Reconsidering MacLane

Coherence for associativity in infinitary and untyped settings

Peter M. Hines

Oxford - March 2013

Topic of the talk:

Pure category theory ...

This talk is about the general theory of 'abstract nonsense'

Topic of the talk:

Pure category theory ...

for its own sake.

This talk is about the general theory of 'abstract nonsense'.

Applications do exist:

Some applications:
(1) Logic \& theoretical computing,
(2) Quantum computation \& foundations,
(3) Linguistics \& models of meaning,
(1) Modular arithmetic / cryptography,
© Decision procedures in group theory

- these will not be discussed today!

The general area

We will be looking at
coherence theorems, and 'strictification', for associativity and related properties.

These things we hold self-evident

A category \mathcal{C} consists of

- A proper class of objects, $O b(\mathcal{C})$.
- For all objects $A, B \in O b(\mathcal{C})$, a set of arrows $\mathcal{C}(A, B)$.

We will work diagrammatically:
An arrow $f \in \mathcal{C}(A, B)$ is drawn as

$$
A \xrightarrow{f} B
$$

Axioms for category theory ...

(1) We may compose arrows:

Composition is associative: $h(g f)=(h g) f$.
(2) There is an identity arrow at every object:

$$
\begin{gathered}
1_{A} \subset A \xrightarrow{f} B \bigcirc 1_{B} \\
A \xrightarrow{f} B
\end{gathered}
$$

Mapping between categories

A functor $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$

$$
\begin{array}{cc}
X \xrightarrow{f} Y & \text { in } \mathcal{C} \\
\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) & \text { in } \mathcal{D}
\end{array}
$$

A simple property:

Commutes in C

Mapping between categories

A functor $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$

$$
\begin{array}{cc}
X \xrightarrow{f} Y & \text { in } \mathcal{C} \\
\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) & \text { in } \mathcal{D}
\end{array}
$$

A simple property:
$\Gamma: \mathcal{C} \rightarrow \mathcal{D}$ preserves commuting diagrams:

Commutes in \mathcal{C}

Mapping between categories

A functor $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$

$$
\begin{array}{cc}
X \xrightarrow{f} Y & \text { in } \mathcal{C} \\
\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) & \text { in } \mathcal{D}
\end{array}
$$

A simple property:
$\Gamma: \mathcal{C} \rightarrow \mathcal{D}$ preserves commuting diagrams:

Commutes in \mathcal{D}

Categories with tensors

A monoidal category has a monoidal tensor:

$$
\text { A functor_ } \otimes_{-}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}
$$

satisfying:

- Associativity $A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
- Existence of a unit object $A \otimes I \cong A \cong I \otimes A$

Defining associativity:

We need a natural family of associativity isomorphisms

$$
X \otimes(Y \otimes Z) \underset{\tau_{\chi, Y, Z}^{-1}}{\tau_{X, Y, Z}}(X \otimes Y) \otimes Z
$$

satisfying one very simple condition.

Yes, there are two paths you can go by, but ...

MacLane's coherence condition:
The two 'distinct' ways of re-arranging

$$
\begin{aligned}
& A \otimes(B \otimes(C \otimes D)) \\
& \text { into } \\
& ((A \otimes B) \otimes C) \otimes D
\end{aligned}
$$

must be equal.

The Pentagon condition

$$
A \otimes(B \otimes(C \otimes D))
$$

Two Steps
Three Steps

$$
((A \otimes B) \otimes C) \otimes D
$$

We get a five-sided commuting diagram: MacLane's Pentagon.

A simple special case:

When all associativity isomorphisms are identities,

$$
\tau_{A, B, C}=1_{X} \text { for some object } X
$$

(\mathcal{C}, \otimes) is called strictly associative.

Important

Equality of objects is not strict associativity.
(Claim 1) Concrete example coming soon

A simple special case:

When all associativity isomorphisms are identities,

$$
\tau_{A, B, C}=1_{X} \text { for some object } X
$$

(\mathcal{C}, \otimes) is called strictly associative.

Important

This is not implied by

$$
A \otimes(B \otimes C)=(A \otimes B) \otimes C
$$

Equality of objects is not strict associativity. (Claim 1) Concrete example coming soon

A simple special case:

When all associativity isomorphisms are identities,

$$
\tau_{A, B, C}=1_{X} \text { for some object } X
$$

(\mathcal{C}, \otimes) is called strictly associative.

Important

This is not implied by

$$
A \otimes(B \otimes C)=(A \otimes B) \otimes C
$$

Equality of objects is not strict associativity.
(Claim 1) Concrete example coming soon ...

Why is associativity generally ignored?

MacLane's coherence theorem

This provides a notion of 'confluence' for canonical diagrams.

A diagram is canonical if its arrows are built up from

$$
\left\{\tau_{-,-,-}, \tau_{-,-,-}^{-1}, 1_{-}, \theta_{-}\right\}
$$

Two common descriptions of MacLane's theorem:

(1) Every canonical diagram commutes.
(2) We can treat

$$
A \otimes(B \otimes C) \overbrace{\tau_{A, B, C}^{-1}}^{\tau_{A, B, C}}(A \otimes B) \otimes C
$$

as a strict identity

with no 'harmful side-effects'.

Two inaccurate descriptions of MacLane's theorem:

(1) Every canonical diagram commutes.
(2) We can treat

as a strict identity

with no 'harmful side-effects'.

Two more claims:

- Not every canonical diagram commutes.
(Claim 2)
- Treating associativity isomorphisms as strict identities can have major consequences.
(Claim 3)

A simple example:

The Cantor monoid \mathcal{U} (single-object category).

- Single object \mathbb{N}.
- Arrows: all bijections on \mathbb{N}.

The monoidal structure

We have a tensor (-*_) : $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$.

$$
(f \star g)(n)= \begin{cases}2 . f\left(\frac{n}{2}\right) & n \text { even } \\ 2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd }\end{cases}
$$

Properties of the Cantor monoid (I)

The Cantor monoid has only one object -

$$
\mathbb{N} \star(\mathbb{N} \star \mathbb{N})=\mathbb{N}=(\mathbb{N} \star \mathbb{N}) \star \mathbb{N}
$$

(_*_) : $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ is associative up to a natural isomorphism

$$
\tau(n)= \begin{cases}2 n & n(\bmod 2)=0 \\ n+1 & n(\bmod 4)=1 \\ \frac{n-1}{2} & n(\bmod 4)=3\end{cases}
$$

that satisfies MacLane's pentagon condition.

This is not the identity map!

Not all canonical diagrams commute:

This diagram does not commute.

Using an actual number:

On the upper path, $1 \mapsto 2$.

Taking the left hand path:

$1 \neq 2$, so this diagram does not commute.

Properties of the Cantor monoid (III)

Forcing strict associativity by taking a quotient

$$
\tau \sim i d
$$

collapses $\mathcal{U}(\mathbb{N}, \mathbb{N})$ to a single element.

- A categorical proof is simpler and more general.

Properties of the Cantor monoid (III)

Forcing strict associativity by taking a quotient

$$
\tau \sim i d
$$

collapses $\mathcal{U}(\mathbb{N}, \mathbb{N})$ to a single element.

The algebraic proof ...

The canonical isomorphisms of the Cantor monoid generate a representation of Thompson's group \mathcal{F}, and so have a representation in terms of an embedding of P_{2}, the two-generator polycyclic monoid. However, polycyclic monoids are Hilbert-Post complete, and so any non-trivial congruence (i.e. composition-preserving equivalence relation) on P_{2} that identifies τ and id must force a collapse to the trivial monoid $\{1\}$.

- A categorical proof is simpler and more general.
(Claim 4)

What does MacLane's thm. actually say?

If in doubt ...

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

"It follows that any diagram whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

What does the man himself say?

Categories for the working mathematician ($1^{\text {st }}$ ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158) These three [coherence] diagrams imply that "all" such diagrams commute. (р. 159)

What does the man himself say?

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)

What does the man himself say?

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)

What does the man himself say?

Categories for the working mathematician ($1^{s t} \mathrm{ed}$.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

What does his theorem say?

MacLane's coherence theorem for associativity

All diagrams within the image of a certain functor are guaranteed to commute.

- In some ideal world, this includes all canonical diagrams.
- In the real world, this might not be the case.

MacLane talks about unwanted identifications of objects.

Coherence for associativity

- a closer look

A technicality: It is standard to work with monogenic categories.
Objects are generated by:

- Some object S,
- The tensor (- $_{-}$).

The source of the functor

This is based on (non-empty) binary trees.

- Leaves labelled by x,
- Branchings labelled by \square.

The rank of a tree is the number of leaves.

The source of the functor (II)

MacLane's category \mathcal{W}.

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.
- write this as $(v \leftarrow u) \in \mathcal{W}(u, v)$.

Key points:
(1) $\left(\square_{-}\right)$is a monoidal tensor on \mathcal{W}.
(2) \mathcal{W} is skeletal - all diagrams over \mathcal{W} commute.

The functor itself

Given an object S of a monoidal category (\mathcal{C}, \otimes),
MacLane's theorem simply gives a monoidal functor

$$
\mathcal{W} \text { Subs }_{s}:(\mathcal{W}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

Why this is interesting ...

- Every diagram over \mathcal{W} commutes.
- Every diagram in the image of this functor commutes.
- Every arrow in the image is a canonical isomorphism.

An inductively defined functor

On objects:

- $\mathcal{W S u b}_{S}(x)=S$,
- $\mathcal{W} \operatorname{Sub}_{S}(u \square v)=\mathcal{W} \operatorname{Sub}_{S}(u) \otimes \mathcal{W} \operatorname{Sub}_{S}(v)$.

An object of \mathcal{W} :

An inductively defined functor (I)

On objects:

- $\mathcal{W} \operatorname{Sub}_{S}(x)=S$,
- $\mathcal{W} \operatorname{Sub}_{S}(u \square v)=\mathcal{W} \operatorname{Sub}_{S}(u) \otimes \mathcal{W} \operatorname{Sub}_{S}(v)$.

An object of \mathcal{C} :

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1 _\otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1_{-}$

By construction:
 1. Every arrow in the image of \mathcal{W} Sub is a canonical iso

\square

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1 _\otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1_{\text {. }}$
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-,,-,}$.

By construction:
 (1) Every arrow in the image of WSUb is a canonical iso

2 Every canonical isomorphism is in the image of

An inductively defined functor (II)

On arrows:

- $\mathcal{W} \operatorname{Sub}(u \leftarrow u)=1$.
- $\mathcal{W} \operatorname{Sub}(a \square v \leftarrow a \square u)=1 _\otimes \mathcal{W} \operatorname{Sub}(v \leftarrow u)$.
- $\mathcal{W} \operatorname{Sub}(v \square b \leftarrow u \square b)=\mathcal{W} \operatorname{Sub}(v \leftarrow u) \otimes 1_{-}$
- $\mathcal{W} \operatorname{Sub}((a \square b) \square c \leftarrow a \square(b \square c))=\tau_{-,,-,}$.

By construction:

(1) Every arrow in the image of \mathcal{W} Sub is a canonical iso.
(2) Every canonical isomorphism is in the image of \mathcal{W} Sub.

When do canonical diagrams not commute?

If \mathcal{W} Sub is an embedding of (\mathcal{W}, \square), there are no problems ... all canonical diagrams commute!

In general, this is not true.
"There are unwanted identifications of objects"

The functor \mathcal{W} Sub is not monic.

There does exist a monic-epic decomposition of \mathcal{W} Sub. (Claim 5)

How to Rectify the Anomaly

Given a badly-behaved category (\mathcal{C}, \otimes), we can

build a well-behaved version. (Claim 6)

Think of this as the Platonic Ideal of (\mathcal{C}, \otimes).

We assume \mathcal{C} is monogenic, with objects generated by $\left\{S_{,} \otimes_{-}\right\}$

Constructing Plat $c_{\mathcal{C}}$

Objects are free binary trees

Leaves labelled by $S \in O b(\mathcal{C})$,
Branchings labelled by \square.

There is an instantiation map Inst : $O b\left(P l a t_{\mathcal{C}}\right) \rightarrow O b(\mathcal{C})$

$$
S \square((S \square S) \square S) \mapsto S \otimes((S \otimes S) \otimes S)
$$

Constructing Plat $c_{\mathcal{C}}$

What about arrows?

Homsets are copies of homsets of \mathcal{C}
Given trees T_{1}, T_{2},

$$
\operatorname{Plat}_{\mathcal{C}}\left(T_{1}, T_{2}\right)=\mathcal{C}\left(\operatorname{Inst}\left(T_{1}\right), \operatorname{Inst}\left(T_{2}\right)\right)
$$

Composition is inherited from \mathcal{C} in the obvious way.

The tensor $(\square):$ Plat $_{\mathcal{C}} \times$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$

The tensor of Platc is

- (Objects) A free formal pairing, $A \square B$,
- (Arrows) Inherited from (\mathcal{C}, \otimes), so $f \square g \stackrel{\text { def. }}{=} f \otimes g$.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \operatorname{Sub}_{S}:(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Subs }_{S}:(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P l a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines a monoidal epimorphism
through which McL'.s substitution functor always factors.

Some properties of the platonic ideal ...

(1) The functor

$$
\mathcal{W} \text { Sub }_{S}:(\mathcal{W}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

is always monic.
(2) As a corollary:

All canonical diagrams of $\left(P / a t_{\mathcal{C}}, \square\right)$ commute.
(3) Instantiation defines a monoidal epimorphism

$$
\text { Inst : }\left(\text { Plat }{ }_{\mathcal{C}}, \square\right) \rightarrow(\mathcal{C}, \otimes)
$$

through which McL'.s substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

Examples of the Platonic ideal (I)

A strictly associative category (\mathcal{C}, \otimes).
Its Platonic ideal $\left(P l a t_{C}, \square\right)$ is associative up to isomorphism.
The objects

are distinct.

A question:
What are the associativity isomorphisms?

Examples of the Platonic ideal (II)

A particularly interesting case:
The trivial monoidal category (\mathcal{I}, \otimes).

- Objects: $O b(\mathcal{I})=\{x\}$.
- Arrows: $\mathcal{I}(x, x)=\left\{1_{x}\right\}$.
- Tensor:

$$
x \otimes x=x, \quad 1_{x} \otimes 1_{x}=1_{x}
$$

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:

(Arrows) For all trees T_{1}, T_{2},
$\operatorname{Plat}_{\mathcal{I}}\left(T_{1}, T_{2}\right)$ is a single-element set.

There is a unique arrow between any two objects!

Can you tell what it is yet?

(P.H. 1998) The skeletal self-similar category (\mathcal{X}, \square)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:
(1) was introduced to study self-similarity $S \cong S \otimes S$,
(2) contains MacLane's (\mathcal{W}, \square) as a wide subcategory.

Self-similarity

The categorical identity $S \cong S \otimes S$
Exhibited by two canonical isomorphisms:

- (Code) $\quad \checkmark: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).

Examples
The naturil numbers in, Separable Hilbert spaces,
Infinite matrices, Cantor set \& other fractals, \&c.

C-monoids, and other untyped (single-object) monoidal

Self-similarity

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\triangleleft: S \otimes S \rightarrow S$
- (Decode) $\triangleright: S \rightarrow S \otimes S$

These are unique (up to unique isomorphism).

Examples

- The natural numbers \mathbb{N}, Separable Hilbert spaces, Infinite matrices, Cantor set \& other fractals, \&c.
- C-monoids, and other untyped (single-object) monoidal categories
- Any unit object I of a monoidal category ...

You are unique - just like everybody else

Unique up to unique isomorphism
 is not the same as actually unique.

Elementary remarks on units in monoidal categories - J. Kock
The theory of Saavedra units: actual uniqueness of arrows

implies that S is the unit object.
(Claim 7) Coherence for self-similarity provides an alternative proof.

Can we have strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In untyped monoidal categories:

The code / decode maps are both the identity.

Untyped \equiv Strictly Self-Similar.

Can we have strict self-similarity?

Can the code / decode maps

$$
\triangleleft: S \otimes S \rightarrow S, \triangleright: S \rightarrow S \otimes S
$$

be strict identities?
In untyped monoidal categories:
We only have one object, $S=S \otimes S$.

The code / decode maps are both the identity.

Untyped \equiv Strictly Self-Similar.

Strictifying self-similarity

(Claim 8) There exists a strictification procedure for self-similarity.
(Claim 9) One cannot simultaneously strictify self-similarity and associativity.

An essential preliminary
We need a coherence theorem for self-similarity.

Coherence for Self-Similarity

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \square)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is skeletal - all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$$
\mathcal{X} \text { Sub : }(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)
$$

The self-similarity substitution functor

An inductive definition of $\mathcal{X} \operatorname{Sub}:(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$

On objects:

$$
\begin{aligned}
x & \mapsto S \\
u \square v & \mapsto \mathcal{X} \operatorname{Sub}(u) \otimes \mathcal{X} \operatorname{Sub}(v)
\end{aligned}
$$

On arrows:

$$
\begin{aligned}
(x \leftarrow x) & \mapsto 1 S \in \mathcal{C}(S, S) \\
(x \leftarrow x \square x) & \mapsto \triangleleft \in \mathcal{C}(S \otimes S, S) \\
(x \square x \leftarrow x) & \mapsto \triangleright \in \mathcal{C}(S, S \otimes S) \\
(b \square v \leftarrow a \square u) & \mapsto \mathcal{X} \operatorname{Sub}(b \leftarrow a) \otimes \mathcal{X} \operatorname{Sub}(v \leftarrow u)
\end{aligned}
$$

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) Every diagram in the image of \mathcal{X} Sub commutes.

Interesting properties:

(1) \mathcal{X} Sub : $(\mathcal{X}, \square) \rightarrow(\mathcal{C}, \otimes)$ is always functorial.
(2) Every arrow built up from

$$
\left\{\triangleleft, \triangleright, 1_{S},-\otimes_{-}\right\}
$$

is the image of an arrow in \mathcal{X}.
(3) Every diagram in the image of \mathcal{X} Sub commutes.

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.

Every canonical (for self-similarity) diagram in (Plate,$\square)$ commutes.

Relating associativity and self-similarity

A tale of two functors

Comparing the associativity and self-similarity categories.

MacLane's (\mathcal{W}, \square)

Objects: Binary trees.
Arrows: Unique arrow between two trees of the same rank.

The category (\mathcal{X}, \square)

Objects: Binary trees.
Arrows: Unique arrow between any two trees.

There is an obvious inclusion $(\mathcal{W}, \square) \hookrightarrow(\mathcal{X}, \square)$

Is associativity a restriction of self-similarity?

Does the following diagram commute?

Does the associativity functor factor through
the self-similarity functor?

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \square)
For arbitrary trees u, e, v,

$$
\begin{aligned}
t_{u e v} & =((u \square e) \square v \leftarrow u \square(e \square v)) \\
I_{v} & =(v \leftarrow e \square v) \\
r_{u} & =(u \leftarrow u \square e)
\end{aligned}
$$

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.

D., Asarumptian: t ith (assoc. iso.)

Since all diagrams over X commute:

The following diagram over (\mathcal{X}, \square) commutes:

Let's apply \mathcal{X} Sub to this diagram.
By Assumption: $t_{u e v} \mapsto \tau_{U, E, V}$ (assoc. iso.)
Notation: $u \mapsto U, v \mapsto V, e \mapsto E, I_{V} \mapsto \lambda_{V}, r_{u} \mapsto \rho_{U}$

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle $-E$ is the unit obiect for (C.

The choice of e was arbitrary - every object is the unit object!

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle

- E is the unit object for (\mathcal{C}, \otimes).

The choice of e was arbitrary - every object is the unit object!

Since all diagrams over X commute:

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's units triangle

- E is the unit object for (\mathcal{C}, \otimes).

The choice of e was arbitrary - every object is the unit object!

A general result

The following commutes

exactly when (\mathcal{C}, \otimes) is degenerate -
i.e. all objects are isomorphic to the unit object.

A special case:

(1) Strict associativity: All arrows of (\mathcal{W}, \square) are mapped to identities of (\mathcal{C}, \otimes)
(2) Strict self-similarity: All arrows of (\mathcal{X}, \square) are mapped to the identity of (\mathcal{C}, \otimes).
\mathcal{W} Sub trivially factors through \mathcal{X} Sub.

The conclusion

Strictly associative untyped monoidal categories are degenerate.

Untyped categorical structures can never be strictly associative.

A practical corollary:
LISP programmers will never get rid of all those parentheses.

```
(funcall ((lambda (f) #'(lambda (n) (funcall f f n)))
    #'(lambda (f n)
        (if (= n 0)
        *
            (* n (funcall ff(- n 1))))))
    8)
```

Question: what about the strictification procedure?

An alternative viewpoint

Another way of looking at things:

One cannot simultaneously strictify
(I) Associativity $\quad A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
(II) Self-Similarity $S \cong S \otimes S$

The no simultaneous strictification property

How to strictify self-similarity (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (P/atc, \square)
- Use the (monic) self-similarity substitution functor

How to strictify self-similarity (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plat $\left.{ }_{\mathcal{C}}, \square\right)$
- Use the (monic) self-similarity substitution functor

How to strictify self-similarity (I)

- Start with a monogenic category (\mathcal{C}, \otimes), generated by a self-similar object

- Construct its platonic ideal (Plat $_{\mathcal{C}}, \square$)
- Use the (monic) self-similarity substitution functor

$$
\mathcal{X} \operatorname{Sub}:(\mathcal{X}, \square) \rightarrow\left(\text { Plat }_{\mathcal{C}}, \square\right)
$$

How to strictify self-similarity (II)

- The image of \mathcal{X} Sub is a wide subcategory of ($\left.\mathcal{P l a t}_{C}, \square\right)$.

It contains, for all objects A,
a unique pair of inverse arrows

- The image of \mathcal{X} Sub is a wide subcategory of ($\left.\mathcal{P l a t}_{C}, \square\right)$.

It contains, for all objects A,
a unique pair of inverse arrows

- Use these to define an endofunctor $\Phi:$ Plat $_{\mathcal{C}} \rightarrow$ Plat $_{\mathcal{C}}$.

The convolution endofunctor

- Objects

$$
\Phi(A)=S, \text { for all objects } A
$$

- Arrows

- Functoriality is trivial ... Ф it is also fully faithful.
- Objects

$$
\Phi(A)=S, \text { for all objects } A
$$

- Arrows

- Functoriality is trivial ... Φ it is also fully faithful.

A tensor on $\mathcal{C}(S, S)$

As a final step, we define

$$
\left(-\star_{-}\right): C(S, S) \times \mathcal{C}(S, S) \rightarrow \mathcal{C}(S, S)
$$

by

$(C(S, S), \star)$ is an untyped monoidal category!

Convolution as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

Convolution as a monoidal functor

- Recall, $\operatorname{Plat}_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

$$
\Phi:(\text { Plate }, \square) \rightarrow(\mathcal{C}(S, S), \star)
$$

is a monoidal functor.

What we have ...

A fully faithful monoidal functor from Platc to an untyped monoidal category.

- every canonical (for self-similarity) arrow is mapped to 1 s .

To arrive where we started

A monogenic category:

- The generating object: natural numbers \mathbb{N}.
- The arrows bijective functions.
- The tensor disjoint union $A \uplus B=A \times\{0\} \cup B \times\{1\}$.

To arrive where we started

A monogenic category:

- The generating object: natural numbers \mathbb{N}.
- The arrows bijective functions.
- The tensor disjoint union $A \uplus B=A \times\{0\} \cup B \times\{1\}$.

The self-similar structure:

Based on the familiar Cantor pairing $c(n, i)=2 n+i$.

Let us strictify this self-similar structure.

The end is where we started from

The Cantor monoid:

The object	The natural numbers \mathbb{N}
The arrows	$(f \star g)(n)= \begin{cases}2 . f\left(\frac{n}{2}\right) & n \text { even, } \\ 2 . g\left(\frac{n-1}{2}\right)+1 & n \text { odd. }\end{cases}$
The tensor	$\tau(n)= \begin{cases}2 n & n(\bmod 2)=0, \\ n+1 & n(\bmod 4)=1, \\ \frac{n-3}{2} & n(\bmod 4)=3 .\end{cases}$
The associativity isomorphism	
The symmetry isomorphism	$\sigma(n)=\left\{\begin{array}{rr}n+1 & n \text { even, } \\ n-1 & n \text { odd. }\end{array}\right.$

