
Checking noninterference in Timed CSP

A.W. Roscoe and Huang Jian

Oxford University Department of Computer Science

Abstract. A well-established specification of noninterference in CSP is that, when high-level
events are appropriately abstracted, the remaining low-level view is deterministic. This is not
a workable definition in Timed CSP, where many processes cannot be refined to deterministic
ones. We argue that in fact “deterministic” should be replaced by “maximally refined” in the
definition above. We show how to automated the resulting timed noninterference check within
the context of the recent extension of FDR to analyse a discrete version of Timed CSP and how
an extended theory of digitisation has the potential both to create more accurate specifications
and to infer when processes are non-interfering in the more usual continuous-time semantics.

1 Introduction

Noninterference, a concept introduced by Goguen and Meseguer in [5], is a topic in the
theory of computer security: it analyses whether information can flow between users of a
system through their joint use of it. In the classic set up there is a high level user (say Hugh)
and a low level one (Lois): we might well want to ask whether or not information can pass
from Hugh to Lois. Thus noninterference is an asymmetric condition: we might not mind
Hugh learning about Lois’s activities.

In a practical setting it might be much harder to guard against situations where Hugh
is actively trying to pass information to Lois using whatever feature of the system he can
(something usually called a covert channel, as opposed to Lois spying on an unknowing
Hugh. However, without knowing exactly what Hugh might to, proving the absence of
information flow in the second scenario is the same as the in the first.

Noninterference is a wonderful specification for theorists to play with, because it exercises
the nuances of their semantic models – something that will be well illustrated in the present
paper. Given that semantic models tend to be based on things that observers at some level of
abstraction can see about processes, it seems natural to pose the question of how one would
couch noninterference by giving Lois the same powers of observation as the model, though
restricted to her own interface with the system. So while refining a semantic model may
be irrelevant to many practical specifications, this is rarely if ever true of noninterference
because we can always imagine a more discerning Lois or spy.

Goguen and Meseguer’s specification was in terms of machines that strictly alternate
inputs and outputs, and on each cycle have an input, then an output, with each of its
users. Process algebras like CSP offer a rather more flexible way of describing how pro-
cesses look, and since they are essentially ways of describing interaction, quickly became
an important focus of noninterference research. Initial characterisations in process algebras
(for example [1, 6, 28]) had much in common with those of [5], but later ones such as those
of Roscoe, Woodcock and Wulf [27, 21], and Focardi and Gorrieri [3] made much more use
of the particular expressive qualities of process algebras. It is in this world that the present
paper sits.

Different types of semantics (whether process algebra or otherwise) give different per-
spectives on noninterference. If the semantic model we are using does not capture some
notion of behaviour that Lois might observe, then any specification of noninterference based

on that model is not going to capture information about Hugh’s actions that she can see in
that way. One obvious possibility is time. Neither standard input/output semantics of se-
quential programs nor most process algebras pay any attention to how long our system takes
to perform its operations, or the wait between one communication and the next. Therefore
none of the formulations of noninterference in the papers cited above can identify timing
channels, one of the most common types of covert channel. The formulations we give in this
paper are designed for exactly that purpose.

A further important question is whether or not we try to distinguish different sorts of
nondeterminism – unpredictable behaviour by the system – from one another. Nondeter-
minism can either protect against information flow or allow it. If what Lois says covers the
same nondeterministic range no matter what Hugh does it is impossible for her to deduce
anything definitively about his actions, but on the other hand what he does (for example
his timing) might affect the resolution of the nondeterminism in her view.

The relationship between refinement, nondeterminism and noninterference has generated
considerable debate over the years. In particular one needs to be careful not to describe a
system as secure and yet find it has insecure refinements – an instance of the so-called re-
finement paradox. Morgan and McIver have written about this issue – mainly in the context
of imperative programs [13, 12], for example, by introducing shadows that assert unrefinable
ignorance. We will find in this paper that there seems to be a greater need in Timed CSP
than in the original CSP for ways of determining whether or not nondeterministic programs,
possibly not maximal in the conventional refinement order, satisfy noninterference.

The rest of this paper is structured as follows. We first recall the CSP and Timed CSP
languages. We then introduce and analyse the continuous and discrete semantic models we
use for Timed CSP, deriving some new structural properties. A further background section
recalls the functionality of FDR including its new timed capabilities. Section 5 recalls the
definition of noninterference from [27, 21], and shows that it does not work in the same
form in the standard model for Timed CSP (which uses a continuous model of time) or the
corresponding model using discrete time. We then show how a revised formulation of the
basic principles allows us to capture what is required.

The theory of digitisation [14, 15] allows us to relate the behaviour of Timed CSP pro-
cesses in discrete and continuous time. We investigate the implications of this for systems
modelled in the continuous models of Timed CSP, and show that one can provide results
about the noninterference properties of a process’s continuous semantics by analysing a suit-
able discrete semantics. To do this we establish some generalised results about digitisation.

The discrete-time form of Timed CSP has recently [2] been implemented in the CSP
refinement checker FDR [20]. We show that the reformulated definition of noninterference
can be implemented directly in that, though not so directly as the untimed variant, since
it cannot use FDR’s built-in determinism check. By applying this to some relatively simple
case studies, we see some of the types of timing channels that can arise in shared-use systems
and some strategies for avoiding these.

Finally, we contemplate potential application areas of timed noninterference analysis,
including Cloud security.

The reader will discover that some of the constructions and arguments contained in this
paper are complex. To keep them as simple as possible we make a number of assumptions:

1. The alphabet Σ over which we build processes is finite.
2. We only consider finitely nondeterministic CSP and Timed CSP: given the first assump-

tion this just means that all uses of nondeterministic choice u are over finite sets.

3. While we frequently use termination (X) and sequential composition in building process
descriptions, the processes we test for noninterference will never terminate. We therefore
ignore the complications of termination when defining and analysing the semantic models
and in formulating noninterference conditions.

The present paper has its origins in the doctoral research of the second author [8], some
of which relating to discrete Timed CSP was reported in [9]. This examined a variety of
timed models of CSP-like processes and explored how established noninterference theories
extended to them. We are now able to extend the parts of [8] on discrete and continuous
Timed CSP by proving relationships between them and implementing them in FDR.

Acknowledgements

We are grateful to Joël Ouaknine for discussions on discrete Timed CSP and digitisation,
and to Phil Armstrong for implementing Timed CSP in FDR.

The work reported in this paper was partially supported by grants from EPSRC and
ONR.

2 The language of CSP and Timed CSP

CSP is a language which describes patterns of communication in some alphabet Σ of ac-
tions that are handshaken between the process and its environment. There are additional
actions X, a signal for successful termination and τ , an invisible action representing inter-
nal progress within a process. In the original “untimed” treatment of CSP these patterns
of communication include the order of actions, which sets are offered and maybe the ways
in which possibilities branch, but not the exact times these things happen.

The following is a brief introduction to the main parts of the language: much more
complete explanations can be found elsewhere [22, 29, 24].

There are process constants representing important patterns of communication: STOP
is a process that does nothing, while SKIP just terminates. div just diverges by performing
τs for ever. RUNA is always ready to perform any event from A ⊆ Σ while CHAOSA can
always both accept and refuse any event from A.

There are operators for introducing communications: a → P and ?x : A → P(x) allow
an individual member or choice of actions from Σ. P � Q makes the choices of both P and
Q available to the environment, while P u Q allows the process to select which of P and
Q to behave like.

We can put processes in parallel that influence each other by synchronising on some
of their events from Σ: P ‖

A
Q makes them synchronise on the events they perform in A,

P A‖B Q makes them synchronise in A ∩ B , while P ||| Q just lets them run freely.
P \ A represents P running but with all events in A hidden: turned into τs. P [[R]] applies

the relation R ⊆ Σ ×Σ (usually assumed to be total on the events P uses) to P ’s actions:
whenever P performs a, P [[R]] gives the environment the choice of all the b such that a R b.

CSP provides three ways of one process handing over to another P ; Q runs them in
sequence: P until it terminates via X and then Q . P 4 Q allows Q to interrupt P by
performing any visible event, while P ΘA Q runs P until it performs any action in A ⊆ Σ,
at which point Q starts.

There are also indexed versions of a number of these operators, and in many contexts
we use infinitary versions of the choice operators. Recursive definitions are used in a rich

variety of ways, including defining infinite families of processes in mutual recursions. CSP
is therefore a very rich language and is capable of describing many patterns representing
both implementations and specifications.

In this paper we will use the “blackboard” style of the operators used above, but in
fact our implementations of the ideas in this paper are all in the ASCII version of CSP,
known as CSPM which combines ASCII versions of the above operators with a Haskell-like
functional programming language.

Timed CSP [17, 18, 29] does not need much more description because it is the same
language given a timed interpretation. In our treatment there is only one new construct:
WAIT t behaves exactly like SKIP but takes the non-negative time t before it terminates
(X). As implemented in FDR it gives the programmer the option to assign a non-negative
completion time to each event a ∈ Σ: in a → P and ?x : A → P(x) there are et(a) time
units between the occurrence of the event a (assumed to be instantaneous) and the following
process starting up. The other main principle underlying the timing is that we assume that
as soon as any event is enabled in a process (either because like τ it needs no collaboration
from the environment, or because the environment does allow it) some event does happen.
This is the principle of maximal progress.

Some versions of Timed CSP include explicit time-out and timed interrupt operators:
P Bt Q offers initial choices of P for time t and then lets Q take over if P has not commu-
nicated; P 4t Q makes Q take over after time t even if P has communicated (unless P has
terminated). But since both of these can be defined in terms of WAIT and other operators,
we will not regard these as primitive operators here.

– P Bt Q = (P � (WAIT t ; timeout → Q)) \ {timeout} where timeout is a new event
with et(timeout) = 0.

– P 4t Q = (P 4 (WAIT t ; interrupt → Q)) \ {interrupt} where interrupt is a new
event with et(interrupt) = 0.

Note how both these constructions depend on maximal progress: as soon as the fresh event
becomes available it happens, forcing either resolution of the � or an interrupt.

The natural timed interpretations of the processes div, RUNA and CHAOSA all breach
an important principle of Timed CSP: they allow an infinite number of events in a finite
time. Timed CSP assumes to the contrary that processes only perform a finite number in
any finite interval. What we assume in this paper is any complete Timed CSP system has
this property: it can sometimes be useful to use RUNA and CHAOSA in these programs
as long as they synchronise all their actions with a process that does have the no-Zeno
property.

We will find in this paper that it is frequently useful to restrict Timed CSP so that all
delays introduced by language constructs are integers. In other words, et(a) ∈ N and, in
WAIT t , t ∈ N. The language subset satisfying this restriction will be termed integer Timed
CSP.

3 Semantic models

The most standard model of untimed CSP is the failures-divergences model alluded to above
in which each process is represented as a pair (F ,D) of sets of behaviours. F comprises
failures, namely combinations (s,X) of a finite trace and a set X that the process can
refuse in a stable state after s. D is the set of processes on which it can diverge, namely
engage in an infinite consecutive sequence of τ actions. The model is divergence strict,

namely if s ∈ D then s t̂ ∈ D and (s t̂ ,X) ∈ F for all t and X : this does not imply that
the process can really perform all these extra behaviours, but rather than we choose not to
know whether it can or not and simply assume they are.

Aside from these divergence-closure conditions, the observation that if (s,X) is a failures
then so is (s,Y) for Y ⊆ X and the property that the set of all traces {s | (s,X) ∈
F} is nonempty and closed under prefix, there is one further healthiness condition that
characterises which pairs (F ,D) represent realistic processes. That is

F3 (s,X) ∈ F ∧Y ∩ {a | (s {̂a}, ∅) 6∈ F} ⇒ (s,X ∪Y) ∈ F

In other words, whenever our process refuses a set X it must also refuse (if offered) an
extension of X by events that are never possible after s. F3 ensures that the process has
enough traces to be consistent with its refusal sets.

With exception of additional properties that are used to govern the behaviour of the
special event X representing successful termination (which we ignore, for simplicity, in this
paper), these properties completely determine N over any given alphabet Σ. This model
has many important properties, one of which is that (given the CSP language described
in [24] fully abstract with respect to deciding whether any process is deterministic in the
following sense:

– A deterministic process (F ,D) is divergence free (i.e. D = ∅)
– It never has the choice whether to accept or refuse any event (i.e. if (s 〈̂a〉, ∅) ∈ F then

(s, {a}) 6∈ F), which is equivalent to saying that the failures (s,X) are exactly the ones
forced from the set of traces by the property F3 above.

This concept of determinism is one that relates to how a process can be observed rather
than its internal construction. For example the operational semantics of the process ((a →
b → a → STOP) u b → STOP) \ {a} branch, so one cannot be certain what state one is
in after any trace, but no matter what happens a b followed eventually by STOP occur.

The combination of the principle of maximal progress and the need to make models
compositional under the CSP hiding operator (which turns visible actions into τs that are
forced before time passes) makes the range of models for Timed CSP more restricted than
for untimed. It is necessary to record the set of events refused at every point in a behaviour
where time advances. Divergence is a much reduced issue, since thanks to the no-Zeno
assumption any divergence is necessarily spread over infinite time – which when we are
modelling time simplifies things greatly. In fact divergence will not be considered in the
models we use in this paper.

In the case of continuous time this means that we have to record refusals as a subset of
Σ × R+ to accompany traces which attach a time in R+ (the non-negative real numbers)
to each event, where the times increase, not necessarily strictly, through the trace. In fact,
timed refusals are unions of sets of the form X × [t1, t2) where 0 ≤ t1 < t2 < ∞ –refusal
tokens. [t1, t2) is a half-open interval that contains t1, all x with t1 < x < t2 but not t2.
This corresponds to the idea that if an event happens at time t then the refusal recorded at
that time is the set of events refused at the same time after the event. So in a → P , there
will be behaviours in which a occurs at time 1, all events other than a are refused in the
interval [0, 1) and, on the assumption that the event a takes time δ to complete, all events
including a are refused in the interval [1, 1 + δ).

So the Timed Failures model consists of pairs of the form (t ,ℵ), where t is such a timed
trace, and ℵ is such a timed refusal. First introduced in [18], there have been a number of
variants of this model over the years, the main points of difference being:

– Is causality permitted between simultaneous events: can one have the timed trace
〈(a, 1), (b, 1)〉 but not the timed trace 〈(b, 1), (a, 1)〉?

– Can an event take zero time: in a → b → P can the b happen at the same time as the
a? (This question is very closely linked to the previous one: if the answer to this one is
“yes”, then the first must also be answered affirmatively.)

– Does recursion take time to unfold or not: is µ p.F (p) equivalent to WAIT δ; F (µ p.F (p))
for some δ > 0 or just F (µ p.F (p))?

– How is the assumption of no Zeno behaviour enforced? This says that only finitely many
actions can occur in a finite time.

– Is information included about stability? This is the dual of divergence: the time after
which no further internal actions occur without a visible one having occurred first.

– Can traces s and timed refusals ℵ extend through all time or must they be finite. In
either case they are always restricted so that up to any finite time they only have finitely
many events or are the union of finitely many refusal tokens.

[14, 15] and [29] agree on most of these points, and give the same equivalence over Timed
CSP restricted to finitely nondeterministic constructs. We agree with them on all of them
except the one where they differ, which is the last. So the answers to the all but that
question will be yes, yes, no, usually restricting recursions to ones which are time guarded,
never starting a recursive call until some delay of at least δ > 0 has been introduced by the
context of the call, and no.

On the last point we will restrict to finite traces but allow timed refusals extending
through all time. Both make later constructions easier, but under our assumption of finite
nondeterminism do not change the expressive power of the model.

The axiom that coincides with F3 is more complex both because it deals with the richer
structure of timed failures and because it captures the temporal concept of no instantaneous
withdrawal or NIW: if a process cannot refuse an event up to a given time, then it can perform
it at that time. The intuition here is that if event a was offered before time t when some
internal event x occurred that removed the option of a, then a was a valid option to x at
the point where it occurred and so could have happened instead. This property is important
to the theory of digitisation and will play a major role in this paper. In this paper we will
call it the continuous forcing axiom CF.

(s,ℵ) ∈ P ⇒ ∃ℵ′ ⊆ ℵ. ∀ t .∀ a.
¬∃ ε > 0.{a} × [max{end(s � t), t − ε}, t + ε) ⊆ ℵ′ ⇒ (s � t 〈̂(a, t)〉,ℵ′ � t) ∈ P

This says that whatever timed refusal ℵ is actually observed by an experimenter along-
side the timed trace s, there is an extension ℵ′ which records all the events the process
would have refused (if offered) alongside the trace s through all time. The fact that these
are all the refused events means that it must perform all actions that are either not in the
set or have been withdrawn from the offer at the present instant.

The only other properties required to define the model are the following

– A process is non-empty, specifically containing (〈〉, ∅).
– Whenever (s ŝ ′,ℵ) ∈ P and ℵ′ ⊆ ℵ � begin(s ′), then (s ′,ℵ′) ∈ P , including the case

where s ′ = 〈〉 and so begin(s ′) =∞.
– For each P there is a bound on how many events it can perform in any finite time:

∀ t .∃ .n.s ∈ traces(P)⇒ #s � t ≤ n

Our assumptions of finite alphabet and finite nondeterminism make this last property
unproblematic.

The (continuous) timed failures model FT will be the set of all sets P of timed failures
satisfying all of the above.

A corresponding model FDT exists for discrete time: where time is measured in discrete
units, separated by some marker such as an event tock representing the regular passage of
time. FDT and variants have been studied and described in [14–16, 11, 8, 24]. In Timed CSP
the processes do not communicate this event: you should think of it as a clock in the hands
of an external observer. The discrete timed failures model has behaviours that consist of a
trace consisting of events including tock , including a refusal set of events before each tock
and at the end. None of the refusal sets include tock . Another equivalent presentation is as
a sequence of failures (s,X) where there is a notional tock between each consecutive pair.
For consistency with the continuous treatment above, in this paper we will assume that the
behaviour is infinite but contains only finitely many non-tock events. [Thus it contains a
record of refusals at all integer times.]

The events between two consecutive tocks are thought of as occurring at one of a discrete
series of “moments”, and the refusal set records what is refused at the point time advances,
exactly in the spirit of the continuous timed failures model.

Because of this structure in which all behaviours have infinitely many tocks, the usual
empty trace 〈〉 or (〈〉, ∅) representing a process doing nothing is replaced by ∆ = 〈∅, tock〉ω:
where time passes for ever but nothing is seen to be refused.

While the complete Timed CSP language can be given a compositional semantics over
FT, to have a semantics over FDT a program needs to use only integer delays in WAIT s,
event timings and any other places where a delay is introduced. In other words it must be
an integer Timed CSP program as defined earlier.
FDT also has the NIW property: if an event cannot be refused before a tock , then it is

possible after the tock . Intuitively, the withdrawal of the offer of some event a after a tock
occurs because the tock enables some τ that changes the state. But since τ is after the tock ,
a is possible also up to that same point after tock . The property analogous to CF is the
discrete forcing axiom DF:

s ∈ P ⇒ ∃ s ′ ⊇ s. ∀ a.
s ′ = s1̂ 〈X , tock 〉̂ s2 ∧ a 6∈ X ⇒ (s ′̂ 〈a 〉̂ ∆ ∈ P ∧ s ′̂ 〈X , tock , a 〉̂ ∆ ∈ P)

Here, s ⊆ s ′ means that the traces (of ordinary events and tocks) in the two behaviours
are the same, and that each refusal in s is a subset of the one at the corresponding point
in s ′.

DF can be paraphrased as saying that each observed behaviour of P must have arisen
from an actual behaviour of the underlying machine performing the same trace, where the
complement of the refusal at each tock were the events being offered at that point. Each
such event could therefore occur either before or (because of NIW) after the tock .

In both FT and FDT, the no instantaneous withdrawal property gets in the way of the
idea of determinism. If we continue to identify determinism with processes being unable,
after any given trace, both to accept and refuse any event, it is clear that no process that
ever withdraws an offer can be deterministic.

Definition 1. [19] A timed process is said to be quasi-deterministic when any visible event
that occurs at time t either is the first to occur at that time and has not been refused in an
interval up to t, or is not refused at t. Specifically:

– Over FT, if (s 〈̂(a, t)〉,ℵ) ∈ P then either t > 0 and end(s) < t and there exists
ε > 0 such that (s 〈̂(a, t)〉,ℵ ∪ {a} × [t − ε, t)) 6∈ P or there is no ε > 0 such that
(s,ℵ � t ,ℵ ∪ {a} × [t , t + ε) ∈ P.

– Over FDT, if s 〈̂a 〉̂ s ′ ∈ P then either s has the form
s ′′̂ 〈X , tock〉 and s ′′̂ 〈X ∪ {a}, tock , {a}, tock 〉̂ ∆ 6∈ P or s 〈̂{a}, tock 〉̂ ∆ 6∈ P.

In each model, the first case allows a process to be quasi-deterministic even though
there are traces after which an event can both be accepted and refused thanks to NIW.
The following lemma, which follows immediately from the above, gives characterisations of
processes that are not quasi-deterministic.

Lemma 1. (i) Over FT the process P is non-quasi-deterministic if and only if it has a
behaviour (s,ℵ) such that one of the following applies:

(a) There exist a and t2 > t1 = end(s) such that both (s 〈̂(a, t1)〉,ℵ � t1) and (s,ℵ ∪
{a} × [t1, t2)) are in P.

(b) There exist a and t3 > t2 > t1 ≥ end(s) such that both (s 〈̂(a, t2)〉,ℵ � t2) and
(s,ℵ ∪ [t1, t3)) are in P.

(ii) Over FDT the process P is non-quasi-deterministic if and only if it has a behaviour sˆ∆
such that one of the following applies:
(c) s does not end in tock, and both s 〈̂a 〉̂ ∆ and s 〈̂{a}, tock 〉̂ ∆ belong to P.
(d) s has the form s ′̂ 〈X , tock〉, and both s 〈̂a 〉̂ ∆ and s ′̂ 〈X ∪ {a}, tock , {a}, tock 〉̂ ∆ are

in P.

Some simple examples are:

– (WAIT 1 � a → STOP); STOP , which in either model can either perform a or refuse
it at time 1 is quasi-deterministic.

– On the other hand

((WAIT 1 � a → STOP); STOP) u (WAIT 1; ((a → STOP) � (b → STOP)) \ b)

is not because behaviours in which the second a occurs after the refusal of a at any
point in [0, 1) (continuous model) or before the first tock (discrete model) have neither
of the alternative properties.
It is interesting to note that this process is, in both models, equivalent to WAIT 1; ((a →
STOP) � (b → STOP)) \ {b}, namely a process that can always refuse a but can also
perform it at time 1.

Over the continuous model FT, quasi-determinism exactly captures the concept of re-
finement maximality1.

Theorem 1. Over FT a process P is refinement maximal (i.e. Q w P ⇒ Q = P) if any
only if it is quasi-deterministic.

Proof The proof of this rests on the structural axiom CF quoted above. In fact both
quasi-determinism and refinement maximality are equivalent to the following:

(∗) ∀(s,ℵ) ∈ P . ∃!ℵ′.ℵ′ ⊇ ℵ.(s,ℵ′) ∈ P ∧ ∀ t ≥ 0.∀ a.
(s � t 〈̂a〉, ∅) 6∈ P ⇔ (∃ .ε > 0.[max{end(s � t), t − ε}, t + ε) ⊆ ℵ′)

1 It was not equivalent to maximality in [19] because that paper used the concept of stability discussed
above.

In other words, there is a unique (i.e. ∃!) timed refusal ℵ′ associated with every trace with
the property that the trace can be extended at any time by any event just when that event
has either just been withdrawn in ℵ′ or is not refused in ℵ′. ℵ′ is thus the only possible
complement of the set of events the process actually offers through the trace.

Note that the uniqueness of ℵ′ means that, for any fixed s, we are certain to get the
same ℵ′ for any ℵ such that (s,ℵ) ∈ P . So in particular every ℵ must be a subset of the one
generated by (*) for (s, ∅).

If P does satisfy the above then it is straightforwardly quasi-deterministic. It is maxi-
mally refined because if (s,ℵ) ∈ P − P ′ for some refinement P ′ then either s ∈ traces(P ′)
or not. If so we get a contradiction because the ℵ′ given for s in P ′ by CF necessarily omits
some {a} × [t1, t2) ⊆ ℵ where no event in s appears in the given interval. CF then implies
that s � t1̂ 〈(a, (t1 + t2)/2)〉 is a trace of P ′ even though it cannot be one of P . We can thus
infer that the ℵs associated with each trace s of P ′ are the same as those for s in P , and
that there is is some shortest trace s 〈̂(s, t)〉 in P but not in P ′. That gives a contradiction
since the trace s 〈̂(a, t)〉 is implied by CF applied to trace s.

For any process P ∈ FT one can construct a refinement P ′ satisfying property (*) by
induction on the length of trace: we start with ℵ〈〉 chosen by CF for (〈〉, ∅). The length 1
traces are then just those implied by (〈〉,ℵ〈〉) under CF. Each such trace s = 〈(t , a)〉 gives
an ℵs implied by CF from (s,ℵ〈〉 � t) where it can be assumed that ℵs � t = ℵ〈〉 � t . We then
simply continue this process inductively for longer and longer traces, and finally identify P ′

with the set of all (s,ℵ) such that the trace s is generated at some point in this process and
ℵ ⊆ ℵs .

P ′ satisfies property (*) by construction. It is necessarily equal to P if the latter is
refinement maximal, demonstrating that maximality implies (*).

If P is quasi-deterministic, then P ′ omits no behaviour of P : if it did then this behaviour
would differ from those picked for P ′ after some shortest trace s on which they agree.
Whether the extra behaviour were a refusal token {a} × [t1, t2) or event (a, t) after s, it
would contradict quasi-determinism using arguments similar to the above.

This concludes the proof of Theorem 1.
The equivalence shown above to (*) establishes the following corollary.

Corollary 1. A quasi-deterministic process in FT is completely determined by its traces.
In other words, if P and Q are quasi-deterministic and have the same set of traces, then
P = Q.

It is natural to expect, given the above, that quasi-determinism corresponds to refine-
ment maximality over FDT as well, but it is not true. Consider the processes

P1 = a → STOP

P2 = ((a → STOP) �WAIT 1); (WAIT 1; a → STOP)

Over the continuous model these are not comparable in the refinement order: in fact they
are both quasi-deterministic and therefore maximal. Note in particular that there are traces
that the first process has but the second does not, for example 〈(a, 1.5)〉.

However over the discrete model every trace of P1 ({〈〉} ∪ {〈(a,n)〉 | n ∈ N}) is also
one of P2: the trace 〈(a, 1)〉 is present by NIW. However the first has less refusals since it
does not have the behaviour 〈∅, tock , {a}, tock 〉̂ ∆ which the second does. Therefore P2 is
not maximal even though it satisfies the definition of quasi-determinism over FDT.

In order to be refinement maximal over FDT, any withdrawal of an offer must be for at
least two time units.

Theorem 2. Over FDT, a process is refinement maximal if and only if it is quasi-deterministic
and satisfies the following:

– If s 〈̂a 〉̂ ∆ and s 〈̂{a}, tock 〉̂ ∆ both belong to P, then s 〈̂{a}, tock , {a}tock 〉̂ ∆ ∈ P.

In other words, if a is withdrawn at time t then it must be withdrawn for two time units.

So if we were to model the Timed CSP process

((a → STOP) �WAIT 1); (WAIT 1; a → STOP)

in a domain where one time unit between tocks is 0.5 of the one used to measure WAIT s
we would get a refinement-maximal process, since a is withdrawn for 2 of the tock -units.

4 The functionality of FDR

FDR is a model checker which by now has many features. That relevant to this paper is
its ability to check for two properties of processes: refinement over a variety of models, and
determinism. These are well known and well documented for untimed CSP. For that, the
main models for calculating refinement are traces, failures and failures-divergences, the last
two being equivalent for divergence-free processes.

Determinism means the combination of divergence freedom and the process never hav-
ing both the trace s 〈̂a〉 and the failure (s, {a}) (i.e. it can perform s and then refuse to
perform any member of the set {a}.) As well as the natural determinism check over the
failures-divergences model, FDR can also attempt to perform a check which ignores poten-
tial divergence. When the latter is known to be impossible this gives the same result, but
there is a use relevant to this paper where divergence is sometimes possible and makes FDR
fail to produce an answer. See Section 5 below.

All the above is well known for untimed CSP, but new capabilities [2] allow it to do
these things in the context of integer Timed CSP. That is, Timed CSP where all WAIT s
and event delays are integer, and where we only record the integer part of the time when
each event occurs. This is reported in [2], and allows the user to mix, in a single script,
Timed CSP and “tock -CSP”, namely the language of untimed CSP in which the passage
of time units is represented via the event tock that is included in programs like ordinary
members of Σ. In fact FDR’s implementation of Timed CSP works by translating that
language to a special form of tock -CSP that is semantically equivalent to it over FDT.

In running both Timed CSP and tock -CSP, FDR requires the user to apply an operator
that gives internal events τ priority over the passage of time via tock . This operator is

pri(P) = priority(P , {}, {tock})

in the priority notation used by FDR. This is needed to achieve maximal progress as de-
scribed above.

FDR can perform refinement checks between Timed CSP processes, where time is rep-
resented via the tock event, using all the usual models that it supports (traces, failures etc).
These are frequently the most appropriate models for comparing a complete Timed CSP
process against a specification, often written in tock -CSP, but it is important to remember

that most of them are not compositional over Timed CSP: one cannot for example infer
over Timed CSP that P vT Q ⇒ C [P] vT C [Q] for a Timed CSP context C [·].

FDR is also capable of checking refinement in FDT between integer Timed CSP pro-
grams, which is compositional. At present this is done by using the refusal testing model
embedded within FDR and a transformation on the Timed CSP processes it generates, but
it may be implemented directly in future versions.

5 Noninterference via determinism?

This ability to characterise a deterministic process even though its internal construction
includes nondeterministic choice is the key to the definition of noninterference in [27, 21,
22]. Given a process P with two users whose disjoint alphabets H and L partition its
own, we can say that a process P can transmit no information from H to L if AH (P) is
deterministic, where AH (P) abstracts away the behaviour of a most nondeterministic user
controlling H . We consider all of the things the high level might do on its side of P , take
the nondeterministic choice of all of them, and specify that the low level user’s view must
be deterministic despite that.

This is a very elegant definition, but (as with every other definition of noninterference
over complex behaviours that we are aware of) it is not perfect:

– It only captures information flow that is visible in the patterns of behaviour recorded
in the model being used: so if we are using the failures-divergences model a process can
pass this specification despite having timing channels. [However, as remarked in [23],
this definition is insensitive to which of a large class of untimed models for concurrency
are used.]

– It does not distinguish between nondeterminism that is causally linked to the actions
of H and that which is intrinsic to P ’s behaviour. Even nondeterminism that is built
in to help conceal H behaviour from L will mean that P is deemed insecure. Thus the
definition is only exact for deterministic P ; for nondeterministic P it is conservative in
the sense that it never deems an insecure process secure, but might say a secure one is
insecure. [As discussed in [22], for example, the class of models in which N rests are
simply incapable of making the necessary distinctions when P is nondeterministic.]

In this paper we are addressing the first of these problems. To handle the second without
admitting insecure processes as secure would require much more operational and intensional
models of processes.

The abstraction used should capture all the ways in which P can be influenced by the
process interacting with it in H . If this interaction follows the standard CSP model then
potentially that user can not only select which H action is picked when several are made
available, but also whether one is selected at all. In this case the correct abstraction to use is
lazy abstraction, defined over the stable failures model (in which the divergence component
of N is replaced by one of finite traces) by

LH (P) = (P ‖ CHAOSH) \ H

(The use of N with this formulation creates problems because it can introduce divergence
that is not appropriate.)

An alternative form of abstraction called mixed abstraction is used when H is partitioned
into two sets HD and HS , where the user is assumed to be able to delay the first but not

the second, which are signals from process to user.

LHS
H (P) = (P ‖ CHAOSHD

) \ H

In this paper we will concentrate on lazy abstraction, but everything we do would work
under an analogous treatment of mixed abstraction.

So the definition of noninterference on which our work in this paper will be based is the
following.

Definition 2. The process P is said to be lazily independent of H over the failures-
divergences model N if LH (P) is deterministic.

Numerous examples of how this definition works in characterising information flow can
be found in [21, 27, 22], as can results such as the demonstration that a deterministic process
P is equivalent to the independent parallel composition PH ||| PL where PL = LH (P) and
PH = LL(P) if and only if both these processes are deterministic. In other words P is
separable if and only if P is lazily independent of both L and H .

This immediately suggests that the way to check if a finite state process satisfies this over
N is to ask FDR if LH (P), formulated using CHAOSH as above, is deterministic. However
it is not quite as simple as that, since the check can be subverted by the same divergences
(resulting from infinite sequences of hidden H actions in P) that mean the definition does
not work in N . In fact these divergences can even subvert a determinism check carried out
in the stable failures model, since FDR’s algorithm to do that does not always work on a
divergent process – see [22]. As remarked there, one reliable method for doing this is the
pair of checks

– P ‖
H

STOP deterministic (over N)

– P ‖
H

STOP vF (P ‖
H

CHAOSH) \ H

This pair of checks together imply that LH (P) is deterministic, and do not allow an infinite
sequence of H actions to cause a problem.

A second reliable method is to replace FDR’s built-in check for determinism by a method
that can be implemented directly in terms of the tool’s refinement checking capabilities,
namely to compare two copies of the process P being checked and forcing the second to
follow exactly every trace that the first follows. If it never diverges and this always succeeds
then P is deterministic, otherwise it is not. Since we will be adapting this idea (originally
due to Lazić [10]) later in this paper, we realise it below in a way easily implemented in
FDR. Here clunk is an event that the process P does not use itself and E = Σ − {clunk}:

CReg = x?E → clunk → CReg

Clunking(P) = P ‖
E

CReg

Test = x?E → x → Test

RHS (P) = ((Clunking(P) ‖
{Clunk}

Clunking(P)) ‖
E

Test) \ {clunk}

LHS = STOP u x?E → x → LHS

The use of clunk keeps the two copies of P within one event of each other, so that
each pair of events come one from each copy. Test forces the two to follow the same trace.

The specification LHS allows anything this RHS (P) might do except for one process being
unable to follow the other’s lead causing deadlock, or P diverging.

LHS vFD RHS (P) is then true if and only if P is deterministic, and if vFD is replaced
by vF we get a test for the failures model version of determinism that is not vulnerable
to the issue described above. Therefore applying the above to the CHAOSH formulation of
LH (P) gives our second reliable test of lazy independence.

The intuition of the deterministic low-level abstraction implying absence of information
seems equally valid in Timed CSP, and indeed any of the checks for it listed above works
as least as well in the discrete version implemented in FDR. Indeed the absence of Zeno
behaviour implies that the simple formulation using the failures or failures/divergences de-
terminism check is guaranteed to work as hiding high-level events cannot introduce divergent
behaviour.

(P ‖
H∪{tock}

TCHAOSH) \ H

can be tested for determinism where TCHAOSH is the tock -CSP process

TCHAOSH = tock → TCHAOSH � (STOP u?x : Σ − {tock} → TCHAOSH)

Note that this process violates the no-Zeno assumption, but that if P satisfies it then
so does the construction for lazy abstraction above.

If the lazy abstraction of a Timed CSP process P is deterministic, then this does imply
absence of information flow at least as measurable in the model being considered. The fact
that no process which ever withdraws an offer is deterministic thanks to NIW represents a
major problem for this definition.

Given our analysis in Section 3, we should contemplate modifying our definition so that
it is deemed free of information flow if the abstraction is either refinement maximal or
quasi-deterministic. Over the continuous model FT these are the same thing, but it is as
well to ask which if either is in principle the right answer.

If we believe that the modelM we are using records all the observations that Lois might
make are the ones recorded in whatever semantic model we are using, then the right answer
appears to be “maximally refined”. For we know that the observations she can make will
be those possible for some process PH in M, depending on how the high-level user Hugh
chooses to behave. Whatever Hugh does will be a refinement of the least refined process he
can be. So if Lois’s view is already maximally refined for the least refined Hugh, nothing he
can do can change her view. This gives us a much stronger guarantee than simply saying
that Lois’s view is independent of Hugh’s behaviour, because it also allows for possible
variability in the system P ’s.

We illustrate this with an example: suppose LEAK is any process that passes information
from Hugh to Lois, for example

LEAK = hugh?x → lois!x → LEAK

Now suppose that M is any process with alphabet L (implying that LH (M) = M such
that M v LH (LEAK). Then if P = M u LEAK then Lois’s view of the combination of
P and Hugh will be equivalent to M no matter what process with alphabet H we pick
for Hugh. Nevertheless the system P is allowed to behave like LEAK which is not secure.

In fact, because M never communicates with Hugh, the latter knows that anything he
communicates to P will immediately be sent to Lois.2

Thus insisting that LH (P) is maximally refined shows that neither Hugh’s decisions or
the ways in which P can behave as a more refined process can affect Lois’s view.

All this is, of course, very similar to the justification of the determinism-based definition
of noninterference, which is not surprising. Where maximally refined processes are not
deterministic this new definition requires the knowledge that whatever nondeterminism
that remains cannot be resolved by whatever Hugh does and whatever internal decisions
are made in P . In other words, whatever nondeterminism remains in a maximally refined
process must remain in the mechanism that Lois observes. With this caveat, we can express
the following re-characterisation of noninterference.

Generalised characterisation of noninterference Suppose we have a semantic model
in which refinement coincides with the reduction of all visible nondeterminism that can be
eliminated by implementation decisions. Then if the abstraction AH (P) characterises how
P appears to L in the presence of the most nondeterministic conceivable behaviour in H ,
we can deem P to be independent of L if AH (P) is maximal in the refinement order.

In the discrete case we have found where it is possible to refine nondeterminism in a
quasi-deterministic process, one can construct an example to show that having a discrete
quasi-nondeterministic abstraction need not exclude information flow. With tock -time unit
1, with a an event in L and h an event in H and b a further event, where both h and b take
the same time (say d) to complete, we can define:

R = (h → P2 � b → P1) \ {b}

This process is certain to perform either h or the hidden b in the first time step, and if
Lois ever sees a refused after the delay d but before a has occurred, then she will know
h has occurred. The natural lazy abstraction of R is just WAIT d ; P2, which is quasi-
deterministic.

So we have concrete evidence that quasi-determinism of the abstraction over discrete
models does not always mean absence of information flow, and a powerful argument that
under certain assumptions the refinement maximality of the abstraction does guarantee it.
Nevertheless we will find in Section 6 that quasi-determinism over discrete models can be
useful nevertheless.

5.1 Abstraction over timed failures

In order to give substance to the specifications of noninterference implied above, we must
formulate abstraction over the continuous and discrete timed failures models. We concen-
trate on lazy abstraction but remark that mixed abstraction poses no problems other than
getting the lazy part of it right: high level actions that cannot be delayed by Hugh are still
hidden.

We start with FDT. We want LH (P) to represent how P looks to an observer unable to
see alphabet H on the assumption that there is a user interacting with P in H with the full
capability of offering subsets of events to the process that vary (a) when an event occurs
and (b) with time.
2 If different instances of Hugh combined with P produce different answers, this is concrete evidence that

information be passed through P , so we can certainly use such comparisons to search for covert channels.
It is just that such a comparison cannot easily be justified as a complete test for information flow.

Simply translating the untimed formulation to Timed CSP:

(P ‖
H

CHAOS−H) \ H where

CHAOS−H = STOP u ?x : H → CHAOS−H

brings a number of problems.

– If some events in H take more than 0 time to complete, CHAOS−H defined like this is
not as general as it should be since it cannot immediately follow up such an event with
another, even though we can imagine Hugh as a parallel process that can. The natural
way to solve this problem is to define CHAOS−H in an environment where all events take
zero time.

– If some events in H take 0 time (which they will if we follow the solution above) then
the recursion for CHAOS−H is not time guarded and the process can perform an infinite
number of events in a finite time. This means that CHAOS−H is not a proper Timed CSP
process. However it is still reasonable to regard the parallel composition P ‖

H
CHAOS−H

as one since CHAOS−H can perform no more actions than P does. So this is more of an
apparent problem than a real one.

– More subtly, imagine the situation where the CHAOS−H process defined above has re-
solved its nondeterministic choice in the first time step, but no H action occurs before
the first tock . The operational semantics of CSP give it no way of changing its mind
for the second time step. At the level of timed failures, the semantics of this CHAOS−H
does not contain the behaviour 〈H , tock , h 〉̂ ∆ for h ∈ H . It is because this definition is
deficient in this way that we have given it the superscript −.
An efficient definition that does work (still subject to the assumption that events in it
take zero time, and that it must be put in parallel with a non-Zeno process) is

CHAOSA
H = (?x : H → CHAOSA

H)B (WAIT 1; CHAOSA
H)

where B is the asymmetric choice operator that initially offers the choice of the events
of its left-hand argument with a τ that takes it to its right-hand argument. (P B Q is
equivalent to (P � a → Q) \ {a} for an event a not appearing in either P or A.) Thus
CHAOSA

H can perform any sequence of H events in a given time unit but may at any
time opt not to perform any more before the next tock . This version never offers events
from H in a stable state, which could be problematic in some contexts, but will not be
when events from H are hidden as they are in abstraction: that explains the superscript
A (for abstraction).

So our definition of lazy abstraction over FDT will be

LH (P) = (P ‖
H

CHAOSA
H) \ H

which gives us our first concrete timed definition of noninterference.
It is also possible to use the tock -CSP process TCHAOS defined earlier, which is also

able to change its decisions about whether or not to offer H events each tock .

Definition 3. A process defined in integer Timed CSP is 1-independent of H if LH (P)
(defined as above) is maximally refined in FDT.

The reason for the 1 in this name will become apparent in Section 6. In examining
examples of timed noninterference we will largely restrict ourselves to examples which satisfy
untimed noninterference, such as

P = l → l → P � h → LS where

LS = l → LS

This, seemingly, just offers the event l ∈ L for ever, possibly interrupted by a single h ∈ H
after an even number of ls. Since l is always on offer this satisfies the untimed definition
of noninterference in the usual direction, but note that L can pass information to H by
choosing an odd or even number of ls. So over untimed CSP, LH (P) is deterministic and
LL(P) is nondeterministic.

For the definition of this P to be time guarded, we need l to take non-zero time to
complete. However LH (P) is only maximally refined over FDT if h takes zero time, for
otherwise there is a period after h when l is refused in a way in which it would not have
been it h had not happened. So for example the abstraction will have the behaviours 〈l 〉̂ ∆
and 〈{l}, tock 〉̂ ∆ if h take more than 0 time to complete. That would not be compatible
with being maximally refined. On the other hand, if h does take time 0 (so that P is willing
to communicate l immediately after h), the abstraction is equivalent to LS .

This example teaches us an expected lesson: if H and L share access to a sequentially
defined process P, considerable care is necessary to eliminate all timing channels from H to
L.

It is also interesting to note that if h takes one time unit then LH (P) is quasi-deterministic
even though non-maximal, but that if either h takes at least two units, or we use the model
FDT with the tock unit 0.5, then it is not quasi-deterministic.

We will see further examples of timed noninterference analysis later.
The problem with defining abstraction over the continuous model FT is that time moves

forward continuously rather than discretely. The process CHAOSA
H depends crucially on

there being a next time at which things happen. The best way of defining lazy abstraction
over FT is as a primitive operator over this model:

LH (P) = {(s \ H ,ℵ ∪ ℵ′) | (s,ℵ) ∈ P ∧ ℵ′ ⊇ H × [0,∞)}

In other words P is allowed to perform any behaviour at all, but any offers in H it makes
are not visible to the outside world. The assumption here is that at times when ℵ does not
contain the whole of H , the abstracted copy of H is refusing any such events that P offers.
It is interesting to contrast this with the definition of hiding which insists that P is always
forced to perform as many H events as it can – namely when time progresses the whole of
H is hidden:

P \ H = {(s \ H ,ℵ) | (s,ℵ ∪H × [0,∞)) ∈ P}

It should not be too hard to see that our discrete time definition of LH (P) using
CHAOSA

H can be re-written in a form similar to the continuous one above. There is a strong
reason to code the discrete definition in the Timed CSP language that does not apply in
the continuous case, namely that the discrete model has been implemented in FDR.

Definition 4. A process defined in (general) Timed CSP is lazily independent of H over
FT if LH (P) (defined as above) is maximally refined, or equivalently quasi-deterministic in
FT.

This continuous definition gives the same result for the simple process P that we studied
in the discrete case above.

An obvious question we can ask at this stage is whether the two definitions coincide
for integer Timed CSP. Unfortunately the answer to this is “no”, with the problem arising
because of the distinction between maximally refined and quasi-deterministic processes over
FDT.

It is clearly the case that any process actually constructed as the parallel composition
of two processes PL and PH with alphabets respectively L and H , not communicating at
all, is unable to pass information from H to L or vice versa: P = PL ||| PH . Both our
definitions of lazy abstraction give LH (P) = PL (as is also the case in untimed CSP), and
so the question of whether our definitions of noninterference are satisfied by such a P comes
down to whether PL is maximally refined when interpreted in the discrete and continuous
models respectively. If our two definitions of noninterference coincided, then they would
have to agree on this question also.

Assume both l1 and l2 are low level events that take time 0 to complete.

PL = (Q1 ||| Q2) ‖
{l2}

(l2→ STOP) where

Q1 = (l1→ ((l2→ STOP) �WAIT 1); STOP)

Q2 = WAIT 4; l2→ STOP

PL offers l2 for one time unit after l1 occurs, and the offer is then withdrawn. However
a second and indistinguishable offer of l2 is always made at time 4 unless the other one
has been taken up first. Note that the parallel composition with l2 → STOP ensures that
only one l2 can occur in total, meaning that if both l2s are available at the same time, the
nondeterminism over which occurs has no visible consequences.

Over the continuous model this process is quasi-deterministic and hence maximal: the
offer of l2 is withdrawn if l1 occurs early enough and later reappears thanks to Q2. Over
the discrete model it is still quasi-deterministic but not maximal in the case where the gap
between the end of the first offer and time 4 is one tock . Decreasing the interval between
the tocks to 0.5 (or any other reciprocal) does not help here as it did in an earlier example,
because the event l1 can always happen at the time that will leave the gap at one tock .

So for this example no time interval for tocks that makes the WAIT s in the program an
integer multiple of it will make this PL maximal.

If we regard the continuous semantics as definitive and the discrete ones as approxima-
tions, it is comforting to note that the discrete model of noninterference differs only in the
direction of being more conservative. We believe that this is always the case for programs
where the discrete models are applicable.

6 Digitisation: playing with time

The theory of digitisation was introduced by Henzinger, Manna and Pnueli in [7] as a way
of proving properties about continuous systems by analysing discrete approximations. It
was adapted for Timed CSP by Ouaknine [14, 15] who showed that one can prove certain
properties of systems over the continuous model FT by demonstrating analogous properties
of discrete approximations. In particular he showed that every integer Timed CSP program
has the property of being closed under digitisation and therefore refines any specification
that is closed under inverse digitisation (certain, but not all integer Timed CSP programs)
if any only if the refinement holds over FDT.

In this section we will examine how properties such as quasi-determinism and noninter-
ference behave under digitisation. Our objective will be to find a way of verifying that an
integer Timed CSP program is lazily independent of H by analysis over FDT.

In order to make the following analysis easier we will assume that the only sources of
time delays in our programs are integer WAIT statements: one can recode delays that occur
when events happen or recursion unfolds into this form if required.

We characterise digitisation as the application of certain sorts of transformations that
change the times of the actions (visible, invisible and evolutions through time) that occur
in process’s execution in standardising way but which preserve the validity of the execu-
tion. They are formalised in terms of the operational semantics of Timed CSP defined by
Schneider in [29].

Before introducing digitisation we consider more general retimings of operational se-
mantics: monotonic (but not necessarily strictly so) mappings from R+ to itself intended to
preserve the validity of operational semantics when applied to the beginning and end of all
times of operational semantic transitions. Such transitions are visible and visible actions,
which are instantaneous, and timed evolutions such as P t

 Q whose end is t after its
beginning.

One cannot arbitrarily re-time such behaviours because of maximal progress: an event
that happens at the time a τ action becomes available can only be re-timed to the moment
the corresponding τ becomes available in the transformed behaviour. A retiming is valid if
this it true. Given our assumption that WAIT s are the only source of delays, the only way
in which a τ (or any other action) can become available through a time evolution is when
a WAIT expires somewhere within the program.

We restrict our attention to integer periodic retimings φ which map each integer time
to itself, and which map each n + x (for 0 < x < 1) to n + φ(x) (with φ(x) necessarily
being in the closed interval [0, 1]. The fact that we are considering only integer Timed CSP
means that if we retime the start of a WAIT n from k + x to k + φ(x) then the end of it is
retimed from k + x + n to k + φ(x) + n, which is of course the time that our WAIT n ends
when its start is retimed. In general a Timed CSP term that does not immediately have a
τ can evolve through any time up to and including the first moment a WAIT statement
within it elapses. So one can prove via a combination of structural induction on a term with
mathematical induction on the number of actions and time evolutions that have occurred
that

– After k steps the original and retimed programs are in the same state except for the
exact times remaining on non-zero WAIT s. If the remaining time is zero on a WAIT in
the original, then it also is in the retimed one. A non-zero time remaining on a WAIT
in the original program can become zero in the retimed one when the original program’s
time and the time when that wait expire map to the same value. In this case the original
behaviour certainly has an action between these two times, so the retimed one has an
action at the same (retimed) moment.

– The original and retimed programs have exactly the same set of actions available except
where the retimed version has a WAIT retimed to 0 as discussed above, in which case
the retimed one has an additional τ . Time evolutions are available up to and including
the minimum remaining time on any WAIT each of the original and retimed states
respectively contain.

– In any case (i) any action that the original performs now is valid in the retimed state
(ii) if the retimed process is obliged by maximal progress to perform an action now then
the retimed behaviour contains an action at the same time.

– If the present time is t and the original and retimed programs have a WAIT that elapses
respectively in times x and y , then φ(t + x) = t + y .

We can conclude:

Theorem 3. 1. An integer periodic retiming φ is valid on an integer Timed CSP program
P.

2. If (s,ℵ) is in the FT representation of P, then so is (φ(s), φ(ℵ)), where φ acts on
the times of events and the end points of the half-open intervals during which ℵ is
constant. (Note that if ℵ includes some X × [x , y) where φ(x) = φ(y) then φ(ℵ) retains
no “memory” of this since [φ(x), φ(y)) is then empty.)

We definite a digitisation to be an integer periodic retiming whose image in any interval
[n,n + 1] is finite. In other words, a digitisation transforms all of the actions in a behaviour
to ones that happen at members of a pre-determined discrete set of times.

Ouaknine, in developing the above ideas, concentrates on digitisations that map every
time t to the integer above or below it, and specifically [t]ε for 0 < ε ≤ 1 that maps n + x
to n or n + 1 depending on whether x < ε or x ≥ ε. For our purposes we need a little
more flexibility. Identify [t]ε with [t]〈ε〉 and allow the subscript, in general, to be any finite,
nonempty and strictly monotonic sequence of numbers in the range (0, 1].

Definition 5. [t]〈ε(1),...,ε(n)〉 is the retiming that maps r + x (r ∈ N, 0 ≤ x < 1) to r if
x < ε(1), to r + 1 if x ≥ ε(n) and to r + m

n if ε(m) ≤ x < ε(m + 1) for 1 ≤ m < n.

Below, frac(x) is defined to be the unique number 0 < y ≤ 1 such that x − y is an integer.
So in particular frac(n) = 1 for n ∈ N.

Lemma 2. If 0 ≤ t1 < t2 < t3 then we can choose 0 ≤ ε1 < ε2 ≤ 1 such that [·]〈ε1,ε2〉 maps
t1, t2, t3 to distinct values, necessarily separated by at least 0.5.

Proof If t3 − t1 > 1 then this can be done with a single ε, so we will concentrate on the
case of t3 − t1 ≤ 1.

(i) If n ≤ t1 < t2 < t3 ≤ n + 1 then put ε1 = frac(t2) and ε2 = frac(t3).
(ii) If t1 < n ≤ t2 < t3 then set ε1 = frac(t3) and ε2 = frac(t1).
(iii) If t1 < t2 < n < t3 then set ε1 = frac(t1) and ε2 = frac(t2).

It seems clear that the above could be generalised to the case of n + 1 distinct points
being mapped by a suitable retiming [·]s to points at least 1/n apart.

Ouaknine establishes a crucial connection between the discrete and continuous semantics
of integer Timed CSP. It is easy to see a relationship between FDT behaviours and integer
FT behaviours – ones where everything (i.e. events and changes in ℵ) happens at an integer
time – given one of the former s we map it to ψ(s) = (u,ℵ), where u consists of the sequence
of all non-tock events in s, each given as its time the number of tocks that precede it in s,
and, for the unit of time up to time k ℵ refuses those events refused prior to the kth tock
in s.

Theorem 4. [14] For any integer Timed CSP process P, the integer behaviours in its FT

semantics are exactly ψ(s) as s ranges over its FDT semantics.

It is clear that the continuous time semantics of any Timed CSP program P are isomor-
phic to those of kP for k an integer, which is the same program except that all WAIT n
are transformed to WAIT (kn) provided we scale all behaviours of kP by dividing all the
times by k . Since kP is an integer Timed CSP program if P is, we can deduce the following
lemma. Here a half integer FT behaviour is one where all events and changes in ℵ occur
either at integers or n + 1

2 for an integer n.

Lemma 3. For any integer Timed CSP process P, the half-integer behaviours in its FT

semantics are exactly the scalings by 1
2 of ψ(s) as s ranges over the FDT semantics of 2P.

This is exactly the result we need to create a decision procedure for noninterference
defined over FT.

Theorem 5. An integer Timed CSP process P is lazily independent of H (judged over
FT) if and only if LH (2P) is quasi deterministic when judged over FDT (or equivalently
if LH (P) is quasi-deterministic when judged over FDT in which the length of one tock is
0.5).

Proof If LH (2P) is not quasi-deterministic then one of conditions (c) and (d) from
Lemma 1 (ii) applies. From this, and the definition of LH , we get two cases:

– If (c) (the case where the behaviour visible to L prior to the nondeterminism does not end
in tock) then for some L event l , 2P has behaviours over FDT of the forms s1̂ 〈l 〉̂ ∆ and
s2̂ 〈{l}, tock 〉̂ ∆ where deleting the H events in s1 and s2 leaves the behaviour s. Without
loss of generality we assume that all the pre-tock refusals in these are ∅. Theorem 4 then
tells us that 2P has the FT behaviours (ψ(s1)1, {l} × [n,n + 1)) and (ψ(s2)1̂ 〈(l ,n)〉, ∅)
where there are n tocks in each of s, s1 and s2 and ψ(s)1 takes the non-tock events in s
and makes a timed trace by attaching the number of tocks preceding each as its time.
Here ψ is the map defined earlier from FDT behaviours to integer FT ones, so ψ(s)1
extracts just the timed trace from this.
The definition of LH over FT then tells us that LH (2P) has the behaviours (ψ(s)1, {l}×
[0, 1)) and (ψ(s)1̂ 〈(l ,n)〉, ∅), meaning it is not quasi-deterministic since it is easy to see
that end(ψ(s)1) = n by construction and therefore case (a) of Lemma 1 (i) applies to
the continuous semantics of LH (2P).

– The second case is where (d) applies. A very similar argument then shows that (b)
applies to the continuous semantics of LH (2P).

We can deduce that LH (2P), and therefore LH (P), is not quasi-deterministic.
Note that the multiplier 2 was not necessary for this direction of the implication. It is,

however, necessary for showing that if the continuous behaviour is not quasi-deterministic
then so also is the discrete.

Assuming that LH (P) is not quasi-deterministic over FT gives us the two options of
Lemma 1 (i), of which the second is more interesting.

– In case (b), we can assume that δ has been chosen sufficiently small so that the in the
two behaviours (s1̂ (l , t), ∅) and (s2, {l}× [t − δ, t + δ)) that P must have for some l ∈ L
with s1 \ H = s2 \ H and end(s1 \ H) < t , no event of s1 or s2 occurs in [t − δ, t + δ)
except at t . We can also assume that δ ≤ 1

2 .
We can now invoke Lemma 2 with t1 = t − δ, t2 = t and t3 = t + δ to get a valid
digitisation of integer Timed CSP that maps these three times to three consecutive

(thanks to δ ≤ 1
2) members of the series 〈n2 | n ∈ N〉. Applying this to (s1̂ 〈(l , t)〉, ∅) and

(s2, {l}×[t−δ, t +δ)) and then scaling by 2 tells us that 2P has behaviours (s ′1̂ 〈(l , t ′)〉, ∅)
and (s ′2, {l} × [t ′ − 1, t ′ + 1)) where all events occur at integer times, t ′ is an integer,
and s ′1 \ H = s ′2 \ H . Theorem 4 and the definition of lazy abstraction over FDT then
tells us that LH (2P) is not quasi-deterministic over FDT. [Note that both s ′1 and s ′2 can
have some events happening at the image of t under the digitisation.]

– The case where (a) applies is simpler than the above because we can consider an interval
[t , t +δ) rather than [t−δ, t +δ), and so only two points are involved in the digitisation,
meaning that we do not need the factor of 2.

This completes the proof of Theorem 5.
This result is very powerful in the context of noninterference since it tells us that a

particular discrete model, which observes an integer Timed CSP process only at discrete
times, is sufficient to prove that there is no information flow to an observer who can observe
it at any and all times.

It suggests the following discrete definition of noninterference:

Definition 6. For k ∈ N− {0, 1}, we define the integer Timed CSP P to be k-lazily inde-
pendent of H if kP is quasi-deterministic when judged in FDT.

Observing that the multiplier 2 in the formulation and proof of Theorem 5 could have
been replaced by any integer k ≥ 3, we get the following result as a corollary.

Theorem 6. For integer Timed CSP, the conditions k-lazy independence are all equivalent
for k ≥ 2.

The example given in Section 5.1 of a process PL which is quasi-deterministic over
all models, but not maximal in any discrete one (which is equivalent to kPL not being
maximal in DTF for any k > 0) tells us something rather unexpected about the discrete
characterisations of noninterference. This is that processes (such as PH ||| PH for any
PH that only communicates in H) can be k -independent (k > 1) without LH (kP) being
maximal in DTF . This seems at odds with the analysis given earlier that non-maximality
leads to information flow. This is not in fact an issue because LH (kP) is maximal amongst
the images of kP ′ as P ′ varies over integer Timed CSP processes.

The reason for the doubling of the “metronome” in the discrete approximation used to
decide quasi-determinism derives from needing a witness to the three distinct times that
exemplify one sort of failure of quasi-determinism. It it worth noting that if we restrict
ourselves to processes that never withdraw offers (so quasi-determinism and determinism
are the same) then it is not necessary to use the doubling, because we can decide whether
or not the continuous semantics of an integer Timed CSP process are deterministic using
the natural rather than doubled discrete model. This is because the failure of a continuous
process being deterministic shows up (after the timed trace s) in two times end(s) ≤ t1 < t2
where both s 〈̂(a, t1)〉 ∈ traces(P) and (s, {a}× [T1, t2)) is a timed refusal. This means that
it is not necessary to use the extended form of digitisation we used above, and in fact we
get the following.

Theorem 7. For an integer Timed CSP process P:

(a) P is deterministic in the continuous semantics if and only if it is deterministic in the
ordinary discrete semantics.

(b) LH (P) is deterministic over FT if and only if LH is over FDT.

Here (b) is not a trivial consequence of (a) because of the different definitions of lazy abstrac-
tion over the two models. However a simplified form of the argument used for Theorem 5
in which we pay attention to when all actions in P occur (τ , H and L) works.

7 Deciding noninterference using FDR

It is possible to test for both quasi-determinism and refinement maximality over FDT,
using FDR. We deal first with quasi-determinism, developing a variant of Lazić’s test for
determinism. As in that, we compare two copies of a process, this time checking that for
every visible action a the first copy of a process P performs, a second one either cannot
refuse it after the same trace or a occurred immediately after a tock and the second copy
was unable to refuse a prior to the corresponding tock .

We therefore have to keep two copies of P running – say P1 and P2 where P1 performs
actions and P2 has to prove for each one that it cannot refuse them appropriately. From
the description above it is clear that P2 has to follow the same trace – including tocks – as
P1 but that it has sometimes to be at an earlier time than it. Namely, when P1 performs
an event after tock , we have to test whether P2 can refuse it before, and if so after exactly
the same tock . Therefore P1 and P2 are not synchronised on tock : in fact the latter can be
0, 1, and sometimes 2 tocks behind P1.

We can immediately deduce that the check we devise to check for this is not going to
be constructed in Timed CSP, but rather in tock -CSP with multiple tock events. As with
the check for determinism that we are adapting, our check will take the form:

LHS vF RHS (P)

where RHS (P) this time consists of two copies renamed so that they give different names
to tock , and where they strictly alternate their non-tock events. The two copies are put in
a testing harness, and because of the nature of the latter we give the “follower” copy of P
two separate names for tock . Overall

RHS (P) = Π((first(P) ‖
{turn1,turn2}

second(P)) \ {turn1, turn2}) ‖
Σ

QDTest

first(P) = P [[tock1/tock]] ‖
E

FReg

second(P) = P [[tock2, tock2′
/tock , tock]] ‖

E
SReg

FReg = ?x : E → turn2→ turn1→ FReg

SReg = turn2→?x : E → turn1→ SReg

where QDTest is a testing process and Π a priority operator that we will describe below.
The synchronisation with and between FReg and SReg ensures that the two copies strictly
alternate non-tock events, with first(P) first.

The testing process has the following states:

QDTest = ?x : E → x → QDTest
u tock1→ QDTest ′

u STOP

QDTest ′ = tock1→ tock2→ QDTest ′

u?x : E → QDTest ′′(x)
u STOP

QDTest ′′(x) = (x → STOP � tock2′ → x → QDTest)
u tock2→ x → QDTest

These are explained:

– The tester is in state QDTest when first(P) and second(P) have performed equal num-
bers of tocks, and their non-tock traces are equal. Necessarily this is when the most
recent communication of first(P) was not tock1, because the tester deliberately then
holds second(P) back.

– QDTest ′ is when the two have performed equivalent traces except that first(P) has
moved ahead by one one tock1, which was the most recent event it has performed. If
first(P) performs tock1 then second(P) must perform (as it will certainly be able to)
tock2 so it is still one behind. If first(P) performs any other event x then we must check
that second(P) obeys the refusal requirements on it, and moves to QDTest ′′(x) to check
this.
Neither of theses first two states insists that first(P) is able to do anything – hence the
inclusion of STOP in the nondeterministic choice.

– QDTest ′′(x) is when second(P) has fallen behind first(P) by tock followed by x . It now
has to do two things: check that second(P) offers (i.e. cannot refuse) x either before
or after its next tock , and also ensure that the tester is in the right state to check
P ’s behaviour on longer traces. The latter happens automatically in other states, but
requires more care here.
For the first of these tasks, it must create an error state when second(P) can refuse
x both before and after P ’s tock on the same execution. This is not possible using a
non-prioritised check over F . It could have been done with the refusal testing model
RT , but in this presentation we use priority.
The left-hand branch of the u in QDTest ′′(x) is responsible for this part of the check.
It initially offers either x or tock2′ to second(P), overall we apply the priority operator
Π to the system, which is defined to give tock2′ lower priority than every other action,
all others being equivalent. That means that tock2′ can only happen when x is refused
by second(P).
If x does occur in that state then second(x) has passed the test created when first(P)
performed x . However the two copies of P have performed different traces (tock and x
in opposite orders) and so are permitted to behave differently. We therefore do not carry
on with the test from this point on: hence this trace leads to STOP in QDTest ′′(x) (and
the LHS process we define below).
If tock2′ has occurred then second(x) fails the test unless it accepts x in its post-tock2′

state. However if it does perform the x we can carry on the check because the two P ’s
have now performed the same trace.
If we were simply to have done the above, then some future behaviours of P would not
get tested. These are the ones where x is guaranteed to be available in second(P) before

tock2′, for the priority relation then means that second(P) never performs it after. This
problem is solved by the second branch of QDTest ′′(x)’s u. That offers just tock2 rather
than the choice of tock2′ and x , which brings second(P) into a state where
• If is not obliged to be able to perform x .
• However we know that in at least one execution it can perform x after tock2, since

after all the other copy of P has already performed x on the same trace.
So we can carry out the continuing test on this branch, confident in the knowledge that
P ’s behaviour after all possible traces will now be explored.

The reason why we have used tock2 and tock2′ is so the specification can tell which of
the two testing branches has been followed. If tock2′ has occurred it will insist that x is
offered while after tock2 it will not.

It is interesting to note that we have carried out two separate tests on second(P) by
using the u operator between processes that perform them.

The specification against which this is checked in F is then

LHS = STOP u (?x : E → x → LHS) u (tock1→ LHS ′)

LHS ′ = STOP u (tock1→ tock2→ LHS ′) u (?x : E → LHS ′′(x))

LHS ′′(x) = (x → STOP) u (tock2′ → x → LHS) u (tock2→ (STOP u x → LHS))

Here, the states correspond in an obvious way to the states of QDTest . This specification
is guaranteed to be trace refined by RHS since QDTest refines it, so the only way it can
fail is when the required offers are not made. These correspond to the various failures of
quasi-determinism discussed above.

So we may test an integer Timed CSP process P for independence by running the check

LHS vF RHS (pri((CHAOSA
H
‖
H

2P) \ H)

where 2P and CHAOSA
H are as described above. Here pri is the time-priority function that

represents the boundary between Timed CSP (inside it) and tock -CSP (outside it).

Pragmatics

Running two copies of an implementation process in parallel like this to check for nonin-
terference is potentially expensive since it means that in the worst case the state space of
RHS (P) is quadratic in that of P . We can reduce this problem by using either or both of
the following techniques.

– We can use an FDR compression operator on P before applying RHS to it. Because the
definition of RHS involves priority, this must be a compression that is valid inside the
FDR prioritise operator: at the time of writing, by far the best option is (divergence-
respecting) weak bisimulation wbisim as described in [24]. wbisim is a recent addition
to FDR.

– Following the first of the two alternatives presented earlier for reliably checking LH (P)’s
determinism over untimed models, we can break the check for the abstraction’s quasi-
determinism over FDT into the same two parts:
(a) P ‖

H
STOP is quasi-deterministic

(b) P ‖
H

STOP v LH (P) where refinement is judged over FDT.

This is attractive because in the absence of any H actions, the process being checked
here for quasi-determinism is potentially significantly smaller than LH (P), which is used
only by itself in (b).

In the case studies below, we will find that making (a) above true is sometimes chal-
lenging. In that case (b) alone makes (as discussed earlier) a useful but incomplete check
for noninterference.

8 Case studies

In this section we present two related case studies, one of a sequential process and one of a
parallel system. Both are intended to multiplex high and low level communications through
a common medium. They indicate potential sources of timing channels in shared systems
as well as possible cures. Throughout this section we assume that events take unit time to
complete: et(a) = 1 for all a ∈ Σ.

8.1 Sequential shared medium

In both our examples we will imagine (as in the corresponding untimed examples in Sec-
tion 12.4 of [22]), that Hugh is sending messages to Henry and Lois is sending them to
Leah

The following is a simple sequential process that communicates such messages:

TM (C) = send?x : (S − {s | s ∈ C})?m → TM (C ∪ {(x ,m)})
� (�

(x ,m)∈C rec!dual(x)!m → TM (C − {(x ,m)})

where Leah and Lois, and Hugh and Henry are two pairs of duals and the initial value
of C is just ∅. C contains the data presently in the medium. As untimed CSP the above
definition would be equivalent to the interleaving of two separate one-place buffers, one at
each level, and would satisfy every conceivable independence condition between H and L.

This is not true for Timed CSP unless the delays attached to H events was 0 (meaning
that the process would be capable of Zeno behaviour). In reality the sharing of a resource
like this is always likely to create a timing channel: the fact that Hugh is sending Henry a
message will delay Lois from sending one to Leah if that takes any time at all. This is a
simple example of the most common sort of timing chennel: L sees the timing effects of H ’s
consumption of system resources.

Our timed noninterference check easily identifies this problem. Note that checking it
with all event times set to 2 is equivalent to checking 2TM (∅) because there are no other
sources of delay in this program.

One way of preventing information flow though systems is partitioning whatever resource
gives rise to a potential channel between the levels. We can do this in the present example
by only permitting high and low events at disjoint sets of times in such a way that whenever
a high-level event occurs its delaying effect is over by the time that L might again perform
an event.

With a process like TM we can imagine either redesigning it to a sequential process
with the above quality, or modelling an operating system component that schedules access
to it. We can realise the latter by building a scheduler that is placed in parallel with our
system, synchronising on all events, which in different phases makes and withdraws offers
in L and H . Assume there are constants LO , LB , HO , HB representing the length of the

offer of low events, the break after this before high events are allowed, and the same two
for high. Then we can create our scheduler:

LOW = (?x : L→ STOP) 4WAIT LO); WAIT LB ;
((µ p.?x : H → p) 4WAIT HO); WAIT HB ; LOW

Putting this in parallel with TM creates a process lazily independent of H provided
that HB ≥ 1.

Note that we have allowed an arbitrary number of H -actions, and only one L-action,
per time slot. That is because allowing multiple L actions creates nondeterminism itself
by interaction with the scheduler: when some action is just becoming available when the
time-out fires, it may or map not be offered. One can handle this in one of two ways:

– If we were to replace ?x : L→ STOP by µ p.?x : L→ p above the system would satisfy
the weaker noninterference specification

P ‖
H

STOP v LH (P)

but this is not an absolute guarantee of independence.
– We can allow multiple phases of L actions for each of H .

Both of these are illustrated in the file that implements this case study.

8.2 Parallel implementation

There are various proposals in Section 12.4 of [22] for how to solve the same shared channel
problem in an untimed context using a network where, in addition to the channel itself, there
are processes which act as intermediaries between it and each of the four users. Some of
these failed and some succeeded. One which succeeded was using flow control to ensure that
the central medium never gets blocked: Leah’s and Hugh’s terminal processes do not accept
a second input until they receive an acknowledgement that the first has been delivered.

TLois = send .lois?x → in.lois!x → out .lois.Ack → TLois

THugh = send .hugh?x → in.hugh!x → out .hugh.Ack → THugh

TLeah = out .leah?x : T → rec.leah!x → in.leah.Ack → TLeah

THenry = out .henry?x : T → rec.henry !x → in.henry .Ack → RHenry

Medium = in?s?x → out !dual(s)!x → Medium

This satisfies any reasonable untimed noninterference condition, but interpreted as Timed
CSP it does not satisfy our timed ones for much the same reasons as above.

There are at least two ways one might set about putting this right:

(i) The whole ought to satisfy non-interference if we replace the Medium process above
with a process that satisfies timed independence.

(ii) We could set out to find a solution which addresses the timing of the system as a whole.

The first of these represents sound design, and can reasonably be argued whenever (as
in our case) the processes interacting with a non-interfering core are non-interacting (i.e.
separated) parallel processes.

This can be realised by replacing Medium with the process derived in the previous sec-
tion, and provided the system is actually constructed in this way this would lead to a secure
system. It does not (at least composed in the way we did) lead to a system which satisfies
the timed lazy independence property, because (like one plausible solution we discussed in
the previous section) it fails to be quasi-deterministic even when H does nothing at all. It
did, however, satisfy the weak noninterference condition P ‖

H
STOP v LH (P) as the earlier

case.
The solution we found that looks at overall system design was based on the fact that

we need the time it takes to transport a message from Lois to Leah to be deterministic and
independent of H activity, and similarly the time from delivery at Leah until Lois next being
able to send another. One way of achieving this is to allow the low processes in effect, the
right to book a time at which their message will be delivered and ensure that the medium
is not used by anything else at that time.

An easy way of enabling this is to modify the medium so that it accepts every message
twice and only delivers on the second occasion.

BM = in?x?m → in!x !m → out !x !m → BM

The assumption here is that we will ensure that the second input by BM from L will be
at a time that depends deterministically on whatever action by Lois or Leah instigated it,
even though the first input may not be.

We can achieve this by the following re-programming of the terminal processes above
into Timed CSP, where D and D ′ are suitably chosen delays.

TLoisT = send .lois?x →
((in.lois!x → SKIP) ||| (WAIT (D); in.lois!x → SKIP));
out .lois.Ack → TLoisT

TLeahT = out .leah?x : T → rec.leah!x →
((in.leah.Ack → SKIP) ||| (WAIT D ; in.leah.Ack → SKIP)); TLeahT

THughT = send .hugh?x → in.hugh!x → in.hugh!x →
out .hugh.Ack →WAIT D ′; THughT

THenryT = out .henry?x : T → rec.henry !x → in.henry .Ack →
in.henry .Ack →WAIT D ′; THenryT

The point about this is that the delays WAIT D ′ in the high-level processes must create
the guarantee that within D − 1 units of starting to try to communicate with the medium,
they succeed. One example that works within our timing assumptions is D = 4, D ′ = 1.

The result then satisfies the full timed lazy independence specification.
The approach here differs from the one in the previous section in that there is no pre-

arranged partition of the resource that the two levels share (i.e. the central medium process),
but rather we ensure that the low level process can always get hold of enough of it relative
to the reduced and delayed transmission that our model permits to it. The exact share of
the central resource that L obtains is then concealed from L itself.

An interesting consequence of this style is that no offer made to L is ever withdrawn in
this construction. So in fact whenever the timing is chosen to make the abstracted system
quasi-deterministic it is also deterministic. In this case, as observed earlier, we can infer the
continuous result from the discrete one without doubling the metronome.

9 Conclusions

We have shown in this paper how definitions of noninterference previously developed for
untimed CSP can be adapted to Timed CSP. In doing so we have given new insights into
the structures of both the discrete and continuous timed failures models and in particular
their refinement-maximal members.

We have developed the idea that, where refinement corresponds to reduction of nondeter-
minism, specifying that the low-level abstraction is maximally refined (i.e. as deterministic
as possible) is the right specification of noninterference in some circumstances, including
the timed models.

Ouaknine’s theory of digitisation for Timed CSP has been generalised, and we were able
to show that in order to establish continuous-time noninterference for integer Timed CSP,
it is sufficient to do so for a discrete model in which the time step tock is 0.5 of the units
used to represent delay in the program under consideration.

We were able to create FDR checks which decide the above condition for finite-state
processes, and applied them to some simple case studies. From these case studies we can
conclude that timed noninterference can be decided, at least on small examples, quickly and
efficiently.

It was impressed on us, in creating case studies, that creating Timed CSP systems
that act deterministicially or quasi-deterministically is not always easy. This should not be
surprising when a number of self-timed (as opposed to clock-driven) systems interact, but
is of course an issue when our noninterference condition expects us to eliminate most or all
nondeterminism from systems with no high-level behaviour (formalised as P ‖

H
STOP).

We have showed how a weak noninterference specification (in fact identical in structure
to the fault tolerance specification proposed in [22]) can apply in such circumstances. We
have found it able to capture timing channels that exist in systems, but unfortunately there
are situations where information flow will not be captured. Further practical research is
needed on how frequently the strong noninterference specification has to be weakened in
this way. This might necessitate further theoretical work in understanding for which sorts
of system it, or some variant, might be sufficient. A good alternative, investigated in [8, 9],
might be timed variants of Forster’s Local Noninterference (LNI) conditions [4, 25]. Further
research would be needed to understand these over continuous Timed CSP and to implement
timed versions of these in FDR. Some theory akin to those of [13, 12] may also be possible,
though the question of what one must be ignorant of seems rather less tangible in the world
of process algebras as opposed to models based on assignable state.

We believe that noninterference analysis will become increasingly important thanks to
the advent of Cloud computing, in which software and data belonging to multiple parties
use common hardware. When two applications, one of which may be specifically designed
for gathering information, are sharing an implementation platform, it will be necessary for
security to show that information cannot leak from one to the other.

In addition to the type of conditions presented in this paper that ban information flow
completely, there is also the need for ones that bound the capacity of any channel from high
to low. Of course in a timed context we have the possibility of measuring this in bits per
second.

Resources

FDR can be downloaded from http://www.cs.ox.ac.uk/projects/concurrency-tools/.
Version 2.94 contains all the features used in this paper such as the Timed CSP implemen-
tation. Example files for FDR containing examples and case studies from this paper can be
found at ???.

Notation of timed traces and failures

The following notation, used in this paper, is common to the literature of Timed CSP.

s � t the sequence of all (timed) events in the trace s up to and including those at t .
ℵ � t = ℵ ∩ (Σ × [0, t)) the refusals in ℵ up to and not including those at t .
end(s) the last time appearing in s, or 0 if s = 〈〉.
begin(s) the first time appearing in s, or ∞ if s = 〈〉.

References

1. P.G. Allen, A comparison of non-interference and non-deducibility using CSP, Proc. CSFW 1991 (IEEE).
2. P.J. Armstrong, G. Lowe, J Ouaknine and A.W. Roscoe, Model-checking Timed CSP, Forthcoming 2012

(H. Barringer festschift).
3. R. Focardi and R. Gorrieri, A classification of security properties for process algebras, Journal of Com-

puter Security 3, 1994.
4. R. Forster, Noninterference properties for nondeterministic processes, Oxford University DPhil Thesis,

1999.
5. J.A. Goguen and J. Meseguer, Security policies and security Models, Proc of IEEE Symposium on

Security and Privacy, 1982.
6. J. Graham-Cumming, The formal development of secure systems, Oxford University DPhil Thesis 1992.
7. T.A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks? In Proceedings of the Nineteenth

International Colloquium on Automata, Languages, and Programming (ICALP 92), volume 623, pages
545-558. Springer LNCS, 1992.

8. Huang Jian, Extending non-interference properties to the timed world, Oxford University D.Phil thesis,
2010.

9. Huang Jian and A.W. Roscoe, Extending non-interference properties to the timed world, Proc ACM
SAC. 2006.

10. R.S. Lazić, A semantic study of data independence with applications to model checking, Oxford University
DPhil Thesis 1999.

11. G. Lowe and J. Ouaknine, On Timed Models and Full Abstraction, ENTCS 155, pp 497-519, 2006.
12. A.K. McIver and C.C. Morgan, The thousand-and-one cryptographers, Reflections on the work of C.A.R.

Hoare, Springer 2010.
13. C.C. Morgan, The Shadow Knows: Refinement of Ignorance in Sequential Programs, Proc MPC 2006

LNCS 4014.
14. J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent systems, Oxford Univer-

sity D.Phil thesis, 2001.
15. J. Ouaknine, Digitisation and full abstraction for dense-time model checking, TACAS Springer LNCS,

2002.
16. J. Ouaknine and J.B. Worrell, Timed CSP = Closed Timed epsilon-automata, Nordic Journal of Com-

puting, 10, 2003.
17. G.M. Reed, A uniform mathematical theory for real-time distributed computing, Oxford University D.Phil

thesis, 1988.
18. G.M. Reed and A.W. Roscoe, A timed model for communicating sequential processes, Theoretical Com-

puter Science 58, 249-261, 1988.
19. G.M. Reed and A.W. Roscoe, The timed failures-stability model for CSP, Theoretical Computer Science

211, 85-127, 1999.
20. A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of C.A.R. Hoare’, Prentice

Hall, 1994.

21. A.W. Roscoe, CSP and determinism in security modelling, Proc of IEEE Symposium on Security and
Privacy, 1995.

22. A.W. Roscoe, The theory and practice of concurrency Prentice Hall, 1997.
23. A.W. Roscoe, Confluence thanks to extensional determinism, ENTCS 162, pp305-309, 2006.
24. A.W. Roscoe, Understanding concurrent Systems, Springer, 2010.
25. A.W. Roscoe, R. Forster and G.M. Reed, The successes and failures of behavioural models, Millennial

Perspectives in Computer Science, Palgrave 1999.
26. A.W. Roscoe, P.J. Hopcroft and P. Armstrong, Fairness analysis through priority, forthcoming 2012.
27. A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference through determinism, Journal of Com-

puter Security. Vol. 4, no. 1, pp. 27-53. 1996.
28. P.Y.A. Ryan, A CSP formulation of non-interference and unwinding, Cipher Winter 1991, IEEE Press.
29. S.A. Schneider, Concurrent and real-time systems: the CSP approach, Wiley, 2000.

