
Regular Repair of Specifications
Michael Benedikt
Oxford University

michael.benedikt@comlab.ox.ac.uk

Gabriele Puppis
Oxford University

gabriele.puppis@comlab.ox.ac.uk

Cristian Riveros
Oxford University

cristian.riveros@comlab.ox.ac.uk

Abstract—What do you do if a computational object (e.g.
program trace) fails a specification? An obvious approach is to
perform repair: modify the object minimally to get something
that satisfies the constraints. In this paper we study repair
of temporal constraints, given as automata or temporal logic
formulas. We focus on determining the number of repairs that
must be applied to a word satisfying a given input constraint in
order to ensure that it satisfies a given target constraint. This
number may well be unbounded; one of our main contributions
is to isolate the complexity of the “bounded repair problem”,
based on a characterization of the pairs of regular languages
that admit such a repair. We consider this in the setting where
the repair strategy is unconstrained and also when the strategy
is restricted to use finite memory. Although the streaming setting
is quite different from the general setting, we find that there are
surprising connections between streaming and non-streaming, as
well as within variants of the streaming problem.

I. INTRODUCTION

When a computational object does not satisfy a specifica-
tion, an obvious approach is to repair it – edit it minimally
so that it becomes valid. We may want to perform this editing
transformation on the object, or we may be merely interested
in knowing how difficult it would be to perform – that is,
determining how far a given object or collection of objects is
from satisfying the specification. In the database community,
this has been extensively studied under the notion of constraint
repair (see e.g. [1], [2]): the specifications considered there are
relational integrity constraints, such as keys and foreign keys,
and the problems considered include determining how much
a database needs to be modified in order to satisfy a given
constraint.

Here we initiate the study of repair for temporal constraints
on words. The notion of repairing a word is indeed more
obvious than in the case of databases: we can simply consider
the edit distance between strings, a standard measure of how
many basic operations it takes to get from one string to
the next. Edit distance is lifted in a natural way to give a
measure dist(w,L) of the distance of a string w to a language
(collection of strings) L: the minimal distance of w to any
string in L. It is well-known [3] that the standard dynamic
programming approach to edit distance extends to give an
efficient algorithm for calculating dist(w,L) when L is a
regular language given as an NFA.

In this work we take the next step and consider a “distance”
between languages – given languages R and T (specified
in different ways) we aim to calculate how difficult it is to
transform a string satisfying R into a string satisfying T . The
notation is motivated by considering R to be a restriction —

a constraint that the input is guaranteed to satisfied – while T
is a target – a constraint that we want to enforce. We consider
the worst-case over a string w ∈ R of the number of edit
operations needed to move w into T : supw∈R dist(w, T). That
is, we look at the worst-case number of operations needed to
get from R to T . Of course, this number may be infinite; the
core of our results is a procedure for solving the bounded
repair problem – determining whether the supremum above
is finite. In order to compute this effectively, we need to
restrict the languages R and T . We consider this problem
for regular languages, presented by both deterministic and
non-deterministic finite automata. We also consider languages
specified by linear temporal logic. In all these cases we
determine the complexity of the bounded repair problem.

Above we considered the use of an edit/correction function
that can read the whole string in memory. In this work we
consider the impact of limitations on the editing process –
what happens when we require the editing to be done by a
transducer, reading in the input letter-by-letter and producing
the corrected output, based only on a finite amount of control
state and a fixed amount of lookahead in the word. We refer to
this as a streaming repair processor. We isolate the complexity
of the streaming repair problem for any lookahead and for any
of the language classes considered in the non-streaming case.

The above deals with the problem of determining whether
the distance between two specifications is finite or infinite.
But in the finite case, we may want to compute this distance
exactly, and to produce the processor that optimally edits a
given specification. Note that in the non-streaming setting, it is
easy to describe the optimal processor: it is simply the function
that given a word w runs a dynamic-programming algorithm to
compute the edit distance to the target (e.g. the algorithm from
[3] in the case of NFAs). However, in the streaming setting
it is not clear how to derive the optimal editing algorithm
efficiently. We give results on the complexity of computing
the exact bound when it is finite in both the streaming and
non-streaming setting, and also give procedures for computing
the optimal processor in the streaming setting.

The streaming and non-streaming repair problems have very
different flavors: the former are closely related to games
played on the components of an automata, while the latter
require a more global analysis, and exhibit a close relation to
distance automata. However, there are connections between
the different problems: we show that in the case where there
is no restriction, the bounded repair problems are the same for
both the streaming and non-streaming setting. We also show

that the bounded repair problem in the streaming setting is
independent of the lookahead, and is robust under plausible
alternative definitions.

In summary our contributions are:
• We formalize the bounded repair problem for languages

and characterize when regular languages have bounded
repair, in both the streaming and non-streaming setting.

• We show that the bounded repair problem in the stream-
ing setting is independent of the lookahead, and is robust
under variants of the cost function.

• Using the characterizations above, we give results on the
complexity of the bounded repair problem in each setting.

• We present results on the complexity of computing the
optimal bound, and on computing the optimal strategy in
the streaming case.

• We demonstrate special cases where the streaming and
non-streaming bounded repair problems have the same
solution.

Organization: Section II gives preliminaries, while Section
III defines the basic problems and shows some connections
with games and distance automata. Section IV gives the
characterizations of bounded repair that we will use throughout
the remainder. Section V studies the non-streaming case, while
Section VI deals with the streaming case. Section VIII briefly
discusses extensions to infinite words, while Section IX gives
related work and conclusions. Proofs are in the full paper.

II. BASIC NOTATION AND TERMINOLOGY

Let Σ be a finite alphabet and Σ∗ be the set of finite words
over Σ. We denote the empty word by ε and the length of a
word w ∈ Σ∗ by |w|.

Automata. Non-deterministic finite state automata (shortly,
NFA) will be represented by tuples of the form A =
(Σ, Q,E, I, F), where Σ is a finite alphabet, Q is a finite set of
states, E ⊆ Q×Σ×Q is a transition relation, and I, F ⊆ Q
are sets of initial and final states. By L (A) we denote the
language recognized by A. If A is a deterministic finite state
automaton (DFA), then we usually denote the unique initial
state by q0 and turn its transition relation E into a partial
function δ from Q × Σ∗ to Q defined by δ(q, ε) = q and
δ(q, a · u) = δ(q′, u) iff (q, a, q′) ∈ E. For technical reasons,
we assume that all states of an NFA are reachable from some
initial state and from all states a final state is reachable. It
is worth noticing that, since the decision problems we are
going to deal with are at least NLOGSPACE-hard and since
any given automaton can be pruned using NLOGSPACE, this
assumption will have no impact on our complexity results.

Since automata can be viewed as directed (labeled) graphs,
we inherit the standard definitions and constructions in graph
theory. In particular, given an NFA A = (Σ, Q,E, I, F) and
a state q ∈ Q, we denote by C(q) the strongly connected com-
ponent (shortly, SCC) of A that contains all states mutually
reachable from q. Given a set C of states of A (e.g., a SCC),
we denote by A|C the automaton obtained by restricting A to
the set C and by letting the new initial and final states be all

and only the states in C. Note that if C consists of a single
transient state, then the language L (A|C) recognized by the
subautomaton A|C is empty. Finally, we denote by dag(A)
the directed acyclic (unlabeled) graph of the SCCs of A and
by dag∗(A) the graph obtained from the transitive closure of
the edges of dag(A).

Transducers. A (letter-to-word sequential) transducer is a
device of the form S = (Σ,∆, Q, δ, q0,Ω), where Σ is a finite
input alphabet, ∆ is a finite output alphabet, Q is a finite set
of states, δ is a transition function from Q × Σ to ∆∗ × Q,
q0 is an initial state, and Ω is a final output function from Q
to ∆∗. For every input word u = a1 . . . an ∈ Σ∗, there is one
run of S of the form q0

a1/v1−−→ q1
a2/v2−−→ . . .

an/vn−−→ qn
ε/vn+1−−→ , with

δ(qi, ai+1) = (vi+1, qi+1) for all 0 ≤ i < n and Ω(qn) =
vn+1; in this case, we define the output of S on u to be the
word S(u) = v1v2 . . . vnvn+1.

Transducers as above produce an output word immediately
after reading an input character. We will also consider trans-
ducers with a bounded amount of “delay”. A k-lookahead
transducer, with k ∈ N, is defined as a sequential transducer
where the transition function δ now has input in Q×Σ×(Σ⊥)k

with Σ⊥ = Σ ∪ {⊥} and ⊥ 6∈ Σ. Given an input word u and
a position 1 ≤ i ≤ |u| in it, we denote by −�u i the (k + 1)-
character subword of u ·⊥k that starts at position i and ends at
position i+ k. The output of an k-lookahead transducer S on
an input u of length n is the unique word v = v1v2 . . . vnvn+1

for which there exists a sequence of states q0, ..., qn satisfying
δ(qi,

−�u i) = (vi, qi+1), for all 1 ≤ i ≤ n and Ω(qn) = vn+1.
Clearly, a 0-lookahead transducer is simply a standard (letter-
to-word sequential) transducer.

Logics. In this paper we look at languages defined by
automata, and also consider linear temporal logic LTL, which
uses the modal operators X (next) and U (until), along with
boolean operators. Hereafter, we shall interpret LTL formulas
on finite models only and this requires a careful use of
the modal operators. For instance, the LTL formula Xtrue
does not hold on singleton words. We also assume that the
propositional variables of an LTL formula are precisely the
symbols of the underlying alphabet. This implies that two
different propositional variables can not hold at the same
position in a model.

III. PROBLEM SETTING

Given two finite alphabets Σ and ∆, we denote by dist(u, v)
the Levenshtein distance (henceforth, edit distance) between
two words u ∈ Σ∗ and v ∈ ∆∗, which is defined as the length
of a shortest sequence s of edit operations (e.g., deleting,
modifying, and inserting a single character) that transforms
u into v [4]. A processor is simply a function from Σ∗ to ∆∗.
For a processor f , we refer to dist(u, f(u)) as the cost of f
on the word u. Given a language R ⊆ Σ∗ , we define the
worst-case cost of f over R as the supremum of the cost of
f over all words in R. If the cost is unbounded, then we say
that the worst-case cost is ω.

The general setting of a repair problem consists of two
languages R ⊆ Σ∗ and T ⊆ ∆∗, called the restriction

and target languages, respectively. We would like to repair
a string that is known to belong to the restriction language
into a string in the target language. A processor f is a repair
strategy of R into T if for every word u ∈ R, the output
f(u) is in T . We denote by dist(R, T) the worst-case cost
of an optimal repair strategy of R into T . It is easy to see
that dist(R, T) = supu∈R minv∈T dist(u, v), since the best
strategy is just to output on any u ∈ R the word in T that is
closest to u with respect to the edit distance.

The bounded repair problem is to decide, given languages
R and T , whether dist(R, T) is finite, that is, whether there
is a repair strategy f of R into T and a natural number n ∈ N
such that dist(u, f(u)) ≤ n for all u ∈ R. Similarly, the
threshold problem is to compute the exact value of dist(R, T).
Clearly, the languages R and T must be finitely represented,
for instance, in terms of machines or logical formulas. In this
paper, we study the complexity of the bounded repair problem
for input languages represented by means of the following
formalisms: (i) deterministic finite state automata (DFA), (ii)
non-deterministic finite state automata (NFA), and (iii) LTL
formulas with only future modal operators.

Streaming vs non-streaming. In its most general formula-
tion, a repair strategy could be any function mapping words to
edit words. However, we know from [3] that there is a dynamic
programming algorithm that, given a word u and a target
language T represented by a DFA, computes in polynomial
time an optimal edit sequence s such that s(u) ∈ T . In
particular, this shows that optimal repair strategies can be
described by functions of fairly low complexity. Sometimes
it is desirable to have repair strategies that are in even more
limited classes. Perhaps the ideal case is when a strategy is
realizable with a bounded memory one-pass algorithm, that
is, using a (letter-to-word sequential) transducer. Recall that a
letter-to-word transducer defines a word-to-word function (i.e.,
a processor); if this function is a repair strategy, we refer to the
transducer as a streaming repair strategy. The idea is that any
input word u from a restriction language should be repaired
in an online way. Similarly, we can talk about a k-lookahead
streaming repair strategy.

Accordingly, we define the bounded repair problem in the
(k-lookahead) streaming case as the problem of deciding,
given two languages R and T , whether there is a (k-lookahead)
streaming strategy for repairing R into T with uniformly
bounded cost. To stress the difference between the streaming
and the non-streaming settings, we explicitly refer to the
original problem as the bounded repair problem in the non-
streaming case. The following example, due to Slawomir
Staworko, illustrates the difference between the streaming and
non-streaming setting:

Example 1. Consider R = (a + b)c∗(a+ + b+) and T =
ac∗a+ + bc∗b+. In the non-streaming case, one can get from
R to T by only editing the initial letter and, thus, dist(R, T)
is equal to 1. In contrast, a streaming repair strategy must
decide whether to leave or change the initial letter, and then
it could be forced to repair an unbounded sequence of a or b

after the sequence of c.

Costs in the streaming case. Note that, if we have a
transducer S and a word u = a1 . . . an ∈ Σ∗, then we can
define the cost of S on u in two ways:

• letting q0
a1/v1−−→ q1

a2/v2−−→ . . .
an/vn−−→ qn

ε/vn+1−−→ be the run of
S on u, we define the aggregate cost of S on u to be
the sum over all indices 1 ≤ i ≤ n of dist(ai, vi) and
|vn+1|, where dist(ai, vi) is 1 if vi is empty, |vi| − 1 if
ai occurs in vi, and |vi| otherwise;

• considering the transducer S as a processor, we define
the edit cost of S on u to be simply the edit distance
between u and the output S(u).

The first cost considers the distortions performed in producing
the input from the output – it is equivalent to considering the
transducer as producing edits rather than strings and counting
the number of edits produced. The second cost is global and it
considers only the output and not its production. Clearly, the
last cost never exceeds the aggregate cost.

It is important to notice that these two models of cost can be
very different in general. Consider a transducer S on the input
alphabet Σ = {a, b} that swaps a’s and b’s. On the string un =
(ab)n, the aggregate cost is 2n since S changes each letter,
but the edit cost between u and S(u) is only 2. Nevertheless,
it will turn out that for the bounded repair problem it does not
matter which model of cost we choose (see Theorem 3).

Special cases. We are also interested in a variant of the
bounded repair problem where the restriction language is a
universal language of the form Σ∗. In this case, the input to
the bounded repair problem consists of a restriction alphabet
Σ and a target language T . We refer to this variant of the
bounded repair problem as the unrestricted case.

A. Repair Problems, Automata, and Games

In the case of DFA, both the non-streaming and streaming
problems correspond to special cases of prior problems stud-
ied in automata and games. Non-streaming repair problems
correspond to distance automata, while the streaming variant
corresponds to energy games. We explain the correspondences
in detail now. In both cases, we find that the results for the
more general framework do not give tight bounds.

Non-streaming repairs and distance automata. Intu-
itively, a distance automaton is a transducer D that receives as
input a finite word w and outputs a corresponding cost D(w)
in N∞ = N∪{∞}. Formally, a distance automaton is a trans-
ducer of the form D = (Σ, Q,E, I, F), where Σ is the input
alphabet, Q is a finite set of states, E ⊆ Q×Σ×N∞×Q is the
transition relation, and I, F : Q→ N∞ are the initial and final
cost functions. The cost D(w) on input w = a1 . . . an ∈ Σ∗ is
obtained by taking the minimum among the costs of the runs of
D on w, where the cost of a run q0

a1/c1−−→ q1
a2/c2−−→ . . .

an/cn−−→ qn
is defined as I(q0) +

∑n
i=1 ci + F (qn). We let D(w) =∞ if

D admits no successful run on w.
The main problem that has been studied for distance au-

tomata is the limitedness problem which consists of deciding
whether the cost function computed by a given distance

automaton D is uniformly bounded on all words w ∈ Σ∗

with cost D(w) 6= ∞. This problem was shown decidable
by Hashigushi [5] and later in [6] was shown to be PSPACE-
complete. Distance automata have been related to edit-distance
problems in several prior works – see Section IX for further
discussion of the connections. Here we note only a simple
reduction of the bounded repair problem to limitedness. Given
two NFA R and T , one can construct a distance automaton
D that computes the cost of repairing any word from L (R)
into a word from L (T). Let R = (Σ, Q,E, I, F) and
T = (∆, Q′, E′, I ′, F ′) be two NFA for the restriction and
target languages. First of all, we associate with each symbol
a ∈ Σ a matrix M(a) whose entries M(a)[p, q] are indexed
over the pairs of states p, q of T and give the minimum
edit-distance between the symbol a and a word v ∈ ∆∗

such that T can move from p to q consuming v. If q is
not reachable from p, then we let M(a)[p, q] = ∞. We then
define the distance automaton D as the quadruple (Σ, Q ×
Q′, EM , IM , FM), where EM is the set of all transitions of
the form

(
(p, p′), a, c, (q, q′)

)
, with a ∈ Σ, (p, a, q) ∈ E, and

c = M(a)[p′, q′]. Further, we define IM (p, p′) as the length
of the minimum word from a state in I ′ to p′ if p ∈ I and ∞
otherwise. Similarly, FM (p, p′) is the length of the minimum
word from p′ to a state in F ′ if p ∈ F and ∞ otherwise. It
is easy to see that the cost function computed by D maps a
word u ∈ L (R) (which is accepted by D too) to the cost
of the best non-streaming repair of u into L (T). Moreover,
the distance automaton D has size polynomial in the size of
R and T . Combining this reduction with the PSPACE upper
bound for the limitedness problem, we see that the bounded
repair problem for NFA is in PSPACE.

The same reduction technique can be applied to solve the
bounded repair problem for DFA. In this case, however, the
resulting complexity bound is not optimal: the bounded repair
problem for DFA is in fact in coNP (cf. Corollary 4). Roughly
speaking, the reason why the bounded repair problem for
DFAs is easier than the limitedness problem for distance
automata is that the distance automata emerging from DFA
repair problems are deterministic on the 0-cost moves. In
addition to not giving tight bounds, approaches via distance
automata give less insight into the problems. We invite the
reader, for example, to compare the PSPACE upper bound that
we derive from our characterization of repairability, Theorem
2, with the PSPACE upper bound given in [6].

Streaming repairs and energy games. Just as non-
streaming repair problems can be seen within the framework of
distance automata, bounded repair problems in the streaming
setting are special cases of games on graph with quantitative
objectives. An interesting family of such games is that of en-
ergy games studied in [7], which are played on finite weighted
arenas. The game is played between an energy player, who
wants to mantain the the running sum of the weights (i.e.,
the energy) always positive, and her opponent. A variant of
energy games allows the parameterization by an initial credit
of energy; the higher the credit the more possibility for the
energy player to win.

It is well known that the problem of determining whether
there is a finite initial credit so that the energy player has a
winning strategy is in NP ∩ coNP [8], but the exact complexity
is still unknown. Furthermore, this problem can be solved in
time polynomial in the size of the arena and the largest weight
in absolute value. As a matter of fact, the latter complexity
result implies that energy games can be solved in polynomial
time with respect to the size of the arena provided that the
weights are represented in unary.

One can easily reduce the bounded repair problem in the
streaming setting, under the aggregate cost model for lan-
guages recognized by DFA, to the finite initial credit problem
for energy games. Informally, the choice of the opponent in
the energy game corresponds to the letters emitted by the
restriction, while the edits correspond to choices of the energy
player. Formally, we have a node in the arena for each pair
of states of the restriction DFA R and of the target DFA T
– call this node a “Restriction Player Node”. We also have a
node for each combination of restriction state, target state, and
letter played – call this a “Target Player Node”. The former
represents the states reached by the restriction and target
automata after parsing the unedited and edited words, while
the latter adds the last letter emitted by the restriction. There
is an edge of weight 0 going from a Restriction Player Node
(p, p′) to any Target Player Node (q, p′, a), where (p, a, q) is
a transition of the restriction DFA R. Similarly, there is an
edge of weight −c going from a Target Player Node (q, p′, a)
to a Restriction Player Node (q, q′) provided that there is a
word v at distance c from a (i.e., dist(a, v) = c) such that
T can move from p′ to q′ consuming v. It is important to
observe that this reduction provides a PTIME upper bound to
the complexity of the bounded streaming repair problem for
DFA given that the size of the resulting arena is polynomial
in the size of the restriction and target DFA and, moreover,
the weights are bounded by the size of the target DFA.

Our characterization results (see Theorem 3) give analo-
gous (tight) complexity bounds for languages recognized by
DFA and moreover, prove that the bounded repair problem
in the streaming setting is not sensitive to the models of
aggregate/edit cost. They also provide tight bounds for special
cases of the problem that cannot naturally be captured in the
setting of energy games. Our repair strategy can be seen as a
special case of the notion of good-for-energy strategy, which
is introduced in [8] to solve energy parity games.

Despite the connections mentioned above, many concepts
and problems concerning repair do not have natural analogs
in the game setting, and vice versa. For instance, in the game
setting one could allow lookahead for one player, but it is
not as natural as in the repair setting. Moreover, while the
aggregate cost metric fits the game setting naturally, our usual
cost function does not. Conversely, the binary weights that
are allowed in the game setting have no natural analog in the
context of edits. Our characterization also allows us to easily
isolated special cases of lower complexity that are not easily
seen from the embedding into energy games.

IV. CHARACTERIZATIONS OF BOUNDED REPAIRABILITY

The non-streaming case. We fix a restriction language R
and a target language T and we assume that these languages
are recognized by two NFA R and T , respectively. Recall that
dag(R) is the directed acyclic graph of the SCCs of R and
dag∗(T) is the symmetric and transitive closure of dag(T).
Moreover, recall that we assume that all unreachable and sink
states are removed from both R and T .

We say that a path π = C1 . . . Cn in dag(R) is covered by
a path π′ = C ′1 . . . C

′
n in dag∗(T) if we have L (R|Ci) ⊆

L (T |C ′i) for all indices 1 ≤ i ≤ n, namely, if the language
recognized by the i-component along π is contained in the
language recognized by the i-component along π′.

The following characterization reduces the bounded repair
problem in the non-streaming case to the path matching
problem in finite directed acyclic graphs.

Theorem 2. Given two NFA R and T , the following condi-
tions are equivalent

1) there is a repair strategy of L (R) into L (T) with
uniformly bounded cost,

2) every path in dag(R) is covered by some path in
dag∗(T),

3) there is a repair strategy of L (R) into L (T) with worst-
case cost at most (1 + |dag(R)|) · |T |.

The interesting directions are from 2) to 3) and from 1)
to 2). For the first implication, if the coverability condition
is satisfied, then we repair a word w ∈ L (R) by choosing
any path π = C1 . . . Cn in dag(R) taken by a run of w,
and looking at a covering path in dag∗(T). We can consider
w = u1a1u2 . . . an−1un such that ui ∈ L (R|Ci) and aj ∈ Σ
for all i ≤ n and j < n. For a covering path π′ = C ′1 . . . C

′
n

of π this implies that ui ∈ L (T |C ′i). Therefore, at the
boundary points ai where w jumps from the SCC Ci to the
next SCC Ci+1 in R, we can insert small words that push the
computation from C ′i to C ′i+1 in T ; because these are strongly
connected components and there is a path from C ′i to C ′i+1,
we can arrange a jump to any state in C ′i+1. Thus we can
repair w by inserting a bounded number of small words and
adding a small word at the end to reach a final state in T .

The second implication is more complex, and is proven by
contraposition. Assuming the negation of 2) we know that
there is a path π = C1 . . . Ck of dag(R) that is not covered
by paths in dag∗(T). For each SCC Ci of π we construct
a word ui that witnesses all non-containments of L (R|Ci)
in SCCs of T . We then construct, for each n, a word wn
formed by concatenating n-fold iterations of each word ui,
that is, wn = u′0 un1 u′1 . . . unk u′k where the fixed words
u′0, . . . , u

′
k are arranged to make sure the resulting word is in

L (R). Finally, we argue that wn requires at least n edits to
be repaired into a word in L (T).

The streaming case. We now modify Theorem 2 to give
a characterization of the streaming repair problem, adding
in a game setting. Fix two DFAs R and T recognizing the
restriction and target languages. We associate with the DFA

a reachability game between two players, Adam and Eve, on
a suitable arena AR,T , defined in terms of the SCCs of R
and T . The idea underlying this game is as follows: during
Adam’s construction of a path π in dag(R), Eve has to provide
a construction of a corresponding path f(π) in dag∗(T) that
covers π; moreover, the resulting function f must satisfy the
following condition: if π · C is an extension of the path π in
dag(R) by a single SCC, then either f(π ·C) coincides with
f(π) or it is an extension of f(π) by a single SCC, namely,
f(π · C) is of the form f(π) ·D.

Formally, the nodes of the arena AR,T for Adam (resp.,
Eve) are the pairs of the form (C,D) (resp., (D,C)), where
C is a SCC of R and D is a SCC of T . The edges of the arena
connect Adam’s nodes (C,D) to Eve’s nodes (D,C ′) where
(C,C ′) is an edge of dag(R) and, similarly, Eve’s nodes
(D,C) to Adam’s nodes (C,D′) where (D,D′) is an edge of
dag∗(T) and, in addition, L (R|C) ⊆ L (T |D′). The initial
node is an Eve node (D0, C0), where C0 is the SCC of the
initial state of R and D0 is the SCC of the initial state of T .
The last player who moves wins. Intuitively, Adam’s objective
is to reach a node (C,D) where Eve cannot respond with any
move. Conversely, Eve’s objective is to reach a node (D,C)
where Adam cannot respond with any move. As usual, we
say that a player has a winning strategy on the arena AR,T if
he/she can win the reachability game on AR,T independently
of the choices of the other player.

The following characterization reduces the bounded repair
problem in the streaming case to the problem of determining
the winner of a reachability game. It also shows that, quite
surprisingly, the bounded repair problem in the streaming
setting is not sensitive to the notions of transducer with/without
lookahead and to the models of aggregate/edit cost.

Theorem 3. Given two DFA R and T , the following condi-
tions are equivalent

1) there is a k-lookahead streaming strategy, for some k ∈
N, that repairs L (R) into L (T) with uniformly bounded
edit cost,

2) Eve has a winning strategy for the reachability game on
AR,T ,

3) there is a 0-lookahead streaming strategy that repairs
L (R) into L (T) with worst-case aggregate cost at most
(1 + |dag(R)|) · |T |.

Going from 2) to 3), if we have a strategy for Eve, we can
get a streaming repair strategy by tracking the current SCC
C of the input string and maintaining the invariant that the
component of the current repaired string D is such that (C,D)
is a position consistent with Eve’s winning strategy. When a
new letter comes in and changes the SCC in the restriction
from C to C ′, we respond with a repair that moves from D
to the response SCC D′ that preserves the invariant.

For the direction from 1) to 2), we assume a k-lookahead
repair strategy and derive a strategy for Eve; our strategy will
maintain the invariant that the position (C,D) corresponds
to some input string w and response w′ consistent with the

repair strategy. If, by way of contradiction, we have such
a pair (C,D) corresponding to some string w, a successor
SCC C ′ of C corresponding to some extension wu of w
and (D,C ′) is a lossing position for Eve, then we can
construct a single counterexample word for every candidate
SCC. Given that for every successor SCC D′ of D there
is v ∈ L (R|C ′) \ L (T |D′), we can concatenate multiple
copies of v together. If we make the number of copies large
enough, such a string cannot be repaired by our transducer
with a bounded number of edit operations, a contradiction.

V. COMPLEXITY RESULTS IN THE NON-STREAMING CASE

In this section, we study the bounded repair problem and
the threshold problem in the non-streaming setting.

A. The bounded repair problem

We begin by analyzing the complexity in the case of
languages recognized by non-deterministic finite automata.

NFA. Theorem 2 gives a straightforward PSPACE algorithm
that solves the bounded repair problem between two NFA R
and T in this setting: the algorithm first guesses universally a
path π = C1...Cn in dag(R), then it guesses existentially a
path π′ = C ′1...C

′
n of the same length in dag∗(T), and finally

it checks the containment of the subautomaton R|Ci in the
subautomaton T |C ′i for all indices 1 ≤ i ≤ n. Together with
the PSPACE lower bound for the problem proven later (see
Corollary 19), we obtain:

Corollary 4. The bounded repair problem in the non-
streaming case, where the restriction and target languages are
represented by NFA, is PSPACE-complete.

DFA. The same characterization result can be used to solve
the problem when the restriction language is represented by
an NFA and the target language is represented by a DFA. In
this case, we can take advantage of the determinism to show
that the problem turns out to be coNP-complete. Intuitively,
the complexity upper bound follows from the observation that
containment of languages recognized by SCCs of DFA is
decidable in PTIME even if the successful runs can start from
arbitrary states inside the SCCs and that the above mentioned
coverability problem for paths of SCCs is in coNP. In other
words, we can guess a path in dag(R) and check in PTIME
if this path is not covered in dag∗(T). The complexity lower
bound follows from a reduction from the validity problem
for propositional formulas in disjunctive normal form (i.e.,
the dual of the SAT problem): the idea is to encode in
the restriction language all the possible valuations for the
propositional variables and then restrict the target language to
consist only of encodings of valuations that satisfy at least one
clause of the formula. Notice that some redundancy is needed
in the restriction to forbid the repair strategy from modifying
the encoded valuations.

Theorem 5. The bounded repair problem in the non-streaming
case, where the restriction language is represented by an NFA
and the target language is represented by a DFA, is in coNP
and it is coNP-hard already for languages represented by DFA.

Before turning to the complexity of the bounded repair
problem for languages specified by LTL formulas, we briefly
outline some parameterized complexity results in the automa-
ton case. We first consider the case where the restriction
automaton is fixed and the target automaton is a DFA provided
as input to the problem. Using arguments similar to the
previous coNP upper bound, one can show that the bounded
repair problem between a fixed restriction language and the
target language recognized by a given DFA is in PTIME.

It is more difficult to show that the bounded repair problem
is tractable when we fix the target automaton. Here, instead
of guessing a path π in dag(R) and then checking whether π
is covered by some path π′ in dag∗(T), we directly compute
all instances of the coverability relation. We then perform a
top-down algorithm to compute which restriction components
are covered.

Proposition 6. Let T be a fixed target language. The problem
of deciding, given an NFAR, whether there is a non-streaming
repair strategy of L (R) into T with uniformly bounded cost
is in PTIME.

LTL. We conclude the section by analyzing the complexity
of the bounded repair problem where languages defined by
LTL formulas are involved. We first consider the problem
where both the restriction language R and the target language
T are defined by some LTL formulas φ and ψ. It is not
difficult to see that this problem is in coNEXPTIME. Indeed,
one can use standard automaton-based techniques to construct,
in exponential time, two DFA

−�
R and

−�
T that recognize the

reversals
−�
R and

−�
T of the languages R and T . Since, in the non-

streaming setting, the cost of repairing R into T is the same
as the cost of repairing

−�
R into

−�
T , one can exploit Theorem 5

to solve the bounded repair problem on the DFA
−�
R and

−�
T in

coNEXPTIME. For the complexity lower bound, one can re-
duce the problem of deciding the non-existence of a tiling of an
exponential square grid, which is known to be coNEXPTIME-
complete [9], to the problem of deciding the existence of a
repair strategy of uniformly bounded cost between two regular
languages defined by suitable LTL formulas. The idea of such
a reduction is to let the formula for the restriction language
encode all candidate tilings and the formula for the target
language check that none of them is correct.

Theorem 7. The bounded repair problem in the non-streaming
case, where the restriction and target languages are repre-
sented by LTL formulas, is coNEXPTIME-complete.

The bounded repair problem becomes easier when it in-
volves repairs of languages recognized by NFA into languages
defined by LTL formulas. The idea is to convert the formula
into a symbolic automata (represented using propositional
formulas), and then apply the characterization theorem, look-
ing for paths in the NFA that are not covered by paths
in the symbolically-represented target language. Because the
required containment checks can be done in PSPACE on the
symbolic representations, we get:

Theorem 8. The bounded repair problem in the non-streaming
case, where the restriction language R is represented by an
NFA and the target language T is represented by an LTL
formula, is in PSPACE.

Similarly, the bounded repair problem remains in PSPACE
when the restriction is specified by an LTL formula φ and the
target is recognized by an NFA T . In this case, one still uses
Theorem 2 and a symbolic DFA

−�
R recognizing the reversal

of the language defined by φ. However, instead of universally
guessing an entire path π in dag(

−�
R) one guesses the leaf of

a counterexample path, and verifies that it is not covered by
moving down from the root to the leaf.

Theorem 9. The bounded repair problem in the non-streaming
case, where the restriction language R is represented by an
LTL formula and the target language T is represented by an
NFA, is in PSPACE.

B. The threshold problem
We now consider the problem of calculating the exact cost.

In the case of DFA, we know from Theorem 5 that we can
determine whether the repair cost is finite or infinite in coNP.
Furthermore, Theorem 2 tells us that if the cost is finite it
must be bounded by a polynomial in the input size.

Thus, to determine the exact repair cost in the case where
it is finite, it suffices to test whether the cost is above or
below a given threshold k in unary, since then we can try
every k below the polynomial bound. Perhaps surprising, this
problem is harder than the finiteness problem, although still
within polynomial space:

Theorem 10. The problem of determining, given k and two
languages R and T recognized by DFA, whether dist(R, T)
is above k, is PSPACE-complete. The same holds when R and
T are given as an NFA.

The upper bound is shown by reachability analysis in a
product automata representing all states reachable via at most
k edits. The lower bound uses a reduction from tiling a
polynomial width corridor. Roughly speaking, our restriction
language will represent codes of potential tilings, with each
tile repeated k times. Our target language will check that the
word still codes a tiling k-redundantly, and will also check for
markings on tiles that indicate that a violation of horizontal or
vertical constraints lies within a k-neighborhood of the marked
tile. If there is no accepting run, then every potential tiling
can be marked with a constraint violation. Conversely, if the
restriction is repairable, then it can be shown that marking
must correctly indicate violations on every candidate tiling.

In the case of LTL, it is not a priori even clear how to
compute the distance of a single word to a formula. However,
this can be shown to be in PSPACE. In the general case of
two LTL formulas we get an exponential blow-up over the
automata case, as expected:

Theorem 11. The problem of determining, given k and
two languages R and T defined by LTL formulas, whether
dist(R, T) is above k, is EXPSPACE-complete.

The lower bound is proven using a variation of the tiling
technique in the previous theorem.

VI. COMPLEXITY RESULTS IN THE STREAMING CASE

A. The bounded repair problem

DFA. Let us consider two DFA R and T . The characteri-
zation of Theorem 3 shows that the problem of deciding the
existence of a streaming repair strategy of L (R) into L (T)
with uniformly bounded cost amounts at solving a reachability
game over a suitable (acyclic) arena AR,T . In particular,
we observe that the arena AR,T can be computed from R
and T in polynomial time and that checking containment
of languages recognized by SCCs of automata is in PTIME.
Moreover, it is known that the problem of deciding the winner
of reachability games over acyclic graphs is PTIME-complete
[10]. This shows that the bounded repair problem for DFA in
the streaming case is PTIME-complete:

Corollary 12. The bounded repair problem in the streaming
case, where the restriction and target languages are repre-
sented by DFA, is PTIME-complete.

It is worth noticing that the complexity of the bounded
repair problem for DFA in the streaming setting is lower
than the analogous problem in the non-streaming setting
(indeed Theorem 5 shows that the latter problem is coNP-
complete). This will be in contrast with the complexity results
for languages defined by LTL formulas, where the streaming
setting becomes more difficult than the non-streaming setting
(compare Theorem 5 and Theorem 15).

NFA. When both restriction and target are NFA we are not
able to provide tight complexity bounds, thus we only claim
that the complexity of the bounded repair problem for NFA
is between PSPACE and EXPTIME. The lower bound follows
from Corollary 19 and the upper bound from the standard
subset construction on NFA:

Corollary 13. The bounded repair problem in the streaming
case, where the restriction and target languages are repre-
sented by NFA, is in EXPTIME and it is PSPACE-hard.

In the case where the restriction is a DFA R and the target
is an NFA T , we obtain a tight PSPACE bound. PSPACE-
hardness follows again from Corollary 19. As for the PSPACE
upper bound, we observe that the longest collection of moves
of Adam in the arena AR,det(T), where det(T) denotes
the DFA obtained from T by applying the standard subset
construction, is linear in the size of dag(R). By representing
each SCC of det(T) using a set of states from T , one obtains
an alternating polynomial-time procedure that simulates the
reachability game over AR,det(T).

In the symmetric case, where the restriction is an NFA and
the target is a DFA, one could prove an EXPTIME upper
bound on the bounded repair problem via reduction to energy
games with imperfect information (studied by Degorre et.
al. in [11]). However, we can improve this upper bound to
PSPACE by simulating a reachability game over the arena
Adet(R),T . In this case the crucial observation is that it is safe

to modify the arena Adet(R),T by allowing Adam to move
down the DAG of det(R) with shortcuts, namely, from a SCC
of R to any descendant of it (rather than simply a successor
of it). Allowing this freedom in the new reachability game
clearly makes it easier for Adam to win. On the other hand,
if Adam wins in the modified arena, then he can also win in
the original arena via longer plays. Moreover, if Adam wins
the modified reachability game, then he can do so in at most
|dag∗(T)| rounds by properly choosing shortcut moves that
push Eve towards a sink node. This shows that the problem is
in PSPACE (we do not know whether it is also PSPACE-hard).

Theorem 14. The bounded repair problem in the streaming
case, where the restriction language is a DFA and the target
language is an NFA, is PSPACE-complete. The bounded repair
problem in the streaming case, where the restriction language
is an NFA and the target language is a DFA, is in PSPACE.

LTL. We now turn to the complexity of the bounded
repair problem in the streaming case, where both restriction
and target languages are represented by LTL formulas. By
following standard constructions in automata theory, one can
translate any pair of LTL formulas φ and ψ into DFA R and
T that have size doubly exponential in the size of the formulas
φ and ψ and that recognize the same languages defined by φ
and ψ. This gives a straightforward 2EXPTIME upper bound
to the complexity of the bounded repair problem. As for
the complexity lower bound, we can reduce the problem of
deciding the winner of tiling game over an exponential square
grid – this problem is known to be EXPSPACE-complete [9] –
to the problem of deciding the existence of a streaming repair
strategy of uniformly bounded cost between the languages
defined by suitable LTL formulas (the idea of such a reduction
is similar to the coNEXPTIME-hardness proof of Theorem 7):

Theorem 15. The bounded repair problem in the streaming
case, where the restriction and target languages are given by
LTL formulas, is in 2EXPTIME and is EXPSPACE-hard.

B. The threshold problem and constructing streaming repairs

For the streaming case, if we consider streaming repair
strategies with aggregate cost, the threshold problem maintains
its PTIME complexity. Further, one can easily reduce this
threshold problem to a reachability game over a suitable arena.

Theorem 16. The problem of determining, given k and
two languages R and T recognized by DFA, whether one
can repair R into T with a streaming repair strategy with
aggregate cost at most k, is in PTIME.

In fact, it follows from the reduction that one can efficiently
compute the optimal streaming repair that satisfies a given
threshold. This is because we can construct a streaming repair
strategy that satisfies a given threshold by finding a winning
strategy for Eve in the reachability game. Finding such a
strategy is well-known to be in PTIME.

Corollary 17. Let R and T be the restriction and target
languages specified by DFA. If R is streaming repairable into

T with aggregate cost at most k, then an optimal streaming
repair strategy of R into T with aggregate cost at most k can
be computed in PTIME.

Note that in the above we deal with the aggregate cost; the
example from Section III shows that this cost can differ from
the edit cost, while our characterization theorem shows that
one is finite iff the other is. We do not know if finding the
exact edit cost is even tractable.

VII. SPECIAL CASES: UNRESTRICTED REPAIR PROBLEMS

We now consider a special case of the bounded repair
problem, namely, the unrestricted case where the restriction
language is assumed to be Σ∗ and the target language T is
represented by a finite state automaton.

The following result adapts the characterization theorems
given in Section IV to give a necessary and sufficient condition
for the unrestricted case. This result, which can be viewed as
a special case of both Theorem 2 and Theorem 3, also shows
that there is no difference between the non-streaming and the
streaming settings when the restriction language is universal.

Corollary 18. Given an alphabet Σ and an NFA T , the
following conditions are equivalent
1) there is a repair strategy of Σ∗ into L (T) with uniformly

bounded cost,
2) T has a SCC C such that Σ∗ ⊆ L (T |C),
3) there is a 0-lookahead streaming strategy that repairs Σ∗

into L (T) with worst-case aggregate cost at most 2|T |.

Using the above characterization, one can easily devise an
NLOGSPACE algorithm that solves the bounded repair prob-
lem for DFA in the unrestricted (streaming or non-streaming)
case. Indeed, if the target automaton T is a DFA and C is a
component of T , then we have Σ∗ ⊆ L (T |C) iff for every
symbol a ∈ Σ and every state q in C, T contains a transition
of the form (q, a, q′), with q′ ∈ C. Checking this property
amounts to performing a standard NLOGSPACE reachability
analysis over T . Conversely, NLOGSPACE-hardness follows
from the fact that the emptiness problem for DFA is reducible
to the bounded repair problem: given a DFA A over an
alphabet Σ, we have that L (A) 6= ∅ iff Σ∗ is repairable into
L (A′) with uniformly bounded cost, where A′ is a DFA that
can be constructed from A in logarithmic-space.

In a similar way, one can show that the bounded repair
problem for NFA in the unrestricted case is PSPACE-complete.
This follows from Corollary 18 and from suitable reductions
from the universality problem for NFA. Indeed, checking
whether a target NFA T has a SCC C such that Σ∗ ⊆
L (T |C) is equivalent to the problem of deciding whether
Σ∗ is repairable into L (T) with uniformly bounded cost, and
it is clearly reducible to the universality problem for NFA.
As for the PSPACE-hardness, we observe that a given NFA
A recognizes the universal language Σ∗ iff (Σ] {#})∗ is
repairable into (L (A) · {#})∗ with uniformly bounded cost.
Notice that a finite automaton for the language (L (A)·{#})∗
can be computed in linear time.

We thus conclude the following:

Corollary 19. The bounded repair problem in the unre-
stricted case, where the target languages are represented by
DFA (resp., NFA) is NLOGSPACE-complete (resp., PSPACE-
complete).

Another consequence of Corollary 18 is the following.
Suppose that a target language T is recognized by a DFA T
that is complete over the target alphabet ∆, namely, for every
symbol a ∈ ∆ and every state p of T , T contains a transition
from p labeled by a. Let us consider a restriction alphabet
Σ contained in ∆ and suppose that Σ∗ is not repairable into
T with uniformly bounded cost. Let us consider a SCC C
of T that is reachable from the initial state and terminal,
namely, with no outgoing edges. We know that C does not
contain any final state (otherwise, C would be a final SCC and
hence, by Corollary 18, Σ∗ would be repairable into L (T)
with uniformly bounded cost). In this case, however, the same
component C in the complement DFA T { would be final and
hence Σ∗ would be repairable into L (T {) (= ∆∗ \ T) with
uniformly bounded cost. This shows that:

Corollary 20. Given an alphabet Σ and a regular language
T ⊆ ∆∗, with Σ ⊆ ∆, one of the following two cases (possibly
both) holds:

1) Σ∗ is repairable into T with uniformly bounded cost,

2) Σ∗ is repairable into ∆∗\T with uniformly bounded cost.

We now turn to the complexity of the bounded repair prob-
lem in the unrestricted case, but where the target languages
are represented by LTL formulas. We claim that problem
is PSPACE-hard for LTL formulas. This complexity lower
bounds follows from arguments similar to the automaton-based
setting, namely, from a reduction of the satisfiability problem
for LTL formulas, which is known to be PSPACE-hard [12].
As for the complexity upper bound, we claim that the problem
for LTL formulas is in PSPACE and, thus, PSPACE-complete.
Indeed, given an LTL formula ψ defining a target language T ,
one can compute in polynomial time a symbolic representation
of a DFA

−�
T that recognizes the reversal

−�
T of T . Moreover,

one can perform standard reachability analysis on the symbolic
representation of T in polynomial space. Finally, we observe
that Σ∗ is repairable into T with uniformly bounded cost iff Σ∗

is repairable into
−�
T with uniformly bounded cost. This shows

that the bounded repair problem in the unrestricted case for
LTL formulas is in PSPACE.

Corollary 21. The bounded repair problem in the unrestricted
case, where the target languages are represented by LTL
formulas, is PSPACE-complete.

VIII. TOWARDS INFINITE WORDS

In this section, we briefly discuss a natural generalization of
our characterization result for the bounded repair problem over
infinite words. Recall that Theorem 2 reduces the bounded
non-streaming repair problem to the problem of deciding the
property of coverability between paths of SCCs in the DAGs of

R :

a

T :

b

b

a

R′ :

b

b

a T ′ :

b

b

c

c
a a

Figure 1: Some non-deterministic Büchi automata.

the restriction and target automata. If we turn to languages of
infinite words recognized by non-deterministic Büchi automata
(NBA), then the characterization result is similar. There is
however a slight complication due to the acceptance condition
in the infinite case.

First of all, we modify the notation for the sub-automata
obtained from a SCC. As in the previous cases for NFA, given
an NBA B and a SCC C of it, we write B|C to denote the
usual NFA obtained by restricting B to the states in C and
by letting them be both initial and final states. We also write
B|ωC to denote the NBA obtained by restricting B to the set of
states in C and by letting them be initial (we do keep instead
the final states as in B).

To understand why we introduce the two variants B|C
and B|ωC of sub-automata, it is worth looking at the fol-
lowing examples. Let R and T be the single-component
NBA depicted at the top of Figure 1 and let C and D be
their unique SCCs, respectively. Observe that, when we view
R and T as NFA, we have L (R|C) ⊆ L (T |D), and
hence, by Theorem 2, dist

(
L (R),L (T)

)
< ω. However,

when we view R and T as NBA, we have L (R|C) ⊆
L (T |D), but dist

(
L ω(R),L ω(T)

)
= ω. On the other

hand, if we consider the NBA R′ and T ′ at the bottom
of Figure 1, and we denote by C ′ and D′ be their unique
SCCs, then we have that L ω(R′|ωC ′) * L ω(T ′|ωD′), but
dist

(
L ω(R′),L ω(T ′)

)
< ω. The above examples suggest

that we should use both variants of sub-automata for estab-
lishing a characterization result for bounded non-streaming
repairability of languages recognized by NBA.

We now turn to the generalization of the notion of cover-
ability. Given two NBA R and T , a path π of length k in
dag(R), and a set of paths Π′ in dag∗(T), we say that π is
Büchi-covered by Π′ iff
1) all paths in Π′ have length precisely k + 1,
2) L (R|π(i)) ⊆

⋂
π′∈Π′

L (T |π′(i)) for all indices i < k,

3) L ω(R|ωπ(k)) ⊆
⋂

π′∈Π′
L (T |π′(k))·

⋃
π′∈Π′

L ω(T |ωπ′(k+1)).

The characterization theorem for bounded non-streaming re-
pairability of NBA-recognizable languages is as follows:

Theorem 22. Given two NBA R and T , the following condi-
tions are equivalent
1) there is a repair strategy of L ω(R) into L ω(T) with

uniformly bounded cost,
2) every path in dag(R) is Büchi-covered by a set of paths

in dag∗(T),
3) there is a repair strategy of L ω(R) into L ω(T) with

worst-case cost at most (2 + |dag(R)|) · |T |.

fixed DFA NFA LTL
fixed Const PTIME PSPACE PSPACE
DFA PTIME CoNP PSPACE PSPACE
NFA PTIME CoNP PSPACE PSPACE
LTL PSPACE PSPACE PSPACE CoNEXP

Table I: Complexity of bounded non-streaming repair

fixed DFA NFA LTL
fixed Const PTIME PSPACE PSP, EXPSP
DFA PTIME PTIME PSPACE PSP, EXPSP
NFA PT, PSP PT, PSP PSP, EXP PSP, 2EXP
LTL PSP, EXPSP PSP, EXPSP PSP, 2EXP EXPSP, 2EXP

Table II: Complexity of bounded streaming repair

We omit the proof of this theorem, which is almost identical
to that of Theorem 2, and we instead invite the reader to check
that the characterization for the infinite-word case is consistent
with the examples that we gave above. As a matter of fact,
the above characterization result easily yields a PSPACE upper
bound for the bounded non-streaming repair problem between
languages recognized by NBA.

IX. RELATED WORK AND CONCLUSIONS

In this work we have investigated language repair in the
most basic setting of words. Our results are summarized in
Table I and Table II – in the non-streaming setting our bounds
are tight (indicated by a single class), while in the streaming
setting we have several gaps (where a cell gives lower and
upper bounds). We omit the corresponding table for computing
the exact cost: in the case of non-streaming repair we can
derive tight bounds in all cases, and also in the case of
streaming repair for aggregate cost. In the latter case we also
know the complexity of computing the optimal stream repair
processor.

We have focused on the case of finite words, but infinite
words raise many new issues. In the case of infinite words in a
streaming setting, one can look for strategies that allow finitely
many edits per word, without a uniform bound, and likewise
look for strategies with “continuous” (but not uniformly-
bounded) lookahead. This last issue has been investigated for
purely qualitative games by Holtmann et. al. [13].

Related work on edit distance of languages. The problem
of finding the minimal distance of a string to a regular
language was first considered by Wagner in [3], who showed
that the problem could be solved by adapting the dynamic
programming approach to edit distance, giving a polynomial
time algorithm. Several authors have extended the definition
to deal with distances between languages. Mohri [14] de-
fines a distance function between two sets of strings, and
more generally between string distributions: in the case of
languages, this is the minimum distance between two strings
in the two respective languages, which is appropriate for many
applications. Konstantinidis [15] focuses on the minimum
distance between distinct strings within the same language,
giving tractable algorithms for computing it. Our notion of
“cost” is quite distinct from this, since it is asymmetric in the
two languages, focusing on the maximum of the distance of a
string in one language to the other language.

Grahne and Thomo [16] consider a related problem of
“approximate containment” of regular expressions. Expres-
sions are evaluated with respect to an edge-labeled graph
and are given a numerical semantics by a “distortion” – a
generalization of the notion of edit distance. Approximate
containment of T1 and T2 means, roughly speaking, that for
every input graph R and every word w generated by R, the
distance to target T1 is bounded by the distance to T2. Grahne
and Thomo also study “k-containment” (distance to T1 is at
most k more than T2) and “approximate-containment” (k-
containment for some k), relying primarily on a reduction to
the limitedness problem for distance automata. Their problem
differs in several fundamental respects from ours: they are
interested in bounding the difference over all words, not just
the worst case; in addition they quantify over all restrictions
(databases, in their terminology).

An entire line of research in XML data management has
dealt with comparisons and matching algorithms between
schema languages; many of these lift edit distance between
trees to the level of schemas (i.e. languages) – see, for
example, [17]. However the lifting is done by looking at the
syntactic structure of the schema description, rather than at the
instance level (distance between documents in each schema).

Acknowledgments. We thank the anonymous referees and
Slawek Staworko for many helpful comments. The authors
were supported by EPSRC (UK) grant EP/G004021/1.

REFERENCES

[1] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent query answers in
inconsistent databases,” in PODS, 1999, pp. 68–79.

[2] F. Afrati and P. Kolaitis, “Repair checking in inconsistent databases:
Algorithms and complexity,” in ICDT, 2009, pp. 31–41.

[3] R. Wagner, “Order-n correction for regular languages,” CACM, vol. 17,
no. 5, pp. 265–268, 1974.

[4] R. Wagner and M. Fischer, “The string-to-string correction problem,”
JACM, vol. 21, no. 1, pp. 168–173, 1974.

[5] K. Hashiguchi, “Improved limitedness theorems on finite automata with
distance functions,” Theor. Comp. Sci., vol. 72, no. 1, pp. 27–38, 1990.

[6] H. Leung and V. Podolskiy, “The limitedness problem on distance
automata: Hashiguchi’s method revisited,” Theor. Comp. Sci., vol. 310,
pp. 147–158, 2004.

[7] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
“Resource interfaces,” in EMSOFT, 2003, pp. 117–133.

[8] K. Chatterjee and L. Doyen, “Energy parity games,” in ICALP, 2010,
pp. 599–610.

[9] P. Van Emde Boas, “The convenience of tilings,” in Complexity, Logic
and Recursion Theory, vol. 187, 1997, pp. 331–363.

[10] C. Papadimitriou, Computational Complexity. Addison-Wesley Long-
man Publishing Co., Inc., 1994.

[11] A. Degorre, L. Doyen, R. Gentilini, J. Raskin, and S. Toruńczyk,
“Energy and mean payoff games with imperfect information,” in CSL,
2010, pp. 260–274.

[12] A. Sistla and E. Clarke, “The complexity of propositional linear temporal
logics,” JACM, vol. 32, no. 3, pp. 733–749, 1985.

[13] M. Holtmann, L. Kaiser, and W. Thomas, “Degrees of lookahead in
regular infinite games,” in FOSSACS, 2010, pp. 252–266.

[14] M. Mohri, “Edit-distance of weighted automata: general definitions and
algorithms,” Int’l Journal of Foundations of Comp. Sci., vol. 14, no. 6,
pp. 957–982, 2003.

[15] S. Konstantinidis, “Computing the edit distance of a regular language,”
Inf. and Comp., vol. 205, no. 9, pp. 1307–1316, 2007.

[16] G. Grahne and A. Thomo, “Query answering and containment for regular
path queries under distortions,” in FOIKS, 2004, pp. 98–115.

[17] H. Do and E. Rahm, “COMA - a aystem for flexible combination of
schema matching approaches,” in VLDB, 2002, pp. 610–621.

	Introduction
	Basic notation and terminology
	Problem setting
	Repair Problems, Automata, and Games

	Characterizations of bounded repairability
	Complexity results in the non-streaming case
	The bounded repair problem
	The threshold problem

	Complexity results in the streaming case
	The bounded repair problem
	The threshold problem and constructing streaming repairs

	Special cases: unrestricted repair problems
	Towards infinite words
	Related Work and Conclusions
	References

