
An Operational Semant)cs for FOOPS

by

Panlo Ijorba

Jo.sepll A. Goguen

TechIllca.1 Monogra.ph PRG-ll.5

November 1994

Oxford Universit.y Compnting Laboratory
Programming Research Group
Wolfson Building, Parks Road
OXford OX I 3QD
England

(
)

o '<
 " ;;;
. ;;;

Contents

1 Introduction •
2 Over",iew of Order Sorted Algebra 6

2.1 Siguatnres 6

2.2 Algebras. 7

2.3 Terms 8

2.4 EqnatioYlS 10

2.5 Order-'1-orted Equational Deduct,lOn 10

2.6 Thf>ory Pre.~entations 11

3 O",er",jew of FOOPS 12

3.1 Funct.ional L",vf>l . 12

3.1.1 Retracts 14

:i:2 Objpc! Level. 15

3.2.1 Axioms 16

3.2,2 Met.hod Combiner8 18

3.2.3 Objea Creat.ioll alld Deletion 20

3.2..t Other Aspects 21

3.2.5 Protected Objects. 22

3.2.6 Aspects of roops Opflratiollal SflJllanti('s 23

4 Signatures and Specificll.tions 26

5 Database Statea 29

5.1 Operations on DMabase St.ates 31

5.1.1 Updating Databases 31

5.1.2 Adding Objects t.o Databases 32

51.3 Remo"'ing Object.s from Databa!:ies 32

6 Methods, Attributes, and Functional Expressions 33

6.1 Fnnctional Expressions. 33

6.2 Att.ributes .. 34

6.2.1 Qualified Not.ation for Alt-ributes 35

6 3 Methods Specified by D:r..1 As 36

6.4 Methods Specified by IMAs 39

6.5 Arguments 40

7 Method Combiners 41

7.1 Sequential Composition. 42

7.2 P!lrallel Composition .. 43

7.2.1 "True Concurreucy" 44

7.3 Nondeterminisl.ic Choice 49

i.4 Result .. \l
7.5 Conditional 51

7.6 A tomie Evalu alion 52

, C01\'TENTS

T.' Method Combiner Definitioll	 53

8 Object Creation and Deletion	 54

8.1 Object Creation	 54

8.2 Object Ddetioll	 ·55

9	 ProtectF.'d Objects 55

9,1 Attnuutes, Functiolls. and JdenljfiN~

92 Argumtnts 57"

9.3 11 ethods 58

9.3,j ~1ethods Specified b) D.\fA~ 5'

fl.3.2 ~fpj,horls Specili.,d by 1~1A" 58

9.·1 ObJect Ct€lItlon and Ddf'tlon !)!1

~.!"j Comp;;ri~on with OllJ('I Al'Pro<lchb 60

10 Evaluation itl the Baekgl'o\lud	 61

11 Conclusions	 62

11.1 Re]at~d Work	 63

11.2 Further Rese[Jfch	 64

I

An Operational Semantics for FOOPS

Paulo Borba* Joseph A. Goguen t

~o\'ember 1994

Abstract

FOOPS is a concurrent oDJecl-orienr.ed language. \\'e give a structural opera;ionaI se
mantics for FOapS, considering [",atllre;; such as classes of objecls with associated methods
and attributes, object identity. dynamic objed. creation and deletioll, overloading, po;ymorph~

ism, mhentance with overriding, dynamic binding, concurrency, nondeterminisrn, iliomic ex
eClllioll, evaluation of expressions as background processes, and object prolection.

Introduction

FOOPS is a concurrent. object.-orient.ed specificat.ion language with an execntablesuhset [18, 40].

roops includes a functional language derived from OBJ [21], which is a firs: order, purely

functional language support.ing an algehraic style for t,he specification, rapid prototyping, and

implementation of abstract dat.a t.ypes.

FOOPS extends OBl by providing a simple declarative style for object.-oriented programming

and specificatiou using (couditional) equations. It supports classf"s of objects with associated

methods and attributes, object identity, dyuamlc object creation and delet-ion. ov~rloading, poly

morphism, iuheritance with overridiug, dyuamlc bindillg, and many additional fe!tures.

lIere we consider a natural e.deusion of FOOPS for specifying ~yst.ems of conmrrent., distrib

uted. and aUl,onomous object,~ [12, 35]. Essent.ially, this eJ[t.ension allows the definition of non

terminat.ing (autonomous) methods, and has explicit construct,ors (',ailed met-hoc combiners) for

e:l(pressing concurrenc)', non determinism, atomic execution. and evaluation of melhod expressions

as background process!:'s. Furthermore, these constructors may be used to defim more complex

ones. by using the facilities for mel-hod combiner definition. Those feat,nres are necessa,ry for

mode\ling processes in a natural way.

This extension of FOOPS also provides a nlechanism for object protection; i~ general terms,

il's possible to specify which objects are allowed to directly invoke methods of a rrotected object.

In fact. I,his can be used for defining pri"'ate references (object identifiers); that ii, references that.

·Supporled by CAPES. Brazil, Gran~ 2184·91·8, and the CEC IIndet ESPRfT-2 BRA WOlking Group 50;!.
IS-CORE (Infotmation Systl'ms COnectue-"s and REusabilit,y). Electronic mail: Paulo.Borbatprg.oxford.ae.u);.

'Snpporled in part by the Science "nd Engineering R",seuch Council, th", CEC under ESPRlf-2 BRA Working
Groups 6071, IS-CORE (Infonnalion System~ COrrectness and REusa.bilily) and 6112, COMPASS (COM Prehen~

ive Algebraic Approach to Syslem Specification and developmenl,j, Fujitsn LaboratQ[ie~ Limiled, and a contu.ct
under the management of the Information Technolog.r Promolion Agency (IPA). Japan. as part clthe rndu~trial Sci
ence and Technology Frontiet Program "'New Models for Software Archilectures," sponsored bl' NEDO (New En
etgy and Iudulitrial Technology Development Oqr;a.l\i::ation). Electronic mail: Joseph. G08uwG'yrg. odord .1Ie. uk.

o

ti 1. O\iEHnEH': Of ORDER SORTED ALGEBRA.

can only be used by a particular objHl. This mechanism ,>('ems to he essential for specifying and

reasoning in a practical W3.': about. s)'stems consist.ing of arbitrary obj.,ct. gra.phs [26].

All tllOsf' aspect.s are considered by thf' strunural operational semantics [39] that we describ"

ill this paper. Howew'r, we conrentrate on the object level of FOOPS. An operational semantics

for the functional level may be found e!sewhl're [28].

Along WJI,b the semant.ic description, we gi,'e commt'Jl!S that clarif)' ma.ny concepts and phe

!lomena related 1,0 object-oriented languagE's. In particu];.;.r. we show)IOYi the semantics suggests

an appropriat.e programming style for FOOPS, and indicates how inconsistencies in FOOPS spe

qficatiolls rna}' be avoided. We also jnstif,y tbe semantics adopted for some constructs, relating

il to alternatives. In special, we di~cuss the "trul)' concurrl'ut" and inlerl.. avmg sema/Hics for
]la.rallel cornpomion. It turns Ollt that these approache~ (He ('quivalellt III the context of FOOPS.

~i~-eH some mIld assumptions on the nouon of e4nivaleuce of programs used for the langnage,

y.,'e adopt a ~pecial approach for modelling slates of (,he operational seIll antic,,; Followmg some
Idea:;, from [18], we use ord/:'r sorted t-ho-ory presellrations [HI. Hi] to rppresent statt's ThlS ba:;,

thp arlvantage of using all the power of tile theory of ATDs for definmg operat.ions on states and

r",asonillg about. them, As slates aH' representt'd by au abstract slructure. the Sl'mallt\cs is define,l

in '), simple way In facl, lot:; of c0111plicat,ious are aVOld d aud a concise semantic definititm cau

he ohtained, although the lallguage "lIpporl~ nlallY f('attlr"',;;, Abo, thr u:",> of this approach cl..arly

facilitates the definition of the semi\nlics, Slllce the origmal FOOPS design USt'd concept.:> from

order-sorted algebra (OSA) [I OJ,
Tbis text i6 structurf·d in the following way. Fust, 1" give an o\'erview of OSA. SeconJ,

we introduc~ most, aspeds of FOOPS. Aftf'r that, 1" give the basis for the semantic rlefinit.ion;

we introduce formal definilions and operalions for FoarS signal,ures, 5pecifications, and rnntime

database states. Lastly, we gradually df'scnbe the wmantics; Wt' give Jules for function, method

and attribnte (,I'aluat.ion. followed hy rules for m"fhod combiner'-. cr'c'ation all d deletion of objects.

<:lnd a mechanism fOr object protection.

2 Overview of Order Sorted Algebra

We introduce som", notation, definir,ions and basic re~ults of order-sorted algebra (OS A). as ori_

ginally presented in [101. Most of the material in fIJis spc[.lOn i", copied from [19], [16], and [I!)];

llere we also introduce some extra notation. This geuend oven'jew of OSA)s necessary because

It, is the mathematical theory supporting roops functlOlial IHel, and it is u5ed to defille the

semantics descrIbed in this text..

OSA is a mat.hematical theory snpl'orting mUl1iple inhPrit~nce, overloading, polymorphism.

~rror handling, partial functLons, and multiplE' repres<'utarlOn 1Il an algebr.llc framework The

main idea to solve l.bt'se problems is the ddillit,iou of;) partial ordu all the set of sorts of a

gi\en specification. Tllis is illl,erprded as subset. indusioll III the algebras that are models of (,his

specification. More mot.i\-atioll and the history of OSA cau be found ill [19,16]. Here we dirt'Clly

inrroduce the basic concepts.

2.1 Signatures

Sigllat.ures indicate the sorls alld operations in a speciflcaliou ThIS notion is formalized in Ihis

sect.ion.

2.2 .4..Jgebras 7

The nolation of sorte d (also called "indexed") sets greatly facilitates the technical development.

of OSA. GIven a "sort set" S, an S-Borted Bet A is just a family of sets A~ fOI each "sort"

S E S: we writ,e {A., I S E S}. Similarly, given 5-sorted sets A and B, an 5-sorted funetioo

f: A --.-.,. B is an S-sorted family f == U., A., - B., I 09 E S}. For a fixed 5, operations on

5-sorted sets are defined component-wise. For example, given S-sorted sets A and B, AU B is

defined as (A U B)~ == A", U B" for each s E S. We write IAI for the distribnt.ed un:on of all setg

in A; that is, IAI = U,ES A~_ Also, e E A is an abbreviat.ion for e E IAI·
In order-sorted algebra. 5 is a partially ordered set, or poset, i.e., there is a binary relation

'5 on 5 that is reflexive. transitlH, and antis)"mmetric. We will often \Ise the extension of the

ordering on S to strings of equal Jellg\.h ill S.. by Sl ... 09" .::; s~ ... s~, iff 8i .::; 8: for 1 ::; i .::; n.

Similarly, '5 extends to pairs {w,s} in S·)<. S by (w,sJ'::; (w\s') iff w'::;' w' and 8 5 8 ' .

Definition 2.1 A Dlany~sorted signature is a pair (S,~), where S is called theBOrt set and

E is an S· X S~sorted family {Ew,s I w E S· and 8 E S}. Elements of (the sets inl E are called

operation (or function) symbols, or for short, operations. An order-Borted signature is a

triple (8.S,B) snch that (S,~) IS a many-sorted signature and (8,'::;) is a poset

An order sorted signature is monotone iff tile operations satisfy the following monotonicity

condition,

(1 E B wu1 (l B w 2,.,2 and wI .::; w2 imply 81 .::; 82.

When the sort set S is clear, we write ~ for (S,B), and when t.he posel (5,'::;) is ciear, we write

E for (S,'::;,E). Wb.en (1 E ElL',., we say that (1 has rRnk (w,s), arity '11', and Ivalne, resnlt,

or coarity) sort s. A special case is 'UJ = A, the empty string; then (1 E E A,. I:> a constant

symbol of sort s. Norice that the monot.onicity condition excludes o\'er loaded comLanls, becanse

A == wi = w2 implies 81 :S .'12. 0

A n important obser vatioll is that I.he t.heory of OSA can be developed without the monotonicity

condition for signatures [16J. In fact, it.'s necessary to avoid ~his condition in (Irder to model

FOOPS database s~al~s, as we will see later (see [16] for more motival,ion for no! enforcing the

monotonicity condit.ion).

Given a signatnre (5,'::;', X), we say t,hat, X is a ground signature iff it. is formed only by

distinct constant symbols; that. i~. X.\,3 (l X.\,." ::: 0 wheneHr s :f 09
1

, and X W.3 = ~ unless w == A.
For a siguat,ure E, the notation ~(X) abbreviates I; U X, if X IS a gronnd signatnre disjoint from

r: (i.e .. X (l ~ == 0). In this case, WI' may call X a r;-variable family.

2.2 Algebras

We now turn to the models that provide actual functions to il11.erpret the operation symbols in a

signature.

Definition 2.2 Let (S,~) be a many-sorted signature. Then an (S.1:)-algebra A is a family

{A., I s E S} of sets called l,he carriers of A, toget.her with a funct.ion A" Aw - A 8 for each.

(1 in E W ,3 where A w = A"l X , .. X A.n when w = 091 .. . sn and where All' is lone poinl set
when w = A. Let (5,S,~) be an order-sorled signature. An (S, .::;,~)-algebr8 ila many sorted

(S,E)-algebra A Buch that .'I'::; .'I' implies A., <; A 3 ,. When the sort. set. S is c1ear.(S,:E)-algebras

may be called many-sorted I;-algebras; similarly, when (S,.::;) is clear, (S,S,:;l-algebras may

be called order· sorted I;-algebras.

8 2. QVER\']E\V OF ORDER SORTED ALGEBRA

\Ve say that n is a signature of non-monotonicities for ~ If 11 c;:; I:. Then, an order sorled
L-algebra A is monotone except on n Iff

a E I:wl,.l 11 r;w2,~2 and wl :S w2 and 81 :S .~2 Imply A" AWl ~ A.1 equals

A. A w2 A~2 on Awl, unless Cf E nWl.~l

An order sorted ~>algebta A is Inonotone iff it is monolone excepr, on the empty stgnature. 0

Definition 2.3 Lef, (5,!::) bp a many-sorted signa(ur~, and let A 1tnd 8 be (S.~)-algebra:<; Then

an (S,~)-holllomorphism h A - B is an S-sorted functioll h :::: {hJl As --> fl, I s E S}
'''Jtisfying the followlllg homoml>rphism (".oudition

(1) h.(A~,JI(a)) = D;:"'(n,,..la) for ('ach (J E ~".s an.] fl E A",

where hw(a):::: (hs](al), h.",(all») wilen 11':::: .~l ... ,~n and a '-co (01. ...• an) with (Ii E.4" for
i :::: 1,., .. n when U' ".). If w =)., (ondjtioll (l) spe(i"lizes [,0

(I') h,(A~") = B;".

'Vh",n the sort set. 5 is d\~ar, a (S.~)-homomotphism may he called <\ (many-sorted) !:
homomorphisms

Lf't (5. s,~) be an order-sorted lilgnaturp., and let A and B hI' order-~ort.l"d (5'.S.E)-algehras.

Th"'l1 an (5'. S:.E)-homomorphism is any (5'. L:)-homomorphism. If A and Bare monot.one,

a monotone (5',S,E)-homomorphism h A - !J is an (S,~)-homomorphism satisfying tht"

following restriction condition:

(2) s S ~I and a E A~ impl)' h~(a) = h~,((I)

'Vhen the poset (S,S) is clear, ... at'" also called (order_sorted) I:(S.$.,~)-homomorphism

hOlnonlorphi!lms. 0

2_3 Terms

The algebra whose carrier sets ar'" formed by the I.erms we can construct from a given signature

~ is called the term algebra: it's denot.. d by 7E . In this spctlou we describe all lllductivc

construction defining the term algehra. FOf all order-sorted signature (5',::::: ,E), the term algebra

is the least family {TE,~ I ~ E S} of sets satisfying {,he follo mg conditions:

• 1:;" .. ~ T~., for ~ E S:

• Tr; ... ' ~ Tr:." if s' S ~,

• if a E Ew ,.. and if ti E T~." where w == 81 , . . ,~n ".)., then (the string) ain ... tn} E Tr.,J/'

Abo,

• {or a E L"'.j let. % : T", ~ T. selld fl tn to (the string) (T(tl ..• in).

Thus we can write O'(tl, ... , tn) for O'~t L... tn). It'5 now easy to check that Tr. i5 an order-50rted

E-algebra.
The term5 <:ousidered above are groulld terms, in the 5ense that they involve no variable5. In

fa(t, term5 wjl,h variables can be 5een a5 a5pecial case of ground terms, by enlarging the signature

witb new con5tants that corre6pond 10 variable symbols. Given an order-sorted signalure (5, ~,E)

and a E-variable family X, we can obtain a new order-sorted signature (S, ~,E(X)) and form

Tl:(x), This can be viewed a5 an order-sorted E-algebra, by forgetting the constants in X: lel's

denote thi5 aLgebra Tr:(X). This gives tbe algebra of E-terms wit.h variables in X.
A term llIay have many different sorts. In particular, if t E Tr, has sort. s then it also has sort

13'. for any s' such that s :5 s'. A condition on signatures called regularity guaranties that evef)'

term has a well defined leMl sort [19J. Here is the formal definition:

Definitioll 2.4 An order sorted sign3l.ure (S,::::,r:) i5 regular iff it is monolote. and given

rr E ~l.l'I.~1 and wO ~ wi. there is a least rank (w,s) 5uch that wO ~ wand rr E Eu,~. 0

So, given a regular ord.:-r-sorted slgna\.url:' (S,~,E). for any t E T'E, there is a lea!t s E 5 such

that t E 7E,J; this is called the least SOl·t of I and it's denoted by LS(t).

In practice, regularity is not a slrong restri(tion since non regular signatures canbe translated

iul,o r.:-gular ones wh('fe the rallk of all operaf.iou 15 considered to be part of its nane.

Consid.:-ring E-variable families X and Y, given an S-sorted map a : ~\: ----+ Tr::n, there is a

unique E-homomorphism 7f T!:(xJ - T'E,(}'J which suh5titute5 a t.('fln a(x) for each variable

x E X into each term' iu 7£(x), yieldiug a term a(t) in T'E,(Y) (see [19]). Hence a is called a

substitution and n(t) denotes the applicat.ion of t.hi5 5ubstitution to a term 1. t:sually, we use

the alternative notalions

t{XI ~ tj,X2 <- fl •...• I" <---- i,,) and a(t)

instea.d ofa(t), where 1.\"1::: {Xl, ...• Xn} ancl a(I,)::: ti, for i::: l. ... ,n. Moreov~r, we omit lhe

pair Xi +- t, wbenever ti ::: Xi·

The key for developing OSA without, the monotonicit.y condition for signature, is to consider

typed (parsed) t.erms; that is, lerm5 together with their sort information. \Ve introduce the

term algebra Pr. of fully parsed term5 assoC'iated to E. We let Pr; be the lea~t. S-sorted set

such that. rr E E W ,3 and t·; E P'E, .•" for i ::: 1, ... ,11, where w ::: sl'nt, and il .s s' imply

rr:ws(t1, ... ,tn) E 'Pr;,." The definitions iutroduced so far and lhe 0lle5 to come cm be eXlended

in an-ob"'ious w-;'y for parsed l,erms, but. for simplicity we ouly consider unparsed te:ms. Morl'over.

parsed term5 have least. sorl,s even if the related signature is non monotonic or not regular.

Now. giveu a regular signature "E, we can define a parsing fUn('Lion pr:, T;, -+ Pr:, which

transforms au unt.yped term t. into a fully typed term t' such thal. the sorl, of t' is Ihe Least 50r1 of

t. When not confusing, we drop the subscript from p. Here i5 the formal definiticn'

p(rr(el •... ,e,,)) = O'.WU(P(tl, ...• r,,)).

where p(e1, ... , en) ::: p(ed p(en), u ::= LS(0'(e1 • ..• , en)), and u: is the least Hqllence of sorh

of size 1/. such that 0' E E w •u and LS(el)," .• LS(e n) ~ w. 1t'5 eas)' t.o exlend p to equation8 (see

Section 2.4), set of equations and variable families. Here we omit the details. Als~. for simplicity,

we let un parsed terms be used in places wbere parsed term5 are expected. i: lhe associated

signature is regular. In those cases, we Msume that an unparsed I,erm I abbrevi!te5 p(t). In the

same way, au Iluparsed equation might be u5ed when a par5ecl equ<ltion is experled.

10	 2. OVERn£W OF ORDER SORTED ALGEBR-4

2.4 Equations

In this .section we give a formal definition for equations.

Definition 2.S For a regular order-soIled signature (S. :::;.1:).:-. E-equation is a triple (X,t, it)
where X is a E-variahle family and I,t' are in Tr:(xj wilh L8(1) and LS(t') in tbl? same connected

component of (5. :::;)1 We will use t.llf" notation ('''iX) t ::::: tt. When ~he variable set X can

be do:clnced from the context (for example, if X contams jU6t the variilhles that occur in t alld

f'. with sorts that are ulliquely dekrmilled or hav.. he'll pteviou!<lr d,c1ar~d) we allow it 1.0 b."

omitted 2; I,bat is, we allow unquarJlified noLation for equations. \\'e also say that 3n eqllallon is

unquantified if X = 0.
Order-sorted cout.litinnal pqualions gE'neralize ordf'r-sorh.,d t''luati0Ils in lhe usual way, i.e"

they are expr ..~sioliS of tILe form (VXj t = I' if C, where the ..ondition C i~ a finite set or

unqu ant.ified ~-€quatioIl!> involving only \';uiables ill X (when C = 0, conditional ~.equat.joJls ar"

regarded as ordinary ~-eq\ll'olloIlS) 0

for conciseness, sometimes we II~(" variations Oil tht' llolatiou rOf eqllations: (X.l.r.Cl ~(alld!'

[or C"iX) I = r if C; (I, r.C) IS mpd when X = 0: and we rit.. 1= r ir X = C = 0.

2.5 Order-sorted Equational Deduction

ThL~ section giles rule,~ of dedllction for OSA wit.h condit,jonal equations, This yields a construc

tiun for initial and free order-soned algebras a" quotlo';J!ts or tt:'rm algebra.., by the congruence

generated by the rules of deduction from givt'n equation", The det,ails (an be found ill [19); here

we just. itltroduce the rules of deduction,

Gin'lI an. order-sorted signature (S. S,2:) and a. set r of couditional ~-equations, we consider

pach unconditional equatioll in f to be derivable, The following rule" allow derivlllg furrhn

(ullconditional) equations:

(1)	 Relhl/vi/y, Each equation of the rorm

(VX) / ~ t

is derivable,

(2)	 SYnJmdTg. If

(VX) t= t'

IS derivable. then so is

(~X) I' = /.

(3)	 Trllfisitll'/ty. If the equatiolls

(VX) t = f'. ('\fX) t' = til

are deri\'able. then so is

IVX) t = til,

(4) CQ'lgru,nce, If 0, ()': X - TE(}·) are substitutions such that fOI· each z E X, the

equation

IGiven a pO!!et (S,~), let S!' denme the h<l>IISilive and symlllelIic dusIlre or ~ Then 2;: is an eq\lIvalence
relat.ion whose equivalence classes are called the connectl:'d C'.omponents of (S, :5),

2However, Ihf [eadel should be aware thal 5atisraction of an e<jllalion dep!"nd~ oucially on its variable set [.11].

11 2,6 TIJeo'l:Y Presentations

(W) B(x) = B'(x)

is dNinble, theu given t E TE(X). the equation

(W) B(I) = B'(t)

is also derivable.

\5) Sub.slllutlt'llll. If
('v'X) t = I' it C

is in f, and if B X ~ TE(Y'-) is a sllbstitutioll ~uch that for each u v inC, the

t'quation

(WI B(u) ~ B(,)

is derivable, then so is

(V}') B(I) = B(I')

Although these rules are rather compactly formulated, they correspond exaetl~ t.o intuitions

that we feel should be expected for eyuational deduction. Of course, there are nany possible

variations on this rule set; for example, see [4IJ.
Given a set of equations f. there is a congruence =r relating two terms iff we <"n prove that

they are equal from the equations in f and applicatioll!> of the rules above. fur'hermore, thit;

congruence splits the term algebra iuto eyuivalence classes of terms modnlo r. lJence, given a

t.erm t, [tJr deuotes its equivalence class under r, and [1]1' denotes the represent-atile of this clast;

(this can always he freely chosen without, prohlems [20], so we do not give an)' mor_ details of its

definition).

Lastly, note that lhe concepts illlroduced here can be easily extended to consider parsed terms.

2,6 Theory Presentations

Specifications are modelled by the concept of t.heory presentation.

Definition 2.6 An order-sorted theory presentation (hereafter, presentationl is an ordered

4-tuple. (5, .$,1:, f). ""here (5, ::;,E) is an order-sort.ed signat.ure and r is a set of r·equations. 0

For a presentation po: (5, ::;,!::,r)p Ie! f =p f'. [f]p. and [f]p respectivel) me~n t ==r t l
, [IJr,

and ITt]r. Also, givpn a sigllature (5.~, E), we use P U I;' for the presentation (5,~, ~ U ~I, f).'

Now, we exteud t.he definit.ion of presentation to allow non-monotonic operatic'ns.

Definition 2,7 An order·sorted presentation with a signfJture of non·monotonicities

is an ordered 5-tuple, (5,.$,E.11,r), where (5,.$,B) is an order-sorted signaturl, f it; a set of

par.Hd 'E-equations, and 11 is a siguature of non-monot.onlcilleS such that E - 11 iJ monotOne. 0

for reasoning aboul this kind of preseutation. we aSSllllle default equations relaLing monotonic

operations having the same name and related ranks. This is necessary because p~rsed equations

are IIsed (the related operat.ions don't uecessarily agree on the intersection of thm arities). The

defa.ult equations are in the form: a.ws(x) = a.wJ,5'(i). for any a E ~w,~nE"",~1 slch that tL' ~ Wi
and a ¢ n",,~. where.\'"" is a :E-variable family, X, EX. for i = 1 .. k, i st.ands fOr'l:l •... ,1'/:, and

111= L5(rl) ,L5(Xi,). We II'I r" be the union of r with default equations.

Hence, for a presentation P = (5, ~,E,n, f), we let t =p t' , [tlp. and ITt]p relpectively mean

l :::r~ t'. [tlr", and [t]r~. Lasl,ly, given a signature (5, .$.£/), we use P U E ' for lhe presentation

(5,:$,'E U~',11,r).

" 3. O\t'ERYIEW OF FOOPS

3 Overview of FOOPS

FOOPS extendsOBJ with some concept.'J from object-orienr.ed programming. This motivateR two

central design decisions (see [22, 18.40,42] for mOle details about FOOPS design): data elements
are not object>, and clas!i'E's are not modnles.

Th., firs! distinctioll is based Oil tlil" facl that data elf'lllents (e.g .. natural numbers) are stateless,

but objects (e.g., buffers) have an internal state that can change with time. In this way, FOOPS
provides different constructs for defining abstract data types and classes of objects. ConsequenUy,

'here are two milstruds for specifying inheritance. In facl" overloading, polymorphism, and
inheritauce au also available for t.he specification of ADTs, by t.he definition of subsorts (snbtypes).

The second design decisiou recognizes tbe necessity to havc a construction where related

classes and ab,lract data typer; can he defined logeth<::r. In FOOPS, tJII~ is provided by modules,

which are the main program!lllng nnlt oflhf.laJlgn~ge. This is OlW ofth~ main aspects ofFOOPS

(also df'rived from OBJ); it includes a powerful module int.erconnection lauguage, supporting

parameterized modnles with semantic interrace requiremelHs. which allows the programming style

known as "Parameterized Programlning·· [10J.
Further jmtification for bot.h decisions is given in [22J, wherf' this approach is compared wit.h

others.

This clear distinction between data elements and objects divides lhe langnage in two parts:

the functional level and the object level. In each level, there are two kinds of modulf's: one of

them is nsed to define executable code. and is [<imply called module: (,he other one, called thtlJry,

is nsed to specify properties ahout the operations of an abstract data type or a class. Essentially,

programs are written in modules and specifications are wrillen in theories. Furthermore, theories

are a.lso used 1.0 specify the syntactic and semantic fl'strictlOns t,hat must be satisfied by the aclual

arguments ofa parameterized modnle. In order to specify how a theory 18 interpreted (satisfied) by

(lnot.her theory or modnle-necessary, for eX<llnple, when inst.anllating a parameteriud modllle

the language provides views, which are bindings indicating how the classes, sorts, and operations

symbols of a theory are interpreled in a.nother theory or module.

The acron~'m FOOPS stands for Functional and Object-oriented Programming System, but

we usually use it for the language provided by the syst.em. FOOPS was first presented in [18J, but

[40.42] describes t.he language in detail. including "omt> ideas about different approaches for its

formal semant,ics (ri'!flective semanlics based on order-sorted algebra [18.191, hidden order-sorted

<\Jgebra [11, 17], and sheaf theory [44. 101]).

Here we briefly describe the fUlIctiollal level of FOOPS and SO/llt of its parameterized pro

gram ming featnres. Following this, we give a det.ailed description of the object level and intuitions
aboilt its operational semant,ics.

3.1 Fun<:tional Level

The functional level of FOOPS is a syntactical variaut of OBJ. At this le\'el it is possible to

defiue abstrart data types, which are sets of data elements together with associated operations

A FOOPS functional module defines one or more abst.ract dat.a f)·pes. where the keywordR Ion:

and :fn respectively int.roduce the name of the set of data t>lpmenl,s, and t.he associated operations

(functions) ~ymboJs.

A very simple functional theory is

:!'ttl. TRlV i8

sort Elt

endtth

It introdnces the sort E1 t, but it has no coustraints about the operations associatE'd to it. Hence,

Lhe onl)' requirement that actual arguments to a module parameterized by TRIV m1l5t satisfy is

to ha,.. e a defined sort.

As an E'xample of a parameterized functionalle\'el module, we consider LIST, de~ning lists of

elements of a given ~ort:

tIllod LIST[E TRI v] is

pr Il'AT .

This modulE' is par(lmet.eriud by tIle sort of tbe elements in a lIst, (parameler E). Iu order to df'fine

an operatioll giving t.he nnmber of elements in a list, we use a built-in module defining nat.ural

nllmbers; lhe kPyword pr ilHlicall's lhl\t the module IIAT is imporled and we don't add or identify

data element,s of the sarI,s defined in the module.

The following declaration int.roduces 1\ sort for nOllemply li~ts and another for lilts,

sorts lIeList List

subsorte Elt < lleLJ.st < List

whet'" elements are considered singleton (nollempty) list" and nonempty lists are, of course, lists,

as indicated by thE' subsatt relationship «). This i" what spe,ifies inht:>ritance at the functional

level: for example, as all elements of E1t are elernelll~ of List, all func:Lions associated t.o List

call also be nsed for thf> elements of E1t.

The empty list is represented b)' the constant nil, aud _, _ denotf's the function that concat

enates two lists.

tn nil -) List

fn List List -> List [assoc jd: nil]

fn ReList LJ.st -) ReList

fn ReList leList -> lIeList

The underscores in _,_ serve M placeholder~ for t,he argument.s of this functiou. He~ce,

nil _ nil

is a ell formed t.erm; thai is_ the application of to nil and nil. Not.e that. is overloaded,

aud concatenat.iou of nonE'mpt.)' lists results in a nonempty list.. As indicated by the attributes,

thIS fUuction is associativE' (assoc) and has nil as identity (id: nil).

Some other functions are head,,hich gives t.he first element. of a non empt.y lisl; tail, which

maps a nou empt.y list to one obt.aine<l b)' removing its first element; and ._, which gives t.he

number of elements in a lisl. The"e are int.rodnced by the following declarations:

tn head ~ lIeList -> E1t _

tn tail lIeList -> LJ.st
tn ._ ; List -> Rat

14 3. OVERHEW OF FQOPS

The functionsb..a.d and tail are only defined for llOnf'll1pl,y list.s. This gives the effect of pfLrl.ial

functions, by defining them as total ou specific subsorts restricting their domain.

The meaniug of those functions is given by axioms (equalloHs). In ~ module defining code,
equations are interpreted as left-t.o-right rewrite rules. For the example being discussed, the

following equations are necessary:

var E Elt

var L List

ax head(E Ll • E

ax tail(E L) = L

ax # Dil " 0

a.r: # (L E) = • L + 1

endtmod

The keyword var introduces \"arlables of a given sort, wherfas ax precedrs an axiom. aud endfmod

iudicates the end of a functional module.

Instead of writing lbe first axiom for ._, Wt> could have written t.h~ equivalent (auditional

axiom (ex iudicates that the aXIOm is coudltional):

ex , L = 0 it L == nil

where the condition for which tIll' axiom i", valid (or may be applied) follows it. Note that every

modnle in FOOPS automatically impOrls a built.-in module of booleans cOlllaining the usnal

operations, lind the overloaded equality (_==_l and iUl"l'{ualil)' operations (_=/=_l.

3.1.1 Retracts

An interesting point of FOOPS is how ell:pressions (terms) su(~h as head(tall(l», for a gi~·en

term 1 of sorlleList (written 1:'eList), are parsed. In fact, tail{l) :List, but head requires

an argumemof sort leList. Tllus, we should concludE" that head(tail(~» is not a well formed

expression. However, as tail(l) may be equal t.o an element ofJsList (when 1 has more than

rme element). FOOPS i~ flexible enough to allow us WTltp this kind of e~pression which is actually

parsed as

head(r:List>BeLiat(tail(I»)

where r :List>BeLiat is a special fnnct.ioll, r.alled retr;).ct., which lower the sort of an expression

of List to the required subsort leList. It is u"finE"d hy

tn r:Liat>leList : List -> leList

var IL ; BeLiat

ax r:List>leList(BL) = NL

In this way, an expression formf'd by the application of a ~etrarl is only reduced if the argumeut

of the retract has the required subsort. OLherwisl", the retract remains as an error message,

indicating that the expression ill not. well parsed. In FOOPS, telract~ are automat.ically defined

between relnted sorts, aud inserted in expressions whenever necessary. In a similar way, rel.ra.d.s

a~e also availa.ble at the object level.

3.2 Object Level 15

3.2 Object Level

At tbe object level, it is possible to define classes, which are collections of (potentia!) objects with

same attributes and methods. Attributes correspond to properties of objects, they represent the

internal state of objects. Methods are operations that objects can perform; they modify the state

of objects. In addition to modifying states, methods may also yield result.s.

Attributes are atomically evaluated. Methods may be atomically evaluated or nol: invocation

of methods is synchronous and can be understood as remote procedure calls. An object c an be

evaluating many non atomic mel,hods at the same time, including different instances of the same

method. Naturally, there are operators for controlling the interference of methods executing in

parallel.

FOOPS has a general comput.ational model where objects are naturally distClbul.ed and (in

ternally) "truly concurrent" Objects are dynamically cceated and deleted, and there are special

operations for performing these actions. Furthermore, each object has an unique identifier, which

is used by other objects for access. In this way, methods and attributes have at least one object

identifier as argument.. indicating which method is going to execute the corresponding operation.

An object level module defines oneor more dasses and related absLracl. data types, In addition

to tha.t, abstract data types defined in fUllctional modules can be imporl,ed by object modules.

This is how the two le\'els are integrated. Let's consider an object module BUFFER defining a class

of bounded buffers. Tbis module is parameterized by the capacity of buffers (a po;itive natnral

numher), specified by the fUtlcl,ional requirements theor)' "AX;

fth "AX is
pr JAT

fn max -> IIzllat

endfth

where the sort of positive natnral numbers is represellted by IIzllat (it's defined in rAT). The

module BUFFER is also parameterized by the sort of the elements to be stored in buffers:

OPlod BUFFER [E :: TRIV. 1'1 "AX] is

pr LIST [E)

Here the elements of a bnITer are stored in a list; so. it is necessary to import Ihe functional

module LIST, instantiating it with the argument module giving the sort of elements. In this

instantiation, no view is specified since there is a trivial interpretatIOn-the idenlily-from the

theory constraining the arguments of LIST (i.e .. TRIV) to t.ile theory constraining E.

The class Buffer of bounded buffers is introduced by the declaration

class BUffer

Inherit.ance could also be defined at the object level. by a subclass declaration (similar to

8ubsort). This implies that any attribnte or method associat,ed 1.0 a class is abo available to

its subclasses, since objects of a subclass are also objects of an associated superclass.

Attributes are defined as operations from an object identifier to a value that denotes a current

property of l,he related objecl. MuJti~argument attributes have other arguments in addition to an

identifier; this means that this attribute's associated property depends on the exl!a arguments.

Objects of BUffer llave tbe attribute elems, corresponding to t.he list of elements ill a buffer.

16 .J OVERVIEW OF FOQPS

at &1UI- Butter -> Lia't [hidden] .

As indicated by the declaration [hidden], the atlribute dems is only \"isible inside BUFFER; so,

clients of the objects of Buf1' er canno~ directly look at th~ elenwnts stored in bu treT.!'. Alternatively,

we could have added the declaration:

hidden e1l1119_ Butter -> List

In addition t,o Blellls, two more attributE's are ~soClated to Buttflr:

at emptyL : Butter -> Boo1

at tull! _ : Butter -> Bool .

Tbe attribute empty? indicates whether the buffer is empty, whereas ful11 indicates whether the

buffer contaim the maximum number of elements.

Like attributes, method .. are defint'd as uperations having an object of its cla";6 as parameter.

They might also haH~ some extra p::namekrs. Methods <'1I1ll'f evaluate> to a spe>cial result or to

the identifier of the object th"t. performs it. For obJe>c{s of Bufter, t.he availabl<' m<,thocls are t.he

following: reset, which removes all eleme>n(s from (l. bnffer; get, wbich remov~s the> first, <>!e>mf>nt

of a non empty buffer and gives it as re>,mll,; put, which insert" an <'Iement at th€' e>nd of a buffer.

if it is not full; and del, which re>move>s tbe first de>ment of a non e>mpty buffer. The> following

dedaratious introduce those methods:

IDe reut Butfer -> Butfer

1D8 get Bufter -> El.t .

IDe put Butter Elt -> Bufter
IDe del Butter -> Bufter [hidden]

The last one I, hidden becanse we do not allow die-ut.s to remove all ele>menc from a bnffer unless

it is going to be nsed, what, can be> donl' with get.

3.2.1 Axioms

Attributes call be classified as stored or de rind. The value of a store-d attribute is ke-pt as part

o[the local ~t.ate of an object. On t.he othe>r hand, the value of a deri\'e>d attribute is lIot stored

by an object. but can be computed from tIll' valnes of other auributes. Henu', one> must spe>dfy

how this is done; in FOOPS, we nse e-quations for that. If no e>quat,ion is gi'\"t'n for an alt.ribute,

it is consideud a stored aUribute>.

For Buffer. we define elellls as a .,lore>d attribute, The others are derive>d; so. we introduce>

the following equations:

var B: Buffer

varE:Elt

ax empty? B : (elems B) 0:0: nil

ax full? B 0: '(elellls B) :::0: D1a:l:

Tbis indicates that the buffer is empty if the list of t.he e-1"ll1e>nts stored in it is e>mpty; also, the

buffer is full If the size of its associated Ii:-t is /IIax.

Equatioll8 defining attributes can only contain functions, attribntes, and object identifi,e>rs.

This kind of equation is interpreted as left-to-right rewrite rules. bnl. attributes are> atomically

evaluated·Ithout interfere>uce from l,hf> e>xe>cution (e\'aluation) of mc>thods.

3.2 Object Level 17

The behavior of methods can be specified by two different kinds of axioms. A direct method
axiom (DMA) specifies how a stored attribute is updated by a given method. In fact, a DMA
is an equation such that its left band side (LHS) indicates its associated attribnte and method,

whereas its right hand side (RHS) is an expression specifying the new value for the attribute to

be npdated. For instance, the behavior of reset is given by tbe DMA

a% elems(resat(B» = nil .

which specifies that after the execution ofruat by an object B, the value of alam.l, for B, is niL

Further examples of DMAs are

C% ela.s(put(B.E» = (aleme B) . E it Dot(tull? B)
C% elams(del(B» = tail(elems B) it not{empty? B)

where the metbods are only executed if the (enabling) conditions are satisfied; oLherwise, the
evaluation is suspended. The new value for the specified at.tribute is computed in terms of the

method arguments and the current attribute "alues. If there is no axiom specifying Ihe new value
for a stored attribute after the execution of a gi"'en method, this method doesn't update that

attribute. This is called the frame assumption; it avoids writing equations indicating that some
attributes are not updated.

The evaluation of methods specified by DMAs is atomic and yields the identifier of the object
which executes the method; only this objects is modified, and its attributes are updated as
specified. As for attribute equations, the axiom's RHS and condition must be formed by functions,

attributes, and object identifiers.
Alternatively to DMAs, indirect method axioms (IMAs) may be used for defining metbods.

IMAs are equations that specify how a met.bod is defined in terms of other operations; this is
indicated by a method expression, i.e., an expression formed by methods, attributes, functions,

object identifiers, and n1ethod combiners (operators on met-hod expressions). Forexample, the
method get is specified by the IMA

ac% gat{B) = result head{alems B) deICB) it not {empty? B) .

where ruult_; _ is a metbod combiner which evaluates its first argument (from left to right)

and then evaluates the second one, yielding the value resulting from the evaluatiDn of the first

argument.
Similarly to DMAs, no method symbol or method combiner is allowed in an IMA's condition.

IMAs are interpreted as left-to-right rewrite rules. Whereas the evaluation of the IMA's condition

is atomic, the evaluation of the IMA's RHS is not atomic and may be interfered bJ the execution
of other methods. However, al,omicity can be achieved by using the atomic evaluation operator

E_], which atomically executes its argument, wjj,hout interference from the execution of other
methods. We assume that IMAs introduced by the keyword acx (or aax) have theil condition and

RHS atomically evaluated. In fact, an IMA in the form

aa% m{O) = e .

for m C -> C', is an abbreviation for

aJ: m{O) = [e]

and an IMA like

18 3. OVERVIEW OF POOPS

ACX .(0) ~ e it c .

stands for the following declaJ:"ations:

IDEI Ill' : C -> C'

axm'(O):eifc

a:z lIi(O) = em' (0»)

where m' is afiew s)'mbol. This is necessary if an expression has to be evaluated without interfer

ence from others. Somelimes, non at.omil' methods are useful. maiuly when efficienc)' is f'ssential;

ont they shouldn't be arbitrarily nsed becanse it's Very difficult 10 reason about programs con

sisLing of the parallel execution of man)' 1I01i atomic methods (it's necessary to reason about all

possible interleaved lIIt,erferences caused b) those lliethods).

Lastly, we introduce a (wE'akj rlass invariant t.o Butter; that is, a condition that Illilst be

!'atisfied for all objects of the class, independently of their state. In order to express l.hat all

bounded bnffers can have at most max elelllf'nts, WI' introduce flit' declaration

inv '(B18ms B) <= max.

endomod

In fact, this kmd of iJl\'ariant is also considered valid if all at.tributl"s Ilsed in tbe predicate are lIot

defined. For e:o.:ample, imme{liately after an object of Butter is creat.ed, e1em! has no associaled

value (the built-in object. creat.ion operatioll doesn't init.jalize attributes, see Section 3.2.3); even

so, we consider that the invariant is nJid ill this inilial1itate

After crealing a buffer, the only possible operation is reset because elems i1i not defined; the

method reset dearly enforres the invariant. since' nil is o. fl.'s also easy to check thaI thc

olher operations related to Butter preS'~f\'e this invarianl

A .':itronger kind of invariant req'lires all attribntes used in the predicate t,o be defined. (This

ca.n he int.roduced by the keyword str-in", instead of in".) For ex.ample, the predicate

'(elems B) <= max

isn't a 5trong invariant for Butter. sInce the object creation operation doesn't. respect it. In this

case, we would have to hide this creation operation and int.roduce a cust.omized operation that,

enforces thaI invariant. Note tha.t in order to check ""la'Iher a st.rong invariant ;s preserved for

an object 0, \\'e shonld consider lbe effect cansed by tllt deletion of other- objects in the system,

!;ince some al.t.ribntes of 0 might. bl~ undefined after that.

Constrainb like class in\'aria.nls ,He jnst annotations. they have no effed for the semantics of

a. FOOPS module. III fact, they just doculllent properties of a gi~'en specification. They can be

seen as proof obligations which, if discharged. might help a lot lo reason abont sper-ificat.ions.

3.2.2 Metbod Combiners

In addition Lo resulL;_ and [_]. FOOPS pro"ides other meLhoJ coITlbiners: sequential com

p01iition, _;., (interleaving) parallel compositioll. _11_; (ex.ternal) nondeterministic choice, _[}_;

background ~valnation. .k_; and condit.jona!. it_then_elnJi.

The sem.1ntics of these combiners IS given later. Here we inform~lly describe so THe of them:

we sllppose the reader has a general intuit.;on abo1J~ the olhers, sil\ce they are usually available in

other programming languages.

32 Object Level 19

Result

The resnlt method wmbiner (Hlsult_i _) fully e\'aluates its first argument (from lert to right)

and then evaluates th.. second. When hoth arguments are fully evaluated, the first one is given as

resnlt.
This operator is ma.inly useful when an e~pression should yield a specific value, but this value

has to be evaluated before other operations are executed. For e~ample, wnsider tht method g_t,

defined in Section 3.2.1. 11.s behaviour could not he easily expressed without r_sulL;_

Indeed, result_; _ can be used to simulate some of the behaviour provided hr the return

statement in languages such as C and C++, and special rOIH'entiom; for variables names in Pascal

and EJffel for indicatmg the value to be returned b~' a function For In;;tame, the C++ code

coubpondlllg to the "FOOPS like" method definition

111(0) "" e l:=:! g return X .

dnd the Eifrel code corresponding t,o

11\(0) '" e ; Result .'" t ; g

could be represented in FOOPS b)

m(O) e ; result t ; g

where e, t. and g are method expre;;sions.

Method Combinet' Definition

New mel bod combiners may be introduced as abbreviations for complex method expressions,

This can be don .. by eq uations. for example. the internal tlOndetf.'rminist,ic chcict operalor .Dr_

is defined in /.erms of external choice by the axiom

u: P Or Q "" (skip; p) (] (skip; Q) •

wherl' p and Q are varia.bles. and skip IS any funct.lOnal consti;lnt. In this axiom, th~ argument.< "f

[] may be immediately evaluated; so, the external ("hoice will bl' nondet.f'Tministlc. As del"ired

this implies that t.he internal choice doesn't, depeud whether its arguments are read) for evaluation

or not.

Evaluation in the Background

Here we introduce a method combi}}er that res em hies the VNIX operator i: for evaluation of a

program ill the background. This means that the operator slarts The evaluat.ion of an expression

but doel'n't wait until it t.erminal,es. Instead. expre6sions following this operata! are evalua.ted

concurrently to the expression in the background. Also, the resull generated by the expression in

t.he backgronnd is discarded; t.his expression is onl)' executed for ill' side-effects.

The FOOPS metbod combiner ..1:_ starts the e\'aluation of its liecond argllment. (from left tc

right) in the background, and then yields Its first argument. In fact.. the LTNI:X unary postfix

operator ..I: may be defined by

IU: Pi:'" skip" P .

20 3. OVERVIEW OF FOQPS

In FOOPS, P a i~ a m",thod expression (not a command or program, in UNIX terminology [5J),
50 it must yield a valui'; that.'s the role of the dummy constant, skip in the axiom above.

The main 3pplicatIOn of this operator is to start the execution of non terminating In'.'thods.
For example, Ifm is non terminating, invoking ID like iu m(o) j 0,(0) is not velY useful because

0,(0) will finer be evaluated. [nstead, we can use .(0) a 0,(0). In this way, the evaluation of
m(o) starts and 0,(0) IS concnrrently evaluated.

3.2.3 Objelt Creation and Deletion

Dynamic obje(l creatlOn and deJetloll are respeclively provided in FOOPS by the following oper
ators:

• neil.CO -) C.

• nev C -> C. and

• remove C -) C,

Cor each class c.

For a givell class C, the operat.or n"' C() creat.e!> all object ofe "'1I,h a nondeterministically

choOE'en iden!lfier lhat is 1I0t already being used for an01her object This identifier if> given as t.hl.'

result of the evaluation of the operat.or.

The operator new creates an object, of the same class i\S tIlE' object identifier gi\'en as argnment.,

Jfthis identifitr is not aS90ciated t.o another objert (otherwise, the operation cannot be execut.ed).

This identifier is used for the created object and yielded by the oreral,or.

The operator r'lmove receives an objecl ident.ifier as argumenr. removes its I\ssocialed object

frolli the database state, and yields this identifier. If t.his Jdf'ntifier doesn·t. correspond to an object

in the state, the operation is not €\·aluated. Contrasting to neil, the argument of r'lmove might,

be i\f1 arbitrary exprbsion. it doesn't have to be an ohJect ident.ifier~ however, it's supposed to

yield an identifier.

The 0pl.'rators for object creat.ion don't assign initial "illues for atlributes Hence altribut,es

should be explicitly set by special metllods, since a lion inilialized i\ttribute cannot he evaluated.

Automatic initialization IS not provided here beci\use It. ran hI" e:\.~ily sin1ul[lted b,y the operat

ors introdnced abo....e together with method combiners and methods for setting allnbntl.'s. For

eXi\Lnple, suppose t.hat [l class C has t,wo stored attrihutes a and [l'. and methods set-a and

set-a' for ""signing values to those attribute"J. A cff'ation operittion for e that also initializes

those attrihmcs is given by the method comhlner create, defined by

ax create(O) : [neil(O) ~et-a(O.v) set-a'(O,v')]

where 0 is a 'oanable of class C, and v and v' are choscn initialization values for the respectjve

attnbut.es. The atomic evaluation operator glli\rautees that the creatf"d object can only bl.' accessed

aft.er its attributes are initialized. Similarly to nev, the operaror crsate is not executed by an

object; in fatt. it should be executed e\len if its argumenl is an obj'.'ct identifier th[lt is not. in the

state. So, it 15 modelled as a method combiner Also. in order l.O behave properly. create should

onl)- be invoked with an object ideutrfier as argument.

Contrasting to the simplicity of t.he approach llsed above, it might b(> problematic t.Q initialize

object.!l of retursive dasses, multi-argnment <It.t.ributes, and to find default values for I\Uributes

3.2 Object Level 21

in general. In fact, it. might. be the case that some attributes canuot be automatically initialized.

That's another reason for not trying to automatically initialize attributes.

We can also easily simulat.e creation operat.ions havillg attribute init.ialization values as argu

ments. For instance, the met.hod combiner

me create(_.a '" _,a' '" _) C 5 5' -> C

can be UE'ed t.o create objects of class c, assigning the values received as arguments to the atlributes

a and a' (respectively assumed 10 be of types 5 and 5') This is formalized by the following axiom"

a2 create(O.a '" V,a' = V') '"

[ne~(O) ; set-a(O.V) ; set-a'(O,V')]

..... hl;re O:C, V;5, and v' :5'.

Auto-metbods

Auto-methods are automatically invoked in the backgtonnd when objects of their corresponding

classes are created. Tlle:y may be used 10 define illltiali7at.ion operat.ions for objects, but. t.heir main

application is the ~pecificalioll of autollomons (active) objects: that i;;, objects that automaticalt)

perform some operat.ions, instead of waiting for requests from other objectfl. In facl, autonomous

objects can simulate (non terminating) processes in an object-ori"llted frameork.

H~re aut.o-methods can be modeled by st,andard methods an,l t,he operator for background

evaluation. For this, we have to provide a cus(,omized operalion for creation of objects, ba!led on

the pre-defined operation new. Basically, t.his customized operatiou should invoke new wit.h the

related aUlu-methods as expressions to be evaluated in the background.

For example, suppose that we want to define m. aE'sociated to class C, as an auto-method. The

customized creatIOn op~ralion could be defined by

a2 create(O) '" new(O) t m(O) .

where 0 is a variable of class c. This operation creates all object uf C with th.. identifier given8

argument and then invokes Ill. This met.hod ma)- be an init.ializat.iou operation Or a u~n terminat,ing

method like

ax m(O) = n(O) m(O).

In t.his case, the object. behaves as a process which is always executing n.

Clearly, this curresponds t.o the intuitions about auto-method .. discussed above.

3.2.4 Other Aspects

Here we briefly describe some other aspects of FOOPS which are formally !;pe~ified in other

sections of this text. Details about. Lhese aspec!,s cau be found in [40].

First, FOOPS uses the convention t.hat m~lhod and attribute applications are evaluat.ed

bottom-np. This means that a met.hod or attribute can only be executed if its arguments are

fully evaluated, i.e. the arguments cannol contain allY attribute, met.hod, retract, or method

'Combiner symbol They must be real valueE'- evaluated functional terms or object identifier!;.

Otber evaluation strategies are not appropriat,e because symbolic method or at.tribute execution

does nut make sense for objects: a method or attribute can ouly be execut.ed when it has real

22 J. OVERVIEW OF fOOPS

arguments. However, the order in which the argnments of a method or attribute are evaluated is

not fhed. Observe t,nat this is a source of nondeterminism, since tbe arguments may be evaluated
in different. cont.ext.s.

An usduland flexible way of inheriting properties or il sllperclass is by redefining some of its

methods and attributes. In FOOPS. this is indkated by writing [redetJ after the declaration

of tbe new operation symbol and rallk (i.e., argument,s and resull type). As FOOPS provides

dynamic binding, objects of the subclass use the new versIOn of the operalion. unless explicitly

stated t.hat the original version is desired; this can be done nsing the qualified notation op. C, where

op is the operation name and C is the name of the 5uperclass having the original version. FOOPS

adopts the valiant syntactic rule for redefinitions; this means that the arity of the specialized

vcrsion must, be sUlaller or equal Lo the arity of the original version, ;"nd the resnlt of tht' first

lllust be greatH or eqnal to the result of the second ("1"1' [42] for det.ails) A specialized version of

a redefinition of an operalion is COllsidell'd to be a redefinition a,c; "'I'll.

Lastly, objects may be inttodnced togf'lher with the definit,ioll of their associaLed class, where

values for t.heir HOled aU,ribntes are specified. These an" called speCified obje<:ts and are pal

l icnlarl)' useful when defining cl<l.S"cs of recursivt' data strnclnres such as stacks and linkeJ lists.

Specified objects have t.he same status as objects creat.ed at rnntim .. ; this means that they can be

modified and removed.

3.2.5 Protected Objects

Tn FOOPS, we can create objects that are prolected from some other objects, in the sense that a

protected object only executes methods dir('ct.ly invoked by a specific and selected group of objects.

Houghly, t.his corresponds t.o the behaviour provided by Jllding and abstraction mechanisms ill

process algehras. where a process mighl, not be allowed to access some p rotect,ed channels.

Object protectIOn facilitates programming anJ reasoning wit.h references (likl;' object identi

fiers, and poiuters in procedurallangnages) by reducing possible interferellces to objects; this is

done by restricting the objects that are allowed to requesl the execut.ion of methods of a protf'rted

object Also. by having arbitrar)· int.erference usually Olle cannot. provide full encapsulation of

('omplex objects nor the desired system behaviour; so. the system spec ificat.ion should include

explicil. artificial code for avoiding undesirable interferencl"s. Howf'ver. it. seems more appropriate

10 directly 6upport a mechanism for object prof,ection.

For instance. object protection is qllite nseful for defining linked list.s of cells represent.ing a

so?<.!ueuce, becanse the intermedial,e cells HI the Itst shonld only bp accessed by their respective

previous cell [26]. In fact. only t.he firsl cell in the Jist, should acr.r'pC. arbitrary interference. The

intermediate cells shonld be protected. Another example is a simplf communicat.ion protocol.

consisting of two agents and a chantlE'1 used for communication betwl"en them. In tnis case. the

cha.nnel should ouly be accessed by the two agents; it should he protected from other objects,

whicb could disrupt t.he communication The cha.nnels are trllly encapsulated only if tlley are
protected; only in t.his case the protocol can be seen as a "black box- and then reused without

restrictions abont t,be environment where it's going to be used.

In particular, one application of object protection is lhf' definition of constant objects; thai is.

objects that always in the same state. This can be obtailled by creat.mg an object. that is protected

from any other object. In this way. constant objects canllot be remored as well. This might be

useful for th~ definition of recursive data structures like linked Jists and slacks, where a constant

object repre~enting the empty list or slack is nSllally lleCeSSar)'.

3.2 Object Level Z3

In order to use the mechanism for objflct protection, we should indicate which objects are

allowed to directly request the execut,ion of methods associat.ed to a protect.ed object. This i8
done at object creation time, by giving a set of object identifiers as argnment to new Tbe empty
set mea.ns that the created object cannot execute any method. Alternatively, any rnay be given

as argument, meaning that any object can directly invoke methods of the created object.

Specified objects have a default object protection statns that cannot change: no object, can
invoke metbods of a specified object. lu fact, specified objects are constant objects.

For supporting object protection, tbere are special object creation operations:

• new.C Univ -> C, and

• new C Univ -> C,

for a class C, where Unl v is th{' type associated to the Sel., of object identifiers given as argument to

the creation operations. In fad., t.he operators for ohject. creation Introduced in Section 3.2.3 can
be seen as abbreviations for the operators introdnced in this section. Illdeed, new. C() corresponds
t.o new.C(any), and new(o) is t.he eqlli"'alent ofne,,(o,any).

For indicating tIlt., desired protection, the following syntactic constructors are available: _,H'_,

{}, and any, where the first one may be used for adding an element t,o a set., and t~e second one

denotes the empty l<et. For E'xample, the expression 0 ,H· 0' ++ {} denotes the set formed by

the identifierl< 0 and 0'.

~ew objects may be dynamically added to tlJe group of ohJects that is allowed to invoke

rneLhods of a pJOtE'cted object, if the object that requests this operation is part of this gronp.
For doiug that, there is a special operation: addpr C Univ -> C, for any cJal<s C. which adds

the objects specified by its second (from left t.o right) argnment to the collection ofabjects thaI

can invoke methods of the object identified by its firsl. argument. The second argument 1..0 th{'
op~rat.iou abo"'e should be constructed with the syntax constrnctors nsed for indicating th~ desired

object protedion for the creat.ion operation.
A special case of the mechanism for object protection introduced here ill provided by languagf'~

supporting composile objects (i.e., objects that. incorporate ot,hers object~. instead of having refer
euces to them). Composite object.s ('an be modelled in FOOPS by mdicatlng that theincorporated

objects can only be accessed by the object that iucorporates them. Also, the notaticn introduced
in [26J snpports pri"'ate refereuces. which can be nsed by only one object. giving a6imilar effect

to composite objects. (In particular. [26J emphasizes the essential role played by private rder
ences for assertiug inva.riants i!bout, objl"c! graphs and rl"i!l<oning abont I.hem,) Our mechanism

for object protection is clearly morE' genNal I,han the mechanism for private references.

3.2.6 Aspects of FOOPS Operational Semauties

Here we informally describe some agpect8 about. roops operational semantics. Operationally, a

system implemented in FOOPS consi~t8 of a database containing information abOUl the current
objects in the system. This information can be retrieved by the evalnatiou of attribntes, and

modified by the execution of met,hods or by the deletion and creation of objects. Modifying this
information changes the database stale.

Motivated by [18], here we represent a state of the rOOPS database, for a spr.cification Sp,
1:>y an order-sort.ed presentation (with a signature of non-monot.onicitiell) formed b)' the following

components: the definition of the abstract dal,a types of Sp; functions and sorts cOJresponding to

24 3. OVERVIEn' Of FOOPS

attributes and dasses defined in Sp; constants of the sorts representing classes, denoting objl'cts;

axioms of Sp specifying the meaning of derived atlributes; and equations establishing th .. values

of stored attributes for object!.' in the database. Also, I,he subsatt relationships in these theories

reflect the subclass and subSatt relationships in Sp. Using I,his abstract representation for stat-es.

typical operations on states are defined in a nalural and simple way.

In order to lilustrate the contents of a presentation tt'pre5;enring a datilbase slate, let's consider

the specificat.ion defined by the module BUFFER[BlT,SIX), where SIX i$ a functional module

defining a comtant lDax equal to 6. For this spf'"cification, part Qr a possible database stat., Ioob

like

ft.h STATE1 ill

ex LIST[HiT]

sort. Balfer

fn 'llells_ Buffer -> List

fn 'lIllPt1?_ But"fer -> Bool

var B Buffer

u: empty? B = (elems B) nil .

where we r"pr('sent a presentation ith a signaturE' of 1l01l-IllOnQ[onlcille15 with the samp syntax

of a FOOPS module (assuming that non-monotonic operations ilrP indicated by thE' tag [rede:t],

and unparsedequal.ions are- used when t.herE' is no anlbiguity). Tllis stale contains the functional

part of the specification (i.e., LIST[llAT)), Ii son corresponding 10 th .. class Buffer. funeliolls

npresenting attributes, and their f1ssodated axioms.

In addit,ion to that., the followillg declaratiolls in,licate that. t.ht clas, Butfer has I,hre(' object:,;

in this stat.e (identified hy b1. 02, and b3):

fns 01 b2 b3 -> 8Uffer

ax ehllS b1 = nil

ax elenB b2 = (1 2)

endfth

whf're the equat.ions specify values for Ilwir stored a!.tributps. Notp that b3 h Mn 't been initiaJizE'd.

lTsing thi! represent.ation, tYPIcal operations on slates cau hE' eaSIly defined. For ins/auce,

given a database state, attrihutes are evaluat,f'd by reducing t,he corresponding expression in t.he

module repre~enliug the dalab3Se For examplE', considering STATE1, the evaluation of

elus(02) and empty?(b1),

respectively results in 1 2 and ~r"lle, this cau h .. deducf'd by f'quatlonal re3Sonlllg, from the

equations in 5TATE1.

Method execution changes the state Qf Ihe database. for ..xample. executing pu~{b1,5) in

STATE1 changes the database to t.he state represeuted hy a pre~elltation in the form

it.h STA1E2 is

aJ: elulls b1 '" 5

3.2 Object Level 25

ax 818ms b2 (1 2) .

endfth

containing the same information as STiTE1, except that the equation elellls bl = nil is replaced

by sIems b1 = 5.

Also, adding the object b4 to STiTE2 results in a stale wil,h one more constant of!orl Buitsr:

tth STiTE3 is

fns bl b2 b3 b4 -> Buffer

ax slslIs bl = 5

ax elems b2 = (1 2)

endfth

On t.he olher hand, removing the ohJect b2 from STATE3 yields a s-tate in the form

fth STiTE4 is

fns bl b3 b4 : -> Buffer

ax elems bl = 5

endfth

The; object and itl; related equations were removed from the database.

Remember tllat the value of a redefined attrihute usually doesn't. agree wil,h the value of its
original version for objects of the suhclass. So, the same should he allowed for the (unctions

modelling those altriblJt.es in database states. That's why we nse order-sorted presental,lons with

a signature of non-mollot,onicities to model dat.ahase states; just order-sorted presentations arp

not adequate for doing that in an elegant way. For example, a specification containmg

pr liT

subclaes C < C I
 •

at a : C' -> lat

at a : C -> Bat [redef]

~'ar I' C'.

~'ar 1 : C .

ax a(I') = 0 .

axa(I)=l.

should hne database slales in the form

ex liT .

subsort C < C'

fn a : C' -> lat

:tn a ; C -> lat [rede:t]

var I' : C'

var I : C .

ax a.C'lat(I' .C') = O.lat

ax a.Clat(I.C) = 1.Iat

26	 4. SIGNA.TVRES AND SPECIFICATIONS

where parsed equations are used to avoid ambiguity. This allows both versions of a to have

different definitions without generating any inconsi6tency. On the other hand, if states Wf>re

represent.ed hi' order-sorted presentations without a signature of non-moDotonicities, un parsed

equations would be used, being pos~jbJe to prove that 0 is eqnal to 1 using the equations defining

a. This is obVIously not desirable; it would also meaD thaI the semantics of the functional level is

affected by the semantics of the object]e'.el.

4 Signatures and Specifications

A roops module defines a signature and a specification. A roops signature contains a sort

anu a class hierarchy, aud names (together wjl,h typing and overriding information) of functions,

met,hods, and att.ributes. A FOQPS specification is formed by a signatnre and some aXIOms

(equations) tha.l specify propNties of the element,s of lh€ related signature.

Later, we show that signat\lres should also provide information about method combiners and

otlH>r features supported b)' FQOPS. Now. we just give a simplified definition which will be

extended when necessary.

Definition 4.l A FOOPS signature (Qn~is',s of

1.	 A ·'sort ~et" U = 5 U C, where S has sort names and C has d<t5S names. The sets Sand

C are disjoint because a sort and a class cannot have the slime uarne. Tbe sort Boo1 (for

boolean) is in S.

2.	 A partia.l order :s on U, which establishes lhe sort and class hierarchy. Classes and sorts

are not related: 1.1 :s t ~ u E S ~ t E 5, for (lny t, 1.1 E 5 u C.

3 A U~ xU-sorted family E = Fu AU.'/, where F, .4. and AJ respectively contain names for

functions, attributes, and methous. Function~ are related to sorts: F w ,,, = 121 if wu ~ 5+; F
has the5tandard boolean opNations: atl,ributes bave one class parameter at least: Aw . lI = 0,
if w E S~; specified objects arlO' relal,ed 1.0 classes: 1>1.\,,, = 0, if u E 5; methods have a class

paramerer: Afw ," = 121, if Ii' E 5+; and there are relrarls

r:A>B A -> BE Rtlru.

if A == B, where Rdr ~ (F u A). Lastly, a method and an attribute 'l'l"ith relat-ed ranks

cannot have the same name, in order to avoid mixing methods up wil,h attributes (i_e., lor

any (! E A""", there are no Wi and ul such that u;tt":::: WIUI or Will':::; Wit, aud (! E M"",lI')'

4	 A family R ~ AU J! formlO'd by names of redefined methods and <tt.t ribut-es. As specialized

versious of redefined operations are considered to be redefined, if a E Rw,u nEw',,,' and

WIU' ..:::: u'u then (! E R",'.,,'

o

Sometimes, we use E to denote the signature (C',$.E,R). Furlhermore, we rely on the fact

that a FOOPS signature E can be seen as the order-sorted signature (LT, $,E). In I,his way, tbe

notation and concepts related lo order-sorted signatures (e.g, terms, least sort, equations. eLr.)

(Ire available for FOOPS signatures as well.

27

The constraints impofled on the components of a signature correspoud lo soml' of the re

strictions enforced on roops modules. For instance, as a module defining the abstract data

type of booleans is automatically included in any roops module (for allowing (On~jlional equa
tions), signatures must. have a sort Boo1 with its associated opl'rations. Also. the TUlrinion on

R is enforced on the operations of roops modules, in order to avoid lhl' problem discussed at

Section 3.2.4.

In some cases, a more general approach is used, by not imposing restrictions DO signalures

components. So, the semantics of some conslructs is indirectly given. by translation to more

general constructs. As long as this approach doesn't complical,e the semautic definition, we use

it and indicat.e how the translation can be done. For example, if booleans weren't. a>&nmed 1,0 be

in signatures, we would only be able to give the semantic.s of equa~ions having a sH of pairs of

t.erms as a condition (following OSA), instead of a boolean expression (as actually supported by

rOOrS). In this case. we would ha\'e to specify how the second kiml of equation can be seen as

a part.icular case of the first..

The generalization mentioned in the example above would slightly complicate ~he semantics.

Hence, we don't use IL However. the semantics for qnalification notation for redefined operatious

(I.e .. m.C where m is redefined and C is a class name) iii indirectly given and doesn't affect the

semantics. Basically, we don't assn me that sigllatnres include a special (qualified) oJleration name

for each redefined operation, Inst.ead, we consider that t,he rOors signature corre!pouding to a

module containing

subclass A < A'

subclass S < S'
subel.se C < C'

IIIBIII A'B'->C'

IIIB III : A B -> C (redef]

is the same as the signature associated to a lIIodule with the declarations above plus the following

one:

me m,A' A'S' -> C' ,

which pro\'ides a qualified nolalion for III. We assume that symbols containing" cannot beM

used as operation names in roors modnles lunless it corresronds to the qualified notation of

some operation). Hence, this addit,ional declaration doesn't introduce any conflict and III.A' can

be used to acc.ess the original version of III.

The same t.echniqu(' can be us('d to support qualified notation for attributes, However, note

that it's meaningless to ask for the original version of a redefined stored attribute for an object of

the subclass, since it has no associat,ed value (it's neither directly slored in the stale nor necessarily

equal to the specialized version). The same happens for original versions of derhed attributes

defined in terms of redefined stored al.tribul,es. Hence, we don'l need to provide 8 qualificatiou

notation for this kind of aHribute.

An obvious moli\'ation against. allowing method~ and attributes to have the same name and

related ranks is that two operations cannot he distinguished if thf>)' have the same mme and rauk.

A less obvious mot.ivation is illnstrated by the following signature:

pr IAT

subel.ss A < A' ,

28 4. SIGNATURES A.ND SPECIFICATIONS

at a A' -> lat

•• • j .> lat

In this way, a may b~ interpreted as a method or a.s an attribnte, depending on its argument.

Indeed, in 8om~ expressions, it migh~ be the case that a is parsed as an attribute and, after some

argument evaluat.ion, it's parsed as a method. Besides being confusing, this has bad consequences,

mainly for expressions in lhe RHS of DMAs and conditions of equat.ions, where no methods are

allowed. For instance, for a method ID., i,he following

var X ; 1.'

ex 111.(1) = if 0 <= 0.(1) .

is a valid equation Lecamle a is parsed as an attribute in a(I). However, if II is not redefined,

dw evaluation of 111(0). for 0 of class J. requires the eV<llllatiol1 of t.he coudition 0 <= a(o) which
requires one method invocat.ion, since a is parsed as a method iu a(o), But this is nol, supported

by tOOPS-there is no reasonahle semantics for that. The same problem happens if this confnsion

occurs ill the RHS of a DMA, or if an aLlrlhllt.e updated hy a DMA is sometime5 parsed as a
method.

In facL, this prohlem can also happeu with pathological nOll regular signatures s!\tisfying

the restriction discussed above, bnt not with regular siguat.Ulf'S (the ones that are of interest for

specifical.ions, as we will see later). Also, ob5erve that there is no COli fUSIOn between functions and

metllOds (or at,tributes) becanse fnnct.ions ranks ue not related (by Sl to meLllod (or auribnte)

rank5, since they only have sorls,

Lastly, we could have added 0111' more constraint on signatures: all operation shonld only be

in R if it's overloaded by another wil,h a greater rauk. Hown'er, hy allalysing the semantic mles

given here, we conclude that this constraint doesn't affect the semantics; that is, the meaning of

a non overloaded operat.ion is the same whether it's cOllsiderFd redefined or llot Hence, we don't

introduce this r('striclion.

Now, we gIVe a definition of ~pecificatiou.

Definition 4.2 A POOPS specification is formed by a signature :s and a set E of E-equations
cOlltaining standard eqnatlons for t,he boolean operations (as givFn In [21J, for example) and

retract equatIons r:J>B(X) "" X. for any types J and B in the sallle connected component. of [J

(wlt.h respen to S), and a variable 1 of least (,)'pe B. 0

H('reafter, w.. use A to refer to the family of attributes in a specifiration S. when S is clear

frOm the cont,ext.; ot,herwise, we nsf' the notation A(S), The salllc convention is used for the

other components: E, S, C, F, ('tc, Also, FE and A£ respectively denote the set of funcl.lonal

and attribule equations in E. The set. of fuuctional equations is defined as the largest set. of

F-equations included in E. l'.' here(is A E is defined as the largesl SFt of F U A-eqnations inclnded

ill E and di6Joinl, from FE.
lmplicitl}', the la.~t definition reqnires ~ to be reglllM, siuc,," E cannot be ernpty and (unparsed)

t>quatiolls only make sense for rl'gnlar signatures (see S~ct.ion 2.4). As we h ave seen in Sertion 2.3,

regularity is 1I0t a big restriction. PnrtherlllOre, this guarantees thf' least type (parse) for met.hod

expressions; so, we can work wlt.h unl,yped t.erms wit.bom alUhjguil~', leading LO a concislO'f and
simr.ter -6emantic description.

Observe that the definition above does nol reslrict the [orm of a.xioms. Howe\'er. b:-· the
operational semant.ics t.hat is described here (as w,' ",ill see latf'r), only OM As and IMAs determine

till;' behaviour of methodl;; other kiuds of met.hod axioms are irrelel'am for t.he semalltics

29

It's also important to note that equations may he non sort (or class) decreasing. This flexibility
is usually desired for specifications in general. It affects the semantics because the e\aluation of an

expression might then lead to an t'xpression of a greater sort. H this happens and the expression is
the argument of an operation that cannot be applied to an argument of greater lIort, Lhe evaluation
will result in a non well formed term. The solution for this problem is given in later sections,
bot it basically consists of inserting retracts (in order to lower the sort of expressions) during thf'

evaluation of arguments and some pre-defined method combiners
Even if m f thQd and a tiTibute equations were sort decreasing. retracts would have to be in cluded

In every specification, in order to avoid the problem discussed above. This happens becausp

a1.tribnte evaluation is specifif'd 1D terms of an operation which gives the representative of an
equi ·alence class (see Section 2.5); for specifications in general, we cannot guan.ntee that. an

eqni ·alence class h<ls a term wilh a smaller lype t.han all o\.hN terms. Hence, aUribute evaluation
might yield a t",rm of great",r typf', or even of a non related type

On t.he other hand, retracts could be avoid",d if all equations were sort decreasing. For this to
work, representatives should be of a least t.ype This would be feasible because we would consid,>r

lhat functional equations were sort decreasing as well.

Som",times w'" use specificatlOll (siguature) when we refer to a FOOPS module. In those ~_ases,

we actually mean the specification (signature) corresponding 1,0 that module

5 Database States

As discussed in Sec Lion 3.2.6, a POOPS database state can be represented by a presentation with

a signature of non-monotonicities. Here Wf' make more precise what are the contents of such a
presentation.

First, we assume that for any specification S there is an associated C-sorted family Is (jnsl
I, when not confusing) of diSjoint components; that is, I tL n I tL , =:: 0, if u ¢ 1/. Ea1h component
is formed b}' symbols which can be used as identifiers of objNts of a given cla~s. This fixed
connection between identifiers and classes is necessary because we are represe!lting those concept;,;

in the framework of OSA; so, each symbol should have a fixed, pre-defirled rank. From an

implementation point of view, this is essential for static typf' checking of expressIOns. H ere we

assume that I is pro...·ided by the FOOPS system.
In order to ensure least parse of terms, we assume that identlfiers canUOI, ha\e llle same nam..

as fuuctional coustants (formally. ill n F\tJ. = 0, for any u E 5). Lastly, the family I must

contain the identifiers of the ohject.s specified in S: AI>.,... ~ I tL , for any u E C. Herf"after I may
alternatively be seen as an U· x U-sorted family. by considering that I)"tJ. = Ill, for u E C: and

Iw,tJ. =:: 0, for w 1-). or U ~ C.

Definition 5.1 For a specification S, a database state is a presentatIOn with a. signature of
non-monotonicities, consisting of the following components:

1.	 A signature (U, $, D), where D = F U AUld, for some ld ~ I containing the identifiers of
the object.s in this state.

2.	 A signature n = RnA of non-mouotonicities. containing redefined atnibutes.

3.	 A set DE = FE U AE U IdE of parsed D.equations, for some finite set Idl of equations

establishing the values for some of the stored att.ributes or objects in Id. Act~ally, (D,DE)

30 5. DATABASE STATES

has to b€ a conservativE' extension of (F U Id, FE), in the sensE' that the equations in DE
should !lot relat.e functional pxpressiolls nor object identifiers that cannot he related by the

equations in FE 3 .

o

As in t.he conve-fition for speCIfications,·e use D, DE, and Id for ~he corresponding com{>onents

of a database state V, when it is clear from the context; oiher·ise, we use D(V), dc.

Observe that Jd and IdE are the components or the databasp that can change from one slate to

another, by the execution of expressions wh]('h may crealE' , remove, or change the state of objects.

Strictly sptaking, signatufc;; of presentations representing database states should have a uni

versal type, iu order to guaranlee local filt.erillg-which is necessary 10 imply t.hal. equalianal

satisfaction is rlosed umler isomorpbi,';lll [Hl]. However. auy u."eful suhset of FOOPS should in

clude method combiner;;, which require the exist.ence of a unlHrsal t.ype (see Section 7). Hence,

we a,';sume ~hal thiS is provided for any specification. OtherWIse. it could be <:;imply added t,o Ihe

.',ignature of the definitiou above.

The restridion on the equaliolls of database slates is Importanl to guarantee thaI constructs

from the object level don't interfere with the semantics of the fund-iollal level. Otherwise, the

functional theory aS90cialed to .states would uot be related to the specified functional theory. This

would mean that the results ~"ielded by expressions evaluated in states would Dol have the same

meaning as t.he corre!lpondiug elements of the specified functional theory. If those restrictions on

equat,ions canuot be sa~jsfied. the specificatIOn wou'l haH auy as.~ociated database state. This

might happen if the equations iu AE flre conlIadietory. For instance, a specification iucluding

pr HAT

class C.. • C -> Rat

var X C.. a(I) = 0

ax a(I) = 1

where a is not redefined, violates the restriction because t,he at.trihute equations relale two func

tional expres,;ions (0 and 1) which are not, relat.ed b~" HAT (assurniug this is a spf>rification of

the abstract data type of natural numbers). III fact. this spedficfllioll has no associated database

state.

Observe thaI, SOUH' attributes may have no associalt>d \altH' in a partlcular database stale (this

implies that they cannot be evaluated). Tlle restrictions on clatabasf' stat.es don't prevent this. An

advantage of this fleXibility is that new do~sn'l ha\'., to initialize 1l1lnbutes; as briefly discussed

before, default values for attributes might flot evell be available for :;;pecifications such as

pr BAT

class Li~t

at val_ List -) Rat

at l1ext_ : List -> List

JForma.ll}'. for '& given (D, DE)_'&lgelm< A/g, monoton... excrpl 011 n. there exish a monotone (FlJld, FE)-algf'hra
Alg' and an injecl.ive (F u Id)-homotnorphi~tn from Alg' to AIIJ I F.

which specifies a recursive class of linked lists. Also, the operation rellove doesn't lIeed to &Ssign
an ad hoc nil or void va.lue to atlributes containing the identifier of the objt'ct to br. removed, in
order to avoid dangling identifiers, Instead, after the execution of remove, those attributes have
no associated value. For example, the deletion of 12 from a :nate in the form

ins 11 12 -> List

axva111:4

ax next 11 : 12 .

simply yields a state in the form

1n 11 -> Lilt

axva111=4

where Ille attribute next 11 is simply not defined.
We let Ds be t.he family of all database states for a given specification S; that is, thl' family

of all presentat.ions (with a signature of Ilon-monotoni.-:ilies) that satisfy the requirements in
Definition 5.1. for a fixed S. Note that D s is not uecessarily the family of all dMabase J;tates
reachable from the initial one by execution of method pxpressions. Naturally, Ihis family is
coutained in D s

Lastly, for a databa.se state V al\d some I. E Tv, we assume that the choke of the representative
ITtl)) of the equivalence class [iJt> i6 a functional term or an object identiiier whenever t.his is
pos.'iible (i.e .. [[t]1J is in TFulJ if ITFuJdl n [t]1J -=f. 0). We don't give any more details on t.he
defiuition of representativl'.'i. Inst.ead, we let. it be defined when needed.

5.1 Operations on Database States

In addition to the usual operations associated to presentations (e.g., Ut' TI1J), some specific op",ra
tions on database sLates (presentat.ions with a signature of non-monotonicities) are necessary fOI
defining the operational semantic:,;. Here we introduce lhem. First, we define an opera.tion I,hat
updates databases. Later, we give operations for adding and removing objects fwrll databa!les.

5.1.1 Updating Databases

The update of a database V with equation6 r is denoted by V iF r. Basically, Ihis operation
adds and removes 60me equatious from a database. Tbe add('d equations, denoted by r, establish
"new" values for attributes. The temov('d equations are the ones lhat specify "oldnvalues for the
updat.ed attribute6.

First, we define Lhe operation $ for overwriting a set ofequatiolls by an unquantified, un<:on
dit.ional equation. Informally, for a sel, of equations r and an equation e. r Efl e is aset consishn,l[
of e and all equations in r whose LHS or RHS is not (syntactically) the same a..s the LHS of e.
Note that we may refer t.o the term "equation" when we adually m('an "parsed equation".

Definition 5.2 The overwriting of a finite 6et of E-equations by an un quantified unconditional
E-equation is defined by th", following equations:

32 5, DATA. BASE STATES

• 0 ffi (I, ,) ~ {(I, ,)};

• (f U {(X,t',r/.en) ffl (I,r) = r ttl (l,T). if 1:0: l' or 1== r l ; otherwise,

• (f U {iX, I', ,', C')}) ffi (I, ,) : (f ffi (I,,)) U {IX, I', ,',C')l,

for any set of equations r, and any E-equations (X,I\r'.C') and (l,r). 0

Assuming that 1 is the application of an attribute to argnments, r e (t. r) gives a set of equ&liaas

derived from f by adding the equation (1, r), and deleting all equations sp ecifying the value of the
allribute denoted by /.

We need an auxiliary concept in order to extend the definition of overwriting for a set of

equations. A set of unquanl,ifiecl, unconditional equations is called contradict.ory if it has two

different equations composed bJo' the same t·nm. The following dennit,ion formalizes l,his.

Definition 5.3 A set r of unquantifieu, nnconditlOnal ~-eqnalions is contradictory if it con

tains two different. equations (I. ,"j and (I',.,.') sneh that 1= f' or 1= 7"'. CI

Nolice that this is a syntactical definition in the sense that a set containing two equations with the

same LHS bUI different RHS is considered contradictory, even If the RHS aTP equh'alent (modulo

some equatioJls). The definition of overwriting is also syutad,ical in a similar sense. This is

appropriate fC/r our purposes in Ihis text.

Now, we (an define o\'erwriting for a set, of E'quations.

Definition 5,4 Given two finite sets of E-equations rand [' == {el"'.' f c }, for k ? 1. if r' is a

non contradictory set of unquanl.ified, unconditional E'qn,"ltions t.hen I.he overwriting of r by r ' ,
denoted r @f ' , is defined as r tB €l tV··· do {k. Also, f 'i' 0 is defined as r. CI

.:-;rotc that this uniquely defines the overwriting operation Since r l is non contradictory, so fffle,pej
is the same as r ED eJ tIl e" for any 'i,j S; k.

Lastly, we introduce the dE'finition that call be used to npdate dat.abaslO' states.

Definition 5.5 The overwriting of a presentatIOn (with a signature of non-monot,onicities)

P = (S,S;,Ln,r) by a non cont.radict.ory finite set ofunqnantifiE'd. nnconditional ~-equations

rl. denoted P q.; r l , is tile presentation (8. 'S, E, n, [81 [I). 0

5.1.2 Adding Objects to D"t"bages

Tile operation U adds some operation symboL~ to the signature of a presentation (see Section 2.6).

So, it can be used to add objects t.o a databMe. wit.hom allY initializat ion, if the symbols reprf'senl

objed identifiers. In this way, D U ld, for a U· >. (i-sorted family ld or objecl, ident.ifiers, adds

th(' idenlifiers in ld t.o the database V or a specification S.

5.1.3 Removing Objects from D"tab"ses

The operat.ion ror removing objeet.s from databases deletes object identifiers from lhe signature
of a given presentation. Moreover. lhe equalions formed by t.erms containing thP-8e symbols are

removed as well. T/lis means t.hat all r",ference~ t.o an object. are removed after t.his object is

deleted; lhal is, the attribut.es containing th('se rcferenc ... s don't ha...... any associated value in t.he

resulLing database. Here is t.he formal definit.ion:

33

Ddinition 5.6 The deletion of a. S· X S-sorted famJi)' Id of operation symbols from a present

ation (with a signature of non-monotonicil.les) P = (5. $,~.n,r), represented by P e /d, is th.,.

presen latian (S.::;, I: - Id, n - /d. r'), where r' is the set of all (1: - Id)-equatlOns in r. 0

6 Methods, Attributes, and Functional Expressions

Now, we start to describe a structura.l operational semantics for the object, level d FOQPS. In

this ~ection, we concentrate on the semantics DC functional expressions. methods, and attribul,es.

III t.he following sections. we progressive!)' give thp. semantics of other language fealnes.

!lere we use the approach for operational semantics introduced in [39]. We a~sume some

familiarity with that.. The semanlics is gi~'en by a relal,ion lhat indicates how an exprtssion is

t'valuua'd in a database "tal,e. A pair formed hy a method expression and a database slate :s

(al!pd a coufiguration. The relation speCIfies the lrall"itions from one (onngnrali(,n to another,

auording to ho au expreSSIO/l IS evaluated alld ho it changes the daLaba:;e: elCh t.ransl[;on

corre~pollds to a computational step durll1g tllP e'aluation of an expression

Let's formalize those concepts. Flr~t, for 11 sppcificatlOn S, we denne the famdyT5 = Tr-uIOr
lllplhod expressIons (without \'1Hlables). By the defitJition of I, ~ u 1 is regnlar "'henever ~ l~

Regularity of r; i~ guarElDteed by the definition of specification. This implips the ,xist"ncf' of a
least type (parse) for method expressions. That's why we can nse untyped (unpalsed) t"rms to

define the semantics. The typing functlOns IS and p can be used whenever Bomp type information

IS necessary.

Second, for a specification S, the sem<lJltics iii given by a transition relation

-s <;; (,0I1J(5) X ConJ(S)

Oil configurations, where CouJ(S) = Ts x D s . ThiS relalion is inductively defined o'ler the synttl.:<

of method expressions by inferenCe (transition) rules hich indicate how we can mfer that lwo

cOllfignratious ar'.:! rela.ted (i.e. there is a transition from one to the other), as!>umJllg that sonltO

others are relat.ed. Only tra.nsitions thaI. cfln b'" d"duced from th€ inferenre [I'ie!> lh,' w ... wil~ gl\E

in thIS text are allcwed. In other words, -~ IS the least relation satisfying tI, .. se Jflff'[~nce r'Jlef

Note that there is no fixed relation bl'lween the object identifiers nsed in a mdhd expr"''-~J(:i

and the ones in the database st,Hf' \\'h,;r~ the pxpression is goir,g to be naluat1d. So, even

e)(rr~ssions with identifiers of 1l01l-<'XiStllljl; objects may be evalnated. Naturally. th!~ will only bp.

s'Jccessful if these identifiers are not necessary for the evaluatioll of the expression

For conciseuess, we use - for -5, hen S is dear from t.he (ontext. Also, P - pI st.ands
for (p, Pi) E _. where P and pi are configural,lolls.

6.1 Functional Expressions

The semantics of the functional level of FOOPS is basically given in 191 and [28]. Following

these, we introdnce one rule for evaluating functIOnal expressions. Bnt firsl" we gP,'! the following

notation. for a speClficatioll S:

•	 database slat(>s 'D. V' E D s : and

•	 functional tNms. Vi E TF . for j = 1. .k. for SOllie natural number k. Also, Ii is al abbreviatIOn

for 1'1, .. ,. t'k

34 6. METHODS, ATTRIBUTES, AND FUNCTIONAL EXPRESSIONS

The evalnation of a functional expression is performed in one trallsition and yields the evaluated

form of this expression. This is only done if the E'xpression Is not already in its evaluated form.

Here we (on1llder that the evaluated form of a functional expression is the ,,,,presentative of its

equivalence dass with respect to its related functional theory. The Rule FUD (for junctional)

formalizes tho5e aspects.

Rule 6.1 (Fun) For any f E F,

(f(;J. V) - ([[(;JI££. V)

.r frO) l' IT[('II". 0

From thf' rule above, we cau obsE'rve that a fUlIction cannot be evaluated unless its arguments are

functional terms. This restrict.ion is essential to ensure that the operational sema.nlics motivates

a reasonable equality on melhod expressions; one that, preserves fuuctional equality. In ordl'r to

illustrate t.he need for this restridiou, consider the following specification:

pr BAT
tIl 1 ; h.t -> Ia.t

tn g : lat -> Rat

var X : lat

ax 1 eX) x • X

ax geX) ::; 2 • X

Dy equational reasoning, e can prove t.hat, 1 en) is equal t.o g(n), for any term n of sort lat.

No , Suppose that we extend the above functional specification with

I;la88 C
me m : C -> Rat

and assume that m has side effects. If functions can be evaluated with non functional arguml'nts,

usuall:r 1em(o» won'l be equal 1.0 gem(o», for some o:C. contradicting whal w'" prowd bf'fore

about 1 and g; so. functional f'qualit)' is not, preserved. This happens becansl' 1(m(o» may

he evaluated to meo) + meo), whereas gem(o» may be evaluated to 2 • meo). Clearly, the

e.... alual,ion of the first resulting t'xpression invokes m twice, whf'rP3s the evaluation of the second

invokes m just once. Moreover, the side effects and the gener3tpd re.~nlts may be different, for

each invocation,

6.2 Attributes

Before giviIlg l,h", semantics of attribut.e evaluat.iou, we introduce some not at-ion. For a specification

S. hereafler tonsider arbitrary

t•	 sort and class symbols u, u , U" u; E L', for j = I .. k: and

•	 object identifiers and evaluat.ed functional tf'rms not having r €tracts; t', E 7(P-R~lr)uJ' for

j = l .. k, wher€ L5(v,) is u,. and v, E TF implies v, == ITt',llFE. Also, we let v and Vi b€ in

{v} ,Vk}, where L5(11) = It.

6.2 Attributes 35

\Ve write "fully evaluated term" to refer to object identifiers and tVQluated functional terme not

having retracts.
For simplicity, we consider that the first argument (from left to right) of an attribute or method

is the identifier of the object t.hat will perform the usociated operation. As we haven't imposed
a corresponding retitriction on llignatures, we should show how the semantics of the more general
case is derived from the semantics which atitiumes that, simplification. But this can be euily done
(by changing the pOliition of parameters, for insl.ance), so we omit the deLails.

Attributes can only be evaluated if its associated object exists; so the first argument of the
attribute should be the i.dentifier of an object in the database state being used fOf evaluation.
Also, tbe other arguments must be fully evaluated before evaluation. This evaluation is atomic,

only reads the database used for evaluation (so, the state does not change), and yields the value
of t.hat attribute in this particular state. Thill value is determined by I.he equations lD that state.

The evaluation is ouly possible if the altribute has an associated value in that state; otherwise,
tbe evaluation is suspended. For example. lion initialized attribules cannot be evaluated. The
Rule AU (for a/tribute) formalizes those aspects.

Rule 6.2 (AU) For any a E A,

(a(',), V) _ (ITa(;)llvu[, V)

if a(l') E TFuAuI, VI E Jd(V), and ITa(v)TIvUJ is in PFU!d(1')- 0

The first conditiou guarantees that a(1'j is au attribute application; note that a E A is not enough
to guaranl.ee that, since 0 might belong to :1.1 as well. The second condition a.ssurea I.hat the
attrihute's all80ciated object exists. The last condition checks if the attribute has an associated

value in the database. As we nse V U I (instead of V) in [0(1')TIVU!, we can evaluatethe altribule
expression even if It conl,ainll identifiers of objects not. in the database. However, if this is the
calle, the evaluation is only performed if these identifiers are irrelevant to determine the value
associated to that attribut.e.

By t.he conventiou introduced iu Section 2.3, ITa(ii)TIZluf stands for [p(a(ii)TIvul, since V is a
present.ation with a signature of non-tuonotouicities. As p gives t.he least parse of iin expression
and the equations in V are parsed, only the most specific equations (the ones associated to a

particular t,rpl:' of an operatiou) of V are used to define the 'ialue of a(i'). Tni,:; means that thi~

attribul,e is dynamically bound to the I;.pecialized version of its associated operation; on the other

hand, attributes used in attribute equations are statically bound. In fact, using lhe Iheory of OSA
in t.his way, we can only obtaiu a partial form of dynamic binding for derived attributes, whereas
we can get a full form of dynamic binding for stored attributes,

6.2.1 QuaHfied Notation for Attrihutes

In Section 4. we have discussed a technique La support. qualified notation for redefined attributes.

~ ow. we give its semalltics, b~' showing what's the specification correspondiug t.o a FOO PS module
having redl:'fiued attrihutf's. Basically, the specification should contain all declarations from the

module plu.~ the operat.ions providiug thf' qualified notation, and one equation for each redefinpd
attribute. These equations stipulate that a given ql/alified all rihute is equal to the related original

one. For instance. a module with the following declarations

36	 e. METHODS' .4TTRIB["TES. .-\!"O f'{;;VCTIONAL EXPRESSIONS

pr '.iT
subclau A < A'

at a .I. > -> Bat

at a : .I. -> Bat [redet]

is translated to a specification containing thl" d('dar",th)nS abc.'O(· plus the following:

at a.A' A' -> Bat

varX:A'

ax a.A'(X) :: a(X)

Because theequation ahove is parsed as

ax a.A',A'lIat(l.!') = a.A'lat(X.A')

we have that a. A' is actually ("lua] to {he original \"('r~ion of a a.~ dpslr .. d

6.3 Metllods Specified by DMAs

In order to c('fine I_he semantics of method pvaluation. we mtroduce some !lPW nolalion. GIH,:n a

specilication S, we assume arbiuM)'

•	 E-vambll" famil)' X surh tlla! 1.\ I {Xl,···,.rd,u, S f,s(xd. and Xi X J Implies

v,:::::::: ";. for i.j::: l .. k;

•	 expres;ions formed by fllnctions, attnbutes, v3t13bles, and Identifiers of specified objects4:

g, h, c E TFUAU(MIiJj(X); a.nd

• method symbol m' E {m.LS(xl),m}, for some /Ii E J! not in the form symbol.clas.~-r1ame.

As any speclficat.lOn contains the sort Baal. hereaft~r \\e write ('<t.\" J l = r it c instead of

(V'S) I = r it {(c,'true)},

for any tern c (as aboH) of sort Baal Also, x abbreviates It_ ... ,.1"k, and y is a sequ~nce of

variables from X. LasUy, we wrIte (x ~ I') for (Xl .- f'j ,x,. ..- /,.,)
Now, w~give a formal definition of DMA.

Definition6.1 For a specification 5, a DMA is a ~:-"rJu(l.uon In the form

(I1X) a(m(X), y) == 9 it c

...... here m is a method: m(i) E T.\f(X); Lhe result of m he longs to it.s associated class: LS(m(x))::::

LS(xt}; and a is an at,tribute a(Xt.Y) E TA(X)' [(y is the empty sequeuce then a(m(i).Y)

stands for alm(i)). 0

The eva1.lat.ion of a method specified by 0 M As is atomic lind yields the Identifier of I,h", object

tha.t executes this method; this object nlU:<;l. be in (h.. slar,e wher.. the method is eva.luated Some

of the attributes of this object (In' updated The resulting data.base state is the overwflt.ing of

t.he previous state by equal.ions t'pecifying thos~ upda.tet'. The LAS and RIIS of these equations

h,
,~on comrult me~nod s.Ymbol~ lUe neither allowed in (olldilJon~ nor in the RHS of DMAs.

6.3 Methods Specdied by DMAs 37

respectively correspond to the updated attribute and its new value. These equations are derived

from the DMAs related to the method (as required by the frame assumption).

However, onl~, the related DMAs with the following properties are considered for evaluation:

the OMA's condition, when instantiated with the method arguments, is yalid in the current state;

the OMA's inlitantiated RHS must be defined in the current state; and the OM A is either associated

to thl' class indicated by the qualified notation, or to a class greater or equal to U and smaller or

equal to 11.', where II. is the class associated to the version of tbe method being evaluated, an d 11.'

is the least class (great.er or equal to 11.) redefining this method (if there is no snch u', My related

DMA may he used). Lastly, the method is only evaluated if there are some attributes to update

and the updates are not contradictor)'; otherwise, it's snspended.

AU the aspects discussed abo\-e are considered by the following rule.

Rule 6.3 (DMA) for any mE M. Jet r be the se~ of all equations in the form

a(t'I,Y){X +-- i,) = ITg(i +-- l'lll"Duf

such that E lias a D~l A in the form

(liX)a(m(i),y):: 9 it c;

true belongs to [c(i .-- U)]1JU1; [g(i ~ V)]}Dul is in PFufri.(1Jj; and m' = TTl. and TTl. E R"""u" for
some ·111,'.',Un:S w', imply that. LS(XI) is smaller than or equal to the least c1assgreat.er than

or equal to III such t.hat m is redefined.

If 1', E Id(V) and r is a non empty and non contradict,or)· set, then

(rr/U'j, V) ---. {VI, V ffi n
o

Remember that the operation @ overwrites a database slate (see Section 5.1.1).

DMAs can only specify a deterministic hehaviour for methods, So, not,e thaI. if there are

contradictory (or even redundant) DMAs iu E, their associated method cannol be executed

because it.s specified behaviour is cousidered inconsisteul,; the evaluation is su~pended. Obviously,

this should be avoided. In the rule above, this is reflected by requiring r to be non contradi.ctory.

Similarly, suppose that. two versions of a method are defined, but t.he specialized version is not

considered a redelinitioll. In this CMe. following tilt' last rule, equations from both .lefinitionll may

be nsed to evaluat.e the specialized version, So, unle~s both "ersions specify the same updat.es,

they arc considered in.-:onsistenl: again, r will bt' coulradictory and consequent!,.. the method

won't be execnted.

The equat,ions defining the versions of a redefmed method ilSsociated 10 a class and a corres

ponding subclass do not necessaril)' have t.o agree on the behaviour I,hal lhey specify. Indt>ed,

usualJ~· they don't. Thus, ouly tile most specialized method equations can be used for execut.ioIl.

This corresponds t.o the semantics of dynamic hindiug. That's why t.he resl,riction on LS(XI) is

necessary in Rule DMA, Also, if a qualified uotation is used, observe t.hat the indicated class

must he t.he sallie as !,he leasl, class of .1',. b)' t.he restrictions on m'; so, only eqllaHons associat.ed

to the indicated class Can ht, used for evaluation.

Rule DMA makes clear tl1aL lhe adoption of the '..-anallt syntactic rule (which is implied by

regularit.y) for redefinitions may caust' some anomalies which require attention and should be

avoided. fot instance. consider tIlt' following specificat.ion

38 6. METHODS, ATTRIBUTES, A,VD FUNCTIONAL EXPRESSIONS

pr RAT

subclass A < A'

subclass B < B'
me • I' B' -> A'
me • I. B -> A [rede:t]

at a I' -> lat

var I' A'

Var Y' B'
var X A
var Y B

ax a (m(l ' • y' »
ax a(III([. Y)) =

where m is r~defined iu a valid way. Observe thai the expression m(a,b'). for a:l and b' :B',

caunot be €laluated using t.he DMA associat..d to Ihe specific version of In hecause tht' class orb'

is not a sub:lass of the class of Y. Also. the D~IA related 10 the original H>Jsion canno\. be lll'ed

for evaluation because it's not the most, specialized one (i.e., the class of I' il' not t,he same as lht'

class of a). This situation should be avoided becanse although m(a,b') il' a \'i'Jlid exprt'ssion, it

cannot be eraluated; it. will be suspended forever.

From the definition of ffi, we conclude that this opera lion might not pr('serve the properties

of database states if its arguments don't satisfy some tonditions. If this is the case in thf' use

of EB in the last rule, no trausitioll is possible (because t.he resnlt of ffi is not a valid datahas"!

state). Thi, means that the method canllot be executed. So, this circumstance shonld also be

avoided. In general, this might happen if the state has an equalion spedfying an attribute value

and this eqLation is not removed when that attribute is npdated. For inst.ance, this happens If a

DMA specilies an npdate for a derived au.ribute. JJ) this case, Ihe sl,a1.e resulting from the updat"!

is a presentation containing two equations deternlilling two values for the same attribut(' (one

corresponding to the original derived at.t.ribute equat.ion and anot.her associat.ed to the update). If

these value~are not equal (with respect to the related fnnctionaltheory), the resulling presenl.ation

is not a vaM database state, since it relate,. two expressions whidl are Tlot relat.ed by the associat.ed

functional t1eory.

A similH problem occurs when a storeJ attrihnte is redenUl'd hy a derived one. In fact. a

method associated to the superclass might try' to update the redefined. derived aHribut('. BUI we

have already discussed that derived attribntes should not be updated. For example, consider the

specification

pr RAT.

eubelau C < C'

me m C' -> C j

at a : C' -> lat

at a : C -> Rat [rede:t]

var I C'

var Y C

ax a(D,(X» :: 1

ax a(Y) = 0 .

where III isnot redefined. Note that the original version of a is a stored attribut.e, whereas the

specializt'd version of a is a derived attribute. Thus, the execution of m(o), for some o:C, adds

6.4 Afethods SpeciEI'd by [MAs 39

the equation

a.CI21:t(o.C) '" 1. Vat

to tbe database. 8m this conflicts with lhe equation

a.Cla't(T.C) =- O. Vat

whicb must be in any state (it belongs to AE). This would violate the restriction on states becau~e

we would then be able to prove that 0 equals 1 from the equations in tbe resulting !)Iate.
Here we do not give a complete semantics for updating of multi-argument stored altributes. In

fact, this cannot be done in a simple and abstract way if presentations are used to model database

states. So. we just givl' the semantics of DMA.s specifying thp npdate of only one attribute. as in

aJ: a(m(O,I) ,I) = fI,

where ellaJuating ut(o,x) only updat!'.. the attribute 80(0, ..). That,'s why ;n tne last rule we

requite the variable.s in y 1.0 be in i. This implies that aHer instantiat.ion, the LHS. RHS, and
randition don't. have any lIariables. So, /.he resull.ing RIIS and condition can be e~·aluated, and
the instantiated LHS specifies t.he lIalu," of only oue attribute

It's difficult to gill!' the semantics of DMA~ snch as

aJ: a(m(O) ,I) '" 8.

where the execUlion of mea) should npdate all atlributes a(o,x), for any x:I.ln order to consider
this kind of DMAs, states would halle l,o keep a history ofupclates for each mult.i-argument stored
attribute. This is needed becanse snch updates might, not complelely inllalidate the previous ones,

since each update may determine value.~ for an arbitrary range of attrihu tell. The value aSflociated
to a specific attribute could then be compnted by checking what's the last update that det.ermines

it. Thifl approach could be represent.ed in our model for fltates. However, it tnrns out to be very
detailed.

6.4 Methods Specified by IMAs

III this section we gille the semantics of Blethod~ specified b:· {MAs. First, we give a formal
definition for IMA

Definition 6.2 For <l specification S, an IMA is a E-equation in the form

(VX) mii) = frpr if c

whf're 111 is a method (i.e m(i) E TIfUo) and fipr is a method expression wll,h '>'ariables from

X: apr E Tl:(xj. 0

The execution of a method 8pecified by an lMA corresponds to the elialual,ion of this IMA's
RHS (instantiated ith the method arguments), ellen if the metbod's associated object is not in the
database used for e,·aluation (mf'thods specified in this wa;:.' are seen as abbrelliations for complex

expressions) Of course. the l'valuation can only happen if t.h" IMA's condit.ioll (instantiated
with arguments) is satisfied in the state where the method is going to be evaluated; ot.herwise
the evaluation is suspended. Also. !>imilarly to DMAs, only speciali2ed IMAs should be used for
ellaJuation. The following rule considers those aspens.

40 6. METHODS, A.TTRfBUTES, A.ND FUNCTIONAL EXPRESSIONS

Rule 6.4 (IMA) for any m E M, jf the lMA

(liX) m(i) = e:rpr it c

is in E; trUt E [e(i <-- t')]!'u]: and m' = m and mER,,,, .,,'. for som eUl •.... u., $" tI~l. imply

that LS(xd IS smaller than or equal to the least class greater than or equal to Ul such that m is

redefined, th~n

(m' (i'), V) - (erp.{i - l'), VI

o

B.:ocause of dynamic binding. only the most specialized 1M As. can he used for evaluation. Con
trast.ing to D~IAs (see comll\o"n[s followillg Rnl.. 6.3), if [\\"0 or more l'IAs that dOll'l agee!' on

the specifi<:'d behaviollr an' Ilsed to define the same method, this mE'thod has a nondetermin

istic behavicnr. Similarly, if two vNsiolls of a met,hod arl' defined, but the specialized version

is not conSidered a redefinition, tht' l'IA.s related t.o hoth \"erslon~ may be used to evaluate the

specialized 'ersion, hich will probably be nondt't.erministlc.

Last.!y, observe that the same anomalies a~so(iared l,O methods defined bl' Dt\IAs, due to the

adoption of the variant. synlactic rult' for redefinitions. mi..;ht "Iso happen for methods specified

by 1M As (see Section 6.3 for details).

6.5 Arguments

From the trlnsition rilles given so fi\[, it can be Qbsprved th"t. tht' least sort of an expre5~ion

is alwl\Ys in the same connected compollent of U (WIth respect j,O $.) as the least sort of the

result yielrltd by l,he evaluation of this exprf>ssioll. However, the least sort of l,his resnlt might

bt' greater, lmaller or even not relaLed (by $) to the least sort of t,hal expression. This is dne

to the flexibility of the FOOPS type syst,ern. For instance. t.hi~ happens ber.ause axioms ar<:"' not

necessarily lort decreasing, like III

sorts 1 B C

subsort 1 < C

subsort B < C

class D

at a : D -) A

var X D

al: a(l) = e

where e i!cll constant of sort B. SO, the c\'aluatioll of a(o), for o:D, gives e. But this resulting

expression !las least sort. B, wh<:"'reas a(o) has least sort A, which is not related to B

Another example here this may happell is

5ubcla18 C < C'

subsorls A < J.'

at a C' -> J.'

at a C -) J.

var X C',

al: aUI = e ,

41

7

where e is ll. <,:onstll.nt of sort A' and a is lIot redefined (there are no special eqnations for the

specialized version of a). Hence, a(o). for o:C, has least ;;ort A, but evaluates to 8 which has

least. sort A', greater th an A.

This fact has to be considered when evaluating Mguments becll.ul'e an operation may not be

defined for the type of the result of the evalnation DC one of its arguments,]n (Ilis case, a retract

should be introduced to give the rignt type lo the rel/ult.

In order 1,0 produce results of interest, retracts should be eventually diminal,(:d (evaluated),

Otherwise, operations Illight block or return exceptional retraded valnes. This can be avoided

if the retracts in axioms call be eventnally eliminated (a non sort decreasing aXIOm may be

considered a SOrt decreasing axiom, by insf'rting 3D adequat.e retract to its RHS). A fnnctional

ret.ract. can be eliminated if its argnmE'nt is evalnated to all element. that ie equal (with respect

(,0 thE' associated fUl1ctiolJil] theory) to all elemE'nt of thE' desired :;,ort, Similarly, an object level

retract is eliminated if it.s argument evaluaT.l'5 (,0 an object Identifier of the desired class.

Sow In' introduce the Rule Arg for Ilr9ument. evalua1iolJ. Hereafter, we consider arbitrary

method expressious withQut variables: e,J,c"e; E 'Ts, for j:::: 1 .. k.

Rule 6.5 (Arg) For any i E {I, ... , k} and op E (FUAUAf)w.s such that LS(el)" .LS(q) $ w,

(ej. V) -. (fi, VI)

(op(fl,"" f, , €l')' D) -. (op(e;, ... , T(ei).· .. , ek)' V'}

where <= c) if j ::f. 'i, for j = 1 .. k; and T(e;) = < if LS(t:l $ LS(e,), otherwise T(e~)

:cu'>u(t:), where u' LS(e:l and u = LS(e,). 0

N otiet' t.hat there is no fi x ed ordE'r to evaluate arguments; the order ill nondelerminisloically chosen

In fact, the resull of the e~'aluation of the expres"ioll may be nondeterministic, if some arguments

have side effects. Furthermore, the evaluation of one argument might be interleaved wit,h the

evaluatioll of the otherl!;. However, from the semantic point of \'iew, a step (transition) in the

evaluation of one argument cannot happen at the same time 1\."1 a step in t.he evaluation of another

argument. This could be supported by a "trul)' concnrrenC semantics. In fad, inSection 7.2.1,
we argue t.hat the viable approaches for a "t,ruly concurrent." semantics for FOOPS turn ont to

be equivalent to t.he interleavillg semcult.ics which we adopl Ilere,

Method Combiners

)\"ow, we show how the semantics given in t.he previou>; section can be modified and extended to

support method combiners. It's simpler Lo directly give l.h.e semantics of each rOOfS predefined

rnelhod combiner independently, iU5tead of t.rying to specify sOllie of them in tnms of otherll.

Here we introduce transition rules giving Lhe semantics of ea.ch combiner. Lastly. \Io.t' give one rule

which specifies how new comblut'ts, defined in terms of the predefined ones, are evahulted.

~lethod cornbiners are conceptuall) different from methods and at.t.ribntes. Ind~ed. t.hey don't

correspond to operations related t.o object.s. Ht'llce. t.hey have a special semantics. Among other

particularities, t.hey offer some control o~'l'r the order of e~'alua'Jon of their argnments. and they
yield rt'sults depend ing whetlwr !;Gme particnlar arguments are fnlly evalnated Similarly to

methods, method combiners are neither allowed in the RHS of D\IAs nor in conditions.

42 i. METHOD COMDfNERS

In order t(l give Lhe semanti(s of method comb iners, we assume that signatures contain one more

component: .ire S; E, formed by method combiners names. Moreover, we cousider thal mei,hod

combiners are not mixed up (in the sense of Definition 4.1) with functions, methods, or at.tribules

The followillgoperations, which are in Me, represenl the predefined method comhiHers:

II T -) T: ·_.
e_II_._[J_ uu->u;

• reeult_;_ U T -) U:

• if_tben._e1Stl_fi : T U U -) U; and

1.1 -) u· · (-]

for 3fl.Y types T. U E U.
For supporting the parallel composition aud choice of method expressious ha"ing unrelated

types, we consider that a universal type Univ is in [I, ThiS lype includes all)" class at sort. That

is, 'Ii S Unn, for any 'Ii E U. HoweH'r. Univ is neither a clel-sS uor a sort. In this way, an

expression e I (1 is well fOrlned. evell if the sorts of e and f are not related. This is possihle

because _II_can be parsE'd with lhe type "Univ Univ -> Univ"

Now. w~ proceed to give the semantics of method (ombiners

7.1 Sequential Composition

The argumellt all the It'ft of the sequential composition operal,or (_;_) has to be fully evaluated

before the e\'aluat.ioll of the other argument starl,s. Rule Seq (for Bequential) is used for evaluation

of the left ar~ument and it indicates that transitions from (,his argument. pro.... okes transitions from

a sequent.ial composition:

Rule 7.1 (Seq)

ie, V) - (e', V')

(e; j, V) - It' ; j, V')

o

When t.he left argumE'llt is fully e aluatE'd. lh~re is a tranf>ition to sti'lrt the e.... alnation of t.he

argument. 011 the right. as indicated by Rule SeqE (for sequential composition elimination);

Rule 7.2 (SeqE)

ie; e, V) ~ (e, V)

o

Here we adopt a "wailing semanti(s- for method expressions; th"t is, if a metbod cannot be

executt'd in a database state (becausE' no axiom specifying its beha.... ior has a alid conditian) then

(he obje(lrequiring the (orresponding sen,ice (the client.) has to "wait" until the sE'rvice (an he

7.2 Parallel Composition 43

provided. However, noti~e Lhat this does not nece!l8arily meao that t,be client will be blocked,

since it may be executing other tal!lk,!l coucunently.
In tbe last rule, tbe adoption of the ~waiting !lemant.ics" is reflected by ensuring that the

right argument of the sequential composition operator is ani)' executed when the left one is (ully
evaluated. This il!l also reflected in the rult'!l (or ot.her method combiners in the following sections.

In order to capture a "non waiting semantics", the evaluation of f should start as SOon as e
cannot be evaluated. Thus, if a service is not available, the client doesn't wait and proceeds to

the execution o(the uext service.

The firl!lt alternative was chosen because it gives a usefnl synchronization me(hanl8m between
clients and seners. Thil> would have to be simula4ed by some form of "busy waiiing", if the
non waiting semantics were used. Usually, this simulation complicate!> the code and it's quite
mefficienl,. Ou the o/.her hand, the "uon waiting" behaviour can always be uaturally and effidenlly

simulated in terms of the "waiting" behaviour. For example. suppose t.hat the operatioll put insert8
an element in a buffer Duly when the buffer is not full. Thus, adding the axiom

ax put(B.I) = B it 1ull?(B)

releases the client. if the buffer is futl; l,he client doesn't need to wait for a pla(e in Ibe buffer.
Furthermore, llie "nou wail,ing semantics" approach is not uniform, since in this (ase the left

argument of _i_ may be discardE'd (when its corresponding service cannot, be provided), but the
argument of an operat.ion has t.o bl' eventually evaluated. For example,

put(b,&) ; put(b.4)

evaluates to put(b.4) in a state where the buffer b is full. 00 the other hand, no transition IS

possible from put(put(b.S),4) in the same state.

7.2 Parallel Composition

Here We give an int.erlE"a"ing semantics for parallel composition. So. transitions from the ar

guments of a parallel composition operalor are int.erleaved and they cause trausit'lons from t.he
parallt'! composition, as shown by l,he Rnle PerL (for parallel composition left argument evalu_

atioll)

Rule 7.3 (PerL)

I', D) «', D')

(, II f, 1') ~ (,' II f, 1")

o

and the symmetric ParR (for parallel composit.ion right argument evalnation):

Rule 7.4 (ParR)

(J, D) - (J', D')

(, II f, 1') - (, II f', D')

o

44 7. METHOD COMBINER.S

Also, thE' arguments of a parallel composition operalor can be eliminated when they are fnlly ('val

uated. This is specified by the Rules ParLE (for parallel composition left argument elimination)

Rule 7.5 (ParLE)

(v II v. V) ~ (e. V)

o

and ParRE IJor parallel composition right argument elJluillaLion):

Rule 7.6 (ParRE)

(e II". V) ~ Ie. V)

o

7,2.1 ·'Tne Concurrency"

The illterleaving !iemantics doesu't consider the hehavionr caus/:'d by simultaneous transitions

from the argHnents or tile parallel composition operator. This behaviour is usually considered by

a ·'t.ruly conmrrent" semantics. In fact., "true concurrency" seems more natural than int,erlea ... ing,

since objects migllt be part of a distributed syst,em (where expressions might be simultaneously

evaluated). lIenee, let's consider th", int.roduction of the '·uuly concurrent'· parallel composit,ion

combiner: J 11_ : U U -> U, for any U E U.
First, remember thai an attribute cannot he bolh read alld written at the same tnIl"! because

of physical limitations. So, simultaneons transi\.ions from l.he arguments of a "truly concurrent"

operator ale only possible if the attributes accessed (i.e. read and/or written} in one transit.ion

are differelll, from t.he al.lributes written in the other. Also. if an object is removed or creat.ed in

one transition, it cannot. be accesi;ed, removed, or created by a simnltaneous transition.

Some of those constraints callnot, be elegantly E'xpressed here hl;'canse the::? rely on informat.ion

that is abstracted by our framework. (For example, there's no simple procednre for determining

what attributes are read dnring a given transition. since l,he evaluation of attributes is specified

in terms of~he represent.ative of an equivalence etass modulo el"juations.) Hence, instead of using

the constraints above for defining a rule considering simultaneous ('valuation of arguments, we use

a weaker condition: the updates made by aile transition don't interferE' with the updat.es made by

a simultaneous transition. Formally, if

lv, V) ~ (,', V,) (1) and (f, VI ~ (f', V,) (2)

(,hen

(v, V,) - (v'. V') and (f. VI) - (f'. V').

It's ea6Y to verify that t.his is implied by the constraints mentioned at the beginning of this

section. First, observe that 'D 1 amI V 2 call be respectively represented in the forms

V8RouNo~rand V8 ROlu.NO'Efrr',

for some RO,NO,r,RO', NO' and r l
, indicating the changes made by e and!, where ROnNO::::

oand Roin NO':: 0. So. if the transilioJls 1 and 2 are possihiE' then (I, Vi) leads to

(I', Vi e ROlu NO' $r').

'1.2 Pan~Jlel Compo,sj/,jon 45

since the stronger condition assures that the first step in the evaluation of f doesn '(access the

changes made by the first step in the evaluation of e. A similar reasoning can be used to show

that (e, D 2) leads to
(e',V,9ROUN061).

Lastly, it remains to check tbat the stronger condition implit's that D I '2 RO' u IVO'~ r' is the

saine a.'f D~ e RO u NO 6j r This call be easily done: we omit the d<'lails.
Now we give t,he semanllcs of _111_ nsing t.hl? weaker condition. Basicall~", _111_ is defined

by the rules for interleaving. replacing _11_ by _I II., plus Rule TCPar ([or trill)' concurrent

parallel composition).

Rule 1.1 (TCPar)

(e. Vi ~ Ie', V,).(I, V,i - (I'. V'i,

(I. Vi - (I', V,i. It. V,i - «', V')

(f III J. V) - It' III 1'. V')

o

In fact, the weaker condit.lon used ahove allows more tran~itions than expl?(ted for a ~truly

conCUHeut" op(·rat.or However, this tllrns 0111 to be enough [or our purposes hen': we are

int.erest.ed iu proving t.hat t.he int.erleaving and the "trnly concuTr{'nl" operators are equivalent

(with resped to some milrl nOlion of ohsen-ation l?quivalence) in our framework; basically, we

want to show that the extra mle for .,imuJt.an{'ons evaluation of arguments is redundant. So, if
we prove thaI. this is the case considering the mle above, jt follows t.llat this is also the case if we

COJlsider a rule with a stronger premlSl? TillS equlvalenc'O' is what should be expected since it's

desirable to specify systems of distribut.ed objetts wit,holll worrying whether computations are

being carried ou\. simultaneously.
Here we suppose that the flotion of eqnivalence that we arl? int,erested doesn·t distinguish a

coufiguratlOu C havlllg the transi~iolls

c - C1 - C2

from a configuration C 1 ha\'ing the trans-it ions

,(

C' - C~- C",.

wheTl? C~ and C~ ilTe respectively (observalion) equivalent t.o C1 and C2 ; and any other transit.ion

from C' is matched, in a SImilar way, hy some transitions from C, and vice v·ersa.
This is a quile mild assumpt,ion Oil equivalellces ov[>r configurations. Roughl)', it says that a

configuration that can lead to a resulting confignrat,ion in either one or two transitions i5 equi

valent to a COil figuration which can fl?ach an eqnivalent. resnlting confignrat.ion in two equivalent

transitions. This should he valid for most reasonable and interesting observation equivalence., be

cause the configuration" reached from C and C' are equivalent, and any sequence of obsl?rvations

that can be made on t.he inlermediate states reached by one of the configurations corresponds to

a possible sequencl' of obs('rvat.ions from 111(' other.

46 7. METHOD COMBINERS

We let ~ denote the equivalence on configurations that we art' iT1terested. Thus t.he- following

t.heorem establishes the equivalence of the two operators for parallel composition.

TheoreDl 7.1 For any database state Vand melhod expressions e and f,

(, II I. V) '" (, III I. V). (w)

Proof: We split the proorill three cases. First, we consider lhaL both e and f are fully evaluated.

In this case, Lhe possible transitions from (e \ 1 I, V) alld (I" III I, V) are justified by Rule~ 7.5,
7.6, and the cortt'sponding ones to _I 11_:

(, II I. V) (, III I. V)

y
('. V)

.~

(J. V)
;/ "'~

('. V) (J. V)

from these diagram!>, we can conclude that (I" II f. V) is f'quivalenl. to (10 III f. V), siuee the

transihons from the firl;t (1 and Z) Me mal,ded by the [f1I.n,>itiolls from the second (3 aud 4), in

the sense that they lead to equivalent configurations (as ~ is an l'quivalence, it is rE'fh·xi·.. e).

Now we a.ssume that f is fully evalualed but f is not. Thlls. w,~ have the following possible

transitions:

(, II I. V) (, III I. V)

Y'~ ;/~
(,. V) (,' II I. V,) (,. V) (,'III/.V,)

whenever (t, V) ---' (e', VI). Thi6 is justified by Rule6 7.3. 7.£. and the corre'!iponding ones to

til. In the diagrams above, tr(l.nsitions 1 and 3 clE'arly match. In th.. meant.ime. lei's assume that

(,' II I. V,) '" (e' III I. V,). (0

So, we can infer that, transit,jons 2 and 4 maleh, what proves '-<i for Ihis (<\5e

\Ve can use a similar reasoning if e is fully evaluMed hut f is not.

Lastly, if neither (' nor J is fully evaluated, the possible transitious from hoth configurations

(as defined by Rules 7,3, 7.4, thE' corresponding ones to _1 (1 __ and Rule 7.7) are the following:

(, II I. V)

/ ~
(,' II I, V,) (, II !'. V,)

3 , •
(,' II/'. V')

7.2 Parallel Compositjon 47

and

I' r r r!, D)

I"
/

r r r!, D,)

'~
lei r I!', D,)

9
8 • -

(e" II 1', V')

whenever (e, V) _ (e', 'D1) and (f, V) --. (f', V 2). By Rule 7 7, transition 7 i~ only possible if
(1. Vl~ - (f', 'V') and (t, V21 - (e', V'): (hi~ ju~tifles tro.nsitions J. 4, 8, and 9. Transition" 1

and :2 rt>spectiw'ly match 5 and (j if WP. assUITjP that

(e'r r!, D,) ~ (F' I r r f, V,) (ry)

and

IF II/', D,) '" I' II r /" '[I,), jK)

Also, by the assumption we made about >:::::, transitiou 7 (together wit,h trausition 5 followed hy
8) is matched by tra1l6itiou I followed by 3. Tllis proves '"" (or this case.

Now, we have only to check propositions ~,11, anu ,.. They can be inform1l.11~· justified b~· "
similar reasoning as the one used for;.J. However, this call only be formally v"rified if we are

able to use the fOrmal definlt,ioll of::::::: wit,h au associated proof technique. For example, this may
be done using the notion of equivalence given in (3J witb it:; rdaled proof technique: Wi' omit the

details here. 0

From this theorern a.nd assuming thilt::::::: Iii presered hy _11_, we can guarantee that an expres
sion uot contaiuing _111_ i~ equivaleut to an expre~sion obt.ained from t.he first b)' subst.ituting
.1 11_ for _I 1_. Similarly, _I 1I. cau be replaced by _I 1_. H~nce, we concluue that t.here is no need

t,o int.roduce t.he operat,Qf _1'1_: it, is semaut,ically eQuivaleut t.o _11_ and has a more complka.ted
;semantic definitIOn. Tne extra rule for _111_ is redundant.

Furt.hermore, the theorem aho\"{' indi(ates t,hal t,he ImplementatIOn of inlet1~i3\'ing may be

"'truly concurrent", in the sense that two expressions might be ~jmult.aneously eva,luated, giyen
some mild (ouditions. Fortunat.ely, as W~ have shown, this doesn't generat.e any bt'haviour that
cannot, be observed from t.he interleaviug of the evaluation of the t.wo e)lpressions

As mentioned before. simultaneou~ transitions are only possible if thp. aUribules accessed in
one transition are different (rom the attribut.es written in t.he other. This is a realist.ic rest.riction

if attlibutes are direct.ly implemeuted in terms of memory cells and transitions corn'spond to the
1'X'1'(1Jtion of atomic t.rausactiolJs, which imply that a.ttributes might be blocked, However, this
restriet.ion could be relaxed if the implement.ation provides a copy of each att.ribute: that is, one
copy for reading (access) and anot,ht'l' (or writing (access). The reading copy could he nsed by

mauy c1ient.s at the same time, whereas the write copy conld be blocked by only one client at
a giHn time. In this eMe, a complE'x mechanism is necessary to keep the consis/.ency between
the two copies. On the other hand, the rE'adiug copy may be read a~ t.he same time t.hal the

writing COP)' is beiug updated. Also, considering lhal an al,omic transaction II'Quld onl} hlock

48 7. METHOD COMBJ!";ERS

the altribules that might be updated, a transaction could write to an attribute being read by a

!jimultaneous transaction.

Clearly, this approac.h doesn't seem to be practical. ll's likely that the efficil'Dcy gain obtained

with the simultaneous exeeution is not worth because of the burden related to the mauagement

of copies and extra memory space necessary [0 keep a copy of each attribute. Despite this,

disregarding implementation issues, we sllprrficially t"xplore the consequences of t.his approach,

from the semantic point of view.
F irs I., let's assume that the operator _// _ : U U -> U, for any U E U. is defined by rules like

the ones related to _11_ plus Olle rule that, allows sirnultaneons traniiitions whene~'er tne attribut.es

..... ritten in onlC Iransltion are different from the attributes ritten in the ot.ber, Also, all object

removed or created in one transil.ion canno1 be accessed, removed, or created in a simultaneous

transition. (So, the onl)' difference betw('en _111_ and J/ _ is that lhe sF("ond allos attributes

read in Due transition t.o be written in a sillluitaueous t.ransition,) As in the definitIOn of _J 11_,
'fUlne of the conditions nece~.qr)" (,0 fOflnalize a rule ('onsiderill.~ slmultallPou.~ transition callno,

be I"legamly expressed in our framework. However. w(' C<l1I st.ill argue that J/ _ is not equivalent.

to illlerleanng. This means that. I·b" extra behavionr <lssocla\.ed to J/_ cannut be expressed by

the inletleal"ing of to transitions.

First, consider the following 5pr·cilicatioll df'fining a cla.% of memory cells for storing natnral

nunlbers

pr ,iT .
clau Cell

at v Cell -> lat

me .=_: Cell fat -> Cell

roe _,=_ : Cell Cell -> Cell

vars C C' : Cell

var I : Hat

a.J: v(C := .) = J

ax v(C := C') = v(C')

where each object of Cell has an att,ribul(' v (for tlalue) whirll stores fl. nalural number, and two

methods for changing the conlents of a cell.

Now suppose thal 1 and Yare identifiers of cells: the e~'aluation of tilt' expression

:=Y//Y;=1

in a darabase slate D where v(X) = 0 and v(y) 1 is illustrated hy the diagram in Figure 1,
where VI and D 2 are respectively the states

D$v(X) = 1 and D$v(Y) = o.

~ ate that Iransition 5 wouldn't be pOf;5ible if _111_ (or _II_) were used instead of J / _. As can be

seen, it's not equivalent t.o 1 followed b)' 3, or 2 followed by 4. This shows thal the two operators

are not equivalent, siuce t.he resulting states are clearly not (obsenation) equivalent.

The operators are not equivalent. bUll,here are weaker relations among the different operators

for parallelism. For example. the exprf'ssion anal)'sed above is t"qnivalent. to

:= v(Y) II Y ;= veX) and 1 := v(Y) III Y := vOL

7.3 NonrletermJ/lJslic Choire 49

(x ,~ y I I Y ,~ x. D)

~ ~

(x II Y ,~x,D,) (x " Y I I Y , D,)

)'
,

~
(I I I Y ,VI +V (y) = 1) (X II Y ,D, g),(Xj ~ 0)

(x II 'i . Vtftv(X) 1 ~ v(Y) 0)

Figllfl' 1: Transilions gpnera[.ed by X yIIY:=X.

since vO) and v(Y) have to be evaluated before the assignment can be execnted (this is not

al,omically done). Also, we can say that, "I II f is refined hy e III f (or eli f). for an)'
expressions "I and f. because any behaviour observed from t.l1'~ evaluation of the first can also be

ohben'ed from t.he en~lu atjon of I,be second (bnt 1I0t t.he other way around).

Lastly. it's important to observe that the new operator is "ensitive to the gronp of attributes

updated by its arguments. For example. consider the following obser\'ation eql.liYalent expressions:

[X ; = Y ; Y : = Y] and X : = Y.

Also, VIe have that 'i : = X i~ equi",l!('nt to Y : =- X. Now note that the expression

(1) y := X II 1 :: 'i

is not equivalent to

(2) , . ~ x I ([x ,~ Y , Y ,~ Y 1

slilce tilt' (s\lh)expressions of l can bt' exeClHed at the same time (t.he)' write to different aUributes)

wbereas this is not possible for 2 (hot.b arguments llpdate V). In fact, expression I might beha\"('

\n a way that caTlnot be simulated by 2.

From t.he previous f'xarnpll:'. we conclude that it is not possible to find a reasonable notion

of equivalence that l.s preserwd by this operator. This essentially means that .11 _ cannot be

llsed for compositiona.l software development.. So, It's not very us",ful in practice That'~ another

r"'ason for choosiTlg ao interle"ving semant.ics for FOOPS parallel compo!'ition.

7.3 Nondeterministic Choice

The choice operator (_0 -lnondeterministically (booses one of its argnment.s for evalnation. llsing

process alg",bra's terminology (see [:24, 32 231), here v.... opt for an e.rlernal choiceopt'rator rather

than an mternal choicf' operator. In fact, the laller can he SImply defined in lprrn6 of the former

(see Section 3.2.2)

.~O I. METHOD CO.\fB/NERS

Essentially, the non determinism of an extf'rnal choice is partly resol',ed by t.he en"ironment

where the choice is evaluated. In fact. an argument may only be chosen if it can be evaluated in

th.. current. t'nvironment, or if it.'s already fully e,,·aluated. If both arguments may be chosen. th"

operator autonomously (int.ernall)') resolves the nondeterminism.

Trant;itions from t,he choice bt't.""een two expressions correspond La t.ransitions from one of the

expres!)ion~. This is specified by the Rult' ChoiceL (for chOICe left argument. evaluation)

R\lle 7.8 (CboiceL)

(e. V) -- (e', V')

(e (] f. V) ~ (,'. V')

o

and the similar ChoiceR (for do/((,.igh~ argument evaluation)

Rule 7.9 (ChoiceR)

(f. V) - (f'. V')

(, [] f. V) - (f'. V')

o

Moreover, a fully evaluated argumenl, may be chosen b)' the choice without changing thl' daLahase.

This is expresst'd hy the Rule ChoiceLE (for chQlce left argument elimination)

Rule 7.10 (ChoiceLE)

(e [] e. Vi - (".7')

o

all<l. the symmetric ChoiceRE (for cholft' rigth Mgument elimination)

R.ule 7.11 (ChoiceRE)

(, [] o. Vi ~ (v. Vi
o

It might be difficult to efficienl,l) lmpkmenl the kind of chOice discussed here because it tries

to "guess" whether an argument can be evaluat€d or not. This contraf:lts with an int.ernal choice

operator, which can be simply and efficiently implemented. Also, the internal choice is likely

to be more useful in FOOPS specificat.ions. llowe\'er, we havl' adopted an external choice for

two main reasons. Firsl. it's more fundamental a.nd can be used to define internal choice in a

very simp/", way. Second, choice is usualI}" used in FOOPS as an abst.raction tool for writing

specifications (when it's desirable lo abstrafl. from the reasons which determine one behaviour or
anotber). rather than as an operl'l,or to construct implt:'mentations (as usually necessary in process

alge bras).

7.4 Result 51

7.4 Result

As probably expect.ed, the rules giving the semantics or the result method combimr should be

similar to tbe rules for sequential compositiol! This is confirmed by the Rule ResultL ror

evaluation. of the left argument of lhe result combiner.

Rule 7.12 (ResultL)

it. V) - (t', V')

(result to ; f. V) ~ (result e' ; f, V')

o

\Vhen the left aq~umellt. i.s fully e\'aluated, the e\'aluation of the righ~ one may start. But cont.ra.~t
ing with sequl"ntial COll1posilion, tllP left argumelll. is uot elimin(l.ted. Those ...!;pects are des:crih.,J

hy the Rille ResultR (for re.'lllt right argumenll"valuil.r.ion):

Rule 7.13 (ResultR)

(t. V) ~ (e', V')

(.result v; e. VI -. (result 1) e',1)I)

o

Fiually, when both argUIllcnls are fully evalualed. thf')pft, one is gi\'ell as re5u!t, a8 indicateJ by

Rull" ResllJtE (fo1" rdUU eliminatIon):

Rule 7.14 (Re!lultE)

(result L' ; v', 1') - (t'. V)

o

7.5 Conditional

Besides conditional axioms, fOOPS has a method comhiner that may b", used lor specifying

conJitioflal behaviour. In fact, I.hili combmer provides a more general mechanism than conditional

axioms because its condition may be an arbitrary method expression, whl"reas t,h~ latter cannot

ha...·e condit,ions containing mef.ltoJ symbols or met.hod combiners.

First, the conditIonal met.hod combiner (~1_then_elstlJi) fully evaluates il.s condition. AftE'r

that. bas~d OIl the result, one of the alternatives is cnoosen. Thl" Rule IfCond specifies the

evaluation of t.he condi.tion:

Rule 1.16 (IfCond) For anJ c, (' E Tr;,

(e. V) - ie', r>')

(if c then e ehe f 11. V) - (if [' then f. else f 11. V')

o

·')2 7. l\tETROD COMBfN£RS

When ~he condition is fully evaluated, the first alternative is given as result, if l,he condition

is true. as indica.~ed by Rule IfCondT:

Rule 1.16 (IfCoudT) If t' =FE true then

(if v then e else f :ti, V) _ (e, D)

o

If the condition is false, the conditional)'ields the second alternative:

Rille 1.17 (IfCondF) If v =FE false theu

(if v then e else f fi, D) - (f. D)

o

It might seem that this method comhiner could be equivalently defined as a fundion, in terms

ofequatjons at FQQPS functioualle~·el. However, remember that functions cau only be evaluated

if their arguments a.re fuuct.ioual t,erms or object identifiers. This implies that the alternatives of

a conditional would have to be ('valuated before one of them is choosen. In geueral. that's nol the

desired behaviour because the evaluation of the alternatives might change the state.

7.6 Atomic Evaluation

Intuitively, the atomic evaluation of an expression corresponds to iLs evaluation in only one stt'P

(transit,ion). In fact, this means thai, t.he attributes accessed by au expression beiug atomically
('~'aluated cannot be modified by other expressions beiug concurrent.ly evaluated. Atomic evalu

ation might is necessary when an expressiou has to be evalua.ted without interference from others;

that's why FOOPS provide!; the atomic f'valuation opNator (LJ). Following those intuitions, we

introduce the neXt rule:

Rule 1.18 (1\toruic)

(e, V)~' (", V')

([el. V) - (", V')

where _. denotes the transitive, refle.xive closure of __ ~. 0

Observe that the atomic evaluatiou oul)' succeeds if the related expresiiion can be fnll)' evaluated.

This corresponds to the semant.ics of atomic tranS<LetlOns iu dal<Lbase systems, where the fact

t.hat the expression cannot be fully evaluated is considered a f<Lilure. UsualI)-, after a failure,

transactions recover the state pr('vious to the begluuiug of the transaction; that·s why tbere is no

tunsition if the expression cannot be fully evaluated.

This approach is really useful for databMe syst.ems. bul it might, be quite inefficient from the

implem('ntation point of view. So, if efficiency is essential, the atomic evaluation operatQr should

onl)' be nsed for expressions that cau be fully evaluated iu the conte.xt,s where they are used.

~u. :. ,L _L-'

7.7 Method Combiner Defini(JOn 53

If the evaluation of thf' expression to be atomically evaluat.ed doesn't terminate, the a.t.omic

expression doesn't terminat.e M well In fact, it behaves as a divergent proce!HI (infinite loop) that

doesn't modify the state, sincf' the updates made by an atomic expression are only ~isible aner

its evaluation (intermediate states reached during the evaluation of an atomic expres~ion cannol

be oblServed). The follow ing rnle reflects those comments:

Rule 7.19 (Diverge) If (e, V) is nOll terminating,

([el, Vi ~ (['l, 'Vi

o

where

Definition 7.1 A ronfigurallOn is terminating if thNe IS 110 infinite sequeuce of --tranSItion"
from it. 0

from the rule abo....!. W(' conclude that. practical applicat.ion~ should not use the atomic eva.lu

ation operator for expressions whose evalnation, in the context.:>; whne they are uSfd, might not

terminate

7.7 Method Combiner Definition

During evaluation, met.hod combiners defiued by the nser are simply replaced by the expression

tha.t. t.hey abbreviate. as described by Rule MCDef [for method combiner definitiou):

Rule 7.20 (M CDef) For any me E Me alld apr E T!:(X), if I he axiom

('v.\') mr(i) ;;;:: e.xpr

ill in Eand mc(i) E TMC(xJ'

(mr(e), D) ---- (£xpr(X f), 'Il)0--

where elitandsfor~l,... ,ehand [S(f,) SLS(':riJ, for j;;;:: 1.,k. 0

As can be seen from the rule abo""" the argnments of a method combiner don't hve to be fully

evaluated befort' tIle combiner is repla(ecl by the e'(pression t.hat it. abbre\'iates. III partic.ular, they

might contain method and method combiner symbols. This is necessary for most, applications. In

thill way. conditiollal a.xioms cannot be !I5ed t.o define method combiners, sincE" arguments would

have W be evalual.ed before the e\'alUalion of the condition.

Observe that mtroducing morE" t.han Olle axiom for the same method combiner gives a non

deterministic behaviour for it, since all axioms can be applied. In parti(ular. adding rules for a

predefined met.hod combiner might completely change ils behaviour. In fact, thiscilnnot be done

in FOOPS modules.

54 8. OBJECT CREATION AND DELETION

8 Object Creation and Deletion

Dynamic object crealion and deletiou are respectively provided in FOO PS by the operators n••

and re.ove, In tbis section, we describe the semantics of bolh operators. First, we consider objeci

creation. Later. we introduce object deletion. These operators are modelled a.s method combiners

because they are a56ociat.ed to classes, not. to objecls; that IS, their corresponding operations are

!lot performed by objects. Hereafter we consider that signatures coutaiu the followiug special

combiners:

-> C.• n"II.CO

• new : C -> C, and

• remove ; C -> C,

for each claS5 C E C. (This extends the definition of signature, in lhe same way as dOlle in

Section 7.) Observe thai, the clasl; name is used to form t.he operat.ion name of the first. creation

operat.ion: thj1j is important to indicate the claM, of the ohjects lo be creat-rd. A dass uame is

not necessat)' to distinguish t,he differeut, versions of lhe other <:real,ion op",raliou because this

information is already provided by t.he class of its argument (idl'ntifiers have a fixed aud pre

defined class; see Section 5).

8.1 Object Creation

For a given class C, t.he operator nell.C() creat.es all object of C having an idenhfier nondetermin

lsticall)' cho05en from Ie, but that is not already being used for another object. This identifier is

giveu as the result of the evaluat.ion of the operator, as specified by the next rule:

Rule 8.1 (Creation) For any class C E C and any identifier v E Ie not associated to an object

in V (i,e., 1.' 1- Id(V)),

(, ... co, Vi ~ ('" V u \')

where V is a u- x V-sorted family rDnlaiuing l' only; t.hal i5, l\.e = {v} aud F'l}, .. =' 0 if 'W i-.:\
or 'J t=. c. 0

Rf'lllember that the operation U adds object.s 10 11. dlllabase slate. according to the ident,ifiers gi~'eD

as argum",nl~. without set.ting their attribut.es (see Sf'ction).1.:2),

Note thlll the creation operation diredl.l" introduces unhounded non determinism t.o FoorS. if

the falilily I of object identifiers is form",d by infinite ~et,!,. In this rase, infinitely many identifiers

may h~ choosen for crealing an object.

The operator nell crea\..es an object of the !'aJII~ class as t,he identifier given as arguml'nt, if

this identifier is not already associated to anothN object (otherwise. the operat.ion cannot be

executed). This identifier is used for the created object and yielded by Ihe operal,or. These

aspects are formalized by R.ule Creationld (for object rrea/IOIl wit.h Identifier):

Rule 8.2 (Creatiould) For any class C E C and auy identifier t' E Ie uot associated to an objl'ct,

in D (I.e., 'L' 1- Id(V),

(D'Il'll'(v), D) - (v, 1lu V)

where V is a U" x U-sorled family containing l' only, as definf'd in Rule 8.1. 0

9

8.2 Object Deletion 55

From this lule, we conclude t.hat in order to create an object of a given class, we have to know

what identifiers are related to this class. Only these identifiers may be nsed for creating and
accessing obj",cts of this class. In practice, this is not a big re~triction. For example, each family
il] I can be choosen (by the FOOPS system) to contain only names prefixed by the name of the
class associated to ~he family. So, we can eaBily know what are the identifiers associated to a

p;iven class.
Observe that the operators for obj",ct creation don't assign initial vames for ilttnbutes,

8,2 Object Deletion

The operat.or remOVe rec.eives an object identifier as argument., removes its associated object from
the dar,abase statf', and yields this id"lltifier, If til Ii identifier doesn't correspond t.o an objecl in
tIle state, the operatiun ill suspended. The following rul" formalize those aspects

Rule 8.3 (Deletion) For any c!a,!;s C E C and allY idE'lltifier l' E Ie associated to au object in V
(i.e .. I,' E Jd(1J)),

(remove(v), V) --. (v, De V)

where V is a U· X U~sorteJ family containing v only. as in Rule 8.1 [j

Remember that the operation t:::' removes from a given database state all references to a particular
obj",ct, (!ON' Sf'etion 5.1.3). This is ne(essary to avoid dangling identifiers. This operalion might
seem extremely centraJiu<:i and inefficient, cont.rasting wit,h the notion of distribllted objects: bnt,

in fact, it can be impleITIented in an efficient and decentralized way.

As th'" argument of relllove <:ioesn't have to be 3.n object idenlifier. we need one more fide

(DeletionArg, for evaluation of the argument of the de/ftlor! operation) indicating how Ihe
atgnment should be ",valuated

Rule 8.4 (DeletionArg)

ie, V) - ie'. V')

(relllove(e), V) --+ {remove(e'), V')

n

Protected 0 bjects

In this section we give the semantics of object protection. An informal description of this mech

anism was given in Seclion 3.2.5. First. we aSBume tha.t, signatures have the combiner addpr for
changing the protedioll status of objc<:ts, and new obj",ct rrea-tinn operatIOns:

• addpr C Univ -> C,

• new.C Univ -> C, and

• new C Univ -> C.

56	 9. PROTECTED OBJECTS

for each clau C E C. Also, ~he following combiners shonld be in signa~ures, for representing the
object permission given as argnment, to new:

•	 _++ : Univ IJniv -') Univ,

•	 {} -> Univ, and

• any: -> Univ.

Ulling those combiners I'll' can crealI' terms in the following forms: any. {}, and 0 ++ s, which

respectively denote the set of all identifier", the empty s",t., alld the set containillg the identifier 0

nnd Lhe identifiers in the set denoted by ~. where .9 is a term in one of rhe forms sl'lOwn ahove.
Only term .. in those {Ofms denote an object permissioll.

Second. we have to modify the ~trllnnre of configurarions to incorporate information abont

objecl permission. For a specification S, (,his illformat.lOll \S reprt'sented by a finit.e mapping

(rer~rred as the per-muslOn mappmg), h~longillg to PawlS) = 1151 1---+ IPj1sl. which maps an

object identifier 0 10 the set of identifiers of the ohjects that can rtirectly illvokl' methods associated

to o. So, we let. confignrations be represf'nted by the elements of

P,"Conf(Sj = Ts x Prrm(S) X Ds.

\Ve drop t.he snbscript,s when not conrusing, and we writ.e (e, (t!,D) for (e,e,V) E PrConf(S).

For co[\v"nience, the elements of Pt1'fll(S) X D'S may also 1)(> (aIled databasp stales (containing

object permIssion information)

We define the semantics ofFOOPS it,h ohjPct prott'ction follo\o\'jng the same approach used in

Section 6. Basically, for a specifi caL iOll S, we introdnce the relation ----. s ~ PrConf{S) X PrCo nf(S)

{l's defined b)' the rnles given in the prnious sectiOlll>-eXcepl Rnles 6.3, 6.4,8.1.8.2, and 8.3
and some extra mles 10 follow, assnming that

•	 database stales have some extra information: that is, thE' ,-ariables V and V' range over

Perm(S) X Ds, rather than over Ds:

•	 the operations 011 Ds are composed wit.h the projE'ctions and consl,rudors associated to

Perm(S) x D s (let (} and db respE'ctively give pt>rmisSolon mappings and database 51,ates)

For example, for V E Perm(S) x D s , we no aSSIlllle that V E1J r stands for

(~(D).db(VI·H)

(similarl)' for U and 8), and Ue][l is an abbrevialion for [elldb(V) (similarly for [elI' and

Id(D)).

No!,e that thf' rnle~ int.rodnc'!d in pre"'ions sections are still nH'aningful after the modification on

the structure ofst.at.es. since we have also modified the opf'r&tions nsed to access slates to consider

the new strnclnre.

In order to indicat,e th" object reqnesting a particnlar service, we introduce the method com

biner ~! _ : T U -> T. for any types T. U E l' The second argumellt of thi~ operator is the

identifier of the objeft reqnesting the evaluation of the fin't argnment. The second argument of

_! _ and a permission mapping are enongh to give the semaulics of obJ~ct protection, by modifying

;;ome or the transition rules llItrodnced in previous sections (Rules 6.3. 6.4,8.1,8.2, and 8.3) and

including new ones.

First we specify how _! _ is propagal,E'd 10 subexpressions. This is necessary because a method

can only be evaluated if there is an indication of the object which inoked it. For this, we have

1-0 add some lIew rules. Hereafter, we ("on sider an arbitrary object idpntifier 0 E I.

9.1 Attributes, Functions. and ldenlj!i",fs 57

9.1 Attributes, Fu nctions, and Identifiers

The evaluation of attributes, fnnctions, ;\nd ohjf"ct identifiers doesn't update objects; bence. it
doe6n't depend on the rnechanism for object protection, as formalized by the following rule'

Rule 9.1 (PrE) ror any e t: TFUAU/,

(, ! 0, D) ~ (" D)

o

9.2 Arguments

The ne>:t rule shDw." IIOW the mechanism far object protection is propagated to the arguments of
methods, if they do not alreaJ), have it. III the following rule5 ;\SSllml' that, k ~ 1.

Rule 9.2 (PrM) for any 1/1 E M'JJ.lL such (hat LS(el),· ..• LS{f,,) :5 'W. if f" for some 1 Si S k.
is Hot in the form e ! f then

(mU) '0, Vi -0 (m(c r 0) ! o. V)

wh"'re e! ost.ands for tOl ! 0, .•• ,(.1;' O. 0

The f"'aluat,ioll of rnethod combinf'rs is independent of t.he mechanism for obje,! protection.
Combiner6 just propagate 1.11 is mechanism, if necessary, as specified by the next two rules:

Rule 9.3 (PrMCP) For any me E Mew,.. such thaI LS(el), ... ,LS{elc) S 'W, ifl'" for some
lSi S k, i6 not in the forlll e ! f then

(me(e) ! 0, V) -0 (mc(e ! 0). V)

o

However, if the argument.s already have t.he mechauism, it.'s 1\ot, propagated, as focmali:t;eJ by 1!,.:

following rule.

Rule 9.4 (PrMC) For allY me E Me "-',U such t,hal LS(el), L8(q) S lJ:. If a1l e.. for 1 = 1 .~'.

are in the form elf thell

(mete) ! 0, V) ~ (me(i!), V)

o

Now we give a rule for argument evaluatIOn of e>:pressions formeJ by t.b", method c:omhiner

_! -.

Rule 9,5 (PrArg) For any i E {l. .. . ,k} anJ up E (FUAUM)w.3such that LS(ej) .. LS(ek) S
w.

(t., "D) --- (ei. V')

(op(el, ... ,r" ... ,cc)! o.V) -0 (op(e~,.<o,1"(e:),...• e;')! 0, V')

where e~ = ej, if) i- i, for j = 1 .. k; and 7"(ei) = e:, If LS(e:l S LS(fj); otht/".... illt", T(ei>
r;u'>u(e;.). where u' = LS(e:) and u = LS(e;). a

58 9. PROTECTED OBJECTS

Note tbat the original rule for argument e\'aluation is not replaced by tbe above rule, since it's

still useful for evaluation of the argumenl,s of attrIbutes, for example.

9.3 Methods

Now we introduce new rules for method evalu<'llion. Those are small modifications of the rules in

SectiODS 6.3,6.4, and 6.5. Here the behaviour of a methoJ depends on the object that requested

it. The method might be executed or suspended, dependlllg wbet.her the invocation is allowed by

th", object protection mechanism. For <'I gi\·en state V, only the objects in u(V)(v) can directly

invoke methods of v (when v is not in the domain of p(D), £.l('Oj(v) denotes the empty set,).

9.3.1 Methods Specified by DMAs

l'irsl we consider tILe "valuation of methods speClneJ by D1\'1 As.

Rule 9.6 (PrDMA) For allY m E J1 J",l r be lhf' sel of ",ll f'quatiollS

a(UI,Y)(i-.- ii) = ITq(i.- !')TIVuJ

~u(h that E has a D\fA in tlle form

(V_\") n(m(i),Y) = q11 c;

true beloug~ to (eU- i'i)]T>uI: ITg(i "'--- nUDuI is in PFuld(V): and m' = m and m E RW',lL" for
saine Ul, ••• , Un ~ w', imply that LS(xtl is smaller than or eqnal to the least class greater than

or equal to 'Ut such that Tn is redefined.

If Ul E [1/('0), 0 E r('O)(vt}, and r i... a non empty and non contradictory set tht'u

(m'(l') ! o. D) - (til, D 4- r)

o

9,3.2 Methods Specified by IMAs

Similarly to what was done in the las!. section, we modify the rlllt' for evaluat.ion of methods

spf'cified by IMAs. ~ote that the ex('culion of a mell',od m spt'cified by an I\fA sonlf'timf's

rf'quirf's the invocation of methods associated lo other objNI~; those methods are directly invoked

by the object that performs m.

Rule 9.7 (PrIMA) For any mE -'1, If fhe alA

(V.I\") m(i-} = expr it c

is in E. true E [e(i - lJ)]vut; rn' = m and III E Rw'.u'. for some lJ\ •••. ,Uti $ Wi, imply that

L8(Xl) is smallt'r than or equal to thf' least class greater than or ..qual to Ul such that m is

rt'r'.efined; and 0 E £>(D)(vtl then

(m'(li) ! 0, V) ~ (erpr(i- i) ! 1't, V)

o

Contra6tiDg to the anginal rule for e~'aluation of melhods specified by 1M As. the rule above

Introduces a transition that is dependent on the state: lhat is, the transition is ollly possible if the

object, protection is not, violated.

9.4 Object Crell.tJOn and DeletJOn 59

9.4 Object Creation and Deletion

Last,ly, ",·c modify !'he rules for object creation and deletion. Basically, tbe only diffaence from

tlI" crNl-tion operations introduced in this seclion and the operal,ions introduced in Section 8 i!;'

that the fortner set UH' object permission,

filst we han 1(' define tbe function set for mapping the eXira argument of nfl'll to the set of

ideJl,ifier.~ tllat it represents:

sef({}) o
.Ht(any) III

1Ic1(e ++ f) {e} U sd(j), if I' E I

set(fl,ift ~I

~ote tbat 1.11(' arguJnents of _++_ that Plre nf>! ohjl'cl, identifiers are di,~cardl~d by 'ft

The following rules describl' t.he ~~manllCS of the opera[ioM for object crealion. ~hl"re

p ~ {r 8} dellol,-.s (£>(P) ~ {r 8},db(D)),

for allY aatab,J.se slaet' D, t· E 1. and .~ .; III tlle operation for :lHlpping overwriting i~ repr('sented

by 6. Also, we a,ssume that. e is a term speCifying an objPct permission, as descrlbt>d above. Any

object i~ allowed Lt· invoke th .. rreallon operations; that is. those operal,ions don't depend on lhe

mcchanism for ohject protection, as illdicat.. d by the following rule:

R.ule 9.8 (PrCreotiou) for any c1as~ C E C, and allY idl"lItifier l' E Ie not a55<;Jclated t.o an

object in V (i.c., 11 1. Id(V)),

\ne'll.C(e) 1 n, D) ('t', D u V ~ {v set(d})

wherE' V is a U~ X U-sorted family containing l' I\lllf: t.hat. is, '-\c = {v} a n l1 \~",,, = 0 if W I- .\

or ttl-C. 0

and

Rule 9.9 (PrCr~utiullId) For any dass C E C and an}' identifipf 11 E Ie not associated to an

object in V (i.e" v 1. Id(V)),

(ne'll(v. e) I 0, D) -. (v, D U V if! {v t---o sel(e)})

where V is a family containing v only, as In Rule 9.8. 0

From those rules, we call see thal by default an object. dOE'sn't ha~'e permiSSIOn to invoke its Qwn

methods. If this is desired, as usually the case, this has to be specified at object creation lime,

by making SurE' t.hat v is in sel(t:'l.

We modify the semantics of remove in ,meh a way that a dell"tion operation can only be

performed if the object wbich asked for it is able to inVoKe methods of the object to be removed.

Here is the new rule

60 9. PROTECTED OBJECTS

Rule 9.10 (PrDeletion) For any class C E C and any identifier II E Ie associated to an object
in V (i.e., v E Jd(V)), if 0 E l!(V)(v) then

(umove(v) ! 0, V) - (v. V 6l/;7' {v 1-+ 0})

where \l is a family containing v only, as in Rule 9.g, 0

~ote thai. the object protection information associated to all object 18 reset after its deletion.

Lastly, we define the semantics oft.he addpr(_._) operator, which was informally described in

Section 3 2.5.

Rule 9.11 (PrAdd) For any ohject v in V (i.e., I.' E JdlV)), if 0 E (/(V)(1)) then

(addpr(Ti,e) ! o. V).......,. (v, V ft1 {v "'"'""" sette) U l:'(V)(lJ)}}

(J

9.5 Comparison with Other Approaches

Now we comment on some alternatives to the approach for object protection that we have used

here. Filst, we consider the introduction of roof objects, as in C++ and EiffE'1. Basically, only root

objects lila)' be interfered in all arbitrary wa)'; lnterference in uon root objects is derived from

interference in root objects. In roops without object. protect.ion, any object is a root object.

l'!'oually. there is more than ant' root object III a distributeJ system, but only one in a sequential

system.

This mechanism only proteds non root objecl..s from arbit.rary interference. In fact, we have

to check if thE' interference propagated by root objects dOt'sn't violate the protection rules that

we want to t'nforce for non root objects. In gE'lleral, this might generate compJicat,ed proof

obligat.ions. Moreover, this only assures protect.ion for a system ill isolatlon, it doesn't guarantee

protection if this systE'm is included as part of a larger systeln, where more root objt'cts might, be

available and additional propagated interfert'nce migbt, occur. Clearly, this is not appropriate for

a <.:ompositional development method.

In order to achie-.e compositionaJity with t.his approach it would be necessary t.o "erify that

the objects that should bE' protected cannot he accessed by new objects in B larger system. This

can be enforced by making sure that the ideulitit'ts of the protect,ed objects a1E'n'l yielded b)'

any operation t,hat may be in\'oked hy objects in the larger system. Again, thi5 might lead to

complic<Lled proof obligat.ious In fac\. it seems simplE'r to supporl, a mechanism lhat directly

enfor('e~ object protection, rather than writing saine specific code for gUiuant,t'eing that, and

discharging comp!ical,ed proof obligations.

As briefly discussed before. the st'cond alt.ernarive for objecl, protection is the snpport for

private references [261. However, it's not. appropriate in general. In fact, thi~ is a particular case

of our mechanism for object prol.edion. Considering tht' E'xatnples given in Section 3.2.5, private

referemes are appropriate for modelling]illked lists (slllce an intermediate cell should only be

a<.:cessed by its precedeut. in the 6equence); however. privat.e rdeTt'nces <Lre too restrictive for

modelling the communication protocol (siuee t,he channel shoulJ be protected, but shared by both

agents) Hence, it seems useful to have a more general mechanism for objecl protection.

61

Another general approach for objec~ protection wa" iuut:pelldellLly introdnccd by Hogg (25]

In our approach, one explicitly resUitt" the group of objects that can direct.ly invoke methods of
a protened object. In Hogg'li approach, one explicitly indicate a so called h,..iJgt' objea, delining
an associatt:'d group of proleCICQ obj~ctll (uland); then an)' direct access to a protected object

(an object in an island) must be inditecUy denved from an access to an M80ciated bridge object.
There ale subtle differences between the two approaches. \Vhereas Hogg's approach s('ems more
abslract, it. '",'ems that a finer It'vel o[protection can be speCified b)" onr approach. Tn fact, more

experim;>nts would be necessary t.o give ns more confidence that Hogg's approacb shouldn'l, be

.,upported by fOOPS.

10 Evaluation in the Background

In order to gIve the semantics of1_ we use another stlllctnre for representing configurations

Now we consider that cOllfigurat,ions also contain some information abuuL tllIe l:'-,pre.'aiQn6 l-.eillg

('valuated in t.he h.lckgrou:Jd. Tllis re(JeclS the conceptual distinction between both kinds vf

evaluation. Hereafter, for a specification S. configurat.ions are reprhf'nl.ed by elemenls of

BgCon!(Sj = Ts X Ts X Perm(S) X Ds,

where the first component of snch a I,uple is l,he "main" expre;;5ioll, t.he second is the elCpression

in the backgronnd, and thp la"t two corre5Pond to the dalabase state with object. permission. \\-'1"

w,it, (" f, le,V») 0< (', (f,e,V) fQ' 1',f,e,V) E B,C'"/IS).
W(' follow a. similar approach to t.he one used in Section 9. First we define thc relation

.......... s~ BgConj(S) X BgCo71!(S) by the rules used for the definihon of -5 in the last section,

assumillg that

•	 is replaced by ~,in all rnles;

•	 database stales also contain illformat.ioIl about expressions being evalnatl?d in the hark~

ground; thaL 15. the: variables D and D' range over pairs of method expressIOns and datahase

stat,es with permission information (i.e .. V, VI E 'Ts X P~.rm(S) X US), and

•	 t.he operat.ion~ on dat,aba5P slat.'.~ are composed with the projectIOns !loUQ <:onstr\lclor~ d~

sociated to 'Ts X PeTm(S) X Ds (let g. by and db respectively give permiesion mappings.

background expressions. and Qatabi\Se states). For example. for V E 7s :x. Perm(S) X D s ,
we now ass',1 me th at, V tfi r ~taTlds for

(Dg(V) .•IV),dbIV)@f)

(5imilady for U and 8), "nd [f']l' ahhteviates [eTIdl>lDl (similarly for [e]v and U(D)). Lastly,

V@ (v ~ ,j mean, Ibg(V), e([1) S (v _ ,J,dDIV))

But we also need to introdnce one rull" indicat.ing how is evaluated. EsseIJtiall)', _start.s the

evaluation of its second argument in parallf.'l with the current background expreSiiion. The firsl

argumenl is then given as result, as indicated by Rule BgOp (for backgrDund DperatDr):

Rule 10,1 (Bg0t') Fot any bET!:, and P E PUIII(S) X Ds.

(,. f, D, P) ~ (" f II b, P)

o

62 11. CONCLUSIONS

Naturally, we a66ume that _'_ U T -> U is in MC, for any T, U E U.
The rule above finally defines '-+. However, note that this rE'lation on ly considers the evaluation

of the main expression. We still have to specify bow the expression in the background is evalual,ed;

ihi~ is done by the relation ,.........s~ BgConf(S) X BgCon!(S), defined by the following rule (BgEval,

for background e1:p{uation). A background expression is e~'aluated just as if it were a main

expression, and any additional background expression f('sulting from this evaluation will also be
evalull.l.ed in the background.

Rule 10.2 (BgEval) For any b E 7,£, P E Perm(S) X D s , and a fully evaluated exprf'ssion

skip,

(b, 'kip. P) ~ U. 1'. P')

(c. b, P) ~ (c, b'. P')

where h' is f, if l' =. skip; otherwise. b' is f 11 1'. 0

The transitions specified by ,......., arl" called "internal transitions". 'They change the state wi\.Dout
evaluaLing the main expression, which is what can be observed by an (external) user of a roops

s~rstern.

Finally, the semantic!> of FOOPS with e\'alual-ion of expressions in the background is given by

~he ullion of the relatiollS '--S and ,.......,s. We U6e ~s ~ BgConf{5') X BgConf(S) to denote this

union; we omit the obvious rules defining it"

Using two different relations to define --'s might seem unnecessarily complicated. But. l,his
dearly separates transitions caused by the main expression from transitious generated by t.he

expression in the background. This simplifies the definition of certain operators that, should not
consider internal transiti.ons. For example, this is the case of [_] and _(]_ Usiug only oue

relation complicates the semanl,ic definition. In fact, contrasting to what has been done here, it
wouldn't be possible to define _.. using some of t.he rules introduced in the previous sections.

11 Conclusions

\Ve have described a structural operational semantics for the object level of rOOps, consider

ing features such as: cla.'>ses of objects with associat.l"d met bods and attributes, object identity,
dynamic object creation and deletion, overloading, polymorphism, iuheritance wil,h overriding,

concurrency, nondeterminism, atomic. execution, e\'aluation of expressious as backgrouud pro
cesses. auto-methods, non terminating methods, and a mechanism for object protection.

\Ve have concentrated on the object le\'el of rOOPs. The semantir:.l'i of other aspectl'i, like the
functional level and the module system. are discussed elsewhere [40, 28). Here we only consider

the semantics of "flat" specific.ations; thaI, is, specifications without module importation or generic
pararni'ters.

The usnal featureg of object.orlented languages ere explained in detail, in a simple and

abstract way, by using a special approach for modelling st.at.es of the operational semantics. This
approach uses all the power of the theory of ATDs for defining operation5 on states and reasoning

about them; in particular, the semantics of inheritance, and evaluation and dyuamic binding of
st,ored attributes is directly provided by OSA. It then becomes simp]!? 10 d~fine the basic operations

-r.;ole thal ~s IS overloaded ill this lext.

11.1 Related Work	 63

00 states. In fact, lots of complicalloos were 3\ohl"J, <L concise sem8.nt,ic definition could be

ol.Hained and man)' concepts. usually confusing in other framev.-orks, were clarified. Indeed, this

approach seems appwpriate to define the ope-ratioualllemamics of other object-oriented languages

as well

\Ve have also Justified the semantic;, of some constructs comparing to alternatives approaches.

Perhaps snrprising is the comparison between "true concurrenC)'" and interleaving \\'e have

argued that t,hes!' approaches are equlvaleut in the COlltext of FOOPS, givell some mild assump

llOIlS on the uOlion of equivalence of programs adopted for the languagl.'. This has themteresling

consequ/;'Ilce that we can use the simpler intedea\'ing model for reasorling about, true concurrency.

That's what should be expected sincp it"s desirable to specify sysl-ems of distribuled ohjects

withont \I\·orr)·ing whether other computations are LJeing carried out sirllult,uleousl)·. This r<"!sult

could probably be genl'ralized for ot!lPt concurrelll obJeet.-orient.ed langnage:<>.

Along with the semantic dl.'scriptioll. \\e have clarified many concf'pts alld phenomena rplated

to ob]ect-orienlt'd lallgud~es. In particular. lhe definition or thf> olH'ri'llionall;emaut.ics raised the

following technical points ahout rOOPs:

•	 therE' must. be syntactical constraInts on axiom conditions and DMAs RHS;

•	 the object creallon operations ~h()uldn't have a~gul1)£"l)ts for automatlr imtializEltion of at

tribntes: and

•	 invariants are ju~t. annotalions:

We have also briefly discussed how th~' semantics suggests an appropriate programming style for

rOQPs. and how to a\'oid introdncing inconsistencies in specificat.ioll~.

The semantics described In this text is part of a formal definition of roops. So. it's llsefui

as a formal basis for deriving irnplemental,ions and 1001.'1 for roops (see [iJ (or the dttails o~

the derivation of a symbolic simulator for rOOPS). In additioll, because of thl.' simpliClt)' ..:f

the semantic definition. the operational semanl,ics establishes a framework to ~upl-Jvrl, tile [ormal

development of distributed software 111 an objed-oricnted languagl.' In fact.. it has been l1~,e-i to

define il. notion of refinement for roops programs and speCIfications. t.o£;eth-r ""ilh _1n as!'ociaU',j

proof techniqup which seems to b.. aIJIJroprillte for 'nllny llpplicatlong [3j Tl-;f' ~emantics is also

usdul for reasoning about gE'neral propf'Itles of roops programs.

11.1 Related Work

Most of the roops features considered here are not considered by other alternal,ives for the

seman~ics of roops, like thE' refll'ctive semantics [I8) and the sheaf semantics [44, 29, 41. L I
fact, we are not, aware of a formal semantics fur a language integral,ing all those features In

particular, we haven't seen any proposal similar to the mechanism for object protectlon described

here. Moreover, it seems that the semant.ics of evaluation in tile background and atomic evaluation
for a ~oncurrent language ha!ln't bl'en formalilf'd hl'fOre.

The bailic idea about roops reflecl.ive semant,ic!l, as des(ribed 111 [18], IS to repre~ent FOOPS
programs and database states as abstract data types (ADT~) in such a way that the queries and

modificat.ions t.o the database are encodpd as functions of t.hese data types E~sl'ntially. thIS

defines an operational sf:mantics for roops using the functional part of the language, which hal;

a denotational semantics based on order-sort.ed algebra [19J and an opera~ionalsemantics given b}o

order-sorted rewriting [28]. In other words, this can be seen as providing a simulator for FOOPS

64	 11. CONCLUSIONS

Written in OBJ. Using this approach, reasoning about roaps programs is essentially reduced to

order-sorted dedudion [19], where part of the equational theory, given by the information stored

in tbe database, changes with time. Comparing with rOQPS reflect.in· semantics, in this texl

we use a more abstract. approach [39], which i6 also more appropriate for giving the semantics of
concurrency. nondeterminism, and other aspects of FOOPS tiot dis<:ufilsed in [18].

The most complete work on a sheaf theoretic semantics for roops is [4]. III this work, Duly

a subset of roops is considered; in particnlar, inheritance, dynamic binding, and atomicity are

not considered. In fact, (ontlasting to tbe semantics presented here, it seems that the semantks

of the al,omicity operator cannot he given in a simple and abslnct way using tbe approach nf [4].
Also, the semantic description using sheaf theorY is much longer than an equivalent operational

semautlcs description. The advantage of using sheaf theorY for defining the semantic of roops
seem~ to be the ricb mathematica,l structure associat.ed to sheafs; however, it's not clear y'!L how

this can be used.

A lot of effort has beE'n clone in order to give 6emantics for object-oriented langnages [1,
6,30.7,43.8, 13,27]. Most. of the work ill this area use" mathematical models based on set

[hoory [7], mel,ric spaces [1], category theory [30, 8]. and hidden order-sorted algebra [13J. The

I'xceptions are [6J, which defines an assertional sl,}'le proof sy~tem, and [43. 27], which give the

semantics in terms of a process algehra basE'd on an operational semant.ics [33]. By cont.rast, the
work deeloped here is hased on the simple frameworks of strnctura! operational semantics [39J
and GSA [19]. Similar approaches using some of thosE' frameworks are used in works on process

algebras [32, 36], imperative languagE's [37], and a general notation for giving lhe semantics of

programming languages [34).
Because of the details associaled to the sernanl.ics of object io",ntification, and the lack of

i\ fnl!y abstract mathematical model for interleaving. operational semantics seems to h", quite

ad",quate for specifyillg the semantics of a lallguage like roops. In fact. lnis can be easil)' and

(:Qnci~ely done, being still possible to reason abon! l,he semant.ics in an pragmatic-al way. Also,

giving the SE'mantics of roops in terms of a process algebra is not worth, since it doe:'in't seem

(0 he possible to use t.he algebra to reason abont. the semant,ics and programs; for thal purpose,

one has actually to use the (operational) semantics as~ociated to the process algebra (see [27]).

11.2 Further Research

The language and semantics described here could be E'xtended and revised in the following aspects:

•	 In addition to DMAli ancl n..'lAs, it would he interest,ing to consider the effects of other kind~

of axioms; this migbt be useful for speCIfications in genl"ral.

•	 Perhaps it would be morE' appropriate to nncler~tand DMA and JMA condit.ions as pre

condition.'! Uhe meaning of an operation is undefined for a particular stat", ifilS unique rf'lil.ted

aXiom has a pre-condition that, is not \-alid in thaI, stat.e). ralhf'r than as enahfl1lg condition.'!

(an operation blocks in a state where its unique relatf'J axiom enabliug condition is not

\'alid); this would provide a higher degree of underspecification t.o roops specifications.

•	 Dynamic bindi.ng of derived attribut,es could he provided by adcling a specific rule for evalu
ation of derived attributes. similar to the rule for e\'alnation of methods specified by IMAs:

however, note that attributes should be at.omically evaluat.E'd.

•	 A comp!E'te semantics for updating of mUlti-argu ment stored att ribute:'i should be developed.

65 HEFERENCES

•	 The mechanism for object proteclion could be enended; a190, ils suitabihty and expressive

ness should be better explored by using it iu practice.

•	 The- de\'elopment of large applications might sugge.... t l,ht' aJJitiull of some a.pplication specific

method combiners tu the language.

•	 It might be worth i.,'e.i;tigaliug th", (nnsequences of adopting a mote restricted computa

tiolla.1 model for FOOPS; for example, this could be achievl'd by allo....·ing only one mdbod

to be f'xeculed in an object al a given time.

A cknow ledgemen ts

Thanks 1.<) Sl.e~·e SchrH:iJ~r and Grant Malcolm for giving nlallY >;lIggl':'>tions which helped lO

~llnplify the semantics described Ilere. The a.ut.hors all' patl'fllJ 1,0 SI_EVe Schneider and Adolfu

Socorro for carpfull:y reading alld correcling an ,·arly vt:fsion of this text The first author also

had the (l!>pvrLuuily to di~cusil III dct~l.ll ';001", of the a~pf'<"t,s pr~sellt.ed bere WIth (;rit Denker and

Prof. Hans Dietf'r Ehrich durin,&; an enjoyable ~·islt to BraunHhweig. suppnrt.ed by t.he IS-CORE

project. Special thanks go to Jose Me!>eguer and Riizvan Diaconescu for moH of the (<,XI ill
Section 2. which wa.s copied horn [19J, [Hi], and [lSJ,

References

[IJ	 ril':rre ArneIlca and J.J M.M. Ru/.ten. :\ paraJJel object-oriernled hlllguage: Design anJ

semant.ic foundations. Technical Report CS-R8953, Centre for Mathematics and Computer

SciPl\ce. 1989.

[2]	 Paulo Borba. A symbolic simulator for FOOPS. TN"hnicil] r<,port, Oxford UniverSity, Con,·

pUling Laboratory, ProgralHminp; Research Group, May 199~. To appear.

[3]	 Paulo Borba and Joseph Goguen. Refinement o(concurrenl objNt-orienced prcgrams 1''''cn

nical Report PRG-TR-17-!l4, Oxford l'niversit.y, Computing Laboratory, Programming Rp
search Group, No\'t'mber 1YIH.. To appear in [,he pro("eeoJillg~ of th(BCS/FACS wQrksho!,

on formal Mpects of objed-oIlellled programming, London. Decembf'r 1993.

!.'J]	 Conna Cirs~("" A distrihuted semanlirs for FOorS. To appear. 1995. Oxford University.

Computing Laboratory, Programming Research Group.

[5]	 Stephen Coffin UNiX Sy,~trm V, He/tlUe 4, the Complete Reference. Osborne/McGraw-Hill,

1991.

[6]	 Frank de Boer. Rea,qonlJlg about dynamically et'ol"lng process s1ruclures -A proof tAror!!

for the para/hI obJea-orunteti Ialig~llg" POOL. PhD the~is, Vrije l'nivPT~i!.f'il Amste!dam,

1991.

(7]	 David nuke and Ruger Duke, Towards a semantics for Object-Z. In Dine~ Bjornl;>r. C,A R.

Hoare. and Hans Langmaack, editors, Procetdlng~, VDM '90: V DM and Z- FlJnnal },fetAods

'" Sofht'tlre Development, pages 242-262. Springer-Verlag, 1990, Lecture Notes in Computer

£cience, Volume 428.

66 REFERENCES

[8]	 Hans-Dieter Ehrich, Joseph Goguen, and Amilcar Sernadas. A c:ategorial tbeor)' of object!!

as observed processes. In J.W. de Bakker, WiUem P. de Roever', and Gregor:! Rozenberg,
editofs, FQundatJQu of Object Onented Languages. pages 203-228. Springer-Verlag, 1991.

Lecture Notes in Computer Science, Volune 489; Proceedings, REX/FOOL WorbbopBi,
~'oordwijkerhout, the Netherlauds, May/June 1990.

[9J	 Joseph Goguen. Order sorted algebra. Technical Report 14, UCLA Computer Science
Department, 1978. Semantics al)d Theory or Computation Series.

[lD}	 Joseph Goguen. Parameteri~ed programming. Tt'allsactiQlIs on Software Ellgmeering, SE
]\)(5):528-543, September 1984.

[11]	 Joseph Goguen. An algebraic approach (0 refinemell~. In Dines Bjonler. C.A.R. Hoare,
and Hans Langmaack, editors, Proceedmgs, ~'DM'90: rDM a1ld Z-Formal Mdhod.~ ill

Software Development, pages 12-28. SpringN-Verlag. 1990. Le<:t.ure Noles in Computer

Scit'nce, Volume 428.

[12]	 Joseph Goguen. Hyperprogramming: A formal approach lo software environments. In

Proceedmg.~, Symposltlm OIl Formal ApproachL~ 10 Software Enl'lroament Technology. Joint.
System Developmt'llt Corporatioll, Tokyo, Japan, January 1990.

[13J	 Joseph Goguen. Types as theories. In George Michael Reed, Andrew \\Iilliam Roscoe,
and Ralph F. Wachter, editors, Topology and Calegol'Y Theal'y In Computer SCH>nce, pages

357-390. Oxford, 1991.

(14]	 Joseph Goguen. Sheafsemanlics for concurrellt int.eraclingobjects. Malhematlcol Structure.'

m Computer Science, 11:159-191, 1992.

[15]	 Joseph Goguen Theorem Provlllg and Algebra. ~o appear.

[16J	 J05eph Gogueu and Raz\lan Diaconescu. An Oxford SUI'"ey of order sorled algehra. Math

emallCal Struclure.~ Ifl Computer SCience, to appear.

[li]	 Joseph Goguen and Grant Malcolm. Proof of correctuess ofobjec:t representations. In A.W.
Roscoe, edit,or, A ClaSSical Mmd: essays dedIcated 10 C.A.R. Hoare. Prenlice Hall. 1994.

[18]	 Joseph Goguen aud Jose Mesegut'l. Unifying funct.ional, ohject-oriented and rt'lational pro

gramming, with loglc!!.l semantics. In Bruce Shriver and Pet.er \Vegner, editors, Research

Diredu"IS III ObJect-Orlel1led ProgrammHlg, pages 417-477. MIT, 1987.

[19J	 Joseph Goguen aua Jose Meseguer. Order-sorted algebra I; Equational deduction fOT multiple
inheritance, overloading, exceptions and partial operations. TheoretIcal Compulcr SClence,

2(105),1992

[20]	 Joseph Goguen, James Thatcher, !!.ud Eric Wagner An initial algebra approach (,0 the
specification, correctness and implementatioo of abstract dat.a types. Technical Report RC
6487, IBM T.J. Watsou Rt'search Center, October 1976. In Cu.rrent TrtJIda in Programming

"'felhodology, IV, Raymond Yeh. editor, Prentice-Hall. 1978, pa.ges 80-149.

{21}	 JOII'eph Goguen a.nd Timothy Winkler. Introducing OBJ3. Technica.l Report SRI-CSL

88-9, SRI lnLernational, Computer Science Lab, August 1988. Revised version to appear
with additional author8 Jose Me~eg'ler, Kokichi Fntatsugi and Jean-Pierr.. JOll'\nnaurl, in
ApplIcatIons of Algebraic Sptf'ljicallon !lHng OBI. edited by Joseph Goguen.

[22]	 J08eph Goguen and David Wolfram. On lype!; and F'OOPS. In nobert Meersman, William

Kent, and Samit K hosh. editors. ObJui One n ret! D(J!(J 6(Jses: A ll(Jlysu. DeSIgn (Jnd Construc

lIon, paj1;es 1-22. Norlh Holland, 1091. Proceedings, H'I P TC2 Confert'nce, Windermere: UK,
2-6 Jlll.\· 1990.

[n]	 ~falthew Hennessy. Algthalc Theory of PrOCU$fJ. The MIT Press, 1988.

[24]	 C.A.R. Hoarr.. CommUllu'allng 5'equenJlal Proc('ues. Prentice HalJ. 1985,

[25]	 John Hogg. Islands: ALaslIIg protection in objf('.t-oril'lIted languages. In ['J8), 1991.

[20J	 Cliff JOlles. An object-basE.'d dl'sign method for conrurrellt program.~. Techmral Report
U!o.ICS-92-12-1, DcpMtm<'lll of Computer Science, Ullil'ersity of \{auchester, 19n

127]	 Cliff Jones Pracl'ss-algeocaic foundations for an object~oasE.'d deSIgn notation Technical
Report. UMCS-93-10-1, DE.'parl.ment ofCompul.E.'f Science, lIuiversity of Manthe~ler, 1993.

[28}	 Claude Kirchner, Helene KirrhllN, and Jose Meseguer. Ope-rational semantic.~ of OBJ3. In
T. Lepi~t6 and Aarturo Salomaa. edilors, Proceedillg9, 15th Internaii011(1{ COllOq1HU711 on

Aulomata, Languages and Programmlllg, Tampert;, Fm/and, July 11·15, 1988. pages 287
301. Springer-V~rhl.g, 19Bt'. Lctl\lre Notes ill Computer Sciefj('f', Volume 317.

[29]	 Grant Malcolm. A sheaf ~E'manl.ics for rOOps. To appear, J995. Oxford University, Com
puting laboratory, Programruillg Rts\"ilTch Group.

[30J	 JOM? Meseguer. A logica.l theory of concurrent objects. III Prul{"edw'/1> :1 E('OOP·OOPSl A g!)

Conference on ObJcct Ornntfd Progflllnming, pages lOl-lI5. AC'M.19QO

[31]	 Jose Me8E'guer aud Joseph Goguen. luiliality, induction and comput.ability In Maurice Nivat.
and JOhll Reynolds, editors, AlgebraIC Methods In Sem(Jnllc$. pages 459-541 Cambridge,
198r).

[32]	 Rooin Milner. Commtrnlcation aud Concurrellcy. Prl'ntice HalL 1989.

[331	 Robin Milner, Joachim Parrow. aud David Walker. A calcnlus of mobile procesSfS. Technical
Report ECS-LfTS~89-85,86, Laboratory for foundations of Computer Sciena, Edinburgh

University. 1989.

[34]	 Peter Mosses . .4Ct101l Semllnflt.!. Trarl.s in Theoret.ical Comput.er SeleneI'. Cambridge Uni

versity Pre-ss, 199'2.

[35]	 Ellen Munthe-Kaas, Joseph Goguen, and Jo~e Ml'seguer. Met.hod expressiou and default

\'alues for object-valued att.ributes. SRI Internat-ional. Computer Science Lao 1989.

68 REFERENCES

[36]	 Elit Najrn and Jean-Berllard Stefani. ObjeCl-hased concurrency: a proces~ calcllln~ analysis
In S. Abrameky and T.S.E. Maibaum, edit,ora, TAP50FT'91. Thel>ry ll",d Practice l>f Soft

ware Development, volume 494 (1) of Lecture Notn Ifl Complter SCUTlee, pages 359-380.
Springer-Verlag, 1991.

[3T]	 Pawel Paczkowksi. Annotated Tl'uI/.s!tlOn Systems for \'erlfYlrIg CulIctlrrrTlI Prugram!l. PhD

thesis. University of Edinburgh. Aprd 1991

[38]	 Andreas Paepeke, editor OOPS/.A '91. ACM, ACM Press, Noyccnbcr 1901.

[.19]	 Gordon Plotkin. A strnctural approach to operational semantics. Technical Report DAIMI

FN-19, Computer Science Departmenl" Aarhus Univetl>ity, Seplember 1981.

[--tOJ	 Lucia Rapanotti and Adolfo Soc:orro. Introducing roops. Tf'c:hnlcal report.. Oxford t 1 ni_
versity, Computing Laborat.ory, Programmillg Researc:h Group, November 1902. PRG-TR
2B-n

[tl]	 Gerr. Smolka, \Verner !iutt, Joseph Gognell. and Jo.~e ~teseguer. Order-sorted equational

computat.ion. In Mauric:e Nivat. and Hassall Al·t-Kaci. editors, ResolutIOn of Equation.~ In

Algebraic SlrllCllJrfS. ~'QIlJme 2: Rewniwg TechfllqufS. pagel> 299-:JG7 Ac:ademic:, 1989.
Preliminar)' Hr,;iull ill Pruceedings, Colloquium on lhe Resolution of Equations in Algeb
raic: Struc:tures, held in Lakeway, Texas, Ma.y 1987, aud SEKI Report SR-87-14. Univl"rsitii-t

Kaiserslautern, Oecemba 1987.

[42J	 Adulfo Socorro. Design, Implementation, and l,'valuatlOlI of t1 Decl{lrafHe Object Onented

Language. PhD thesis, Oxford University, Comput.ing Laboratory, Programmmg Research

Group, 1993.

[43]	 David Walker. 1f-CalcuIns semantics of object-oriented programm in g languages In TA CS '91

Proceedlllg:; of the mterllai lo1la l CUllfentlce on TheOl'ftlca/ Aspects of Computer SClellce,

\'olume 526 of Ledun Noles III C<Jlnpuler Stlence. pages 532-547. Springer-Verlag, 1991.

[HJ	 David Wolfram and Joseph Cognen A sheaf semantics for roops expressions. In Mario

Tokoro, Oscar Nierstra.sz, and Peter \Vegner, l"ditors, ObJect-Bt1!led COllcurrent Computahon.

pages 81-98. Springer-Verlag, 1992. Pro('el"(1ing~, ECQOP'91 Workshop, Geneva. July 1991.

