Reconsidering MacLane

Coherence for associativity in infinitary and untyped settings

Peter M. Hines

Oxford - March 2013

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Pure category theory ...

for its own sake.

This talk is about the general theory of 'abstract nonsense'.

oherence in Hilbert's hotel

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Pure category theory ...

for its own sake.

This talk is about the general theory of 'abstract nonsense'.

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Some applications:

- Logic & theoretical computing,
- Quantum computation & foundations,
- Linguistics & models of meaning,
- Modular arithmetic / cryptography,
- Decision procedures in group theory
- these will not be discussed today!

< 同 > < 回 > < 回 > -

We will be looking at

coherence theorems, and 'strictification',

for associativity and related properties.

peter.hines@york.ac.uk

These things we hold self-evident

A category C consists of

- A proper class of objects, *Ob*(*C*).
- For all objects $A, B \in Ob(\mathcal{C})$, a set of arrows $\mathcal{C}(A, B)$.

We will work diagrammatically:

An arrow $f \in C(A, B)$ is drawn as

$$A \xrightarrow{f} B$$

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Axioms for category theory ...

We may compose arrows:

Composition is associative: h(gf) = (hg)f.

2 There is an identity arrow at every object:

$$\mathbf{1}_A \stackrel{f}{\longrightarrow} B \stackrel{f}{\longrightarrow} \mathbf{1}_B$$

$$A \xrightarrow{f} B$$

That's all, folks!

peter.hines@york.ac.uk

Mapping between categories

A functor $\Gamma:\mathcal{C}\to\mathcal{D}$

$$X \xrightarrow{f} Y$$
 in C

$$\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) \qquad \text{in } \mathcal{D}$$

A simple property:

 $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$ preserves commuting diagrams:

Commutes in \mathcal{C}

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Mapping between categories

A functor $\Gamma:\mathcal{C}\to\mathcal{D}$

$$X \xrightarrow{f} Y \qquad \text{in } \mathcal{C}$$

$$\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) \qquad \text{in } \mathcal{D}$$

A simple property:

 $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$ preserves commuting diagrams:

Commutes in C

Mapping between categories

A functor $\Gamma:\mathcal{C}\to\mathcal{D}$

$$X \xrightarrow{f} Y \qquad \text{in } \mathcal{C}$$

$$\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y) \qquad \text{in } \mathcal{D}$$

A simple property:

 $\Gamma: \mathcal{C} \rightarrow \mathcal{D}$ preserves commuting diagrams:

$$\Gamma(X) \xrightarrow{\Gamma(f)} \Gamma(Y)$$

$$\downarrow^{\Gamma(g)}$$

$$\Gamma(Z)$$

Commutes in \mathcal{D}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A monoidal category has a monoidal tensor:

A functor $_ \otimes _ : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$

satisfying:

- Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$
- Existence of a *unit object* $A \otimes I \cong A \cong I \otimes A$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We need a natural family of associativity isomorphisms

satisfying one very simple condition.

< 回 > < 回 > < 回 > -

Yes, there are two paths you can go by, but ...

MacLane's **coherence** condition:

The two 'distinct' ways of re-arranging

 $A \otimes (B \otimes (C \otimes D))$

into $((A \otimes B) \otimes C) \otimes D$

must be equal.

Coherence is a simple form of confluence.

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

The Pentagon condition

We get a five-sided commuting diagram:

MacLane's Pentagon.

peter.hines@york.ac.uk

A simple special case:

When all associativity isomorphisms are identities,

 $\tau_{A,B,C} = 1_X$ for some object X

 (\mathcal{C}, \otimes) is called strictly associative.

Important

This is not implied by

 $A \otimes (B \otimes C) = (A \otimes B) \otimes C.$

Equality of objects is <u>not</u> strict associativity.

(Claim 1) Concrete example coming soon ...

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

・ロト ・四ト ・ヨト ・ヨト

A simple special case:

When all associativity isomorphisms are identities,

 $\tau_{A,B,C} = 1_X$ for some object X

 (\mathcal{C}, \otimes) is called strictly associative.

Important

This is not implied by

 $A \otimes (B \otimes C) = (A \otimes B) \otimes C.$

Equality of objects is not strict associativity.

(Claim 1) Concrete example coming soon ...

A simple special case:

When all associativity isomorphisms are identities,

 $\tau_{A,B,C} = 1_X$ for some object X

 (\mathcal{C}, \otimes) is called strictly associative.

Important

This is not implied by

 $A \otimes (B \otimes C) = (A \otimes B) \otimes C.$

Equality of objects is not strict associativity.

(Claim 1) Concrete example coming soon ...

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Why is associativity generally ignored?

MacLane's coherence theorem

This provides a notion of 'confluence' for canonical diagrams.

A diagram is canonical if its arrows are built up from

$$\{ \tau_{-,-,-}, \tau_{-,-,-}^{-1}, \mathbf{1}_{-}, - \otimes_{-} \}$$

▲ 同 ▶ ▲ 国 ▶

Two common descriptions of MacLane's theorem:

Every canonical diagram commutes.

2 We can treat

as a strict identity

with no 'harmful side-effects'.

- 47 ▶

Two inaccurate descriptions of MacLane's theorem:

Every canonical diagram commutes.

We can treat

as a strict identity

with no 'harmful side-effects'.

Not every canonical diagram commutes.

(Claim 2)

 Treating associativity isomorphisms as strict identities can have major consequences.

(Claim 3)

<<p>・

A simple example:

The **Cantor monoid** \mathcal{U} (single-object category).

- Single object N.
- Arrows: all bijections on N.

The monoidal structure

We have a tensor
$$(_\star_) : \mathcal{U} \times \mathcal{U} \to \mathcal{U}$$
.

$$(f \star g)(n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

peter.hines@york.ac.uk

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

Properties of the Cantor monoid (I)

The Cantor monoid has only one object ----

 $\mathbb{N} \star (\mathbb{N} \star \mathbb{N}) = \mathbb{N} = (\mathbb{N} \star \mathbb{N}) \star \mathbb{N}$

 $(-\star _{-}): \mathcal{U} \times \mathcal{U} \to \mathcal{U}$ is associative up to a natural isomorphism

$$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-1}{2} & n \pmod{4} = 3. \end{cases}$$

that satisfies MacLane's pentagon condition.

This is not the identity map!

(ロ) (部) (E) (E) (E)

Properties of the Cantor monoid (II)

Not all canonical diagrams commute:

This diagram does not commute.

peter.hines@york.ac.uk

프 🕨 🗉 프

Properties of the Cantor monoid (II)

Using an actual number:

On the upper path, $1 \mapsto 2$.

peter.hines@york.ac.uk

▲□ → ▲ □ → ▲ □ → …

臣

Properties of the Cantor monoid (II)

Taking the left hand path:

 $1 \neq 2$, so this diagram does *not* commute.

peter.hines@york.ac.uk

Properties of the Cantor monoid (III)

Forcing strict associativity by taking a quotient

au ~ id

collapses $\mathcal{U}(\mathbb{N}, \mathbb{N})$ to a single element.

The algebraic proof ...

The canonical isomorphisms of the Cantor monoid generate a representation of Thompson's group \mathcal{F} , and so have a representation in terms of an embedding of P_2 , the two-generator polycyclic monoid. However, polycyclic monoids are Hilbert-Post complete, and so any non-trivial congruence (i.e. composition-preserving equivalence relation) on P_2 that identifies τ and *id* must force a collapse to the trivial monoid {1}.

A categorical proof is *simpler* and *more general*.(Claim 4)

peter.hines@york.ac.uk

Properties of the Cantor monoid (III)

Forcing strict associativity by taking a quotient

au ~ id

collapses $\mathcal{U}(\mathbb{N}, \mathbb{N})$ to a single element.

The algebraic proof ...

The canonical isomorphisms of the Cantor monoid generate a representation of Thompson's group \mathcal{F} , and so have a representation in terms of an embedding of P_2 , the two-generator polycyclic monoid. However, polycyclic monoids are Hilbert-Post complete, and so any non-trivial congruence (i.e. composition-preserving equivalence relation) on P_2 that identifies τ and *id* must force a collapse to the trivial monoid {1}.

A categorical proof is *simpler* and *more general*.
 (Claim 4)

peter.hines@york.ac.uk

・ロト ・四ト ・ヨト ・ヨト

What does MacLane's thm. actually say?

peter.hines@york.ac.uk

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ?

... ask the experts:

http://en.wikipedia.org/wiki/Monoidal_category

"It follows that **any diagram** whose morphisms are built using [canonical isomorphisms], identities and tensor product commutes."

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What does the man himself say?

Categories for the working mathematician (1st ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

What does the man himself say?

Categories for the working mathematician (1st ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes.
 (p. 161)

What does the man himself say?

Categories for the working mathematician (1st ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

Categories for the working mathematician (1^{st} ed.)

- Moreover all diagrams involving [canonical iso.s] must commute. (p. 158)
- These three [coherence] diagrams imply that "all" such diagrams commute. (p. 159)
- We can only prove that every "formal" diagram commutes. (p. 161)

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

MacLane's coherence theorem for associativity

All diagrams within the image of a certain functor are guaranteed to commute.

- In some *ideal world*, this includes all canonical diagrams.
- In the *real world*, this might not be the case.

MacLane talks about unwanted identifications of objects.

Where does That come From? Identification of objects is not a categorical concept!

Coherence for associativity — a closer look

A technicality: It is standard to work with monogenic categories.

Objects are generated by:

- Some object S,
- The tensor $(_ \otimes _)$.

This is not a restriction - S is thought of as a 'variable symbol'.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

臣
The source of the functor

This is based on (non-empty) binary trees.

- Leaves labelled by *x*,
- Branchings labelled by \Box .

The **rank** of a tree is the number of leaves.

MacLane's category \mathcal{W} .

- (Objects) All non-empty binary trees.
- (Arrows) A unique arrow between any two trees of the same rank.

— write this as $(v \leftarrow u) \in W(u, v)$.

The functor itself

Given an object *S* of a monoidal category (\mathcal{C}, \otimes) ,

MacLane's theorem simply gives a monoidal functor

 $\mathcal{W}\textit{Sub}_{\mathcal{S}}: (\mathcal{W}, \Box) \to (\mathcal{C}, \otimes)$

Why this is interesting ...

- Every diagram over $\mathcal W$ commutes.
- Every diagram in the image of this functor commutes.
- Every arrow in the image is a canonical isomorphism.

On objects:

- $WSub_S(x) = S$,
- $WSub_S(u \Box v) = WSub_S(u) \otimes WSub_S(v)$.

An object of \mathcal{W} :

peter.hines@york.ac.uk

On objects:

- $WSub_S(x) = S$,
- $WSub_S(u \Box v) = WSub_S(u) \otimes WSub_S(v)$.

An object of C:

peter.hines@york.ac.uk

크

On arrows:

- $WSub(u \leftarrow u) = 1_.$
- WSub $(a \Box v \leftarrow a \Box u) = 1 \otimes W$ Sub $(v \leftarrow u)$.
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{.,.,.}$

By construction:

- Every arrow in the image of WSub is a canonical iso.
- Every canonical isomorphism is in the image of WSub.

peter.hines@york.ac.uk

ヘロア 人間 アメ 回ア 人口 ア

E

On arrows:

- $WSub(u \leftarrow u) = 1_{-}$.
- $WSub(a \Box v \leftarrow a \Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a \Box b) \Box c \leftarrow a \Box (b \Box c)) = \tau_{.,.,.}$

By construction:

- Every arrow in the image of WSub is a canonical iso.
- 2 Every canonical isomorphism is in the image of WSub.

peter.hines@york.ac.uk

ヘロア 人間 アメ 回ア 人口 ア

E

On arrows:

- $WSub(u \leftarrow u) = 1_{-}$.
- $WSub(a \Box v \leftarrow a \Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,,,.}$.

By construction:

- Every arrow in the image of *WSub* is a canonical iso.
- 2 Every canonical isomorphism is in the image of WSub.

peter.hines@york.ac.uk

・ロア ・雪 ア ・ 間 ア

Э

On arrows:

- $WSub(u \leftarrow u) = 1_{-}$.
- $WSub(a \Box v \leftarrow a \Box u) = 1 \otimes WSub(v \leftarrow u).$
- $WSub(v \Box b \leftarrow u \Box b) = WSub(v \leftarrow u) \otimes 1_.$
- $WSub((a\Box b)\Box c \leftarrow a\Box(b\Box c)) = \tau_{,.,.}$.

By construction:

- Every arrow in the image of WSub is a canonical iso.
- 2 Every canonical isomorphism is in the image of *WSub*.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

E

When do canonical diagrams not commute?

If W*Sub* is an *embedding* of (W, \Box) , there are no problems

... all canonical diagrams commute!

There does exist a monic-epic decomposition of WSub. (Claim 5)

peter.hines@york.ac.uk

Given a **badly-behaved** category (\mathcal{C}, \otimes) , we can

build a well-behaved version. (Claim 6)

Think of this as the **Platonic Ideal** of (\mathcal{C}, \otimes) .

We assume C is *monogenic*, with objects generated by $\{S, _ \otimes _\}$

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Constructing Plat_C

Objects are free binary trees

There is an instantiation map $Inst : Ob(Plat_{\mathcal{C}}) \rightarrow Ob(\mathcal{C})$

$S \Box ((S \Box S) \Box S) \mapsto S \otimes ((S \otimes S) \otimes S)$

This is not just a matter of syntax!

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

크

What about arrows?

Homsets are copies of homsets of $\ensuremath{\mathcal{C}}$

Given trees T_1 , T_2 ,

 $Plat_{\mathcal{C}}(T_1, T_2) = \mathcal{C}(Inst(T_1), Inst(T_2))$

Composition is inherited from C in the obvious way.

peter.hines@york.ac.uk

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The tensor (\Box) : $Plat_{\mathcal{C}} \times Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$

The tensor of $Plat_{\mathcal{C}}$ is

- (Objects) A free formal pairing, A□B,
- (Arrows) Inherited from (\mathcal{C}, \otimes) , so $f \Box g \stackrel{\text{def.}}{=} f \otimes g$.

peter.hines@york.ac.uk

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - の Q @

Some properties of the platonic ideal ...

The functor

$\mathcal{W}Sub_{\mathcal{S}}: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$

is always monic.

As a corollary: All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute

Instantiation defines a monoidal epimorphism

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}Sub_{\mathcal{S}}: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$$

is always monic.

2 As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines a monoidal epimorphism

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Some properties of the platonic ideal ...

The functor

$$\mathcal{W}Sub_{\mathcal{S}}: (\mathcal{W}, \Box) \rightarrow (\mathit{Plat}_{\mathcal{C}}, \Box)$$

is always monic.

2 As a corollary:

All canonical diagrams of $(Plat_{\mathcal{C}}, \Box)$ commute.

Instantiation defines a monoidal epimorphism

 $\mathit{Inst}:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C},\otimes)$

through which McL'.s substitution functor always factors.

A monic / epic decomposition

MacLane's substitution functor always factors through the platonic ideal:

This gives a monic / epic decomposition of his functor.

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Examples of the Platonic ideal (I)

A strictly associative category (\mathcal{C}, \otimes) .

Its Platonic ideal ($Plat_C$, \Box) is associative **up to isomorphism**.

The objects

are distinct.

A question:

What are the associativity isomorphisms?

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

Examples of the Platonic ideal (II)

A particularly interesting case:

The trivial monoidal category (\mathcal{I}, \otimes) .

- Objects: $Ob(\mathcal{I}) = \{x\}.$
- Arrows: $I(x, x) = \{1_x\}.$
- Tensor:

$$x \otimes x = x$$
, $\mathbf{1}_x \otimes \mathbf{1}_x = \mathbf{1}_x$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

크

What is the platonic ideal of \mathcal{I} ?

(Objects) All non-empty binary trees:

(Arrows) For all trees T_1 , T_2 ,

 $Plat_{\mathcal{I}}(T_1, T_2)$ is a single-element set.

There is a unique arrow between any two objects!

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

(P.H. 1998) The skeletal self-similar category (\mathcal{X}, \Box)

- Objects: All non-empty binary trees.
- Arrows: A unique arrow between any two objects.

This monoidal category:

- **(**) was introduced to study **self-similarity** $S \cong S \otimes S$,
- ② contains MacLane's (\mathcal{W}, \Box) as a wide subcategory.

・ロト ・四ト ・ヨト ・ヨト

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd : S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

● The natural numbers N, Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.

- C-monoids, and other untyped (single-object) monoidal categories
- Any unit object I of a monoidal category ...

The categorical identity $S \cong S \otimes S$

Exhibited by two canonical isomorphisms:

- (Code) $\lhd : S \otimes S \rightarrow S$
- (Decode) $\rhd : S \to S \otimes S$

These are *unique* (up to *unique isomorphism*).

Examples

- The natural numbers ℕ, Separable Hilbert spaces, Infinite matrices, Cantor set & other fractals, &c.
- *C*-monoids, and other untyped (single-object) monoidal categories
- Any unit object I of a monoidal category ...

You are unique - just like everybody else

Unique up to unique isomorphism is not the same as actually unique.

Elementary remarks on units in monoidal categories – J. Kock

The theory of Saavedra units: actual uniqueness of arrows

implies that S is the unit object.

(Claim 7) Coherence for self-similarity provides an alternative proof.

Can we have strict self-similarity?

Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ arprop : S \rightarrow S \otimes S$$

be strict identities?

In **untyped** monoidal categories:

We only have one object, $S = S \otimes S$.

The code / decode maps are both the identity.

Untyped = Strictly Self-Similar.

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

臣

Can we have strict self-similarity?

Can the code / decode maps

$$\lhd: S \otimes S \rightarrow S \ , \ arprop : S \rightarrow S \otimes S$$

be strict identities?

In **untyped** monoidal categories:

We only have one object, $S = S \otimes S$.

The code / decode maps are both the identity.

Untyped \equiv Strictly Self-Similar.

(Claim 8) There exists a *strictification* procedure for self-similarity.

(Claim 9) One cannot simultaneously strictify self-similarity and associativity.

An essential preliminary

We need a coherence theorem for self-similarity.

Coherence for Self-Similarity

peter.hines@york.ac.uk

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A straightforward coherence theorem

We base this on the category (\mathcal{X}, \Box)

- Objects All non-empty binary trees.
- Arrows A unique arrow between any two trees.

This category is skeletal — all diagrams over \mathcal{X} commute.

We will define a monoidal substitution functor:

$\mathcal{X}\textit{Sub}:(\mathcal{X},\Box)\to(\mathcal{C},\otimes)$

The self-similarity substitution functor

An inductive definition of \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (\mathcal{C}, \otimes)$

On objects:

$$\begin{array}{rccc} x & \mapsto & S \\ u \Box v & \mapsto & \mathcal{X} Sub(u) \otimes \mathcal{X} Sub(v) \end{array}$$

On arrows:

$$(x \leftarrow x) \quad \mapsto \quad \mathbf{1}_S \in \mathcal{C}(S, S)$$

$$egin{array}{rll} (x\leftarrow x\Box x)&\mapsto& \lhd\in \mathcal{C}(S\otimes S,S)\ (x\Box x\leftarrow x)&\mapsto& \rhd\in \mathcal{C}(S,S\otimes S) \end{array}$$

 $(b \Box v \leftarrow a \Box u) \quad \mapsto \quad \mathcal{X} Sub(b \leftarrow a) \otimes \mathcal{X} Sub(v \leftarrow u)$

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

Every arrow built up from

 $\{\triangleleft\,,\,\triangleright\,,\,\mathbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$

is the image of an arrow in \mathcal{X} .

Every diagram in the image of X Sub commutes.

(日)

$\textcircled{O} \ \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$

2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\textbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

is the image of an arrow in \mathcal{X} .

Every diagram in the image of X Sub commutes.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- $\textcircled{O} \quad \mathcal{X}Sub: (\mathcal{X}, \Box) \to (\mathcal{C}, \otimes) \text{ is always functorial.}$
- 2 Every arrow built up from

$$\{\triangleleft\,,\,\vartriangleright\,,\,\mathbf{1}_{\mathcal{S}}\,,\,_\otimes\,_\}$$

is the image of an arrow in \mathcal{X} .

Solution \mathcal{S} Every diagram in the image of \mathcal{X} Sub commutes.

(ロ) (部) (E) (E) (E)

\mathcal{X} Sub factors through the Platonic ideal

There is a monic-epic decomposition of \mathcal{X} Sub.

Every canonical (for self-similarity) diagram in $(Plat_{\mathcal{C}}, \Box)$ commutes.

peter.hines@york.ac.uk

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

크

Relating associativity and self-similarity

peter.hines@york.ac.uk

<回>< E> < E> < E> = E
Comparing the associativity and self-similarity categories.

MacLanes (VV , \Box	Г)
--------------------------	----

Objects: Binary trees.

Arrows: Unique arrow between two trees *of the same rank*.

The category (\mathcal{X}, \Box)

Objects: Binary trees.

Arrows: Unique arrow between

any two trees.

There is an obvious inclusion $(\mathcal{W}, \Box) \hookrightarrow (\mathcal{X}, \Box)$

peter.hines@york.ac.uk

Is associativity a restriction of self-similarity?

Does the following diagram commute?

Does the associativity functor

factor through

the self-similarity functor?

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

• Image: A image:

Proof by contradiction:

Let's assume this is the case.

Special arrows of (\mathcal{X}, \Box)

For arbitrary trees *u*, *e*, *v*,

$$t_{uev} = ((u \Box e) \Box v \leftarrow u \Box (e \Box v)$$
$$l_v = (v \leftarrow e \Box v)$$
$$r_u = (u \leftarrow u \Box e)$$

peter.hines@york.ac.uk

The following diagram over (\mathcal{X}, \Box) commutes:

Let's apply $\mathcal{X}Sub$ to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.) **Notation:** $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_v$, $r_u \mapsto$

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The following diagram over (\mathcal{X}, \Box) commutes:

Let's apply \mathcal{X} Sub to this diagram.

By Assumption: $t_{uev} \mapsto \tau_{U,E,V}$ (assoc. iso.)

Notation: $u \mapsto U$, $v \mapsto V$, $e \mapsto E$, $l_v \mapsto \lambda_V$, $r_u \mapsto \rho_U$

peter.hines@york.ac.uk

・ロト ・四ト ・ヨト ・ヨト

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's **units triangle** — *E* is the unit object for (C, \otimes) .

The choice of *e* was *arbitrary* — every object is the unit object!

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's **units triangle** — *E* is the unit object for (\mathcal{C}, \otimes) .

The choice of *e* was *arbitrary* — every object is the unit object!

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

The following diagram over (\mathcal{C}, \otimes) commutes:

This is MacLane's **units triangle** — *E* is the unit object for (\mathcal{C}, \otimes) .

The choice of *e* was *arbitrary* — every object is the unit object!

peter.hines@york.ac.uk

A general result

The following commutes

exactly when (\mathcal{C}, \otimes) is degenerate —

i.e. all objects are isomorphic to the unit object.

日本・モート・モート

Strict associativity: All arrows of (𝔅, □) are mapped to identities of (𝔅, ⊗)

Strict self-similarity: All arrows of (X, □) are mapped to the identity of (C, ⊗).

W*Sub* trivially factors through X*Sub*.

The conclusion

Strictly associative untyped monoidal categories are degenerate.

peter.hines@york.ac.uk

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Untyped categorical structures can never be strictly associative.

A practical corollary:	
LISP programmers will never get rid of all those parentheses.	(funcall ((lambda (f) #'(lambda (n) (funcall f f n)))

Question: what about the strictification procedure?

peter.hines@york.ac.uk

Another way of looking at things:

One cannot simultaneously strictify

(I) Associativity $A \otimes (B \otimes C) \cong (A \otimes B) \otimes C$ (II) Self-Similarity $S \cong S \otimes S$

The no simultaneous strictification property

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

・ロト ・四ト ・ヨト ・ヨト

臣

How to strictify self-similarity (I)

Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal ($Plat_{\mathcal{C}}, \Box$)
- Use the (monic) self-similarity substitution functor

 \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (Plat_{\mathcal{C}}, \Box)$

peter.hines@york.ac.uk

• 同 • • 三 • • 三 •

How to strictify self-similarity (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal (*Plat*_C, □)
- Use the (monic) self-similarity substitution functor

 \mathcal{X} Sub : $(\mathcal{X}, \Box) \to (Plat_{\mathcal{C}}, \Box)$

peter.hines@york.ac.uk

• 同 • • 三 • • 三 •

How to strictify self-similarity (I)

 Start with a monogenic category (C, ⊗), generated by a self-similar object

- Construct its platonic ideal ($Plat_{\mathcal{C}}, \Box$)
- Use the (monic) self-similarity substitution functor

 $\mathcal{X}\textit{Sub}: (\mathcal{X}, \Box) \to (\textit{Plat}_{\mathcal{C}}, \Box)$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

How to strictify self-similarity (II)

The image of *X* Sub is a wide subcategory of (*Plat_C*, □).
 It contains, for all objects *A*,
 a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : *Plat*_C \rightarrow *Plat*_C.

peter.hines@york.ac.uk

• Image: A image:

How to strictify self-similarity (II)

The image of *X* Sub is a wide subcategory of (*Plat_C*, □).
 It contains, for all objects *A*,
 a unique pair of inverse arrows

• Use these to define an **endofunctor** Φ : $Plat_{\mathcal{C}} \rightarrow Plat_{\mathcal{C}}$.

peter.hines@york.ac.uk

• Image: A image:

The convolution endofunctor

Objects

 $\Phi(A) = S$, for all objects A

• Functoriality is trivial ... Φ it is also fully faithful.

peter.hines@york.ac.uk

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

The convolution endofunctor

Objects

 $\Phi(A) = S$, for all objects A

• Functoriality is trivial ... • it is also fully faithful.

peter.hines@york.ac.uk

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

A tensor on $\mathcal{C}(S, S)$

As a final step, we define

$$(_\star_): \mathcal{C}(\mathcal{S},\mathcal{S}) imes \mathcal{C}(\mathcal{S},\mathcal{S})
ightarrow \mathcal{C}(\mathcal{S},\mathcal{S})$$

by

 $(C(S, S), \star)$ is an untyped monoidal category!

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

< □→ < 三→ < 三→

Convolution as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\mathit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\mathcal{S},\mathcal{S}),\star)$

is a monoidal functor.

What we have ...

A fully faithful monoidal functor from $Plat_{C}$ to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1_S .

peter.hines@york.ac.uk

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Convolution as a monoidal functor

- Recall, $Plat_{\mathcal{C}}(S, S) \cong \mathcal{C}(S, S)$.
- Up to this obvious isomorphism,

 $\Phi:(\textit{Plat}_{\mathcal{C}},\Box)\to(\mathcal{C}(\textit{S},\textit{S}),\star)$

is a monoidal functor.

What we have ...

A fully faithful monoidal functor from $Plat_{\mathcal{C}}$ to an untyped monoidal category.

— every canonical (for self-similarity) arrow is mapped to 1_S .

To arrive where we started

A monogenic category:

- The generating object: natural numbers N.
- The arrows bijective functions.
- The tensor disjoint union $A \oplus B = A \times \{0\} \cup B \times \{1\}$.

Let us strictify this self-similar structure.

To arrive where we started ...

A monogenic category:

- The generating object: natural numbers N.
- The arrows bijective functions.
- The tensor disjoint union $A \uplus B = A \times \{0\} \cup B \times \{1\}$.

Let us strictify this self-similar structure.

The Cantor monoid:

The object	The natural numbers $\mathbb N$
The arrows	All bijections $\mathbb{N} \to \mathbb{N}$
The tensor	$(f \star g)(n) = \begin{cases} 2.f(\frac{n}{2}) & n \text{ even,} \\ 2.g(\frac{n-1}{2}) + 1 & n \text{ odd.} \end{cases}$
The associativity isomorphism	$\tau(n) = \begin{cases} 2n & n \pmod{2} = 0, \\ n+1 & n \pmod{4} = 1, \\ \frac{n-3}{2} & n \pmod{4} = 3. \end{cases}$
The symmetry isomorphism	$\sigma(n) = \begin{cases} n+1 & n \text{ even,} \\ n-1 & n \text{ odd.} \end{cases}$

Coherence in Hilbert's hotel

peter.hines@york.ac.uk

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ …