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Applications do exist:

Some applications:

1 Logic & theoretical computing,

2 Quantum computation & foundations,

3 Linguistics & models of meaning,

4 Modular arithmetic / cryptography,

5 Decision procedures in group theory

— these will not be discussed today!
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The general area

We will be looking at

coherence theorems, and ‘strictification’,

for associativity and related properties.
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These things we hold self-evident

A category C consists of

A proper class of objects, Ob(C).

For all objects A,B ∈ Ob(C), a set of arrows C(A,B).

We will work diagrammatically:

An arrow f ∈ C(A,B) is drawn as

A f // B
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Axioms for category theory ...

1 We may compose arrows:

A f //

gf ��

B

g
��

C

Composition is associative: h(gf ) = (hg)f .

2 There is an identity arrow at every object:

A1A
&& f // B 1Bff

A f // B

That’s all, folks!
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Mapping between categories

A functor Γ : C → D

X f // Y in C

Γ(X )
Γ(f ) // Γ(Y ) in D

A simple property:

Γ : C → D preserves commuting diagrams:

X f //

gf ��

Y

g
��

Commutes in C

Z
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Categories with tensors

A monoidal category has a monoidal tensor:

A functor ⊗ : C × C → C

satisfying:

Associativity A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C

Existence of a unit object A⊗ I ∼= A ∼= I ⊗ A
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Defining associativity:

We need a natural family of associativity isomorphisms

X ⊗ (Y ⊗ Z )

τX ,Y ,Z
,,

(X ⊗ Y )⊗ Z

τ−1
X ,Y ,Z

ll

satisfying one very simple condition.
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Yes, there are two paths you can go by, but ...

MacLane’s coherence condition:

The two ‘distinct’ ways of re-arranging

A⊗ (B ⊗ (C ⊗ D))

into

((A⊗ B)⊗ C)⊗ D

must be equal.

Coherence is a simple form of confluence.
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The Pentagon condition

A⊗ (B ⊗ (C ⊗ D))

Two Steps

((

Three Steps

uu
((A⊗ B)⊗ C)⊗ D

We get a five-sided commuting diagram:

MacLane’s Pentagon.
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A simple special case:

When all associativity isomorphisms are identities,

τA,B,C = 1X for some object X

(C,⊗) is called strictly associative.

Important

This is not implied by

A⊗ (B ⊗ C) = (A⊗ B)⊗ C.

Equality of objects is not strict associativity.

(Claim 1) Concrete example coming soon . . .
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Why is associativity generally ignored?

MacLane’s coherence theorem

This provides a notion of ‘confluence’ for canonical diagrams.

A diagram is canonical if its arrows are built up from

{ τ , , , τ−1
, , , 1 , ⊗ }

Coherence in Hilbert’s hotel peter.hines@york.ac.uk



Two common descriptions of MacLane’s theorem:

1 Every canonical diagram commutes.

2 We can treat

A⊗ (B ⊗ C)

τA,B,C

++
(A⊗ B)⊗ C

τ−1
A,B,C

kk

as a strict identity

A⊗ B ⊗ C

1A⊗B⊗C

++
A⊗ B ⊗ C

1A⊗B⊗C

jj

with no ‘harmful side-effects’.

Coherence in Hilbert’s hotel peter.hines@york.ac.uk



Two inaccurate descriptions of MacLane’s theorem:

1 Every canonical diagram commutes.

2 We can treat

A⊗ (B ⊗ C)

τA,B,C

++
(A⊗ B)⊗ C

τ−1
A,B,C

kk

as a strict identity

A⊗ B ⊗ C

1A⊗B⊗C

++
A⊗ B ⊗ C

1A⊗B⊗C

jj

with no ‘harmful side-effects’.
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Two more claims:

Not every canonical diagram commutes.

(Claim 2)

Treating associativity isomorphisms as
strict identities can have major consequences.

(Claim 3)
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A simple example:

The Cantor monoid U (single-object category).
Single object N.
Arrows: all bijections on N.

The monoidal structure

We have a tensor ( ? ) : U × U → U .

(f ? g)(n) =


2.f
(n

2

)
n even,

2.g
(n−1

2

)
+ 1 n odd.
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Properties of the Cantor monoid (I)

The Cantor monoid has only one object —

N ? (N ? N) = N = (N ? N) ? N

( ? ) : U × U → U is associative up to a natural isomorphism

τ(n) =


2n n (mod 2) = 0,
n + 1 n (mod 4) = 1,
n−1

2 n (mod 4) = 3.

that satisfies MacLane’s pentagon condition.

This is not the identity map!
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Properties of the Cantor monoid (II)

Not all canonical diagrams commute:

N

τ

��

N

id?τ
88

τ?id
&&
N

This diagram does not commute.
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Properties of the Cantor monoid (II)

Using an actual number:

1

n 7→n+1

��

1

n 7→2n−1
88

2

On the upper path, 1 7→ 2.
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Properties of the Cantor monoid (II)

Taking the left hand path:

1

n 7→n
&& 1

1 6= 2, so this diagram does not commute.
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Properties of the Cantor monoid (III)

Forcing strict associativity by taking a quotient

τ ∼ id

collapses U(N,N) to a single element.

The algebraic proof ...
The canonical isomorphisms of the Cantor monoid generate a representation of Thompson’s group F , and so have

a representation in terms of an embedding of P2, the two-generator polycyclic monoid. However, polycyclic monoids

are Hilbert-Post complete, and so any non-trivial congruence (i.e. composition-preserving equivalence relation) on

P2 that identifies τ and id must force a collapse to the trivial monoid {1}.

— A categorical proof is simpler and more general.

(Claim 4)
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What does MacLane’s thm. actually say?
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If in doubt ...

. . . ask the experts:

http://en.wikipedia.org/wiki/Monoidal category

“It follows that any diagram whose
morphisms are built using [canonical
isomorphisms], identities and tensor
product commutes.”
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What does the man himself say?

Categories for the working mathematician (1st ed.)

Moreover all diagrams involving [canonical iso.s] must
commute. (p. 158)

These three [coherence] diagrams imply that “all” such
diagrams commute. (p. 159)

We can only prove that every “formal” diagram commutes.
(p. 161)
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What does his theorem say?

MacLane’s coherence theorem for associativity

All diagrams within the image of a certain functor
are guaranteed to commute.

In some ideal world, this includes all canonical diagrams.

In the real world, this might not be the case.

MacLane talks about unwanted identifications of objects.

Where does That come From? Identification of objects is not a categorical concept!
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Coherence for associativity

— a closer look

A technicality: It is standard to work with monogenic categories.

Objects are generated by:

Some object S,

The tensor ( ⊗ ).

This is not a restriction — S is thought of as a ‘variable symbol’.
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The source of the functor

This is based on (non-empty) binary trees.

�

x �

� x

x x

Leaves labelled by x ,

Branchings labelled by �.

The rank of a tree is the number of leaves.
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The source of the functor (II)

MacLane’s categoryW.

(Objects) All non-empty binary trees.

(Arrows) A unique arrow between any two trees of the
same rank.

— write this as (v ← u) ∈ W(u, v).

Key points:

1 ( � ) is a monoidal tensor onW.

2 W is skeletal — all diagrams overW commute.
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The functor itself

Given an object S of a monoidal category (C,⊗),

MacLane’s theorem simply gives a monoidal functor

WSubS : (W,�)→ (C,⊗)

Why this is interesting ...

Every diagram overW commutes.

Every diagram in the image of this functor commutes.

Every arrow in the image is a canonical isomorphism.
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An inductively defined functor

On objects:

WSubS(x) = S,

WSubS(u�v) =WSubS(u)⊗WSubS(v).

An object ofW:

�

x �

� x

x x
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An inductively defined functor (I)

On objects:

WSubS(x) = S,

WSubS(u�v) =WSubS(u)⊗WSubS(v).

An object of C:
⊗

S ⊗

⊗ S

S S
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An inductively defined functor (II)

On arrows:

WSub(u ← u) = 1 .

WSub(a�v ← a�u) = 1 ⊗WSub(v ← u).

WSub(v�b ← u�b) =WSub(v ← u)⊗ 1 .

WSub((a�b)�c ← a�(b�c)) = τ , , .

By construction:

1 Every arrow in the image ofWSub is a canonical iso.

2 Every canonical isomorphism is in the image ofWSub.
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When do canonical diagrams not commute?

IfWSub is an embedding of (W,�), there are no problems

. . . all canonical diagrams commute!

In general, this is not true.

“There are unwanted identifications of objects”
≡

The functorWSub is not monic.

There does exist a monic-epic decomposition ofWSub. (Claim 5)
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How to Rectify the Anomaly

Given a badly-behaved category (C,⊗), we can

build a well-behaved version. (Claim 6)

Think of this as the Platonic Ideal of (C,⊗).

We assume C is monogenic, with objects generated by {S, ⊗ }
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Constructing PlatC

Objects are free binary trees
�

S �

� S

S S

Leaves labelled by S ∈ Ob(C),

Branchings labelled by �.

There is an instantiation map Inst : Ob(PlatC)→ Ob(C)

S�((S�S)�S) 7→ S ⊗ ((S ⊗ S)⊗ S)

This is not just a matter of syntax!
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Constructing PlatC

What about arrows?

Homsets are copies of homsets of C

Given trees T1,T2,

PlatC(T1,T2) = C(Inst(T1), Inst(T2))

Composition is inherited from C in the obvious way.
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The tensor ( � ) : PlatC × PlatC → PlatC

A f // X

A�X
f�g // B�Y

B g // Y



The tensor of PlatC is

(Objects) A free formal pairing, A�B,

(Arrows) Inherited from (C,⊗), so f�g def .
= f ⊗ g.
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Some properties of the platonic ideal ...

1 The functor

WSubS : (W,�)→ (PlatC ,�)

is always monic.

2 As a corollary:

All canonical diagrams of (PlatC ,�) commute.

3 Instantiation defines a monoidal epimorphism

Inst : (PlatC ,�)→ (C,⊗)

through which McL’.s substitution functor always factors.
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A monic / epic decomposition

MacLane’s substitution functor always factors
through the platonic ideal:

(W,�)

(monic)
WSub //

WSub

$$

(PlatC ,�)

Inst (epic)

��
(C,⊗)

This gives a monic / epic decomposition of his functor.
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Examples of the Platonic ideal (I)

A strictly associative category (C,⊗).

Its Platonic ideal (PlatC ,�) is associative up to isomorphism.

The objects

� �

X � � Z

Y Z X Y

are distinct.

A question:

What are the associativity isomorphisms?
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Examples of the Platonic ideal (II)

A particularly interesting case:

The trivial monoidal category (I,⊗).

Objects: Ob(I) = {x}.

Arrows: I(x , x) = {1x}.

Tensor:
x ⊗ x = x , 1x ⊗ 1x = 1x
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What is the platonic ideal of I?

(Objects) All non-empty binary trees:

�

x �

� x

x x

(Arrows) For all trees T1,T2,

PlatI(T1,T2) is a single-element set.

There is a unique arrow between any two objects!
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Can you tell what it is yet?

(P.H. 1998) The skeletal self-similar category (X ,�)

Objects: All non-empty binary trees.

Arrows: A unique arrow between any two objects.

This monoidal category:

1 was introduced to study self-similarity S ∼= S ⊗ S,

2 contains MacLane’s (W,�) as a wide subcategory.
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Self-similarity

The categorical identity S ∼= S ⊗ S

Exhibited by two canonical isomorphisms:

(Code) C : S ⊗ S → S

(Decode) B : S → S ⊗ S

These are unique (up to unique isomorphism).

Examples

The natural numbers N, Separable Hilbert spaces,
Infinite matrices, Cantor set & other fractals, &c.

C-monoids, and other untyped (single-object) monoidal
categories

Any unit object I of a monoidal category . . .
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You are unique - just like everybody else

Unique up to unique isomorphism

is not the same as

actually unique.

Elementary remarks on units in monoidal categories – J. Kock

The theory of Saavedra units: actual uniqueness of arrows

S

B
))
S ⊗ S

C

gg

implies that S is the unit object.

(Claim 7) Coherence for self-similarity provides an alternative proof.
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Can we have strict self-similarity?

Can the code / decode maps

C : S ⊗ S → S , B : S → S ⊗ S

be strict identities?

In untyped monoidal categories:

We only have one object, S = S ⊗ S.

S

Id
**
S ⊗ S

Id

gg

The code / decode maps are both the identity.

Untyped ≡ Strictly Self-Similar.
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Strictifying self-similarity

(Claim 8) There exists a strictification procedure
for self-similarity.

(Claim 9) One cannot simultaneously strictify
self-similarity and associativity.

An essential preliminary

We need a coherence theorem for self-similarity.
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Coherence for Self-Similarity
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A straightforward coherence theorem

We base this on the category (X ,�)

Objects All non-empty binary trees.

Arrows A unique arrow between any two trees.

This category is skeletal — all diagrams over X commute.

We will define a monoidal substitution functor:

XSub : (X ,�)→ (C,⊗)
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The self-similarity substitution functor

An inductive definition of XSub : (X ,�)→ (C,⊗)

On objects:

x 7→ S
u�v 7→ XSub(u)⊗XSub(v)

On arrows:

(x ← x) 7→ 1S ∈ C(S,S)

(x ← x�x) 7→ C ∈ C(S ⊗ S,S)
(x�x ← x) 7→ B ∈ C(S,S ⊗ S)

(b�v ← a�u) 7→ XSub(b ← a)⊗XSub(v ← u)
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Interesting properties:

1 XSub : (X ,�)→ (C,⊗) is always functorial.

2 Every arrow built up from

{C , B , 1S , ⊗ }

is the image of an arrow in X .

3 Every diagram in the image of XSub commutes.
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XSub factors through the Platonic ideal

There is a monic-epic decomposition of XSub.

(X ,�)
XSub //

XSub

$$

(PlatC ,�)

Inst

��
(C,⊗)

Every canonical (for self-similarity) diagram
in (PlatC ,�) commutes.
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Relating associativity and self-similarity
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A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane’s (W,�)

Objects: Binary trees.

Arrows: Unique arrow between

two trees of the same rank.

The category (X ,�)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion (W,�) ↪→ (X ,�)
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Is associativity a restriction of self-similarity?

Does the following diagram commute?

(W,�) �
� //

WSub

��

(X ,�)

XSub

��
(C,⊗)

Does the associativity functor

factor through

the self-similarity functor?
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Proof by contradiction:

Let’s assume this is the case.

Special arrows of (X ,�)

For arbitrary trees u,e, v ,

tuev = ((u�e)�v ← u�(e�v))

lv = (v ← e�v)

ru = (u ← u�e)

Coherence in Hilbert’s hotel peter.hines@york.ac.uk



Since all diagrams over X commute:

The following diagram over (X ,�) commutes:

u�(e�v)
tuev //

1u�lv

��

(u�e)�v

ru�1v

��
u�v

Let’s apply XSub to this diagram.

By Assumption: tuev 7→ τU,E ,V (assoc. iso.)

Notation: u 7→ U , v 7→ V , e 7→ E , lv 7→ λV , ru 7→ ρU
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Since all diagrams over X commute:

The following diagram over (C,⊗) commutes:

U ⊗ (E ⊗ V )
τUEV //

1U⊗λU

  

(U ⊗ E)⊗ V

ρU⊗1V

~~
U ⊗ V

This is MacLane’s units triangle
— E is the unit object for (C,⊗).

The choice of e was arbitrary — every object is the unit object!
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A general result

The following commutes

(W,�) �
� //

WSub

��

(X ,�)

WSub

��
(C,⊗)

exactly when (C,⊗) is degenerate —

i.e. all objects are isomorphic to the unit object.
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A special case:

1 Strict associativity: All arrows of (W,�) are mapped to
identities of (C,⊗)

2 Strict self-similarity: All arrows of (X ,�) are mapped to
the identity of (C,⊗).

WSub trivially factors through XSub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.
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What this means ...

Untyped categorical structures can

never be strictly associative.

A practical corollary:

LISP programmers will never
get rid of all those parentheses.

Question: what about the strictification procedure?
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An alternative viewpoint

Another way of looking at things:

One cannot simultaneously strictify

(I) Associativity A⊗ (B ⊗ C) ∼= (A⊗ B)⊗ C

(II) Self-Similarity S ∼= S ⊗ S

The no simultaneous strictification property
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How to strictify self-similarity (I)

Start with a monogenic category (C,⊗), generated by a
self-similar object

S

B
**
S ⊗ S

C

gg

Construct its platonic ideal (PlatC ,�)

Use the (monic) self-similarity substitution functor

XSub : (X ,�)→ (PlatC ,�)
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How to strictify self-similarity (II)

The image of XSub is a wide subcategory of (P latC ,�).

It contains, for all objects A,
a unique pair of inverse arrows

S

BA

&&
A

CA

ff

Use these to define an endofunctor Φ : PlatC → PlatC .

Coherence in Hilbert’s hotel peter.hines@york.ac.uk



How to strictify self-similarity (II)

The image of XSub is a wide subcategory of (P latC ,�).

It contains, for all objects A,
a unique pair of inverse arrows

S

BA

&&
A

CA

ff

Use these to define an endofunctor Φ : PlatC → PlatC .

Coherence in Hilbert’s hotel peter.hines@york.ac.uk



The convolution endofunctor

Objects
Φ(A) = S , for all objects A

Arrows
A f // B

CB
��

S

BA

OO

Φ(f )
// S

Functoriality is trivial ... Φ it is also fully faithful.
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A tensor on C(S,S)

As a final step, we define

( ? ) : C(S,S)× C(S,S)→ C(S,S)

by

S ⊗ S t⊗u // S ⊗ S

C
��

S

B

OO

t?u
// S

(C(S,S), ?) is an untyped monoidal category!
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Convolution as a monoidal functor

Recall, PlatC(S,S) ∼= C(S,S).

Up to this obvious isomorphism,

Φ : (PlatC ,�)→ (C(S,S), ?)

is a monoidal functor.

What we have ...

A fully faithful monoidal functor from PlatC
to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1S.
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To arrive where we started . . .
A monogenic category:

The generating object: natural numbers N.

The arrows bijective functions.

The tensor disjoint union A ] B = A× {0} ∪ B × {1}.

The self-similar structure:

N

c−1

44N ] N

c
uu

Based on the familiar Cantor pairing c(n, i) = 2n + i .

Let us strictify this self-similar structure.
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The end is where we started from

The Cantor monoid:

The object The natural numbers N

The arrows All bijections N→ N

The tensor (f ? g)(n) =


2.f
(n

2

)
n even,

2.g
(n−1

2

)
+ 1 n odd.

The associativity isomorphism τ(n) =


2n n (mod 2) = 0,

n + 1 n (mod 4) = 1,

n−3
2 n (mod 4) = 3.

The symmetry isomorphism σ(n) =


n + 1 n even,

n − 1 n odd.
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