
Cxford University Computing Laboratory

Wcifsan Building

P~r<s Road

Oxford cn 3QD

A RELATIONAL APPROACH TO OPTIMIZATION PROBLEMS

by

Sharon Curtis

Technica.l Monogra.ph PRG-122

ISBN 0-90292&-9&-1

April 1996

Oxford University Computing Labora.tory

Progra.mming Research Group

Wolfson Building, Pa.rks Road
Oxfmd OX1 3QD

Engla.nd

Copyright (S.I 1996 Sharon Curtis

Oxford University Computing Laboratory

Programmin~ Research Group

Wolfson Building, Parks Road

Oxfo<d OXI 3QD

England

A Relational Approach to Optimization Problems

Sharon Curtis

Somerville College, Oxford

Michaelmas Tenn 1995

A thesis submitted ill partial fulfilment of the requirements for the degree of Doctor of

Philosophy at the University of Oxford

Abstract

The main contribution of this thesis is a study of the dynamic programming and greedy

stra,tegies for solving combinatorial optimization problems. The study is carried out in the

context of a calculus of relations, and generalises previous work by using a loop operator

in the imperative programming style for generating feasible solutionB, rather than the fold

and unfold operators of the functional programming style. The relationship between fold

operators and loop operators is explored, and it is shown how to convert from the former to

the latter.

This fresh approach provides additional insights into the relatiouship between dynamic pro

gramming and greedy algorithms, and helps to unify previously distinct approaches to solVing

combinatorial optimization problems. Some of the solutions discovered are flew and solve

problems which had. previously proved difficult. The material is illustrated with a selection

of problems and solutions that is a mixture of old and new.

Another coutribution is the inventiou of a new calculus, called the graph calculus, which is a

useful tool for reasoning in the relational calculns and other non-relational calculi. The graph

calculus represents formulae by formal pictures, and this enables proofs to be expressed more

simply. It is also more powerful thau standard point-free reasoning, and its simple intuitive

ba.-;is aids grf'!ater unden;tanding of the structure of formulae and certain proofs.

Contents

Introduction 1

1.1 Overview

.
1.2 Outline 3

2 Preliminaries 4

2.1 The History of Relational Calculi 4

2.2 Biuary Relations
 5

2.2.1 Basic operators .
 6

2.2.2 Functions .
 7

2.2.3 Coreflexives
 7

2.2.4 Quotients 9

2.2.5 Orderings 9

2.2.6 Operators on Relations 10

2.2.7 Products and Coproducls
 12

2.3 Vsefui Categorical Concepts .
 14

.....2.3.1 Functors· . 14

2.3.2 Initial DalatYP{l-s and Catamorphisms
 15

2.3.3 Fina.l Datatypes and Anamorphisms 18

S The Graph Calculus 19

3.1 Introduction to the Graph Calculus· ... 19

3.2 Representing Relations by Graphs 20

3.2.1 Formal Definitions
 21

3.3 Sequential Calculus· .
 29

3.3.1 Representing sequential relations by graphs
 30

ii CONTENTS

3.3.2 Locallinearity 32

3.4 Discussion . 34

3.4.1 Other Representable Calcnli . 34

3.4.2 Soundness and Completeness 35

3.4.3 Usefulness of the graph calculus· 36

3.4.4 Related work 37

3.4.5 Generalizing the graph. calculus 37

4 Greedy and Dynamic Programming Strategies 39

4.1 Greedy algorithms ... 39

4.1.1 History of Greedy Structures 40

4.1.2 Catamorphisms' 40

4.1.3 Anamorphisms 42

4.2 Dynamic Programming 43

4.2.1 History of Dynamic Programming 44

4.2.2 Catamorphisms· 46

4.2.3 AnaOlorphisms 47

4.3 Inadequacies 50

5 Introducing the Limit Operator 52

5.1 Catamorphisms 53

5.2 Anamorphisms 62

5.3 Practicalities . 66

6 Limits and Algorithms 68

6. I Greedy Algorithms 69

6.1.1 Optimality Conditions 73

6.2 Dynamic Program ming 84

6.2.1 Sprouting 85

6.2.2 Thinning 87

6.2.3 Dynamic Gardening 87

7 Further Generalizations 99

7.1 Invariants···· 99

j

CONTENTS iii

7.1.1 Greedy Algorithms· .. 100

7.1.2 Dynamic Progra.mming 107

7.2 Beyond the Limits 115

8 ConclusiollB 124

8.1 Summa.ry 124

8.2 Dynamic Progra.mming 125

8.3 Greedy Algorithms . 126

8.4 The Limit Opera.tor 127

8.5 Limits and Catarnorphisms 128

8.6 The Gra.ph Calculus , 128

Index to Problems

0-1 Knapsack Problem

Dartboard Arrangements

Dictionary Coding

HuffmanCoding .

Knuth's 1E;X Problem

LexicographieaJly Largest Subsequence·

Marbles Problem .

Paragraph Formatting Problem

Rally Driving

Prim and Jarm'k's algorithm·

Shopping Bag Problem·

String Editing·

47,90

102

81

50

119

41

70

48,92

75

77

43

95,114

iv

Acknowledgements

Firstly, I must thank my supervisor Richard Bird , who has been it. fountain of excellent

technical information and advice. I also owe a. lot to Oege de Moor, who provided much

needed encouragement and infected me with his enthusiasm for the subject.

I am grateful to Gavin Lowe for his support, useful suggestions, and fruitful collaboration

over our joint papers, and thanks also to Carroll Morgan for encouragement during the tough

times.

Thank you to the inhabitants of the attic for providing such a interesting and varied working

environment. In particular, I thank Steve (for the chocolate), Brian (fOf abusing all my

houseplants to make sure that any survivors would be strong and healthy), Mat (fOf walking

into the office one day and saying "You'l1 never guess what on earth l found in the libraryn

[30]), Jason (for ensuring that all the attic inhabitants talk to each other and "find out precisely

what views we hold on every common controversial topic), Rotlald (for the cool calm collected

approach), Andrew (for the supply of information of varying degrees of usefulness), Katherine

(for the Austrylian influence and the coke can sculpture), and Alexis (for the demonstration

of the effects of a first morning coffee).

Thanks also to Carolyn Brown, Karin Erdmann, Jeremy Gibbons, Tony Hoare, He Jifeng,

Graham Hulton, Berghard von Karger, Jim Lipton, Glenys Luke, Richard McPhee, Ian Page,

Jesus Ravelo, Syatera and many others for encouragement, comments, and useful advice.

v

Chapter 1

Introduction

The main contribution of the work presented in this thesis is the study of greedy and dynamic

programming strategies in a relational context.

Previous work in this area by Bird and de Moor [12, 11,9, 10] details a number of theorems

about these programming strategies. These theorems depend on the use of a fold operator

over an initial datatype, or the converse of such an operator, to generate feasible solutions

for optimization problems.

In this thesis, the use of folds and unfolds is replaced by a simple imperative-style loop oper

ator. This gives an extra degree of freedom in the way that fea.<;;ible solutions are generated,

and hence there is 'Hider applicability of the greedy and dynamic programming strategies.

A further generalization demonstrates how traditional-style invariants can be used to reason

about loop operators in a relational setting.

An additional contribution of this thesis is the development of the graph calculus, a proof

method which uses formal pictures to expose the relational structure of formulae.

1.1 Overview

The standard relational specification of optimization problems to be used in this work is

minR· AGen.

CHAPTER Z. INTRODUCTION

The generator relation Gen is olle that generates a feasible solntion to the problem, AGen

returns the set of all feasible solutions, and min R selects the minimum of these with respect

to the relation R, which determines the optimality criterion.

]0 previous work of Bird and de Moor [12, 11, 9, 10J the generator relation was expressed

using a fold operator or the converse of such an operator.

In this thesis, a simple imperative-style loop operator is nsed to generate feasible solutions

instead. This abstracts away from the structure of the problem, and optimization problems

are modelled as

minR . A lim T.

Here the rela.tion lim T repeats T to the input until it can do so no more. So T is a

constructor relatioll that performs one step of building a feasible solution to the problem.

Greedy algorithms perform a sequence of decisions, whereby at each stage a locally optimal

choice is selected. The greedy step will be mOdelled by the following relation

G = minS·AT.

Here AT takes a partial solution, extends it by applying one construction step T in all possible

ways, and ret'lrns the set of the resulting partial solutions. The criterion for local optimality

is given by S, and the locally optimal choice is selected by S. The complete algorithm is

lim G, which repeats the greedy step until it can be performed no more.

Dynamic programming can be modelled in a variety of ways; the essential element that all

models have in common is that in some way, unnecessary compntation is avoided. We will

model a dynamic programming step by the relation

D = thin S . sprouts T.

Here a set of partial solutions is maintained, and sprouts T performs some amount of con

struction on these, that is, it applies T to some of the partial solutions. The relation S is a

comparison rl:'la.tion which can indicate whether a partial solution is worse than another, and

the relation thin S removes some of the worse partial solutions. The entire algorithm is

minR ·limD· T,

where T takef; the input and makes it into a singleton set, then lim D repeats the dynamic

programming 5tep until all the partial solutions are completed, and then an optimum is

selected using min R.

3 1.2. OUTLINE

1.2 Outline

Chapter 2 is a. reference section of well-known material that briefly covers the relevant

operators and laws from the theory of relations that will be needed. Con(epts from

category theory are used to construct datatypes and fold operators over these datatypes.

Chapter 3 introduces the graph calculus, which is a useful tool for constructmg proofs,

particularly in the relational, sequential and similar calculi. lndeed, this calculus was

discovered whilst experiencing frustration during attempts to construct proofs during

the course of the work for this thesis. The chapter is complete in itself.

Chapter 4 presents the history of greedy and dynamic programming strategies, and dis

cuSS(>s work of Bird and de Moor in this area. Their theorems use relational folds over

datatypes to construct potential feasible solutions to problems, and examples are given

to show the theorems in action. At the eud of the chapter it is shown where these

theorems are inadequate, by discussing problems that this theory does not cover.

Chapter 5 proposes an alternative way to generate potential feasible solutions toa problem,

using a simple loop operator, rather than recursive folds or their converses. Further

more, it is shown that loops generalize folds and unfolds, and practical examples are

giveu.

Chapter 6 presents the main theorems concerning dynamic programming and greedy al

gorithms in this thesis. Optimality conditions for greedy and dynamic programming

strategies are discussed, and examples given.

Chapter 7 genera.lizes the work from the previous chapter in two ways. Firstly, the concept

of an invaria.nt is die.cussed, and generalizations of the greedy aud dynamic programming

theorems are presented. Secondly, the use of the loop operator to construct feasible

solutions to problems is re-examined and generalized. Examples of both generaliza.tions

are presented.

Chapter 8 summarizes and evaluates the results in this thesis.

Chapter 2

Preliminaries

2.1 The History of Relational Calculi

The concept of relations is not a recent idea. Augustus de Morgan began work on relations in

the 18508 and 18608 (reprinted in {76]). Peirce in the 18705 continued this work, with several

papers concerning "The Logic of R.elatives" (collected and reprinted in [79]). Peirce made

mathematically precise some of the fundamental ideas about relations, and laid down some

laws about them. SchrOder in 1895 [87] extended Peirce's work, and listed many additional

laws about relations.

Work on relations lay dormant for several decades, until Tarski in 1941 [95J thought that

relations deserved to be better-known and studied. He proposed two approaches to binary

relations, a set-theoretic approach and a point-free axiomatic approach (with axioms derived

from the set-t.heoretic model), and posed several questions comparing the two approaches,

including the question of whether the point-free approach was complete with respect to

the set-theoretic (or point-wise) approach. This paper stimulated much new research into

relations.

Relation algebras were invented, these being models of the point-free axioms for relations.

Lyndon in [60, 61] demonstrated that the point-free axiomatization was incomplete with

respect to the eet-theoretic approach. He did this by producing some relation algebns which

did not satisfy all the theorems of set-theoretic relations.

Since theu, relations have been used in many branches of computer science:

4

5 2.2. BINARY RELATIONS

•	 Just as categories were modelled on functions, allegories were invented as a. categorical

model of relations. Freyd and Scedrov in 1990 [33] produced the standard textbook on

the subject, and showed tha.t unitary ta.bular allegories were complete with respect to

set-theoretic relations.

•	 Backhouse and his colleagues have investigated an extensive theory of data.typ~, based

on the ca.lculus of relations [1].

•	 Relation algebras ha.ve been further investigated by McKenzie in [66, 67] and Maddux

in [62, 63J. Maddux also wrote a.n interesting paper about the history of binary relations

(64]' which is recommended for further reading.

•	 The relational language Ruby has heen used for designing hardware, for example see

the work of Jones, Sheeran and Hutton [90, 49, 91, 45, 50).

•	 Relations have also been used to reason about graphs. Schmidt and Strohleins wrote

(86]. Relations of arbitrary arity have also been used to represent graphs in the work

of Moller and Russling [72, 71, 70, 73, 83, 84].

•	 Bird and Meertens developed a formalism for functional programming [6,7, 69]. The

research of Bird and de Moor later focused on optimization problems, which are more

simply specified using relations; functions cannot express the non-determinism inherent

in taking a minimum accurately, as there may be no minimum or several. Thus the

functional formalism was generalized to relations, detailed in [10].

2.2 Binary Relations

Relations will be described in a style that generalizes that of functional programming, and

they will be viewed intuitively in an operational manner. It will be helpful tothink of binary

relations as relating values to other values, and thus a set theoretic (or point-wise) view of

relations is used. Composition of relations will be as the left-to-right composition of functions

" and every relation will possess a well-defined type of the form A f- B.

Even though binary point~wise relations are the calculus of choice, it is also advantageous to

use laws expressed in the point-free calculus of relations. In particular, a rigorous calculational

proof style will be employed, using many laws from the point-free axiomatization.

This section gives brief definitions of the operators used on binary relations in this thesis,

together with their useful properties. Often a point-wise definition will be given to aid

6 CHAPTER 2. PRELIMINAR1ES

intuitive understanding of tne operator, followed by a universal property to provide the

equational reasoning to be used in proofs.

A relation R: A ~ B (pronounced "A from B") is a subset of .4 x B, and the notation xRy

will be used for (x, y) E R. In examples it can become cumbersome to write out variables

several times, and so the notation

R S

xt--y+--z

will be used to abbreviate xRy 1\ !IS:, for {'xample, and similarly

R S

xt--y--tz

will be used to abbreviate xRy 1\ zSy.

2.2.1 Basic operators

Several special symbols stand for the empty, idctltity and universal relations:

0= {}

idA = {(a, a) I a E A}

nAxE = {(a, b) I a E A,bE B).

The subscripts are llsuaJly omitted when they are clear from the context.

The converse of a relation is defined to be

R" = {(y, x) I (x, y) E R),

and thus con....erse is an involution

R CO = R.

For exa.mple, the relation E 0 (which is usn ally written as 3) is th.e <:onverse of the set

membership relation E.

The compo8ition operator on relations generalizes the composition of fun<:tions:

R . S = {(x, z) I 3y • (x, y) ERA (y. z) E S}.

As for functiolls, composiHon is associative, with its identity the function id.

The intersection of two relations is just that, the interse<:tion of the two sets of pairs. It may

also be defined with a universal property:

R <;; S n T '" R <;; S A R <;; T.

7 2.2. BINARY RELATIONS

Similarly the union opera.tor is the union of the two sets, and its universal property is

R U S <;; T '" R <;; T " S <;; T.

The converse, composition, intersection and union operators a.re all monotonic with respect

to <;;;. The convention that composition binds tighter than intersection or union will be used.

Other useful properties of the above operators are that 0 left and right--distributes over nand

U, nand U distribute over each other, and also the following:

(R· S)" S° ·Ro

(RUS)· T R·TUS·T

(RnS)· T <;; R·TnS·T

R·Sn T <;; (Rn T·S")·S.

The latter is known as the Modular Law, or Dedekind 's Rule.

2.2.2 Functions

Partial functions are also known as simple relations. Equationally, a relation S is simple

when

5 . S° ~ id,

and is total, or entire, when

id <;;;. So ·5.

A rela.tion is also a function when it is both simple and total. Conventionally, we will write

functions in small letters, whereas relations will be written prefixed with a ca.pita.lletter.

Useful properties of functions are the 50-called shunting rules:

/·R<;;S",R<;;r·S

R <;; S· / '" R·r <;; S.

If a. relation and its converse are both runctions, the relation is an isomorphism.

2.2.3 Coreftexives

A reflexive relation R has the property tha.t

id ~ R,

8 CHAPTER 2. PRELIMINARIES

and thus according to the tradition of category theory, a cOT'fjlexive relation has the property

that

R ~ id.

Coreflexhes may also be thought of as predicates. Indeed a predicate p may be turned into

a coreflexil'e in the following wa.y:

p? = {(r,r) 1 pzj.

Useful properties of coreflexives are that for any coreflexives 1,J and predicate p,

I·J=InJ

id = p? U (~p)?

Two important operators are those that return the domain and range of a relatiou. They are

defined by

domR = {(y,y) 13r· (r,y) E Rj

ronR = {(r,r) 13y' (r,y) E Rj,

and are thus coreftexives. Alternatively they may be defined pointlessly as follows:

dam R :=: RO·R n id

mnR = R·Ron id.

Some useful properties concerning domains and ranges are that

R R· domR

R mnR· R

domR' mnR.

We will also use another coreflexive which is defined as follows:

nOldomR = {(y, y) 1 ~3r ' (r, y) E Rj.

The following properties will be useful:

S· notdom (R· S) <;;;;. notdom R . S

dom R = dorn S ¢::} notdomR = notdomS

dam R n p? <;: dorn S ¢::} notdom S n p? t;; notdom R.

9 2.2. BINARY RELATIONS

2.2.4 Quotients

The left and right quotient operators are defined as follows:

R\T ~ {(y, xl Iv,· zRy '" zTx)

TI R ~ {(y, z) Ivz . ,Rz '" yTz},

so for example, E\E and 3/3 are better known as set-theoretic inclusion and its converse.

Alternatively, quotients can be defined by the universal properties

R·Sr;;T"" Sr;;R\T

S·Rr;; T "" sr;; TIR.

Many properties can be derived from the above equations. In particular, the following prop

erties demonstrate why th.ese operators are ca.lIed qnotients:

RIS· s r;; R

RIS· Sir r;; RIT

R/(S, T) . S r;; RIT

(and there are of course corresponding laws for left quotients). Quotients bind tighter than

the composition operator.

Quotients interact together as follows:

(R\S)O SO IR o

(RIS)O So \w.

Other useful properties of quotients and functions (3,n be obtained from their universa.l prop

erties and the shunting rules:

RIS· f R/(r ·S)

f· RIS ~ (f·R)IS

r·S\R (S· f)\R

S\R ·r S\(R .r).

2.2.5 Orderings

Relations may be used in a mauner similar to that offunctions, to operationally do something

to the input. Relations may also be used to order objects. Reflexivity of an ordering has

already been mentioned; a relation R is transitive when

R· R r;; R.

10 CHAPTER 2. PRELIMINARIES

Relations that are transitive and reflexive are known as preorders.

A relation R is connected when

R URo = n.

This property of a rela.tion is useful when we want to guarantee being able to compare any

two elements, for example, when taking a. minimum with respect to R.

The reflexil1e tmnsitive closure of a relation R is defined to be the smallest preorder that

includes R, and is denoted R·. Thus for any preorder S,

R ~ S ", R" ~ s.

Trivial properties of reflexive transitive closure are that

R ~ R"

id ~ RO'.

Similarly, the tmnsilive closurf:of a. relation R (the smallest transitive relatlon containing R)

is denoted R+.

2.2.6 Operators on Relations

The power trunspose operator provides a. way of transforming a rela.tion into a. function:

(AR)% = {y I yRx}.

Given x, the function AR applied to x returns the set of elements that rela.te to x

using R. For example, AChildOj when applied to Queen Elizabeth 11 returns the set

{Charles, Anne, Andrew, Edward}. The universal property of this operator is that

f = AR <> E . f = R,

and further useful properties of power transpose a.re that

E . AR R

A(R·f) AR·f

AR· RO ~ 3.

A similar operator is existential image which applies instead to sets of va.lues, and so

(ER)X = {y I % E X 1\ yRx}.

11 2.2. BINARY RELATIONS

Useful properties concerning E are the foUawing:

ET II(T'E)

II(R· S) ER . liS

liT ET·,.

where ,x = {x}.

Another operator on relations which relates sets to each other is the symmetricaJ poWt;rset:

X(PRj Y '" (Vx EX· 3y E Y • xRy) A (Vy E Y • 3x EX· xRy).

That is to say, all the members of one s-et relate by R to some member of the other set. The

corresponding pointfree definition is

PS = E\(S· E) n (3' S)/3.

Some useful properties of the above operators and coreflexives are the following:

P p? . E p? = E p?

p p? 5: Ep?

Pp? £ id.

The following properties demonstrate how the above operators interact with membership:

E' EP = p. E

PR·", ~ ",·R

E·PR C R·E.

The minimum with respect to a relation R is defined by

minR = E n R/3.

Translating the above into words, a minimum with respect to R is a member of the set, and

is R-ier than every other member of the set. Usually R is a connected preoroer in order for

the relation min R to be total. A property of minimum for reflexive preorders R is that

R = minR·3.

In the rest of this thesis, only minimums (rather than maximums) will be considered, but

this is not restrictive as

maxR = minRo.

12 CHAPTER 2. PRELIMINARIES

Two uninrsal properties concerning minimum are as follows

S <;; minR· AP {:? S <; p 1\ S· P [) ~ R

S <;; minR· EP {:? S ~ p. E 1\ S· ~ . por; R,

and these can be easily derived from the definitions of the operators and their universal

proper tie;.

To take account of the context when taking a minimum, we can use the following equation:

minR· AP = min(Rnp·pO). AP.

A relation is well~founded if

domE;::: dom(minR),

that is, eV('ry non-empty set has a minimum under R.

2.2.1 PrDducts and Coproducts

Products of relations relate pa.irs together, that is, if R : A +- B and S : C t-- D then

R x S : A xC+- B x D and

(a, e)(R X S)(b,d) ¢> aRb A eSd.

Alternativel)', using the projection functions outl and outr, the product of two rela.tions can

be defined equationally

R x S = oullo·R· outl n outro·S· Dutr.

Useful properties of the projection functions are that

outl ·outi° id outr outrO

onti . outr 0 II outrO . DUti,

and from the above,

ontl . (R x S) ~ R . outl

ontr . (R x S) ~ S· Dutr.

The split of tlliO relations R: B +- A and S: C +- A is (R, 5): Bx C +- A. Set-theoreticaJly,

the 5plit a.pplies each rela.tion. to the input:

(b,e)(R.S)a ¢> bRa A eSa.

13 2.2. BINARY RELATIONS

It can also be defined equationa.lly:

(R,B) = outl°·R n DutrO,S.

Coproducts are also sometimes known a.s disjoint sums. Just as the product object A x B

dea.ls with pa.irs, a. "'left" element from A and a "right" element from B, the coproduct object

A +B deals with a "left" element from A or a "right" element from B. The injections inl and

inr are then the functions which attach "left" and "right" labels on an element respectively.

The axiomatic definition of coprodncts of relations is that if R : A t- Band S: C t- D,

then R+S:A+ C t-B+D and

R + S = inl· R· inl° U inr· S· inr o .

This may be thought of in a point-wise fashion as follows: when z:(R+ Sly, then either z: E A,

y E B, they are both labelled with a "left" label and xRy, or oX E C, Y E D, they are both

labelled with a "right" label and xSy. The injections inl and inr are both functions with the

following properties:

inlO ·int id inro . inr

infO . inr o inr ° . inl.

Some properties showing how injections interact with coproducts are a.s follows:

in} . R = R + S . inl

inr . S = R +S . inr.

Similar to the way splits interact with products, the join of two relations interacts with

coproducts. If R: A f- Band S: A f- C then [R, S]: A t- B+ C, and

[R,B] = R·inloU S·inro.

Thus the relation [R,51 either removes a "left" label and applies R, or removes a "right"

label and applies S.

Some particular properties of coprodncts and joins which will be used are the following:

[po Q,R.51 [P,R] . Q+S

[p. R,P· 51 p. [R,51

[P, R] U [Q,51 [PUQ,RU51

[P,Q] ~ [R,51 .. P~RI\Q~S

14 CHAPTER 2. PRELIMINARIES

2.3 Useful Categorical Concepts

A small amount of familiarity with category theory will be assumed, but this can easily be

obtained (rom one of the good references for computer scientists, such as Barr and Wells [2J

or Pierce [80].

The category we will be working in is ReI, which has sels as objects and relations as arrows,

and this is the world of the relational programmer. Rei is also a.n allegory, where an alle

gory is a category enriched with intersection and composition opera.tors, together with the

comparison operator~. Allegories were invented to look at rela.tions categorically in much

the same wa.y as categories look at behaviour of functions. See /33] for more details about

allegories.

In this section, we take a brief look at the main properties of various operators we will need

later concerning datatypes.

2.3.1 FUnctors

One concept we reqnire is that of a functor, which is a structure-preserving map (on the

arrows and objects) between categories. That is, F is a functor When

R:B A ~ FR:FB+-FA

Fid ;d

F(R·S) FR·FS.

One example of a functor is the identity functor I : C +- C from a category to itself that maps

objects and a.rrows to themselves. This is an example of an endofunctor, a functor with the

same source and target categories. Another example is the constant functor KA : C +- D,

which maps objects to the object A (in the category C) and arrows to the arrow idA. The

operators E and P are both functors of type Rei +- ReI.

Functors F : A +- Band G : B +- C may be composed in the obvious manner, to give

another functor FG : A +- C.

A monotonic functor F satisfies the following property for any R,S:

R <;; 5 ~ FR <;; FS,

and such a flJnctor is called a relator. Bird and de Moor [13] showed that relators are precisely

those functors that preserve converse

F(R') = (FR)'.

2.3. USEFUL CATEGORICAL CONCEPTS 1·5

They are ca.lIed relators, because functors on Fun that a.re also relators can be extended to

functors on ReI. The functor P is a relator.

Products a.nd captod uets may be used to construct functors. If F a.nd G are functors, then

let

(F+G)A ~ FA + GA

(F+ G) R FR + GR,

and similarly for products. Then we have that F + G and F x G a.re functors too.

Polynomial functors can be constructed from the above definitions. A polynomial functor \s

one of the following:

• The identity functor I, or one of the consta.nt functors KA

• FG, F +G or F x G, where F and G are polynomial functors.

Polynomial functors will be u~ful for the construction of datatypes, a.<; detailed in the next

section.

An example of a non-polynomial functor is P.

2.3.2 Initial Datatypes and Catamorphisms

The idea. of using initiaUty to represent datatypes has been known for many decades, although

Hagino [35, 36] and Malcolm [65] brought the idea into more prominence. More details about

the ideas briefly mentioned here may be found in Fokkinga [32], for example.

If we have a functor F : C --+ C, then any arrow fJ in the category C which is of type

fJ: B t- FB (for some object B) is an F-algebra.

A category of F-algebras may DOW be constructed, with the F-algebras as the objects, and

(R, FR) pairs as the arrows, where R a.nd FRare a.rrows in the original category that form a

commuting diagram like this:

:j-ELF

B~C

16 CHAPTER 2. PRELIMINARIES

That is, L~e equation that R . f3 = 'I' FR.

For some functors F, this category of F-algebras has an initial object. That is, there if; exactly

one (R, Fl1) pair from this initial object to any other F-algebra. The initial object is unique

up to isorr.orphism. The initial object will usually be denoted 0' : A t- FA, a.lso called the

initial algeora, or initial F-algebra, and A will be called the carrier of the algebra. There is

a.n initial object in this category for many functors, in particular when we are dealing with

F : Rei t- Rei, polynomial relators have this property.

Concerning the initiality of a, if f3 : B t- FB is another F-algebra., then there is a. unique

arrow from a to /3, and we will label it as follows:

F.4~FB

Q j j~
A«iJf"B

The lltJD is called a catamorphism (pronounced "ca.ta-beta"), and will be written «,o]F' The

subscript of the functor concerned will often be omitted if clear from context 1.

The fact that the catamorphism is unique gives rise to a universal property:

Q = (PDF Q . Q = ~. FQ.

To explore tlis definition further, an example is given.

Example: Nr.n-empty cons liJtJ

Lists of nllmbers are a common datatype that functional program mers use, and could

be define! as follows:

ntuDlis't ::= Na't num I Cons num numlis't

Thus sud a list either contains just one number, or is a pair consisting of a number

and anot~er such list. Mathematically, if the set of such lists is L, and the set of

numbers i~ N, we have just described that

L=N+NxL,

110 this thesiJl, a catamorphism may weU appear with no mention of a functur at al.I. and then a few lines

later aD F will msgically appear!

17 2.3. USEFUL CATEGORICAL CONCEPTS

and so the functor corresponding to this is F, where this functor defined on relation

arrows and set objects is respectively

FR = idN + idN X R

FX~N+NxX.

Thus (Nat, Cons] is an F-algebra. of type L +- FL, and this is in fact the initia.] algebra

for this functor.

To investigate what a catamorphism ~P] means with regards to these lists, we will

look at an example F-a.lgebra P, so we require that P be or some type B +- N +N xB,

for some set B. If we took B to be N, then an example fOf P could be

P ~ lid, plu,].

So P returns the number itself if given a "'left-labelled" number, and if given a.

"right-labelled" pair of numbers, returns its sum.

What is [id, plus]2? From the above universal property for catamorphisms we have

that

dPb . [Nat, Con,] ~ lid, pi",] . FdPb,

and from the properties of join and coproducts above, we get that this is equivalent

to the two equations

dPb . Not id

dPb . CQ.. plu,· (id x dPb).

These can be easily seen to be the exact pointfree translation of the familiar eq uation

sum (Na."t; u) ::::: n

SU.lIl (Cons u x) ::::: n + (sum x)

which sums the numbers of a list. This can also be expressed using a fold operator

of functional programming. §

This is exactly what catamorphisms are - folds downwards through the data structure.

This is also why catamorphisms are .so named by Meertens in [68]: from the greek, cata

means "downwa.rds", and morphe means "according to form". So a catamorphism [P] goes

downwards through the structure of the datatype doing P as it goes.

~We write [R, SD instead of (fiR, Slll

18 CHAPTER 2. PRELIMINARIES

From the iact that 0' is an isomorphism (58] and the universal property above, we get the

following useful properties:

[QJ·o Q. F«QJ

IQJ Q . F«QJ . 0°,

and from the universal property for catamorphisms and the fact that functors preserve iden

tities, we get that [oD itself is the identity catamorphism:

[oj = ;d.

Another useful properties of cata.morphisms are the so-called promotion rules:

R· [5) = [TJ ~ R· S = T· FR

R·[SJS; [TJ '" R·SS; T·FR

R· [SJ ::> [TJ ~ R· S ::> T· FR.

Bird first coined the term promotion as it applied to lists in [5J.

From the aoove we see that catamorphisms are monotonic with respect to ~:

R S; S ~ [RJ S; [SJ·

2.3.3 Final Datatypes and Anamorphisms

The dual concept to catamorphisms is that of anamorphisms. As there exist initial algebras,

similarly ther~ exist terminal algebras, and the corresponding arrow from every F-algebra

to the terminaJ. algebra is labelled with an anamorphism. However, the category ReI is its

own dual, 80 III this category, initiaJ aJgebras are also terminal and vice versa, and every

anamorphism is aJro the converse of a catamorphism. In this thesis, we will often express a

relation a.s a ca.tamorphism or an anamorphism, depending on which is more convenient to

define.

Chapter 3

The Graph Calculus

In the previous chapter, the particular relational caJculus to be used in this thesis was in

troduced. This chapter, which has already been published in [23, 24], introduces a new way

to represent formulae using graphs. This calculus can greatly assist proofs in the relational

calculus and other calculi.

The calculus was originally invented by the author to apply to relations. Gavin Lowe noticed

that the work was also applicable to the sequential calculus [96], and the development of the

graph caicuIus was a joint collaboration.

3.1 Introduction to the Graph Calculus

Traditionally, mathematical formulae have always been written down on a. single line. Given

four relations P, Q, Rand S, then

x(p. Q n R . Sly ¢:> 3u, v • x P fJ II tl Q Y II x R v 1\ v S y.

But snppose also that tl and v are related by a relation T. Traditional mathematics has

no way of writing down such a relation in a point-free style using only the composition

and intersection operators. In other words, the language of intersection ana c.omposition is

expressively incomplete.

Instead, a calculus of graphs wiU be used for representing and reasoning about relations. For

example, the relation p. Q n R· S will be represented by the following graph:

o,.JY°"-f(o
~.A

19

20 CHAPTER 3. THE GRAPH CALCULUS
'----------

Each edge represents the rela.tion with which it is labelled; two consecutive edges represent

the com position of the corresponding rela.tions; two paths with the same start and end points

represent the intersection of the corresponding relations.

To add the above condition that the intermediate points are rela.ted by T, a. corresponding

edge labelled T is added:

.(!~.

As well as describing how to represent relations as graphs, a number of graph transformation

rules will bedeveJoped. Transforming a graph according to these rules a.lters the correspond

ing rela.tion: for example, removing a.n edge from a graph makes the corresponding relation

la.rger.

The graph calculus provides a. useful tool for doing proofs about relations. The calculus gives

us a way of getting at the internal structure of a relation: and because the representation

is very visual, it is often easier to see what is the correct next step in a proof. Sometimes

the proof without graphs is complicated and difficult to find, and in some cases, results have

been proved llsing the graph calculus that were otherwise too difficult.

In fact, the gra.ph calculus applies to more calculi than just the relational calculus. It provides

a generaJ wa)" of representing many mathematical formulae that cannot be written down on

one line in the normal way. It then provides rules for transforming these representations.

In the next section the graph calculus is applied to the relationa.J calcnlus: it is formally

defined how ~ relation can be represented by a graph, then graph transformation rules are

presented, and the calculus is illustrated with examples. In section 3.3, the sequential calculus

of [96] is considered: the calculus is described, it is shown how elements of the calculus can

be represented by grapbs, graph transformation rules are presented, and the graph calculus

is used to prove a result which has not otherwise been proved in the sequential calculus. In

section 3.4 various other points of interest are discussed.

3.2 Representing Relations by Graphs

In this chaptu, a set-theoretic approach to relations is necessary for the graph calculus,

as opposed to an axiomatic view. The main operators to be used a.re composition, union,

intersection, i4 and nAxB , which all take their usual set-theoretic definitions.

21 3.2. REPRESENTING RELATIONS B}' GRAPHS

As mentioned above, relations are represented by labelled edges in a graph. The composition

of relations is represented by edges in sequence, and intersection by edges in para.lIel, so for

example, the relation (p. Q 0 n (R uS)) . T can be represented by:

~2
RUS

Arrows can be reversed to give the converse of a relation, and nnion can be represented by

splitting the graph, so the above relation may also be represenled by:

~ T u~ T
R S

Note that in the dr awing of each graph, care is taken to make it obvions which are the left

most and right-most vertices of the graph, so that is it ea.sy to see precisely which relation is

being represented.

Composition, intersectiou, union and converse are the fOUf main relational operators repre

sented in the graph calculus, but <loS will be seen later, other operators are also representable,

for example the domain and range operators are simpl)' represented by lone edges going from

or to a vertex. For example, ron R . 5 may be represented by

y
S

and S . dam R by

~
S

3.2.1 Formal Definitions

Formally, the type of graphs used are of the form (V, 3, t, E) where V is a finite Bet of vertices,

8 E V is the sou ree, t E V is the target, and E E P(V x S x V) is a finite set of edges

labelled with elements of S representing relations: the edge (v, R, v') represents an edge to

v from v' labelled R.

22 _______-"C"'H"APTER 3. THE GRAPH CALCULUS

When drawing a graph, the source and target will not be explicitly labelled: they will be

the right-mCl8t and left-most vertices, respectively. As the relations used in this thesis are

thought of In the same setting as functions, they have the backwards composition ".", and

hence the meaning of the graph is from right-to-left. Users of a relational calculus with

forward composition may just as easily decide to use left-to-right arrows instead, and the

source is then at the left hand side of the graph. and the target on the right.

Note that t~ere are no conditions concerning the connectivity of graphs. Also, sets of edges

are used, rather than bags; thiG means that a graph with two edges to v from u' labelled R

is the same u; the corresponding graph with only one such edge.

The formal definition of the graph in which a graph represents a relation is as follows:

Definition The graph G := ({ ttl, ... , un), ttl, Un, £) represents the relation [G) where

z{G]y iff 3X<1, ... ,%,,' X:=Xn AY=X<lAV(Ui,5,uj) E E· x j 5xj.

The relation [G] is called the interpretation of G.

Thus a graph represents the relation that relates x and y jff there is some way of labelling

the vertices v;ith vaJues such that x labels the source, y labels the target, and if there is an

edge labelled S between two vertices then the corrffiponding values are related by S.

For example, the graph

.<=:}.
rEolates z and y iff

3X{h X1>Zj,ZJ • % = X3A Y = X<lA X3PXIA Xl QX<lA Z3RX2A X2 5 X<I,

that is, the graph indeed represents the relation p. Q n R· S.

Note that then is hidden type information in the above definition that is implicit. Just as the

composition of two relations R· 5 only has meaning if the source type of R is the .same as the

target type of S, the labelling of the graph has similar rffitrictions. Thus there is an implicit

type T; associated with each vertex Vi, and wherever (Vi, 5, Vi) E E, then S: Ti f- Ti'

23 3.2. REPRESENTINC RELATIONS BY GRAPHS

On subsequent pages graphs will be dra.wn to represent the relatiODs represented by those

graphs. So G1 ~ G'l should be taken to mean that the [GIl ~ (G2J; G1 ~ G.z denotes

[Gi] = [G,].

In order to effectively use these graphs to prove properties of relations, a. number of gra.ph

trandormation Ia.ws are required. Some of these transformations leave the corresponding

relation unchanged; others produce a superset of the origina.l rela.tion. Each of the laws may

easily be proved sound with respect to the a.bove definition.

The first four laws formally state how composition, intersection, converse and union are

represented in the gra.ph calculus.

If an edge is Ia.belled by a. rela.tiona.l composition, then it may be split into two;

Composition Law If v" is a vertex nol in V, then

(V,s,t,Eu {(v,R·S,v'))) "" (VU {v"j,s,t,Eu {(v,R,v"),(v",S,v')}).

An edge labelled with an intersection may be replaced by two sepa.rate edges with the same

start and end points, and vice versa.:

Intersection Law

(V, s, t, E u {(v, R n 5, v'))) "" (V, s, t, E u {(v, R, v'), (v, S,v')]).

If an edge of a graph is labelled with the union of two relations, Rand S, then tbe graph may

be replaced by the union of two gra.phs with corre5ponding edges labelled by R a.nd by S:

Union Law

(V,s,t,EU{(v,RUS,v')j) ""	 (V,s,t,Eu{(v,R,v')j)

U (V, s, I, E u {(v,S, v'))).

An edge ma.y be reversed in direction and relabelled with its converse:

Converse Law

(V,B, t,EU ({v,R,v'))) '" (V,s,t,Eu {(v',R',v))).

24 CHAPTER 3, THE: GRAPH CALCULUS

The following Jaws concern two other operators of the relational calculus, the universal and

identity relations.

Any two vertices are connected via the universal relation:

Universal Relation Law If v, v' E V, then

(V,s,t,E) ~ (V,s,t,EU{("ll,u')}),

If two vertices are related by the identity, then they may be joined together:

Identity Law

IV, s, t, E U {(u, ;d, u'))) '"

({ ren" I u E V), ren s, ren t, {(ren u, R, ren u') I (u, R, "') E E)),

" ifu=u'
where reo u =

{ U , otherwise.

The function reo renames the node v' to v.

For the next law, the concept of a. graph homomorphism is required:

Definition Given graphs G:::: (V,8,t,E)a.nd G':::: (V',s', t",E'), a homomorphi.9m from G

to G' is a function ¢ : V --+ V' such that: 4>(8) = 8',4>(t) :::: t', and for each edge

(u , P, v) E E, there is a. corresponding edge (4)(u), P, 4>(u» E E'.

For example, there is a. homomorphism from the left hand graph to the right hand graph

below, mapping tlo to to, UI and U'2 to VI, and 113 to VJ·

", ... P UI----2.- • U3
_.~~·('d'~

u, "'.
R

HomoJDorphism Law If there exists a homomorphism from G to G' then G J G'.

Note that if there is a homomorphism ¢ from G to G', and another homomorphism 1/J from G'

to 0, then 0 ~ G'. This allows us to identify the following two graphs, for example:

25 3.2. REPRESENTING RELATIONS BY GRAPHS

and •....£-.....iL.·~:4·
The following law statE'S that removing edges makes the corresponding relation larger. It can

be proved as a. corollary of the previous law. but it is sufficiently useful to be worth stating

explicitly.

Remove Edges Law (V,s,t,EU{(v,R,v')}) ~ (V,s,t,E).

Another useful corollary of the Homomorphism and Composition laws is the following:

Join Composition Law IT (v,R,v'),(v',S,v") E E then

(V,s,t, E) '" (V,s,t,EU{(n,R.S,n")j).

An edge labelled with R may be replaced by a. graph representing R:

RepIaCU1g Law

If the interpretation of (V', s', t', E') is the relation R, and V n v· = {8', fl, then

(V,s,t,Eu{(s,R,t')}) S!! (VU V·,s,t,EUE·).

Enla.rging the relation labelling any edge enlarges the relation repre6ented by the whole graph:

Monotonieity Law]f R ~ S then

(V,s,t,EU{(n,R,n')j) <;; (V,s,t,EU{(n,S,n·)}).

This is an extremely useful law as it allows techniques from the relational calculus to be

incorporated into the graph calculus. The relational calculu5 may be used to prove R <; S,

and then the above law allows an edge labelled with R to be replaced by one labelled S.

In particular, la.ws about the other operators of the relational calculus may be derived. For

example, using the property of quotients that

RIS·S <;; R

S· S\R <;; R

and using the Monotonicity, Homomorphism and Composition laws, we obtain

26 CHAPTER 3. THE GRAPH CALCULUS

Right Quotient Law If(v,R/S, v'), (v',S,v") E E, then

(V,.,I,E) '" (V,.,t,Eu(u,R,u")).

Left Quotient Law If (v, S, v'), (v', S\R, u") E E, then

(V",t.E) '" (V,.,I,EU(u,R,u")).

The above Ia.ws allow a graph to be reduced to a normal form: the Comp06ition, Converse,

Intersection and Union laws a.llow compound labels to be broken down into simple labels;

the Homornl>rphism law then allows redundant edges to be removed. Furthermore, the trans

formation la.ws - along with the observation that a. graph with a single edge labelled R

represents the relation R - justify our informal description of how to represent a. relation by

a graph.

Ha.ving presented the transformation laws for the graph calculus, it is time to see some small

examples of the calculus in use.

Example: Tk Modular Law

As mentioned before, a. useful law of the relational calculus is the following:

A n B· C s:: (A· Co n B) . C.

(also known as Dedekind's law). This law cannot be proved by calculation using

only the universal. properties of intersection, conven;e and composition: this is one

of the allegory axioms, and it is easy to find fra.meworks which satisfy all the other

axioms but not the modular law. The proof ma.y either be calculated in a pointwise

fashion , or by using tabulations. Both methods are less elegant than the proof using

the graph calculus:

An B·C

3!! {Graphical representation}

6
A

~ {Converse}

27 .1.2. REPRESENTING RELATIONS BY GRAPHS

6

A

~ {Composition}

~C'

~

A

~ {Converse; remove edge}

~
2:' {Graphical representation}

(A· C' n B) . C.

Example: An Arithmetical Lemma

Another small example coucerns a lemma pertaining to sets of natural numbers:

min::; . 3/3 . domE ~ ~ . min ~

Translated into English, this lemma states that the minimum of any non-empty set

of natural numbers is at least as large as the minimum of any superset of t~e original.

This may be proved as follows:

mz'n :s: .3/3 . domE

~ {Well-founded ness of :s:}

min :S: . 3/3 . dom(min":;)

~ {Graphical representation}

~<

m;nV,

2.'; CHAPTER 3. THE GRAPH CALCULUS

" {Definition of minimum; intersection}

</)

E E

<: /3 3/3
 ~
{Converse; quotient; converse)

3~1-/3
<:/3K I :
'~y3/)

~ {Quotient)

< /1\' <:/3

_3

E E

<:/3\ 3/" ~
<;; {Remove edges; definition of minimum}

r'
~ {Graphical representation)

~ . min ~

Both proofs ~bove illustrate a common technique in the graph calculus, namely adding all

the arrows needed, then removing superfluous one:; at the end.

In the next section, it is seen how this way of representing relational formulae by graphs can

be extended to many other different calculi.

29 .1.1 SEQUENTIAL CALCULUS

3.3 Sequential Calculus

The sequential calculus [96] aims to provide a common framework of algebraic laws applicable

to many models of reactive systems. A preliminary exploration of the main ideas of the

sequential calculus is necessary before going on to model it using graphs.

C;;'lItral to the ~equential calculus is the notion of an obse1'vation. The relational calculus

i~ an ~xample of a sequential calculus, where an observation is a pair (x, y) such that x is

r('lat~d to y. In the calculus of intervals [16], an observation is a pair (s, t) of times-the

,;tart alld termination times-with s ~ t. In regular expressions [52], an observation is a

finite sequence of letters drawn from some alphabet A. In the regularity calculus [26), the

sequencE'S are given the structure of a group. In interval temporal logic [101], observations

are functions from time intervals to states. In the traces model of CSP [43], observations are

traceH of visible actions.

In f'ach of these calculi, two observations may be composed via an associative co~position

operator, ";". For regular expressions, the composition opera.tor is simply conca.tenahon of

strings. For the other calcnli, composition is a partial operator; for example, in the relational

calculus two observations may be composed iff the second element of the first observation is

the same as the first element of the second observation; in this case the intermediate point is

omitted:

(r, 8) ; (" t) (r, t).

An observation x is a prefix of y, written x ::5 y, if x can be extended to y:

x.:$ y ¢:> 3z • x;z = y.

In each calculns, a system may be represented by a st?t of observations, termed a sequential

relation. These form a Boolean algebra under the union and intersection operators. The

composition operator may be lifted point-wise to sets:

P;Q = {p;q I pEP /\ q E Qj.

The universal set of observations is denoted by Q.

An important concept is that of units. Each observation x has a left unit r and a right

unit -; such that

~ ~

x ;x x x; x .

30 CHAPTER 3 THE GRAPH CALCULUS

For example, in the relational and interval calculi, (x,
~

y)== (x, x) and (x,
~

y)= (y, y). The set

of all units is denoted by Jd:

Id = {x It= x =1}.

III [96J. a number of algebraic Jaws are developed for reasoning aboL1t sequential Telalions,

rather than reasoning about individual observations; for examp]p:

R;Id: R ~ Id;R. P;(Q U R) ~ P:Q U P;R. P:(Q n R) C; P;Q n P;R·

'rhe main difference bl:!tween the rela,tional and sequential ca.lcull is the lack of a converse

operator in the sequential calculus.

3.3.1 Representing sequential relations by graphs

'rhe graph calculus may he used to represent sequential relations in an obvious way. The only

slight rliffererlce is that as thp operator '";" in the sequentiaJ calculus is usnally a forwards

composition operator, graphs will be read from left-to-right. For example, the following graph

-<~:}.
represents the sequential relation P;Q n RiS. Each £'dge represents the sequential relation

with which it is labelled; a path through the graph represents the composition of the corn....

sponding relations; two paths with common source and target represent the intersection of

thp cOITesponding relations.

The representi.l.tion is formalized as follows:

Definition The graph G = ({ l~, ... , u,,}, l~, 11", E) represents the sequential relation

~

IU] ~ {x I 3",... .. x" •	 x.o=xl\x,,=x

l\'r/iEO ... n x,:5.x
o

1\ 'r/(Vi' 5, Vi) E E • 3y E S· :T.j;y = xJ }

The sequential relation [G] is called the interpretation of G.

Thus an obse[l'ation x is in the interpretation of G if for each vertex Vi there is a corresponding

observation x;. such tha.t:

31 3.3. SEQUENTIAL CALCULUS

•	 the observation corresponding to the source is the left unit of x

•	 the observation corresponding to the target is x

•	 each observation is a prefix: of x

•	 for each edge ('U" 5, vJ) there is an observation y of 5 which when compQl;oo with x,

gives z).

An observation starts at the source with a unit observation, and then the graph is traversed.

Each edge extends the observation with an observation from the edge's label, until the target

is reached. Each intermediate observation is compatiblf' with (Le. is a prefix of) the final

observation.

The rlefinition seems biased towards cumulative {'{fects from left to right. On closer inspection

the definition is indeed symmetrical, because of the properties of the sequerltial calculus.

Unfortunately a more elegant definitioll has not been forthcoming.

It is easy to prove the following theorem from the above definition:

Theorem 3.3.1 (Laws of the sequential calculus) Each of the following graph transfor

mation laws hold for· the sequential calculus: Composition, Intersection, Union, Iden

tity, Homomorphism, Join Composition, Remove Edges, Replacing l Monotonic

ity.

The relationa.l calculus is a particnlar example of a sequential calculus, so it would be hoped

that the two ways of interpreting a graph-as a relatioll or a,.<; a sequential relation-arlO'

compatible; the following lemma shows that this is indeed the case.

Lemma 3.3.2 Given a graph G labelled with relations, let R be the cONT!i])(mding relational

inlfTp7"€lation of the graph, and let S be the corre!iponding sequential rf:lalion interpretation;

,Ihen:

xRy ~ (x,y) E S.

See [23J for i\ proof.

.12 CHAPTER 3. THE GRAPH CALCULUS

3.3.2 Local linearity

t>.1auy sefjuentiaJ calculi satisfy an additional axiom, that of local Ullear-ity. This is expressed

"It the level of observations as follows:

For all observations J.', J:', y, y',

.l;y =x';y' ==:- .:lw· XiW =x 1\ w;y' == y

V :Jw • x';w = J: /I w;y == y'

I'ltis TIlay also be expressed as a pair of commuting diagrams:

.(1)- yi~
0'

·~jA·

Lifting the axiom of Jocallinearity to the level of sets of observa.tions using staudard formulae

writtell all une lille has proved difficult. Oue formulation is

P;Q n n:s = (P n R;ll):Q n l/;(ll;Q n 5)

U (p;llnR);S n p;(Qnll;S).

lIowm.:er, this formulation does not seem to be strong enough for all Ollf requirements.

In t.he graph calculus, the axiom of local linearity can be express€d as follows: if a graph G

contains t.woedges with start points u and v, aud common end point w,

".
~
A' W

u· Q

(hen an edge ran be added labelled with the universal relation n either from u to v or from v

to u:

"["'Z.~!~ II A'w".4·
W 0'

Qu·

33 .I,;J SEQUENTIAL CALCULUS

(;-.iote that the above pictures may be subgraphs of the complete graph.) This is formalized

as foHows:

Local Linearity Law If Cu, P, u').lt', Q. w)EE then

(V,"'.E) '" (1-"",i,EU {(dl,v)))u (I-',,',i ...1U{(v,n,"J)).

The sOlllldness of this law is confirmed in [23].

Fxample: The 3-0 Law

The diamond operator is defined to be

0" ~ 1)0,,;11.

Th!;! above b pronounced "somewhere X" (and corn'sponds to interval temporal

logic): it. contains all observations that include all element of X as a subobservation.

Intuitively, this ca.n be thought of as "at some stage, X occurs".

The 3-0 law states:

P;Q;R n OX >; Po(Q;R nO,,) U (P;Q n OX);R U O(X n OQ).

That is, if an observation of X occurs sometime during an observation of P:Q;R, then

<'itlwr it occlirs during Q;R. or it occurs during P;Q, or Q occur.., during X. Much

effort has gone into proVillg this law using the standard axioms of the sequential

calculus, but without snccess.

lising the gril,ph calculus versiou of the axiom of local linearit.y, the proof is extremely

straightforward:

P,Q;R n 0.\

3: {Graph represeutation}

!>~"fZ..

~~

X

~ {Local linearity}

~U~
X X

:H CHAPTER 3. THE GRAPH CALCULUS

" {Local linearity applied to second graph}

~u~ ::~
<~~

u
~

X X X

r;;; {Ileruoving edges}

s~u&u~
X X

{Re]atious corresponding to graphs}

p;(Q;RnoXI U (p;QnOX);R U O(XnoQ).

3.4 Discussion

3.4.1 Other Representable Calculi

The operators mo!;t fundament.al to the idea of the graph calculus are the intersection and

composition operators. Any calculus with two such operators that can be intuitively thought

of as pa.rallel and sequential can be considered to see whether it is suita,ble for representation

by ;l. graph calculus.

Thus given a space 5 with operators n, ; and a preorder ~, a gmph calculus over 5 is a

calculus of directed graphs labelled with members of 5, such that there ex:ists some way

of interpreting a graph as a member of 5, and that the following transformation laws are

.,,;~tisfied:

Compos'ition, Intersection. Homomorphism, ,\fonotonicity, Replacing,

This provides a framework for others to represent their own calculi by graphs. A formal

definition of the meaning of a graph is necessary, together with the proofs of soundness of

t.he above transformation laws. If required, laws for other operators such 38 converse and

union should <lIsa be proved sound; other laws for further operators may then be derived

35 .1.4. DISCUSSION

particular to that calculus. Auy law in the underlying calculus will have a counterpart in the

graph calculus (because of the rnonotonicity law), but in some cases the graphical law will

ht' stronger (for example, the local linearity law of the sequential calculus).

3.4.2 Soundness and Completeness

The sounduess of the graph calculus is expressed as

G, ~ G,	 ~ [G,] ~ [C;,I,

and thi:; is ('<lSi]:-' derivahle from the individual soundness of all the transformation laws. As

for complE'tellpss, trivially from the 1'1onotonicity Law the graph calculus is complete with

respect to the lluderlying calculus:

R, <;; R,	 ~ ({u"l.u.c.{(u,R,,")}) <;; ({u"},U,".{(u,R,,c)})

However. there arises a more iuteresting question of completeness. Tar~kj's axioms of the

poiLltfree relational calculus [9.5] are iucomplete with respect to the pointwise ax:ioms of

th~' relational calculus. For example. Lyndon in [60J showed that the following three valid

sentences of the poiutwise relational calculus are not provat.le from Tarski's axioms:

1.	 An (8·Cn D)·(EnF·G)

<;; B·((8'·A n C·E)·G'n C-F n B'·(.4·G'n D·F))·G

2.	 .4·8 n C·D n E·F

<;; A·(A'·C n B·D'n (8·F'n.4'·E)·(F·D'nE'·C))·D

B O3.	 A ~ B· enD· E 1\ ·D n C· Eo ~ F· G

~ .4 <;; (8· F n D· G')' (F' ·C n G· E).

ThE' graph calculns i~ more complete than Ta,rski's axiomatization as the abol'€ three sentences

arE' easily proved usiug the graph calculus. The reader eager to attempt a proof in the graph

calculus may like to do the third (or more!) of the above sentences.

It is not known whether the graph calculus is complete with respect to set-theoretic binary

[{'lations.

:'6 CHAPTER 3. THE GRAPH CALCULUS

3.4.3 Usefulness of the graph calculus

Other examples of the nse of the graph calculus call be found elsewhere in this thesis. Note

!tow('ver tlliLt ~raphical proofs a.re usually flot the method of choice. III a la.rge majority of

ca..<;es, the slandard proof method is adequate, and even when the graph ca.lculus is helpful ill

finding a. ploof, such proofs can often be trallslated back into the standard method. Hence

Ihe exampl~s elsewhere in this thesis a.re few. althongh many more were originally proved

lI:iing the gla.ph c£llenlus a.s au aid.

The particular advanta.ges that prove to be most nsefuJ are the "goiug around the corner"

property (e.~·. see the :Jl'd s\.pp in the Modula.r Law example] ,llld the inc:rpa.,sed expressive

power of th~ graph calculus. For example, Tarski [95] gives an example of a predicate not

expressible as a sputence of the relational calculus:

3w, I ,1/, :: • x R y 1\ I R z 1\ x R w 1\ y R z 1\ y R 11' 1\ U' R::.

1'his predica[e may be expressed in the graph calculus as follows:

R

'/' 0
R

R'.... II /R

The extra e.\pressive power of the graph calculus makes some proofs possible that cannot

be done othe:wise. for example the proofs of the modular law a,nd the 3-0 law above. Even

in short prolis, the steps taken often result in intermediate graphs that are !lot directly

trauslatable back to the underlying calcnlus. Even when the extra expressive power of the

graph calculll3 is not used, graphical proofs can be easier because they give a very visual

rcpresentatior of formulae, and this can make the next step more obvious.

Another way lif describing the graph calcnlus is that it has all the power of pointwise reasoning

(indeed the point are themselves visible as vertices), bnt also the pointfree advantage of not

having to label them all!

Some formulae themselves may be simpler as graphs. For example. in the relation a] cal

culus, formu1<e involving dorn., ron, Id or n are often greatly simplified in the graphical

representation

37 3.4. DISCUSSION

Products of relations are also easily represented, by graphically interpreting their definition

in terms of projections:

~ ~ R outlRxS

~- outre

This yields the pictorially intuitive idea of products being represented as parallel arrows; the

I!:raphical representation makes it easier to reason about each element of the pair separately.

3.4.4 Related work

Brown am! Hutton [17] have developed a calculus of pictures, oriented towards circuit de-

sign. Their pictures are built up from basic cells and wires using sequential composition,

intersection and reciprocation. They give a s.emantics to pictures in terms of relations, in a

manuer very similar to our approach. In [17, 18] it is shown that their ca.lculus is complete

in that two pictures are equivalent with respect to their transformation rules if and only if

they represent the same relation for all interpretations of the basic cells; this proof proceeds

by viewing pictures as arrows in a unitary pretabular allegory [331.

Their approach is restricted to calculi with intersection, composition and converse, whereas

the graph calculus also makes provision for the union operator, and does not necessarily

include the converse operator. Furthermore, their approach is more oriented towards trea.ting

basic c£·lJs as simply 5ymbols. and proving circuits equivalem in an auwmated manner [46];

whereas our calculi-particularly the relational calculus-are more oriented towards using

the properties of the basic relations themselves in order to manually prove results concerning

those relations. The Brown-Hutton pictures seem to be the easier to use for circuit design,

whereas our graphs are suitable for more abstract calculi.

3.4.5 Gener~iizing the graph calculus

So far only graphs with two special vertices, the source and target, have been considered.

This can easily be generalised to allow graphs with k special nodes, representing a k-ary

relation. Tarski [95] gave another example of a predicate not expressible in the relationa.l

calculus:

"ix,y,z' 3u· xRul\yRul\zRu.

:18 CHAPTER 3. THE GRAPH CALCULUS

This can be represented nsing a graph representing a ternary relation, with the three outer~

most nodes representing the three components of the relatiow

y '" IT.

The graph calculns conld also be extended to use hyperedgf's within graphs (i,e. edges with

Illore than two ends) to represent k-ary relations: then composition of relations wonld be

"imply J'C!presented by hyperedges sharing nodes. A suitable use for these type of graphs has

not been found, but if one appears, it wonJd be hoped that a suitable pictorial representation

could be also found that would make reasoning ..bont such relations easier.

Chapter 4

Greedy and Dynamic

Programming Strategies

Optimization problems expressed in their most general form can be specified relationally as

follows:

mmH· /I. Gen.

The relation Gen is called the genemtor" as it generates a single feasible solution from the

input. Thus A Gt:n generates the set of all possible feasible solntions, and min R then selects

a best one according to the relation R.

In this chapter, we take a look at the historical background behind greedy and dynamic

pro.e;ramming strategies. For each strategy, We also review some theorems of Bird and de

Aloor that consider problems for which the generator can be expressed as either a catam or

]jhisllI or an anamorphism. Examples of problems aTe given to show the catamorphisms and

anamorphisms in use, and also the ont{ines of their solutions are given.

The last section demonstrates inadf:'qnacif'.-S of the t.heorems presented, by considering prob

lems that do not fit into the format.

4.1 Greedy algorithms

'fhe greedy strategy typically applies to optimization problems where lher~ is a choice to be

made at each stagf'. A locally optimal (with respect to some ordering) choic~ is made at each

39

10 CHAPTER 4. GREED\' AND DYNAMIC PROGRAMMING STRATEGIES

stage, and lhis is the origin of the term "greed}'~. If this greedy strategy works, then this

will produce a resultiug optimal solution for the problem. Greedy algorithms Ilsually result

in efficient ~olution$. so it is desirable to filld greedy algorithms to solve problems.

4.1.1 History of Greedy Structures

The paradigm of gre-ediness is very simple, but not so simple are greedy structures (problem

o-.tructu res for which the greedy algorith rn produces an optimal solution), and milch attention

ha.>; been gil"ell in the literature to greedy structures.

One mathematical slmel,nre which can model several greedy algorithms is that of a matroid.

..-\. matroid IS a hereditary set system with an exchauge property (the matroid propmt,Y).

These were first thought of iu 1935 by \Vhituey [99]. Edmouds in (29) first linked matroids

to greedy algorithms.

HowevN matwids do not include all greedy structures, a.nd uot every matroid is a greedy

structure, and for the .specifIc purpose of getting closer to characterizing greedy strnctures,

fJradoids were introduced by I(orte and Lova..,z [55, 57J. These are a generalization of ma

twids, beiug hereditary sequence systems (rather than set systems), with an exchange prop

prty.

Crcedoids cha.racterize some problem :;trudures very well. In particular, they suit problem.,

that fit into a hereditary sequeuce system and that have a lin12ar ubjective fuuction to optimi7e

[.S6, 41J.

1I0wever, greE'doids are not 2dequate. They are both too general (greedy algorithms do not

always retUfli optimal .solutions) and too constraining (there eJUst set systems which are

greedy structllre~ but not greedoids). Helman iu [40J acknowledges this and uses the r:oncept

of dominance relations to cope with more general grcedy algorithms.

\Iore recently Hi'rd and de Moor [9,12] have modelled greedy algorithms using catamorphisms

and anamorphisms. so the problem structure is that of au initial datatype. It is these theorems

t.hat aTe discus.~d in the next section.

4.1.2 Catamorphisrns

Firstly, we cOIlsider problems specified usiug a catamorphism a.f. a generator:

min R . i\~PD.

41 4.1. GREEDY ALGORITHMS

A greedy algorithm may be used to solve problems in this form, as Bird and de Moor [9]

showed with the following theorem:

Theorem 4.1.1

[f the following condition holds on P : A 0(-- FA and R : A 0(-- A.

FR.PO ~ po .R,

thtn

[min R . APD ~ min R . A[pn.

Here the relation min R· A? is the greedy step performed at each sta.ge of the catamorphism.

Typically it is implemented by some function J ~ min RAP. and from the mOllotonicity

of catamorphisms, the program is UD. The condition on P and R is a type of monotonicity

('oudition, and can be lhought of as follows:

If onE pm'fial solution is better than another (with respect to R), and P is applied to the

W07'se one, then thert is a 11.Jay oj applying P to the better one to result in a still better partial

solution with respect to R,

We illustrate the above theorem with the following example:

Example: Le:L'icographically Largest Subsequence

The lexicographic ordering is that used in dictionaries:

[] ~L ys

(;t. : xs) -:;'L (y: ys), if (x < y) V (x = Y /\ xs "S.L ys).

As this ordering is defined primarily using the first element of a list. it seems reason

able to use the datatype of cons lists. A catamorphism to construct a. subsequence of

the original list is [nil, cons U otitrn, and thus the problem of the lexicogra.phically

largest subsequence can be specified as

min (-:;'Ll o ·A[nil,consUotih·n.

A simple check shows that if one sequence is lexicographically Ia.rger tha.n a.nother,

adding the same element onto the front does not cha.nge this relationship. Thus the

monotonicity condition is satisfied, and the problem is solved by the greedy algorithm

[min (:$r) 0 • A(nil, cons U oulr)l §

-u CHAPTER 4. GREEDY AND DYNAMIC PROGRAMMING STRATEGIES

ThE' optimality condition above is Oll~~ that relies on local properties of partial solutions, and

~ such, it is a. strong condition. Many greedy algorithms do not satisfy this condition, as

ta.king a lion-optimal step at one stage can result in a better partial :,:,olution at the next

s1 age.

4.1.3 Anamorphisms

For problE'iIl;j specified using the rOD\'('rses of catamol'phisms

!II in f/ . A[PDO,

tlwrE' is a I'ery di1fNent theorem for greedy Lllgorithms in [12]:

Theorem 4.1.2

If H is a preorder, () . FR ~ R· 0 and for ,wme oS"

5' FiPD· aO ~ F[PD' aO ·R,

thEIl. the (ulliqlle) solution G ofth~ eqtialion

G = Q • FG . min 5' . Apo

.'iati8/je~

G ~ minR· A[P]o.

In the abow·, G i~ l.l~ed to compute the solution to the problem. The function AP ° rl:"

turns all pOS&ible partial solutions generated by ta.king one stC'p po. then min S returns the

best of the&> with respect to S. then the greedy algorithm is recursively performed on the

subproblem(s) by FG, and ((combines the sub-solution(s) together to solve the complete

probl~lll.

The condition on a is a form of monotonicity condition, that exprC'ssC's mathematically that

o rC'spects the ordering R. That is, if one sllb-solution is better thau another with respect to

R. then recombining them in the same way preserves that relationship,

TilV' other requirement is the greedy condition, and enSLlres that if one partial solution is

better than duother with respect to S, and you complete the worse partial sohniou using

F[PD 0, then there is a way of completing the other using F[P] . u to result in a solution

whkh is better with respect to R. This means that each stage, we only need to retain a

partial solution that is optimal with respect to S.

43 4.2. DYNAM1C PROGRAMM1NG

In cOlltrast to the greedy condition for the previous theorem which only considered local

optimality of partial solutions, this is a global greedy condition that takes completed solutions

into (I,CCOllot. This is a weaker condition, and many more algorithms match this paradigm.

EJ:amplf: The Shopping Bag Problem

This wa.s suggested by Gavin Lowe, after visiting a Gateway supermarket, and this

is a speci3l case of the Millimllm Tardiness problem from Operations Research.

After visiting the ~upermarket, there are a number of items which lleed packing into

a shopping bag, and fD~' silnplicity, we will pack the items in a vertical stad. Each

item has a particular weight and a certain strength, and it 1:3 desired to pack the

itellls ill order III minimize the risk that the items get squashed. The risk of an

individual item getting squashed IS its ~trength min liS the weight of the items packed

on lop of it, and it is desired to minimize the maximum risk of the whole shopping

bag.

The catalllorphism Qnilbag, consbagn over lists COil verts a list il\tO a bag, and so the

~el rpturlled by AQnilbag, consbag] 0 gives all possible arrangements of shopping bags.

\\'e take th~ compal'ison relation R to be the preorder that prefers shopping bags

wilh 10wN maximulll risks (over all the items), and thus min R . AQnilbag, consb{JgDO

spednes the problem above.

The lIJonotonicity condition all a i:; satisfied a5 adding an item to the bottom of the

shopping bag does not affect the maximum risk of the items above it.

A simple calculation slartiug from the greedy condition (similar to tha.t in (12])

shows thaI the comparison relation S to decide which item to put a,t the bottom of

the shopping bag prefers the item with the greatest sum of weight a,lld mength.

'fht'Minimum Tardiness problem itself is addressed in (12J. and other examples of partition

problelUs that fit ilLto the format of this theorem can be found ill [22], including the Motorway

Driving problem from [211.

4.2 Dynamic Programming

Dyuamic programming is a general technique for solving many different types of optimization

problem and can be chara.eterized in several different wa.ys. The common theme is that

in some lilanner, unuecessary computation is avoided, either by not computing the same

·1. CHAPTER 4. GREEDY AND DYNAMIC PROGRAMMING STRATEGIES

lhing twice, or by eliminating computa.tional steps hich cannot possibly contribute to an

optimal solution. In this thesis, we will only be considering discrete (rather than continuous)

optimizatinn problems. Typically, dynamic programming applies to problems where there is

(l sl'qn€nce of decisions to be made. and solutions to problems are combinations of solutions

10 :,-ub-problems.

4.2.1 History of Dynamic Programming

The term dyna.mic programming was introduced in the 1950s by Richard Bellman [3J. The

idpa.s lle presented in his book had been in existence for some time, but he was the first to

galh('l' them together and present a mathematical basis for theln. He was a,lso the first to

introduce the idea of the P7'inciph: of Optimality:

"All optima.! policy has the property that whatever the initial state and ini

tial d\'Cision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first de-cision."

This idea he presented as the crucial condition necessary for dynamic programming to work.

Bellman and his colleagues [3, 4] applied dynamic programming to many different types

of problems. including Markov decision problems, stochastic processes, even the theory of

nue/ear reactors l .

Since then, the main groups of people to work on the theory of dynamic programming have

been computer scientists and operations researchers. Computer scientists have tended to

think of dynamic programming as a "bottom-up" tabula,tion scheme, where a, table is used

to store parllal results (to avoid needing to compute the samf' result twice). In contrast.

opf'ration.!i re5f'archers (for example, see Ecker and Knpferschmid [28J) incline to the view

that dynamic programming is a '·top-down.... recursion scheme, and avoid calculating the

;,olution to t.he same sub-problem twice.

The following rQSearchers are a, representative sample of those who have investigated the

theory of dynamic programming:

•	 ShrE'ider (92] in 1961 thought of dynamic programming problems as discrete decision

processes, and modelled these using finite-state automata. Discrete decision processes

consist of a set of decisions, and set of strings of decisions, called policies. and some

cost function on policies.

'BOOM'

4.5 4.2. DYNAMIC PROGRAMMING

•	 Held alld Karp [37] ill 1962 demonstrated how dynamic programming can be used

to solve sequence problems (for example scheduling and assembly-line problems) and

permutatioll problems (for example the travelling salesman and knight's tour proG

lems). Later in [51J, they considered the theory of dynamic programming, modelling

the problem strncture as a sequential decision process. Sequential decision processE'.s

arp a generalization of discrete decision processes in that they also take into account the

construction of the policies. Karp and Held used the idea of a finite-sta.te automaton

togethf:'r with a cost structlll'e to model sequential decision processes.

•	 BonzOII [15J in 1970 developed a. mathematical formulation of the tabulation involved

in dynamic programming for discrete decision processes.

•	 Elmaghraby [31] iu 1970 presented a different view of the theory of dynamic program

ming, cli~Jjkjng somp aspects of decisions and discrete decision processes, and instead

prf'ferring to emphasize the concepts of state and state transformation within the con

text of discrete decision processes.

•	 Ibaraki [47] in 1973 considered more specialized models of dynamic programming, con~

centrating on particular varieties of decision processes.

•	 III 1982, Denardo published a book [25] which covers a wide range of dynamic program

ming models and applications.

•	 Morin [78] in 1982 considered the relationship of the Principle of Optimality to the

related Monotonicity Assumption, which asserts that if a partial solution is better than

another at one stage of the computation, then doing the next step results in the same

relationship at the next stage.

•	 Sniedovich [9'1] in 1986 discussed the principle of optimality showing that it was not

correct (it is not necessary fOr optimal solutions to consist of optimal solutions to sub

problems. only suffident). He also presented an improved version that is weaker than

the original.

•	 Helman has done much work on dynamic programming. In [38], Helman discusses the

Principle of Optimality and demonstrates its use by sample case studies. In further

work, IlP generalized decision processes. The policies of such processes are always

strings, which is restrictive, and so Helman and Rosenthal in [42) tooK policies to be

biliary trees, which geueralize lists. He also separated the problem structure from the

actual complltation performed,

In [39], Helman proposed a new model for dynamic programming and branch-and

bound algorithms. His new model involved dominance relatiolls, which are comparison

-if) CHAPTER 4. GREEDY AND DYN,IMIC PROGRAMMING STRATEGIES

n~lations on partial solutions.

•	 Op.ge de :Vloor [7.f] in]992 generalized further from nsing binary trees to using any

initial datatype. This work was in the setting of the category of relations, and as such,

incorporated non-determinism.

Hp.sparth has often concentrated on the strncture of the problem, alld more specifically. on

thf> datatype b(!ing Ui:'ied. In particnlar. the work of de Moor puts more emphasis on this.

u..ing catarnorphisills on initial datatypes to exprQss the Sl,[ucture of dynamic programmillg

problems. it if:, his wOl'k together witll tllat of ilird that we now look at.

4.2.2 Catamorphisms

Vole first considPT problems specified using a catamorphism

min.R . AQP].

The dynamc programming theorem for these problems is the following:

Theorem 4.2.1 Jf Rand S (Ill' pl'wrders such that S ~ Rand

FS . po ~ po .5,

thfOn

minR· QthinS· A(P·FE)] ~ minR· AQPD

Here S i~ a relation similar to Helman's concept of a dominance relation, and the monotonicity

rOllditiol1 on" expresses that: if one partial solntion is better than another with rf'...spect to S.

thC'1l ther<' is d.lwa,vs a way of applying P to the better OUE' that is better than any application

of P to the worse one. This is Morin's Monotonicity Assumption from [78].

Thus solutions that are worse with respect to S can be removed, and the resulting algorithm

is Him R . Qthm S . A(P . FE)]. The A(p. FE) takes a set of partial solu tions and applies the

llP'(t step P 1.0 them in all possible ways. The relation thm S then removes some solutions

t!ltl,t are worse with respect to S. Finally, when the catamorphism is finished, the best partial

solution with respect to R is takpn.

Thinning with rf>spf>r\. to a rela.tion is defIned to be

thinS E\E n (;. ·S)/;..

u. DI'NAMIC PROGRAMMING n

That is, thin S takes a set alld returns a subset of the original, while making sure that every

member of the original is reprpsented by something at least as good with respect to S.

If S' were conllet"t.f>d, tliell we could implement thin S by taking the singleton set containing

,l minimum under S, thus obtaining a greedy algorithm. So for dynamic programming, S is

a llon-colluected pre-order, not always able to comparE' any two partial solutions.

An examplt" of this style of dynamic programming is the following:

E.wmple.' 0-1 Knapsat:k Problem

A t.hief contemplates an opeu sarI;' to be ransacked, and sadly notes that the knapsack

carriE'd can only carry C' in weight. Ea.ch item in the safe has a weight and value.

\Vhirh itt.'m~ should the burglar take in order to maximise the total value of the haul?

For thi:-" problem, if the input is a list of items, a packing of the knapsack can be

r<.>vresented a.<; a subseqneuce of that list, or if are we just interested in tIle weight

and valuQ of the packing, as a weight/value pair. Thus required is a catamorphism

~PD that produces a packing. P is the relation [H'il, add· notheuvy? U au/.r] that can

either add the next item if the packing so far is not too heavy, or it can not add the

item. The preorder R simply prefers packings of greater total value.

III dcciding which packing::> can be safely thrown away, S prefNs packings that are

lighter and marc valnable. It is easily shown that the monotonicity condition is

satisfied, beca.usf' if one packing i~ lighter and more valuable than another III the set,

then doing P to t.he heavier cheaper packing is still heavier and chea.per than the

partial solution obt.a.im·d by doing P in the same way to the better packing.

Th<.> algorithm can bE' implE'mented efficiently by keeping the set of partial packings

as an ordered list. and a simple merge operation can include new possible packings

and remove ones wor~e a,.('cordillg to 5 at the same time.

Other eXilmples of problems solvable in this way are the Bitonic Tour aud Company Party

problems from [21], th(' Paths ill a Layered Network problem from [82], and many others.

4.2.3 Anamorphisms

Th<.> corresponding theorem for problems specified as follows

min R . A~pn°

is phrased in the traditional style of the rer:ursion equation. This is a refined version of the

main theorem ill [7-1, 12J.

L~ CH.'PTER'I. GREEDY A'iD DYN,L\JIC PROGR.,MMING STRATEGIES

Theorem 4.2.2 Ij R is tmn8itivt, (\ monotonic wIth respect to R. and for somt' prem'der S

s . FQP~ . 0° <;; FQP~ . 0° . R.

1111,'11 thE has I .\olufion [) of thr ff/uution

D = min R . P(fl" . FD) . thin 5· AP"

.'lItisjie8

D ~ miflR· A~P]o.

n is the rffursiw algorithm to solve the problem. The set of all pos~lble initial steps is

produced b)' Ape, the(l some choire-<; are removed with thillS. then D is applied recursively

to a,lI the r~lIlaining choices, and then the sub-solutions are recombilled using CI. into solntions

for the whole problem, and then min R takes t11(, best with respect to R.

The inequation (} FR ~ R· 0' states that if a sub-solut.ion is better than another with

n'sped to H, it will still be bett,pr when you recombine it in the same Way. This means

that optimal solutions can be composed from optimal solutions to snb-problems, which is

Silledovich'o weaker phra.<;ing of the Principle of Optimality in [94).

The condition involving S is the greedy condition of the previons section, and says that if a

sll!ution is brtter now with respect to 5, then it. can be belLer eveutually, and thus thinning

does IIOt. discard the wrong iiolutions. The difference here is that S does not have t.o be

connected, \\herea.,> it did for the greedy algorithm. In fact. S could be just. id, and then

thin S would remove no partial solut.ions at aiL

In practice. this algorithm follows the dynamic programming paradigm in two ways. The

thilllling pos.~ibly removes partial solutions that will not lead to an optimal solution, and also

if the cOlllputer program to implement it is carefully written. duplicate recllri;ive calls to the

same sllb-sohtioll can be avoided (either by the use of tabulation or memoization).

\Ve lIOW consider an example to illustrate this theorem:

Emmple: Tht Paragraph FOrT/JOltmg Pl'Oblem

Ever)' word processor has an algorithm to format paragraphs neatly. The question of

what makes a paragraph neat is a complex one, for example see nnuth and Plas::; [.54].

We will COli sider a simple version of this problem. Given a Jist of words, a paragraph

will be a list of liues, \vhere each line is a list of words. Paragraphs need to fit into

U. DYNAMIC PROGHA,\IMISG ·19

the page width, and tlmti there is a condition that line lengths are no more lha~ some

fixed width H'. The white space on each line I is defined to be H' - /indmgth I. The

untidilless of a paragraph is defined to be the sum of the sq uares of the white space

of pach lim- except the last.

To put this problem in the format min R A[P] ~, Hote that the catamorphism

(Inll]Jtyli.~t,* ((--.tuuwide)"? x hi)] over C!ln~lists producE'S a list of words from a

paragraph which fits into tIl(' given width, so \ve call ,,;peci!'}' the problem as

mm (untidl:llf'S,';"':S 'IIntidiness) A [emptylist.* l(--.foou,idf)? x id)] ° .

In using the theorem aoove, we take S to be id, and thell trivially the conditions 011

S are tnH', so we m'ed to check that the monotonicity C()Jlclition all 0: holds. This

follows frum th(~ fact that if on(' paragraph is more untidy than another. then adding

the salne hrst line to both paragraphs does not chang(' this relationship.

TIll' theorem a..bove as applied to this problem then works by choosing the firslline of

thlo' paragr<lph in all possible wars (AP"), thell recursively applies the algorithm to

the remainder of the list of words for each first line, then having found a best para.

graph for each. adds the first line back on again, and then takl:'.5 the best paragraph.

The avoidance of computation in this algorithm relies on the avoidance {If calculat

illg the solution to tIle' same sub-problem twice. for example, jf the paragraph to be

formatted i::, "Memory, all alone in the moonlight, 1 can smile at the old

days; 1 lJas beautiful then." then choosing the first line

Memory, all alone in the moonlight,

requires the saow computation dthe subproblem "1 can smile at the old days;

lJas beautiful then. -, as does the following choice of first and second lines

Memory,

all alone in the moonlight,

Avoiding calculation of the solution to the same sub-problem twice can be done by

either tabulation or memoization.

An example for data-compression using a non-trivial S can be found in [I1J. Other examples

uf the theorem in use can be found in [10] and [22].

50 rHAPTER < GREEDY AND DYNAMIC PROGRAMMING STRATEGIES

4.3 Inadequacies

The theorems presented in the previous two sectiolls are suitable for solving <I, wide range of

problems concerning initial datatypes. The examples given have shown their use on problems

cotlcprning a variety of datatypes. including partitions. subsl:'quences. permutations.

Howevp[. not all optimization problems can he ea..siJy expressed usi ng a generator that is either

a catamorphism or all <tlJamorphism. SOffiP problems require SOlOe artificial manipulation to

trdn~rorrn t)1(> [';pnerator into the I'jght format. For c.xample, generating par titions with exadly

tl camponellts Heeds the addition of an extra parameter to the catamorphism (for details see

['22]). This ill itself is 1I0t a great problem, although it does recluce the elegall<.·e and simplicity

of using the theOl'pms, a,no adds an air of artificiality.

\10re importa.ntly, there al'P some algorithms tha\. cannot be expressed using the above theo

rems at all. ~ome algorithms cannot be expres~ed in this way because they a.re not concerned

with initial datatypeb, but there are also algorithms that do concern initial datatypes and

:-'et cannot bp expres..'ied using thp above theorems.

Example: B~ff'!nan Coding [44, 88J.

The Huffman coding of a bag of llum bers requires a binary tree la.belled with the tips

of thest' numbers in such a way as to minimize the weighted path length of the tree.

This has applications for merging sorted files using as few operations as possible.

For example. the weighteu path length of the following tree is 2 x 6+ 3 x 1 +3 x 2+

3 x 2 + :1 x 3 + 2 x 5 ::: .tG, and this is one of the trees that prod uces an optimal

tree for the bag of numbers 11,2, '2, 3, 5, 6S.

\

2 2 3

As Huffman showed, an optimal tree may be found using a. greedy solution. In

brief, the greedy sollttion involves colJveJting the bag into a bag of binary trees, each

51 4..1. INADEQUACIES

number r. being converted into Tip n. and then at each step the two trees t], I, with.

the least total w€ight.s are joined together to form a fie,v tree Node t1 12; this step is

repeated nntil a single tree remains.

III a.\.tempting to fit this gre'(>dy algorithm into the format from one of the previous greedy

thcur+?Hls, the generator relation producing a tree from a bag [J\ust be expressed either a.." a

ca,tanlOrphisIJl or an anamorphism.

To expms,s i1 0l.5 a catamorphism ~PD requires defining P to be a relation that takes the next

it,ern from the bi1g and inserts it somehow into thf' tree formed so far. Not only wonld that

be awkward to define but it does not fit the execution of Hnffman's algorithm,-hien builds

lip a t1"('1:' from disjoint pieces l"<lther IIJalJ tip by tip.

II is easier to express tbe gcncn;tor as ,in anamorphism apn 0: P is the relation tha.t takes two

bags of numbers, one from each half of the tree, and nnites thenl to form the bag of numbers

for t.he whole tree. l1owever, when the greedy theorem for anamorphisms is considered, it

soon becomes apparent that this is not what is desired. Applying the Apo at the beginning

of the ~reed.v ::.t~!P gives us the choice of all possible initial spliUings of t.]Je bag ornumbers for

the left anrl right subtrees. Even if thcrf:' was a fea:sible greedy way of splitting lip tne initial

bag of Hurubers (and none is known), this is still not Hnffman's algorithm for this problem.

H.ephrasing this anotlH'r way. (he catamorphism and anamorphism methods are "top-down"

method:;" where!1S Hnffman's algorithm is a "bottom-lip" method.

Other greedy a.lgorithnls thllt are similarly inexpressible are otner bottom-up algorithms. For

example, the algorithm by Prim and Jarnfk [48, 81]. which finds a minimum cost spanning

tref' of a. graph. does not fit into eit.her style of greedy algorithm given in this chapter.

Chapter 5

Introducing the Limit Operator

The previolls chapter looked at optimization problems and their solutions using greroy and

dynamic programming strategies. In all the theorems. the generator of feasible solutions was

('x pressed mmg an anamorphism or calamorphism. Indeed it was also observed that a great

variety of feasible solutions conld be generated in this way.

However, not all generators can be expressed in this way, and even some of those that can re

quire a significant amount of effort to do so. For example. circular lists are not definable using

Illitial da.tatypes; neither are sets, and certainly a generator which has nOn-initial datatypes

for its domain and range will not be representable as a. catamorphism or ana-morphism.

[1. is suggeste:::l ill this thesis tha,t the USE' of a simple loop is an easier way to generate feasible

;,;olulions than catarnorphisms or anamorphisms. This has the advantage that loops are a

generalization of catamorphislJls and anamorphisms (as is proved in this chapter), and it is

often the Ca.'3e that a loop is a more natura.l or intuitive way to express the generator.

The relational model of a loop that we are going to use is called the limit operator, and is

defined as follows:

lim T = notdom T T~.

The relation T can be thought of as a relation that ('on~lructs. At each stage, a T is

performed. constructing one more piece of the partial solution, until we can perform T no

more, and we have finished the construction. to reach a complete feasible solution.

The relation lim T is the least solution of the recursion equation

x = 110tdom TuX· T,

52

53 5.1. CATAMORPHISMS

and thus the Kllaster-Tarski fixpoint theorem gives us that

Hotdom P u Q. p ~ Q q lim P C; Q.

The following properties of lim which we shall find useful in proofs follow from the above:

lim T . natdom T notdom T

lim T . dam T lim T T.

Thus the more general expression of optimization problems that we will consIder is the

"pecific3lion

min R . A lim T.

Thl:' following section justifies the above claim that limits are a generalization of catamor

phif>lJls and anamorphisms.

5.1 Catamorphisms

Firstly, we look at how to express catamorphisms as limits. Let ~P]F : B +- A. where A is

tllP conief set of the initial F-algebra 0', and the problem under consideration is

min R . A1P].

An immediate problem that presents itself when trying to express ~P] as lim T is that B is

[lot necessarily the same set a.<, A whereas for limits, T must necessarily be a. relation of type

C +- C for some type C. Thus a little type manipulation will be needed, and \I,e will aim to

lind relations T. start and finish. such that

~PD = finish· lim T . start,

where finish: B i- C. T: C +- C and start: C +- A.

For these relations to be useful in the context of optimization problems. we will need some

conditions on them so that the fa1lawing applies:

Theorem 5.1.1 If $tart is a june/ion, finish is simple and also the converse of a function,

and

dom finish notdom T

Q finish· lim T . start

R' finish 0 . R . finish,

·')4 CHAPTER 5. INTRODUCING THE LIMIT OPERATOR

then

min R . AQ finish mirl R' . A/im T . start.

Proof

min R AQ

{assumption}

min R . A(finiBh . lim T . start)

{a:,sumptiou, distribution of A over fuuctions}

//lin R . A(finiBh . lim T) . .~tart

{distribution of A}

min R . Efinish . Alim T . start

{claim}

min R . Efinish . P(dom finish) . Alim T . start

{claim}

finish· min R' . P(dom finish) . A/im T . start

{first claim}

finish· min R' . Alim T . sl.art.

The two claims are that

Alim T P(domfinish) . A/im T (1)

min R· Efinish . P(domfinish) finish· minR' . P(domfinish) (2)

The first claim is proved as follows:

Altm T

{propl?rt.v of limits, distribution of A}

E(llOtdom T) . A/im T

{property of coreflexives}

P(lliJtdom T) E(notdom T) . Alim T

.,.,5.1. CATAMORPHIS.\IS

{property of limits; distribution of A}

P(notdom T) . :\lim T

{assumption}

P(dom finish) . /\lim T.

The second equality follos from two inclusions, which we prove thus:

ji'llil>h - min R' P(domjinish) ~ min R . Efinish . P(domfinish)

~ {monotonicity}

finish· min R' ~ min R . Efinish

{universal property for minimum}

fiHish . min R' <:;; finish. E

1\ finish . min R' 31· finish 0 <:;; R

{definition of minimum}

finish . E <:;; finish· E

1\ finish· R' /'3 . 3 . finish 0 <:;; R

~ {quotient cancellation}

fil1i.~h . R' . fini.~h 0 r;. R

'"

{assumption}

finish . finish 0 • R . finish. finish 0 <; R

{assumption; simplicity}

trut,

aud the reverse iuclusiou:

min R . Efinish . P(domfinish) <;: finish· min R' . P(domfinish)

-$: {property of coreflexives, mOllotonicity}

min R . Efinish . P(domfinish) <:;; finish· min R'

~ {totality of jinishO}

"6 CHAPTER 5. INTRODUCING THE LiMIT OPERATOR

finis/lO . min R . Ejinish . P(domfinish) ~ m'in R'

E {claim}

linj,~h 0 • min R . P finish <;;; min R'

{definition of millimum. universal property for inter~ection}

finish I) min R . Pfini~h ~ E•

1\ finisho ·minR·Pfi7lish <; W/3

E {definition of minimum. quotient}

finish I) E . P finish s;:: E
•

1\ finish o . R/3 . Pfinish . '3 <;;; R'

$= {property of membership}

finish 0 • finish· E <;;; E

/\ finish 0 • R/?1 . ?:1 . finish <; R'

$: {assumption, simplicity}

JlIlisho . HI=> . 3 . finish <; R'

$: {a.ssumption}

finish" . R/3 . 3 . finish <; finish o . R . finish

E {quotient cancellation}

true.

The cla.im madeas that Efinish . P(domfinish) <; Pjinish:

E{rnish . P(domjinish) <; Pfmish

(definition of powerset functor)

Efinish . P(domfinish) <; E\(finish· E) n (3· finish)/3

E {universal property for intersection, quotient}

E Efinish· P(domfinish) ~ finish· E

1\ Efinish P(domfinish) :;, c;;- :;, • finish

~ {properties of membership}

57 5.1. CATAMORPHISMS

fin-ish· E . P(dom finish) t;;; finish· E

II Efinish·::'I· dom finish ~ ::'I • finiBh

~ {property of co reflexives}

Efini.~h . 3 . dom finish <;: 3 . finish

{property of functions, property of membership}

3 dotH fini.~h <;: ::'I' finish 0 • finish

;= {definition of domain. monotonicity]

trut.

o

Having now proved what properties on start, finish and 7' will be useful, the next question

is to ask what is t.he type C? Consider the sta.te in the middle of the computation of ~PDF'

Some elements of type B will represent parts of the computation already completed, and there

will be some of the original structure of type A left. Therefore we require an F-structure that

also incorporates elements of type B. The easiest way to add in B is to do litera.lly just that.

Define

F'X=FX+B

F' h :::: Fh + idB,

aud let C be the carrier set of the initial F'-algebra. a'. The initial algebra of this type will

be of the form of a. join, so let a' :::: [Pen, FinJ, where the constructor labelling is meant to

suggest Fin for a finished portion of the computa.tion, and Pen for a pending portion.

t.'xam}Jle: Consider the type defined by

numtree ..= Tip num I Node numtrre numtree

which has the functor

FX = N + (X x Xl

F h = id + (h x hi.

The carrier set nrlmtree is the set of finite binary trees with na.tural numbers at the

tips, and the initial algebra is a :::: [Tip, Node]. Let ~PD ; B t- numtree be the

.s~ CHAPTER 5. INTRODUCING THE LIMIT OPERATOR

catamuphism that returns the frontier of a tree, with B the set of all finite lists of

natura, numbers, and P = [wrop,*J.

vVe thprJ extend the type numtree to inc/ude B as detailed above, and an example of

a tree r-f this datatype is

{A
[2] 3

Having extended the datatype, $iarl is the embedding function that turns a.n F-strncture into

an F' -::ot ructLre, finish is the function that removes the Fin label frOnt a finished computation.

W{! thus deiinc

start aPmDF
finish FinO,

so that $tartexccutes a catarnorphi..,m over the structure attaching "Pending" labels every

where, and finish merely removes the "Finished" label from a finished computation. Note

that. start is:ndeed a function, and finish is both simple and the converse of a function.

Having defi nld start and finish, flOW all we need is a relation T to do a step of the computa

tion, Irnagilling informally what might happen in the computation lim T with the datatype

;lnd catamorphism ~wrap, *] above, such a computation might go as follows:

j\Tj\T/\

1 ;\- 1 A- [1) /\

2 3 [2] 3 [2] 3

[1,2,3][1(\ ~ 1\T

1\
T

J [1] [2,3]

[2J [3]

.59 5,1. CAT...1MORPHISMS

Taking inspiration from this example, the informal expression of T in English might go

something like "do a P~slep somewheN! dawn the tN!e". This is the motivation for the following

definition for the relation P' that executes a P-step:

P' = [Fin· p. FFino, 0].

The 0 represents that you cannot do a P-step on a finished portion of the computation, the

FFm ° checks that all the needed results 50 far have been finished, and removes the Fin labels

Oil them, then P is applied. and Fin labels the result linished.

Having dC'fined P' to do a P-5tep, we need a relation to do P' "somewhere down the tree"'.

We COllsider the relation ~P' U a'DF'. At each step either P' may be done (if possible),

or 1l0thinJ?; is done (a'). Note that id = ~a'DF' ~ ~P' U Il:"DF' , so no P-sl.eps ueed be

donf' at all. Convf~rsely, P' could be applied at every stage in the structure, to do the whole

computation in one attempt!

This i:; a very general relation, and our preferred reJatioll for T might be one allowing precisely

one P-step to occur. However, this is awkward to define, and we are Jlot attelllpting to find

lhe most a.e:-.thetic limit relation possible, but trying to prove tllat aile exists.

One last concern is tha.t as noted earlier, id ~ ~P' U fr'h' , so thLs is a total relation. But

for a limit, we require the loop to terminate when the computation has finished, so we define

T = ~P'Ufr']F" nol.domFino. Notethatas~P'UIl:"DF'istotal,domT =:: notdomFino

= 'Twtdomfini$h. its required. We are now ready to prove the following theorem:

Theorem 5.1.2 Gil'en the definitions used above,

~PDF = finish· lim T . .~t(lrt.

Proof

dP!F

{claim}

dP, idDF' , [P,n!F

{claim}

Fin 0 [P' U ,,'DF' , [Penh•

{claim}

Fino. [r U O"DF'- . ~Pen]F

1)0 CH.4PTER 5 INTRODUCING THE LIMIT OPERATOR

{property of domains: note above}

FinO - noldom T· ~P' U o']F'''' - ~Pen]F

{claim}

Fin 0 noldom T - T'" . QPen]F•

{definitions}

fin-ish lim T - .,la,-!.

Tlw claim, used above- are

~PDF ~P, idh' ,~P,nDF (1)

~P, idDF' nn' . ~P' U o'DF' (2)

~ P' C o'DF' ~P'Uo'DF-' (3)

r F' U o'DF" (4)

llsillg the promotion rule, the proof of the first cl<lim reduces to the following inequation

~P, idlF' ' Pen = p, F~P,idk

This follows directly from tilE' dpfinition of catamorphisms. Promotion is also used to prove

the second claim, and so we need to show that Fin 0 - (P' U 0"') = [P, id] . F' Fin 0:

FiljO -(P'Un')

jdefinitions, coproducts}

Fm o ·[Fin· p. FFin o U Pell, Fin]

jcoproducts}

[Pm 0 -Pin· P . F Fin 0 U Pin 0 -Pen, FinO -Fin]

=- {constructors}

[PFFin',idJ

{coproducts, definition of F'}

[P.id]. F'Fin o .

Showing thal UP' U o']F' is a preorder proves the third claim. Reflexivity has already

be-en observed. and transitivity is proved using the promotion rule, so we need to show that

61 5.1. CAnMORPHISMS

[P' u ,,'Dr' , (P' U 0') <; (P' u ,,'I , F'[P' U "'Dr"

[P' U ,,'h' . (P' U ,,')

{lUlian}

[P' U "'DF' . P' U [P' U "Dr- ' ,,'
{property of catamorphisms}

[P' U ,,'h' . P' U (P' U ,,') . F'[P' U "'Dr',

It remailis to show that QP' U Q']F' . P' ~ (P' U 0') . F'QP' U o']F

[P' U "'DF' ' P'

{dpfinition of P'; coproducts}

[[P' U "'Dr, .Fin· p, FFin', 0J

{ definitions of P' and 0'; property of catamorphisms}

[Fin. id· p. FFil1",~J

~ {definition of P'; union}

P' U 0:

{functors preserve identity; identity catamorphism}

(P' U ,,') . F'["DF'

~ {mollotonicity of catamorphisms and relators}

(P' U ,,') , F'[P' U "'DF"

For the fina.l clairn, the ~ inclusion follows immediately from the definition of T and the

monotonieity of closure. The ~ inclusion follows from the fact that T~ is a preorder, and

that [P' U "'Dr' <;; r,

[P' U "'Dr'

{property of coreflexives)

QP' u a'DF' . dom Fin 0 U Qr U a'h' .notdom Fin"

t;;: {definition of T; property of closure}

[r U o':h' .dom Fin" u T*

.," CHAPTER 5 INTRODUCING THE LIMIT OPERATOR

~ {claim}

dam Fino U r

~ {property of cOl'eflexives and closure}

T".

For the claim above:

(P' U (i'-h' . dam Fin 0>

{co reflexives; definition. of domain)

~P' U a']F' . (Fin· Fino n id) . dam Fin <>

~ {monotonidty of illtersection}

({P' U o'DF' . Fin· Fin" n ~P' U a'h') . dam Fill 0>

<; {definitions, property of catamorphism}

(Fin· id· Fill" n or U a'h') . dam Fin"

{constructors}

(Id n [P' u a'DF- J . dam Fin"

~ {monotonicity of intersection)

dorn Fin" .

This complel,E',,<;; the proof.

o

5.2 Anamorphisms

\Ve have yet to show how anamorphisms can. be converted into limits. Similar to the previous

:"ection. we consider the anamorphism [PDF"; A +- B and again aim to find relations start,

flni8!1 and T such that

[PDF" = finish· lim T start.

63 5.2. ANAMORPHISMS

The reasoning is exactly the same as before, except with the direction of computation re

versed. Keeping the sa.me extension of the datatype and r as before, we now define

start = Fin

fini8h [Penh O

T ~r Ud]F'O 'notdom(~PetlDFQ)

Clearly, .~t(jrt and finish 0 are both functions, and dam T = notdorn finish. To apply

Theorem ·5.1.1. we just need to check that ~Pen]FO (which removes all the Pe'lliabels from

the tree) is a.<;; simple as our intuition tells us:

~PenDF 0 • ~Pen]F ~ id

{identity catamorphism}

[PenDF O ·[Penh ,; [ah

~ {promotion}

~Pen]F 0 • Pm ~ a· FQPenho

{property of isomorphisms}

er O
• QPenDFo . Pen ~ FQFen]FO

{converse, property of catamorphisms}

FQPenDFO ·Peno . Pen ~ FQPenDFo

.;:::: {monotonicity, constructors}

true.

i"i"ow we can prove a similar theorem for anamorphisms:

Theorem 5.2.1 Given the definitions used immediately above,

~P]FO = fini8h· Urn T· start.

Proof

[PDF 0

{claim}

finish· ~P, idDF' 0

6·1 CH,4PTER 5. INTRODUCING THE LIMIT OPERATOR

{claim)

fl.ni.sh . Qr U o'h' ° . start

{claim}

finish· QP'Uo'DF'~-' start

{property of domains; note above}

. QP' U 0' 'n F' 0'" •finish noldom T start

{claim}

finish notdom T . T* . starl

{definitions}

finish lim T . dart

The first thrce claim.:; follow from using converse and the claims (1)- (3) of Theorem 5.1.2.

The fourth ddim is proved in the samc way as claim (4) of that theorem, using instead the

."Ilb.-claim tha.t QP' U u'h' ° . dam QPenh 0:::: dam 1Pell]F~' The inclusion 2 follows from

!"('flexivity. a~d the ~ iuclllsion is proved as follows:

UP'UO"h'O . dam QPenDFo ~ domQPen]FO

{converse, property of domains}

rartQPcnh' QP'Uu']F' ~ ranQPenh

<$= {property of co reflexives, monotonicity}

ron QPUl]F . Qr U o'DF' ~ id

,definition of range, identity catamorphism}

(,d n ~P,nDF' ~P,nDFO) . [r u a'DF' <;; [a'DF'

<$= {monotonicity of int.ersection}

[PmDF ' [P,nDFO ,[P' U a'DF' <;; [a'h'

<$= {?romotion}

[PmDF ' [Penho 'IF' U a') <;; a' , F'([P,nDF' [PenhO)

{definitions, coprodllcts}

65 .i 2. .-\]\iAl\lfORPHISMS

~Pf.nD F QPenDf ° . [Fin. p. FFin °U Pen, Fin]

~ [Pm, Fill]' F([PU1h' [PenDfO) + id

{coproducts, union}

~PwDf . [[Penh ° ,Fin· p. FFino U [PenDfO ·Pen, [PenDFO -Fin]

<;; [Pm· F([PenIF' [P,nJFO), Fin)

<i= {claim}

[[P,nIF ·IP"'IFo ·P,n, 0]

<;; [Pm· F([PenIF' [PenJF 0), Fin]

{coproducts}

~PwDF . ~PenDf ° ·Pen ~ Pen· F(~PenDf' [PenDFO)

{functors, property of catamorphisms}

[P"'DF . [P,nJFo ·Po, <;; [P,nJF. ~ . F[P,nIFO

.:= {monotonicity, union}

[PenDF 0 ·Pen ~ Ct:. F[PenDFO

=" {property of isomorphisms}

(to • [Pen]FO ,Pen ~ F[PenDfO

{property of catamorphisms}

F~PenDFO ·Pm o ·Pen ~ F[PenDfO

.:= {monotonicity}

PenO ·Pen c;: id

<i= {constructors}

if·ue.

Th(' claim above \vas that ~PenDF" . Fin ~ 0:

[PenDF 0 . Fin ~ 0

{converse. monotonicity of ratamorphisms}

Fi" ° . [PenJF <;; [01F

bb Cl/.~PTER 5. INTRODC·CING THE Ll/vllT OPERATOR

Ii= {promotion}

Pin o . Pen ~ 0 FFinO

{empty relation}

riflO ·Pen ~ 0

Ii= {constructors}

!r"Uf.

o

5.3 Practicalities

In the pre\·jGus two sections, we showed that catamorphisms and anamorphisms can be ex

pressed as limit.s, and these expressions are nseful within the context of optimization problems.

In this section, we discuss the practical aspects of that conversion.

Jtl each C~ the limit relation T was expressed using a ca,tamorphism. As mentioned before,

the catamorphism [P' U a']F' is a very general one. One application may result in nothing

lwing accomplished, or one or more r steps being done, or P' may be applied through the

whole structure to do the computation in one step. Clearly, completing the computation

in one step is not desira,ble, as this does not allow any improvements in efficiency to be

made at intermediate stages. Better would be an an execution (or implementation) of the

("amputation [P' U a'DF' that makes a small amount of progrE'.ss at each stage.

Fortunately. in practice it is very easy to find such implementations. Expressing the genera

tion of parti"l solutions using a limit is often simpler than using a catamorphism (if indeed

it can be expressed using a catamorphism), and often has a closer correspondence with intu

ilion. The previous two sections provide reassurance that such a limit relation does indeed

exist for every catamorphism and anamorphism. We now consider an example.

Example: Generating a Knapsack Packing

We consider the 0-1 Knapsack Problem from the previons chapter. The input is a

list of Heins, and we assume we are given the capacity C of the knapsack, some type

of items l, and fnnctions wgt and val on the items that return their weights and

values respectively_

67 53. PRA.CTlCALITJES

If we are just in terested in the weight and value of the packings, and thus a packing

is a weight/value pair, then the functor

F = Kl + (KI x I)

and the catarnorphism ~emptysack, add· ok? U leaveD generates a packing, where

emptysack (0.0)

ok (i, ('W, v)l (mgti + w) ~ C

add (i , (w, D)) (w + wgti, II + val i)

[e(lve (i , (W, 1J)) (w,l').

Now it would be possible to convert the above catamorphism into a limit using the

definitions from the above theorems, and use ar U a'h' notdom Fin 0 for the

limit relation T. From this definitiou, each application of T would take a prefix of

the list and decide which of those items to add to the packing. \\'hile this step is a

valid one to construct the next stage of a packing, it is obvious that a more simple

limit relation may be defined as follows:

(w,t"is) T (w,lI,i:is)

(w + wgi£,v+ vali,is) T (w.fl,i:is), ifok(i,(w,v)).

The input to the program is then (0,0, is), where is is the bag of items in the safe.

As cau be seen in the above example, with limits there is not necessarily any fixed structure

to the input. and 80 the remainder of the input yet to be processed needs to be mentioned

ex.plicitly ill the partia.l solution.

The above example wa..<; easily expressed using limits, and a great number of other examples

arE' also very easily expressed using limits. In practice, all the examples I looked at I found

very easy to express using limits, whereas I have often struggled to express more unusual

examples using catamorphisms and anamorphisms. See later in this thesis for more examples.

Chapter 6

Limits and Algorithms

Having established that a limit opera.tor is an effective way to generate feasible solutions

to optimizahon problems (and is also more general), in this chapter we will solve problems

~pecifipd in the following format

min R· A lim T.

\Ve will consider using greedy and dynamic pl'Ogramming strategies, in pa,rticular in relation

to previous work of Bird and de Moor. Their [Ollt theorems presented in a earlier cha.pter

were these:

•	 Theor€ID 4.1.1 for greedy algorithms using r:atamorphisms to generate feasible solutions,

and requiring a condition for local optimality

•	 Theorell1 4.1.2 for greedy algorithms using anamorphisms to generate f€asible solutions,

requiring the principle of optimality and requiriug a condition for final optimality

•	 Theorem -1.2.1 for dynamic prog7'(Jmming algorithms using catarrtorphisms to generate

feasible solutions, and requiring a local monotonicity conditiOIl

•	 Theorl?m 4.2.2 for dynamic programming algorithms using anamorphisms to generate

feasible solutions, requiring the principle of optimality and a condition for final opti

maJity

111 this list there are two theorems for each programming strategy. In this cha.pter are pre

sented two thl'Orems, one for each programming strategy, where the catamorphic and anamor

phic approadf's are captured under the umbrella of one theorem. The similarity between the

68

6.1 GIlEEDY ALGORITH.MC-::S'---__ 69

greedy and dynamic programming approaches is a.lso emphasized with the simila.rity of the

theorems.

Optimality tonditions required for the theorems and how they rela.l,e to eaLh other are also

consiclpred.

6.1 Greedy Algorithms

First we will consider finding greedy solutions to optimization problems. The essence of

greedy algorithms is tha.t at each step, the best (with respect to some ordering) of the choices

a.vailable is selected. A faithful way of representing this paradigm using relations is:

G = minS AT.

The relation T represents a possible choice available, and so the function AT takes a partial

solution, ami returns the set of all possible choices; then min S selects the best with H'Spect to

SOme relation S. Note that although S should respect R in some way, it need not necessarily

be the same rela~jon as R (although it often is): R is part of the specification, and as such,

is only neces.<:,arily defined on finished solntions, those in the set returned by A/imT. The

preorder S. however, mnst be able to compare partial solutions.

Having defined G to be a greedy step, the complete greedy algorithm is merely the repetition

of G until we have finished, and thus our algorithm will be lim G. Thus Wf come to the

following theorem:

Theorem 6.1.1

Ld

M = min R . A tim T

G = minS . AT,

whert' R i$ a preorder on the set of completed solution$ represented by notdom T. If the

following conditions are satisfied:

dom G dom T

G· (I;m T)O ~ (/;m Tjo ·R,

I.hen

limG ~ M.

,0 CHAPTER 6. LIMITS AND ALGORITHMS

Proof

This thf'or<>m is a corollary of Theorem 7.1.1. 0

The fmot condition above ensures that whenevpr we have an unflnbhed partial solution (that

is. one in the domain of T), we may perform G to it, and thus it is in the domain of O. This

ensures the a.lgorithm does not haIt preoJatnrely. The satisfaction of this cOndition implicitly

rE'~llires a mndition on 8 that a minimum can always be taken on a set resulting from AT.

The };econd conditioll is the anl:' lilat ensures that G' selects the col'Tec:t choice at each stage.

It requires that if a greedy step is performed on a partial solution. then for allY complption of

that parLial solution. there is a contiunation from the gre-edy step that results in a com pletion

at least as .'~Dod with respect to R.

The result of the algorithm gives us that any output from lim. G is an ontput from Af, and as

limits are total relations, this means that lim G always gives an output, and thns implementb

;\1. (f G is then implemented by a partial function! such that! ~ G' and dum! 2 dum T,

thf'n! chooses which minimum with respect to S to select, and lim! ~ limG. Thus the

,dgorithm may be implemented a." a simple loop with body! and guard dom. T.

Termination of the Joop may be easily checked by using the method of variants, for example.

EJ.:amplc: Thf Marbles Problem

The marble collector has several marbles of different colours. The object of the

marbles game is to pair the marbles np in differently-colon red pairs. There are two

main objectives to the marbles problem, the first being more important than the

second:

• We must manage to choose as many pairs as possible

• We prefer using up thE' marbles of the rarest colour first

This is actually a problem from the real world, posed by a local programmer at

the University of Oxford who was organising drugs for a donble-blind clinical trial.

The marbles are the boxes of drugs, and the different colours of the marbles are the

different code numbers on the boxl;'..$ of drugs. The doctors who have to administer

the drugs should not know which drugs are which, to make it double-blind, hence ttle

idea of using two differently coded batches for each treatment group. The pairs of

marbles thus correspond to the two codes for the treatment group. Using the rarest

71 6.1. GREEDY ALGORITHMS

marbles first makes sure the smaller supplies of drugs do not get too small a trial,

and choosing: as many pairs as possible means as little drug wastage as possible.

To transta.tQ the above into the problem format

min R i\/im T.

recall that t11e relation lim T should produce a feasible solution to the problem, by

doing T steps until no mOTe can be done. So the natural action for T to perform is

t hf> step of selecting from the remaining marbles a pair of distinctly coloured marbles.

Rcpresentillg, the current ;;ituatiou by a pair (ps. m5). where ps is a bag of pairs of

marbles chosen so far, alld ms is the bag of the remaining marbles (we will represent

a marble b~' it,s colour), T cau be defined

(l's+I(ml.mllS,ms-t"'l,m'lSl T (ps,ms), ifmli-mz /\ mj,m2E ms,

and the input will he nL M), where M is the original bag of marbles.

The comparison relation R is defined a.c;

(J.I~I, 11181) R(pS2, lIJS'I) ¢I' IpSII2': Ips2!,

which only takes a.ccount of the first objectiw. We will aim for an optimal~olution

for the first objective. and jf we can manage to choose a greedy step that helps with

the second objective, so much the better.

We have to decide which relation to choose for S. Using up the rarest and second

rarest ma.rble..., first might result iu a glut of common marbles unpaired, as would

happen with the bag of marbles lRed, RU8sft, Cyan, CyanS, so as a compromise, we

choose to use the most cornmou marbles up first a.c; well as the most rare DUes. Hence

we define

(ps + Urn}, rnzlL m:. -lml, ml}) S (ps + Hm3' m4)S, ms - lm3' m4ll

~) m.5#m\ - ms#m2 I 2': II ms#mJ - ms#mlj, I,

where ms#m is the multiplicity of m in the bag ms. Thus the greedy step G will

choose one of the rarest marbles together with one of the commonest marbles.

It is clear that dom G =: dom T as if there is more than oue colour of marble

remaining to choose from, we can always pick the rarest and most common marbles

from the remainder. Thus we just need to verify the greedy condition:

G . (I,m T)' C;; (hm T)O . R.

To prove this, let

G

72 CHAPTER 6. LIMITS AND ALGORITHMS

Wp han" t.o show there exists (PS', MS') snch that

11m T R
(p"ms) --> (PS', MS') I (PS, MS).

The way we approach this is to consider the completion (PS, MS) and obtain

(PS', JlS') from it. Consider which marbles were chosen at the greedy step. Suppose

that the rarest marble chosen was a red marble, and the commonest marble chosen

was a cyan marblp.

If PS - ps already contains a red-cyan pair then we can take (PS', MS') to be

(PS,MS).

If PS-ps contains no pairs with red marbles in (they are all unpaired in ,~JS), then

we rna) form (PS', MS') by taking a marble paired with a cyan marble and pairing

up the red and cyan marbles,

® ©CD ®© CD
and then possibly pairing the spare marble with an.y other spare red marble in MS,

thus making (PS', MS') a possible improvement on lPS, MS), although no worse.

OtherWIse, there is a pair in PS - ps with a red marble, say a red-black pair. Consider

which marbles (if any) the cyan marbles are paired to in PS - ps. Unless there are

unpaired cyan marbles, they cannot all be paired to black marbles for then there

would bt more black marbles than cyan ones, contradicting that the cyan ones are

at least as common as bl3(".k marbles in rns.

So either there is a c.yan marble paired with a non-black marble (say a jade marble),

in which case swapping the red-black and cyan-jade pairs

®® CD© ®© ®0

leads to i1. solution (PS', MS') with the same number of marble pairs.

Alternatively there is an unpaired cyan marble, in which case the black marble ma.y

be swapped with the cyan one,

© ®® ©® ®
(and the black marble may be swapped with any spare unpaired cyan marbles in

MS'). to give a solution (PS', MS') no worse than (PS, MS).

We have I'erified the greedy condition, and thus the greedy algorithm lim G works.

The local programmer who posed this problem came up with the same solution

independently, but was unable to prove that it worked. I was happy to rea.ssure him

that it did.

\'ote in the above example that it is not ea.c;y to see how the generator could have been

{'xpre*:'ised natura.lly using a catamorphism or anamorphism. A catamorphism would operate

OH'r tlH' original bag of marbles, and it is not clear that you can decide a.c; you go what

to do with each marble, whl:'ther it is to complete a pair, or start a new pair. or to be an

unpaired marble. An anamorphism would require a cat-amorphism operator over the pairs

of marbles and the leftover marbles to yield the original bag, and although it is reasonably

ea.c;y to imagine a catamorphism over a bag of pairs of marbles, it is less easy to imagine a

ratamorphism over a bag of pairs togf'ther with some leftover marbles. Limits ate the natural

way to specify this problem.

6.1.1 Optimality Conditions

The greedy condition that was referred to In the main theorem was

G· (lim T)O <;; (lim T) . R.

Rephra.c;ing this condition in English, this says that if the best choice (with respect to 5) is

ch.o.sen, then this can result in a better (with respect to R) final completed solution than

a.ny of the other choices. I will label this the Best-Final condition. In fact saying that this

condition is satisfied is really tantamount to saying that the greedy algorithm works.

Now recall the greedy theorem for problems generated by anamorphisms. It had a greedy

condition that l(Joked like

s· F~PD· a O
~ F~PD ·ao ·R.

Translated into English, this is a different condition saying that if one choice is better (with.

respect to S) than a.nother. then for any completion of the worse choice, the better choice can

result in an overaU better (with respect to R) final solution. This is significantly different to

the previous condition, dealing with "better" rather than "best". This paradigm I will call

the Better-Final condition.

The other greedy theorem that dealt with problems generated by catamorphisms had a

different greedy condition still, a monotonieity condition:

FR po <; po .R.

" CHAPTER 6. LIMITS AND ALGORITHMS

The transla.tion of this condition is that if one choice is better than another a.t one stage,

there is awntinuation tha.t is better than the other at the next stage. This is a stronger

condition lhan the others, and we call it the Better-Local condition.

There is also a fourth greedy condition, the Best-Local condition, called the minotonicity

condition III [9]. Translated into English, this condition says tha.t if at one stage the best

choice is chosen, then this can result in a better 8olution at t.he next sta.ge tha.n any other

choice. However we will not go into further detail, a.s not ma.ny problems satisfy this condition

but not the Better-Local condition, a.nd for those that have been found to do so, it is much

easier to prove the Best-Final condition for them instead.

The four conditions relate to each other in the following manner (the arrows represent impli

cations):

Best-Final

~emma6.1.2~
Best-Local Better·- Pinal

~emma6.1.3~
Better-Local

(The two implications on the left will be not proved as we do not go into detail regarding the

Best-Local condition.)

!,\'ote that for Bird and de Moor's theorems, the local conditions apply to problems ex

pressed using catamorphisms, and the final conditions apply to problems expressed using

anamol'phisms. Some problems that are only expressible using a catamorphism require a

final condition to prove that the greedy algorithm works for them. Similarly, some problems

that are only expressible using anamorphisms require a local condition to more easily prove

that the greedy algorithm works. Also, some problems are not naturally expressible using

eit.her catamorphisms or anamorphisms. Translating the above greedy conditions into Lim

Theory will ella,ble such problems to be solved too.

75 6.1. GREEDI' ALGORITHMS

The Better-Final Condition

The Lim Theory version of the Better-Final condition is

(S n T· YO) . (lim T)" <;; (limT)" ·R,

and the folJowiug lemma shows that this is sufficient for the greedy algorithm to work:

Lemma 6.1.2

If the (Lbol1e r;ondition holds, then

G· (limT)° ~ (limT)° ·R.

Proof

The proof follows from Lemma 7.1.2. 0

Tile condition of this lemma is clearly analogolls to the greedy condition of Theorem 4.1.2,

where the F[P]·O' 0 corresponds with a (lim T) 0 here. The T· T° relationship in intersection

with S is merely context, as we will be comparing two partial solutions that werejust derived

from the sa.me previolls partial solution.

As yOll might expect, the Shopping Bag problem given in the earlier section as an example

for Theorem 4.1.2 is also an example that workli for this theorem.

Here is another example of a problem for which this condition is satisfied:

example: Rally Driving

This problem arose from a programming exercise in [27].

A rally driver drives through the desert, following a set fOutl', and there arestopping

poiuts where a can of petrol may be picked np (cans vary in size). The driver wishes

to pick up enongh cans to reach the end of the journey, but wishes to stop as few

times a::; possible.

Let th€ potential stopping points of the car be 0 ... n, where 0 is the start, and n the

finish. The distance in kilometres of point i from the start along the route is given

by dist i. and there is a call containing enongh petrol for (petrol i) kiloffi€tres a.t that

point. We will assume for practical purposes the tank of the car is infinitely large,

and that the car starts off with no petrol.

76 CHAPTER 6.	 UMITS AND ALGORITHMS

\""e will also assllme that the problem values are reasonable. that is, there is enough

petrollo do the whole journey and that dista.nces increase along the route:

(list 0 = 0

'Vi.). i <) :::> disl i < distj
,-,

'Vi • (Lpelrolj);::: disl i.
j:=O

If we represent solutions by sets of stops and define

toralpdrol S	 L pet7'01 s,

sES

theu weC<Ln specify the problem as

ml.'l (#0 ~. #) . Astops,

where Slops returns some set of stops S where totalpt'frol S ;::: dis/. n, The relation

."lops c<ln be implemented in a variety of ways. One way to do it is to choose addi

tional reu:ha.ble stopping points one by one until there is enough petrol to Complete

the route, so we let stops = lim T, where

(sU {ill Ts, if disti S. tOlalpetrols < distn 11 i¢s.

where the input is {}. So T chooses a, stopping point rea.chable using the petrol

cans plarmed so far, and adds it to the set. ;.Jote that the stopping points are not

npcessarily chosen in increasing order of distance from the start.

Now we requirE' a relation S. to dictate which choice of stopping point is better than

another. An obvions preference is a stopping point which has more petrol, and so

we defi.ne

(, L (p.}) S (s U (]>l)). if p<lmlp, ~ p<trol]>l.

The greedy condition is easily proved for this relation. Suppose' that

s 11m T
(sU (p,») f-:--- (s U (]>l)) -+ (s U {p,} U w).

Then if PI E U' tben certainly

"mT R
(s U (P,») I (s U (p,) U w) f----- (, U {p,) U w).

Otherwise if PI ~w then as stop PI provides more petrol, the same stops in wadded

to (05 U (;.'l}) can also be added to (05 U (pd), possibly needing fewer stops to reach

the end of the route, and thns completing (s U (pd) in this way will result in no

more st0F* than in (s U {P2} u w),

Thus tl!(' greedy algorithm solves this problem. Keeping the unchosen reachable

stops in order of petrol available leads to an O(n log n) algorithm.

The above programming problem has been known to my colleagues at Oxford for several

years, but yet the grpedy algorithm was not found until the use of limits was considered.

Prflvious attl'mpts to solve the problem had automatically started with the expressing of the

problE'1ll using I'ither a catamorphism or the converse of a catamorphism.

if the input d''l.ta is represl?lltC'd a.-; a list of (distanc~, petrol) pairs then a partit.ion is a natural

way to represent the different s('ctions of the ronte. Generating a partition by a catamorphism

or anamorphism on cons or snoc lists naturally requirl?s deciding s~quenti(llly which stops

should bl? used, ('ither from start to finish, or finish to start. The algorithm above rna}'

choose which ,~tops to use in a non-sE'quential order. There is a way of generating partitions

in a llOll-sequ*"lltial way. by using an anamorphism on the type of join lists. However this is

more complicated, and it is not clear that this would be useful, as nsing Theorem 4.1.2 require~

t.he problem be split up into distinct subproblems, not obvionsly possible with this problem

as the surplus petrol from one section carries over into the next, and so the sub-problems

interact..

For this problem. it can be truly be said that over-fixation on catamorphisms did lead to a

VNy simple and obvions greedy algorithm being overlooked.

Other examples of problems which natnrally use the Bette,,· Final condition include the Min

imum Tardines.<; problem, and the Ski Matching problem from [7.5),

The Best-Final Condition

There are problems which do not satisfy either of the Best-Local or Better-Final conditions

naturally (that is to say, maybe some obscure or complicated S would ellsnre that they do,

but we are trying to think of simple easily-computable comparison relations to solve problems,

not contrived ones)_ The follOWing is such a problem:

Example: Prim and Jarni'k's algorithm

This is one of the algorithms for finding a minimum cost spanning tree ofa connected

graph, usually attributed to Prim [81] althongh already previously discovered by

78 CHAPTER 6. LIMITS AND ALGORITHMS

Jarni'k [48]. In this algorithm, the edges selected so far form a tree, and at each

stage, the edge selected is the lowest-cost edge adjacent to the tree that doe> not

form a cycle.

We can specify the problem of finding a minimum cost spanning tree in the lim style

by choosing

(IU{e},es) T (',es), if ',",e('U{e}) A eEes A e~'

with ({}, E) as the input, where E is the set of edges in the graph. The relation for

comparing trees is

(til esIl R (t;l, eS2) = cost t l ~ cost t'2.

Thus we have 5pecified the problem in the form min R . A(lim T). To solve the

problem using the algorithm above, we define the the local comparison relation S to

be R.

Neither the Better-Final nor the Best-Local condition works for this 5, as shown by

the folloll/ing counterexamples. For the Better-Final condition, consider the following

graph:

v,
6

If the tree after the first step is {(PJ, ~)}, then at the second step, the tree

{(VJ,V3),(tIJ"V3)} is better than the tree {("'l,~J,(~,v.J)' yet the latter can be

completed to the minimum cost spanning tree of cost 13, whereas the former cannot.

For the Bfst-Local condition, consider this graph:

"',
3

5 ."

.. <;;

6

v,

'"
..,

'"

If the tree after the first step is {(va, v.)}, then at the second step, the best possibility

is the tree HPJ, Va), (va, V4)} with cost 7, and this leads to a. tree with either cost 12 or

13 at the next step. However choosing tbe (!lot, Vs) edge instead leads to the possibility

of the tree {(V3, v.), (V4, Vs), (Vs,~)} with cost 11.

The Best-Final coudition does work, however. Suppose that

G (t, es) lim T(I U Ie}, eo) +-1--- (t U s, es).

We require a completiou of (t U {e), es) that has no greater cost than (t Us, es). If

eEs,then

IlmT R
(IU{e},es) I (tU"e')+-I--- (t U s, es).

Otherwise, let the edge e be (u, v), where u is a vertex in the tree t, and l'is not in

the tree. AB t u s spans the entire graph, there must be a path from u to v in the

tree, and as u is in the tree t, and v is in the set of vertices uot in the tree t, this

path must at some stage include an edge e' = (u', v') E s such that u' is in the

tree t, and v' is not. The edge e' has cost no less than e, because e was the greedy

choice from (t, es), and thus t U {e} U s - {e'} is a spanning tree oC no greater cost

than t U s, and thus

~T R
(I U Ie}, es) I (I U {e) U, - {e},e.) +-1--"--- (I U', es).

Another example oC a problem that naturally only satisfies the Best-Final condition is Huff

man's algorithm, and the condition is easily proved using a standard exchangl'argument.

One problem tbat satisfiffi the Best-Lorol condition is the Change-Making problem (see

[20, 100, 19]). Howe...er it is much easier to show that the Best-Final condition holds Cor this

problem.

The Better-Local Condition

Finally we come to the Better-Local condition. In its simple form, it looks like a simple

monotonicity condition

8· TO ~ TO ·8,

which says that iC a partial solution 18 better at one stage, theu it can be better at the next

stage. However in Lim Theory th18 is not quite the condition we need. Partial solutions may

be completed at different stages, unlike the generation of solutions using catamorphisms. One

80 CHAPTER 6. LIMITS AND ALGORITHMS

partial solution may be completed before another one, and we need to take account of this.

The conditions we need are the following:

dom T . S . TO ~ TO . S

notdom T . S . TO <; S

S . notdam T <; (lim T) 0 R.•

The first is the Better-Local condition, which applies if neither partial wlution is completed

yet. The second condition deals with the case where the better solution i.s aJready finished,

and require<> that the better solution stay better whilst the worse one is completed. The

third condition above says that if the worse solution with respect to S has been completed,

completing ~he better solution results in an overaJl better final result. And thus we come to

the following lemma:

Lemma 6.1.3

If the above three conditions are satisfied, then

(Snr·T')· (limT)' (: (limT)' ·R.

Proof

(sn T·T')· (limT)' (: (IimT)'·R

$= {monotonicity of intersection}

s· (limT)' (: (IimT)'·R

(converse; quotient)

lim T ~ (RO . lim T)/So

$= {recursion equation for limits}

n,'dom T U (R' . lim T)/S' . T (: (R' . lim T)/S'

\universal properly of union)

noldom T ~ (RO . lim T)j So

A (R' . lim T)/S' . T (: (R' . lim T)/S'

{quotient; converse}

S·notdomT ~ (limT)o·R

A (R' . lim T)/S' . T . S' ~ R' . lim T

81 6.1. GREEDY ALGORlTHMS

{assumption}

(R· . lim T)(SO . T . S° <;; R· . lim T

{property of domains; union}

(RO . lim T)(SO . T· S° . dam T ~ RO . Jim T

1\ (RO . lim T)/So . T . S° . notdom T ~ RO. lim T

$: {assumptions; converse}

(W . lim T)(S° . S· . T <;; W . lim T

1\ (RO . lim T)jSO . S° ~ RO -lim T

$= {quotient cancellation}

RO -lim T ~ RO . lim T

1\ RO • lim T . T ~ RO . lim T

$: {monotonicity; recursion equation for limits}

true.

o

Here is an example of a problem solved using the Better-Local condition:

Erample: Dictionary Coding

This technique is used for file compression, for example Wagner in [97] used this

method for optimizing the space used by error messages within a compiler.

The text is split up into substrings, each of which is a prefix of same word in a

dictionary provided. The text is then compr~ by repladng each suootring by

a pointer to the dictionary together with the length of the substring. Maximum

compression is obtained by splitting up the text into as few substrings as J>O:j5ible,

and thus this is our optimization problem.

Let the dictionary be a set of words D, and for feasibility assume aU singleton strings

over the a.lphabet llsed belong to D. Partitions may be generated in many ways,

either scanning the input list from left to right, or right to left, or pa.rtitioning in

more random places, as in the Ra.lly Driver's problem. Consideration of scanning

from right to left soon revea.ls a. greedy solution. We generate the partitions by lim T,

82 CHAPTER 6. LIMITS AND ALGORITHMS

where

(txt,[ws]*ps) T(txt*ws,p"), if wsi[] f> ws(Pre/iz·E)D,

a.nd thus the input will be (Text, [j), where Text is the complete text to be com

pressed, and the compa.rison rela.tion R is outr 0 . # 0 ~ • # . outr, and thus our•

specification is min R . hUm T.

Having specified the problem, we need to choose a greedy ordering S. An obvious

choice is to try and use up as many chara.cters as possible, a.nd so we define

(lxtt, PSJ) S (lxI2,PS2) ==	 t:dl * concat PSI = txt2 * concat PB2

1\ #PSI ~ #P8?

1\ #tztl S; #txt2

(the fin>t two conditions a.re just context informa.tion).

To prove this greedy choice works, we prove that the three conditions hold. For

S· notdom T £:;. (lim T)0 . R,

let (lxt], PSi) S ([1, ps~). We can deduce that txtl [] a.nd #PSI ::s: #PS2 from the

definition of 5, and thus

/;mT R

(Il,ps,) -t ([],p,,) , ([],ps,).

For the next condition

notdom T . 5 . TO <;; 5,

we let

S T
m,pSI) , (txt,*ws,ps,) , (txt"[wsJ * ps,j.

Then clearly from the definition of 5,
S(II, psIl , (txt,,[ws] * ps,).

For the main condition

dom T . 5 . TO ~ TO ·5,

suppose that
, T

(1:l"psIl' (txt, * ",s,ps,) , (txt" [ws] * ps,),

where tzll=F[]. If it is the case that for some non-empty w, txl:! * w = txt), then w

is a prefix of WS, which is a prefix of some word in the dictionary, and so
T S

(t""psIl , (txt"[w]* PSI) , (txt,,[wsl*ps,).

Otherwi5e, txt2 has at least as much text remaining as tztll and if tzt l '''0 * [I],
then

(""'PS.)
T

I (t.lo, [[IJ] * ps,) ,
S

(t.t" [wsJ* p"j.

Thus the choice of taking the longest possible prefix of a dictionary word at the end

of the sequence is a greedy aJgorithm that works for this problem. §

Other examples that satisfy this condition are the Motorway Driving problem from [21J and

the Shortest Ascending Partitions problem from [14].

84 CHAPTER 6. LIMITS AND ALGORITHMS

6.2 Dynamic Programming

Not all optimization problems a.re easily solved by a greedy strategy. At any stage, it ma.y

not be simple to determine which partial solution will lead to an optimal completed solution.

In that case, .several partial solutions will have to be retained at each stage to cover all

eventualities, and efficiency will depend on retaining as few partial solutions as possible.

Before discussing the discarding of unnecessary partial solutions, we first consider how the

possible feasible solutions to the problem are generated.

The following diagram represents how partial solutions are built up from the input:

The node at the top represents the input, a.nd for each node, the set of its children is the set

given by ATapplied to each node. Thus each arrow represents a possible application of T.

The diagram is tree-like, but technically not a tree, as some of the nodes may coincide. The

finished solutions are the leaves (that is, nodes with no children), corresponding to partial

solutions that are not in the domain of T.

The above tree of partial solutions may also be likened to a sequential decision process without

the cost function. The possible decisions at each state (partial solution) are represented by

the children of the node representing the partial solution, and are given by AT. The feasible

policies of the decision process are the leaves of the tree, the completed partial solutions.

When considering the problem as a sequential decision process represented by an automaton,

the relation Tis the transition function on the states of the automaton.

The specification we are using is

min R . hUm T,

and thus a general scheme for ex.ecuting this would be to build up aU the feasible solutions

using lim T applied to the iuput, and then taking tne minimum with respect to R. We

wish to make this more efficient, and the main strategy of dynamic programming is that it

removes unnecessary computations. Thus rather than simply generating the enlire set given

by hUm T, tnat is, the leaves of the above tree, we wish to be able to decide to remove from

consideration some branches of the tree.

To further this objective, we now consider how the set of completed feasible solutions might

be generated from the input.

6.2.1 Sprouting

For the process of taking a set of partial solutions and moving one step closer to the set of

finished solutions, we will use the concept of sprouting.

The definition is

sprouts T cup' (ET·PdQm T X id) ·lunio

where

tuni (x, y) zUy, if#{}

eup (z, y) z U y

Translating the above into English, sprouts T takes the input set, takes some uncompleted

partial solutions out of the set, applies T in all possible ways to them, then adds these

new partial solutions back into the set, doing nothing to the unchosen solutiolls apart from

retaining them.

Consider an example. Suppose the partial solutions we have are those ringed in this diagram:

86 CHAPTER 6. LIMITS AND ALGORITHMS

then sprouting just the left-most node would result in the set of partial sointiolls represented

by the ringed set here:

Properties of the relations mentioned above that will be used in equational reasoning a.re the

following:

E . sprouts T c;;: T· E U E

E . luni = E· Dull U E· outr

cup· outJ D
~ 3/3

cup- DutrO ~ 3/3

We will also use more particular styles of sprouting. The relation aI/sprouts sprouts every

possible partial uncompleted solution, and leaves completed solutions alone:

allsproutsT = E(T U notdomT)· dom(T ·E).

The relation sprottt T sprouts a. single uncompleted solution:

sprout T = cup (AT· dam T X id) . lconso,

where

lcon"I',y) = {r} Uy, ;fr"{j.

Strai.ghtforward calculation can be used to show that

allsprouLs T ~ sprouts T

sprout T ~ sprouts T.

87 6.2. DYNAMIC PROGRAMMING

6.2.2 Thinning

To continue the gardening theme, after sprouting some fresh partial solutions, we want to

retain the ones that might lead to a best solution, and remove ones that we know a.re worthless.

The gardening terminology for removing unwanted plants that have sprouted is thinning, and

that is exactly what we shall be doing.

Recall that the following relation thins a set with respect to a preorder 8:

thin 5 = E\E n (3·5)/3.

That is, a subset of the original is returned, so that every member of the original set has

something S-ier th an it in the subset.

So we will use a relation 5' to compare partial solutions to decide which are definitely going

to result in a better final solution. Often two partial solntions will be incompa.rable, which

is why we do a lhinniug rather than taking a minimum.

6.2.3 Dynamic Gardening

We will use the above concepts to generate partial solutions and thin out unnecessary onp.5,

and this is the basis of the following Dynamic Programming theorem:

Theorem 6.2.1

LeI

M = minR· AlimT

D ~ E\E . sprouts T,

where R is a preorder on the set of completed solutions represented by notdom T, and the

following conditions are satisfied:

dom (T . E) <;; dom D

•D . 3 . (lim Tt <;; 3· (lim T) 0 R.

Then

minR ·limD ,.,. ~ M.

88 CHAPTER 6_ LIMITS AND ALGORITHMS

Proof

This theorem is a. corollary of Theorem 7.1.3. 0

Thus the algorithm that we are given is the relation min R . lim D . r-, which takes the input,

makes it into a singleton set, does D repeatedly until it can do so no more, and then lakes

the best with respect to R.

D is the dynamic programming step that does some sprouting and throws (maybe) some

partia1solutions away. The inclusion of Din E\E . sprouts T still leaves plenty of leeway for

the implementation of D.

The condition on the domain of D sa.ys that when we still ha...e uncompleted partial solutions

in our set, D will work. The second condition says that we do not throwaway anything

useful from the set of partial solutions kept. That is, any completion of a partial solution

that was in the set before doing D has a counterpart in the set after doing D that can result

in a completion at least as good.

The dynamic progra.mming condition on D as stated above is not an easy one to use. Before

studying some examples, we prei€nt three lemmas to make its calculation easier:

Lemma 6.2,2

If D ~ thinS·sproutsT and S· (limT)O~ (limT)Q ·R, then

D . 3· (lim T)' <;: 3 - (lim T)' -R.

Proof

The result of this lemma follows from Lemma 7.1.4. 0

Recall the Better·Local greedy condition from the previous section. This condition will be

useful for dynamic programming too, and we have the following lemma. as a corollary to

Lemma 6.1.3:

Lemma 6.2.3

If the folloUJ1rtg conditions hold,

Q
domT·S·T ~ TQ·S

Q

notdom T . S . T ~ S

S-no.domT <;: (hmT)'-R

89 6.2. DYNAMIC PROGRAMMING

then

S· (lim T)' £; (lim T)' ·R.

The following lemma is similar to the previous lemma, but the conditions are eaJiier to prove.

It is particularly suitable for those comparison relations which only compare partia.l solutions

at the same stage of development.

Lemma 6.2.4

If the following conditions hold

dam T· S· TO ~ TO ·S

noldam T . S . notdam T ~ R

S· notdam T = notdam T . 5,

then

S· (/;mT)' £; (IimT)'·R.

Proof

We show this to be a corollary of Lemma 6.2.3 by showing that the above conditions imply

the conditions of that lemma.. For the second condition,

notdam T . S· TO

{assumption}

S	 . notdom T . TO

{property of domains}

o
~ {empty relation}

S.

For the third condition,

S	 . notdom T

{property of coreflexives}

S	 . notdom T . notdom T

90 CHAPTER 6. LIMITS AND ALGORITHMS

{assumption}

notdom T . S . notdom T

{property of coreflexives}

rlotdom T . notdom T . S . notdom T

~ {assumption}

natdom T . R

~ {recursion equation for limits}

(lim T)O . R.

o

We will U6e the above lemma in the following examples, and the examples will be used as

motiva.tion to discuss aspects of this particular style of dynamic programming.

Example: 0-1 Knapsack Problem

Recall the 0-1 Knapsack problem, where a thief has to maximize the total value of

the haul, subject to the tota.! weight being less than C. In the previous chapter we

represented items by (weight, value) pairs. Here partial solutions will be the weight

and value of the packing 80 far, together with the items not yet considered. Possible

pa.ckings can be generated using the following relation:

(w,v,is) T (w,v,i:is)

(w+wgti,v+vali,is) T (w,v,i:is), ifw+wgti~C,

with the input (0,0,88), where 8S is the list of items in the safe initially. Defining R

by

("",",,[]) R (",>,",,[]) '" "' ~""

we have the problem specified as min R . Alim T.

To solve this problem with dynamic progn,mming, we need a comparison relation

S which says when oue partial solution will definitely be better than another. A

reasonable S to define is the following

(tDt ,V:L, is) S (lOJ, Vz. is) == V:L;?: Vz /\ WI ~ U'J.

91 6.2. DYNAMIC PROGRAMMING

which tra.nslated into words, says that a. partial solution is better if it i.e. more valuable

and lighter.

We can now check the conditions from Lemma. 6.2,3. For the first,

dam T . S . TO ~ TO . S,

suppose that

5 T
(wt, vb i : is) ! (WJ, P.l, i: is) --t (WJ, V'J, is),

then

T 5

(Ult, VJ., i : is) -----t (WI. Vi, is) I (tD2, l"J, is).

Also, if

5 T
(tot, vt. i : is) t-- (lPJ, V'J, i: is) ----+ (wa + wgt i, P.l + val i, is),

then as WI :$ 102, WI + wgt i S tPJ + wgt i and 00

T 5
(wt, VJ., i : is) ------jo (lOt + wgt I, VI + val I, is) t-- (WJ + wgt i, VJ + val I, is).

The second and third conditions follow directly from the definition of S.

Thus we know that dynamic programming is applicable to this problem. We can

implement this algorithm as the standard method for solving this problem: the

maximum possible thinning is done at each stage (usually a good strategy), and the

maximum possible sprouting i5 done using allsprouts T at each stage.

In functionaJ programming the set of partiaJ solutions can be kept as an ordered

list of partial solutions, ordered by decreasing value and weight. Then at each stage

the sprouting and thinning is implemented by a simple merge and purge operation

on two lists (one representing the choice of the next object, one representing the

rejection of the next object), that also removes solutions worse with respect to S.

Then when the solutions are completed, the moat valuable packing is at the head of

the list.

§

In the example above, it was shown that dynamic programming was a possible technique to

use for solving the problem, but it did not go so far as to produce an actuaJ program. The

aJgorithm given by the main theorem is still abstract, and there is stiU considerable freedom

of implementation. This is the trade-off that happens with such a theorem. As we will

92 CHAPTER 6. LIMITS AND ALGORITHMS

see, ma.ny different sorts of dynamic programming algorithms are covered with this theorem.

However, this genera.lity abstracts a.way from the actual implementation.

Note that in the above exa.mple, the monotonicity condition sa.tisfied is the sa.me as for the

greedy algorithm. It is not the case however that we could use the greedy algorithm to solve

the above problem, because the other necessary condition for the greedy algorithm to work

is tha.t the greedy choice G has to be able to choose the best at each sta.ge. In dynamic

programming, the rela.tion S does not have to be connected, and 80 cannot always retnen a.

minimum (though thinning will a.lways work),

The a.bove method was very simila.r to the catamorphic method used in Theorem 4.'2.1. Let

us compare this to the anamorphic method of Theorem 4.2.2. It is p066ible to compute

packings using anamorphisms. Items in a list can be individually tagged either Taken or Not

Taken, and this can represent a packing of the knapsack. The converse of the catamorphism to

remove tags from such a list, subject to weight considerations, will generate possible packings.

The anamorphic method is similar to the familiar standard recurrence equations of dynamic

programming. For example, for the ()-l Knapsack problem, let Pc(is) be the list of items

that is the best packing for a sale with items i8 and a knapsack with weight capacity C.

Then the recurrence relation is

Pe([J) = [J
PeU' is) PcCis), ifwgti>C

== U"al.... {Pc(is), i: PC-wgt;(is)}, otherwise.

If this were to be implemented (using memoization, say, to avoid the computation of similar

results), the movement of the computation across the space of partial solutions would result

in a depth-first search acro55 the tree. This is in contrast to the method described above,

which performs a breadth-first search, searching all partial solutions at one level at the same

step.

Example: Tke Paragraph Formtdting Problem

We coneider again the problem of formatting paragraphs neatly, this time in more

detail. Firstly we construct paragraphs using the limit operator. There are several

ways by which line breaks can be added to a list of words: one simple way is to add

them sequentially starting with the first line. Thus we define

(t.* [fj, y) T (Is, I* y), ;f 0 < lineleng.h IS W

93 6.2. DYNAMIC PROGRAMMING

and the input will be ([], ws) where IJJS is the list of words to be formatted. The above

definition a&'Iumes that the line length of an empty line is 0, and that non-empty

lines ha.ve length greater than O.

With the following definitions

whitespace I W - linelength I

whitesls sum (map (square· whitespace) is)

untidiness (Is * [I]) whites Is,

we can now deli ne R to be

(lSI, []) R (ls2' []) = untidiness lSI :S untidiness 182

The problem of formatting paragraphs is now .specified as min R . A lim T.

To solve this by dynamic progra.rnming, we need to find a comparison relation S

to compare partiaJ paragraphs. Once lines at the beginning of the paragra.ph are

chosen, they do not suhsequently change, so an obvious choice for S is to compa.re

the untidiness of the a.Iready chosen lines. Furthermore, if the paragraphs are not

completed, then the last lines of the partial paragraphs can be compared too.

Hence we define

(Is" y) 5 (Lo" vl, if whites lsI S whites 1S'j /\ y,#[]

(I", []) 5 (I", [D, if (Is" [J) HlLo" [J).

To prove that S can be used, we use Lemma 6.2.4. Note that (ls, y) is in the domain

of T precisely when y is non~mpty. First we need that dam T· S· Tf> ~ Tf> ·S.

If

S T

(Is" I -I/- y) t-- lLo" I *.) ---t lLo, * [D, V),

then from the definitions of T and S, we have that

T S
(I,,, I -I/- y) ---t (Is, * [IJ, V) t-- lLo, * [IJ, V)·

The second and third conditions for Lemma 6.2.4 trivially follow from the definition

of S.

We now know tht S is a suitable relation to thin partial solutions with, but a.n

algorithm is stiJl a long way off, as sprouting and thinning can he done in many

possible ways. Usually doing the maximum possible amount of thinning is a. good

idea, as there is no reason to retain useless pa.rtial solutions. However there is a. good

94 CHAPTER 6. LIMITS AND ALGOlliTHMS

reason ~o be ca.reful what 50rt of sprouting we perform. Suppose there is a "bad"

pa.rtiaJ solution (one destined to be thinned eventually), and a partial solution that

is better with respect to S is not yet availa.ble, becau.5e it is not yet developed to that

sta.ge. Sprouting the bad partiaJ solution is unnecessary computation, and instead

sprouting less developed partia.] solutions is a better strategy.

So for this problem, the pa.rtiaJ oolutions to be sprouted at each stage are the ones

with the most words left to place. Hence at each stage we want to sprout the partial

solution (ls, y) for which y is longest. The partial solutions could be kept in a. list

in descending order of the length of their second component. Then just the head of

the list is sprouted at each stage. If the result of the sprout is put into a similarly

ordere<llist, then the thinning can be performed by a linear merging and purging

operation on the two lists. Jf there are n words in the original list, the result is an

O(Wn) algorithm, assumiug that the maximum number of words possible on one

line is O(W).

§

Intrinsic to the main idea of dynamic programming is the existence of sub-problems. It is

the careful planning so that solutions to sub-problems are computed only once that results

in unnecessary computation being avoided. The use of limits means that we no longer have

the notion of a sub-problem, but yet sub-problems are not absent, merely disguised.

In standard dynamic programming the idea is that if two partial computations require the

solution to the same sub-problem, then the sub-problem is solved once, and the result passed

to both original partial computations/solutions. Either tabulation or memoization may be

used to ma.ke sure that solutions are only computed at most once.

In this style of dynamic programming, if two partial solutions both require a solution to the

same sub-problem, then it is decided using the comparison relation S which is the better

partial solution, and then the worse one is discarded, and the better one may remain for the

start of the computation on the sub-problem.

For example, for the paragraph formatting problem above, consider the two partial solutions

(["r raeaber the tae r knell ..bat happineBB ..as;"],"1.et the __or,. li1l'e asain.")

U"[relleaber", "the tae I De. lIhat happineSB 1Ial!I;"], "Let the ae.ory li1l'e asain. ")

The former is better with respect to the S above, and the latter will be discarded. The

former (or another partial solution better than it) will remain in the current set of partial

95 6.2. DYNAMIC PROGRAMMING

solutions, and will eventua.lly (unless disca.rded on account of a better solution) be involved

with processing the remaining word list "'Let tbe memory live again,".

Example: The String Edit Problem

The string editing problem concerns the transformation of one string into another,

using as few operations as possible. This has many applications: the n~mber of

operatioD6 required is called the edit distanec or Levenshtein distance (see [59, 98])

between the two string6, and this can be used for spell-checking, speech recognition,

and compari.'iOD of DNA sequences (see [34]) for example. The book [85J is the

comprehensive reference on the subject.

We will consider the following edit operations on strings: adding, deleting, or retain

ing a. character. If the editing is carried out from left to right of the given word, then

a partial solution can be represented by a triple (ca, u, v), where ca is the list of edits

done 80 far, u is the remainder of the word that we are transforming, and v is the

remainder of the word required. An edit step can be performed by the relation T:

(es*[Rete],u,v) T (ca,c: u,e: v)

(es*[Addc],u,v) T (ea,u,c:v)

(es*[Delc],u,v) T (es,e:u,v).

As it is desired to find the shortest list of edit operations possible, we define

(es,,[],[]) R('",[],[]) '" #es,,, #,.,.
The problem can now be specified as min R . A lim T, with the input ((I, W:L, W2),

with WI being the giveu word, and tD2 being the required word.

III order to use dynamic programming for this problem, we need a compari!lon rela

tion S to determine when one partia.l solution is better than another. One obvious

choice for S is that if two partial solutions are at the same stage with respect to the

remaining input, then the one which has used fewest edit operations so far must be

better. Hence we-define

(esl,U,V) S(es2'U, v), if #esl:S:#e8'}.

We need to prove that this is a suitable choice of S. Using Lemma 6.2.4, the first

condition required u. that dam T . S· To ~ TO . S, and we must consider all three

possibilities th.at TO might perform on the left hand side. If

S T
(esll c : tI, c: v) +-- (e8'}., c : u, c: v) -----+ (eS2 * [Ret cl, u, v),

96 CHAPTER 6. LIM.ITS AND ALGORITHMS

then from the definitions of T a.nd S,

T S
(1081. c : u, c: v) ---t (eSI * [Ret el, u, v) +-- (eS2 * [Ret el, u, v).

For the-second possibility, jf

S T
(eSt. c: u, v) +-- (1081, c: u, v) ---t (eS2 * [Del e1, tI, v),

then from the definitions of T and S, we have that

T S
(~Sb c: u, v) ---t (esl * [Del eJ, tI, v) t-- (eS2 * [Del c], u, v),

and the third case is symmetrical to this one. The second and third conditions of

Lemma. 6.2.4 follow trivially from the definition of S.

We have yet to decide on an actuaJ algorithm. Again, the consideration tha.t least

developed partial solutions should be spronted first applies.

Hence at each stage we want to sprout the pa.rtial solutions (e8, u, v) for which there

is most remaining in u and v. Thus we do not wish to sprout a pa.rtia.1 solution

(esl, u, til jf there is another partial solution (CS2' u' -I+- u, v' -I+- v) in the set, with at

least oneof u' and v' non-empty. One way to implement this strategy is to at each

stage sprout the partial solutions (es, u, v) with minimal #u + #v.

§

The tabulation of results from the solving of sub-problems is one of the most important

techniques in dynamic programming. However, the use of limits to construct feasible solutions

has resulted in an abstraction away from the structnres of the optimization problems, 60 there

is no longer a. notion of sub-problem.

However, the table can be still seen in this method of dynamic programming. The table is

an embedding into the partial space of solutions, and often the computation of the dynamic

programming a.lgorithm will mimic the steps taken to constrnct the table.

We consider an example of a computation for the above String Edit problem to illustrate

this idea. The word Cih1 is to be changed into Caph:l, and this diagram shows the partiaJ

solutions that are considered during the execution of the algorithm. The arrows represent

',. CaaaeiopeJae

:l fJ Casseiopeiae

97 6.2. DYNAMIC PROGRAMMING

applica.tions of T, Ret x is abbreviated by x, Add x by ? and Del x by t'". The partial

solutions marked with a. cross are those which get discarded from the thinning process.

7C~

7'c H,~H) (iJ'''7'~H)
(t"" ,APHY

(ct ,APR)

('c'T~H) (7~H)(A
/ "" (iJ~lH,PH)(c ",H,UP("'"

('c'T~APH) (~H) (7(H) /~lHH)

('c..c>"A~ (C;;"H,P/ ""'(ct-''c,TH,H) ~
(C'T'ZAPH) (~'PH) (c-;(,TH,H) (~--;It'ClH')

(~A"P/ ""'teA [,H,B) (iJ-.i-1fc,lH,).....~~~.....

(c A ~ "PH) (C A P ,H,H) /(CA ,P H ,1R,)

(C~--;) ,)IcA'XP'It
(C-t7pW"H) .(C~JI1tr ,H,)

'.. (C A --;U,)
(eA Jt I W,,)
(C1":(-jiH,,)

The above structure corresponds to the table used to solve this problem with the sta.nda.rd

algorithm.

One other consideration that is vital in the formal development of imperative programs is

the termination of loops, and this has not yet been addressed.

When performing a. loop lim P, it might be thought that the requirement would be that lim P

is total. Certainly this is necessary, but it is not sufficient. The totality of a relation only says

that it is possible to produce a result, but does not guarante@that a result will be produced.

98 CHAPTER 6. LIMITS AND ALGORITHMS

For this thesis, work on the termination of relationa.lloops has not been investigated. Instead,

in practice, for each indjvidua.l example it has alwa.ys been straightforward to check that the

loop termin3.les, by using the well~known method of variants.

Chapter 7

Further Generalizations

Two generaliza.tions are discu.ssed in this chapter. The first concerns the nse of invariants

to prove that dyna.mic 'Programming and greedy strategies work. The second generaliza.tion

considers the construction of feasible solutions using a more general method tha.n the limit

operator.

7.1 Invariants

In the previous cha.pter, we considered theorems for solving combinatorial optimization prob

lems using dynamic programming and greedy strategies. With the aid of these theorems,

many dynamic programming and greedy algorithms can be proved to be correct, but not all

of them.

This is beca.use these theorems fail to take into account contextual information. When the

execution of an algorithm is in progress, the information available is not merely the knowledge

of which partial solution or solutions are being considered, but also that this algorithm has

been used to reach this stage of the computation. For exa.mple , if a greedy algorithm lim G

is: being used, it is: known that the pa.rtial solution under consideration is in the ra.nge of G-.

The idea of invariants is that they can capture such l:ontextual information. However, it

might be that sud an invariant as ran G- is an awkward corefl.exive to caknlate with, and

we might instead require jU6t a part of the context ran G·. Thus an invariant wiU be a.

coreflexive whkh is maintained throughout the algorithm.

99

100 CHAPTER 7. FURTHER GENERALIZATIONS

7.1.1 G reedy Algorithms

We now incorporate inva.riants into the main greedy theorem: the optimality condition is

altered so that the invariant ca.n be used, a.nd a.n additional condition corresponds to the

maintenan<:e of the invariant. We also require tha.t the invariant be true initially, a.nd thus

the slightly altered. algorithm is now lim G . 1.

Note that by taking I to be id, we obtain the greedy theorem of the previous cha.pter.

Theorem. 7.1.1

Let

M = minR· AlimT

G == minS· AT,

where R is apreorder on the set of completed solutions re.pre~ented by nQtdom T. Let there

exist a corefiezive I such that the following conditions hold:

domT n I ~ domG

G·lr;I·G

G . I· (lim T)' r; (lim T)' . R.

Then

lim G· I ~ M.

Proof

limG·/~M

== {quotient}

limG r; Mil

~ {recursion equation for limits}

no'domG u (MIl)· G r; Mil

== {quotient, union}

noldomG·1 U (Mll)·G·1 r; M

~ {property of coreflexives}

101 7.1. INVARIANTS

notdom G· I U (M I I) . G . I . I (; M

{assumption}<=
notdomG·I U (MITl·I.G·I (; M

{quotient cancella.tion}<=
notdornG·[U M·G·} S; M

{assumption, property of doma.ins}<=
notdomT U M·G·! ~ M

{definition, universal property for minimum}

notdom T u M·G·! ~ limT

1\ (notdomT U M·G·I)· (limT)O s:; R.

The first of th~ inclusions is proved

notdom T U M·G·!

~ {property of coreflexive8}

notdom T U M·e

~ {definitions, universal property for minimum}

notdom T U lim T· T

:::: {recursion equa.tion for limits}

lim T,

and the second i8 proved

(notdom TUM· G· I) . (lim T)O

::: {union}

notdom T· (lim T)O U M· G· I· (lim T)O

{property of limits}

notdomT U M·G·I·(limT)O

G {assumption}

notdomT U M·(limT)o·R

102 CHAPTER 7. FliRTHER GENEllALIZATlOSS

<;; fdpfinition. A-cancellat ion}

noldom T U Tmn R ·3 . R

~ !r{'f1exivity. propC'rty of minimum}

Tlor.(/om T U R· R

S;;; [rpflexivit.y and tran~ilh:ity}

R.

o
\Ve now illustrate the use of invariants with an example.

Example: DarlbcxH"I:i Armngemcn!,s

This {'>:ample concerns the problem of arranging nnmbers (lrOIllJd thC' sect.ors of a

da,rtboard, and it is t.aken from several papers [89, 93, 30J.

It is desired to arrange the numbers arollnd a dartboard in such a \Va...· 10 maximiz<'

the excilemenl of a game of darts played \Ising the board. A playC'r throw~ the sharp

pointed dart.s at the cork board. usually a,ilIling at a pilt'ticIJlar f,CctOI' of tIl(' board.

and the resulting score is determined by which sector the player actually hit.s. Thus

if th{' SKlor aimed at ha.<; a very different nnmber (rom the sector artuall ... hit, this

could he considered exciting.

\Vit h this in mind. we considPT a a measure slIggesl.ed by [30]. The excitement le\'el

of a dartboard is defined to be dIe sums of the squares of the differto'llces between

adjacent sectors of the board.

205
'2 18

9 4

14 13

6

g 10

16 15

2
. 9

3 17

103 ;.1. INVARIANTS

The usoal style of dartboard, as illustrated, does not fare badly with respect to

this measure. Ita acitement level is 2480j however this can be improved upon.

We consider a greedy approach to finding the belt dartboard with n~pect to this

measure.

Note that we will not assume that the numbers to be assigned to the dartboa.rd

are {I ... 20}, nor tha.t they are integral, nor that they are distinct. Indeed.

there exist dartboards which have more numbers and which have duplicates. The

Grimsby board uses the numbers {I ... 28} and the East London or Fives boa.rd uses

lS, 5, 5, 10, 10, 10,15,15,15,20,20, 20r·

First we consider how to represent dartboards (and also partially completed dart

boards). As we are interested in reJation.ships between neighbouring numbers, it

seems reasona.ble to consider contiguous segments (arcs) of a dartboard, a.nd 80 we

will represent an arc of a dartboard as a double-ended list. A dartboard may be

constructed as follows:

([n]*u,n.9) T (zs,105+0,)

(zs * In], os) T (zs, 105 + os),

where the input given is ([], N), N being the bag of numben:; with which the dart

board will be labelled.

In order to consider the excitement of partial and completed dart boards, we define

pezc ad] * zs) = sum (z;p",;'h (squa d(ff) ([d] * z.o, zs))

exc([d]*zs) = pezc([d]*zs*[dj).

The function pexc give> the excitement level of a partial dartboard, and ezc gives

the excitement level for a completed dartboard. Defining the optimality criterion as

(z.o" I j) R (zs" I j) '" exc z.o, ~ <Ie zs"

the problem is specified as min R . A lim T.

To solve this problem using a greedy algorithm we need a comparison relation S to

dictate which choice to make when adding a number at each step. An obvious choice

would be to ma.ximise the partial excitement level of the p058ible arai, and 80 we

take S to be

(UI, f'l81) S (%:82, n82) == pexcUI 2::: pucU2.

Note that this means that G will either choose the largest possible number and add

it to the smaller end of the Me, or will choose the smalleot possible number aad add

it to the la.rger end, depending on which produces the greater difference.

104 CHAPTER 7. FURTHER GENERALIZATIONS

We wiU now try to prove the usual greedy condition G . (lim T)O ~ (lim T) 0 • R.

If G is placing the first number

G 10m T
([nJ, ns) <-- ([], InS + ns) --+ (zs * In] * ys, Ill,

then the nu.mbers can be added in the same order, to give that

limT R
([n], os) I (zs * (n] * ys, 1n<-- (zs * [n] * >s, Ill·

Otherwise, the arc so far is nOR-empty, and let us suppose that (without loss of

generality), the right end of the arc is added to, so tha.t

(,,* [';' .,], os) I
G

(zs* [.;], /',S +ns).

Suppose that Xi is the head of xs * [Zj], that is, the number at the left side of the

arc. Without furthEr loss of generality (as the other case is symmetricaJ), suppose

further that Xi is the minimum of the bag IXi J+ns, so that Xi $ Xj' We can picture

the arc aB

.~ A

'~,
';

We have to consider a completion of (xs * [Xj], lXJr5 + ns) and show that there is a

completion of (xs * [Xj, x.], ns) at least as exciting. Let

limT(" * [.;], /',S + ns) ---+ (rs * zs * (';] * ys * [.,],I D

(note th"'t above, we take that Zk is at the end of the list, but if it had not been, we

could have cyclically rotated the list representing the da.rtboard so that this was the

case). Let XI be the number that has been placed next to Zj, that is, the head of the

list !fa -#- [Xk]; let Zm be the head of zs +I- xs +I- [Zj], that is the number that Zk is next

to. Not.e that X", could be Zi. This can be represented pictorially as

ys

105 7.1. INVARIANTS

We now obtain a. completion of (zs * [x" Xli], na) by flipping the arc ys * [XII], to

obtain the da.rtboard Z8 * zs * [Xj, XII] * reverse ye. This dartboard looks like

Xm :I:/

"

xs~

We now need to show that this dartboard h~ greater excitement than the board

zs * xs * [Xj] "* ys * [Xli]' The only affected neighbours are those at the ends of

the rotated arc, and thus the increase in excitement is ('l:J - z/r)2 + (xm - %1)2 - (Xj

xd" - (XA: - xm)2, which is 2(xl - Z'/I)(x, - xm).

From the choice of XII at the greedy step, Xi :; XI, 60 we need to show that:tm .s: Xj.

This will be true if Xm = Xi, by our assumption that x, .s: Xj. But if nol, then it

appears that we know nothing about X m .

We do actually know something about X m . The greedy step has been performed

at each stage, and thus always either the minimum or maximum of the remaining

numbers is chosen a.t each greedy step. If we had started with the lowest (or highest)

number, this would mean that aJl the numbers ch06en so far are either higher or lower

tha.n aJl of those not yet chosen. This would then give us that at the greedy choice

of %.11, as x;, :$. Xj, %j has to be greater than or equal to all the unchosen n1lmbers at

that stage, including %m, and hence we have %m :$. x].

Thus we take as an invariant 1 = p?, where

P (%8, ns) = Vx E xs • % :$. nns V x 2: UIl.!l

In order to ensure this invariant is maintained after the first step of the algorithm,

we need to adjust the comparison relation. The first number to be selected ca.n either

be the maximum or minimum of the available uumbers, and we a.rbitrarily choose

the minimum:

(xs" nS]) S' (xs" ns,), if (ZSl, "",) S (xs" n.,)

([<J, "",) S' ([y], ns,), iI < ~ y.

Maintena.nce of the invariant is easily demonstrated from the argument above, and

tbua the dartboard problem ca.n be solved by tbe a.lgorithm lim (min S' . AT) . I.

The resulting dartboard is the following

106 C'H/l.PTFR I. Fl'RTHER GE.\;"ER.·UIZAT/O;\·S
---._

20 2
19 18

3 4

17 i C

c 6

15 14

7 8

13 12
9 11 10

Someho\\." I do not think l.hif; \\'ill bC"com<.' ~plJlar in public house:;. §

The abovee:o.:amplf' used a Bf,st-Final rondition. There is aLso a lJEtla-Finrll condilion tha.t

can be used with inva.riants, ",,,hid will be U{'ffiollstraled latN in this chapter. It is givcll

belov.-, tog€lhN wit h till' proof of iu; applic",bility:

Lemma 7.1.2 IJ (S n T· J. T") . (lim T)O ~ [lim T)O . n. Ita n

G . J. (lim T)0 ~ (limn" ·R.

Proof

{J' . f . (lim n"

c;:::; {defillitioll, property of coreflexives}

nUll S . A(T . J) . J . (lim T)"

{properlY uf minimum. properlY of corefl<:;>;i\cs}

/lllTl(Sn T·!·T") ".\T· (lim i)"

{dOTll<lins}

mill (S n T· J. T") . .\T· lIoldom 7 (lim n°
u min (S n T· J. 1 ") . :\ T . (Jom T . (InIJ T) 0

~ {universal propC'rt)}

7.1. INVARIANTS	 107

T	 . notdom T· (lim T)O

U min (5 n T· [. TO) . AT . dom T . (Urn T) °

{property of domains}

min (5 n T· [. TO) . AT . TO . (Urn T) °

~ {A-cancellation}

min(5n T·[· TO) ·3· (lim T)O

~ {property of minimnms}

(5 n T· I· T') . (lim Tlo

~	 {assumption}

(lim T)O . R.

o

7.1.2 Dynamic Programming

The incorporation of invariants into the dynamic programming theorem is very similar. This

time, J is a coreflexive operating on sets of partial solutions, rather than on a single partial

solution. Note that by setting [to be the identity relation, we get as a corollary Theorem

6.2.1, the main dynamic programming theorem of the previous chapter.

Theorem 7.1.3

Let

M = minR· AJimT,

when; R is a preorder on the set of completed solutions repn;sented by notdom T, and let D

be a relation and I a corE/lexive such that the following conditions are satisfied:

D . I ~ E\E' sprouts T

dom(T'E) nI ~ domD

D· [r;, [. D

D· 1·3' (limT)O r;, 3' (IimT)o·R

108 CHAPTER 7. FURTHER GENERALIZATIONS

Then

min R . lim D . I . T ~ M.

Proof

Let M' = min R . E lim T. Then

minR·limD·[·T <; M

{definition, existential image}

min R . lim D . I . T <; min R . E lim T . T

~ {monotonicity, definition}

minR· {tmD .J 5; M'

{quotient}

limD <; minR\M'jI

~ {recursion equation for limits}

notdomD U minR\M'jI.D <; minR\M'jI

{universal property for union, quotient}

mtoR . notdom D· I <; M'

/\ min R . min R \M'I I . D . I <; M'

$= {aBSumption, property of domains}

minR . notdom (T· E) ~ M'

/\ minR· minR\M'jf· D· I <; M'

$= {quotient cancellation)

minR· notdom(T 'E) <; M'

f\ M'I[·D·[<; M'

{universal property for minimum}

minR . notdom (T· E) <; Jim T· E

/\ minR·notdom(T·E)·3·(limT)°<;; R

f\ M'I [. D ' [<; Urn T ' E

f\ M'I [, D ' [, 3 ' (lim T)O <; R

109 7.1. INVARIANTS

The first of these inequalities can be shown as follows:

min R . notdom (T . E)

~ {definition of minimum}

E . notdom (T . E)

~ {property of domains}

notdom T· E

~ {property of limits}

lim T· E.

The second inequality proceeds thus

minR· notdom(T·E)· 3· (fimT)O

~ {properly of domains}

min R . 3' notdom T· (lim T)O

{reflexivity, property of minlmum}

R· notdom T . (lim T)<:l

{property of limits}

R· notdom T

~ {property of coreftexives}

R.

The third inequality is shown as follows

M'II· D·I

~ {property of coreflexlves; assumption}

M"jJ· I . D . I

'; {quotient ca.ncellation; assumption}

M' . E\E . sprouts T

<; {definition}

minR· ElimT· E\E' sprout!J T

110	 CHAPTER 7. FURTHER GENERALIZATIONS

~ {definition of minimum}

E	 . E lim T . E\E . sprouts T

{property of membership}

lim T . E . E\E . sprouts T

~ {quotient cancellation}

lim T . E . sprouts T

<; (property of sprouting)

limT· (T'E U E)

{union}

limT·T·E U limT·E

;;; {property of limits; idem potency}

lim T· E,

and the finaJ inequality can be proved as follows:

M·II· D ·I· 3 (limT)'

{property of coreBexives}

WI I . D . I . I . 3 . (lim T)'

~ {assumption}

M'I I . I . D . I . 3 . (lim T)'

;;; {quotient cancellation; assumption}

AI'. 3' (limT)'·R

{definition; existential image; converse}

min R . A(lim T . E) . (lim T . E)O . R

~ {A-cancellation}

l1IinR·3·R

~ {property of minimum, transitivity of preorders}

o

The dynamic programming condition of the above theorem is difficult to prove. The following

lemma provides an easier condition to vNify:

Lemma 7.1.4

If(Sn E·run(spr·l)·3)·(limT)°~ (limT)"·R and spr ~ sproutsT, then

thinS· spr' [. 3' (limT)" t; 3' (limTJ" ·R.

Proof

Let S' = S n E' ron(spr· I) . 3. Then calculate as follows:

thinS· 6pr· [. 3· (limT)O

{property of range}

th1'n S . ron (spr -J) . spr . [. :;I • (lim T)0

~ {claim}

thin S' . spr· [. 3 . (lim T)0

~ {property of corefiexives}

thin S' . apr . 3 . (lim T)"

~ {claim}

thinS', (, U ,/"AT,domT)· (limT)O

~ {definition of thinning}

('·S')/3 ,(, U '/3,AT,domT),(l;mT)O

r; {union, quotient cancellation}

" S', (/imT)O

U (3· S')/" AT, dom T· (lim T)0

= {property of limits}

,. S', (limT)O

U (" S')/" AT, yo ,(lim T)0

112 CHAPTER 7. FURTHER GENERALIZATIONS

{A-cancellation, quotient cancellation}

:;1·5' . (lim T)O U 3· S· . (lim T)O

{ldempolency, assumption}

3· (lim T)0 ·R

The first of the claims is that thin S . ron Q <; thin (5 n E· ran Q . :;I), which from the

definition of thin and properties of quotient is equivalent to the two inequalities

thinS· ran Q <; E\E

thin S . ran Q . 3 ~ 3 . (8 n E' ran Q . 3)

The first of these is trivial from the definition of thin and properties of coreflexives. The

second may be proved as follows:

thiflS, 1'OnQ· 3

{definition of thinning; graphical representation}

(3S)~
{quotient cancellation; composition}

(3'S)/'~ 3
 o
{quotient cancellation}

(3'S)(3~ 3

~

~ {remove edges}

,1
{graphical representation}

0> . (5 n E' mn Q . 0»

The second claim is that

spr . 3 ~ 3 U 3/3' AT . dam T

and the following derivation proves this:

spr . 3

~ {assumption}

sprouts T . :3

{definition of sprouting}

cup' (ET· PdomT x id) . lunio .:3

{property of set union}

cup' (ET· PdomT x id) . (outr C -3 U oull o ·3)

{union}

cup' (ET·PdomTx id). QutrO-3

U cup· (ET· PdomT x id) . Qutl° ·3

<;; {properties of projections}

cup' DutrO '3 U cup· oua o ·ET· PdomT· 3

~ {property of set union}

0>10> . 0> U 0>10>' ET· PdomT . 0>

~ {quotient cancellation, property of membership}

0> U 0>1'>· ET . 0> • dom T

{function interaction with quotient, property of membership}

114 CHAPTER 7. FURTHER GENERALIZATIONS

~ U 3((3· TO) . 3 . dom T

~ {quotiEnt cancellation}

:;I u 3/To. dom T

{property of A; function interaction with quotient}

3 U 3(3 . AT . dom T

o

We now consider now invariants can be used in dynamic programming. One important use is

their role in data refinement to improve algorithmic efficiency. By retaining extra information

about the partial solutions, unnecessary calculation cau be avoided, and iuvariants can be

used to show that these refinements are correi:t.

To illustrate this technique, we consider a simple improvement to One of the problems in the

last chapter:

EZlJmple: The String Edit Problem

Recall tne Stri!1g Edit problem mentioned earlier, where it is desired to transform

one string into another using as few edit operations as possible. The list of possible

edit OPErations was constructed using the following constructor relation

(es*[Retc],u,v) T (es,c:u,c:v)

(es*[Addc],u,v) T (es,u,c:v)

(es * (Del c]' 1.1, v) T (es, c: 1.1, v),

and the optimality criterion was

(".,[],[])R«",,[j,[]) ;: #<s, 5 #<",.

The comparison relation for performing the thinning was the following

(eSl,u,v)S(es2'U,V), if #esl:S #eS2,

and the sprouting strategy was to sprout the least developed partial solutions, that

is, those with the largest #1.1 + #v.

The comparison #esl :S #es2 and the computation #1.1 +#v both take linear time

and are unnecessary. We can add two extra variables to the partial solutions: one to

maintain the length of the edit operations so far, and one to maintain the combined

length of the remaining inputs. Thus the constructor relation is altered to

(es-tt-[Retcl,k+l,u,v,1-2) T' (es,k,c;u,c:v,l)

("-iI-[Addc],k+l,u,v,l-l) T' (",k,u,c:v,l)

(es-tt-[Delc},k+l,u,v,l-l) T' (es,k,c:u,v,l),

the optimaJity criterion can be a.ltered to

(""k"[],[],O)R(,,>,k,,[],[],O),, k,,; k"

and the inpu t is now ([1, 0, W8I, 1lJS2, #WSI + # W8z) , for input words W81 and W8Z.

[f we define I = Pp?, where

p(<s,k,u,v,lj = (k = #" A 1= #u+#v),

then the new comparison relation S'

(e81' k., u, v,l) S' (esz, k2 , u, v,l), if k1 :5 ~

can easily be shown to satisfy the required condition, using the same argument as

before, and thus dynamic programming is applicable.

The set of partial solutions can be kept as a list in increasing order of 1, then #u.

Sprouting is performed on those partia.l solutions with smaJlest 1, thD6e at the front

of the list. The results of the sprouting are then merged with the rest of the list,

thinning out un necessary solutions at the same time. If the input words are of lengths

m and n, this results in a O(mn) algorithm. §

7.2 Beyond the Limits

Up to this point, a limit operator has been used to generate feasible solutions to optimization

problems. Limits ha.ve the form

notdom T· T·,

and thus feasible solutions are precisely thD6e not in the domain of T. Expressed pictorially,

the feasible solutions are those at the leaves of the tree-like space of partiaJ solutiol'ls, obtained

from applying T to the input in all possible ways:

116 CHAPTER 7. FURTHER GENERALiZATIONS

This methodof generating feasible solutions is very general, but not applicable to all problems.

It may be tha.t not all the completed solutions (leaves of the tree) are feasible solutions to th.e

problem, or alternatively it might be that some partial solutions are also feasible solutions

to the problem. For example, if the problem required all paths in it. graph, and T was the

relation adding it. single edge onto the end of a path, then all partial paUl.s would also be

feasible solutions.

Thus we now consider the following more general method of generating feasible solutions:

p? . T",

where p is the predicate representing feasibility of a solution.

In fact, problems using such it. generator have already been considered. Recall the Marbles

Problem, for which a feasible solution was a bag of pairs of differently-coloured marbles,

together with possibly some left-over marbles. Earlier, we kept pairing marbles until all

possible pairings had been made, but equally, leaving several marbles unpaired would have

been a feaslble solution to th.e problem. The reason we did not pay much attention to this

matter was that one of the objectives was to pair off as many marbles as possible, so it was

known that such uncompleted solutions conld not possibly be optimal.

Let us consider the reverse situation. SUPPQ<ie that a partial feasible solntion to a problem

would provide a better solution than completing it further. Then the generator lim (T.(-.p)?)

that stops a.t the first partial solution satisfying p would suffice. The following theorem gives

conditions under which it is possible to use T· (--.p)? as a constructor relation:

Theorem 7.2.1

Jf the following conditions hold for a preorder R,

p? . T" 0 • p? ~ R

then

min R . A lim (T· (.p)?) ~ min R . A(p?· TT

Proof

minR . Alim(T. (--'p)?) ~ minR· A(p?· T'")

{universal property for minimums}

minR· Al;m(T·(~p)?) \; p?yo

1\ minR.Alim(T·(.p)?).T'"o.p? ~ R

For the first inequation, note that notdom (T· (-,p)?) p? from the second a.&<;umption,

and then

minR· Al;m(T·(~p)?)

~ {universal property for minimums}

lim (T· (~p)?)

==: {definition of limits, above}

p? . (T· (~p)?)'

S;;; {monotonicity of closure}

p? . T·.

The second inequation above is proved as follows:

monR· Al;m(T.(~p)?)' Too .p?

{above}

min R . A (p? (T. (~p)?)") . Too . p?

{claim I

minR· A(p?·(T·(~p)?)")· «T·(~p)?)" u T"· p? (T·(~p)')·)· 'p?

{converse and union}

minR· A(p?·(T.(~p)?)"). (p?·(T.(~p)?)")·

u minR· A(p?·(T·(~p)?)")· (T"·p?(T.(~p)?)")·'p?

~ {coretlexives, converse}

118 CHAPTER 7 FURTHER GENERALIZATIONS

mooR· A (p?' (T· (~p)?)") . (p? (T· (~p)?)T

U min R . A (p? (T· (~p)?)") . (p? (T· (~p)?)T . p? . T"· . p?

~ {A~cancella.tion}

minR'3 U minR·3-p?·T*<:>·p:

<; (property of minimum)

R u R· p? . T* <:> • p?

<; {assumption, transitivity}

R.

The cla.im above was that

yo ,; (T. (~p)?)" u T"· p? . (T· (~p)?r.

Inclusion ofthe above reflexive transitive closure can be shown by reflexivity and transitivity

of the right-hand side of the inequation, together with inclusion of T. Firstly the inclusion

of T:

T

::::: {property of coreflexives}

T·(~p)? U T·p?·id

~ {properties of closure}

(T·(~p)?)" u T" 'p?' (T.(~p)?)",

Reflexivity is proved as follows

id

~ {property of closure)

IT· (~p)?)"

<; {union}

(T·(~p)?)" U T"· p? (T·(~p)?)",

and tramitivity can be shown thlls

«(T. (~p)?)" u T"· p? . (T· (~p)?)")

. (T· (~p)?)" u T"· p? . (T· (~p)?)")

{union}

((To (~p)?)" (To(~p)?)")0

u ((To(~p)?)" T" p? (To(~p)?)")0 0 0

u (T" op? (To(~p)?)' (To(~p)?)")0 0

u (T" p? (To(~p)?)" T" p? (To(~p)?)")0 0 0 0 0

~ {transitivity and monotonicity of closure}

(To(~p)?)"

u (T" yo p? (T 0 (~p)?)")0 0 0

u (T" p? (To (~p)?)")0 0

u (T" p' T" T" p? (To(~p)?)")0 0 0 0 0

~ {transitivity, property of coreflexives}

0 0(To(~p)?)" u yo p? (To(~p)?)"o

o

To illustrate the use of the above theorem, we consider the following example.

Example: Knuth's TEf< problem

This problem is discussed in Knuth's contribution to [53]. A user of the 'IEX- word

processor (which Knuth wrote) sometimes specifies measurements in the user lan

guage, and these are often fractions in decimal, for example o· 254cm. The way 'rEX
stores the fractional part of a number is as an integer multiple of 1/216• As part of

converting between internal and nser representations of a number, Knuth's problem

is to convert a.n integer multiple of 1/216 to the shortest decimal fraction possible.

Expressing this mathematically, let convert be a catamorphism over cons lists that

converts a decimal fraction (list of digits) to real numbers in [0,1),

convert = {zero,fD

[(d,z) = (d+z)/IO

and thus the integral representation of a decimal fraction is given by the function

rounds:

rounds x l(convert x) x 216 + 1/2J

120 CHAPTER 7. FURTHER GENERALIZATIONS

Using the following definitions

xRy ¢::} #z $ #Y

,*[dJTx, if dE {O ... 9}

ok z = (rounds x = i),

the problem of finding the sh.ortest decimal to express ij216
, where i is an integer in

the range 0 S i < 216, can be expressed as

minR· A(ok?· r·)

with input [].

In order to solve this problem, we first check the conditions for Theorem 7.2.1. The

first condition, that

ok?· T- o ·ok? ~ R

follows easily from the inclusion TO ~ R, which is a mathematical translation of the

fact that adding digits to a list makes the list longer. The second condition follows

from the observation that notdQrn T = 0. Thus Theorem 7.2.1 says that we can use

the usual theorems involving limits to try and solve the problem

minR· AlimT',

where T ::= T· (...,ok)?

We will aim to find a greedy solution to this problem, and thus need a preorder S

which dictates which digit to choose at each stage. Clearly S should prefer choosing

partiaJ solutions which can lead to a correct approximation for i/2 16 , and thus we

define

leas z = (3 y. rounds z -#- y = i).

If there is more than one possible digit that could be added, a sensible choice would

seem to be the larger, on the grounds that 0.5 is a shorter decimal than 0.49999.

Thus we define

'* [d,J S x * [<I,J, if lea' (x * [dtll A ~(feQS (x * (d,J))

x * [d,] S x * [d,J, if lea' (x -tt- [dID A leas (x * [d,D A d, ~ <I,

To use the greedy algorithm, we note that if we maintain the invariant J = leas?,

then dom G == dam T n J and so we only need to show the greedy condition of

Lemma 7.L2 holds, namely

(SnT·J·T O
). T'·o .ok? ~ T'.o -ok?· R.

Let

SnT·/·TO !·T' nlr"
r-++-[d,j I r-++-[d,] I . r-++-[d,]-++-d"

As ok (x -H- (d2l -#- dB) holds, x-#-[~l is feasible; thus from the definition of S, x * [dd
is also feasible and we have that d1 ~ dz•

From the feasibility of x -#- [d}] and the definition of rounds we have that

rounds (x -#- [dd) 'S i. Furthermore, rounds is monotonic with respect to the lex

icographic ordering on decimal fractions, and so i = rounds(x -#- [d21-#- ds) :S
rounds(x -#- [dID. Hence ok (x -#- [dd) holds, and so

T' ... ·oH R
r-++-[d.] , r -++- [d,j t-- r -++- [d,] -++- d,

Thus the greedy algorithm lim (min S . A(T· (-..,p)?) . [solves this problem.

The above algorithm can be imprOVed upon, to reduce the cost of performing the

greedy step. We will borrow some ideas from Knuth [53] and Bird (8] to formulate a

new and improved invariant: two integers (J, and b are added to each partial solution,

and these num bers will act as pointers to the range of real numbers that the current

solution could be completed to. Our new invariant [' is

feas x 1\ ('rids. rounds(x * ds) =1 == a:5 217 x COfwert ds < b)

To initialize the invariant, we have that x is empty initially and so from the following

calculation

rounds ([] -++- de)

{definition of rounds}

[(coneen d,) X2" +1/2J = ;

{definition of floor}

i:5	 (convertds)x2 16 +1/2<i+1

{arithmetic}

2i - 1:$ (convert ds) x 217 < 21 + 1,

the initial input is deduced to be ([], 2i - 1, 2i + 1).

The termination condition for (x, a, b), is ok x, and this can be simplified using the

invariant.	 First note that the invariant implies that b > 0, and then

ok.

122 CHAPTER 7. FURTHER GENER.4LIZATIONS

~ {definition}

rotJnd.s x == i

- {invariant}

a :'S: 217 X convert[] < b

-
 {arithmetic}

a::; 0 < b

~ {above}

aSO

We can use the lllvariant to simplify the greedy step, which selects the maximum

digit to append to z such that feas (x -#- [d]) at each stage. Thus we calculate

fea, (x 1+- [d])

{definition}

3y. rounds(z1+-[dJ1+-y)

{inva.riant}

3y. as 217 x convert ((d] * y) < b

"'" {definition of convert}

3 y • lOa - ZITd :$ convert y < lab - 217d,

and this step dictates how to maintain the invariant for the next step. For the choice

of the digit d, We continue the calculation, noting that 0 ::; convert y < 1 for any y:

217d3 y • lOa - 217 d ::; oonvert y < lOb

{arithmetic}

3 Y • IOa/2 IT
:::; d + convert y < lOb/2 17

{above}

lOaj2 17
- 1 < d < 10b/21T

Note that if 10b/2 1T is non-integral, we can lake d to be llOb/217J. It can be easily

shown tha.t if the two conditions that b is an odd multiple of 2#% a.nd #~ < 16 are

added into the invaria.nt, these conditions a.re maintained, and so 10b/217 is indeed

nOll-integral.

123 7.2. BEYOND THE LIMITS

This results in the following rompact progra.m

x,o,b := []'2i-l,2i+l;

while a> 0 do

d := [1 06/2"J;

x,a,b:= x*[dj, lOa-2 11 d, lOb-2 17 d

end

Chapter 8

Conclusions

We conclude by first summarizing the work contained in this thesis. In subsequent sections,

different aspects of the theory are evalualed and discussed within the context of other work

in the area.

8.1 Summary

A calculus of relations is used to specify optimization problems in the following form:

M =- minR· Alim T.

The limit operator is used to specify and construct feasible solutions to optimization problems.

This is a gen.eralizing of earlier work which generated feasible solutions using catamorphisrns

and anamorphisms.

The specification was refined in the following way to yield an abstract algorithm using the

dynamic programming strategy

rninR ·limD· 'r ~ M,

where D is the dynamic programming step modelled as D ~ thin 5 . sprouts T. This

refinement holds under certain conditions (including one for monotonicity) on the relations

S a.nd T.

A further refinement gives a greedy algorithm:

lirnG ~ minR· limD· T ~ M.

124

The greedy step is G === minS AT, and this refinement (an alternative way of proving

Theorem 7.1.1) uses the fact that taking just one best partial solution using min S is a

refinement of thinning using thin S. The refinement holds under certain conditions on S

and T: the relation S must be connected to ensure that a minimum can be taken, and

an optimality condition must hold on Sand T. Four different optimality conditions were

considered, namely the Better- Local, Best-Local, Better-Final and Best-Final conditions.

Additional contributions include further generalizations: invariants were introduced, and

different ways of generating feasible solutions were considered. Also presented was the graph

calculus, a useful proof tool for equational proofs in the relational and other calculi.

8.2 Dynamic Programming

The dynamic programming model presented in this work is very different from lhe standard

models. Here the dynamic programming step D is modelled as

D ~ thin S . sprouts T.

This corresponds well to some dynamic programming methods, such as those which retain a

set of partial soluti01ls, for example the staudard solution to the 0-1 Knapsack problem. How

ever, many dynamic programming methods are expressed in terms of solving sub-problems,

and then tabulation or memoization avoids unnecessary duplication of computation.

With this model, the structure of the problem has disappeared into the construction relation

T. There is no longer a notion of a sub- problem, nor of a table of results. The table of re.sults

is an embedding into the space of partial solutions, and it can be seen more dearly when

looking at precisely the partial solutions which are dealt with in the course of the compu tat ion

of the algorithm. The relationships between them detail the relationships used to construct

the table.

In the standard models, dynamic programming proceeds by noting that two problems both

reqnire a solution to the same sub-problem. Then the sub-problem is solved once, and the

result used for both problems. Within this model, a different approach is taken: the two

problems (or rather, partial solutions which contain the two problems) are analy5ed. to see

which is better with respect to S, then the worse one is discarded, and then the better one

is retained for the solving of the sub-problem.

Another view of looking at this style of dynamic programming is in terms of searching the

tree-like space of partial solutions. The approach using catamorphisms is like a breadth-first

search, and using anamorphisms is like a depth-first search.

126 CHAPTER 8. CONCLUSIONS

There are several dis~va.nta.ges with the approach to dynamic programming presented in

this thesis. By generalizing to include both catamorphic and anamorphic approaches in one

theorem, the theory is ne(:essarily milch more abstract, and thus further away from concrete

algorithms. Theex:amples given have demonstrated that the dynamic programming approat::h

is applicable, but specific algorithms were uot given. There are many ways of implementing

the dynamic programming step D, and there is more creativeness and planning yet to do

before a program is reached. The combination of the more general nature of the sprouting

and thinning mechanism and the choice of which partial solutions to sprout next can lead to

mOTe unusual algorithms, for example see the Paragraph Formatting problem.

Another disadvantage of this style of programming occurs with certain problems which !Iave

tree datatypes in their partial solutions. For these, the struct.ures of the partial solutions are

more complicated and so it is more difficult to plan a good method of doing thinning and

sprouting, or rven a suitably efficient method.

In summary, this theory provides a fresh context from which to view dynamic programming,

and suggests some alternative dynamic programming algorithms for some problems, although

the method is very abstract, and not all dynamic programming problems fit straightforwacdly

into the theory.

8.3 Greedy Algorithms

The presented relational paradigm for the greedy step captures the essence of greedy algo

rithms and in practice, every greedy algorithm I have seen has fitted into this structure. The

main difference between the work presented in this thesis and other work on greedy algorithms

is that others have concentrated on the structure of problems for which the greedy algorithm

fits. Here the structure is abstracted away from and it is hidden inside the construction

relation T

The use of relations offers many advantages. Many models of greedy structures use cost

functions to compare completed solutions. Cost functions are applicable to many problems,

but not all. Some problems naturally use a relation for their specification, such as the

Lexicographically Least Subsequence, and thus relations are a better model for optimality

criteria.

Helman's work in [40} aJso uses relations for optimality criteria in problem instances, called

domincJrlct: relations in his terminology. To compute the best local choice at each stage he

uses the concept of computationally feasible dominance ~lations, which correspond to min S

in the greedy step above. 'the condition on computationally fe~ible domina.nce relations for

the greedy algorithm to work corresponds to the Be!Jt-Local condition of this thesis. Helman

also considers a free algebra, which is more general than the usual matroid sets or greedoid

strings, although less general than our framework.

Comparing our model with greedoids, which are hereditary sequence systems with an ex

change property, the relational framework presented here ca.n be used to generalize greedoids.

If the hereditary language of the greedoid is (, then the construction relation T is

z * [al T x, ;f z, z * [aJ E £,

and then A lim T applied to the input [] ret urns the language (. Not all greedoids are greedy

structures, nor are greedy structures all greedoids, but those greedoids for which the greedy

algorithm works can be rephrased in the relational format presented in this thesis.

One fresh contribution to greedy theory is the analysis of the optimality conditions for the

greedy algorithm to work. Ever since greedy algorithms were first used, the four optimality

conditions presented here ha.ve all been used to prove that greedy algorithms work. However

their collection together in this thesis and the analysis of their relationships is new.

Also, in relation to the work of Bird and de Moor, optimization problems that can be naturally

expressed using anamorphisms can uow be solved using the easier local optimality conditions.

Similarly the optimization problems which can be naturally expressed using catamorphisms

ca.n now be solved using the final optimality conditions (impossible using Bird and de Moor's

theorems).

'the gathering together of the different types of greedy algorithms under the auspices of one

theorem provideti an elegant simple theory of greedy algorithms.

8.4 The Lindt Operator

The limit opera.tor is a simple relational model of a loop. Within this thesis, loops have been

used to model the part of a specification that constructs a completed solution from the input.

They have also been used to model the computation of an. optimal solution, whether through

the repetition of a greedy step, or a dynamic programming step.

The loop is an integral imperative programming construct, and the lim operator is an elegant

and precise way to model it using relations. This is a different treatment from that usually

given to loops. Impecative progra.ms are nsually modelled as predicate transformern, rather

tha.n relations.

128 CHAPTER 8. CONCLUSIONS

The use of invariants is a further link to the imperative programming style. This is not a

surprising development, as it is reasonable that the correctness proofs of some algorithms

might require the context of a computation to be takeJl into account.

A further use for invariants in this thesis was to improve efficlency by adding extra variables to

the partial solutions, in order to retaiD more information. This use of an invariant corresponds

to the idea of llsing a coupling invariant to perform data refinement of imperative programs,

for example SEe Morgan [77].

8.5 Limits and Catamorphisms

In this thesis. it has been demonstrated that limits are a generalization of catamorphisms.

This is not merely a theoretical result, as it is very easy in practice to generate feasible

solutions to a. problem using limits, and in particular there are problems for which using a

catamorphism is a.wkward or impossible. This is reflected in the selection of sample problems

throughout the thesis.

As limits are more general, their use allows greater freedom in the constrnction of feasible

solutions to a problem. Indeed this freedom in the case of the Rally Driver problem led to

the discovery of a simple greedy algorithm to solve it, after the problem had been attacked

for some yea.rs with approaches using catamorphisms.

One other important result from the conversion from catamorphisms to limits that has not

yet been mentioned is the potential for parallelism. Rerall that the computation of (Ph was

executed by

finish· lim ((P" U a'h' . notdom Fin 0) . start.

The catamorphism (P" U a']F' does some number of P steps within the structure. If the

structure is a tree, this offers opportunities for parallel execution, a8 (P' U a'h' could be

refined to a function which does a P step at each leaf. This could be executed by a nUll1ber

of parallel processors. Work is underway to construrt a more controlled version of the above

relation that does a fixed amount of computation at each step.

8.6 The Graph Calculus

Thoe gra.ph calculus is a. new method to assist with formal proofs about relational (and other)

formulae. Drawing the structure of relations in a picture is not new. Freyd and Scedrov

[33] used such relational pictures to draw sections of allegories; Brown and Hutton [17] used

similar pictures to draw circuits; researchers into relation algebras draw such pictures to aid

their understanding.

This presentation of such pictures differs from previous presentations in the laws and con

structs that it uses, and that it also applies to more general sequential calculi.

[n practice the graph calculus has proved very useful. Several conjectures in the sequential

and relational calculi were stubborn and did not yield their proofs during several days of

effort using the usual non-pictorial method, and yet on application of the graph calculus, the

proofs appeared within minutes. Often with less difficult proofs, the graph calculus lends

itself very well to straightforward calculation at a whiteboard, and then the proof can be

translated back into a more compact form. It should be mentioned that the graph calculus

is not usually the method of choice as many proofs can be performed perfectly adequately

without pictorial help. However, for those proofs which are difficult, the graph calculus can

provide invaluable assistance.

The only disadvantage of the graph calculus is that it does not always transfer from the

whiteboard to paper so well, and it is more time-consuming to word process.

The reason why the graph calculus is so useful is that it exposes the structure of formulae and

makes it easier to see the correct next step in a proof. It is half-way between the point-free

and point-wise styles of relations. The poiuts can be seen in the picture as vertices, but there

is no cumbersome naming of mnltitudinous"ariables. The same applies to sequential calculi,

in that the points are individual observations, and these can be seen along the edges of the

graph calculus. Unfortunately it is not yet known whether the graph calculus is complete

with respect to either relational points or sequential observations, and this is a topic for

future study.

Bibliography

[1]	 C. J. Aarts, R. C. Ba.ckhouse, P. Hoogendijk, E. Voermans, and J. C. S. P. Vau der

Woude. A relational theory of datatypes. Available via. a.nonymous ftp from

ftp.win.'tue.nl in directory pUb/math .prog. construction, Septem ber 1992.

[2]	 Michael Ba.rr and Cha.rles Wells. Category theory for computing science. Prentice-Hall,

1990.

[3]	 Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[4]	 Richard E. Bellma.n a.nd Stuart E. Dreyfus. Applied Dynamie Progrnmming. Princeton

Univenity Press, 1962.

[5]	 R. S. Bird. The promotion and accumnlation stra.tegies in tra.nsformational program

ming. ACM Transactions on Programming Languages and Systems, 6:487-504, 1984.

[6]	 R. S. Bird. An introduction to the theory of lists. In M. Bmy, editor, Logic of Program

ming and Calculi of Discrete Design, volume 36 of NATO AS! Serie8 F, pages 3-42.

Springer-Verlag, 1987.

[7}	 R. S. Bird. Lectures on constructive functional programming. In M. Broy, editor,

Constructive Methods in Computer Science, volume 55 of NATO AS! Serie8 F, pages

151-218. Springer-Verlag, 1988.

[8]	 R. S. Bird. Two greedy algorithms. Journal of Functional Programming, 2(2):237-244,

1992.

[9]	 R S. Bird and O. de Moor. SolVing optimisation problems with catamorphisms. In

Mathematics of Program Con8truction, volume 669 of Springer Leeture Notes in Com

puter Science, 1993.

[10] R. S. Bird and O. de Moor. The algebra of programming. Book to appear in 1996.

130

131 BIBLIOGRAPHY

[11]	 R. S. Bird and O. de Moor. Between dynamic progra.mming a.nd greedy: Da.ta com

pression. Progra.mming Research Group, II Keble Road, Oxford OXl 3QD, England,

1992.

[12]	 R. S. Bird and O. de Moor. f'rom dynamic programming to greedy algorithms. In

B. Moller, H. Paetsch, and S. Schuma.n, editors, Forma! Program Development. volume

755 of Lecture Notes in Computer Science, pa.ges 43--61, 1993.

[13]	 R.S. Bird a.nd O. de Moor. All monotonic functors are rela.tors. In Proceedings of the

International STOP SlJmmerschool on Constructive Algorithmics, held on Arne/and,

The Netherlands. Utrecht University, September 1992.

[14]	 R.S. Bird and O. de Moor. List partitions. Formal Aspects 0/ Computing, 5(1):61-78,

1993.

[15]	 P. Bonzon. Necessa.ry a.nd sufficient conditions for dynamic programming of combina

torial type. Journal of the ACM, 17(4):675-682, October 1970.

[16}	 Steph.en Brien. A time-interval calculus. In Mathematics of Program Construction,

volume 669 of Lecture Notes in Computer Science. Springer Verlag, 1992.

[17]	 Carolyn Brown and Grah.am Hutton. Categories, allegories and circuit design. In Ninth

Annual IEEE Symposium on Logic In Computer Scienee, pages 372-381,1994.

[18J	 Carolyn Brown and Alan Jeffrey. Allegories of circuits. In Third International Sym

posium, Logical Foundations of Computer Science, volume 813 of Lectur'f Notes in

Computer Science, pages 56--68. Springer-Verlag, 1994.

[19]	 Lena Ch.ang and James F. Korsh.. Canonical coin ch.angiug a.nd greedy solutions. Jour

nalof the Association for Computing Machinery, 23(3):418-422, July 1976.

[20]	 S. K. Ch.ang and A. Gill. Algorith.mic solution of th.e ch.ange-making problem. Journal

of the A eM, 17(1):113-122, January 1970.

[21]	 Thomas H. Cormen, Charles Eric Leiserson, and Ronald L. Rivest. Introduction to

Algon·thrns. MIT Press, Cambridge Mass., 1990.

[22]	 Sh.a.ron Curtis. Partitions revisited. Available by FTP from ftp.comlab.ol.ac.uk in

pub/Documents /tecbpapere/Sbaron.Curtie/parv. pe .gz. Submitted for transfer to

D.Phil 8tatus., 1993.

[23]	 Sha.ron Curtis and Gavin Lowe. A graphical calculus. In Mathemntic~ of Progmm Con

strudion, volume 947 of Leetur'f! Notes in Computer Scienee, pages 214-231. Springer

Verlag, July 1995.

132 BIBLIOGRAPHY

[24]	 Sha.ron Curtis and Gavin Lowe. Proofs with graphs. Science of Computer Programming,

26, 1996.

[25]	 E. V. Denardo. Dynamic Programming - Models and Applieations. Prentice-Hall,

1982.

[26]	 E. W. Dijkstra. The unification of three ca.lculi. In M. Broy, editor, Program De.~ign

Calculi, pages 197-231. Springer Verlag, 1993.

[27]	 E. W. Dijkstra. and W. Feijen. A Mdhod of Programming. Addison and Wesley, 1988.

[28]	 Joseph G. Ecker and Michael Kupferschmid. Introduction to Operations Rescurch. John

Wiley aDd Sons, 1988.

[29]	 Jack Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1:126

136, 19i1.

[30]	 H. A. Eiselt and Gilbert Laporte. A combinatorial optimization problem arising in

da.rtboa.rd design. Journal of the Operations Resf:arch Society of America, 42(2):113

!l8, 1!l91.

[31] Salah E. Elmaghraby. The concept of "state" in discrete dynamic prQgramming. Journal

of Mathematical Analysis and Applications, 29:523-557, 1970,

[32] Maarlen M. Fokkinga. Law and Order in Algon'thmics, PhD thesis, U niver5iteit Twente,

1992.

[33]	 Peter Freyd and Andre Scedrov. Categon'es, Allegon'etJ, Springer Verlag, 1993.

{34J	 Z. GaJil and R. Giancarlo. Speeding up dynamic programming with applicatiQns tQ

mQlecular biology. Theoretical Computer Science, 64:107-118,1989.

[3,5]	 T. Hagino. Category Theoretic Approach to Data TypetJ. PhD thesiB, University Qf

EdiEburgh, 1987.

[36]	 T. Hagino. A typed lambda calculus with categorical type constructors. In D.H.Pitt,

A. Poigne, and D.E.Rydeheard, editors, Category Theory and Computer Science, num

ber 283 in LNCS, pages 140-157. Springer-Verlag, 1988.

[37] Michael Held	 and Richard Karp. A dynamic programming approach to sequencing

problems. SIAM Journal for Applied Mathematics, 10:196--210, 1962.

{38]	 Paul Helma.n. The principle Qf optimality in the design of efficient algorithmB. Journal

of Mathematical Analysis and Applications, 119:97-127, 1986.

[39]	 Paul Helman. A common schema for dynamic programming and branch and bound

algorithms. Joumal of the ACM, 36(1):97-128, January 1989.

[40)	 Paul Helman. A theory of greedy structures based on k-ary dominanc~ relations. Tech

nical Report CS89-1I, Dept. of Computer Science, University of New Mexico, 1989.

[41]	 Paul Helman, Bernard Moret, and Henry Shapiro. An eXa<:t characterization of greedy

structures. SIAM Joumal on Discrete Mathematics, 6(2):274-283, May 1993.

[42]	 Paul Helman and Arnon Rosenthal. A comprehensive model of dynamic programming.

SIAM Journal on Algebraic and Discrete Methods, 6(2), April 1985.

[43}	 C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1995.

(44]	 D. A. Hnffman. A method for the construction of minimum redundancy codes. Pro

ceedings of the IRE. 40:1098-1101, 1952.

[45]	 Graham Hutton. A relational derivation of a functional program.'In Glasgow Workshop

on Functional Programming, 1992.

[46]	 Graham Hutton, Erik Meijer, and Ed Voermans. A tool for relational programmers.

Available from http://wvw.cs.ruu.nl/people/graham/allegories. txt, 1994.

[47]	 T. Ibaraki. Solvable classes of discrete dynamic programming. Joumal of Mathematical

Analysis and Applications, 43:642-693, 1973.

[48]	 V. Jarn[k. 0 jistem problemu minimalnim. Proro Moravske Prirodovedecke Sploecnosti,

6057-63, 1930.

[49]	 Geraint Jones. Designing circuits by calculation. Technical Report PRG-TR-I0-90,

Programming Research Group, II Keble Road, Oxford OXI 3QD, England, 1990.

[50]	 Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinem~llt in Ruby.

In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors, Mathematics of Program

ConstMlction (2nd intemational conferenee, Oxford, UK, June/July 1992), volume 669

of Lecture Notes in Computer Science. pages 208-232, 1993.

[5I] Richard M. Karp and Michael Held. Finjte-stat~ processes and dynamic programming.

SIAM Joumal of Applied Mathematics, 15(3):693-718, May 1967.

(52}	 S. Kleene. Representation of events in nerve nets and finite automata. In Shannon and

McCarthy, editors, Automata Studies, pages 3-42. Princeton University Press. 1956.

[53]	 D. E. Knuth. A simple program whose proof isn't. In Beauty is our Business. Springer

Verlag, New York, 1990.

134 BIBLIOGRAPH\'

[54]	 D. E. Knuth and M. F. Plass. Brea.king paragraphs into lines. So!twarf; - Proctil'£

and ezperience, pages 1119 - 1184, 1981.

[55) Bernhard Korte and	 L. Lovasz. Mathematical structures underlying greedy algorithms.

In Fundamentals of Computation Theory, volume 117 of Lecture Notes in Computer

Science, pages 205-209. Springer-Verlag, 1981.

[56]	 Bernhard Korte and L. LOV3sZ. Greedoicls and linear objective functions. SIAM Journal

on Algebraic and Discrete Methods, 5:229-238, 1984.

[57]	 Befllhard Korte, L. Lovasz, and Rainer Schrader. Greedoids. Springer-Verlag, 1991.

[58J	 J. Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrijt, 103,

1968.

[59]	 V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.

Soviet Physics-Doklady, 10(8):707-710, February 1966.

[60]	 R. C. Lyndon. The representation of relational algebras. Annals of Mathematics,

51:707-729,1950.

[61]	 R. C. Lyndon. The representation of relational algebras, II. Annals of Mathematics,

63:294-307,1956.

[62] Roger D. Maddux.	 Topics in Relation Algebras. PhD thesis, University of California,

Berkeley, 1978.

[63] Roger	 D. Maddux. Some varieties containing relation algebras. Ihmsactions of the

American Mathematical Society, 272:501-526, 1982.

[64] Roger D. Maddux.	 The origin of relation algebras in the development and axiomatiza

tion of the calculus of relations. Studia Logica, 50:421-455, 1991.

[65]	 G. R. Malcolm. Algebraic Data Types and Progmm Tronsfonnation. PhD thesis,

Groningen University, 1990.

[66] Ralph	 N. W. McKenzie. The representation of relation algebms. PhD thesis, University

of Colorado, 1966.

[67] Ralph	 N. W. McKenzie. The representation of integra.! relation algebras. Michigan

Mathematical Journal, 17:279-287, 1970.

[68]	 La.mbert Meertens. First steps towards the theory of rose trees. CWI, 1987.

135 BIBLIOGRAPHY

(69]	 Lambert Meertens. Algorithmics (towards programming as a mathematica.l activity).

In Proceedings 0/ the CWI Symposium. North-Holland, November 1993.

[70]	 B. Moller. Algebra.ic ca.lcnlation of graph and sorting a.lgorithms. Technical Report

286, Vntven;iUi.t Augsburg, Institut rUr mathematik, 1993.

[71)	 B. Moller. Derivation of graph and pointer algorithms. Technical Report 280, Vniver

sitat Augsburg, lnstitut fUr mathematik, 1993.

(72]	 B. Moller. Towards pointer a.lgebra. Technical Report 279, Universitiit Augsburg,

Institut rur mathematik, 1993.

[73]	 B. MoHer and M. Russling. Shorter paths to graph algorithms. Seience of Computer

Progmmming, 22:157-180, 1994.

[74]	 O. de Moor. Categories, relations and dynamic programming. D.Phil. theois. Technical

Monograph PRG-98, Computing Laboratory, Oxford, 1992.

[75]	 B. M. E. Moret and H. D. Shapiro. Algon'thms from P to IVP. Benjamin/Cummings,

Redwood City, 1991.

176J	 AUgU6tus de Morgan. On the Syllogism, and Other Logical Writings. Yale University

Press, 1966.

[77}	 Carroll Morgan. Programming From Specijication8. Prentice-Hall, second edition, 1994.

[78]	 T. L. Morin. Monotonicity and the principle of optimality. Journal of Mathe.matical

Ana/ysi8 and Application8,86:665-674, 1982.

{79] C. S. Peirce. Collected Papers. Harvard University Press, Cambridge, 1933.

[80]	 Benjamin C. Pierce. Basic eategory theory for computer scientist8. MIT Press, 1991.

[81]	 R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Jourflal, 36:1389-1401, 1957.

[82]	 E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial AlgorithJ7l.$ - Theory and

Practice. Prentice-Hall, 1977.

[83]	 Martin Russling. Ha.miltonian sorting. Technica.l Report 270, UniversWit Augsburg,

Institut fUr mathematik, 1992.

[84]	 Martin Russling. A general scheme for breadth-first graph traversal. In Mathematics

of Program Construction, volume 947 of Lecture Note8 in Computer Science, pages

380--398. Springer-Verlag, July 1995.

136 BIBLIOGRAPHY

[85] David Sa.nkoff and Joseph B. Kruskal, editors. Time. warps, string edits and macro

molecllle.~: the theory and practice 0/ sequenee comparnon. Addison-Wesley, Reading,

Mass.. 1983.

[86]	 G. Schmidt and T. Strohlein. Relationen «nd Grnfen. Springer Verlag, 1988.

[87]	 E. Schroder. Vorlesungen uber die Algebra der Logik (Exakle Logik). Dritter Band:

Algebro «rid Logik der Relative. Teubner, Leipzig, 1895.

[88]	 Schwartz. An optimaJ encoding with minimum longest code and total number of digits.

In/ormation and Control, 7(1):37-44, 1964.

[89]	 K. Selkirk. Re-designing the dartboard. The Mathematical Gazette, 60(413):171-178,

1976.

(90]	 M. Sheerau. Describing hardware aJgorithms in Ruby. In A. David, editor, IFIP we
IO./workshop on Concepts and Characteristics of Declarative Systems, Budapest 1988.

North-Holland, 1989.

{91]	 M. Sheeran. Categories for the working hardware designer. In M. Leeser and G. Brown,

editors, Workshop on Hardware Specification, ·Verification and Synthesis: Mathematical

Aspects. Cornell University 1989, volume 408 of Lecture Notes in Computer Science,

pages 38Q---402. Springer-Verlag, 1990.

[92]	 Yu. A. Shreider. Automata and the problem of dynamic programming. Problems of

Cybemetic.~p .'):31-48, 1961.

[93]	 David Singmaster. Arranging a dartboa.rd. Bulletin of the Institute of Mathematics

and its Applications, 16:93-97, April 1980.

[94]	 M. Sniedovich. A new look a.t Bellman's principle of optimality. Journal of Optimization

Theory and Applications, 49(1), April 1986.

[95]	 A. Tarski. On the calculus of relations. Joumal of Symbolic Logic, 6:73-89, 1941.

{96]	 Burghard von Karger and C. A. R. Hoare. Sequential calculus. Infonnation Processing

Leiters, 53:123-130, 1995.

[971	 R. A. Wagner. Common phrases and minimum-space text storage, Communications of

th, ACM, 1973.

[98]	 Robert A. Wagner and Michael J. Fisher. The string-to-string correction problem.

Joumal of the Association for Computing Machinery, 21 (1):168-173, January 1974.

[99]	 Hassler Whitney. On the abstract properties of linear dependence. American Journal

of Mathematics, 57:509-533, 1935.

[100]	 J. W. Wright. The change-making problem. Journal of the ACM. 22(1):125-128,

January 1975.

[101]	 Chaochen Zhou, C. A. R. Hoare, and Anders P. Ravn. A calculus of durations. Infor.

mation Processing Letters, 40:269-276, 1992.

