
LogMap:
Logic-based and Scalable Ontology Matching

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford
{ernesto,berg}@cs.ox.ac.uk

Abstract. In this paper, we present LogMap—a highly scalable ontol-
ogy matching system with ‘built-in’ reasoning and diagnosis capabilities.
To the best of our knowledge, LogMap is the only matching system that
can deal with semantically rich ontologies containing tens (and even hun-
dreds) of thousands of classes. In contrast to most existing tools, LogMap
also implements algorithms for ‘on the fly’ unsatisfiability detection and
repair. Our experiments with the ontologies NCI, FMA and SNOMED
CT confirm that our system can efficiently match even the largest ex-
isting bio-medical ontologies. Furthermore, LogMap is able to produce
a ‘clean’ set of output mappings in many cases, in the sense that the
ontology obtained by integrating LogMap’s output mappings with the
input ontologies is consistent and does not contain unsatisfiable classes.

1 Introduction

OWL ontologies are extensively used in biology and medicine. Ontologies such as
SNOMED CT, the National Cancer Institute Thesaurus (NCI), and the Foun-
dational Model of Anatomy (FMA) are gradually superseding existing medical
classifications and are becoming core platforms for accessing, gathering and shar-
ing bio-medical knowledge and data.

These reference bio-medical ontologies, however, are being developed inde-
pendently by different groups of experts and, as a result, they use different entity
naming schemes in their vocabularies. As a consequence, to integrate and mi-
grate data among applications, it is crucial to first establish correspondences (or
mappings) between the vocabularies of their respective ontologies.

In the last ten years, the Semantic Web and bio-informatics research com-
munities have extensively investigated the problem of automatically computing
mappings between independently developed ontologies, usually referred to as the
ontology matching problem (see [1] for a comprehensive and up-to-date survey).

The growing number of available techniques and increasingly mature tools,
together with substantial human curation effort and complex auditing protocols,
has made the generation of mappings between real-world ontologies possible.
For example, one of the most comprehensive efforts for integrating bio-medical
ontologies through mappings is the UMLS Metathesaurus (UMLS-Meta) [2],
which integrates more than 100 thesauri and ontologies.

However, despite the impressive state of the art, modern bio-medical ontolo-
gies still pose serious challenges to existing ontology matching tools.

Insufficient scalability. Although existing matching tools can efficiently deal
with moderately sized ontologies, large-scale bio-medical ontologies such as NCI,
FMA or SNOMED CT are still beyond their reach. The largest test ontologies
in existing benchmarks (e.g., those in the OAEI initiative) contain around 2000-
3000 classes (i.e., with several million possible mappings); however, to the best of
our knowledge, no tool has been able to process ontologies with tens or hundreds
of thousands of classes (i.e., with several billion possible mappings).
Logical inconsistencies. OWL ontologies have well-defined semantics based on
first-order logic, and mappings are commonly represented as OWL class axioms.
Hence, the ontology O1∪O2∪M resulting from the integration of O1 and O2 via
mappingsMmay entail axioms that don’t follow fromO1,O2, orM alone. Many
such entailments correspond to logical inconsistencies due to erroneous mappings
inM, or to inherent disagreements between O1 and O2. Recent work has shown
that even the integration of ontologies via carefully-curated mappings can lead
to thousands such inconsistencies [3–6] (e.g., the integration of FMA-SNOMED
via UMLS-Meta yields over 6, 000 unsatisfiable classes). Most existing tools are
based on lexical matching algorithms, and may also exploit the structure of the
ontologies or access external sources such as WordNet; however, these tools dis-
regard the semantics of the input ontologies and are thus unable to detect and
repair inconsistencies. Although the first reasoning-based techniques for ontol-
ogy matching were proposed relatively early on (e.g., S-Match [7]), in practice
reasoning is known to aggravate the scalability problem (e.g., no reasoner known
to us can classify the integration NCI-SNOMED via UMLS). Despite the tech-
nical challenges, there is a growing interest in reasoning techniques for ontology
matching. In particular, there has been recent work on ‘a-posteriori’ mapping
debugging [6, 8–10], and a few matching tools (e.g., ASMOV [11], KOSIMap [12],
CODI [13, 14]) incorporate techniques for ‘on the fly’ semantic verification.

In this paper, we present LogMap—a novel ontology matching tool that ad-
dresses both of these challenges. LogMap implements highly optimised data
structures for lexically and structurally indexing the input ontologies. These
structures are used to compute an initial set of anchor mappings (i.e., ‘almost
exact’ lexical correspondences) and to assign a confidence value to each of them.
The core of LogMap is an iterative process that, starting from the initial anchors,
alternates mapping repair and mapping discovery steps. In order to detect and
repair unsatisfiable classes ‘on the fly’ during the matching process, LogMap
implements a sound and highly scalable (but possibly incomplete) ontology rea-
soner as well as a ‘greedy’ diagnonis algorithm. New mappings are discovered
by iteratively ‘exploring’ the input ontologies starting from the initial anchor
mappings and using the ontologies’ extended class hierarchy.

To the best of our knowledge, LogMap is the only matching tool that has
shown to scale for rich ontologies with tens (even hundreds) of thousands of
classes. Furthermore, LogMap is able to produce an ‘almost clean’ set of output
mappings between FMA, SNOMED and NCI; as shown ‘a posteriori’ using a

O1

O2

Lexical and

Structural

Indexation

Compute

Initial

Anchors

Mapping

Repair
Expand?

Mapping

Discovery

Compute

Overlapping O
′
2

O
′
1

M
No

Yes

Fig. 1. LogMap in a nutshell.

fully-fledged DL reasoner, LogMap only failed to detect one unsatisfiable class
(out of a total of several thousands) when integrating these large-scale ontologies.

2 The Anatomy of LogMap

We next provide an overview of the main steps performed by LogMap, which
are schematically represented in Figure 1.

1. Lexical indexation. The first step after parsing the input ontologies is their
lexical indexation. LogMap indexes the labels of the classes in each ontology
as well as their lexical variations, and allows for the possibility of enriching
the indexes by using an external lexicon (e.g., WordNet or UMLS-lexicon).

2. Structural indexation. LogMap uses an interval labelling schema [15–17]
to represent the extended class hierarchy of each input ontology. Each ex-
tended hierarchy can be computed using either simple structural heuristics,
or an off-the-shelf DL reasoner.

3. Computation of initial ‘anchor mappings’. LogMap computes an initial
set of equivalence anchor mappings by intersecting the lexical indexes of each
input ontology. These mappings can be considered ‘exact’ and will later serve
as starting point for the further discovery of additional mappings.

4. Mapping repair and discovery. The core of LogMap is an iterative pro-
cess that alternates repair and discovery steps.
– In the repair step, LogMap uses a sound and highly scalable (but possibly

incomplete) reasoning algorithm to detect classes that are unsatisfiable
w.r.t. (the merge of) both input ontologies and the mappings computed
thus far. Then, each of these undesirable logical consequences is auto-
matically repaired using a ‘greedy’ diagnosis algorithm.

– To discover new mappings, LogMap maintains two contexts (sets of ‘se-
mantically related’ classes) for each anchor. Contexts for the same an-
chor are expanded in parallel using the class hierarchies of the input
ontologies. New mappings are then computed by matching the classes
in the relevant contexts using ISUB [18]—a flexible tool that computes
a similarity score for any pair of input strings. This mapping discov-
ery strategy is based on a principle of locality : if classes C1 and C2 are

Inverted index for NCI labels Index for NCI class URIs

Entry Cls ids Cls id URI

secretion 49901 49901 NCI:CellularSecretion
cellular,secretion 49901 37975 NCI:Trapezoid
cellular,secrete 49901 62999 NCI:TrapezoidBone
trapezoid 37975,62999 60791 NCI:Smegma
trapezoid,bone 62999
smegma 60791

Inverted index for FMA labels Index for FMA class URIs

Entry Cls ids Cls id URI

secretion 36792 36792 FMA:Secretion
bone,trapezoid 20948,47996 47996 FMA:Bone of Trapezoid
trapezoid 20948 20948 FMA:Trapezoid
smegma 60947 60947 FMA:Smegma

Table 1. Fragment of the lexical indexes for NCI and FMA ontologies

correctly mapped, then the classes semantically related to C1 in O1 are
likely to be mapped to those semantically related to C2 in O2.

LogMap continues the iteration of repair and discovery steps until no context
is expanded in the discovery step. The output of this process is a set of
mappings that are likely to be ‘clean’—that is, which will not lead to logical
errors when merged with the input ontologies (c.f., evaluation section).

5. Ontology overlapping estimation. In addition to the final set of map-
pings, LogMap computes a fragment of each input ontology, which intuitively
represent the ‘overlapping’ between both ontologies. When manually looking
for additional mappings that LogMap might have missed, curators can re-
strict themselves to these fragments since ‘correct’ mappings between classes
not mentioned in these fragments are likely to be rare.

2.1 Lexical Indexation

LogMap constructs an ‘inverted’ lexical index for each input ontology. This type
of index, which is commonly used in information retrieval applications, will be
exploited by LogMap to efficiently compute an initial set of anchor mappings.

The English name of ontology classes as well as their alternative names (e.g.,
synonyms) are usually stored in OWL in label annotations. LogMap splits each
label of each class in the input ontologies into components; for example, the NCI
class ‘cellular secretion’ is broken into its component English words ‘cellular’ and
‘secretion’. LogMap allows for the use of an external lexicon (e.g., UMLS lexicon1

or WordNet) to find both their synonyms and lexical variations; for example,
UMLS lexicon indicates that ‘secrete’ is a lexical variation of ‘secretion’.

LogMap groups the component words of each class label and their variations
into sets, which will then constitute the key of an inverted index. For example,
1 UMLS Lexicon, unlike WordNet, provides only normalizations and spelling variants.

the inverted index for NCI contains entries for the sets ‘cellular, secretion’ and
‘cellular, secrete’. The range of the index is a numerical ID that LogMap asso-
ciates to each corresponding class (see Table 1). Thus, in general, an entry in
the index can be mapped to several classes (e.g., see ‘trapezoid’ in Table 1) .

The use of external lexicons to produce a richer index is optional and LogMap
allows users to select among well-known lexicons depending on the application.

These indexes can be efficiently computed and bear a low memory overhead.
Furthermore, they only need to be computed once for each input ontology.

2.2 Structural Indexation

LogMap exploits the information in the (extended) class hierarchy of the input
ontologies in different steps of the matching process. Thus, efficient access to the
information in the hierarchies is critical for LogMap’s scalability.

The basic hierarchies can be computed by either using structural heuristics,
or an off-the-shelf DL reasoner. LogMap bundles HermiT [19] and Condor [20],
which are highly optimised for classification. Although DL classification might
be computationally expensive, it is performed only once for each ontology.

The class hierarchies computed by LogMap are extended—that is, they con-
tain more information than the typical classification output of DL reasoners. In
particular, LogMap exploits information about explicit disjoint classes, as well as
the information in certain complex class axioms (e.g., those stating subsumption
between an intersection of named classes and a named class).

These extended hierarchies are indexed using an interval labelling schema—
an optimised data structure for storing DAGs and trees [15]. The use of an
interval labelling schema has been shown to significantly reduce the cost of com-
puting typical queries over large class hierarchies [16, 17].

In this context, the ontology hierarchy is treated as two DAGs: the descen-
dants DAG representing the descendants relationship, and the ancestors DAG,
which represents the ancestor relationship. Each named class C in the ontol-
ogy is represented as a node in each of these DAGs, and is associated with the
following information (as in [17]).

– Descendants preorder number: predesc(C) is the order in which C is
visited using depth-first traversal of the decendants DAG.

– Ancestors preorder number: preanc(C) is the preorder number of C in
the ancestors DAG.

– Topological order: deepest associated level within the descendants DAG.
– Descendants interval: the information about descendants of C is encoded

using the interval [predesc(C), maxpredesc(C)], where maxpredesc(C) is the
highest preorder number of the children of C in the descendants DAG.

– Ancestors interval: the information about ancestors of C is encoded suing
the interval [preanc(C),maxpreanc(C)] where maxpreanc(C) is the highest
(ancestor) preorder number of the parents of C in the ancestors DAG.

Anatomy v ¬BiologicalProcess

TransmembraneTransport v ∃BP hasLocation.CellularMembrane

∃BP hasLocation.> v BiologicalProcess

> v ∀BP hasLocation.Anatomy

CellularSecretion v TransmembraneTransport

ExocrineGlandFluid v ∃AS hasLocation.ExocrineSystem

> v ∀AS hasLocation.Anatomy

∃AS hasLocation.> v Anatomy

Smegma v ExocrineGlandFluid

ExocrineGlandFluid u ExfoliatedCells v Smegma

(a) NCI ontology fragment

>
[1,9]

BP
[2,4]

TT
[3,4]

CS
[4,4]

A
[5,9]

EGF
[6,7]

S
[7,7]

ES
[8,8]

CM
[9,9]

⊥

(b) Descendant intervals

⊥
[1,9]

CS
[2,4]

TT
[3,4]

BP
[4,4]

S
[5,7]

EGF
[6,7]

ES
[8,8]
[7,7]

CM
[9,9]
[7,7]

A
[7,7]

(c) Ancerstor intervals

Fig. 2. NCI extended hierarchies. Abbreviations: BP=BiologicalProcess, A=Anatomy,
TT=TransmembraneTransport, CM=CellularMembrane, EGF=ExocrineGlandFluid,
CS=CellularSecretion, ES=ExocrineSystem, S=Smegma.

Figure 2 shows a fragment of NCI and its labelled (entailed) hierarchy. Dis-
jointness and complex class axioms are represented in a separate structure that
also uses integer intervals.

The interval labelling schemas provides LogMap with an interface to effi-
ciently answer queries about taxonomic relationships. For example, the following
typical queries over ontology hierarchies only require simple integer operations
(please, refer to Figure 2 for the class label abbreviations):

– ‘Is Smegma a subclass of Anatomy?’ : check if predesc(S)=7 is contained in
descendants interval [predesc(A), maxpredesc(A)]=[5,9];

– ‘Do Smegma and CellularSecretion have ancestors in common?’ : check if
the intersection of ancestors intervals [preanc(S), maxpreanc(S)]=[5,7] and
[preanc(CS), maxpreanc(CS)]=[2,4] is non-empty.

Entry FMA ids NCI ids Mappings

secretion 36792 49901 FMA:Secretion ≡ NCI:CellularSecretion

smegma 60947 60791 FMA:Smegma ≡ NCI:Smegma

trapezoid 20948
37975, FMA:Trapezoid ≡ NCI:Trapezoid
62999 FMA:Trapezoid ≡ NCI:TrapezoidBone

trapezoid,bone
20948,

62999
FMA:Trapezoid ≡ NCI:TrapezoidBone

47996 FMA:Bone of Trapezoid ≡ NCI:TrapezoidBone

Table 2. Fragment of the intersection between the inverted indexes for FMA and NCI

2.3 Computing Anchor Mappings

LogMap computes an initial set of anchor mappings by simply intersecting the
inverted indexes of the input ontologies (i.e., by checking whether two lexical
entries in the indexes of the input ontologies contain exactly the same strings).
Anchor computation is hence extremely efficient. Table 2 shows the result of
intersecting the inverted indexes of Table 1, which yields five anchor mappings.

Given an anchor m = (C1 ≡ C2), LogMap uses the string matching tool
ISUB to match the neighbors of C1 in the ontology hierarchy of O1 to the neigh-
bors of C2 in the hierarchy of O2. LogMap then assigns a confidence value to m
by computing the proportion of matching neighbors weighted by the ISUB sim-
ilarity values. This technique is based on a principle of locality: if the hierarchy
neighbors of the classes in an anchor match with low confidence, then the an-
chor may be incorrect. For example, LogMap matches classes FMA:Trapezoid and
NCI:Trapezoid (see Table 2). However, NCI:Trapezoid is classified as a polygon
whereas FMA:Trapezoid is classified as a bone. LogMap assigns a low confidence
to such mappings and hence they will be susceptible to be removed during repair.

2.4 Mapping Repair and Discovery

The core of LogMap is an iterative process that alternates mapping repair and
mapping discovery steps. In each iteration, LogMap maintains two structures.

– A working set of active mappings, which are mappings that were discovered
in the immediately preceding iteration. Mappings found in earlier iterations
are established, and cannot be eliminated in the repair step. In the first
iteration, the active mappings coincide with the set of anchors.

– For each anchor, LogMap maintains two contexts (one per input ontology),
which can be expanded in different iterations. Each context consists of a set
of classes and has a distinguished subset of active classes, which is specific
to the current iteration. In the first iteration, the contexts for an anchor
C1 ≡ C2 are {C1} and {C2} respectively, which are also the active classes.

Thus, active mappings are the only possible elements of a repair plan, whereas
contexts constitute the basis for mapping discovery.

Propositional FMA (P1) Propositional NCI (P2)

(1) Smegma → Secretion (8) Smegma → ExocrineGlandFluid

(2) Secretion → PortionBodySusbstance (9) ExocrineGlandFluid → Anatomy

(3) PortionBodySusbstance → AnatomicalEntity (10) CellularSecretion → TransmembraneTransport

Computed mappings (PM) (11) TransmembraneTransport → TransportProcess

(m4) FMA:Secretion → NCI:CellularSecretion (12) TransportProcess → BiologicalProcess

(m5) NCI:CellularSecretion → FMA:Secretion (13) Anatomy ∧ BiologicalProcess → false

(m6) FMA:Smegma → NCI:Smegma (14) ExocrineGlandFluid ∧ ExfolCells → Smegma

(m7) NCI:Smegma → FMA:Smegma

Table 3. Propositional representations of FMA, NCI, and the computed mappings.

TRUE

FALSEFMA:AnatomicalEntity

FMA:PortionBodySusbstance

FMA:Secretion

FMA:Smegma
0

1

2

3

NCI:Anatomy

NCI:ExocrineGlandFluid

NCI:Smegma NCI:ExfolCells

NCI:BiologicalProcess

NCI:TransportProcess

NCI:TransmembraneTransport

NCI:CellularSecretion
8

9
10

11

12
13

13

14

14

m4

m5

m6

m7

Fig. 3. Graph representation of Horn-clauses in Table 3
.

Mapping Repair LogMap uses a Horn propositional logic representation of the
extended hierarchy of each ontology together with all existing mappings (both
active and established). As an example, Table 3 shows Horn clauses obtained
from the extended hierarchies of FMA and NCI (which have been computed
using a DL reasoner), and the anchor mappings computed by LogMap. As shown
in the table, LogMap splits each equivalence mapping into two Horn clauses.

The use of a propositional Horn representation for unsatisfiability detection
and repair is key for LogMap’s scalability since DL reasoners do not scale well
for the integration of large ontologies via mappings. The scalability problem is
exacerbated by the number of unsatisfiable classes (more than 10,000 found by
LogMap when integrating SNOMED and NCI using only anchors) and the large
number of additional reasoner calls required for repairing each unsatisfiability.

Unsatisfiability checking LogMap implements the well-known Dowling-Gallier
algorithm [21] for propositional Horn satisfiability, and calls the Dowling-Gallier
module once (in each repair step) for each class. Our implementation takes as
input a class C (represented as a propositional variable) and determines the
satisfiability of the propositional theory PC consisting of

– the rule (true→ C);

– the propositional representations P1 and P2 (as in Table 3) of the extended
hierarchies of the input ontologies O1 and O2; and

– the propositional representation PM of the mappings computed thus far.

We make the following important observations concerning our encoding of the
class satisfiability problem into propositional logic.

– Our encoding is sound. If the propositional theory PC is unsatisfiable, then
the class C is indeed unsatisfiable w.r.t. the DL ontology O1∪O2∪M, where
O1 and O2 are the input ontologies andM is the set of mappings computed
so far by LogMap (represented as DL concept inclusions)

– Due to the properties of the Dowling-Gallier algorithm, our encoding is
worst-case linear in the size of PC . Furthermore, the total number of calls
to the Dowling-Gallier module is also linear in the number of classes of O1

and O2. As shown in the evaluation section, these favourable computational
properties are key to the scalability of LogMap.

– Our encoding is incomplete, and hence we might be reporting unsatisfiable
classes as satisfiable. Incompleteness is, however, mitigated by the following
facts. First, the extended hierarchies of O1 and O2 have been computed
using a complete reasoner and many consequences that depend on non-
propositional reasoning have already been pre-computed. Second, mappings
computed by LogMap (and by most ontology matching tools) correspond to
Horn rules. For example, as shown in our experiments, LogMap only failed
to report one unsatisfiable class for FMA-NCI (from more than 600).

A complete description of the Dowling and Gallier algorithm can be found
in [21]. As an example, consider Figure 3, which shows the graph representation
of all propositional clauses that are involved in the unsatisfiability of the class
Smegma in FMA. Each node represents a propositional variable in Table 3;
furthermore, the graph contains a directed edge labeled with a propositional
rule r from variable C to variable D if the head of r is D and C occurs in the
body of r. Note that there is a path from true to NCI:BiologicalProcess and a path
from true to NCI:Anatomy which involve only rules with a single variable in the
antecedent; furthermore, the variables NCI:BiologicalProcess and NCI:Anatomy
constitute the body of rule (13), whose head is precisely false.

Computing repair plans LogMap computes a repair for each unsatisfiable class
identified in the input ontologies. Given an unsatisfiable class C and the propo-
sitional theory PC , a repair R of PC is a minimal subset of the active mappings
in PM such that PC \ R is satisfiable.

To facilitate computation of repairs, LogMap extends Dowling-Gallier’s al-
gorithm to record all active mappings (Pact) that may be involved in each un-
satisfiability. For our example in Figure 3, LogMap records the active map-
pings Pact = {m4, m5, m6, m7}, which may be relevant to the unsatisfiability of
FMA:Smegma. This information is used in the subsequent repair process.

To improve scalability, repair computation is based on the ‘greedy’ algorithm
in Table 4. Unsatisfiable classes in each ontology are ordered by their topological

Procedure Repair
Input: List: Ordered classes; P1, P2 and PM Horn-propositional theories.
Output: PM : set of repaired mappings

1: for each C ∈ List do
2: PC := P1 ∪ P2 ∪ PM ∪ {true→ C}
3: 〈sat,Pact〉 := DowlingGallier(PC)
4: if sat = false then
5: Repairs := ∅
6: repair size := 1
7: repeat
8: for each subset R of Pact of size repair size do
9: sat := DowlingGallier(PC \ R)

10: if sat = true then Repairs := Repairs ∪ {R}
11: end for
12: repair size := repair size + 1
13: until |Repairs| > 0
14: R := element of Repairs with minimum confidence.
15: PM := PM \ R
16: end if
17: end for
18: return PM

Table 4. Repair in LogMap. A call to DowlingGallier returns a satisfiability value sat
and, if sat = false, it optionally returns the relevant active mappings (Pact)

level in the hierarchy. Since subclasses of an unsatisfiable class are unsatisfiable,
repairing first classes high-up in the hierarchy is a well-known repair strategy.

Given each unsatisfiable class C and the relevant active mappings Pact com-
puted using Dowling-Gallier, the algorithm identifies subsets of Pact of increasing
size until a repair is found. Thus, our algorithm is guaranteed to compute all re-
pairs of smallest size. In our example, our algorithm computes repairsR1 = {m4}
and R2 = {m6} consisting of only one mapping. If more than one repair is found,
LogMap selects the one with the minimum confidence value.

Finally, each equivalence mapping is split into two propositional rules, which
are treated independently for repair purposes. Hence, a repair may include only
one such rule, thus ‘weakening’ the mapping, as in the case of R1 and R2.

Mapping Discovery LogMap computes new mappings by first expanding the
contexts Cm

1 and Cm
2 for each anchor m, and then (incrementally) matching the

classes in Cm
1 to those in Cm

2 using ISUB, as described next.

Context expansion. LogMap only expands contexts that are open (i.e., with at
least one active class). The expansion of an open context is performed by adding
each neighbor (in the corresponding ontology hierarchy) of an active class in the
context. The set of active classes in each context is then reset to the empty set.

Context matching using ISUB. LogMap makes a call to ISUB for each pair of
classes C ∈ Cm

1 and D ∈ Cm
2 , but only if the same call has not been performed

in previous discovery steps (for these or other contexts). Thus, LogMap never
calls ISUB twice for the same input classes. We call relevant those ‘new’ lexical
correspondences found by ISUB (in the current iteration) with a similarity value
exceeding a given expansion threshold.

LogMap uses these relevant correspondences to determine the set of active
classes of Cm

1 and Cm
2 for the next iteration as well as the set of new mappings.

– The new active classes of Cm
1 and Cm

2 are those that participate in some
relevant correspondence.

– The current set of mappings is expanded with those relevant correspondences
with similarity value exceeding a mapping threshold (which is higher than the
expansion threshold). These new mappings will constitute the set of active
mappings for the next repair step.

The use of ISUB allows LogMap to discover new mappings that, unlike an-
chors, are not lexically ‘exact’ (but with similarity higher than the mapping
threshold). The number of ISUB tests performed is relatively small: only con-
texts for the same anchor are matched using ISUB, the same ISUB call is never
performed twice, and context growth is limited by the expansion threshold.

2.5 Overlapping Estimation

In addition to the mappings, LogMap also returns two (hopefully small) frag-
ments O′1 and O′2 of O1 and O2, respectively. Intuitively, O′1 and O′2 represent
the ‘overlapping’ between O1 and O2, in the sense that each ‘correct’ mapping
not found by LogMap is likely to involve only classes in these fragments. Thus,
expert curators can focus only on O′1 and O′2 when looking for missing mappings
between O1 and O2. The computation of O′1 and O′2 is performed in two steps.

1. Computation of ‘weak’ anchors. Recall that LogMap computed the initial
anchors by checking whether two entries in the inverted index of O1 and O2

contained exactly the same set of strings (c.f., Section 2.3). For the purpose of
overlapping estimation (only), LogMap also computes new anchor mappings
that are ‘weak’ in the sense that the relevant entries in the inverted index are
only required to contain some common string. Thus, weak anchors represent
all correspondences between classes that have a common lexical component.

2. Module extraction. The sets Si of classes in Oi involved in either a weak
anchor or a mapping computed by LogMap are then used as ‘seed’ signa-
tures for module extraction. In particular, O′1 (resp. O′2) are computed by
extracting a locality-based module [22] for S1 in O1 (resp. for S2 in O2).

Note that, unlike anchors, ‘weak anchors’ are not well-suited for mapping
computation since they rarely correspond to real mappings, and hence they in-
troduce unmanageable levels of ‘noise’. For example, the discovered correspon-
dence NCI:CommonCarotidArteryBranch ∼ FMA:BranchOfCommonCochlearArtery
is a weak anchor between NCI and FMA because both classes share the terms
‘branch’, ‘common’ and ‘artery’; however, such correspondence is clearly not a
standard mapping since none of the involved classes is subsumed by the other.

GS Mappings Repaired Mappings

Ontologies Total Unsat. Total v Time (s)

FMA-NCI 3,024 655 (96%) 2,898 78 10.6

FMA-SNOMED 9,072 6,179 (89%) 8,111 1,619 81.4

SNOMED-NCI 19,622 20,944 (93%) 18,322 837 812.4

Mouse-NCIAnat. 1,520 0 1,520 - -

Table 5. Repairing Gold Standards. The v column indicates subsumption mappings.
The % of total mappings includes those ‘weakened’ from equivalence to subsumption.

3 Evaluation

We have implemented LogMap in Java and evaluated it using a standard laptop
computer with 4 Gb of RAM.

We have used the following ontologies in our experiments: SNOMED CT Jan.
2009 version (306, 591 classes); NCI version 08.05d (66, 724 classes); FMA version
2.0 (78, 989 classes); and NCI Anatomy (3, 304 classes) and Mouse Anatomy
(2, 744 classes), both from the OAEI 2010 benchmark [1]. Classification times
for these ontologies were the following: 89s for SNOMED, 575s for NCI, 28s for
FMA, 1s for Mouse Anatomy, and 3s for NCI Anatomy.2 We have performed
the following experiments,3 which we describe in detail in the following sections.

1. Repair of gold standards. We have used LogMap’s mapping repair module
(c.f. Section 2.4) to automatically repair the mappings in two gold standards:
– The mappings FMA-NCI, FMA-SNOMED and SNOMED-NCI included

in UMLS Metathesaurus [2] version 2009AA;4 and
– the OAEI 2010 anatomy track gold standard [23].

2. Matching large ontologies. We have used LogMap to match the following
pairs of ontologies: FMA-NCI, FMA-SNOMED, SNOMED-NCI, and Mouse
Anatomy-NCI Anatomy. To the best of our knowledge, no tool has so far
matched FMA, NCI and SNOMED; hence, we only compare our results with
other tools for the case of Mouse Anatomy-NCI Anatomy.

3. Overlaping estimation. We have used LogMap to estimate the overlapping
between our test ontologies as described in Section 2.5.

3.1 Repairing Gold Standards

Table 5 summarises our results. We can observe the large number of UMLS map-
pings between these ontologies (e.g., almost 20, 000 for SNOMED-NCI). Using
LogMap we could also detect a large number of unsatisfiable classes (ranging
from 655 for FMA-NCI to 20, 944 for SNOMED-NCI), which could be repaired
efficiently (times range from 10.6s for FMA-NCI to 812.4s for SNOMED-NCI).

2 We used ConDOR [20] to classify SNOMED, and HermiT [19] for the others.
3 Output resources available in: http://www.cs.ox.ac.uk/isg/projects/LogMap/
4 The mappings are extracted from the UMLS distribution files (see [6] for details).

Found Mapp. Output Mapp. Time (s)

Ontologies Total Unsat. Total v Anchors Total

FMA-NCI 3,185 597 (94%) 3,000 43 28.3 69.8

FMA-SNOMED 2,068 570 (99%) 2,059 32 35.6 92.2

SNOMED-NCI 14,250 10,452 (95%) 13,562 1,540 528.6 1370.0

Mouse-NCIAnat 1,369 32 (99%) 1,367 3 1.8 15.7

Table 6. Mappings computed by LogMap

Finally, the repair process was not aggressive, as it resulted in the deletion of a
small number of mappings;5 for example, in the case of NCI and FMA LogMap
preserved 96% of the original mappings, and also managed to ‘weaken’ 78 equiv-
alence mappings into subsumption mappings (instead of deleting them).

We have used the reasoners HermiT and ConDOR to classify the merge
of the ontologies and the repaired mappings, thus verifying the results of the
repair. For FMA-NCI, we found one unsatisfiable class that was not detected
by LogMap’s (incomplete) reasoning algorithm. Unsatisfiability was due to a
complex interaction of three ‘exact’ lexical mappings with axioms in NCI and
FMA involving existential and universal restrictions. For FMA-SNOMED and
SNOMED-NCI we could not classify the merged ontologies, so we extracted
a module [22] of the mapped classes in each ontology. For FMA-SNOMED we
could classify the merge of the corresponding modules and found no unsatisfiable
classes. For SNOMED-NCI no reasoner could classify the merge of the modules.

In the case of the Mouse Anatomy and NCI Anatomy ontologies from OEAI,
we found no unsatisfiable class using both LogMap and a DL reasoner.

3.2 Matching Large Ontologies

Table 6 summarises the results obtained when matching our test ontologies using
LogMap for a default expansion threshold of 0.70 and mapping threshold of 0.95.

The second and third columns in Table 6 indicate the total number of map-
pings found by LogMap (in all repair-discovery iterations), and the total number
of detected unsatisfiable classes, respectively. The fourth and fifth columns pro-
vide the total number of output mappings (excluding those discarded during
repair) and shows how many of those mappings were ‘weakened’ from equiv-
alence to simple subsumption during the repair process. We can observe that,
despite the large number of unsatisfiable classes, the repair process was not ag-
gressive and more than 94% (in the worst case) of all discovered mappings were
returned as output. Finally, the last two columns show the times for anchor
computation and repair, and the total matching time.6

Total matching time (including anchor computation and repair-discovery it-
erations) was less than two minutes for FMA-NCI and FMA-SNOMED. The
5 The repair process in our prior work was much more aggressive [6]; for example, 63%

of UMLS for SNOMED-NCI were deleted.
6 Excluding only indexation, which is negligible.

Found Mappings Output Mappings

Ontologies Precision Recall F-score Precision Recall F-score

FMA-NCI 0.767 0.843 0.803 0.811 0.840 0.825

FMA-SNOMED 0.767 0.195 0.312 0.771 0.195 0.312

SNOMED-NCI 0.753 0.585 0.659 0.786 0.582 0,668

Mouse-NCIAnat 0.917 0.826 0.870 0.918 0.826 0.870

Table 7. Precision and recall w.r.t. Gold Standard.

GS ISUB ≥ 0.95 GS ISUB ≥ 0.80 GS ISUB ≥ 0.50

Ontologies % Mapp. Recall % Mapp. Recall % Mapp. Recall

FMA-NCI 88% 0.96 93% 0.90 97% 0.87

FMA-SNOMED 21% 0.95 64% 0.30 92% 0.21

SNOMED-NCI 62% 0.94 75% 0.77 89% 0.65

Mouse-NCIAnat 75% 0.99 87% 0.95 95% 0.88

Table 8. Missed mappings by LogMap with respect to repaired gold standard

slowest result was obtained for SNOMED-NCI (20 minutes) since repair was
costly due to the huge number of unsatisfiable classes. We could only compare
performance with other tools for Mouse-NCIAnat (the largest ontology bench-
mark in the OAEI). LogMap matched these ontologies in 15.7 seconds, whereas
the top three tools in the 2009 campaign (no official times in 2010) required 19,
23 and 10 minutes, respectively; furthermore, the CODI tool, which uses sophis-
ticated logic-based techniques to reduce unsatisfiability, reported times between
60 to 157 minutes in the 2010 OAEI [14].

Table 7 shows precision and recall values w.r.t. our Gold Standards (the
‘clean’ UMLS-Mappings from our previous experiment and the mappings in the
anatomy track of the OAEI 2010 benchmark). The left-hand-side of the table
shows precision/recall values for the set of all mappings found by LogMap (by
disabling the repair module), whereas the right-hand-side shows precision/recall
for the actual set of output mappings. Our results can be summarised as follows:

– Although the main benefit of repair is to prevent logical errors, the table
shows that repair also increases precision without harming recall.

– In the case of Mouse-NCIAnat we obtained an F-score in line with the best
systems in the 2010 OAEI competition [1].

– Results for FMA-NCI were very positive, with both precision and recall ex-
ceeding 0.8. Although precision was also high for SNOMED-NCI and FMA-
SNOMED, recall values were much lower, especially for FMA-SNOMED.

We have analysed the reason for the low recall values for FMA-SNOMED and
SNOMED-NCI. Our hypothesis was that SNOMED is ‘lexically incompatible’
with FMA and NCI since it uses very different naming conventions. Results in
Table 8 support this hypothesis. Table 8 shows, on the one hand, the percentage
of gold standard mappings with an ISUB similarity exceeding a given threshold
and, on the other hand, the recall values for LogMap w.r.t. such mappings only.

Ontologies Overlapping for O1 Overlapping for O2

O1-O2 O′
1 % O1 Recall O′

2 % O2 Recall

FMA-NCI 6,512 8% 0.95 12,867 19% 0.97

FMA-SNOMED 20,278 26% 0.92 50,656 17% 0.94

SNOMED-NCI 70,705 23% 0.86 33,829 51% 0.96

Mouse-NCIAnat 1,864 68% 0.93 1,894 57% 0.93

Table 9. Overlapping computed by LogMap

Note that LogMap could find in all cases more than 94% of the gold standard
mappings having ISUB similarity above 0.95. However, only 21% of the gold stan-
dard FMA-SNOMED mappings exceeded this value (in contrast to 88% between
FMA and NCI), showing that these ontologies use very different naming con-
ventions. To achieve a high recall for FMA-SNOMED mappings, LogMap would
need to use a mapping threshold of 0.5, which would introduce an unmanageable
amount of ‘noisy’ mappings, thus damaging both precision and scalability.

3.3 Overlapping Estimation

Our results concerning overlapping are summarised in Table 9, where O′1 and
O′2 are the fragments of the input ontologies computed by LogMap.

We can see that the output fragments are relatively small (e.g., only 8% of
FMA and 19% of NCI for FMA-NCI and only 26% of FMA and 17% of SNOMED
for FMA-SNOMED). Our results also confirm the hypothesis that ‘correct’ map-
pings involving an entity outside these fragments are rare. As shown in the table,
a minimum of 86% and a maximum of 97% of Gold Standard UMLS mappings
involve only classes in the computed fragments. Thus, these results confirm our
hypothesis even for FMA-SNOMED and SNOMED-NCI, where LogMap could
only compute a relatively small fraction of the Gold Standard mappings.

4 Conclusion and Future Work

In this paper, we have presented LogMap—a highly scalable ontology match-
ing tool with built-in reasoning and diagnosis capabilities. LogMap’s features
and scalability behaviour make it well-suited for matching large-scale ontolo-
gies. LogMap, however, is still an early-stage prototype and there is plenty of
room for improvement. We are currently working on further optimisations, and
in the near future we are planning to integrate LogMap with a Protege-based
front-end, such as the one implemented in our tool ContentMap [10].

Acknowledgements

We would like to acknowledge the funding support of the Royal Society and the
EPSRC project LogMap, and also thank V. Nebot and R. Berlanga for their
support in our first experiments with structural indexation.

References

1. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology
Alignment Evaluation Initiative: six years of experience. J Data Semantics (2011)

2. Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic acids research 32 (2004)

3. Geller, J., Perl, Y., Halper, M., Cornet, R.: Special issue on auditing of terminolo-
gies. Journal of Biomedical Informatics 42(3) (2009) 407–411

4. Cimino, J.J., Min, H., Perl, Y.: Consistency across the hierarchies of the UMLS
semantic network and metathesaurus. J of Biomedical Informatics 36(6) (2003)

5. Morrey, C.P., Geller, J., Halper, M., Perl, Y.: The Neighborhood Auditing Tool: A
hybrid interface for auditing the UMLS. J of Biomedical Informatics 42(3) (2009)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assess-
ment of the compatibility of UMLS ontology sources. J Biomed. Sem. 2 (2011)

7. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an imple-
mentation of semantic matching. In: European Semantic Web Symposium. (2004)

8. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping
Revision. J Logic Computation 19(5) (2009) 807–829

9. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing alignment
diagnoses. In: Proc. of Web Reasoning and Rule Systems, RR. (2009) 182–196

10. Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integra-
tion using mappings: Towards getting the right logical consequences. In: Proc. of
European Semantic Web Conference (ESWC). (2009) 173–187

11. Jean-Mary, Y.R., Shironoshita, E.P., Kabuka, M.R.: Ontology matching with se-
mantic verification. J of Web Semantics 7(3) (2009) 235–251

12. Reul, Q., Pan, J.Z.: KOSIMap: Use of description logic reasoning to align hetero-
geneous ontologies. In: Proc. of DL Workshop. (2010)

13. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A probabilistic-logical framework
for ontology matching. In: Proc. of AAAI. (2010)

14. Noessner, J., Niepert, M.: CODI: Combinatorial optimization for data integration
results for OAEI 2010. In: Proc. of OM Workshop. (2010)

15. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive re-
lationships in large data and knowledge bases. SIGMOD Rec. 18 (1989) 253–262

16. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes
for the Semantic Web. In: Proc. of WWW, ACM (2003) 544–555

17. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval
labeling scheme. Inf. Sci. 179(24) (2009) 4151–4173

18. Stoilos, G., Stamou, G.B., Kollias, S.D.: A string metric for ontology alignment.
In: Proc. of the International Semantic Web Conference (ISWC). (2005) 624–637

19. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Log-
ics. Journal of Artificial Intelligence Research 36 (2009) 165–228

20. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond
Horn ontologies. In: IJCAI. (2011)

21. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. J. Log. Program. (1984) 267–284

22. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In: Proc. of WWW. (2007) 717–726

23. Bodenreider, O., Hayamizu, T.F., et al.: Of mice and men: Aligning mouse and
human anatomies. In: AMIA Annu Symp Proc. (2005) 61–65

