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Abstract. In this paper we provide empirical evidence of the necessfitin-
tegrating mapping repair techniques within the ontologytamiag process, an
aspect that is neglected in many ontology matching systéfaslso evaluate the
feasibility of using state-of-the-art mapping repair teicfues in practice, such as
those implemented in Alcomo and LogMap. A preliminary eadilon was con-
ducted in the context of the Ontology Alignment Evaluatioitiative (OAEI)
2012. We extend this evaluation and report about the reisuttstail.

1 Introduction

OWL ontologies are extensively used in biomedical infoliorasystems. Prominent
examples of biomedical ontologies are the National Cantgtitlite Thesaurus (&)
[14], the Foundational Model of Anatomy ¥fA) [36] and the Systematized Nomen-
clature of Medicine Clinical Terms (8MED cT) [39]. These reference bio-medical
ontologies, however, are being developed independenttiiffarent groups of experts
and, as a result, they use different entity naming schemdsein vocabularies. For
example, N1 defines the entity “Myocardium”, whereask uses the entity “Cardiac
Muscle Tissue” to describe the muscles that surround an@épihe human heart. Thus,
to integrate data among applications, it is crucial to distalzorrespondences (called
mappings or alignments) between the entities of their r@g@eontologies.

In the last ten years, the Semantic Web and bio-informaéissarch communities
have extensively investigated the problem of automaticamputing correspondences
between independently developed ontologies, usuallynegléo as thentology match-
ing problem. For example, the Ontology Alignment Evaluation Initigi(OAEI) is an
annual international campaign for the systematic evalnaif ontology matching sys-
tems [10, 9, 40,28, 1]. The matching problems in the OAEI agaoized in several
tracks, with each track involving different kinds of testtaiogies. For example, the
Large Biomed track involves the matching of ##A, Nci1 and SNOMED CT.

OWL ontologies have well-defined semantics [5], howevemyrsystems partici-
pating in the OAEI campaigns disregard the semantics ofrihetiontologies, and are
thus unable to detect and repair logical errors (e.g. wsfadiilities) that follow from
the union of the input ontologies and the mappings. Only thelogy matching sys-
tems S-Match [13], ASMOV [18], CODI [33, 17], KOSIMap [35] A¥++ [15] and
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LogMap [20, 24] have implemented reasoning and repair igcles in the context of
the OAEI. Furthermore, LogMap was the only system succtgsfpplying such tech-
nigues in all tracks of the OAEI 2012 campaign [1].

In this paper, we focus on the evaluation conducted in the IQAE?2 Large Biomed
track and we provide an extension of the results presentdd.i@oncretely, we evalu-
ate the feasibility and impact of integrating state-of-memapping repair techniques,
such as those implemented in Alcomo [29] or in LogMap, withi@ matching process.

2 Preliminaries

In this section, we first introduce the formal representatibontology mappings. Next,
we present the notions of mapping coherence and (approxXjmapping repair. Fi-
nally, we discuss how ontology matching systems are eveduaithin the OAEI.

2.1 Representation of ontology mappings

Mappings are conceptualised as tuples of the foiaes, e2, n, p), with id a unique
identifier for the mappinggs, e2 entities in the vocabulary of the relevant ontologies,
n a numeric confidence measure betw8emd1, andp a relation between; andes,
typically subsumption (i.eg; is more specific thany), equivalence (i.eg; ande, are
synonyms) or disjointness (i.e., no individual can be ataimse of bothe; andes) [8].

RDF Alignment [6] is the main format used in the OAEI campaigrrepresent
mappings containing the aforementioned elements. Aditip, mappings are also rep-
resented as OWL 2 subclass, equivalence, and disjointmesa®[5]; mapping iden-
tifiers (id) and confidence values) are then represented as axiom annotations. Such
a representation enables the reuse of the extensive rar@@/bf2 reasoning infras-
tructure that is currently available. Note that altermafiormal semantics for ontology
mappings have been proposed in the literature (e.g., [4]8, 3

2.2 Incoherent mappings and (approximate) mapping repair

The ontology®; U 02 U M resulting from the integration a®; and O, via a set
of mappingsM, may entail axioms that do not follow fro®?,, O3, or M alone. In
particular, classes that were satisfiableCin or O, may become unsatisfiable w.r.t.
01 U Oy U M. A set of mappings that leads to such logical errors is reteto as
incoherent [30].

Definition 1 (Mapping Incoherence).A set of mappings M isincoherent with respect
to O; and O, if thereexistsa class A in the signature of O; UQ, such that O; U0, (-
ACLland O, U0 UM E AL L.

An incoherent set of mapping$! can be fixed by removing mappings fram.
This process is referred to ampping repair (or repair for short).

Definition 2 (Mapping Repair). Let M be an incoherent set of mappings M wir.t. O,
and O,. A set of mappings R C M is a mapping repair for M wir.t. O; and O, if
M\ R iscoherent wr.t. O; and Os.



An incoherent set of mappings can be repaired in many differnays. A trivial
repair isR = M, since an empty set of mappings is obviously coherent (daogr
to Definition 1). Nevertheless, the objective is to removéemsmappings as possible,
which is consistent with the principle of minimal change #&liéf revision [11]. Such
minimal repairs are typically referred to in the literatasdiagnosis — a term coined
by Reiter [34] and introduced to the field of ontology debunggn [37].

Definition 3 (Diagnosis).Let R be arepair for M with respect to O; and O,. R isa
diagnosisif each R’ C R isnot arepair for M with respect to O, and O.

Standard justification-based ontology debugging tectesde.g. [37, 38, 25, 41, 16,
22]) can be exploited to compute a repair (or a diagnosisaiidncoherent set of map-
pings. However, justification-based technologies do nalesevhen the number of un-
satisfiabilities is large (a typical scenario in mappingaieproblems [19]). To address
this scalability issue, mapping repair systems usually maten anapproximate repair
using incomplete reasoning techniques. An approximat@iré&y~ does not guarantee
that M \ R¥ is coherent, but it will (in general) reduce significantlyethumber of
unsatisfiabilities caused by the original set of mappings

2.3 Evaluation of ontology matching systems in the OAEI

The evaluation in the OAEI campaign is carried out autonadltiaising the infrastruc-
ture developed within the EU project SEALS [42BEALS provides a repository to
store test data (e.g. OAEI datasets) and an interface tanmnthis data and generate
an output (e.g. set of mappings) following the accepted &srOAEI participants have
wrapped their systems according to the SEALS interfacecEleDAEI systems are ex-
ecuted using the same workflow, which facilitates repraduilityi of the experiments.

The quality of the mapping81 computed by a matching system is often measured
in terms of precision and recall with respect to a refereet®@smappings (also called
gold standard)Mgs. Precision (Pre) is defined 881N Mgs|/| M|, while recall (Rec)
is defined asM N Mgs|/|Mags|. The F-score (F) combines precision and recall and
is usually defined as their harmonic me@nx Pre x Re¢/(Pre+ Reg. The OAEI
also evaluates the coherence of the computed mappihgath respect to the number
of unsatisfiable classes obtained when reasoning with {hé ontologies?; andO»
together withM. Additionally, computation times are also recorded.

3 The OAEI Large BioMed track

In this section we give an overview of the test data, paritify systems and coherence
results of the OAEI 2012 Large Biomed tratKhe track involves the matching of/#A
version 2.0 (78, 989 classes)cNversion 08.05d (66, 724 classes) amdd™MED CT
Jan. 2009 version (306, 591 classes) and exploits the UML&Gthesaurus [3] as the
basis for the track’s reference mappings (see [23,21] ftaildg UMLS is the most
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Table 1: Mapping coherence of the top 7 systems in the OAE2 2@tge BioMed track

System [ FmA-Nci  [[ FMA-SNoMED T [[ SNOMED cT-NcI |
Y | Unsat. | Ratio [[ Unsat. | Ratio [[ Unsat. [ Rafio |
LogMapnoe 9 0.01% 10 0.003% >0 >0%

LogMap 9 0.01% 10 0.003% >17 >0.005%

ServOMap 48,743 27% 273,242 1% >313,643| >84%
ServOMapL 50,334 | 28% 99,726 26% >314,939| >84%

GOMMA 5,574 4% 10,752 3% >266,051| >71%
GOMMA 12,939 9% 119,657 31% >313,015| >84%
YAM++ 50,550 | 29% 106,107 | 28% >269,107| >72%

comprehensive effort for integrating independently-dayed medical thesauri and on-
tologies, including MA, Nci1 and SNOMED CT. Currently, the UMLS-based reference
mappings only include subsumption and equivalence coorefgnces between classes.

The track consists of three matching problemgaFNcI, FMA-SNOMED CT and
SNOMED CT-NciI; the gold standard is provided by their corresponding UMizSed
reference mappings; there are three tasks associatedhtonediching problem, each of
which involves different fragments of the input ontologibsthis paper we focus on
the tasks involving the matching of the wholeik&, Ncil and SN\OMED CT ontologies.

We have evaluated the coherence of the mappings obtaindtelpp systems in
the OAEI 2012 Large BioMed track: LogMap, YAM++ [15], ServQ@id [2], GOMMA
[27] and some of their variants (LogMap, GOMMA« and ServOMapL). LogMap’s
default algorithm uses ontology modules to reduce the bespace, while the variant
LogMapee does not rely on module extraction. GOMMAunlike GOMMA, exploits
specialised background knowledge. ServOMapL is a lighsivarof ServOMap with
some features deactivated. Table 1 summarizes the obiair@terence results, which
have been obtained using the OWL 2 reasoner HermiT{32ie table reporté) num-
ber of unsatisfiable classes@ U O, U M, whereM represents the mappings com-
puted by a given system, aiid) the ratio of unsatisfiable classes over the total num-
ber of classes. The best results were obtained by LogMaptamatiant LogMapoe
LogMapee managed to additionally detect some unsatisfiable clakaésvere missed
by LogMap due to the fact that they fell outside the computedutes. The mappings
computed by the other matching systems led to a huge numiseisatisfiable classes.
For example, 71% of the classes in the integrationeAFand SVOMED CT via Ser-
vOMap mappings are unsatisfiable.

4 Mapping repair using Alcomo and LogMap

Alcomo and LogMap implement different techniques to repaioherent mappings. In
the evaluation conducted in this paper, both Alcomo and Laglsre configured to use
incomplete reasoning. Thus, given two ontologiésand O, and a set of mappings

8 In the case of SOMED cT-Ncino OWL 2 reasoner could succeed in classifying the intedrate
ontology via mappings [19], so we used the OWL 2 EL reasonét 26] instead to provide
a lower bound on the number of unsatisfiable classes.



M between them, Alcomo and LogMap compute an approximaterr@da such that
M\ R¥ is almost coherent and only leads to a (relatively) small beinof unsatisfi-
able classes. Next we present an overview of the Alcomo aigdlap mapping repair
techniques, the interested readers please refer to [224P@pr a full description of
these systems. Note that LogMap was originally implemeatedn ontology match-
ing system, however, it can also operate as a stand-alonginga@pair system. From
now on we will refer to LogMap’s repair module as LogMap-Riepalcomo, unlike
LogMap, has specifically been designed to repair incohenapipings.

4.1 The Alcomo mapping repair system

Alcomo implementes two reasoning components. One compasenpattern-based
reasoning technique that is incomplete for detecting aflimal incoherent mapping
subsets. However, this approach will detect a large amdwdrdlicting pairs of map-
pings. The basic ideais to first classify bd¥h andO, using an OWL 2 reasoner. Given
two mapping axiomsl; = Cy € M andB; = Dy € M with A; andB; defined inO;
andC5 andD- defined inO, Alcomo checks ifD; = A; C By andOy = Cy C —Ds.

If this is the case, it can be conclud®d UO>; UM | Cy C L, i.e.,Cs is unsatisfiable
in the ontology integrated viat. Thus, the mapping s¢td; = Cs, By = D} isinco-
herent. This basic idea is extended and four patterns ameedethat take subsumption
and equivalence mappings between classes and propettietount.

Depending on the configuration of Alcomo, these technigaeshe accompanied
with complete reasoning techniques that are built on thesidal black-box approaches
for repairing ontologies (e.g. [38, 25,41, 16]). The baslea of such a combined ap-
proach is to compute a preliminary superset of a solutioedbas the incomplete rea-
soning techniques. This intermediate result is then cteeekith complete reasoning
techniques and further reduced if required. If completsgamg techniques are acti-
vated, it can be guaranteed that Alcomo generates a colmeagping set by removing
R from M. Moreover,R will be a diagnosis. Without activating complete reasoning
techniques, Alcomo computes an approximate reRairand it cannot guarantee the
coherence of the output mapping set. The approximate r&jaihowever, will always
be a subset (never a superset) of the diagnosis.

Mappings are usually annotated with confidences. Thus, tiadityg of a diagno-
sis can be defined in terms of the aggregated confiden®& @i intuitive idea is to
remove mapping sets with less aggregated confidence. Aleam® to solve two in-
terconnected problems at the same tirfipthe reasoning problem of detecting and
repairing incoherent mappings, afif the optimization problem of taking confidences
into account in the appropriate way. With respect to themoigaition problem, two dif-
ferent types of diagnosis have been defined. A global optifizenosis is introduced
as the diagnosis that removes as less confidence as poHsilleorrespondences are
weighted equally with respect to their (positive) confidemalues, a global optimal di-
agnosis will be a diagnosis that is a smallest diagnosis imbass of correspondences.
This type of diagnosis is, however, computed by an exhasistarch algorithm, and
thus it is not feasible to compute the global optimal diaghfus large repair problems.

The second type of a diagnosis is called a local optimal diagnSuch a diagnosis
can be constructed by a simple greedy approach startingamithmpty mapping set



Algorithm 1 Alcomo’s algorithm with local optimal diagnosis & incompéereasoning
Input: O1, O2: input ontologies;M: input mappings
Output: M’: output mappingsR™: approximate mapping repair.
M =10
TR =0
classifyO; andO,
: C := ConflictPairs(01, 02, M)
. foreachm € M do > iterate overM in descending order with respect to confidences
coh := true
for eachm’ € M’ do

if (m’,m) € C'then

coh := false

10: break
11: end if
12: end for
13:  if coh = truethen M’ := M" U {m}
14: else R™ := R U {m}
15: end for
16: return (M’, R™)

NGO ®NE

M’ that is extended step by step by adding mappings frefmThese mappings are
ordered with respect to the confidence values starting Wwélhighest confidence. Each
time a mapping is added tb1’, the coherence is checked via a combination of pattern-
based and complete reasoning techniqued4ifbecomes incoherent, the mapping is
not added taM’. The resulting diagnosi® = M \ M’ is also a minimal hitting
set [34] over all conflicts, however, in general it is not a Besa confidence weighted
diagnosis. A proof for this claim and a detailed explanatiban improved variant of
this algorithm can be found in Section 6.1 in [29].

Both algorithms can be executed with complete reasoningedet! or deactivated.
In the latter case, only those logical errors that can bectkdeby the pattern-based
reasoning approach are taken into account. In our expetinves have applied Al-
como in the setting that aims to compute a local optimal diagnusing incomplete
pattern-based reasoning techniques only. The corresppmdieudocode is shown in
Algorithm 1. In Step 4 the pattern-based reasoning teclasigescribed above are used
to compute a set of conflicting pairs of mappings. Each ofelpesrs is incoherent with
respect ta0; and O,. Note that most of the computational effort is dedicatechis t
(preprocessing) step. The remaining part of the algorithguires no further reasoning
and it is only required to check whether a certain combimetitwo mappings appears
as a previously computed conflict pair.

4.2 The LogMap-Repair system

Algorithm 2 shows the pseudocode of the algorithm implemeéiby LogMap-Repair.
Steps 1 and 2 initialise the output mappingt with the input mappings\t and the
repair setR™ with the empty set. Note that LogMap-Repair splits equiveéemap-
pings into two equivalent subsumption mappings. LogMapdReencodes the input



Algorithm 2 LogMap-Repair algorithm based on Horn propositional reasp
Input: O1, O2: input ontologies;M: input mappings
Output: M': output mappingsR™: approximate mapping repair.

LM =M
2. RF =10
3: (P1,P2) := PropEncoding(O1, O2)
4: for each C' € OrderedVariables(P1 U P2) do
5: Pc ::P1U732UM/U{true—>C}
6: (sat, M ) := DowlingGallier(Pc¢)
7 if sat = false then
8: Rep:=10
9: rep_size ;=1
10: repeat
11: for each subsetR ¢ of M | of sizerep_size do
12: sat := DowlingGallier(Pc \ R¢)
13: if sat = true then Rep := Rep U {Rc}
14: end for
15: rep_size ;= rep_size + 1
16: until Rep # 0
17: Rc := element ofRep with minimum aggregated confidence.
18: M = M\ Re
19: R®:=R¥URc
20: end if
21: end for

22: return (M', R7)

ontologies®; andO, as Horn propositional theorig’, andP, (Step 3) and exploits
this encoding to subsequently detect unsatisfiable classasefficient and sound way
during the repair process. The the@y (resp.P-) consists of the following Horn rules:

— Arule A — B for all distinct classesi, B such thatA is subsumed by3 in O
(resp. in03); subsumption relations can be determined using either \ath. @
reasoner, or syntactically (in an incomplete way).

— RulesA; A A; — false (1 < ¢ < j < n) for each disjointness axiom of the form
DisjointClasses(Az, ..., Ay).

—Arule A; A ... N A, — B for each subclass or equivalence axiom having the
intersection ofd,, ... A,, as subclass expression aBdas superclass.

In Step 4, propositional variables?y (resp. inP.) are ordered such that a variable
C in Py (resp. inPPy) comes beforé) wheneverD is subsumed by’ in Oy (resp. in
0,). This is a well-known repair strategy: subclasses of aatisftable class are also
unsatisfiable and hence before repairing an unsatisfiadds ohe first needs to repair its
superclasses. Satisfiability of a propositional variablis determined by checking sat-
isfiability of the propositional theor- consisting of(i) the rule(true — C); (ii) the
propositional representatiof®s and?P.; and(iii) the current set of output mappings
M’ (seen as propositional implications).



Algorithm 3 Evaluation of Alcomo and LogMap-Repair
Input: 01, O2: input ontologies;Mgs: reference mappings; MS: an ontology matching system
1: Compute mappings1 (I) between?®; andO; using system MS
2: Store matching timdl()
3: Compute F-scordl( ) of M with respect toM s
4: Get unsatisfiable classes®f U 0> U M (IV) using a reasoner
5: Compute approximate repa®~ (V) using Alcomo system > See Algorithm 1
6
7
8
9

: Store repair time\(l)

: Compute F-scorédl ) of M \ R~ with respect taMgs

: Get unsatisfiable classes©@f U O; U M \ R™ (VIII ) using a reasoner

. Compute approximate repd®”™ (IX) using LogMap-Repair system > See Algorithm 2
10: Store repair timeX)
11: Compute F-scoreX() of M \ R~ with respect toMcs
12: Get unsatisfiable classes®@f U O> U M \ R™ (XII') using a reasoner

LogMap-Repair implements the classical Dowling-Galliggosithm for proposi-
tional Horn satisfiability [7, 12]. LogMap-Repair's implemtation of Dowling-Gallier’s
algorithm also records all mappings potentially involvadn unsatisfiability. Thus, a
call to Dowling-Gallier returns a satisfiability valuet and, optionally, the (overesti-
mated) set of conflicting mappingst, (see Steps 6 and 12). An unsatisfiable class
C'is repaired by discarding conflicting mappings or(Lines 8 to 19). Thus, subsets
Rc of M of increasing size are then identified until a repair is fo(®i&ps 10-16}.
Thus, LogMap-Repair does not compute a diagnosis for thatisfiable clas€’ but
rather the repairs of smallest size. If several repairs dfengsize exist, the one with the
lowest aggregated confidence is selected according to tifeleace values assigned to
mappings (Step 17). Finally, Steps 18 and 19 update the pbotappingsM’ and the
approximate mapping repaiR”™ by extracting and adding -, respectively.

Algorithm 2 ensures tha®P; U P, U M’ U {true — C'} is satisfiable for eacly
occurring inP; UPs. The propositional encoding ¢¥; and®; is, however, incomplete
and hence the algorithm does not ensure satisfiability df ekss inO; U Oy U M.
Nevertheless, as shown in Section 5, the number of unshtesfitasses remaining after
computing an approximate rep&™ is typically small.

5 Evaluation

In this section we evaluate the feasibility of integratihg Alcomo and LogMap-Repair
systems within the ontology matching process. For eachefrthtching problems of
the OAEI 2012 Large BioMed track and for each of the top maigtgystems in this
track (see Section 3) we have conducted the evaluation iorilign 3. The Roman
numbers refer to measurements that are stored during thea#ea. We have run the
evaluation using the SEALS interface in a high performamrees with 16 CPUs and
allocating 15 Gb RAM.

" The size ofM ;. andR¢ are in practice manageable, and thus the complexity of paifigy
Step 11 in Algorithm 2 is not critical.



Table 2: Mapping repair in thenFA-NcI problem.

Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap
System I V[ VI [ VIl [ VIl X [ X [ XTI | Xu
M| t(s) | F JUnsat[[[RT[[t(s)] F [Unsat][| [RT[]t(s)[ F [Unsat.
ServOMap 4,932| 204 | 0.819] 48,743 97 321 0.820 9 115 | 21 | 0.819 9
ServOMapL || 5,400| 251 | 0.841| 50,334|| 126 | 342 0.841 9 166 | 24 | 0.839 9
GOMMA 5,686| 217 | 0.839| 5,574 123 | 321]0.839| 15 142 20 | 0.838 9
GOMMA 6,330 231 | 0.837| 12,939 184 | 341 0.836 29 259 33 | 0.833 9
YAM++ 5,476| 1,304| 0.862 | 50,550 116 | 324 0.862 10 141 21 | 0.861 9
[ Average [[ 5565] 441 [0.840]33,628]] 129 [330]0.840] 14 [[ 165 | 24 [0.838] 9 |

Table 3: Mapping repair in thenNFA-SNOMED CT problem.

Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap
System [0 Jm [ N V[ VI [ VI [ VIl IX [ X | XT [ X
[M[] t(s) [ F | Unsat [[ITRT[[ t(s) | F [Unsat[[[RT[[t(s)] F [Unsat.

SevOMap || 12,642] 532 [0.770] 273,242]] 829 [2,672] 0.749] 0 || 2,640 284]0.721] 0O
ServOMapL || 13,210] 517 | 0.794] 99,729 || 975 |2,779]0.767] 0 || 2,953 | 274|0.752] 0
GOMMA 11,648 1,994 | 0.291] 10,752 | 463 | 2,840/ 0.293] 0 618 | 245[0.291] 0
GOMMA pc_|| 25,660] 1,893 | 0.708| 119,657|| 1,726 | 2,809] 0.698| 1,363 || 5,295 | 314 |0.678] 0
YAM++ 14,088| 23,900] 0.765| 106,107|| 783 | 2,800] 0.760] 0 || 3,461 | 262]0.720] 0
[Average [ 15,450[ 5,767 ] 0.666] 121,897]] 955 | 2,780] 0.653] 273 || 2,993 ] 276]0.632] 0 |

Elements inM andR™ (I, V andIX) represent subsumption mappings. As in Table
1, the unsatisfiable classe®/( VIII andXIl') in the FwA-NcI and RMA-SNOMED
CT matching problems have been computed using the HermiT megsahile in the
SNOMED cT-NcI problem we have provided a lower bound using the ELK reasoner
Tables 2-4 shows the result of the conducted evaluatiorgusigorithm 3. The
results, which suggest that Alcomo and LogMap-Repair saateproduce very good
results in practice, can be summarized as follows:

i the computed (approximate) repairs are not aggressivarandverage size of the
repairs ranges from 5% (Alcomo) to 11% (LogMap-Repair) efitiput mappings,
ii the repair process, although it requires an (apprecjaddilitional computation
time, does not represent a bottleneck in the matching pspces
i the impact on the F-score is (on average) negligfoded
iv the incoherence of the repaired mapping sets has beeificigrly reduced in all
test cases and completely removed in some of them.

Regarding the comparison between Alcomo and LogMap-Repaliles 2-4 also
show that LogMap-Repair is 10 to 15 times faster comparedd¢orAo, although Al-
como runtimes are slightly less affected by different magpnputs; Alcomo is less
aggressive and its repairs involve (in general) a smallerbrar of mappings, neverthe-
less LogMap-Repair results are better in terms of mappihg@nce; finally the impact
on the F-score is (on average) better in Alcomo.

8 The computed (approximate) repairs have, in general, @imegapact on the recall which is
compensated with an increase of the precision.



Table 4: Mapping repair in theN®MED CT-NCI problem.

Matching Results OAEI 2012 Repair with Alcomo Repair with LogMap
System T [ 0 [m ] v V[ VI [ VIl [ Vi IX [ X [ XI_ | Xu
M| t(s) | F | Unsat. [[[RT[[t(s) | F [ Unsat. [[[RT[[t(s)| F [ Unsat.

ServOMap || 24,924| 654 |0.664| >313,643|| 937 |3,223|0.663] >35 1,671]276|0.666| >296
ServOMaplL || 27,928 738 |0.678| >314,939|| 1,076 |2,917|0.677| >2,055|| 1,656 | 314|0.679| >1,241
GOMMA 27,386( 1,820 | 0.606| >266,051{| 1,903 |2,947|0.603| >2,085 || 2,949 | 303|0.607| >37
GOMMA ¢ || 34,090] 1,940 0.635| >313,015|| 2,720 | 3,098/ 0.638| >30,583|| 5,003 | 435(0.641| >1
YAM++ 28,206 30,155| 0.680| >269,107|| 757 |2,964/0.679] >0 1,049 ]1305[0.680] >0

[Average  [] 28,507] 7,061 ]0.653] >295,351][ 1,479 ]3,030[ 0.652] >6,952 ]| 2,465 326]0.655] >315 |

6 Conclusions

In the paper we have pointed out that many ontology matchistems participating
in the OAEI campaign do not implement or reuse methods tosadbe coherence of
the generated mappings. As a consequence, a large numbessés become unsat-
isfiable when reasoning with the matched ontologies togetiita the mappings. We
have applied Alcomo and LogMap-Repair systems on the dé&gasd mapping results
of the OAEI 2012 Large Biomed track to support two claims rdgay the application
of (approximate) mapping repair techniqu@yit is feasible with respect to robustness
and runtimes, angfi) it has a significant impact on the quality of the mappings with
respect to their logical coherence.

Our results clearly support both claims and should enceucajology matching
system developers to use Alcomo and LogMap-Repair, or teldpvtheir own repair
techniques. On the one hand, Alcomo and LogMap-Repair heea buccessfully ap-
plied to all data sets and matching systems. LogMap-Repaquires in all cases less
time to compute a repair than the necessary time to competséppings; while Al-
como’s times, although slower than LogMap-Repair’s, arenany cases in line with
the required matching time. On the other hand, Alcomo andMaygRepair reduced
significantly the incoherence of the input mappings, anccbéncreasing their quality.
Furthermore, the F-score stays relatively stable whernyappthe repairs.

The results also suggest that Alcomo and LogMap-Repaiidcoainplement each
other. LogMap-Repair is more efficient in terms of runtimes anapping coherence
while Alcomo is less aggressive (i.e. removes less mappngs in those cases where
the same mapping coherence results are achieved) and igetirmpthe F-score is
smaller. Future work will involve the design and developineia repair algorithm
combining the techniques implemented in Alcomo and LogNRapair.

Finally, we believe that our evaluation is not only benefifda ontology matching
system developers. It also serves as a good basis to comp@iegy and mapping
repair systems, in terms of efficiency and completeness;lrabenging scenario as the
one exposed in the OAEI Large Biomed track. We highly enageicevelopers of such
systems to compare their results against the results gessierthis paper. The relevant
data sets and mappings are available onlirte &tp: / / www. cs. ox. ac. uk/ i sg/
proj ect s/ SEALS/ oaei /.
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