined by

```
ax create(0) = meg(0)&m(0).
```

where 0 is a variable of class C. This operation creates all object of C with the ideutifier given as argument and then invokes m. This method may be an initializatiou operation or a uon terminating method like

```
ax m(0) = n(0) ; m(0).
```

In this case, the object belaaves as a process which is always executing n.
Clearly, this corresponds to the intuitions about auto-methods discussed above.

3.2.4 Other Aspects

Here we briefly describe some other aspects of FOOPS which are formally specified in other sections of this text. Details about these aspects cau be found in [40].

First, FOOPS uses the convention that method and attribute applications are evaluated bottom-np. This means that a method or atribuce can only be executed if its arguments are fully evaluated, i.e.. the arguments cannot contain any attribute, method, retract, or method combiner symbol. They must be real values: evaluated functional terms or object identifiers. Otber evaluation strategies are not appropriate because symbolic method or attribute execution does not make sense for objects: a method or attribute can only be executed when it has real
arguments. However, the order in which the argnments of a method or attribute are evaluated is not fixed. Observe that this is a source of nondeterminism, since tbe arguments may be evaluated in different contexts.

An usefuland flexible way of inheriting properties of a superclass is by redefining some of its methods and attributes. In FOOPS, this is indicated by writing [redef] after the declaration of tbe new operation symbol and rank (i.e., arguments and result type). As FOOPS provides dyuamic binding, objects of the subclass use the new version of the operation, unless explicitly stated that theoriginal version is desired; this can be done using the qualified notation op. c, where op is the operation name and C is the name of the superclass having the original version, FOOPS adopts the variant syatactic rule for redefinitions; this means that the arity of the specialized version must be sualler or equal to the arity of the original version, and the resnlt of the first tumst be greater or eqnal to the result of the second (see [42] for details) A specialized version of a redefintion of an operalion is considered to be a redefintion as well.

Lastly, objects may be introdnced together with the definition of their associaled class, where values for their stored allribntes are specified. These are called specified objects and are particnlarly useful when defining classes of recursive data strnctnres such as stacks and linked !ists. Specified objects have the same status as objects created at rnntime; this means that they can be modified and removed.

3.2.5 Protected Objects

In FOOPS, we can create objects that are protected from some other objects, in the sense that a protected object only executes methods directly invoked by a specific and selected group of objects. Roughly, this corresponds to the bebaviour provided by inding and abstraction mechanisms ill process algehras. Where a process might not be allowed to access some protected channels.

Object protection facilitates programming and reasoning with references (like object identificrs, and pointers in procedural languages) by reducing possible interferences to objects; this is done by restricting the objects that are allowed to request the execution of methods of a protected object. Also. by having arbitrary interference usually one canuot provide full encapsulation of complex objects nor the desired system behaviour; so, the system specification should include explicit. artificial code for avoiding nodesirable interferences. However. it seems more appropriate lo directly support a mechanism for object protection.

For instance, object protection is quite nseful for defining linked lists of cells representing a sequeuce, betanse the intermediate cells in the list shonld only be accessed by their respective previous cell [26]. In fact, only the first cell in the list should acrept. arbitrary interference. The intermediate cells shonld be protected. Another example is a sinple communication protocol, consisting of two agents and a channel used for communication between them. In this case, the channel should only be accessed by the two agents; it should he protected from other objects, whicb could disrupt the communication The channels are truly encapsulated only if they are protected; only in this case the protocol can be seen as a "black box" and then reused without restrictions about tbe enviroument where it's going to be used.

In particular, one application of object protection is the definition of constant objects; that is, objects that always in the same state. This can be obtaned by creating an object that is protected from any other object. In this way. constant objects cannot be removed as well. This might be useful for the definition of recursive data structures like linked lists and stacks, where a constant object representing the enupty list or stack is nsually necessary.

In order to use the mechanism for object protection, we should indicate which objects are allowed to directly request the execution of methods associated to a protected object. This is done at object creation time, by giving a set of object identifiers as argnment to nov The empty set means that the created object cannot exccute any method. Alternatively, any may be given as argument, meaning that any object can directly invoke methods of the created object.

Specified objects have a default object protection statns that cannot change: no object can invoke metbods of a specified object. Iu fact, specified objects are constant objects.

For supporting object protection, tbere are special object creation operations:

- new. C : Univ $\rightarrow C$, and
- new : C Univ -> C,
for a class C, where Unıv is the type associated to the sete of object identifiers given asargument to the creation operations. In fact, the operators for object creation introduced in Section 3.2.3 can be seen as abbreviations for the operators introdnced in this section. Indeed, new.C() corresponds to $n e y . c(a n y)$, and $n e y(0)$ is the equivalent of nen($0, a_{n y}$).

For indicating the desired protection, the following syntactic constructors are available: _++_, \{\}, and any, where the first one may be used for adding an element to a set., and the second one denotes the empty set. For example, the expression $0++0^{\prime}++\{ \}$ denotes the set formed by the identifiers O and 0^{\prime}.

New objecto may be dynamically added to the group of objects that is allowed to invoke methods of a protected object, if the object that requests this operation is part of this gronp. For doiug that, there is a special operation: addpr : C Univ \rightarrow C, for any class C. which adds the objects specified by its second (from left to right) argnment to the collection of objects that can invoke methods of the object identified by its first argument. The second argument to the operatiou above should be constructed with the syntax constrnctors nsed for indicating the desired object protection for the creation operation.

A special case of the mechanism for object protection introduced here is provided by languages supporting composite objcets (i.e., objects that incorporate others objects. instead othaving refereuces to them). Composite object.s can be modelled in FOOPS by indicating that the incorparated objects can only be accessed by the object that iucorporates them. Also, the notation introdnced in [26] snpports private refereuces. which can be nsed by only one object, giving a similar effect to composite objects. (In particular. [26] emphasizes the essential role played by private references for assertiug invariants about object graphs and reasoning abont them.) Our mechanism for object protection is clearly more general than the mechanism for private references.

3.2.6 Aspects of FOOPS Operational Semautics

Here we informally describe some aspects about. FOOPS operational semantics. Operationally, a system implemented in FOOPS consists of a database containing information aboul the current objects in the system. This information can be retrieved by the evalnatiou of attribntes, and modified by the execution of methods or by the deletion and creation of objects. Modifying this information changes the database state.

Motivated by [18], here we represent a state of the FOOPS database, for a specification $S p$, by an order-sorted presentation (with a signature of non-monotonicities) formed by the following components: the definition of the ahstract data types of S_{p}; functions and sorts corresponding to
attributes and classes defined in $S p$; constants of the sorts representing classes, denoting objects; axioms of $S p$ specifying the meaning of derived attributes; and equations extablishing the values of stored attributes for objects in the database. Also, the subsort relationships in these theories reflect the subclass and subsort relationships in $S p$. Using this abstract representation for states. typical operations on states are defined in a natural and simple way.

In order tollustrate the contents of a presentation representing a database state, let's considez the specification defined by the module BUFFER[HAT,SIX], where SIX is a functional module defining a constant max equal to 6. For this specification, part of a possible database state looks like

```
1th STATE1 in
    ex LIST[MAT]
    sort Buffer.
    In elems_ : Buffer ->> List.
    fn empt;?_ : Burfer -> Bool
    \vdots
    var B : Buffer .
    ax empty? B = (elems B) == nil.
\vdots
```

where we represent a presentation with a signature of mon-monotonicites with the same syntax of a FOOPS module (assuming that non-monotonic operations are indicated by the tag [redef], and unparsedequations are used when there is no ambiguity). This state contains the functional part of the specification (i.e., LIST[FAT]), a sort correspoading lo the class Buffer. functions representing atiributes, and their associated axioms.

In addition to that, the following declarations indicate that the class Buffer has three objects in this state (identified hy b1, b2, and b3):

```
    fns b1 b2 b3 : -> Buffer.
    ax eleas bi = nil.
    ax elens b2 = (1 . 2).
endfth
```

where the equations specify values for their stored altributes. Note that b3 hasn't been initialized.
Using this representation, typical operations on states cau be easily defined. For instauce, given a database state, attrihutes are evaluated by reducing the corresponding expression in the module representing the database For example, considering STATE1, the evaluation of

```
elems(b2) and empty?(b1),
```

respectively results in 1,2 and true, this cau be deduced by equatronal reasoning. From the equations in Stater.

Method execution changes the state of the database. For pxample. executing put (b1,5) in STATE1 changes the database to the state represeuted hy a presentation in the form

```
thh STATE2 is
    \vdots
    am elems b1 = 5.
```

```
    ax elems b2 = (1 . 2).
endfth
```

containing the same information as STATE1，except that the equation olems bi $=$ nil is replaced by elems b1 $=5$ ．

Also，adding the object b4 to STATE2 results in a state with one more constant of sort Buffer：

```
fth STATE3 is
```

 fns b1 b2 b3 b4 ; -> Buffer.
 ax elsme b1 = 5 .
 ax elems \(\mathrm{b} 2=(1,2)\).
 endfth
 On the oflier hand，removing the ohject b2 from STATE3 yields a state in the form

```
fth STATE4 is
    fng b1 b3 b4 : -> Buffer.
    ax elems b1 = 5 .
endfth
```

The object and its related equations were removed from the database．
Remember that che value of a redefined attribute usually doesn＇t agree with the value of its original version for objects of the subclass．So，the same should he allowed for the functions modelling those attributes in database states．That＇s why we nse order－sorted presentalions with a signature of non－monotonicities to model datahase states；just order－sorted presentations are not adequate for doing that in an elegant way．For example，a specification containg

```
pr 14T.
subclaes C < C'.
at a : C' -> Mat.
at a : C -> Nat [redef].
var (\':C'.
var X: C .
ax a(陨) = 0.
ax a(x) = 1.
```

should have database states in the form

```
ex MAT.
subeort C < C'
In a : C' }->\mathrm{ > 目位.
In a : C -> lat [redef],
var I': C'.
var I : C .
ax a.C'Dat(X'.C') = O.|at .
ax a.CMat(X.C) = 1.Mat.
```

where parsed equations are used to avoid ambiguity. This allows both versions of to have different definitions without generating any inconsistency. On the other hand, if states were represented by order-sorted presentations withoul a signature of non-monotonicities, unparsed equations would be used, being possible to prove that 0 is eqnal to 1 using the equations defining a. This is obvously not desirable; it would also mean that the semantics of the functional level is affected by the semantics of the object level.

4 Signatures and Specifications

A FOOPS module defines a signature and a specification. A FOOPS signature contains a sort and a class hierarchy, aud names (together with typing and overriding information) of functions, methods, and attributes. A FOOPS specificalion is formed by a signatnre and some axioms (equations) that specify properties of the elements of the related signature.

Later, we show that signatures should also provide information about method combiners and other features supported by FOOPS. Now. we just give a simplified definition which will be extended when necessary.

Definition 4.1 A FOOPS signature consists of

1. A "sort set" $U=S \cup C$, where S has sort names and C has class names. The sets S and C are disjoint because a sort and a class cannot have the satne name. Tbe sort Bool (for boolean) is in S.
2. A partial order \leq on U, which establishes the sort and class hierarchy. Classes and sorts are not related: $u \leq t \Rightarrow u \in S \Leftrightarrow t \in S$. For any $t, u \in S \cup C$.
3. A $U^{*} \times V_{\text {-sorted family } \Sigma} \Sigma F \cup A \cup M$, where F, A. and M respectively contain names for functions, attributes, and methods. Functions are related to sorts: $F_{w, u}=\emptyset$ if $w u \notin S^{+} ; F$ has the standard boolean operations: attributes bave one class parameter at least: $A_{w, u}=\emptyset_{\text {, }}$ if $w \in S^{*}$; specified objects are related to classes: $M_{\lambda, u}=\emptyset$, if $u \in S$; methods have a class paramerer: $M_{w, u}=\emptyset$, if $u \in S^{+}$; and there are retrarts

$$
r: A>B: A \rightarrow B \in R \in t r_{A . B},
$$

if $A \cong 8$, where $\operatorname{Retr} \subseteq(F \cup A)$. Lastly, a method and an attribute with related ranks cannot have the same name, in order to avoid mixing methods up with attributes (i.e., Ior any $\sigma \in A_{w, u}$, there are no w^{\prime} and u^{\prime} such that $w u \leq w^{\prime} u^{\prime}$ or $w^{\prime} u^{\prime} \leq w u$, aud $\sigma \in M_{w^{\prime}, u^{\prime}}$).

4 A family $R \subseteq A \cup M$ formed by names of redefined methods and at tributes. As specialized versions of redefined operations are considered to be redefined, if $\sigma \in R_{w, u} \cap \Sigma_{w^{\prime}, u^{\prime}}$ and $w^{\prime} u^{\prime} \leq u \quad u$ then $\sigma \in R_{w^{\prime} . u^{\prime}}$.

Sometimes, we use Σ to denote the signature (C, \leq, Σ, R). Furthermore, we rely on the fact that a FOOPS signature Σ can be seen as the order-sorted aignature (U, \leq, Σ). In this way, the notation and concepts related to order-sorted signatures (e.g. terms, least sort, equations. etc.) are available for FOOPS signatures as well.

The constraints imposed on the components of a signature correspoud to some of the restrictions enforced on FOOPS modules. For instance, as a module defining the sbstract data type of booleans is automatically included in any FOOPS module (for allowing conditional equations), signatures must have a sort Bool with its associated operations. Also. the restriction on R is enforced on the operations of FOOPS modules, in order to avoid the problem discussed at Section 3.2.4.

In some cases, a more general approach is used, by not imposing restrictions on signatures components. So, the semantics of some constructs is indirectly given. by translation to more general constructs. As long as this approach doesn't complicate the semautic defnition, we use it and indicate how the translation can be done. For example, if booleans weren't assnmed to be in signatures, we would only be able to give the semantics of equations having a set of pairs of terms as a condition (following OSA), instead of a boolean expression (as actually supported by FOOPS). In this case, we would have to specify how the second kind of equation can be seen as a particular case of the first.

The generalization mentioned in the example above would slightly complicate the semantics. Hence, we don't use 1t. However, the semantics for qnalification notation for redefined operatious (1.e.. m.C where m is redefined and C is a class name) is indirectly given and doesn't affect the semantics. Basically, we don't assnme that signatnres include a special (qualified) operation name for each redefined operation. Instead we consider that the FOOPS signature correspouding to a module containing

```
subclass A < A'.
subclass B < B'.
subclase C < C'.
me m : A' B' -> C'.
me II : A B -> C [redef].
```

is the same as the signature associated to a module witl the declarations above plus the following one:

```
mem.A': A' B' HC C'.
```

which provides a qualified notation for m. We assume that symbols containing " " cannot be used as operation names in FOOPS modnles (unless it corresponds to the qualified notation of some operation). Heluce, this additional declaration doesn't introduce any conflict and m. A' can be used to access the original version of m.

The same technique can be used to support qualified notation for attributes. However, note that it's meaningless to ask for the original version of a redefined stored attribute for an object of the subclass, since it has no associated value (it's neither directly stored in the state nor necessarily equal to the specialized version). The same happens for original versions of derived attributes defined in terms of redefined stored attributes. Hence, we don't need to provide a qualificatiou notation for this kind of altribute.

An obvious motivation against allowing methods and altributes to have the same name and related ranks is that t wo operations cannot he distinguished if they have the same name and rauk. A less obvious motivation is illnstrated by the following signature:

```
pr lat.
subclass A < A'.
```

```
at a : A' -> Nat.
me a : A mat.
```

In this way, a may be interpreted as a method or as an attribnte, depending on its argument. Indeed, in some expressions, it might be the case that a is parsed as an attribute and, alter some argument evaluation, it's parsed as a method. Besides being confusing, this has bad consequences, mainly for expressions in the RHS of DMAs and couditions of equations, where no methods are allowed. For instance, for a method m, the following

```
var X : A'.
cx m(x) = ... if 0<= a(x).
```

is a valid equation becanse a is parsed as an attribute in $a(x)$. However, if x is not redefined, the evaluation of $m(0)$. for of class A. requires the evaluation of the coudition $0<=a(0) w h i c h$ requires one method invocation, since a is parsed as a method in a (o). But this is not supported by FOOPS-there is no reasonable semantics for that. The same problem happens if this confnsion occurs in the RHS of a DMA, or if an auritute updated by a DMA is sometines parsed as a method.

In fact, this prohlem can also happen with pathological non regular signatures satisfying the restriction discussed above, bnt not with regular siguatures (the ones that are of interest for specifications, as we will see later). Also, observe that there is no coufusion between functions and methods (or attributes) becanse fnnctions ranks are not related (by \leq) to method (or attribnte) ranks, since they only have sorts.

Laslly, we could have added one more constraint on signatures: an operation shonld only be in R if it's overloaded by another with a greater rauk. However, hy amalysing the semantic rnles given here, we conclude that this constraint doesn't affect the semantics; that is, the meaning of a non overloaded operation is the same whether it's considered redefined or not Hence, we don't introduce this restriction.

Now, we give a definition of specificatiou.
Definition 4.2 A FOOPS specification is formed by a signatnre Σ and a set E of Σ-equations containing standard eqnations for the boolean operations (as given m [21], for example) and relract equations $r: A>B(X)=X$. for any types A and B in the sane connected component of U (with respert to \leq), and a variable \mathbf{x} of least bype B. \square

Hereafter, we use A to refer to the family of attributes in a specification S, when S is clear from the context; otherwise, we nse the notation $A(S)$. The samc convention is used for the other components: E, S, C, F. elc. Also, $F E$ and $A E$ respectively denote the set of functional and attribule equations in E. The set of furtional equations is defined as the largest set of F-equations included in E, whereas $A E$ is defned as the largest set of $F \cup A$-eqnations inclnded in E and disjoint from $F E$.

Implicitly, the last defintion reqnires Σ to be regular, siuce E cannot be empty and (unparsed) equations only make sense for regnlar signatures (see Section 2.4). As we have seen in Section 2.3, regularity is not a big restriction. Fnrthermore. this guarantees the least type (parse) for method expressions; so, we can work with untyped terms withomt aubiguity, leading to a conciser and simpiler semantic description.

Observe that the definition above does nol restrict the form of axioms. However. by the operational semantics that is described here (as wr will see later), only DM1 As and IMAs determine the behaviour of methods; other kinds of method axioms are irrelevant for the semantics

It's also important to note that equations may be non sort (or class) decreasing. This flexibility is usually desired for specificatious in general. It affects the semantics because the evaluation of an expression might then lead to an expression of a greater sort. If this happens and the expression is the argument of an operation that cannot be applied to an argument of greater sort, the evaluation will result in a non well formed term. The solution for this problem is given in later sections, bnt it basically consists of iuserting retracts (in order to lower the sort of expressions) during the evaluation of arguments and some pre-defined method combiners

Even if method and atiribute equations were sort decreasing. retracts would have to be in ciuded in every specification, in order to avoid the problem discussed above. This happens because attribnte evaluation is specified in terms of an operation whicl gives the representative of an equivalence class (see Section 2.5); for specifications in general, we cannot guarantee that an eqnivalence class has a term with a smaller lype than all other terms. Hence, attribute evaluation might yield a term of greater type, or even of a mon related type

On the other hand, retracts could be avoided if all equations were sort decreasing. For this to work, representatives should be of a least type This would be feasible because we would consider that functional equations were sort decreasing as well.

Sometimes we use specification (siguature) when we refer to a FOOPS module. In those cases, we actually mean the specification (signature) corresponding to that module

5 Database States

As discussed in Section 3.2.6, a FOOPS database state can be represented by a presentation with a signature of non-monotonicities. Here we make more precise what are the contents of such a presentation.

First, we assume that for any specification S there is an associated C-sorted family I_{S} (jnst I, when not confusing) of disjoint components; that is, $I_{u} \cap I_{u^{\prime}}=\emptyset$, if $u \not \equiv u^{\prime}$. Each component is formed by symbols which can be used as identifiers of objects of a given class. This fixed connection between identifiers and classes is necessary because we are represeating those concepts in the framework of OSA; so, each symbol should have a fixed, pre-defined rank. From an implementation point of view, this is essential for static type checking of expressons. Here we assume that I is provided by the FOOPS system.

In order to ensure least parse of terms, we assume that identifiers canuor have the same name as fuuctional coustants (formally. $|I| \cap F_{\lambda, u}=0$, for any $u \in S$). Lastly, the family I must contain the identifiers of the objects specified in $S: M_{\lambda, u} \subseteq I_{u}$, for any $u \in C$. Hereafter I may alternatively be seen as an $U^{*} \times U$-sorted family, by considering that $I_{\lambda, u}=I_{u}$, for $u \in C$; and $I_{w, u}=\emptyset$, for $w \neq \lambda$ or $u \notin C$.

Definition 5.1 For a specification S, a database state is a presentation with a signature of non-monotonicities, consisting of the following components:

1. A signature (U, \leq, D), where $D=F \cup A \cup I d$, for some $I d \subseteq I$ containing the identifiers of the objects in this state.
2. A signature $\Omega=R \cap A$ of non-mouotonicities, containing redefined attributes.
3. A set $D E=F E \cup A E \cup I d E$ of parsed D-equations, for some finite set $I d E$ of equations establishing the values for some of the stored attributes of objects in Id. Actually, ($D, D E$)
has to be conservative extension of ($F \cup I d, F E$), in the sense that the equations in $D E$ should not relate functional expressions nor object identifiers that cannot be related by the equations in $F E^{3}$.

As in the convention for specifications, we use $D, D E$, and $I d$ for the corresponding components of a database state \mathcal{D}, when it is clear from the context; otherwise, we use $D(\mathcal{D})$, etc.

Observe that $I d$ and $I d E$ are the components of the database that can change from one state to another, by the execution of expressions which may create, remove, or change the state of objects.

Strictly speaking, signatures of presentations representing database states should have a universal type, iu order to guarantee local filtering-which is necessary to imply that equational satisfaction is closed under isomorpbism [19]. However, auy useful subset of FOOPS should include method combiners, which reguire the existence of a unversal type (see Section 7). Hence, we assume that this is provided for any specification. Otherwise, it could be simply added to the signature of the definitiou above.

The restriction on the equations of database slates is important to guarantee that constructs from the object level don't interfere with the semantics of the functional level. Otherwise, the functional theory associated to states would uot be related to the specified functional theory. This would mean that the results yielded by expressions evaluated in states would not have the same meaning as the correspondiug elements of the specified functional theory. If those restrictions on equations canuot be satisfied, the specification win't have auy associated database state. This might happen if the equations iu $A E$ are conlradictory. For inslance, a specification jucluding

```
pr NAT.
class C.
at a ; C -> Hat.
var X : C .
ax a(x)=0.
ax a(x)=1.
```

where a is not redefined, violates the restriction because the attribute equations relate two functional expressions (0 and 1) which are not related by NAT (assumiug this is a sperification of the abstract data type of natural numbers). In fact. this sperification has no associated database state.

Observe that soure attributes may have no associaled value in a particular database state (this implies that they cannot be evaluated). The restrictions on database states don't prevent this. An advantage of this flexıbility is that new doesn't have to initialize attributes; as briefly discussed before, default values for attributes might not even be available for specifications such as

```
pr EAT.
class List.
at val_ : List -> Hat.
at next_: List -> List .
```

[^2]which specifies a recursive class of linked lists. Also, the operation temove doesn't need to assign an ad hoc nil or void value to atributes containing the identifier of the object to be removed, in order to avoid dangling identifiers. Instead, after the execution of remove, those altributes have no associated value. For example, the detetion of 12 from a state in the form

```
!
fns li l2: -> List.
ax val l1 = 4.
ax next 11 = 12.
```

simply yields a state in the form

```
\vdots
fn l1 : -> Ligt.
ax val l1 = 4.
```

where the attribute next 21 is simply not defined.
We let D_{S} be the family of all database states for a given specification S; that is, the family of all presentations (with a signature of non-monotonicities) that satisfy the requirements in Definition 5.1. for a fixed S. Note that D_{S} is not uecessarily the family of a!l dutabase states reachable from the initial one by execution of method expressions. Naturally, this family is coutained in D_{S}.

Lastly, for a database state \mathcal{D} and some $t \in \mathcal{T}_{D}$, we assume that the choice of the representative $\llbracket t]_{\mathcal{D}}$ of the equivalence class $[t]_{\mathcal{D}}$ is a functional term or an object identiñer whenever this is possible (i.e.. $\left[[t]_{\mathcal{D}}\right.$ is in $\mathcal{T}_{\text {Fuld }}$ if $\left|\mathcal{T}_{\text {Fuld }}\right| \cap[t]_{\mathcal{D}} \neq \emptyset$). We don't give any more details on the defiuition of representatives. Instead, we let it be defined when needed.

5.1 Operations on Database States

In addition to the usual operations associated to presentations (e.g., 【e 【D) some specific operations on database states (presentations with a signature of non-monotonicities) arenecessary for defining the operational semantics. Here we introduce them. First, we define an operation that updates databases. Later, we give operations for adding and removing objects from databases.

5.1.1 Updating Databases

The update of a database \mathcal{D} with equations Γ is denoted by $\mathcal{D} \not \subset \Gamma$. Basically, this operation adds and removes some equatious from a database. The added equations, denoted by Γ, establigh "new" values for attributes. The removed equations are the ones that specify "old" values for the updated attributes.

First, we define the operation \oplus for overwriting a set of equations by an unquantified, unconditional equation. Informally, for a sel of equations Γ and an equation $e, \Gamma \oplus e$ is aset consisting of e and all equations in Γ whose LHS or RHS is not (syntactically) the same as the LHS of e. Note that we may refer to the term "equation" when we actually mean "parsed equation".

Definition 5.2 The overwriting of a finite set of Σ-equations by an unquantified, unconditional S-equation is defined by the following equations:

- $\bigoplus(l, r)=\{(l, r)\} ;$
- $\left(\Gamma \cup\left\{\left(X, I^{\prime}, r^{\prime}, C\right)\right\}\right) \oplus(l, r)=\Gamma \oplus(l, r)$, if $l \equiv l^{\prime}$ or $l \equiv r^{\prime}$; otherwise,
- $\left(\Gamma \cup\left\{\left(X, l^{\prime}, r^{\prime}, C^{\prime}\right)\right\}\right) \oplus(l, r)=(\Gamma \oplus(l, r)) \cup\left\{\left(X, l^{\prime}, r^{\prime}, C\right)\right\}$,
for any set of equations Γ, and any Σ-equations $\left(X, l^{\prime}, r^{\prime}, C^{\prime}\right)$ and (l, r).
Assuming that / is the application of an attribute to argnments, $\Gamma \oplus(l, r)$ gives a set of equations derived from I by adding the equation (l, r), and deleting all equations specifying the value of the atribute denoted by l.

We need an auxiliary concept in order to extend the definition of overwriting for a set of equations. A set of unquantified, unconditional equations is called contradictory if it has two different equations composed by the same term. The following definilion formalizes this.

Definition 5.3 A set Γ of unquantified, anconditional Σ-eqnations is contradictory if it conlains two different equations (l, r) and $\left(l^{\prime}, r^{\prime}\right)$ snch that $l \equiv l^{\prime}$ or $l \equiv r^{\prime}$.

Notice that this is a syntactical definition in the sense that a set containing two equations with the same LHS but different RHS is considered contradictory, even if the RHS are equivalent (modulo some equations). The definition of overwriting is also syutactical in a similar sense. This is appropriate for our purposes in this text.

Now, we can define overwriting for a set of equations.
Definition 5.4 Given two finite sets of Σ-eguations Γ and $\Gamma^{\prime}=\left\{e_{1}, \ldots, e_{k}\right\}$, for $k \geq 1$, if Γ^{\prime} is a non contradictory set of unquantified, unconditional equations then the overwriting of Γ by Γ^{\prime}, denoted $\Gamma \oplus \Gamma^{\prime}$, is defined as $\Gamma \notin \epsilon_{1} \tilde{\sigma} \cdots \not \epsilon_{k}$. Also, $\Gamma \dot{\Psi} \emptyset$ is defined as Γ.

Note that this uniquely defines the overwriting operation since Γ^{\prime} is non contradictory, so $\Gamma \notin e^{\varphi} \oplus e_{j}$ is the same as $\Gamma \oplus e, \oplus e$, for any $i, j \leq k$.

Lastly, we introduce the definition that can be used to npdate database states.
Definition 5.5 The overwriting of a presentation (with a signature of non-monotonicities) $P=(S, \leq, \Sigma, \Omega, \Gamma)$ by a non contradictory finite set of unqnantified. nnconditional Σ-equations Γ^{\prime}. denoted $P \notin \Gamma^{\prime}$, is the presentation ($S, \leq, \Sigma, \Omega, \Gamma \oplus \Gamma^{\prime}$).

5.1.2 Adding Objects to Databases

The operation U adds some operation symbols to the signature of a presentation (see Section 2.6). So. it can be used to add objects to a database. withont any initialization. if the symbols represent objest identifiers. In this way, $\mathcal{D} \cup I d$. Гor a $U^{*} \times(i$-sorted family $I d$ of object identifiers, adds the identifiers in $I d$ to the database \mathcal{D} of a specification S.

5.1.3 Removing Objects from Databsses

The operation for removing abjects from databases deletes object identifiers from the signature of a given presentation. Moreover. the equations formed by terms containing these symbols are removed as well. This means that all references to an object are removed after this object is deleted; that is, the attributes containing these references don't have any associated value in the resulting database. Here is the formal definition:

Definition 5.6 The deletion of a $S^{*} \times S$-sorted famply $I d$ of operation symbols from a presentation (with a signature of non-monotonicities) $P=(S, \leq, \Sigma, \Omega, \Gamma)$, represented by $P \ominus I d$, is the presentation $\left(S, \leq, \Sigma-I d, \Omega-I d, \Gamma^{\prime}\right)$ where Γ^{\prime} is the set of all $(\Sigma-I d)$-equationsin Γ.

6 Methods, Attributes, and Functional Expressions

Now, we start to describe a structural operational semantics for the object level ef FOOPS. In this section, we concentrate on the semantics of functional expressions, methods, and attributes. In the following sections, we progressively give the semantics of other language fealures.

Here we use the approach for operational semantics introduced in [39]. We assume some familiarity with that. The semantics is given by a relation that indicates how an expression is evaluated in a database state. A pair formed hy a method expression and a database state is called a coufiguration. The refation specfies the transitions from one confignratien to another according to how au expression is evaluated and how it changes the database; each transition corresponds to a computational step during the evaluation of an expression

Let's formalize those concepts. First. for a specification ξ^{\prime}, we define the farnily $T_{S}=T_{\Sigma U I}$ of method expresstons (without vartables). By the definition of $I, \Sigma \cup I$ is regnlar whenever Σ Regularity of Σ is guaranteed hy the definition of specification. This implies the axistence of a least type (parse) for method expressions. That's why we can nse untyped (unpased) terms to define the semantics. The typing functions $L S$ and ρ can be used whenever some type information is necessary.

Second, for a specification S, the semantics is given by a transition relation

$$
\rightarrow s \subseteq \operatorname{Conf}(S) \times \operatorname{Conf}(S)
$$

on configurations, where $\operatorname{Con} f(S)=T_{S} \times D_{S}$. This relation is inductively defined over the syntax of method expressions by inference (transition) rules which indicate how we can infer that two configuratious are related (i.e., there is a transition from one to the other). assumng that some others are related. Only transitions that can be deduced from the inference rtites that we wilh gate in this text are allowed. In other worls, $\rightarrow s$ is the least relation satisfying thrse inference roles

Note that there is no fixed relation belween the object identifiers nsed in a mettod expressic: and the ones in the database state where the expression is going to be evaluated. So, even expressions with identifiers of non-existug objects may be evalnated. Naturally, thes will only be successful if these identifiers are not necessary for the evaluation of the expression

For conciseuess, we use \rightarrow for $\rightarrow s$, when S is clear from the context. Also, $P \rightarrow P^{\prime}$ stands for (P, P^{\prime}) $\in \rightarrow$. where P and P^{\prime} are configurations.

6.1 Functional Expressions

The semantics of the functional level of FOOPS is basically given in [9] and [28]. Following these, we introdnce one rule for evaluating functional expressions. Bnt first, we give the following notation. for a specification S :

- datahase states $\mathcal{D}, \mathcal{D}^{\prime} \in D_{S}$: and
- functional terms. $v_{i} \in \mathcal{T}_{F}$. for $i=1$. .k. for sone natnral number k. Also, \bar{v} is a) abbreviation for H_{1}, \ldots, v_{k}.

The evalnation of a fnnctional expression is performed in one transition and yields the evaluated form of this expression. This is only done if the expression is not already in its evaluated form. Here we consider that the evaluated form of a functional expression is the representative of its equivalence class with respect to its related functional theory. The Rule Fun (for functional) formalizes those aspects.

Rule 6.1 (Fua) For any $f \in F$,

$$
\langle f(\tilde{v}), \mathcal{D}\rangle-\left\langle\llbracket f(\tilde{v}) \rrbracket_{F E} \cdot \mathcal{D}\right\rangle
$$

if $f(\bar{v}) \not \equiv \equiv \| f(\dot{v})]_{F E} . \square$
Fron the rule above, we can observe that a function cannot be evaluated unless its arguments are functional terms. This restriction is essential to ensure that the operational semantics motivates a reasonable equality on mechod expressions; one that preserves fuuctional equality. In order to illustrate the need for this restrictiou, consider the following specification:

```
pr BAT.
fn f : Fat -> mat.
Ing: |at -> |at.
var X : lat.
ax f(X)= X + X.
ax g(X)=2 * X.
```

By equational reasoning, we can prove that $f(n)$ is equal to $g(n)$, for any term n of sort \#at. Now, suppose that we extend the above functional specification with

```
clasa C.
me m : C -> Hat.
```

and assume that m has side effects. If functions can be evaluated with non functional arguments, usually $f(\mathbb{m}(0))$ won't be equal to $g(\mathbb{m}(0))$, for some $0: C$. contradicting what we proved before about f and $g ;$ so, functional equality is not preserved. This happens becanse $f(\mathbb{I}(0))$ may be evaluated to $m(0)+m(0)$, whereas $g(m(0))$ may be evaluated to $2 * m(0)$. Clearly, the evaluation of the first resulting expression invokes m twice, whereas the evaluation of the second invokes a just once. Moreover, the side effects and the generated resnits may be different, for each invocalion.

6.2 Attributes

Before giving the semantics of at.tribute evaluatiou, we introduce some notation. For a specification S. hereafter tonsider arbitrary

- sort and class symbols $u, u^{\prime}, u_{\mathrm{t}}, u_{1}^{\prime} \in U$, for $i=1 \ldots k$: and
- object identifiers and evaluated functional terms not having retracts: $t, \in \mathcal{T}_{(F-\text { Retr) }}$. for $i=1 . . k$, where $L S\left(v_{s}\right)$ is u_{2}, and $v_{t} \in \mathcal{T}_{F}$ implies $v_{1} \equiv \llbracket v_{1} \rrbracket_{F E}$. Also, we let v and v^{\prime} be in $\left\{v_{1} \ldots, v_{k}\right\}$, where $L S(v)=u$.

We write "fully evaluated term" to refer to object identifiers and evaluated functional terms not having retracts.

For simplicity, we consider that the first argument (from left to right) of an attribute or method is the identifier of the object that will perform the associated operation. As we haven't imposed a corresponding restriction on signatures, we should show how the semantics of the more general case is derived from the semantics which assumes that simplification. But this can be easily done (by changing the position of parameters, for instance), so we omit the details.

Attributes can only be evaluated if its associated object exists; so the first argument of the attribute should be the identifier of an object in the database state being used for evaluation. Also, tbe other arguments must be fully evaluated before evaluation. This evaluation is atomic, only reads the database used for evaluation (so, the state does not change), and yields the value of that attribute in this particular state. This value is determined by the equations in that state. The evaluation is ouly possible if the atribute has an associated value in that state; otherwise, the evaluation is suspended. For example, non initialized attributes cannot be evaluated. The Rule Att (for attribute) formalizes those aspects.

Rule 6.2 (Att) For any $a \in A$,

$$
\langle a(\bar{i}), \mathcal{D}\rangle-\langle\llbracket a(\hat{v}) \rrbracket \mathbb{D} \cup I, \mathcal{D}\rangle
$$

if $a(\tilde{v}) \in \mathcal{T}_{\text {FUAUI }}, v_{1} \in J d(\mathcal{D})$, and $\llbracket a(\tilde{v}) \rrbracket D_{U I}$ is in $\mathcal{P}_{F \cup K d(\mathcal{D})}$.
The first conditiou guarantees that $a(\bar{j})$ is atl attribute application; note that $a \in A$ is not enough lo guarantee that, since a might belong to M as well. The second condition assures that the attrihute's associated object exists. The last condition checks if the allribute has an associated value in the database. As we nse $\mathcal{D} \cup I$ (instead of \mathcal{D}) in $\llbracket a(\bar{v}) \rrbracket \mathcal{D} \cup I$, we can evaluate the attribute expression even if it contains identifiers of objects not in the database. However, if this is the case, the evaluation is only performed if these identifiers are irrelevant to determine the value associated to that attribute.
 presentation with a signature of non-ruonotouicities. As ρ gives the least parse of an expression and the equations in \mathcal{D} are parsed, only the most specific equations (the ones associated to a particular type of an operatiou) of \mathcal{D} are used to define the value of $a(i)$. This means that this attribute is dynamically bound to the specialized version of its associated operation; on the other hand, attributes used in attribute equations are statically bound. In fact, using the theory of OSA in this way, we can only obtaiu a partial form of dynamic binding for derived attributes, whereas we canget a full form of dynamic binding for stored attributes.

6.2.1 Qualified Notation for Attrihutes

In Section 4. We have discussed a technique $\mathfrak{\text { Lo support qualified notation for redefined attributes. }}$ Now. we give its semantics, by showing what's the specification correspondiug to a FOOPS module having redefiued attributes. Basically, the specification should contain all declarations from the module plus the operations providiug the qualified notation, and one equation for each redefined attribute. These equations stipulate that a given qualified atirihute is equal to the relsted original one. For instance, a module with the following declarations

```
pr MaT.
subclast A < A'.
at a : \' -> Hat.
at a : | >> Hat [redef].
```

is Iranslated to a specification containing the declarathons above plus the following:

```
at a.A': A, m Hat.
var X : A'.
axa.('(X) = a(X).
```

Because the equation ahove is parsed as

```
ax a.A', ('Nat(X.A') = a.A'Hat(X.A') .
```

we have that a. A $^{\prime}$ is actually equal to the original version of a as desired

6.3 Metlods Specified by DMAs

In order to define the semantics of method evaluation. we ntroduce some new notation. Guen a specification S, we assume arbitrary

- Σ-varisble family X such that $|\mathbf{X}|=\left\{x_{1}, \ldots, u_{k}\right\}, u_{i} \leq L S\left(x_{i}\right)$, and $x_{i} \equiv x_{j}$ implies $v_{\mathrm{k}} \equiv \mathrm{r}_{j}$, for $i, j=1 \ldots k$;
- expressions formed by functions, attributes, varıables, and identifiers of specified objects ${ }^{4}$: $g, h, c \in T_{F \cup A \cup(M \cap I)(X)}$; and
- method symbol $m^{\prime} \in\left\{m . L S\left(x_{1}\right), m\right\}$, for some $m \in M$ not in the form symbol.class-name. As any specfication contains the sort Bool. hereafter we write ($\forall \mathcal{V}) l=r$ if c instead of

$$
(\forall \mathrm{V}) l=r \text { if }\{(c, \tau \mathbf{x} \cup \boldsymbol{e})\}
$$

for any tern c (as above) of sort Bool Also, \dot{x} abbreviates $\Sigma_{1} \ldots \ldots r_{k}$, and \dot{y} is a sequence of variables from X. Lastly, we write $(\tilde{i} \sim \tilde{r})$ for $\left(x_{1} \leftarrow r_{2} \ldots, x_{i}+v_{i}\right.$),

Now, we give a formal definition of DMA.

$$
(\forall X) a(m(\tilde{x}), \tilde{y})=g \text { if } c
$$

where m is a method: $m(\tilde{x}) \in T_{M(X)}$; the result of m belongs to its associated class: $L S(m(\tilde{x}))=$ $L S\left(x_{1}\right)$; and a is an attribute $a\left(x_{1}, \dot{y}\right) \in T_{A(X)}$. If \bar{y} is the empty sequeuce then $a(m(\tilde{x}), \hat{y})$ stands for $a \mid m(\tilde{x})$).

The evalation of a method specified by DMAs is atomic and yieids the identifier of the object that executes this method; this object must be in the state where the method is evaluated Some of the attributes of this object are updated The resulting database state is the overwiting of the previous state by equations specifying those updates. The LHS and RIIS of these equations

[^3]respectively correspond to the updated attribute and its new value. These equations are derived from the DMAs related to the method (as required by tbe frame assumption).

However, only the related DMAs with the following properties are considered for evaluation: the DMA's condition, when instantiated with the method arguments, is valid in the current state; the DMA's instantiated RHS must be defined in the current state; and che DMA is either associated to the class indicated by tbe qualified notation, or to a class greater or equal to u and smaller or equal to u^{\prime}, where u is the class associated to the version of tbe method being evaluated, and u^{\prime} is the least class (greater or equal to u) redefining this method (if there is no snch u^{\prime}, any related DMA may he used). Lastly, the method is only evaluated if there are some altributes to update and the updates are not contradictory; otherwise, it's snspended.

All the aspects discussed above are consjdered by the following rule.
Rule 6.3 (DMA) For any $m \in M$. let Γ be the set of all equations in the form

$$
a\left(1^{\prime} 1, \tilde{y}\right)(\tilde{x} \leftarrow \bar{i})=\llbracket g(\check{z} \leftarrow \tilde{v}) \rrbracket_{\mathfrak{p} \cup}
$$

such that E has a DMA in the form

$$
(\forall X) a(m(\tilde{r}), \tilde{y})=g \text { if } c
$$

true belongs to $[c(\tilde{x}-\tilde{v})] \mathcal{D} \cup i ;[g(\tilde{x}-\tilde{v})]]_{\mathcal{D} \cup f}$ is in $\mathcal{P}_{F \cup / d(\mathcal{D})}$; and $m^{\prime}=m$ and $m \in R_{w^{\prime}, u^{\prime},}$ for some $u_{1}, \ldots, u_{n} \leq w^{\prime}$, imply that. $L S\left(x_{1}\right)$ is smaller than or equal to the least class greater than or equal to u_{1} such that m is redefined.

If $v_{1} \in I d(\mathcal{D})$ and Γ is a non empty and non contradictory set, then

$$
\left\langle m^{\prime}(\bar{v}), \mathcal{D}\right\rangle-\left\langle v_{1}, \mathcal{D} \oplus \Gamma\right\rangle
$$

Remember that the operation 争 overwrites a database state (see Section 5.1.1).
DMAs can only specify a deterministic hehaviour for methads. So, note that if there are contradictory (or even redundant) DMAs iu E, their associated method cannol be executed because its specified belaviour is cousidered inconsisteut; the evaluation is suspended. Obviously, this should be avoided. In the rule above, this is reflected by requiring Γ to be non contradictory. Similarly, suppose that two versions of a method are defined, but the specialized version is not considered a redefinition. In this case. following the last rule, equations from both definitions may be nsed to evaluate the specialized version. So, unless both versions specify the same updates, they are considered imronsistenl: again, Γ will be coutradictory and consequently the method won't be execnted.

The equations defining the versions of a redefined method associated to a class and a corresponding subclass do not necessarily have to agree on the beltaviour that they specify. Indeed, usually they don't. Thus, ouly the most specialized method equations can be used for execution. This corresponds to the semantics of dynantic hindiug. That's why the restriction on $L S\left(x_{1}\right)$ is necessary in Rule DMA. Also, if a qualified uotation is used, observe that the indicated class must be the sanse as the least class of x_{1}, by the restrictions on m^{\prime}; so. only equatons associated to the indicated class can be used for evaluation.

Rule DMA makes clear that the adoption of the variant syntactic rule (which is implied by regularity) for redefinitions may cause some anomalies which require attention and should be avaided. For instance, consider the following specification

```
pr Rat.
subelass A < A'.
subelass B < B'.
me m : \' B' -> AN.
mem : | B -> A [redef].
at a : &' -> Hat.
var K' A,.
var Y' B'.
var X:A.
var Y:B.
ax a(m(I',Y'))=...
ax a(m(I,Y)) = ....
```

where m is redefined iu a valid way. Observe that the expression $m(a, b \prime)$. For $a: A$ and $b^{\prime}: B^{\prime}$. caunot be eraluated using the DMA associated to the specific version of an hecause the class of b^{\prime} ' is not a subslass of the class of Y. Also, the DMA related to the original version cannot be used for evaluation because it's not the most specialized one (i.e., the class of x ' is not the same as the class of a). This situation should be avoided becanse although $\Phi\left(a, b^{\prime}\right)$ is a valid expression, it cannot be evaluated; it will be suspended forever.

From the definition of \oplus, we conclude that this operation might not preserve the properties of database states if its arguments don't satisfy some conclitions. If this is the case in the use of \oplus in the last rule, no trausition is possible (because the resnlt of \oplus is not a valid database state). This means that the method canmot be executed. So, this circumstance stonld alsa be avoided. In general, this might happen if the state has an equation specifying an attribute value and this equation is not removed when that attribute is npdated. For instance, this happens if a DMA specifes an npdate for a derived attribute. In this case, the state resulting from the update is a presentation containing two equations determining two values for the same attribute (one corresponding to the original derived attribute equation and another associated to the update). If these values are not equal (with respect to the related fnnctional theory), the resulting presentation is not a vald database state, since it relates two expressions which are not related by the associated functional izeory.

A similar problem occurs when a stored attribnte is redefined by a derived one. In fact. a method associated to the superclass might ery to update the redefined. derived attribute. But we have already discussed that derived atiribntes should not be updated. For example, consider the specificatioa

```
pr Rat.
Bubelass C < C'.
me m : C' M C'.
at a : C' -> Hat.
at a : C -> Rat [redef].
var X C'.
var Y C .
ax a(n(X))=1.
ax a(Y) = 0.
```

where mis not redefined. Note that the original version of a is a stored attribute, whereas the specialized version of a is a derived attribute. Thus, the execution of m (o), for some o:c, adds
the equation

```
a.CMat(O.C) = 1.Mat
```

to the database. Bur this conBicts with the equation
a.CHat $(Y, C)=0$. Mat
which must be in any state (it belongs to $A E$). This would violate the restriction on states because we would then be able to prove that 0 equals 1 from the equations in the resulting slate.

Here we do not give a complete semantics for updating of inulti-argument stored altributea. In fact, this cannot be done in a simple and abstract way if presentations are used to model database states. So. we just give the semantics of DMAs specifying the npdate of only one attribute, as in

```
ax a(m(0, X), X)=e,
```

where evaluating $m(0, x)$ only updates the attribute $a(0, x)$. That's why in the last rule we require the variables in \tilde{y} to be in \dot{z}. This implies that after instantiation, the LHS, RHS, and rondition don thave any variables. So, the resulting RIS and condition can be evaluated, and the instantiated LHS specifies the value of only one attribute

It's difficult to give the semantics of DMAs snch as

```
axa(m(0),X) = 0,
```

where the execution of $m(0)$ should npdate all attributes $a(0, x)$, for any $x: \mathbf{x}$. In order to consider this kind of DMAs, states would have to keep a history of updates for each multi-argument stored attribute. This is needed becanse snch updates might not completely invalidate the previous ones, since each update may determine values for an arbitrary range of attributes. The value associated to a specific attribute could then be compnted by cheching what's the last update that determines it. This approach could be represented in our model for states. However, it tnrns out to be very detailed.

6.4 Methods Specified by IMAs

In this section we give the semantics of methods specified by IMAs. First, we give a formal definition for IMA.

Definition 6.2 For a specification S, an IMA is a Σ-equation in the form

$$
(\forall X) m(\bar{x})=\operatorname{cxpr} \text { if } c
$$

where m is a method (i.e, $m(\bar{x}) \in \mathcal{T}_{M(X)}$) and espr is a method expression with variables from $X: \operatorname{expr} \in T_{E(X)}$.

The execution of a method specified by an IMA corresponds to the evaluation of this IMA's RHS (instantiated with the method arguments), even if the metbod's associated object is not in the database used for evaluation (methods specified in this way are seen as abbreviations for complex expressions) Of course. the evaluation can only happen if the lMA's condition (instantiated with arguments) is satisfied in the state where the method is going to be evaluated; otherwise the evaluation is suspended. Also. similarly to DMAs, only specialized IMAs should be vised for evaluation. The following rule considers those aspects.

Rule 6.4 (IMA) For any $m \in M$, if the IMA

$$
(\forall X) m(\dot{x})=\text { exprif } c
$$

is in E; true $\in[c(\tilde{x} \leftarrow \tilde{v})]_{\mathcal{T} \cup I}$ and $m^{\prime}=m$ and $m \in R_{r^{\prime}, u^{\prime}}$. for some $u_{1}, \ldots u_{n} \leq w^{\prime}$. imply that $L S\left(x_{1}\right)$ is smaller than or equal to the least class greater than or equal to u_{1} such that m is redefined, then

$$
\left\langle m^{\prime}(\dot{x}), \mathcal{D}\right\rangle-\langle\operatorname{erpr}(\dot{x}-\tilde{r}), \mathcal{D}\rangle
$$

Because of dynamic binding. only the most spectalized IMAs can he used for evaluation. ('ontrasting to DMAs (see comments following Rnle 6.3), if two or more lMAs that don't agree on the specified hehaviour are used to define the same method, this method has a nondeterministic behavicnr. Simularly, if two versions of a method are defined, but the specialized version is not considered a redefinition. the MAs related to hoth versions may be used to evaluate the specialized version, which will probably be nondeterministic.

Lastly, observe that the same anomalies associated to inethods defined by DMAs, due to the adoption of the variant syntactic rule for redefinitions, might also lappen for methods specified by IMAs (see Section 6.3 for details).

6.5 Arguments

From the transition rules given so far, it can be observed that the least sort of an expression is always in the same connected component of l (with respect wo \leq) as the least sort or the result yielded by the evaluation of this expression. However, the least sort of this resnlt might be greater, smaller or even not relaled (by s) to the least sort of that expression. This is dne to the flexibility of the FOOPS type system. For instance, this happens berause axioms are not necessarily sort decreasing, like in

```
sorts & B C.
subsort & < C .
subsort B < C .
class D.
at a : D -> A.
var X : D .
ax a(1) = e.
```

where e is a constant of sort B . So, the evaluation of $\mathrm{a}(0)$, for $0: \mathrm{D}$, gives e. But this resulting expression has least sort B, whereas $\mathbf{a}(0)$ has least sort A, which is not related to B.

Another example where this may happen is

```
subclata C < C'.
gubsoris A < A, .
at a : C' -> A'.
at a : C -> A.
var }X\quad\mp@subsup{C}{}{\prime}
ax a(i! = 0.
```

where is a constant of sort A' and a is uot redefined (there are no special eqnations for the specialized versiou of a). Hence, a(0). for o; C, has least sort A, but evaluates to owhich has least sort A', greater than A.

This fact has to be considered wbell evaluating arguments because an operation may not be defined for the type of the result of the evalnation of one of its arguments. ln this case, a retract should be introduced to give the right type to the result.

In order to produce results of interest, retracts should be eventually eliminated (evaluated). Otherwise, operations might block or return exceptional retracted valnes. This can be avoided if the retracts in axioms can be eventually eliminated (a non sort decreasing axiom may be considered a sort decreasing axiom, by inserting an adequate retract to its RHS). A fnactional retract can be eliminated if its argnment is evalnated to an element that is equal (with respect to the associated fuactional theory) to au element of the desired sort. Similarly, an object level retract is eliminated if its argument evaluates to an object alentifier of the desired class.

Now we introduce the Rule Arg for argument evaluation. Hereafter, we consider arbitrary method expressious withont variables: $e, f, e_{i}, e_{i}^{\prime} \in T_{S}$, for $i=1 \ldots k$.

Rule 6.5 (Arg) Forany $i \in\{1, \ldots, k\}$ and $o p \in(F \cup A \cup M)_{w, s}$ such that $L S\left(e_{1}\right) \ldots L S\left(e_{k}\right) \leq w$,

$$
\frac{\left\langle e_{i}, \mathcal{D}\right\rangle \rightarrow\left\langle e_{i}^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\left\langle o p\left(e_{1}, \ldots, e_{1}, \ldots, e_{k}\right), \mathcal{D}\right) \rightarrow\left\langle o p\left(e_{1}^{\prime}, \ldots, \tau\left(e_{i}^{\prime}\right) \ldots, e_{k}^{\prime}\right), \mathcal{D}^{\prime}\right\rangle}
$$

where $\varepsilon_{j}^{\prime}=e$, if $j \neq i$, for $j=1$.. k; and $\tau\left(e_{i}^{\prime}\right)=e_{i}^{\prime}$ if $L S\left(\epsilon_{1}^{\prime}\right) \leq L S\left(e_{i}\right)$, otherwise $r\left(e_{1}^{\prime}\right)=$ $x: u^{\prime}>u\left(\epsilon_{i}^{\prime}\right)$, where $u^{\prime}=L S\left(e_{i}^{\prime}\right)$ and $u=L S\left(e_{\mathrm{t}}\right)$.

Notice that there is no fixed order to evaluate arguments; the order is nondeterminislically chosen. In fact, the result of the evaluation of the expression may be nondeterministic, if some arguments have side effects. Furthermore, the evaluation of one argament might be interleaved with the evaluation of the others. However, from the semantic point of view, a step (transition) in the evaluation of one argument cannot happen at the same time as a step in the evaluation of another argument. This could be supported by a "truly concnrrent" semantics. In fact, in Section 7.2.1, we argue that the viable approaches for a "truly concurrent" semantics for FOOPS turn ont to be equivalent to the interleaviug semantics which we adopt jere.

7 Method Combiners

Now. we show how the semantics given in the previous section can be modified and extended to support method combiners. It's simpler to directly give the semantics of each FOOPS predefined method combiner independently, iustead of trying to specify sonte of them in terms of others. Here we introduce transition rules giving the semantics of each combiner. Lastly, we give one rule which specifies how new combiuers defined in terms of the predefined ones, are evaluated.

Method combiners are conceptually different from methods and attribntes. Indeed. they don't correspond to operations related to objects. Hence, they have a special semantics. Among other particularities, they offer some control over the order of evaluation of their argnments, and they yield results depending whether some particnlar arguments are fnlly evalnated Similarly to methods, method combiners are neither allowed in the RHS of DMAs nor in conditions.

In order togive the semantics of method combiners, we assume that signatures contain one more component: $\mathbb{M C \subseteq \Sigma}$, formed by method combiners names. Moreover, we cousider that method combiners are not mixed up (in the sense of Definition 4.1) with functions, methods, or attributes. The following operations, which are in $M C$, represent the predefined method combiners:

- _-i_ : JT T
- -II_, _[]_ : U U \rightarrow :
- result_ _ : U T \rightarrow :
- if_ther_else_fi : TU U \rightarrow (; and
- [.] : $\mathrm{J} \rightarrow \mathrm{U}$:
for any types $\mathrm{T}, \mathrm{U} \in U$.
For supporting the paraliel composition aud choice of method expressious having unrelated types, we consider that a universal type Univ is in l. This lype includes any class or sort. That is, $u \leq$ Unir, for any $u \in U$. However. Univ is neither a class uor a sort. In this way, an expression $\| f$ is well formed, even if the sorts of θ and f are not related. This is possible because, Il can be parsed with the type "Univ Univ \rightarrow Univ".

Now, we proceed to give the semantics of method combiners

7.1 Sequential Composition

The argument on the left of the sequential composition operator (- ;) has to be fully evaluated before the evaluation of the other argument starts. Rule $\mathbf{S e q}$ (for sequential) is used for evaluation of the left argument and it indicates that transitions from this argument provokes transitions from a sequential composition:

Rule 7.1 (Seq)

$$
\frac{\langle e, \mathcal{D}\rangle-\left\langle e^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle e ; f, \mathcal{D}\rangle-\left\langle\epsilon^{\prime} ; f, \mathcal{D}^{\prime}\right\rangle}
$$

When the left argument is fully evaluated. there is a transition to start the evalnation of the argument on the right, as indicated by Rule $\mathbf{S e q E}$ (for sequential composition elimination):

Rule 7.2 (SeqE)

$$
\langle v ; e, \mathcal{D}\rangle-\langle e, \mathcal{D}\rangle
$$

Here we adopt a "waiting semantics" for method expressions; that is, if a metbod cannot be executed in a database state (because no axiom specifying its behavior has a valid condition) then the object requiring the corresponding service (the client) has to "wait" until the service can be
provided. However, notice that this does not necessarily mean that the client will be blocked, since it may be executing other tasks coucurrently.

In tbe last rule, tbe adoption of the "waiting semantics" is reflected by ensuring that the right argument of the sequential composition operator is only executed when the left one is fully evaluated. This is also reflected in the rules for other method combiners in the following sections. In order to capture a "non waiting semantics", the evaluation of f should start as soon as e cannot be evaluated. Thus, if a service is not available, the client doesn't wail and proceeds to the execution of the uext service.

The first alternative w as chosen because it gives a usefnl synchronization mechanism between clients and servers. This would have to be simulated by some form of "busy waiting", if the non waiting semantics were used. Usually, this simulation complicates the code and it's quite inefficient. Ou the other hand, the "uon waiting behaviour can always be uaturally and efficiently sinzulated in terms of the "waiting" behaviour. For example. suppose that the operation put inserts an element in a buffer otaly when the buffer is not full. Thus, adding the axiom

```
ax put(B,B)= B if full?(B).
```

releases the client if the buffer is full; the client doesn't need to wait for a place in the buffer.
Furtbermore, the "nou waiting semantics" approach is not uniform, since in this case the left argument of ; may be discarded (when its corresponding service cannot be provided), but the argument of an operation has to be eventually evaluated. For example,

```
put(b,5) ; put(b,4)
```

evaluates to put $(b, 4)$ in a state where the bufler b is full. On the other hand, no transition is possible from put (put (b,5), 4) in the same state.

7.2 Parallel Composition

Here we give an interleaving semantics for parallel composition. So. transitions from the arguments of a parallel composition operator are interleaved and they cause trausitions from the parallel composition, as shown by the Rnle ParL (for porallel composition left argument evaluation)

Rule 7.3 (ParL)

$$
\frac{\langle\epsilon, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle e||f, \mathcal{D}\rangle \rightarrow\left\langle e^{\prime} \| f, \mathcal{D}^{\prime}\right\rangle}
$$

and the symmetric ParR (for parallel composition right argument evalnation):
Rule 7.4 (ParR)

$$
\frac{\langle f, \mathcal{D}\rangle \rightarrow\left\langle f^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle\epsilon||f, \mathcal{D}\rangle \rightarrow\langle\epsilon|\left|f^{\prime}, \mathcal{D}^{\prime}\right\rangle}
$$

Also, the arguments of a parallel compasition operator can be eliminated when they are filly evalwated. This is specified by the Rules ParLE (for parallel composition left argument elimination)

Rule 7.5 (ParLE)

$$
\langle v||e, \mathcal{D}\rangle \rightarrow\langle e, \mathcal{D}\rangle
$$

and ParRE (for parallel composition right argiment elimination):
Rule 7.6 (ParRE)

$$
\langle\epsilon \mid \| v, \mathcal{D}\rangle \rightarrow\langle\epsilon, D\rangle
$$

7.2.1 "True Concurrency"

The iuterleaving semantics doesai consider the behavionr caused by simnltaneous transitions from the arguments of the parallel composition operator. This behaviour is usually considered by a "truly conenrrent" semantics. In fact, "true concurrency" seems more natural than interleaving. since objects might be part of a distributed system (where expressions might be simultaneously evaluated). Hence, let's consider the introduction of the "truly coucurrent" parallel composition combiner: _ill_ : U U $\rightarrow \mathrm{U}$, for any $\mathrm{U} \in U$.

First, remember thal an attribute cannot he both read and written at the same time because of physical hmitations. So, simultaneons transitions from the arguments of a "truly concurrent" operator are only possible if the attributes accessed (i.e. read and/or written) in one transition are differenl from the altributes written in the other. Also, if all object is removed or created in one transition, it cannot be accessed, removed, or created by a simmltaneous transition.

Some of those constraints canmot be elegantly expressed here becanse they rely on information that is abstracted by our framework. (For example, there's no simple procednre for determining what altributes are read diring a given transition. since the evaluation of attributes is specified in terms of the representative of an equivalence class modulo equations.) Hence, instead of using the constraints above for defining a rule considering simnltaneous evaluation of arguments, we use a weaker condition: the updates made by one transition don't interfere with the updates made by a simultaneous transition. Formally, if

$$
\langle e, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}_{1}\right\rangle(1) \text { and }\langle f, \mathcal{D}\rangle \rightarrow\left(f^{\prime}, \mathcal{D}_{2}\right\rangle(2)
$$

then

$$
\left\langle e, \mathcal{D}_{2}\right\rangle-\left\langle e^{\prime}, \mathcal{D}^{\prime}\right\rangle \text { and }\left\langle f, \mathcal{D}_{1}\right\rangle-\left\langle f^{\prime}, \mathcal{D}^{\prime}\right\rangle
$$

It's easy to verify that this is implied by the constraints mentioned at the beginaing of this section. First, observe that \mathcal{D}_{1} and \mathcal{D}_{2} can be respectively represented in the forms

$$
D \ominus R O \cup N O \text { ゅ } \Gamma \text { and } \mathcal{D} \vartheta R O^{\prime} \cup N O^{\prime} \oplus \Gamma^{\prime}
$$

for some $R O, N O, \Gamma, R O^{\prime}, N O^{\prime}$ and Γ^{\prime}, indicating the changes made by e and f, where $R O \cap N O=$ \emptyset and $R O^{\prime} \cap N O^{\prime}=\emptyset$. So, if the transitions 1 and 2 are possible then $\left(f, \mathcal{D}_{1}\right)$ leads to

$$
\left\langle f^{\prime}, \mathcal{D}_{1} \ominus R O^{\prime} \cup N O^{\prime} \oplus \Gamma^{\prime}\right\rangle
$$

since the stronger condition assures that the first step in the evaluation of f doesn't access the changes made by the first step in the evaluation of e. A similar reasoning can be used to show that $\left\langle e, \mathcal{D}_{2}\right\rangle$ leads to

$$
\left\langle e^{\prime}, \mathcal{D}_{2} \ominus R O \cup N O \& l^{-}\right\rangle
$$

Lastly, it remains to check that the stronger condition implies that $D_{1} \mathcal{G} O^{\prime} \cup N O^{\prime} \in \Gamma^{\prime}$ is the same as $\mathcal{D}_{2} \ominus R O \cup N O \oplus \Gamma$ This can be easily done: we omit the details.

Now we give the semantics of _lli_msing the weaker condition. Basically, $I l l$ _ is defined by the rules for interleaving, replacing _l! _ by flll_, plus Rule TCPar (for truly concurrent parallel composition).

Ruie 7.7 (TCPar)

$$
\begin{gathered}
\langle e, \mathcal{D}\rangle-\left\langle e^{\prime}, \mathcal{D}_{1}\right\rangle,\left\langle f, \mathcal{D}_{1}\right\rangle-\left\langle f^{\prime}, \mathcal{D}^{\prime}\right\rangle \\
\langle f, \mathcal{D}\rangle-\left\langle f^{\prime}, \mathcal{D}_{2}\right\rangle,\left\langle\epsilon, \mathcal{D}_{2}\right\rangle-\left\langle\epsilon^{\prime}, \mathcal{D}^{\prime}\right\rangle \\
\left\langle\epsilon\|\| f, \mathcal{D}\rangle-\left\langle\epsilon^{\prime}\right|\right|\left|f^{\prime}, \mathcal{D}^{\prime}\right\rangle
\end{gathered}
$$

In fact, the weaker condition used above allows more transitions than expected for a "truly concurreut" operator However, this turns out to be enough for our purposes here: we are interested iu proving that the interleaving and the "trnly concurrent" operators are equivalent (with respect to some mild notion of observation equivalence) in our framework; basically, we want to show that the extra rule for simultaneons evaluation of argiments is redundant. So. if we prove that this is the case considering the rule above, it follows that this is also the case if we consider a rule with a stronger premise This equivalence is what should be expected since it's desirable to specify systems of distributed objects without worrying whether computations are being carried out sinultaneously.

Here we suppose that the notion of eqnivalence that we are interested doesn tistinguish a coufiguratiou C having the transitions

$$
C \longrightarrow C_{1} \rightarrow C_{2}
$$

from a configuration C^{\prime} having the transitions

where C_{1}^{\prime} and C_{2}^{\prime} are respectively (observation) equivalent to C_{1} and C_{2}; and any other iransition from C^{\prime} is matelued, in a similar way, hy some transitions front C, and vjce versa.

This is a quite mild assumption on equivalences over configurations. Roughly, it says that a configuration that can lead to a resulting confignration in either one or two transitions is equivalent to a configuration which can reach an eqnivalent resnling confignration in two equivalent transitions. This should be valid for most reasonable and interesting observation equivalences because the configurations reached from C and C^{\prime} are equivalent, and any sequence of observations that can be made on the intermediate states reached hy one of the configurations corresponds to a possible sequence of observations from the other.

We let \approx denote the equivalence on configurations that we are interested. Thus the following theorem establishes the equivalence of the two operators for parallel composition.

Theorem 7.1 For any database state \mathcal{D} and method expressions e and f,

$$
\langle e||f, D\rangle \approx\langle e|||f, D\rangle
$$

Proof: We split the proof in three cases. First, we consider that bothe and f are fully evaluated. In this case, the possible transitions $[\mathrm{rom}\langle e \| f, \mathcal{D}\rangle$ and $\langle e\|\| f, \mathcal{D}\rangle$ are justified by Rules 7.5 , 7.6, and the corresponding ones to $-1 \mid I$:

From these diagrams, we can conclude that $\langle e \| f, \mathcal{D}\rangle$ is equivalent to $\langle\boldsymbol{e} \| \mid f, \mathcal{D}\rangle$, siuce the transitions from the first (1 and 2) are matclied by the transitions from the second (3 aud 4), in the sense that they lead to equivalent configurations (as \approx is an equivalence, it is reflexive).

Now we assume that f is fully evaluated but ϵ is not. Thas, we lave the following possible transitions:

whenever $\langle\epsilon, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}_{1}\right\rangle$. This is justified by Rules 7.3. 7.6. and the corresponding ones to ill. In the diagrams above, transitions 1 and 3 clearly match. In the meandime. let's assume that

$$
\left\langle e^{\prime}\right|\left|f, \mathcal{D}_{1}\right\rangle \approx\left\langle e^{\prime}\right| \|\left\{f, \mathcal{D}_{1}\right\rangle
$$

So, we can infer that transitions 2 and 4 malch, what proves w for this case
We can use a similar reasoning if e is fully evaluated hut f is not.
Lastly, if neither e nor f is fully evaluated, the possible transitious from hoth configurations (as defined by Rules $7.3,7.4$, the corresponding ones $t o, 1!1 \ldots$ and Rule 7.7) are the following:

$$
\langle e!\mid f, D\rangle
$$

$$
\left\langle e^{\prime}\right|\left|f, \mathcal{D}_{1}\right\rangle
$$

$$
\langle e|\left|f^{\prime}, \mathcal{D}_{2}\right\rangle
$$

$$
+\frac{4}{\left(e^{\prime}| | f^{\prime}, \mathcal{D}^{\prime}\right)}
$$

and

whenever $\langle e, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}_{1}\right\rangle$ and $(f, \mathcal{D}\rangle \rightarrow\left\langle f^{\prime} . \mathcal{D}_{2}\right\rangle$. By Rule 7 7, transition 7 is only possible if $\left\langle f . \mathcal{D}_{1}\right\rangle-\left\langle f^{\prime}, D^{\prime}\right\rangle$ and $\left\langle\epsilon, D_{2}\right\rangle-\left\langle e^{\prime} . \mathcal{D}^{\prime}\right\rangle:$ this justifes transitions $3,4,8$, and 9 . Transitions 1 and 2 respectively match 5 and 6 if we assume that

$$
\left\langle\epsilon^{\prime} \| f, \mathcal{D}_{1}\right\rangle \approx\left\langle\epsilon^{\prime}\| \| f, \mathcal{D}_{1}\right\rangle
$$

and

$$
\begin{equation*}
\left(\rho \| f^{\prime} . \mathcal{D}_{2}\right\rangle \approx\left\langle e\left\|\| f^{\prime}, \mathcal{D}_{2}\right\rangle\right. \tag{x}
\end{equation*}
$$

Also, by the assumption we made about \approx, transitiou 7 (together with trausition 5 followed hy 8) is matched by transitiou 1 followed by 3. This proves w for this case.

Now, we have only to check propositions ξ, η, and κ. They can be informally justified by a similar reasoning as the one used for ω. However, this call only be formally verified if we are able to use the formal defimtion of \approx with au associated proof technique. For example, this may be done using the notion of equivalence given in [3] with its related proof technique; we omit the details here.

From this theorem and assuming that ≈ 15 preserved hy $\| l$. we can guaranter that an expression uot contaiuing - 11 I - is equivaleut to an expression obtained from the first by substituting -III_for - II_. Similariy, III_ cau be replaced by _II_. Hence, we conclude that there is no need to introduce the operator _lll.: it is semautically equivaleut to _II _ and has a more complicated semantic definition. The extra rule for $-1 / \mathrm{I}$ - is redundant.

Furthermore, the theorem ahove indicates that the implementation of interleaving may be "truly concurrent", in the sense that two expressions might be simultaneously evgluated, given some mild couditions. Fortunately, as we have shown, this doesn't generate any behaviour that cannot be observed from the interleaviug of the evaluation of the two expressions

As mentioned before. simultaneous transitions are only possible if the attributes accessed in one transition are different from the altributes written in the other. This is a realistic restriction if attributes are directly implemeuted in terms of memory cells and transitions correspond to the execution of atomic trausactions, which imply that attributes might be blocked, However, this restriction could be relaxed if the implementation provides a copy of each attribute: that is, one copy for reading (access) and another for writing (access). The reading copy could he nsed by mauy clients at the same time, whereas the write copy could be blocked by only one client at a given time. In this case, a complex mechanism is necessary to keep the consistency between the two copies. On the other hand, the reading copy may be read at the same time that the writing copy is beiug updated. Also, considering that an atomic transaction would only hlock
the altributes that might be updated, a transaction could write to an attribute being read by a simultaneous transaction.

Clearly, this approach doesn't seem to be practical. It's likely that the efficiency gain obtained with the simultaneous exeeution is not worth because of the burden related to the mauagement of copies and extra memory space necessary to keep a copy of each attribute. Despite this, disregarding implementation issues, we superficially explore the consequences of this approach, from the semantic point of view.

First, let's assume that the operator _//_ $U U \rightarrow U$, for any $U \in U$. is defined by rules like the ones related to _llas one rule that allows simultaneons transitions whenever the attributes written in one 1 ransition are different from the attributes witten in the otber. Also, an object removed or created in one transition cannol be accessed, removed, or created in a simultaneous transition. (So, the only difference between $-l / I_{\text {_ }}$ and $/ /$ _ is that the second allows attributes read in one transition to be written in a simultaneous transition.) λs in the definition of _lll. some of the conditions necessary to formalize a rule considering simultampous transition cannot be elegantly expressed in our framework. However. we call still argue that $/ /$ _ is not equivalent to interleaving. This means that the extra behavionr assoctated to $/ / /$ cannot be expressed by the interleaving of two transitions.

First, consider the following specification defining a class of memory cells for storing natiral numbers

```
pr mit.
claga Cell.
at v : Cell -> Mat.
me _:=_ : Cell Hat -> Cell.
me _=_ : Ceil Cell -> Cell.
vars C C' : Cell.
var I : Nat
ax v(C:= Y) = #.
ax v(C:= C') = v(C').
```

where each object of Cell has an attribute v (for value) which stores a natural number, and two methods for changing the contents of a cell.

Now suppose that X and Y are identifiers of cells; the evaluation of the expression

$$
X:=Y / / Y:=X
$$

in a database state \mathcal{D} where $v(X)=0$ and $\mathbf{v}(Y)=1$ is illustrated by the diagram in figure 1 , where \mathcal{D}_{1} and \mathcal{D}_{2} are respectively the states

$$
D \mapsto v(x)=1 \text { and } \mathcal{D} \oplus v(Y)=0 .
$$

Note that veansition 5 wouldn't be possible if _I\|_(or _ll_) were used instead of //_. As can be seen, it's not equivalent to 1 followed by 3 , or 2 followed by 4. This shows that the two operators are not equivalent, siuce the resulting states are clearly not (observation) equivalent.

The operators are not equivalent, but there are weaker relations among the different operators for parallelism. For example, the expression analysed above is eqnivalent to

$$
\mathbf{X}:=\mathbf{v}(Y) \| Y:=\mathbf{v}(X) \text { and } X:=v(Y)\| \| Y:=v(X) \text {. }
$$

Figure 1: Transitions generated by $X:=Y / / Y:=X$.
since $v(X)$ and $v(Y)$ have $t o$ be evaluated before the assignment can be execnted (this is not alomically done). Also, we can say that $/ / f$ is refined by el\|f(or elif). for any expressions and t, because any belaviour observed from the evaluation of the first can also be observed from the evaluation of tbe second (bat not the other way around).

Lastly, it's important to observe that the new operator is sensitive to the gronp of attributes updated by its arguments. For example. consider the following observation equivalent expressions:

$$
[X:=Y ; Y:=Y] \text { and } X:=Y
$$

Also, we have that $\mathbf{Y}:=X$ is equivalent to $Y:=X$. Now note that the expression
(1) $Y:=X / / X:=Y$
is not equivalent to
(2) $\mathbf{Y}:=\mathbf{X} / /[\mathbf{X}:=\mathbf{Y} ; \mathbf{Y}:=Y]$
since the (sub)expressions of 1 can be executed at the same time (they write to different altributes). whereas this is not possible for 2 (hotb arguments update Y). In fact, expression I might behave in a way that cannot be simulated by 2 .

From the previous example, we conclude that it is not possible to find a reasonable notion of equivalence that is preserved by this operator. This essentially means that //. cannot be used for compositional software development. So, it's not very useful in practice That's another reason for choosing an interleaving semantics for FOOPS parallel composition.

7.3 Nondeterministic Choice

The choice operator (- []_) nondeterministically chooses one of its argnments for evalnation. Using process algebra's terminology (see [24, 32, 23]), here we opt for an esternal choiceoperator rather than an internal choice operator. In fact, the latier can be simply defined in terms of the former (see Section 3.2.2)

Essentially, the nondeterminism of an external choice is partly resolved by the emvironment where the choice is evaluated. In fact. an argument may only be chosen if it can be evaluated in the current environment, or if it's already fully evaluated. If both arguments may be chosen. the operator autonomously (internally) resolves the nondeterminism.

Transitions from the choice between two expressions correspond to transitions from one of the expressions. This is specified by the Rule Choicel (for chotce left argument evaluation)

Rule 7.8 (CboiceL)

$$
\frac{\langle e, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle e[] f, \mathcal{D}\rangle \rightarrow\left\langle\epsilon^{\prime}, \mathcal{D}^{\prime}\right\rangle}
$$

and the simslar ChoiceR (for choze right argument evaluation)

Rule 7.9 (ChoiceR)

$$
\frac{\langle f, D)-\left\langle f^{\prime} \cdot \mathcal{D}^{\prime}\right\rangle}{(\epsilon[] f, \mathcal{D}) \rightarrow\left\langle\mathcal{f}^{\prime}, \mathcal{D}^{\prime}\right\rangle}
$$

ㅁ

Moreover, a fully evaluated argument may be chosen by the choice without changing the datahase. This is expressed hy the Rule ChoiceLE (Sor chotce left argument fimination)

Rule 7.10 (ChoiceLE)

$$
\langle v[] e . \mathcal{D}\rangle-\langle v, \mathcal{D}\rangle
$$

and the symmetric ChoiceRE (for chonce rigth argument elimination)

Rule 7.11 (ChoiceRE)

$$
\langle\epsilon[] \cup, \mathcal{D}\rangle \rightarrow\langle v, \mathcal{D}\rangle
$$

It might be difficult to efficienlly amplement the kind of chore disrussed here because it tries to "guess" whether an argument can be evaluated or not. This contrasts with an internal choice operator, which can be simply and efficiently implemented. Also, the internal choice is likely to be nore useful in FOOPS specifications. However, we have adopted an external choice for two main reasons. First, it's more fundamental and can be used to define internal choice in a very simple way. Second, choice is usually used in FOOPS as an abstraction tool for writing specifications (when it's desirable to abstract from the reasons which determine one behaviour or another), rather than as an operator to construct implementations (as usually necessary in process aigebras).

7.4 Result

As probably expected, the rules giving the semantics of the result method combiner should be similar to the rules for sequential composition. This is confirmed by the Rule Resultl for evaluation of the left argument of the result combiner.

Rule 7.12 (ResultL)

$$
\frac{\langle\epsilon, \mathcal{P}\rangle-\left\langle\epsilon^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle\text { result } \epsilon ; f, \mathcal{D}\rangle-\left\langle\text { result } \epsilon^{\prime} ; f, \mathcal{D}^{\prime}\right\rangle}
$$

When the left argument is fully evaluated, the evaluation of the right one may start. But contrasting with sequential composition, the left argument. is not eliminated. Those aspects are described by the Rule Resultr (for result right argument evaluation):

Rule 7.13 (ResultR)

$$
\frac{\langle\epsilon, \mathcal{D}\rangle \rightarrow\left\langle e^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\langle\text { result } v ; e, \mathcal{D}\rangle \cdots\left\langle\text { result } v ; e^{\prime}, \mathcal{D}^{\prime}\right\rangle}
$$

Finally, when both arguments are fully evaluated. the left one is given as result, as indicated by Rule Resulte (for result elimination):

Rule 7.14 (ResultE)

$$
\left\langle\text { result } v ; v^{\prime}, \mathcal{D}\right\rangle-\langle x, \mathcal{D}\rangle
$$

7.5 Conditional

Besides conditional axioms, FOOPS has a method combiner that may be used for specifying conditional behaviour. In fact, this combiner provides a more general mechanism than conditionai axioms because its condition may be an arbitrary method expression, whereas the latter cannot have conditions containing method symbols or method combiners.

First, the conditional method combiner (if_then_else_fi) fully evaluates its condition. After that, based on the result, one of the alternatives is choosen. The Rule IfCond specifies the evaluation of the condition:

Rule 7.15 (IfCond) For any $c, c^{\prime} \in T_{s}$.

-

When the condition is fully evaluated, the first alternative is given as result, if the condition is true as indicated by Rule IfCondT:

Rule 7.16 (IfCoadT) If $v=F E$ true then

$$
\langle i f v \text { then } e \text { else } f i i, \mathcal{D}\rangle \rightarrow\langle e, \mathcal{D}\rangle
$$

If the condition is false, the conditional yields the second alternative:
Rule 7.17 (IfCondF) If $v=F E$ false theu
(if vthene elseffi, $\mathcal{D}\rangle-\langle f, \mathcal{D}\rangle$

It might seem that this method combiner could be equivalently defined as a function, in terms of equations at FOOPS functioual level. However, renember that functions cau only be evaluated if their arguments are fuuctioual terms or object identifiers. This implies that the alternatives of a conditional would have to be evaluated before one of them is choosen. In geueral. that's not the desired behaviour because the evaluation of the alternatives might change the state.

7.6 Atomic Evaluation

Intuitively, the atomic evaluation of an expression corresponds to its evaluation in only one step (transition). In fact, this means that the attributes accessed by au expression being atomically evaluated cannot be modified by other expressions being concurrently evaluated. Atomic evaluation might is necessary when an expressiou has to be evaluated without interference from others; that's why FOOPS provides the atomic evaluation operator ([_]). Following those intuitions, we introduce the next rule:

Rule 7.18 (Atomic)

$$
\frac{\langle e, \mathcal{D}\rangle \rightarrow^{*}\left\langle v, \mathcal{D}^{\prime}\right\rangle}{\langle[e], \mathcal{D}\rangle-\left\langle v, \mathcal{D}^{\prime}\right\rangle}
$$

where $\rightarrow{ }^{*}$ denotes the transitive, reflexive closure of \rightarrow^{5}.
Observe that the atomic evaluatiou ouly succeeds if the related expression can be fnlly evaluated. This corresponds to the semantics of atomic transactions iu database systems, where the fact that the expression cannot be fully evaluated is considered a failure. Usually, after a failure, transactions recover the state previous to the begiuuiug of the transaction: that's why there is no transition if the expression cannot be fully evaluated.

This approach is really useful for database systems. but it might be quite inefficient from the implementation point of view. So, if efficiency is essential, the atomic evaluation operator should only be nsed for expressions that cau be fully evaluated iu the contexts where they are used.

[^4]If the evaluation of the expression to be atomically evaluated doesn't terminate, the atomic expression doesn't terminate as well In fact, it behaves as a divergent process (infinite loop) that doenn't modify the state, since the updates made by an atomic expression are only visible after its evaluation (intermediate states reached during the evaluatiou of an atomic expression cannot be observed). The following rule reflects those comments:

Rule 7.19 (Diverge) If (e, \mathcal{D}) is nou terminating,

$$
\langle[\epsilon], D\rangle-\langle[\epsilon], D\rangle
$$

where
Definition 7.1 A ronfiguration is terminating if there is no infinite sequeuce of -transutions from it

From the rule above. we conciude that practical applications should not use the atomic evaluation operator for expressions whose evaluation, in the contexts where they are used, might not terminate.

7.7 Method Combiner Definition

During evaluation, method combiners defiued by the user are simply replaced by the expression that they abbreviate. as described by Rule MCDef (for method combiner definition):

Rule 7.20 (MCDef) For any $m c \in M C$ and expr $\in \mathcal{T}_{\Sigma(X)}$, if ; he axiom

$$
(\forall X) m c(\bar{x})=e x p r
$$

is in E and $m c(\tilde{x}) \in T_{M C(X)}$.

$$
\langle m c(\bar{e}), D\rangle \rightarrow\langle\operatorname{espr}(\tilde{x} \leftarrow \bar{\epsilon}), D\rangle
$$

where \bar{e} stands for $\epsilon_{1}, \ldots, e_{k}$, and $L S\left(\epsilon_{1}\right) \leq L S\left(x_{i}\right)$. $\operatorname{for} i=1 ., k$.
As can be seen from the rule above, the arguments of a method combiner don't have to be fully evaluated before the combiner is replaced by the expression that it abbreviates. Ia particular, they might contain method and method combiner symbols. This is uecessary for most applications. In this way. conditional axioms cannot be used to define methor combiners, since arguments would have to be evaluated before the evaluation of the condition.

Observe that introducing more than one axiom for the same method combiner gives a nondeterministic behaviour for it, since all axioms can be applied. In particular, adding rules for a predefined method combiner might completely change its behaviour. In fact, this cannot be done in FOOPS modules.

8 Object Creation and Deletion

Dynamic object creation and deletiou are respectively provided in FOOPS by the operators nes and renove. In tbis section, we describe the semantics of both operators. First, we consider object creation. Later, we introduce object deletion. These operators are modelled as method combiners because they are associated to classes, not to objects; that 1 s , their corresponding operations are not performed by objects. Hereafter we consider that signatures coutaiu the following special combiners:

- neu.C() : -> C.
- nev : C -> C, and
- remove : C \rightarrow C,
for each class $c \in C$. (This extends the definition of siguature, in the same way as done in Section 7.) Observe that the class name is used to form the operation name of the first creation operation: this is important to indicate the class of the objects to be created. A class uame is not necessary to distinguish the differeut versions of the other creation operatiou because this information is already provided by the class of its argument (identifiers have a fixed aud predefined class; see Section 5).

8.1 Object Creation

For a given class C, the operator neu. C() creates an object of C having an identifier nondeterministically choosen from I_{c}, but that is not already being used for another object. This identifier is given as the result of the evaluation of the operator, as specified by the next rule:

Rule 8.1 (Creation) For any class $\mathrm{C} \in C$ and any identifier $v \in I_{\mathrm{C}}$ not associated to an object in \mathcal{D} (i.e., $v \notin \operatorname{Id}(\mathcal{D})$),

$$
\langle\text { nev. } C(), \mathcal{D}\rangle \rightarrow\langle v, \mathcal{D} \cup\lceil \rangle
$$

where V^{\prime} is a $V^{* *} \times U^{\prime}$-sorted family containing r only; that is, $V_{i, c}=\{v\}$ aud $V_{w, u}=\emptyset$ if $w \neq \lambda$ or $u \not \equiv \mathrm{C}$.

Remember that the operation U adds objects to a database s ate, according to the identifiers given as arguments, without setting their attributes (see Section 5.1.2).

Nole that the creation operation directly introduces unhounded nondeterminism to FOOPS. if the fatuily I of object identifiers is formed by infinite sets. In this case, infinitely many identifiers may be choosen for creating an object.

The operator nes creates an object of the sane class as the identifier given as argument, if this identifier is not already associated to another object (otherwise, the operation cannot be executed). This identifier is used for the created object and vielded by the operator. These aspects are formalized by Rule CreationId (for object creation with identifier):

Rule 8.2 (CreationId) For any class $C \in C$ and auy identifier $v \in I_{C}$ uot associated to an object. in \mathcal{D} (..e., $v \notin \operatorname{Id}(\mathcal{D})$),

$$
\langle\operatorname{seg}(v), \mathcal{D}\rangle-\langle v, \mathcal{D} \cup V\rangle
$$

where V is a $U^{*} \times U^{\prime}$-sorted family containing v only, as defined in Rule 8.1.

From this rule, we conclude that in order to create an object of a given class, we have to know what ideutifiers are related to this class. Only these identifiers may be nsed for creating and accessing objects of this class. In practice, this is not a big restriction. For example, each family in I can be choosen (by the FOOPS system) to contain only names prefixed by the name of the class associated to the family. So. we can easily know what are the identifiers associated to a given class.

Observe that the operators for object creation don't assign initial valnes for attributes.

8.2 Object Deletion

The operator remove receives an object identifier as argument, removes its associated object from the database state, and yields this ideutifier. If this identifier doesn't correspond to an object in the state, the operation is suspended. The following rule formalize those aspects:

Rule 8.3 (Deletion) For any class $c \in C^{\prime}$ and any identifier $b \in I_{C}$ associated to an object in \mathcal{D} (i.e.. $v \in I d(\mathcal{D})$).

$$
\langle\text { remove }(v), \mathcal{D}\rangle \sim\langle v, \bar{D} \ominus V\rangle
$$

where V is a $U^{*} \times U$-sorted family containing v only, as in Rule 8.1.
Remember that the operation ey removes from a given database state all references to a particular object (see Section 5.1.3). This is necessary to avoid dangling identifiers. This operation might seem extremely centralized and inefficient, contrasting with the notion of distributed objects: bnt. in fact, it can be implemented in an efficient and decentralized way.

As the argument of remove doesn't have to be an object identifier, we need one more rale (DeletionArg, for evaluation of the argument of the deletion operation) indicating how the argnment should be evaluated

Rule 8.4 (DeletionA rg)

$$
\frac{\langle e, \mathcal{D}\rangle-\left\langle\epsilon^{\prime} \cdot \mathcal{D}^{\prime}\right\rangle}{\langle\text { remove }(e), \mathcal{D}\rangle \rightarrow\left\langle\text { remove }\left(e^{\prime}\right), D^{\prime}\right\rangle}
$$

9 Protected Objects

In this section we give the semantics of object protection. An informal description of this mechanism was given in Section 3.2.5. First, we assume that signatures have the combiner addpr for changing the protection status of objects, and new object creation operations:

```
* addpr : C Univ -> C,
- neg.C : Univ -> C. and
- neg : C Univ -> C.
```

for each class $\mathrm{C} \in C$. Also, the following combiners shonld be in signatures, for representing the object permission given as argnment to nex:

- _++_: Univ Univ -> Univ,
- \{\} : \rightarrow Univ, and
- any : -> Univ.

Using those combiners we can create terms in the following forms: ang, \{\}, and $0++s$, which respectively denote the set of all identifiers, the empty set, and the set containing the identifier o and the identifiers in the set denoted by s. where s is a term in one of the forms shown above. Only termio in those forms denote an object permission.

Second, we have to modify the structnre of configurations to incorporate information abont object permission. For a specification s, this information is represented by a finite mapping (relerred as the permassion mapping), helonging to $\operatorname{Perm}(S)=\left|I_{S}\right| \mapsto \mathbb{P}\left|I_{S}\right|$, which maps an object identifier o to the set of identifiers of the ohjects that can directly invoke methods associated to o. So, we let confignrations be represented by the elements of

$$
\operatorname{PrConf}(S)=T_{S} \times \operatorname{Perm}(S) \times D_{S}
$$

We drop the subscripts when not confusing, and we write $\langle e,(\varrho, \mathcal{D})\rangle$ for $(e, \varrho, \mathcal{D}) \in \operatorname{Pr} \operatorname{Conf}(S)$. For convenience, the elements of $P_{\epsilon} r m(S) \times D_{S}$ may also be called databasp states (containing object permission information).

We define the semantics of FOOPS with ohject protection following the same approach used in Section 6. Basically, for a specification S, we introdnce the relation $\rightarrow s \subseteq \operatorname{PrConf}(S) \times \operatorname{Pr} \operatorname{Conf}(S)$ (1's defined by the rnles given in the previous sections-excep1 Rnles 6.3, 6.4, 8.1. 8.2, and 8.3and some extra rnles to follow, assnming that

- database states have some extra information; that is, the variables \mathcal{D} and \mathcal{D}^{\prime} range over $\operatorname{Perm}(S) \times D_{S}$, rather than over D_{S};
- the operations on D_{S} are composed with the projections and constructors associated to $\operatorname{Perm}(S) \times D_{S}$ (let ϱ and $d b$ respectively give permission mappings and database states) For example, for $\mathcal{D} \in \operatorname{Perm}(S) \times D_{S}$, we now assume that $\mathcal{D} \oplus \Gamma$ stands for

$$
(\rho(\mathcal{D}) \cdot d b(\mathcal{D}) \mp \Gamma)
$$

(similarly for U and \ominus), and $\llbracket ~ \llbracket \rrbracket_{D}$ is an abbreviation for $\llbracket e \rrbracket_{d b(\mathcal{D})}$ (similarly for $[e]_{T}$ and $I d(\mathcal{D}))$.
Note that the rnles introdnced in previons sections are still meaningful after the modification on the structure of states. since we have also modified the operations nsed to access states to consider the new strnctnre.

In order to indicate the object reqnesting a particnlar service, we introduce the method combiner .!_ : T U \rightarrow T. for any types $T, U \in U$. The second argument of this operator is the identifier of the object reqnesting the evaluation of the first argnment. The second argument of $-!$ - and a permission mapping are enongh to give the semautics of object protection, by modifying some of the transition rules mtrodnced in previous sections (Rules 6.3. 6.4, 8.1, 8.2, and 8.3) and inclading new ones.

First we specify how - - is propagated 10 subexpressions. This is necessary because a method can only be evaluated if there is an indication of the object which invoked it. For this, we have to add some new rules. Hereafter, we consider an arbitrary object identifier $o \in J$.

9.1 Attributes, Functions, and Identifiers

The evaluation of attributes, fnnctions, and object identifiers doesn't update objects; bence. it doesn't depend on the mechanism for object protection, as formalized by the following rule:

Rale 9.1 (Pre) For any $e \in \mathcal{T}_{\text {fuaul }}$.

$$
\langle e!o, \mathcal{D}\rangle \sim\langle e, \mathcal{D}\rangle
$$

9.2 Arguments

The next rule shows how the mechanisin for object protection is propagated to the arguments of methods, if they do not already have it. In the following rules assume that $k \geq 1$.

Rule 9.2 (PrM) For any $m \in M_{w, u}$ such that $L S\left(\epsilon_{1}\right), \ldots, L S\left(\epsilon_{k}\right) \leq w$. if ϵ_{i}, for some $1 \leq i \leq k$, is not in the form e! f then

$$
\langle m(\bar{\epsilon}): o, D\rangle \rightarrow\langle m(\bar{\epsilon}, o)!o . D\rangle
$$

where \bar{e} ! ostands for $\epsilon_{1}!\rho, \ldots, \epsilon_{k}$! o. \square
The evaluation of method combiners is independent of the mechanism for object protection. Combiners just propagate this mechanism, if necessary, as specified by the next two rules:

Rule 9.3 (PrMCP) For any $m \in \in M C_{w, u}$ such that $L S\left(e_{1}\right), \ldots, L S\left(e_{k}\right) \leq w$, if e_{1}, for some $1 \leq i \leq k$, it not in the form $e!f$ then

$$
\langle m c(\bar{e})!o, \mathcal{D}\rangle \rightarrow\langle m c(\bar{e}!o) . \mathcal{D}\rangle
$$

However, if the arguments already have the mechanism, it's not propagated, as formalized by fite following rule.
Rule 9.4 (PrMC) For auy $m c \in M C_{u, u}$ such that $L S\left(e_{1}\right), \ldots L S\left(\epsilon_{k}\right) \leq w$, r all $e_{\text {. }}$ for $i=1 . . k$. are in the form e ! f then

$$
\langle m c(\bar{\varepsilon}\rangle!o, D\rangle \rightarrow\langle m c(\bar{e}), D\rangle
$$

Now we give a rule for argument evalnation of expressions formed by the method combiner -! -
Rule 9.5 (PrArg) For any $i \in\{1 \ldots, k\}$ and $o p \in(F \cup A \cup M)_{w, s}$ such that $L S\left(e_{1}\right) \ldots L S\left(e_{k}\right) \leq$ w.

$$
\frac{\left\langle\epsilon_{1}, \mathcal{D}\right\rangle \rightarrow\left\langle\epsilon_{i}^{\prime}, \mathcal{D}^{\prime}\right\rangle}{\left\langle o p\left(e_{1}, \ldots, \epsilon_{1}, \ldots, \epsilon_{t}\right)!o . \mathcal{D}\right\rangle \rightarrow\left\langle o p\left(e_{1}^{\prime}, \ldots, \tau\left(\epsilon_{1}^{\prime}\right), \ldots \epsilon_{k}^{\prime}\right): o, \mathcal{D}^{\prime}\right\rangle}
$$

where $e_{j}^{\prime}=e_{j}$, if $) \neq i$, for $j=1 \ldots k$; and $\tau\left(e_{i}^{\prime}\right)=e_{i}^{\prime}$, if $L S\left(e_{1}^{\prime}\right) \leq L S\left(e_{i}\right)$; otherwise. $\tau\left(e_{i}^{\prime}\right)=$ $\mathbf{r}: \mathrm{n}^{\prime}>\mathrm{s}\left(\varepsilon_{i}^{\prime}\right)$, where $\mathrm{u}^{\prime}=L S\left(e_{i}^{\prime}\right)$ and $\mathrm{u}=L S\left(e_{i}\right)$.

Note that the original rule for argument evaluation is not replaced by the above rule, since it's still useful for evaluation of the arguments of attributes, for example.

9.3 Methods

Now we introduce new rules for method evaluation. Those are small modifications of the rules in Section5 $6.3,6.4$, and 6.5 . Here the behaviour of a method depends on the object that requested it. The method might be executed or suspended, depending wbether the invocation is allowed by the object protection mechanism. For a given state \mathcal{D}, only the objects in $\varrho(\mathcal{D})(v)$ can directly invoke methods of v (when v is not in the domain of $\varrho(\mathcal{D}), \varrho(\mathcal{D})(v)$ denotes the empty set.).

9.3.1 Methods Specified by DMAs

first we consider the evaluation of methods specified by DMAs.
Rule 9.6 (PrDMA) For any $m \in I I$ let Γ be the set of all equations

$$
a\left(v_{1}, \bar{y}\right)(\bar{x} \leftharpoondown \tilde{v})=\llbracket g(\bar{x}-\bar{i}) \rrbracket v_{\cup i}
$$

such that E has a DMA in the form

$$
(\forall X) a(m(\tilde{r}), \bar{y})=g 11 c ;
$$

true belougs to $[c(\tilde{x} \leftarrow \tilde{y})] \mathcal{D} \cup \boldsymbol{D} ; \llbracket g(\tilde{x} \leftarrow i)]]_{\mathcal{D} \cup I}$ is in $\mathcal{P}_{F \cup I d(\mathcal{D})}$; and $m^{\prime}=m$ and $m \in R_{w^{\prime}, u^{\prime}}$, for sonne $u_{1}, \ldots, u_{n} \leq w^{\prime}$, imply that $L S\left(x_{1}\right)$ is smaller than or eqnal to the least class greater than or equal to u_{1} such that m is redefined.

If $v_{1} \in I d(\mathcal{D}), o \in \varrho(\mathcal{D})\left(v_{1}\right)$, and Γ is a non empty and non contradictory set theu

$$
\left\langle m^{\prime}(i)!o . \mathcal{D}\right\rangle-\left\langle v_{1}, \mathcal{D} \nsubseteq \Gamma\right\rangle
$$

9.3.2 Methods Specified by IMAs

Similarly to what was done in the last section, we modify the rule for evaluation of methods specified by IMAs. Note that the execution of a melliod m specified by an IMA sometimes requires the invocation of methods associated to other objects; those methods are directly invoked by the object that performs m.
Rule 9.7 (PriMA) For any $m \in M_{1}$, if the IMA

$$
(\forall X) m(\tilde{x})=e x p r \text { if } c
$$

is in E. true $\in[c(\bar{x}-\bar{u})]_{\mathcal{D} \cup} ; m^{\prime}=m$ and $m \in R_{w^{\prime}, u^{\prime}}$. for some $u_{1}, \ldots, u_{n} \leq w^{\prime}$, imply that $L S\left(x_{1}\right)$ is smalier than or equal to the least class greater than or equal to u_{1} such that m is redefined; and $o \in \rho(\mathcal{D})\left(v_{1}\right)$ then

$$
\left(m^{\prime}(\bar{v})!o, \mathcal{D}\right\rangle-\left\langle\operatorname{expr}(\tilde{x} \leftarrow i)!v_{1}, \mathcal{D}\right\rangle
$$

Contrasting to the original rule for evaluation of methods specified by IMAs, the rule above introduces a transition that is dependent on the state; that is, the transition is only possible if the object protection is not violated.

9.4 Object Creation and Deletion

Lastly, we modify the rules for object creation and deletion. Basieally, the only difference from the creation opetations introduced in this section and the operations introduced in Section 8 is that the former set the otject permission.

First we have to define the function set for mapping the extra argument of not to the set of identifiers that it represents:

$$
\begin{aligned}
\operatorname{set}(\}) & =\emptyset \\
\operatorname{set}(\operatorname{any}) & =|I| \\
\operatorname{set}(e++f) & -\{e\} \cup \operatorname{set}(f), \text { if } f \in I \\
& =\operatorname{set}(f), \text { if } \in \notin I
\end{aligned}
$$

Note that the arguments of +++ that are not object identifiers are diararded by set.
The following rules describe the semantics of the operations for object creation. There

$$
T \cong\{u \mapsto s\} \text { denoles }(\underline{v}(P) \div\{u \mapsto s\}, d b(D))
$$

for any database state $\mathcal{D}, \vec{\in} \in I$, and $s|I|$ the oneration for mapping overwriting is represented by Φ. Also, we assume that e is a term specifying an object pernission, as described above. Any object is allowed to invoke the creation operations; that is, those operations don't depend on the mechanism for ohject ptotection, as indicated by the following rule:

Rule 9.8 (PrCreatiou) For any class $C \in C$, and any identifier $v^{\prime} \in I_{C}$ not associated to an object in \mathcal{D} (i.e., $v \notin I d(\mathcal{D})$),

$$
(n \otimes \square . C(e)!\rho, D) \rightarrow(v, D \cup V \oplus\{v \mapsto \operatorname{set}(\rho)\}\rangle
$$

where V is a $U^{*} \times U$-sorted family containing v^{*} only; that is. $V_{i, c}=\{v\}$ and $V_{u, t}^{r}=\emptyset$ if $w \neq \lambda$ or $u \neq \mathrm{C}$. D
and

Rule 9.9 (PrCreationid) For any class $C \in C$ and any identifier $v \in I_{C}$ not associated to an object in \mathcal{D} (i.e., $v \nsubseteq I d(\mathcal{D})$),

$$
\langle\operatorname{neq}(v, e) \quad o, \mathcal{D}\rangle \rightarrow\langle v, D \cup V \notin\{v \mapsto \operatorname{set}(e)\}\rangle
$$

where V is a family containing v only, as in Rule 9.8 .
From those rules, we can see that by default an object doesn't have permission toinvoke its own methods. If this is desired, as usually the case, this has to be specified at object creation ime, by making sure that v is in set($e)$.

We modify the semantics of remove in such a way that a deletion operation can only be performed if the object wbich asked for it is able to invoke methods of the object to be removed. Here is the new rule:

Rule 9.10 ($\mathbf{P r D e l e t i o n) ~ F o r ~ a n y ~ c l a s s ~} c \in C$ and any identifier $v \in I_{C}$ associated to an object in \mathcal{D} (i.e., $v \in \operatorname{Id}(\mathcal{D})$), if $o \in \varrho(\mathcal{D})(v)$ then

$$
\langle\mathrm{ramove}(v): o, \mathcal{D}\rangle \rightarrow\langle v, \mathcal{D} \subseteq V \text { F }\{v \mapsto \emptyset\}\rangle
$$

where V is a family containing v only, as in Rule 9.8 .
Note that tbe object protection information associated to an object is reset after its deletion.
Lastly, we define the semantics of the addpr (, ,) operator, which was informally described in Section 32.5 .

Rule 9.11 (PrAdd) For any ohject v in \mathcal{D} (i.e., $v \in I d(\mathcal{D})$), if $a \in \rho(\mathcal{D})(v)$ then

$$
\langle\operatorname{addpr}(v, e)!o, \mathcal{D}\rangle \rightarrow\langle v, \mathcal{D}\{v \curvearrowleft \operatorname{set}(e) \cup \rho(\mathcal{D})(v)\}\rangle
$$

9.5 Comparison with Other Approaches

Now we comment on some alternatives to the approach for object protection that we have used here. First, we consider the introduction of root objects, as in C++ and Eiffel. Basically, only root objects may be interfered in an arbitrary way; mierference in aon root objects is derived from interference in root objects. In FOOPS without object protection, any object is a root object. L'sually. there is more than one root object in a distributed system, but only one in a sequential system.

This mechanism only protects non root objects from arbitrary interference. In fact, we have to check if the interference propagated by root objects doesn't violate the protection rules that we want to enforce for non root objects. In general, this might generate complicated proof obligations. Moreover, this only assures protection for a system in isolation, it doesn't guarantee protection if this system is included as part of a larger system, where more root objects might be available and additional propagated interference might occur. Clearly, this is not appropriate for a compositional development method.

In order to achieve compositionality with this approach it would be necessary to verify that the objects that should be protecled cannot he accessed by new objects in a larger system. This can be enforced by making sure that the ideutifiers of the protected objects aren't yielded by any operation that may be invoked hy objects in the larger system. Again, this might lead to complicated proof obligatious In fact. it seems simpler to support a mechanism that directly enforces object protection, rather than writing some specific code for guaranteeing that, and discharging complicated proof obligations.

As briefly discussed before, the second alternative for object protection is the snpport for private references [26]. However, it's not appropriate in general. In fact, this is a particular case of our mechanism for object protertion. Considering the examples given in Section 3.2.5, private references are appropriate for modelling linked lists (smce an intermediate cell should only be accessed by its precedeut in the sequence); however, private refetences are too restrictive for modelling the communication protocol (siuce the channel should be protected, but shared by both agents) Hence, it seems useful to lave a more general mechanism for object protection.

Another general approach for object protection was independently introdnced by Hogg [25] In our approach, one explicitly restricts the group of objects tbat can directly invoke methods of a protected object. In Hogg's approach, one explicitly indicate a so called bridge object, defining an associated group of protected objects (ssland); tben any direct access to a protected object (an object in an island) must be indirectly derived from an access to an associated bridge object. There are subtle differences between the two approaches. Whereas Hogg's approach seems more absiract, it seems that a finer level of protection can be specified by onr approach. In fact, more experiments would be necessary to give ns more confidence that Hogg's approacb shouldn't be supported by FOOPS.

10 Evaluation in the Background

In order to give the semantics of - we use another stmotnre for representing configurations. Now we consider that configurations also contain some information about the expressions rejing evaluated in the background. This refects the collceptual distinction between both kinds of evaluation. Hereafter, for a specification S. configurations are represented by elements of

$$
\operatorname{AgConf}(S)=T_{S} \times T_{S} \times \operatorname{Perm}(S) \times D_{S}
$$

where the first component of snch a tuple is the "main" expression, the second is the expression in the backgronnd, and the last two correspond to the database state with object permission. We write $\langle e, f,(\varrho, \mathcal{D})\rangle$ or $\langle e,(f, \varrho, \mathcal{D})\rangle$ for $(e, f, \varrho, \mathcal{D}) \in B g \operatorname{Con} f(S)$.

We follow a similar approach to the one used in Section 9. First we define the relation $\hookrightarrow S \subseteq B g \operatorname{Con} f(S) \times B g \operatorname{Con} f(S)$ by the rules used for the definition of $\rightarrow s$ in the last section, assuming that

- \rightarrow is replaced by \longrightarrow, in all rnles;
- database states also contain information about cxpressions being evalnated in the harkground: that is. the variables \mathcal{D} and \mathcal{D}^{\prime} range over pairs of nethod expressions and database states with permission information (i.e., $\mathcal{D}, \mathcal{D}^{\prime} \in T_{S} \times \operatorname{Perm}(S) \times U_{S}$), and
- the operations on database slates are composed with the projections aud constructors associated to $T_{S} \times P e r m(S) \times D_{S}$ (let $g, b g$ and $d b$ respectively give permission mappings, background expressions, and database states). For example. for $\mathcal{D} \in \mathcal{T}_{S} \times \operatorname{perm}^{(S)} \times D_{S}$, we now assume that $\mathcal{D} \oplus \Gamma$ stands for

$$
(b g(\mathcal{D}), \underline{\rho}(\mathcal{D}), d b(\mathcal{D}) \oplus \Gamma)
$$

(similarly for \cup and Θ), and $\left[f[]_{z} \text { abbreviates } \llbracket e\right]_{d b}(D)$ (similarly for $[e]_{D}$ and $I d(\mathcal{D})$). Lastly, $\mathcal{D} \oplus\{v \mapsto s\}$ means $(\phi g(\mathcal{D}), \underline{\mathcal{D}}) \oplus\{v \mapsto s\}, d \phi(\mathcal{D}\})$
But we also need to introdnce one rule indicating how _ is evaluated. Essentially, \boldsymbol{s}_{-}starts the evaluation of its second argument in parallel with the current background expression. The first argument is then given as result, as indicated hy Rule BgOp (for background operator):

Rule 10.1 (BgOp) For any $b \in T_{\Sigma}$ and $\mathcal{P} \in \operatorname{Perm}(S) \times D_{S}$,

$$
\left\langle e _f, b, \mathcal{P}\right\rangle \hookrightarrow\langle e, f \| b, \mathcal{P}\rangle
$$

Naturally, we assume that _ $\mathbb{E}_{-}: U T \rightarrow U$ is in $M C$, for any $T, U \in U$.
The rule above finally defines \rightarrow. However, note that this relation only considers the evaluation of the main expression. We still have to specify how the expression in the background is evaluated; this is done by the relation $\rightarrow s \subseteq B g \operatorname{Conf}(S) \times B g \operatorname{Con} f(S)$, defined by the following rule (BgEval, for background evaluation). A background expression is evaluated just as if it were a main expression, and any additional background expression resulting from this evaluation will also be evaluated in the background.

Rule 10.2 ($\mathbf{B g}$ Eval) For any $b \in T_{\Sigma}, \mathcal{P} \in \operatorname{Perm}(S) \times D_{S}$, and a fully evaluated expession skip,

$$
\frac{\langle b, \text { skip. } \mathcal{P}\rangle \hookrightarrow\left\langle f, f^{\prime}, \mathcal{P}^{\prime}\right\rangle}{\langle\epsilon, b, \mathcal{P}\rangle \multimap\left\langle\epsilon, b^{\prime}, \mathcal{P}^{\prime}\right\rangle}
$$

where b^{\prime} is f, if $f^{\prime} \equiv$ skip; otherwise, b^{\prime} is $f \| f^{\prime}$. \square
The transitions specified by \curvearrowleft are called "internal transitions". They change the state without evalualing the main expression, which is what can be observed by an (external) user of a FOOPS system.

Finally, the semantics of FOOPS with evaluation of expressions in the background is given by the union of the relations $\rightarrow s$ and $ص s$. We use $-s \subseteq B g \operatorname{Conf}(S) \times B g \operatorname{Con} f(S)$ to denote this union; we ornit the obvious rules defining it ${ }^{6}$.

Using two different relations to define $\rightarrow s$ might seem unnecessarily complicated. But this rlearly separates transitions caused by the main expression from transitious generated by the expression in the background. This simplifies the definition of certain operators that should not consider internal transitions. For example, this is the case of []] and -[]_ Usiug only oue relation complicates the semantic definition. In fact, contrasting to what has been done here, it wouldn't be possible to define \rightarrow using some of the rules introduced in the previous sections.

11 Conclusions

We have described a structural operational semantics for the object level of FOOPS, considering features such as: classes of objects with associated metbods and attributes, object identity, dynamic object creation and deletion, overloading, polymorphism, iuheritance with overriding, concurrency, nondeterminism, atomic execution, evaluation of expressious as backgrouud processes. auto-methods, non terminating methods, and a mechanism for object protection.

We have concentrated on the object level of FOOPS. The semantics of other aspects, like the functional level and the module system. are discussed elsewhere [40. 28]. Here we only consider the semantics of "flat" specifications; that is, specifications without module importation or generic parameters.

The usnal features of object-oriented languages were explained in detail, in a simple and abstract way, by using a special approach for modelling states of the operational semantics. This approach uses all the power of the theory of ATDs for defining operations on states and reasoning about them; in particular, the semantics of inheritance, and evaluation and dyuamic binding of stored attributes is directly provided by OSA. It then becomes simple lo define the basic operations

[^5]on states. In fact, lots of complications were avoided, a concise semantic definition could be obtained and many concepts, usually confusing in other frameworks, were clarified. Indeed, this approach seems appropriate to define the operatioual semantics of other object-oriented languages as well.

We have also justified the semantics of some constructs comparing to alternatives approaches. Perhaps snrprising is the comparison between "true concurrency" and interleaving We have argued that these approaches are equivaieut in the context of FOOPS, giveu some mild assumpthons on the uotion of equivalence of programs adopted for the language. This has the interesting consequence that we can use the simpler interleaving model for reasoning about true concurrency. That's what should be expected since it's desirable to specify systems of distributed objects withont worrying whether other computations are being carried out simultaneously. This result could probably be generalized for other concurrent object-oriented langnages.

Along with the semantic descripion, we have clarified many concepts and phemomena related to object-oriented languages. In particular, the definition of the operational semautics raised the following technical points ahoul FOOPS:

- there must be syntactical constrants on axiom conditions and DMAs RHS;
- the object creation operations shouldn t have arguments for automatir intialization of attribntes: and
- invariants are just annotations:

We have also briefly discussed how the semantics suggests an appropriate programming style for FOOPS. and how to avoid introdncing inconsistencies in specifications.

The semantics described in this text is part of a formal definition of FOOPS. So. it's usefui as a formal basis for deriving implementations and tools for FOOPS (see [2] for the details on the derivation of a symbolic simulator for FOOPS). In addition, because of the simplicity al the semantic definition, the operational semantics establishes a framework to suppurt the formal development of distributed software in an object-oriented language In fact, it has been used to define a notion of refinement for FOOPS programs and spenfications. togethri with an associated proof technique which seems to be appropriate for many applications [3] The semantics is also useful for reasoning about general properties of FOOPS programs.

11.1 Related Work

Most of the FOOPS features considered here are not considered by other alternatives for the semantics of FOOPS, like the refiective semantics [18] and the sheaf semantics [44, 29, 4]. Iit fact, we are not aware of a formal semantics for a language intcgrating all those features. In particular, we haven't seen any proposal sinilar to the mechanism for object protecton described here. Moreover, it seems that the semantics of evaluation in the background and atomic evaluation for a concurrent language hasn't been formalized before.

The basic idea about FOOPS reflective semantics, as described in [18], is to represent FOOPS programs and database states as abstract data types (ADTs) in such a way that the queries and modifications to the database are encoded as functions of these data types. Essentially, this defines an operational semantics for FOOPS using the functional part of the language, which has a denotational semantics based on order-sorted algebra [19] and an operational semantics given by order-sorted rewriting [28]. In other words, this can be seen as providing a simulator for FOOPS
written in OBJ. Using this approach, reasoning about FOOPS programs is essentially reduced to order-sorted deduction [19], where part of the equational theory, given by the information stored in the database, changes with time. Comparing with FOOPS reflective semantics, in this text we use a more abstract approach [39], which is also more appropriate for giving the semantics of concurrency, nondeterminism, and other aspects of FOOPS uot discussed in [18].

The most complete work on a sheaf theoretic semantics for FOOPS is [4]. In this work, ouly a subset of FOOPS is considered; in particnlar, inheritance, dynamic binding, and atomicity are not considered. 1n fact, contrasting to tbe semantics presented here, it seems that the semantics of the atomicity operator cannot be given in a simple and abstract way using tbe approach of [4]. Also, the semantic description using sheaf theory is much longer than an equivalent operational semantics description. The advantage of using sheaf theory for defining the semantic of FOOPS seems to be the ricb mathematical structure associated to sheafs; however, it's not clear yol how this can be used.

A lot of effort has been done in order to give semantics for object-oriented langnages [1, $6,30,7,43,8,13,27]$. Most of the work in this area uses mathematical models based on set theory [7], metric spaces [1], category theory [30,8], and hidden order-sorted algebra [13]. The exceptions are [6], which defines an assertional style proof system, and [43, 27], which give the semantics in terms of a process algebra based on an operational semantics [33]. By contrast, the work developed here is based on the simple frameworks of strnctural operational semantics [39] and OSA [19]. Similar approaches using some of those frameworks are used in works on process algebras [32, 36], imperative languages [37], and a general notation for giving the semantics of programming languages [34].

Because of the details associaled to the semantics of object identification, and the lack of a fnlly abstract mathematical model for interleaving, operational semantics seems to be quite adequate for specifying the semantics of a language like FOOPS. In fact, this can be easily and concisely done, being still possible to reason abont the semantics in an pragmatical way. Also, giving the semantics of FOOPS in terms of a process algebra is not worth, since it doesn't seem to be possible to use the algebra to reason abont the semantics and programs; for that purpose, one has actually to use the (operational) semantics associated to the process algebra (see [27]).

11.2 Further Research

The language and semantics described here could be extended and revised in the following aspects:

- In addition to DMAs and IMAs, it would be interesting to consider the effects of other kinds of axioms; this inigbt be useful for specifications in general.
- Perhaps it would be more appropriate to nnderstand DMA and IMA conditions as preconditions (the meaning of an operation is undefined for a particular state if its unique related axiom has a pre-condition that is not valid in that state), rather than as enabling conditions (an operation blocks in a state where its unique related axion enabling condition is not valid); this would provide a higher degree of underspecification to FOOPS specifications.
- Dynamic binding of derived attributes could be provided by adding a specific rule for evaluation of derived attributes. similar to the rule for evalnation of rnethods specified by IMAs: however, note that attributes should be atomically evaluated.
- A complete semantics for updating of multi-argument stored attributes should be developed.
- The mechanism for object protection could be extended; also, its suitability and expressiveness should be better explored hy using it iu practice.
- The development of large applications might suggest the additiou of some application specific method combiners to the language.
- It might be worth intestigaling the consequences of adopting a more restricted computatioual model for FOOPS; for example, this could be achieved by allowing only one method to be executed in an object at a given time.

Acknowledgements

Thanks bo Steve Schneider and Grant Malcolnt for giving many suggestions which helped to simplify the semantics described here. The authors are grateful to Steve Schneider and Adolfo Socorro for carofally reading and correcting an early version of this text The first author also had the opportunity to discusa in detall some of the asperts prosented bere with Grit Denker and Prof. Hans Dieter Ehrich, during an enjoyable vistt to Braunschweig, supported by the IS-CORF project. Special thanks go to Jose Meseguer and Razan Diaconescu for most of the texi in Section 2, which was copied from [19], [16], and [15].

References

[1] Pierre Amenca and J.J M.M. Rutten. A parallel object-oriefnted language: Design and semantic foundations. Technical Report CS-R8953, Centre for Mathematics and Computer Scipnce. 1989.
[2] Paulo Borba. A symbolic simulator for FOOPS. Technical report, Oxford Innersity, Cont. puting Laboratory, Progranming Research Croup, May 1995. To appear.
[3] Paulo Borba and Joseph Goguen. Refnement of concurrent object-otiented programs Technical Report PRG-TR-17-94, Oxford Cniversity, Computing Lahoratory, Programming Research Group, November 1g94. To appear in the proceedings of the BCS;FACS workshop on formal aspects of object-oriented prograuming, fondon, December 1993.
[4] Coma Cirstea. A distrihuted semanties for FOOPS. To appear, 1995. Oxford Universily. Computing Laboratory, Programming Research Group.
[5] Stephen Coffin. UNAX System V, Release 4, the Complete Reference. Osborne/McGraw-Hill, 1991.
[6] Frank de Boer. Reasoning about dyncmically evolving process structures - A proof theory for the porallel object-orsented languige POOL. PhD thesis. Vije ! injversiteit. Amsterdam, 1991.
[7] David Duke and Roger Duke. Towards a semantics for Ohject-Z. In Dines Bjorner, C.A R. Hoare. and Hans Langmaack, editors, Proceedings, VDM90: VDM and Z-Formal Methods in Software Development, pages 242-262. Springer-Verlag, 1990. Lecture Notes in Computer Science, Volume 428.
[8] Hans-Dieter Ehrich, Joseph Goguen, and Amilcar Sernadas. A categorial theory of objects as observed processes. In J.W. de Bakker, Willem P. de Roever, and Gregora Rozenberg, editors, Foundations of Object Oritnted Languages, pages 203-228. Springer-Verlag, 1991. Lecture Notes in Computer Science, Volune 489; Proceedings, REX/FOOL Worksbopfi, Noordwijkerhout, the Netherlauds, May/June 1990.
[9] Joseph Goguen. Order sorted algebra. Terhnical Report 14, UCLA Computer Science Department, 1978. Semantics and Theory of Computation Series.
[10] Joseph Goguen. Parameterized programming. Transactions on Soflware Engineering, SE-10(5):528-543, September 1984.
[11] Joseph Goguen. An algebraic approach to refinement. In Dines Bjorner. C.A.R. Hoare, and Hans Langmaack, editors, Proceedogs, VD'90: VDM and Z-Formal Methods in Soflware Development, pages]2-28. Springer-Verlag. 1990. Lecture Noles in Computer Science, Volume 428.
[12] Joseph Goguen. Hyperprogramming: A iormal approarh to software environments. In Proceedings, Sympostam on Formal Approaches to Software Entironment Techology. Joint System Development Corporation, Tokyo, Japan, January 1990.
[13] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe, and Ralph F. Wachter, editors, Topology and Category Theary in Computer Science, pages 357-390. Oxford, 1991.
[14] Joseph Goguen. Sheaf semantics for concurrent interacting objects. Mathematicol Structures in Computer Science, 11:159-191. 1992.
[15] Joseph Goguen. Theorem Proving and Algebra. to appear.
[16] Joseph Gogueu and Răzvan Diaconescu. An Oxford survey of order sorted algebra. Mathetnatical Structures in Computer Science, to appear.
[1i] Joseph Goguen and Grant Malcoln. Proof of correctuess of object representations. In A.W. Roscoe, editor, A Classical Mind: essays dedicated to C.A.R. Hoare. Prentice Hall, 1994.
[18] Joseph Goguen aud José Meseguer. Unifying functional, object-oriented and relational programming, with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research Directions in Objeci-Oriented Programming, pages 417-477. MIT, 1987.
[19] Joseph Goguen aud José Meseguer. Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Sctence, 2(105), 1992.
[20] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the specification, correctness and implementatioo of abstract data types. Technical Report RC 6487, IBM T.J. Watsou Research Center, October 1976. In Current Trends in Programming Methodology, IV. Raymond Yeh. editor. Prentice-Hall. 1978, pages 80-149.
[21] Joseph Goguen and Timothy Winkler. Introducing OBJ3. Technical Report SR1-CSL-88-9, SRI International, Computer Science Lab, August 1988. Revised version to appear with additional authors José Mesegrer, Kokichi Fntatsugi and Jean-Pierre Jounnnaud, in Applications of Algebraic Sperification esing OBJ. edited by Joseph Goguen.
[22] Joseph Goguen and David Wolfram. On types and FOOPS. In Robert Meersman, William Kent, and Samit Khosla editors. Object Oriented Databases: Analysis, Destgn and Construcfion, pages l-22. North Holland, 1991. Proceedings, 1 FIP TC2 Conference, Windermere: UK, 2-6 July 1990 .
[23] Mathew Hennessy. A lgcbraic Theory of Proctsseg. The MIT Ptess, 1988.
[24] C.A.R. Hoare. Communatang Sequental Proctsses. Prentice Hall, 1985.
[25] John Hagg. Islands: Aliasing protection in object-oriented languages. In [98], 1991.
[2ti] Cliff Jones. An object-based design method for concurrent programs. Techncal Report UMCS-92-12-1, Department of Computer Science, University of Mauchester, 1992
[27] Cliff Jones. Process-algebraic foundations for an object-based design notation Technical Report UMCS-93-10-1, Department of Computer Science, Uuiversity of Manchester, 1993.
[28] Claude Kirchncr, Hélène Kirchuer, and José Meseguer. Operational semantics of OBJ3. In T. Lepistö and Aarturo Salomaa, editors, Proceedings, J5th International Colioquaum on Automata, Languages and Programming, Tampere, Finland. July 11-15, 1988. pages 287301. Springer-Verlag, 1988. Lecture Notes in Computer Science, Volume 317.
[29] Grant Malcolm. A sheaf semantics for FOOPS. To appeas, 1995. Oxford University, Computing Laboratery, Programming Research Group.
[30] José Meseguer. A logical theory of concurrent objects. In Proceednas af ECOOP.OOPSLAGf Conference on Object Oriented Programming, pages 101-115. ACM. 1900
[31] José Meseguer aud Joseph Goguen. Iuitiality, induction and computability In Maurice Nivat and John Reynolds, editors, Algebrac Methods in Semantics. pages 459-541 Cambridge, 1985.
[32] Robin Milner. Communication and Concurrency. Prentice Hall. 1989.
[33] Robin Milner, Joachim Parrow. aud David Walker. A calcnlus of mobile processes. Technical Report ECS-LFCS-89-85, 86, Laboratory for Foundations of Computer Science, Edinburgh University. 1989.
[34] Peter Mosses. Action Semantics. Tracts in Theoretical Computer Science. Cambridge University Press, 1902.
[35] Ellen Munthe-Kaas, Joseph Goguen, and José Meseguer. Method expressions and default values for object-valued attributes. SRI International. Computer Science Lab 1989.
[36] Elie Najm and Jean-Bernaed Stefani. Object-hased concurrency: a process calculns analysis. In S. Abramsky and T.S.E. Maibaum, editors, TAPSOFT'91. Theory and Practice of Software Development, volume 494 (1) of Lecture Notes in Computer Science, pages 359-380. Springer-Verlag, 1991.
[3i] Pawel Pacakowksi. Annotated Transition Systems for Verifying Concurrent Programs. PhD thesis, University of Edinburgh, Apral 1991.
[38] Andreas Paepcke, editor DOPSIA'91. ACM, ACM Press, November 1991.
[39] Gordon Plotkin. A strnctural approach to operational semantics. Technical Report DAIMI FN-19. Computer Science Department, Aarhus University, September 1981.
[40] Lucia Rapanotti and Adolfo Socorro. Introtucing FOOPS. 'Technical report. Oxford University, Computing Laboratory, Programming Research Group. November 1992. PRG-TR-28-82.
[11] Gert Smolka, Werner Nutt, Joseph Gognen. and José Meseguer. Order-sorted equational computation. In Maurice Nivat and Hassau A ${ }^{\text {it-Kaci. editors, Resolution of Equations in }}$ Algebraic Stryctures. Yolume 2: Rewrifug Technaques. pages 290-367. Academic, 1989. Preliminary version in Proceedings, Colloquium on the Resolution of Equations in Algebraic Structures, held in Lakeway, Texas, May 1987, and SEKI Report SR-87-14. Universität Kaisersiautern, Decenber 1987.
[42] Adolfo Socorro. Design. Implementation, and Evaluation of a Declaratave Object Oriented Language. PhD thesis, Oxford University, Computing Laboratory, Programming Research Group, 1993.
[43] David Walker. π-Calculns semantics of object-oriented programming languages In TACS'91 - Proceedings of the infernafional Conference on Theoretical Aspects of Computer Science, volume 526 of Lecture Noies in Computer Science, pages 532-547. Springer-Verlag, 1991.
[44] David Wolfram and Joseph Gognen A sheaf semantics for FOOPS expressions. In Mario Tokoro, Oscar Nierstrasz, and Peter Wegner, editors, Object-Based Concurrent Computation, pages 81-98. Springer-Verlag, 1992. Proceedings, ECOOP'习1 Workshop, Geneva. July 1991.

[^0]: *Supported by CAPES, Brazil, Grant 2184-91-8, and the CEC ander ESPRIT-2 BRA Working Group 6031. IS-CORE (Information Systems COrrectuess and REusability). Electronic mail: Paulo. Borba@prg.oxford.ac.uk.
 ${ }^{1}$ Snpported in part by the Science and Engineering Research Council, the CEC under ESPRIT-2 BRA Working Groups 6071, IS-CORE (Infonmation Systems COrrectness and REusability) and 6112, COMPASS (COM Prehensive Algebraic Approach to System Specification and development.), Fujitsn Laboratories Limited, and a contract under the management of the Information Technology Promotion Agency (IPA). Japar, as part dithe Industrial Science and Technology Frontier Program "New Models for Soft ware Architectures," sponsored br NEDO (New Energy and Iudustrial Technology Development Organization). Electronic mail: Joseph.Goguentyrg. orford.ac.uk.

[^1]: ${ }^{7}$ Given a posel (S, \leq). let \cong denote the irsnsitive and symmetric closure of \leq Then \cong is an equivalence relation whose equivalence classes are called the connected components of (S, \leq).
 ${ }^{2}$ However, be reader should be awate that satisfaction of an equation depends crucially on its variable set [31].

[^2]: ${ }^{3}$ Formally, for a given ($D, D E$)-algebja - flg, monotone except ofl Ω. there exists a monotone ($F U J d, F E$) algebra $A l g^{\prime}$ and an injective ($F \cup I d$)-homomorphism from $A g^{\prime}$ to $A l_{g} \mid F$.

[^3]: 'Non conslant method symbols are nejther allowed in conditions nor in the RHS of DMAs.

[^4]: ${ }^{5}$ We omit the obvious rules necessary for defining \rightarrow *.

[^5]: ${ }^{5}$ Note that $-s$ is overloaded in this text.

