
 

 

 

 

Department of Computer Science  

 

 

 

 

 

 

 

 

 

 

CS-RR-13-09 

 

 

 

 

 

 

 

 

 

 

 
Department of Computer Science, University of Oxford   

Wolfson Building, Parks Road, Oxford, OX1 3QD  

An Exact Algorithm for Coalition Structure Generation 

and Complete Set Partitioning 
 

Talal Rahwan, Tomasz P. Michalak, Edith Elkind, 

Michael Wooldridge, and Nicholas R. Jennings 
 



An Exact Algorithm for Coalition Structure Generation and
Complete Set Partitioning

Talal Rahwan1, Tomasz Michalak2, Edith Elkind3, Michael Wooldridge2 and Nicholas R.
Jennings1

1School of Electronics and Computer Science, University of Southampton, UK.
2Department of Computer Science, University of Oxford, UK.

3Nanyang Technological University, Singapore.

Abstract

Solving the Coalition Structure Generation problem is a major challenge in cooperative game
theory. It involves partitioning the set of agents into subsets (or coalitions) such that the total
reward is maximized. We study this problem in Characteristic Function Games, i.e., scenarios
where every possible subset of agents is a potential coalition, and the outcome (or value) of every
such subset is represented as a single, numerical value on which non-members have no influence.
In this setting, the coalition structure generation problem becomes identical to the Complete Set
Partitioning problem, where every subset of elements has a cost, and the goal is to find a partition
in which the sum of subset costs is minimal. This is also identical to the Winner Determination
problem in combinatorial auctions when a bid is placed on every possible bundle of goods, and the
goal is to find a partition that maximizes the profit of the auctioneer.

To date, there are two state-of-the-art, exact algorithms for solving this problem: (1) a dynamic-
programming algorithm called DP (Yeh, 1986; Rothkopf et al., 1995) and (2) a tree-search algo-
rithm called IP (Rahwan et al., 2009). Each of these two algorithms has it relative strengths and
weaknesses compared to the other. More specifically, in terms of worst-case performance, DP is
significantly better as it runs in O(3n) time (given n elements), while IP runs in O(nn) time.
However, when tested against popular value distributions, IP was shown to be often faster than
DP (by several orders of magnitude in some cases). Furthermore, IP has the advantage of being
anytime, meaning that its solution quality improves gradually over time, allowing it to return a
valid solution at any moment during its execution. DP, on the other hand, is not an anytime
algorithm; it can only return a solution once it has completed its execution.

The contribution of this article is twofold. Firstly, we show that some of DP’s operations and
memory requirements are redundant. Building upon this, we develop ODP—an optimal version
of DP that avoids all redundancies. Secondly, we develop a hybrid algorithm, called ODP-IP, that
has the best features of its constituent parts, ODP and IP. Specifically, it is an anytime algorithm
just like IP, and runs in O(3n) just like ODP. Better still, when tested against a wide variety of
value distributions, ODP-IP is empirically shown to significantly outperform both ODP and IP for
all distributions.

1. Introduction

One of the most important aspects of multi-agent systems is the agents’ ability to interact with
one another in order to improve their performance and compensate for each other’s deficiencies.
One means of interaction that has been extensively studied in the literature is to form a coalition,
i.e., a group of agents that agree to coordinate their activities (and possibly agree on how the

Preprint submitted to Elsevier June 25, 2013



reward from cooperation should be divided among them) in order to achieve a certain objective.
Such interaction can be useful both in cases where agents are cooperative (i.e., their goal is to
maximize the social welfare) as well as cases where they are selfish (i.e., each agent maximizes
its own reward, regardless of the consequences on others). A wide range of potential applications
have been consider in the literature. For instance, by forming coalitions, autonomous sensors
can improve their surveillance of certain areas (Han and Poor, 2009), green-energy generators can
reduce their uncertainty regarding their expected energy output (Bitar et al., 2012), cognitive radio
networks can increase their throughput (Khan et al., 2010), and buyers can obtain cheaper prices
through bulk purchasing (Li et al., 2010).

A formal model of a coalition formation scenario is called a cooperative game. Here, given
a set of agents, denoted by A, every subset of A is called a coalition, and every partition of
A is called a coalition structure. Now, if the effectiveness of a coalition is influenced by other
co-existing coalitions, then such a scenario is modelled as a partition function game (Lucas and
Thrall, 1963). On the other hand, a characteristic function game models scenarios in which a
coalition’s effectiveness depends solely on the identities of its members. This assumption simplifies
the research questions significantly, and holds in many settings such as those considered by (Han
and Poor, 2009), Bitar et al. (2012), and (Khan et al., 2010).1

We focus in this article on characteristic function games, and adopt the classical representation
of those games, where the worth (or value) of any coalition, C ⊆ A, is represented using a single,
numerical value, returned by a characteristic function, v : 2A → R. The two research questions
that are often studied under this representation are:

• Coalition Structure Generation. How to efficiently search through the many possible
coalition structures, and find one that maximizes the sum of coalition values.

• Payoff Distribution. How should the gains from cooperation be distributed among the
coalition members so as to meet certain criteria.

This article focuses on the former research question and, in particular, focuses on developing exact
algorithms to solve it (i.e., algorithms that are guaranteed to find an optimal solution when run
to completion). Interestingly, in characteristic function games, every possible subset of agents is a
feasible coalition, and is assigned a real value, making the coalition structure generation problem
identical to the Complete Set Partitioning problem, where every subset of elements has a cost,
and the goal is to find a partition of those elements in which the sum of subset costs is minimal
(Lin, 1975). This is also identical to the Winner Determination problem in combinatorial auctions
when every possible bundle of goods has a (possibly zero-valued) bid placed on it, and the goal is
to find a partition of goods that maximizes the profit of the auctioneer (Lehmann et al., 2006).

The main techniques used in exact algorithms for solving NP-hard problems are: (1) dynamic
programming, (2) tree search, (3) data preprocessing and (4) local search (Woeginger, 2003). As far
as our combinatorial optimization problem is concerned, the two state-of-the-art exact algorithms
are based on techniques (1) and (2). Specifically:

• DP: This algorithm was originally proposed by Yeh (1986) to solve the complete set parti-
tioning problem, and was later on re-discovered by Rothkopf et al. (1995) to solve the winner
determination problem in combinatorial auctions. The algorithm is based on the dynamic-
programming principle, which is suitable when the optimization problem can be broken down
to smaller problems, and each one of those problems can be broken down to even smaller
problems, and so on. A dynamic-programming algorithm solves the smallest problems first,

1See the works of Sandholm et al. (1999) and Rahwan et al. (2012) for further examples of both characteristic
function game settings and partition function game settings, respectively.

2



and stores the solutions in memory so that they can be later on used to construct solutions
for larger and larger problems, until the original (i.e., largest) problem is solved. Such an
approach is efficient whenever the solution to a small subproblem is needed more than once
(i.e., it is needed to solve multiple larger problems). The efficiency comes from the fact
that such a solution is computed once and stored in memory, thereby avoiding the need to
re-compute it every time it is needed (Bellman, 1957). In the coalition structure generation
context, the original problem is to find an optimal partition of the set of agents, A, and a
“smaller” problem is to find an optimal partition of a subset C ⊆ A. DP starts by computing
an optimal partition of every subset C ⊆ A : |C| = 2, and then uses those to compute an
optimal partition of every C ⊆ A : |C| = 3, and so on until an optimal partition of A is
found.

• IP: This algorithm was proposed by Rahwan et al. (2009) based on a representation of
the search space, whereby coalition structures are grouped into disjoint subspaces based on
the sizes of the coalitions within each structure. With this representation, it is possible to
compute upper and lower bounds on the quality of the best solution in each subspace. By
comparing the bounds of different subspaces, it is possible to identify, and thus focus on, the
promising subspaces. For every such space, the algorithm constructs multiple search trees,
where every node represents a coalition, and every path (from a root node to a leaf node)
represents a coalition structure. Every such tree is traversed in a depth-first manner. To
speed up the search, IP applies a branch-and-bound technique to identify, and thus avoid,
any branches that have no potential of containing an optimal solution.

As can be seen, the above two algorithms (i.e., DP and IP) are based on different design paradigms,
and so exhibit different behaviours. More specifically, in what follows, we provide a comparison of
the two algorithms from three different perspectives:

• Worst case performance: The time required to exhaustively enumerate all coalition struc-
tures is O(nn), given n agents (Sandholm et al., 1999). Such enumeration, however, involves
repeating certain operations multiple times. As mentioned earlier, DP avoids such repetition
by storing partial solutions in memory, thereby dropping the required time to O(3n). On the
other hand, the techniques used by IP to speed up the search cannot drop the worst-case time
below O(nn). This is because the effectiveness of IP is strongly influenced by the proportion
of the search space that it identifies as being unpromising. This proportion, in turn, depends
on the characteristic function at hand (i.e., the values of subsets). It is possible to construct
a function for which IP searches the entire space exhaustively.

• Average performance: When tested against various characteristic functions drawn from
popular value distributions, IP has been shown to be faster than DP, by several orders of
magnitude for some distributions (Rahwan et al., 2009). This is because, in practice, IP is
able to identify many (if not the vast majority of) subspaces and/or branches of the search
trees as being unpromising. DP, on the other hand, is incapable of avoiding any of its
operations, regardless of the characteristic function.

• Being anytime: IP has the advantage of being anytime, meaning that its solution quality
improves gradually over time, allowing it to return a valid solution at any moment during its
execution. DP, on the other hand, is not an anytime algorithm; it can only return a solution
once it has completed its execution. Being anytime is important since the search space grows
exponentially with the number of elements to be partitioned, meaning that there might not
always be sufficient time to run the algorithm to completion. Moreover, being anytime makes
the algorithm more robust against failure; if the execution is stopped before the algorithm

3



would normally have terminated, then it can still provide a solution that is better than the
initial, or any other intermediate, one.

The above comparison shows that each algorithm has its relative strengths and weaknesses com-
pared to the other. With this in mind, we set to develop a new algorithm that exploits the strengths
of both DP and IP while, at the same time, avoiding all of their weaknesses. We achieve this goal
through the following contributions:

• Developing ODP: We draw a link between the workings of DP and the coalition structure
graph—a graphical representation of the search space due to Sandholm et al. (1999), where
every node represents a coalition structure. This link provides an intuitive interpretation of
DP’s operations; the algorithm evaluates all the movements along the edges of the aforemen-
tioned graph, and stores the most beneficial movements in a table. Then, starting from the
node where all agents are in one coalition, DP makes a series of movements until it reaches an
optimal node. Interestingly, with this visualization, it becomes clear that certain movements
are not needed to ensure that an optimal node is reachable. We formalize this observation
and build upon it an Optimal Dynamic Programming algorithm, called ODP, that performs
only one third of DP’s operations, without losing the guarantee of finding an optimal solu-
tion. Furthermore, by adding a rather insignificant amount of computations, ODP uses only
half of the memory required by DP.

• Developing ODP-IP: As we will show, ODP and IP approach the optimization problem in
different ways. Nevertheless, instead of viewing these as two alternative choices, we develop
a new search-space representation that draws a link between the two. Building upon this
link, we refine both algorithms, and use the refined versions as building blocks to construct
a hybrid approach, called ODP-IP. This algorithm has the best features of its constituent
parts: it is an anytime algorithm just like IP, and runs in O(3n) just like ODP. Better still,
when tested against a wide variety of value distributions, ODP-IP is empirically shown to
significantly outperform both ODP and IP for all distributions.

For convenience, The remainder of this article is structured as follows. Section 2 formalizes the
coalition structure generation problem. Section 3 provides detailed descriptions of IP and DP.
Section 4 presents ODP—our optimal version of DP, while Section 5 presents our hybrid algorithm,
ODP-IP. The two new algorithms are then evaluated in Section 6. The related literature is discussed
in Section 7. Section 8 concludes the article and outlines future work. Appendix A provides a
summary of the main notations used throughout the article. Appendices B to K provide proofs of
our theorems, while Appendix L discusses a certain aspect of ODP-IP in detail.

2. Preliminaries

In this section, we formally introduce the key definitions and notations used throughout the article.
To this end, let A = {a1, a2, · · · , an} denote the set to be partitioned. When viewed from the
Complete Set Partitioning perspective, A would be the set of “elements”, and when viewed from
the Winner Determination perspective, A would be the set of “goods”. However, in the remainder
of this article, we adopt the terminology from the field of Algorithmic Game Theory, and refer to A
as the set of “agents”. Furthermore, we refer to every non-empty subset of A as a “coalition”. We
denote by CA the set of coalitions over A, i.e., CA = {C : C ⊆ A,C 6= ∅}. As such,

∣∣CA∣∣ = 2n − 1.
For any two coalitions, C1, C2 ∈ CA, we write C1 < C2 when C1 precedes C2 lexicographically,
e.g., we write {a1, a3, a9} < {a1, a4, a5} and {a4} < {a4, a5}.

Characteristic function games are formally defined as follows:

4



Definition 1. A characteristic function game is a tuple, 〈A, v〉, where A is the set of agents and
v is a characteristic function that assigns a real value to every possible coalition, i.e., v : CA → R.

A partition of all the agents in the game into disjoint and exhaustive coalitions is called a
coalition structure.2 Formally:

Definition 2. A coalition structure over A is a collection of coalitions CS = {C1, . . . , C|CS |} that

satisfies the following conditions:
⋃|CS |
j=1 Cj = A, and ∀i, j ∈ {1, · · · , |CS |} : i 6= j, Ci ∩ Cj = ∅.

We will denote by ΠA the set of all coalition structures over A. Furthermore, for any coalition
structure, CS ∈ ΠA, the sum of the values of all the coalitions in CS will be called the value
of CS , denoted by V (CS ). Formally, V (CS ) =

∑
C′∈CS v(C ′). Now, we are ready to state our

optimization problem formally:

Definition 3. The coalition structure generation problem in characteristic function games is to
find an optimal coalition structure CS∗ ∈ ΠA, i.e., an (arbitrary) element of the set

arg max
CS∈ΠA

V (CS ).

This problem is computationally hard. It resists brute-force search, as the number of possible
coalition structures over n players, which is known as the Bell number, Bn (Bell, 1934), satisfies
αnn/2 ≤ Bn ≤ nn for some positive constant α (see, e.g., the work by Sandholm et al., 1999, for
proofs of these bounds, and the work by de Bruijn, 1981, for an asymptotically tight bound). More-
over, it is NP-hard to find an optimal coalition structure given oracle access to the characteristic
function (Sandholm et al., 1999).

Since every coalition structure represents a possible solution to the coalition structure gener-
ation problem, the terms “coalition structure” and “solution” will be used interchangeably. Fur-
thermore, the set of possible coalition structures will often be referred to as the “search space”.

3. The IP Algorithm vs. the DP Algorithm

In this section we provide a detailed description of the main exact algorithms in the literature: (1)
IP—the anytime, depth-first search, algorithm by Rahwan et al. (2007), and (2) DP—the dynamic
programming algorithm by Yeh (1986).

3.1. The IP Algorithm

The IP algorithm is based on the integer partition-based representation (Rahwan et al., 2007)
of the space of possible coalition structures. This representation divides the space into disjoint
subspaces that are each represented by an integer partition of n. Recall that an integer partition
of n is a multiset of positive integers, or parts, whose sum (with multiplicities) is equal to n
(Andrews and Eriksson, 2004). We denote the set of all such integer partitions as In. For instance,
I4 = {{4}, {1, 3}, {2, 2}, {1, 1, 2}, {1, 1, 1, 1}}. In the IP algorithm, every integer partition, I ∈ In,
corresponds to a subspace, ΠA

I ⊆ ΠA, consisting of all the coalition structures within which the

sizes of the coalitions match the parts of I. For instance, Π
{a1,a2,a3,a4}
{1,1,2} is the subspace consisting

of all the coalition structures within which two coalitions are of size 1 and one coalition is of size
2. A four-agent example is shown in Figure 1.

2We note that some recent studies have considered games where a coalition structure may contain overlapping
coalitions; see, e.g. (Chalkiadakis et al., 2010).

5



Figure 1: A four-agent example of the integer partition-based representation, where A = {a1, a2, a3, a4}.

With this representation, it is possible to compute upper and lower bounds on the value of the
best coalition structure that can be found in each subspace. More formally, for every coalition size
s ∈ {1, 2, . . . , n}, let CAs denote the set of all the possible coalitions of size s. Furthermore, let
Maxs and Avgs be the maximum and average values of the coalitions in CAs , respectively. It turns
out that, by computing Avgs for all s ∈ {1, 2, . . . , n}, it is possible to compute the average value of
the coalition structures in each subspace ΠA

I : I ∈ In using the following theorem (the proof can
be found in (Rahwan et al., 2009)):

Theorem 1. For any I ∈ In, let I(i) be the multiplicity of i in I, then:∑
CS∈ΠA

I
V (CS )∣∣ΠA
I

∣∣ =
∑
i∈I

I(i) ·Avgi

Based on this, for every I ∈ In, it is possible to compute a lower bound LBI on the value of the
best coalition structure in ΠA

I . This bound is simply equal to the average coalition structure value
in ΠA

I , which (according to Theorem 1) can be computed easily as follows: LBI =
∑
i∈I I(i)Avgi.

Similarly, it is possible to compute an upper bound UBI on the value of the best coalition structure
in ΠA

I as follows: UBI =
∑
i∈I I(i)Maxi. Using these bounds, the algorithm computes an upper

bound UB∗ = maxI∈In UBI and a lower bound LB∗ = maxI∈In LBI on the value of the optimal
coalition structure CS∗. Computing UB∗ allows for establishing a bound on the quality of CS∗∗—
the best coalition structure found by the algorithm at any point in time; this bound is β =
UB∗/V (CS∗∗). On the other hand, computing LB∗ allows for identifying any subspaces that
have no potential of containing an optimal coalition structure, which are ΠA

I : UBI < LB∗. These
subspaces are pruned from the search space. As for the remaining subspaces, the algorithm searches
them one at a time. During this search, if a solution is found whose value is greater than V (CS∗∗),
then the algorithm updates CS∗∗ (by setting it to the newly found solution) and updates LB∗ (by
setting it to V (CS∗∗) if necessary, i.e., iff LB∗ < V (CS∗∗)). Now if LB∗ is updated, then the
algorithm repeats the attempt of pruning unpromising subspaces, i.e., those whose upper bounds
are smaller than the updated LB∗. The order by which the subspaces are searched is always based
on the upper bounds (i.e., out of all the remaining subspaces, the one with the highest upper bound
is searched first). Next, we explain how a subspace is searched.

The process of searching a subspace, say ΠA
I : I = {i1, . . . , i|I|}, is done in a depth-first man-

ner: the algorithm iterates over the coalitions in CAi1 and, for every C1 ∈ CAi1 that the algorithm

encounters, it iterates over the coalitions in CAi2 that do not overlap with C1. Similarly, for every

C2 ∈ CAi2 that the algorithm encounters, it iterates over the coalitions in CAi3 that do not overlap

with C1 ∪ C2, and so on. This process is repeated until the last set, CAi|I| , is reached. For every

C|I| ∈ CAi|I| that the algorithm encounters, it would have selected a combination of |I| coalitions,

namely {C1, C2, . . . , C|I|}, which is guaranteed to be a coalition structure in ΠA
I . The algorithm

6



Figure 2: An illustration of IP’s branch-and-bound technique when searching ΠA{1,3,4}. Here, the algorithm recog-

nizes that the coalition structures containing Cx or {Cy , Ci} cannot be optimal, and so IP does not proceed deeper
into the search tree.

repeats this process so that, eventually, every coalition structure in ΠA
I is examined. Here, it

should be noted that a straight forward repetition of the aforementioned process would not be
efficient, because some of the coalition structures will be examined multiple times. For instance,
every coalition structure {C1, C2, C3} ∈ ΠA

{2,2,3} will be examined twice, once as {C1, C2, C3} and

once as {C2, C1, C3} (because in this example we have |C1| = |C2|). For more details on how IP
avoids such redundant operations, see (Rahwan et al., 2009).

To speed up the search, IP applies a branch-and-bound technique at every depth d < |I|.
Specifically, after fixing d coalitions, C1 ∈ CAi1 , . . . , Cd ∈ C

A
id

, and before iterating over the relevant

coalitions in CAid+1
, . . . , CAi|I| , it checks whether the following inequality holds:

d∑
j=1

v(Cj) +

|I|∑
j=d+1

Maxij < V (CS∗∗) (1)

Now if the inequality in (1) holds, it means that every coalition structure containing C1, . . . , Cd
can be skipped during the search, because its value cannot be greater than V (CS∗∗)—the value of
the best coalition structure found by the algorithm so far. Figure 2 provides an illustration of how
IP searches ΠA

{1,3,4} given 8 agents.
As mentioned earlier, before IP can use the branch-and-bound technique, it needs to first

compute Maxi and Avgi for all i ∈ {1, . . . , n}. To do so, the algorithm needs to iterate over all
the coalition values (to compute the average and maximum values of every coalition size). One
way to perform this iteration is to first go through all coalitions of size 1 (to compute Max1

and Avg1), then through all those of size 2 (to compute Max2 and Avg2), then size 3 and so
on. However, to allow for certain subspaces to be searched during the iteration process, IP goes
through the coalitions in a different order. More specifically, it iterates over all coalitions of size
s ∈ {1, . . . , bn/2c} in a lexicographic order, and simultaneously iterates over all coalitions of size
n − s in an anti-lexicographic order.3 With this order, the ith coalition of size s, together with
the ith coalition of size n− s, form a coalition structure in ΠA

{s,n−s}. By going through every such

pair, IP examines every coalition structure in ΠA
{s,n−s}. By the end of this iteration process, every

3Such iteration can be carried out efficiently, e.g., using the techniques in (Rahwan and Jennings, 2007).

7



subspace, ΠA
I : |I| = 2, would have been searched.

The IP algorithm runs in O(nn) time, and could in the worst case end up constructing every
possible coalition structure. In practice, however, IP has been shown to run significantly faster than
DP given popular coalition-value distributions. Furthermore, the bound that IP generates, i.e.,
β = UB∗/V (CS∗∗), has been shown to improve rapidly during the search process, e.g., reaching
90% by searching less than 10−9 of the search space for 25 agents (given certain value distributions).

3.2. The DP Algorithm

The DP algorithm is based on the following theorem.

Theorem 2. Given a coalition C ⊆ A, the value of an optimal partition of C, denoted as f(C),
can be computed recursively as follows:

f(C) =

{
v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈ΠC

(
f(C ′) + f(C ′′)

)}
otherwise.

(2)

The pseudo code of DP is given in Algorithm 1. Basically, for every coalition, C ⊆ A, the algorithm
computes f(C) as well as t(C)—a variable that provides an indication of the optimal partition of
C. In more detail, DP starts with the coalitions of size 1. For every such coalition, C, it sets
f(C) = v(C) and t(C) = {C} to indicate that the optimal partition of C is {C} (see lines 1 to
3 in the pseudo code). After that, it iterates over all the coalitions of size s = 2, . . . , n (see lines
4 and 5). For every such coalition, C, it uses two temporary variables, namely ϑ∗ and C∗; these
variables are computed in lines 6 to 11 such that:

ϑ∗ = max
{C′,C′′}∈ΠC

f(C ′) + f(C ′′) (3)

{C∗, C\C∗} = arg max
{C′,C′′}∈ΠC

f(C ′) + f(C ′′) (4)

Now since |C| 6= 1, then according to equation (2) we have f(C) = max{v(C), ϑ∗}. Based on this,
DP checks in line 12 whether v(C) > ϑ∗, and then sets f(C) accordingly. In more detail:

• if v(C) > ϑ∗, then DP sets f(C) = v(C). This implies that {C} is an optimal partition of
C (because f(C) is, by definition, the value of the optimal partition of C). Based on this,
DP sets t(C) = {C} so that it can later on remember that it is not beneficial to split C into
smaller coalitions (see line 14).

• Otherwise, DP sets f(C) = ϑ∗. This basically means that f(C) = f(C∗)+f(C\C∗) (because
we know from equations (3) and (4) that ϑ∗ = f(C∗) + f(C\C∗)). This, in turn, means that
an optimal partition of C can be obtained by first splitting C into two coalitions, C∗ and
C\C∗, and then replacing each one of those two coalitions with its optimal partition. Based
on this, DP sets t(C) = {C∗, C\C∗} to remember the best way of splitting C into two
coalitions (see line 17).

Once f(C) and t(C) are computed for every C ⊆ A, an optimal coalition structure CS∗ can
be computed recursively (lines 18 to 22). In more detail, DP initially sets CS∗ = {A}, and then
repeats the process of replacing some coalition C ∈ CS∗ with t(C) as long as it is beneficial to
do so (i.e., as long as {C} is not an optimal partition of C). A four-agent example is illustrated
in Figure 3. Here, DP first computes t(C) and f(C) for every C : |C| = 1, . . . , 4. After that, it
determines the optimal partition of {a1, a2, a3, a4} as follows. It first checks t({a1, a2, a3, a4}) and

8



Algorithm 1: The DP algorithm.

Input: v(C) for all C ⊆ A.
Output: the optimal coalition structure, CS∗.

1 foreach C ⊆ A : |C| = 1 do // for every coalition of size 1

2 f(C)← v(C)
3 t(C)← {C}
4 foreach s = 2 to n do
5 foreach C ⊆ A : |C| = s do // for every coalition of size s

6 ϑ∗ ← −∞ // initialization

7 foreach {C ′, C ′′} ∈ ΠC do // for every possible way of splitting C in two

8 ϑ′ ← f(C ′) + f(C ′′)
9 if ϑ∗ < ϑ′ then

10 ϑ∗ ← ϑ′ // to ensure that ϑ∗ = max{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)
11 C∗ ← C ′ // to ensure {C∗, C\C∗} = arg max{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)
12 if v(C) > ϑ∗ then // i.e., if v(C) > max{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)
13 f(C)← v(C)
14 t(C)← {C} // to remember that it is not beneficial to split C

15 else
16 f(C)← ϑ∗

17 t(C)← {C∗, C\C∗} // to remember the best way to split C in two

// Having computed t(C) and f(C) for every C ⊆ A, the remaining lines compute CS∗

18 CS∗ ← {A}
19 foreach C ∈ CS∗ do
20 if t(C) 6= {C} then // i.e., if {C} is not an optimal partition of C

21 CS∗ ← (CS∗\{C}) ∪ t(C) // replace C with the two coalitions in t(C)

22 Go to line 19 and start with the new CS∗.

23 return CS∗

realizes that it is more beneficial to split {a1, a2, a3, a4} into {a1, a2} and {a3, a4}. After that, it
checks t({a1, a2}) and realizes that it is more beneficial to split {a1, a2} into {a1} and {a2} (see
the dashed arrow in Figure 3). Finally, it checks t({a3, a4}) and realizes that it is more beneficial
to keep {a3, a4} as it is (see the dotted arrow in the figure). The optimal coalition structure is,
therefore, {{a1}, {a2}, {a3, a4}}.

DP requires storing a total of 2n+1 values, namely f(C) and t(C) for every C ⊆ A. The running
time of DP has been shown to be O(3n) (Yeh, 1986). This is significantly less than ω(nn/2)—the
time required to exhaustively enumerate all coalition structures. However, the disadvantage is
that DP provides no interim solution before completion, meaning that it is not possible to trade
computation time for solution quality.

4. Improving the DP Algorithm

In this section, we present the first contribution of this article, which is to develop an optimal
version of DP. More specifically, in Section 4.1, we demonstrate that there exists a strong link
between the way DP works and the way nodes are connected in a certain graph. Based on this
link, we analyse in Section 4.2 the effect of avoiding certain operations of DP. Building upon

9



Figure 3: A four-agent example of how DP computes t(C) and f(C) for every C ⊆ A.

this analysis, we present in Section 4.3 our optimal dynamic programming (ODP) algorithm—a
modified version of DP that avoids all the redundant operations and memory requirements of DP,
without losing the guarantee of finding an optimal solution.

4.1. The Link Between DP and the Coalition Structure Graph

To obtain a deeper understanding of how DP works, we looked at the coalition structure graph (Sand-
holm et al., 1999). Specifically, in this undirected graph, every node represents a coalition structure.
These nodes are categorized into n levels, namely ΠA

1 , . . . ,Π
A
n , such that level ΠA

i contains the nodes
that represent all coalition structures containing exactly i coalitions each. An edge connects two
coalition structures if and only if: (1) they belong to two consecutive levels ΠA

i and ΠA
i−1, and (2)

10



Figure 4: The coalition structure graph of four agents. The figure also shows the value of every coalition structure
based on the characteristic function from Figure 3.

the coalition structure in ΠA
i can be obtained from the one in ΠA

i−1 by splitting one coalition into
two. Figure 4 shows a four-agent example of the coalition structure graph. It also shows every
coalition structure’s value based on the characteristic function from Figure 3.

Looking at this graph enables us to visualize how DP works. To this end, observe that every
movement upwards in the graph (between adjacent nodes) corresponds to the splitting of one
coalition into two (see Figure 4). Based on this observation, the work of DP can be divided into
three main tasks that can all be seen on the graph:

1. Task 1: evaluate all the movements in the graph: For every coalition C : |C| ≥ 2, the
algorithm evaluates every partition {C ′, C ′′} ∈ ΠC , and that is by computing f(C ′) + f(C ′′)
(see lines 7 and 8 of the pseudo code). This can be interpreted as evaluating every movement
that involves splitting C in two. Since the algorithm does this for every possible coalition of
size s ≥ 2, all the movements in the graph are eventually evaluated.

2. Task 2: store the most beneficial movements: What DP actually does in lines 12 to 17
is determine, for every coalition C, whether it is beneficial to make a movement that involves
splitting C and, if so, what is the best such movement (this decision is stored in t(C)). To
see how this is the case, let us analyse how DP sets t(C). From the pseudo code, we can see
that DP sets t(C) to either {C} or {C∗, C\C∗}. As mentioned earlier in section 3.2, setting
t(C) = {C} only happens when {C} is an optimal partition of C. On the other hand, setting
t(C) = {C∗, C\C∗} only happens when an optimal partition of C can be obtained by first
splitting it into C∗ and C\C∗, and then replacing each one of those two coalitions with its
optimal partition. Let us interpret this differently based on the coalition structure graph.
Setting t(C) = {C} means that, from any node representing a coalition structure CS 3 C, it
is not beneficial to make a movement that involves splitting C. On the other hand, setting
t(C) = {C∗, C\C∗} means that, from any node representing CS 3 C, the most beneficial
movement—out of all those that involve splitting C—is the one in which C is split into C∗

and C\C∗.

11



3. Task 3: move upwards in the graph: This occurs in lines 18 to 22. Here, DP first
initializes CS∗ by setting CS∗ = {A}. This means that DP is actually starting at the node
that represents {A}, i.e., the bottom node in the graph. After that, DP selects some coalition
C ∈ CS∗ : t(C) 6= {C} (if such a coalition exists), and replaces it with t(C). By doing this,
DP is actually making a movement that involves splitting C into the two coalitions that are
stored in t(C). This process is repeated until t(C) = {C} for all C ∈ CS . In other words,
DP keeps moving upwards in the graph through a series of connected nodes—a “path”—until
it reaches a node after which no movement is beneficial. For instance, in our example from
Figure 3, the way DP reached {{a1}, {a2}, {a3, a4}} can be visualized as movements through
the dashed path in Figure 4, where the first movement involved splitting {a1, a2, a3, a4} into
{a1, a2} and {a3, a4}, and the second movement involved splitting {a1, a2} into {a1} and
{a2}.

It should be noted that DP has the ability to look ahead before deciding on its next movement.
In Figure 4, for example, DP did not move from the node representing {a1, a2, a3, a4} to the one
representing {{a3}, {a1, a2, a4}} (which has a value of 145). Instead, it moved through the dashed
edge to the node that represents {{a1, a2}, {a3, a4}} (which has a value of 130). The way DP made
that decision was based on the movements that will follow. As can be seen from the figure, the
movement made by DP leads to the optimal coalition structure (which has a value of 150), while
the other movement does not lead to any coalition structure with a value greater than 145. This
ability to look ahead is a result of the way DP evaluates the movements. More specifically, given
a movement in which a coalition is split into C ′ and C ′′, the evaluation that DP assigns to this
movement is equal to f(C ′)+f(C ′′) (see line 8 of the pseudo code). In other words, the evaluation
is based on the values of the optimal partitions of C ′ and C ′′.

From this visualization it is clear that, for any coalition structure CS : |CS | > 2, there are
multiple paths that start from the bottom node of the graph, and end with the node that contains
CS . In Figure 4, for example, one could reach {{a1}, {a2}, {a3, a4}} through three different paths,
which are highlighted using dotted, dashed, and bold edges respectively. This raises the following
question: “whenever there are multiple paths that lead to the same optimal node, can DP reach this
node through any of those paths?” We will show that the answer is “yes”. To this end, observe that
whenever there are multiple paths that lead to an optimal node, DP has no preference on which path
to take. This can be seen in line 17 of the pseudo code, where t(C) is set to {C∗, C\C∗}, which
is basically equal to arg max{C′,C′′}∈ΠC

(
f(C ′) + f(C ′′)

)
. This implies that whenever there are

multiple arguments {C ′, C ′′} ∈ ΠC that maximize f(C ′) + f(C ′′), DP has no preference on which
argument to store in t(C). In Figure 3, for example, t({a1, a2, a3, a4}) was set to {{a1, a2}, {a3, a4}}
because it had one of the highest evaluations, which is 150 (see how f({{a1, a2}) + f({a3, a4}) =
150 in Figure 3). However, t({a1, a2, a3, a4}) could have been set to {{a1}, {a2, a3, a4}} instead
(since it also has an evaluation of 150). If that happened, then DP would have found, based on
t({a2, a3, a4}), that it is more beneficial to split {a2, a3, a4} into {a2} and {a3, a4}. As a result, the
same optimal solution (i.e., {{a1}, {a2}, {a3, a4}}) would have been found, but through the dotted
path rather than the dashed one in Figure 4.

4.2. Analysing the Effect of Avoiding Certain Operations in DP

In the previous subsection, we showed that DP evaluates all the movements in the coalition struc-
ture graph, stores the best ones in the table t, and then selects from t the movements that together
form a path from the bottom node to an optimal node. We also showed that DP has no preference
on any alternative paths that lead to the same optimal node. All of these observations raise yet
another important question: “what happens if DP is modified such that it only evaluates some
of the movements in the graph?” Suppose that for a certain coalition, C, the algorithm did not
evaluate a particular movement that involves splitting C into two coalitions, namely C1 and C2.

12



More formally, suppose that the term ΠC in line 7 of the pseudo code was replaced with the term
ΠC\{C1, C2}. In this case, the movement stored in t(C) would be the best out of all the movements
that DP has evaluated (i.e., excluding the one in which C is split into C1 and C2). As a result,
whenever a coalition structure CS 3 C is reached, the movement to CS ′ = (CS\{C}) ∪ {C1, C2}
would no longer be an option (since DP always selects its movements from the table t). In other
words, DP would ignore the existence of the edge that connects CS to CS ′, and would evaluate
the movements through the remaining edges, and decide on its path accordingly. This can be
visualized on the graph by removing the edge that connects CS to CS ′. Now if CS ′ happened to
be the only optimal solution in the graph, and if the removed edge happened to be the only one
leading to CS ′, then DP would no longer be able to find the optimal solution. We formalize this
observation in the remainder of this subsection.

For any two disjoint coalitions, C1 and C2, let mC1,C2 denote the movement that corresponds
to splitting C = C1 ∪ C2 into C1 and C2.4 Moreover, let M denote the set of all possible move-
ments in the coalition structure graph, i.e., M = {mC1,C2 : C1, C2 ⊆ A,C1 ∩C2 = ∅}. Now, given
an arbitrary subset of movements, M ⊆ M, and given two arbitrary partitions, π, π′ ∈ Π, we

write π
M−→ π′ if and only if the partition π′ can be reached from π via a single movement in M .

Formally:

π
M−→ π′ ⇔ ∃mC1,C2 ∈M : π′ = π\{C1 ∪ C2} ∪ {C1, C2}

While
M−→ expresses the notion of reachability with respect to single movements from M , the

following definition generalizes this notion to multiple movements.

Definition 4. Given an arbitrary subset of movements, M ⊆ M, and given two arbitrary parti-

tions, π, π′ ∈ Π, we say that π′ is reachable from π via M , and write: π
M
 π′, if and only if

π′ is either equal to π, or can be reached from π via one or more movements in M . More formally:

π
M
 π′ ⇔

(
π = π′

)
∨
(
π

M−→ π′
)
∨
(
∃{π1, . . . , πk} ⊆ Π : π

M−→ π1
M−→ . . .

M−→ πk
M−→ π′

)
Let us denote by RπM the set of all partitions that are reachable from π via M . More formally,

RπM = {π′ ∈ Π : π
M
 π′}. Observe that every partition in RπM is either equal to π, or reachable

from π via at least one movement in M , in which case it must also be reachable from at least one

of the partitions in {π′ ∈ Π : π
M−→ π′}. Based on this observation, the set RπM can be computed

recursively as follows:

RπM = {π} ∪
⋃

π′∈Π:π
M−→π′

Rπ
′

M (5)

Theorem 3. Given an arbitrary partition, {C1, . . . , Ck} ∈ Π, and an arbitrary subset of move-
ments, M ⊆M, the following holds:

R
{C1,...,Ck}
M = R

{C1}
M × . . . × R

{Ck}
M

Proof. See Appendix B.

4Observe that the same movement, mC1,C2 , can be made through different edges in the coalition structure graph.
More precisely, it can be made through any edge that connects a coalition structure, CS 3 C, to another coalition
structure, CS ′ = (CS\{C}) ∪ {C1, C2}.

13



Now, let us define fM (C) as the value of an optimal partition in R
{C}
M . More formally,

fM (C) = max
π∈R{C}M

V (π). With this definition, we are ready to generalize Theorem 2 (the main

theorem behind DP), and that is by replacing f(C) and ΠC with fM (C) and R
{C}
M , respectively.

Theorem 4. For any coalition C ⊆ A, and for any subset of movements, M ⊆M, the following
holds:

fM (C) =

{
v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈R{C}M

(
fM (C ′) + fM (C ′′)

)}
otherwise.

(6)

Proof. See Appendix C.

Now, we can analyse the effect of replacing every f(C) and ΠC in DP with fM (C) and R
{C}
M ,

respectively. Let us call the resulting algorithm DPM . Based on Theorem 4, it is easy to see
how DPM will compute fM (C) recursively for every C ⊆ A (in the same way that DP computes
f(C) recursively based on Theorem 2). By the end of this process, DPM would have computed
fM (A)—the value of the best coalition structure reachable from {A} via M . To identify this
coalition structure, DPM uses the table t in the same way that DP uses it. This leads to the
following corollary:

Corollary 1. Let M ⊆ M be an arbitrary subset of movements, and let DPM be the version of

DP in which every f(C) is replaced with fM (C), and every ΠC is replaced with R
{C}
M . Then, the

output of DPM is a coalition structure in: arg max
CS∈R{A}M

V (CS ).

This corollary can be useful in settings where only certain movements are of interest. For
example, if a coalition is allowed to form only when its size exceeds a certain threshold, s, then
instead of using DP, one can use DPM where M = {mC1,C2 ∈ M : |C1| > s, |C2| > s}. This is
relevant to settings like www.groupon.com, where “deals” are activated only when the number of
people signing up for that deal exceeds a certain threshold.

Having analysed the effect of avoiding the evaluation of certain movements in the coalition
structure graph, the following subsection shows how this analysis can help design an optimal
version of DP.

4.3. The ODP Algorithm

In this subsection, we present our optimal dynamic programming (ODP) algorithm—a modified
version of DP that avoids all the redundant operations and memory requirements of DP, while
maintaining the guarantee of finding an optimal coalition structure.

First, let us show how the redundant operations are avoided. As mentioned earlier in Corol-
lary 1, for any given M ⊆M, the only coalition structures that are searched by DPM are those in

R
{A}
M , i.e., those that are reachable from {A} via M . Thus, DPM is guaranteed to find an optimal

coalition structure if and only if R
{A}
M = ΠA. Based on this observation, we now present the main

theorems behind ODP.

Theorem 5. For any two coalitions C ′, C ′′ ∈ CA, let us write C ′ < C ′′ if and only if C ′ precedes
C ′′ lexicographically. Now, if we define M∗ ⊆M as:

M∗ =
{
mC′,C′′ ∈M :

(
C ′ ∪ C ′′ = A

)
∧
(
C ′ < C ′′ < A \ (C ′ ∪ C ′′)

)}
(7)

14



Then, the following holds:

R
{A}
M∗ = ΠA (8)

Proof. See Appendix D.

Based on Theorem 5, our algorithm, ODP, is the version of DP that only evaluates the move-
ments in M∗, i.e., it is the one that uses fM∗ instead of f . Formally, ODP = DPM∗ .

Theorem 6. For any coalition C ∈ CA, if {a1, a2} 6⊆ C, then ODP does not evaluate any of the
possible ways of splitting C.

Proof. See Appendix E.

Theorem 7. It is not possible to evaluate fewer splits compared to ODP, and still be guaranteed
to find an optimal coalition structure.

Proof. See Appendix F.

Theorem 8. The number of movements in M∗ is equal to the number of coalition structures in
ΠA

2 ∪ΠA
3 —levels 2 and 3 of the coalition structure graph. That is:∣∣M∗∣∣ =

∣∣ΠA
2

∣∣+
∣∣ΠA

3

∣∣
Proof. See Appendix G.

Theorem 9. Given n agents, ODP runs in O(3n) time.

Proof. See Appendix H.

Having explained how ODP avoids all redundant operations of DP, we now show how it uses
a smaller amount of memory compared to DP. In particular, we will show how ODP avoids main-
taining the table t all together.

To this end, recall that for any coalition C ⊆ A : |C| ≥ 2, DP computes t(C) is done as follows,
where {C∗, C\C∗} = arg max{C′,C′′}∈ΠC f(C ′) + f(C ′′):

t(C) =

{
{C} if v(C) > f(C∗) + f(C\C∗)
{C∗, C\C∗} otherwise.

In other words, to compute t(C), one needs to first compute {C∗, C\C∗}, and then compare
f(C∗) + f(C\C∗) with v(C). However, those same operations are also needed in order to compute
f(C). Therefore, to avoid repeating those operations twice, one must assign t(C) and f(C) in the
same loop (see lines 5 to 17 of the pseudo code of DP). While this approach is computationally
efficient, it requires an exponential amount of memory (because it involves storing t(C) for every
C ⊆ A). In order to avoid this drawback, we need to further analyse the way DP uses the table t.

To this end, observe that t is only used in the final stage of DP (lines 18 to 22 of the pseudo
code). In this stage, DP initially sets CS∗ = {A}, and then repeatedly splits some coalition
C ∈ CS∗ in two as long as it is beneficial to do so. Here, DP needs to know t(A) in order to

15



determine whether it is beneficial to split A and, if so, determine how to split A in two in the most
beneficial way. Similarly, every time DP splits a coalition C ∈ CS∗ into two coalitions, C ′ and C ′′,
it needs to know t(C ′) and t(C ′′) to determine whether, and how, to split each one of those two
coalitions. Based on this, it is easy to show that, out of the 2n − 1 entries in the table t, DP uses
at most 2n− 3 entries.

Based on the above analysis, in ODP, we avoid storing all 2n−1 entries of t and instead compute
the required 2n − 3 entries. This results in a significant reduction in memory requirement at the
expense of an insignificant addition in computation.

Algorithm 2 provides the pseudo code of ODP, while Algorithm 3 provides the pseudo code of
the function getBestPartition—a function used in line 32 of Algorithm 2.

5. The ODP-IP Algorithm

The previous section presented the first contribution of this article—the development of ODP. This
section presents the second contribution—the development of ODP-IP. Here, the basic idea is to
modify ODP and IP such that they can assist one another when running in parallel (i.e., when
they are simultaneously used to solve the same problem instant).

This section is structured as follows. Section 5.1 presents the link between IP and DP. Sec-
tion 5.2 shows how to modify ODP so that it searches subspaces of the integer partition graph.
Section 5.3 shows how to use the information provided by ODP to speed up IP’s depth-first search.
Section 5.4 show how to modify IP such that it searches multiple subspaces simultaneously. Finally,
Section 5.5 provides a summary of ODP-IP, and analyses its complexity.

5.1. The Link Between DP and IP

Given the differences between ODP and IP, both in terms of the search-space representation as well
as the search techniques that are being used, it is not trivial to determine how these two algorithms
can be combined. First, let us draw a link between IP and DP (not ODP). In order to draw this
link, we developed what we call the integer partition graph. This is an undirected graph where
every node represents an integer partition, and two nodes representing I, I ′ ∈ In are connected
via an edge if and only if there exists two parts i, j ∈ I such that I ′ = (I \ {i, j}) ] {i + j} (here
] denotes the multiset union operation). A four-agent example is shown in Figure 5(A).

By looking at this graph, we can visualize the way DP searches the subspaces that are repre-
sented by different integer partitions. To this end, recall that the operation of DP can be visualized
as the evaluation of the possible movements in the coalition structure graph. Furthermore, avoid-
ing the evaluation of some of these movements can be visualized by removing the edges through
which these movements are made. Importantly, these same operations can also be visualized on
the integer partition graph. Specifically:

• By making a movement from one coalition structure CS ′ to another CS ′′ (in the coalition
structure graph), DP is actually making a movement (in the integer partition graph) from
one integer partition I ′ : ΠA

I′ 3 CS ′ to another I ′′ : ΠA
I′′ 3 CS ′′. For example, see how the

movement from {{a1}, {a2, a3, a4}} to {{a1}, {a2}, {a3, a4}} in Figure 5(B) corresponds to
the movement from ΠA

{1,3} to ΠA
{1,1,2} in Figure 5(A).

• If we remove all the edges (in the coalition structure graph) that correspond to splitting a
coalition of size s into two coalitions of sizes s′ and s′′, then we are essentially removing every
edge (in the integer partition graph) that connects an integer partition, I : I 3 s, to another,
I ′ = (I \ {s})] {s′, s′′}. For instance, removing the dotted edges in Figure 5(B) corresponds
to the removal of the dotted edge that connects ΠA

{2,2} to ΠA
{2,1,1} in Figure 5(A). This is

16



Algorithm 2: The Optimal Dynamic Programming algorithm (ODP).

Input: v(C) for all C ⊆ A.
Output: the optimal coalition structure, CS∗.
// First, compute fM∗ (C) for every singleton coalition

1 foreach C ⊆ A : |C| = 1 do
2 fM∗(C)← v(C)

// Second, compute fM∗ (C) for every coalition of size 2

3 foreach C ⊆ A : |C| = 2 do
4 fM∗(C)← v(C)

5 if fM∗({a1, a2}) < v({a1}) + v({a2}) then
6 fM∗({a1, a2})← v({a1}) + v({a2})

// Third, compute fM∗ (C) for every coalition of size s = 3, . . . , n− 1

7 foreach s = 3 to n− 1 do
8 foreach S ⊆ A \ {a1, a2} : |S| = s− 2 do // S is our desired coalition before adding {a1, a2}

9 C ← S ∪ {a1, a2}// Observe that |C| = s

10 fM∗(C)← v(C)

11 foreach {S′, S′′} ∈ (ΠS ∪ {∅, S}) do
12 j ← minai∈A\C i // aj is the ‘‘smallest’’ agent outside C

13 Aj ← {a3, . . . , aj−1}
14 if fM∗ < v(S′ ∪ {a1}) + v(S′′ ∪ {a2}) then
15 fM∗ ← v(S′ ∪ {a1}) + v(S′′ ∪ {a2})
16 if fM∗ < v(S′ ∪ {a2}) + v(S′′ ∪ {a1}) then
17 fM∗ ← v(S′ ∪ {a2}) + v(S′′ ∪ {a1})
18 if S′ ∩Aj 6= ∅ then // to ensure that S′′ ∪ {a1, a2} < S′ < A \ C

19 if fM∗ < v(S′) + v(S′′ ∪ {a1, a2}) then
20 fM∗ ← v(S′) + v(S′′ ∪ {a1, a2})

21 if S′′ ∩Aj 6= ∅ then // to ensure that S′ ∪ {a1, a2} < S′′ < A \ C

22 if fM∗ < v(S′ ∪ {a1, a2}) + v(S′′) then
23 fM∗ ← v(S′ ∪ {a1, a2}) + v(S′′)

24 foreach C ⊆ A : |C| = s, {a1, a2} 6⊆ C do
25 fM∗(C)← v(C)

// Fourth, compute fM∗(A) and t(A)

26 fM∗(A)← v(A)
27 t(A)← {A}
28 foreach {C ′, C ′′} ∈ ΠA

2 do
29 if fM∗(A) < fM∗(C

′) + fM∗(C
′′) then

30 fM∗(A)← fM∗(C
′) + fM∗(C

′′)
31 t(A)← {C ′, C ′′}

// Finally, set CS∗ to be an optimal split of A

32 CS∗ ← getBestPartition(A, t(A)) // see the pseudo code in Algorithm 3

33 return CS∗

17



Algorithm 3: getBestPartition—a function used in ODP.

Input: C and t(C), where C ⊆ A. It is assumed that the table fM∗ has been computed.

Output: the best partition of C that is reachable via M∗, i.e., the best partition in R
{C}
M∗ .

// Check whether {C} is an optimal partition of C

1 if t(C) = {C} then
2 return {C}
3 else

// In this case, there are two coalitions in t(C), let us denote them as C1 and C2

4 π ← ∅ // initialization

5 foreach Ci ∈ t(C) do // for each one of the two coalitions in t(C)

// First, compute t(Ci) (in lines 6 to 12)

6 if fM∗(Ci) = v(Ci) then // i.e., if {Ci} is an optimal partition of Ci

7 t(Ci)← {Ci}
8 else

// Identify two coalitions {C′i, C
′′
i } ∈ ΠCi such that fM∗ (C′i) + fM∗ (C′′i ) = fM∗ (Ci)

9 foreach {C ′i, C ′′i } ∈ ΠCi ∪ ({∅, Ci}) do
10 if fM∗(C

′
i) + fM∗(C

′′
i ) = fM∗(Ci) then

11 t(Ci)← {C ′i, C ′′i }
12 Break

// Having computed t(Ci), we now use it to compute an optimal partition of Ci, and then add that

partition to π

13 π ← π ∪ getBestPartition(Ci, t(Ci))

// Now, π is the union of the optimal partitions of C1 and C2

14 return π

because it is no longer possible to move from a coalition structure in ΠA
{2,2} to another in

ΠA
{2,1,1}.

This visualization provides the link between DP and IP since the latter deals with subspaces
that are represented by integer partitions.

5.2. Searching Subspaces Using ODP

In the previous section, we showed that avoiding the evaluation of all possible movements from all
coalitions of a particular size, s, into two coalitions of particular sizes, s′ and s′′, corresponds to
removing edges from the integer partition graph—the graph that links DP and IP. The problem
with ODP is that it avoids the evaluation of only some of the movements from coalitions of a given
size. For instance, given n = 4 and s = 2, ODP avoids evaluating the movements from {a1, a3},
{a1, a4}, {a2, a3}, {a2, a4} and {a3, a4}, but evaluates the movement from {a1, a2}. Because of this
single movement from a coalition of size 2, we cannot remove the dotted edge from Figure 5(A).
To circumvent this, we will now present a size-based version of ODP that, for any three sizes,
s, s′, s′′ ∈ {1, . . . , n} : s = s′ + s′′, either evaluates all or none of the movements in which a
coalition of size s is split into coalitions of sizes s′ and s′′. While, with this restriction, not all
redundant evaluations can be avoided, we show later on in Section 6 that most of the redundant
evaluations are actually avoided.

Theorem 10. For any two positive integers, s′, s′′ ∈ Z+, let us define Ms′,s′′ ⊆M as the set that
consists of every movement in which a coalition of size (s′+ s′′) is split into two coalitions of sizes

18



Figure 5: Given 4 agents, (A) shows the integer partition graph while (B) shows the coalition structure graph. The
Figure also shows how a movement in (B) corresponds to a movement in (A), and the removal of the dotted edges
in (B) corresponds to the removal of the dotted edge in (A).

s′ and s′′. More formally, Ms′,s′′ = {mC′,C′′ ∈ M : |C ′| = s′, |C ′′| = s′′}. Furthermore, let us
define M∗∗ ⊆M as follows:

M∗∗ =

 ⋃
s′,s′′∈Z+:max{s′,s′′}≤n−s′−s′′

Ms′,s′′

 ∪
 ⋃
s′,s′′∈Z+:s′+s′′=n

Ms′,s′′

 (9)

Then, the following holds:

R
{A}
M∗∗ = ΠA (10)

Proof. See Appendix I.

Based on Theorem 10, the size-based version of ODP only evaluates the movements in M∗∗,
i.e., it uses fM∗∗ . This way, all movements that are evaluated by ODP can be expressed in terms
of coalition sizes (see equation (9)). Moreover, none of the movements from a coalition of size
s =

⌊
2×n

3

⌋
+ 1, . . . , n− 1 will be evaluated (see the following theorem).

Theorem 11. The size-based version of ODP (i.e., the one that evaluates M∗∗) does not evaluate
any of the possible ways of splitting a coalition of size s ∈ {

⌊
2×n

3

⌋
+ 1, . . . , n− 1}.

19



Proof. See Appendix J.

Next, we show how to further modify ODP so that it searches subspaces of the integer partition
graph. To this end, observe that the size-based version of ODP works in three main steps:

• for s = 2, . . . ,
⌊

2×n
3

⌋
, evaluate mC′,C′′ ∈M∗∗ : |C ′|+ |C ′′| = s;

• for s = n, evaluate mC′,C′′ ∈M∗∗ : |C ′|+ |C ′′| = s and compute t(A).

• make the best movements from {A} using the function getBestPartition(A, t(A)).

Our modification involves changing this sequence of operation; the new sequence is:

• initialize t(A)← {A} and fM∗∗(C)← v(C) for all C ⊆ A;

• for s = 2, . . . ,
⌊

2×n
3

⌋
: (1) evaluate mC′,C′′ ∈ M∗∗ : |C ′| + |C ′′| = s, (2) evaluate mC′,C′′ ∈

M∗∗ : {|C ′|, |C ′′|} = {s, n− s}, (3) update t(A), and (4) make the best movements from {A}
using the function getBestPartition(A, t(A));

The pseudo code of the size-based ODP algorithm, including the aforementioned modifications,
can be found in Algorithm 4. To understand the intuition behind these latter modifications,
let us consider an example of 10 agents, where the size-based ODP has just finished evaluating
mC′,C′′ ∈M∗∗ : |C ′|+ |C ′′| = s for s = 2 and s = 3. At this moment, although some movements in
M∗∗ were not yet evaluated, ODP can reach some subspaces in the integer partition graph. This is
illustrated in Figure 6(A), where every movement not evaluated by ODP has been removed from
the graph. As can be seen, some subspaces are reachable from ΠA

{10}—the bottom node in the
graph. Consequently, based on corollary 1, the best coalition structure in those subspaces can
easily be identified: simply repeat the process of splitting the coalition(s) in {A} in the best way
(out of all the ways that were evaluated by ODP thus far) until no such splitting is beneficial.
Similarly, as soon as the following movements are evaluated: mC′,C′′ ∈M∗∗ : |C ′|+ |C ′′| = 4, more
edges will be added to the graph, and so more subspaces will become reachable from the bottom
subspace (see Figure 6(B)). Just as before, the best coalition structure in all of those subspaces
can easily be identified. By repeating this process for every size s, ODP gradually evaluates more
and more subspaces, until it eventually searched the entire space.

So far in this subsection, we have developed a size-based version of ODP, and shown how to
modify it such that is searches integer partition-based subspaces. This has the following important
advantage: at any point in time during execution, the part of the space that is yet to be searched
can also be represented as the union of integer partition-based subspaces. As a result IP can be
readily used to search the remaining part of the space. This is the key idea behind ODP-IP—a
hybrid algorithm where IP runs in parallel with ODP5 to solve the same problem instance. This
division of work (between ODP and IP) gives ODP-IP the ability to calibrate itself automatically
such that the amount of search assigned to each of its two constituent parts (ODP and IP) reflects
the relative strength of that part with respect to the problem instance at hand. This is particularly
important since IP could be significantly faster than ODP in some cases, while in some other cases
it could be significantly slower (see Section 6 for more details).

Now that we have shown how IP and ODP can work jointly on the same search space, in the
following subsections we show how this combination can be enhanced further. In particular, we
will be focusing on how IP’s performance can be improved by using the information that ODP has
computed at any point in time.

5Whenever we are talking about ODP-IP, we mean the combination between IP and the size-based version of
ODP. However, for simplicity, we will write “ODP” instead of “size-based version of ODP”.

20



Algorithm 4: The size-based version of ODP.

Input: v(C) for all C ⊆ A.
Output: CS∗∗—the best solution found at any point in time.

1 t(A)← {A}; CS∗∗ ← {A} // initialization

// First, initialize fM∗∗ (C) for every coalition, not just singletons

2 foreach C ⊆ A do
3 fM∗∗(C)← v(C)

// Second, compute fM∗∗ (C) for every coalition of size s = 2, . . . ,
⌊

2×n
3

⌋
4 foreach s = 2 to

⌊
2×n

3

⌋
do

5 foreach C ⊆ A : |C| = s do
6 foreach s′, s′′ ∈ Z+ such that (s′ + s′′ = s) ∧ (max{s′, s′′} ≤ n− s′ − s′′) do
7 foreach {C ′, C ′′} :∈ ΠC : {|C ′|, |C ′′|} = {s′, s′′} do
8 if fM∗∗(C) < fM∗∗(C

′) + fM∗∗(C
′′) then

9 fM∗∗(C)← fM∗∗(C
′) + fM∗∗(C

′′)

// update fM∗∗(A) and t(A)

10 temp← t(A)

11 foreach {C ′, C ′′} ∈ ΠA
2 : {|C ′|, |C ′′|} = {s, n− s} do

12 if fM∗∗(A) < fM∗∗(C
′) + fM∗∗(C

′′) then
13 fM∗∗(A)← fM∗∗(C

′) + fM∗∗(C
′′)

14 temp← {C ′, C ′′}
// if t(A) was updated, then update CS∗∗

15 if temp 6= t(A) then
16 CS∗∗ ← getBestPartition(A, t(A)) // see the pseudo code in Algorithm 3

17 return CS∗∗

5.3. Speeding up IP’s Depth-First Search

As mentioned earlier in Section 3.1, every time IP reaches a certain depth d in the search tree of
a subspace ΠA

I , it adds a coalition, Cd, to a set of disjoint coalitions, {C1, · · · , Cd−1}. After that,
it determines whether it is worthwhile to go deeper in the search tree, and that is by checking
whether the inequality in (1) holds. If not, then the coalition structures in ΠA

I that start with
{C1, · · · , Cd−1} are considered promising, i.e., one of them could potentially have a value greater
than V (CS∗∗)—the value of the best coalition structure found so far. In this case, IP goes deeper
in the search tree. However, we will now show how, with the help of ODP, some coalition structures
can still be pruned even if they are promising.

The basic idea is to modify IP so that, for any subset of agents C ⊆ A, it keeps track of the
value of the best partition of C that it has encountered so far. This is done using a table, w, with
an entry for every possible coalition. In more detail, IP initially sets w(C) = v(C) for all C ⊆ A.
After that, every time IP reaches a certain depth, d, it performs the following operation:

if w(

d⋃
i=1

Ci) <

d∑
i=1

v(Ci) then w(

d⋃
i=1

Ci)←
d∑
i=1

v(Ci) (11)

Since IP performs this operation every time it takes one step deeper in the search tree, the infor-
mation in w is kept up-to-date throughout the search. Now, to use this information, IP is modified

21



Figure 6: Illustration of how ODP gradually covers all subspaces given 10 agents. Figure 6(A) illustrates the

subspaces that are reachable the moment ODP finishes evaluating the movements: mC,C′ ∈ M∗∗ : (|C| + |C′|) ∈
{2, 3}. Figure 6(B) provides the same illustration, but with the evaluated movements being mC,C′ ∈ M∗∗ :
(|C|+ |C′|) = {2, 3,4}.

22



so that, at depth d, it checks whether any of the following inequalities holds:

w(

d⋃
j=1

Cj) >

d∑
j=1

v(Cj) (12)

w(Cd) > v(Cd) (13)

If (12) holds, then {C1, . . . , Cd} is not an optimal partition of C1 ∪ · · · ∪ Cd, and so there does
not exist an optimal coalition structure, CS∗, such that {C1, . . . , Cd} ⊆ CS∗. Similarly, if (13)
holds, then {Cd} is not an optimal partition of Cd, and so there does not exist CS∗ such that
Cd ∈ CS∗. In either case, every coalition structure containing {C1, · · · , Cd} can be skipped during
the search (since we are only interested in finding CS∗). Note that this pruning occurs even if
the coalition structures containing {C1, · · · , Cd} are promising. This is because the pruning here
occurs whenever CS∗ cannot possibly belong to the coalition structures containing {C1, · · · , Cd},
even if one of those coalition structures was indeed better than CS∗∗—the best coalition structure
found so far.

Now, knowing that ODP runs in parallel with IP, we can improve the above technique as
follows. Instead of having IP use a table, w, and ODP use another table, fM∗∗ , we modify IP so
that it uses the same table as ODP. Formally, we replace w with fM∗∗ in (11), (12) and (13). This
implicitly means that IP will not only check the best partitions that it had encountered; it will
also check those encountered by ODP.

To better understand the effect that ODP has on the new branch-and-bound technique, let us
consider an example of 19 agents. With such a relatively small number of agents, ODP can compute
the optimal partitions of all the coalitions of sizes 2 to 9 in a very short time (e.g., less than 0.2
second on our standard desktop PC, see Section 6 for more details). Now suppose that, after this
short time, IP started searching subspace ΠA

{2,2,2,2,1,1,3,3,3}. As mentioned earlier, IP goes deeper
in the search tree as long as it encounters promising coalitions. For instance, suppose that all
coalition structures containing {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} happened to be promising.
With the new branch-and-bound technique, and with the information now provided by ODP, this
combination of coalitions would not be reached by IP, even if they were indeed promising, unless
all of the following hold:

• {{a1, a2}} happens to be an optimal partition of {a1, a2}

• {{a3, a4}} happens to be an optimal partition of {a3, a4}

• {{a1, a2}, {a3, a4}} happens to be an optimal partition of {a1, . . . , a4}

• {{a5, a6}} happens to be an optimal partition of {a5, a6}

• {a1, a2}, {a3, a4}, {a5, a6} happens to be an optimal partition of {a1, . . . , a6}

• {{a7, a8}} happens to be an optimal partition of {a7, a8}

• {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8} happens to be an optimal partition of {a1, . . . , a8}

• {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} happens to be an optimal partition of {a1, . . . , a9}

The probability of this happening (assuming that every partition has an equal probability of
being an optimal one) is only 1

2 ×
1
2 ×

1
15 ×

1
2 ×

1
203 ×

1
2 ×

1
4140 ×

1
21147 = 2.3× 10−13. This example

clearly demonstrates the great potential that this new branch-and-bound technique has in terms
of speeding up the search.

23



5.4. Searching Multiple Subspaces Simultaneously

In this subsection, we show how to modify IP such that it searches multiple subspaces simultane-
ously to avoid repeating certain operations. For presentation clarity, we will postpone the formal
description of our technique until after we have presented the basic idea through an example of
five subspaces. To this end, recall that IP searches any subspace in a depth-first manner. As
such, for any given subspace, ΠA

I , the shape of the search tree depends on the way in which the
integers in I are ordered. With this in mind, we note that, given any particular ordering of the
integers, the first few levels of a search tree can be exactly the same as those of several other search
trees. For instance, the first two levels are exactly the same in the search trees of the subspaces
that are represented by the following ordered integer partitions: I1 = {2, 4, 4}, I2 = {2, 4, 1, 3},
I3 = {2, 4, 2, 2}, I4 = {2, 4, 1, 1, 2}, and I5 = {2, 4, 1, 1, 1, 1}. Searching any of those subspaces
in a depth first manner (as is the case with IP) involves constructing pairs of disjoint coalitions,
C1, C2 : |C1| = 2, |C2| = 4 (for more details, see Section 3.1). Now, instead of repeating this
process for every one of those five subspaces, one can perform it only once. More specifically, for
every pair, C1, C2 : |C1| = 2, |C2| = 4, one can perform the following steps:

1. Compute the value of {C1, C2, A\(C1∪C2)}—the only coalition structure in ΠA
I1

that contains
C1 and C2.

2. Find the best partition of A \ (C1 ∪ C2) into two coalitions of sizes 1, 3, and add those to
{C1, C2}. This gives the best coalition structure in ΠA

I2
that contains C1 and C2.

3. Find the best partition of A \ (C1 ∪ C2) into two coalitions of sizes 2, 2, and add those to
{C1, C2}. This gives the best coalition structure in ΠA

I3
that contains C1 and C2.

4. Find the best partition of A \ (C1 ∪ C2) into three coalitions of sizes 1, 1, 2, and add those
to {C1, C2}. This gives the best coalition structure in ΠA

I4
that contains C1 and C2.

5. Compute the value of {C1, C2}∪ai∈A\(C1∪C2){{ai}}—the only coalition structure in ΠA
I5

that
contains C1 and C2.

6. Select the best out of the coalition structures that were found in the above five steps.

The above six steps return the best coalition structure containing C1 and C2 in: ∪5
i=1ΠA

Ii
.

By performing these steps for every pair, C1, C2 : |C1| = 2, |C2| = 4, we find the best coalition
structure in ∪5

i=1ΠA
Ii

.
Next, we will show how to significantly speed up the above technique using the information

provided by ODP. To this end, consider an example where IP started searching ΠA
I1
, . . . ,ΠA

I5
after

ODP has finished evaluating the movements mC,C′ ∈ M∗∗ : (|C| + |C ′|) ∈ {2, 3, 4}. This means
that, for all C ⊆ A : |C| ∈ {2, 3, 4}, ODP has finished computing fM∗∗(C). In this case, for
any pair, C1, C2 : |C1| = 2, |C2| = 4, it is possible to find the value of the best coalition structure
containing C1 and C2 in ∪5

i=1ΠA
Ii

without having to examine the different partitions of A\(C1∪C2)
as in the above six steps. Instead, we can now perform a single step, which is:

• Compute v(C1) + v(C1) + fM∗∗(A \ (C1 ∪ C2)).6

By repeating this step for every pair C1, C2 : |C1| = 2, |C2| = 4, we find a coalition structure:

{C∗1 , C∗2 , C∗3} ∈ arg max
CS∈ΠA

I1

v(C1) + v(C2) + fM∗∗(C3).

What remains is to partition C∗3 in the best way using the movements in M∗∗ (so far we only
know the value of that partition, which is fM∗∗(C

∗
3 ); we don’t yet know the partition itself). This

6This is because, in this example, A \ (C1 ∪ C2) is a coalition of 4 agents, which means that ODP has already
computed fM∗∗ (A \ (C1 ∪ C2)).

24



can be done by simply replacing C∗3 with: getBestPartition(C∗3 , t(C
∗
3 )), which partitions C∗3

by making the best out of all the movements that ODP has evaluated so far (see Algorithm 3).
This process is illustrated in Figure 7(A), where IP searches ΠA

I1
, and the partitioning of C∗3 using

getBestPartition is illustrated by the movements from ΠA
I1

to the other subspaces, ΠA
I2

, ΠA
I3

,

ΠA
I4

, and ΠA
I5

.
So far, we have shown how subspaces can be searched simultaneously, and that is by partitioning

exactly one coalition using getBestPartition. However, one can partition more than one coali-
tion. This way, more subspaces can be searched simultaneously. For example, while searching ΠA

I1
,

if IP evaluates every {C1, C2, C3} ∈ ΠA
I1

as follows: fM∗∗(C1)+fM∗∗(C2)+fM∗∗(C3), then the result

of this search will be a coalition structure CS ′ that maximizes fM∗∗(C1) + fM∗∗(C2) + fM∗∗(C3).
By replacing every coalition C ∈ CS ′ with getBestPartition(C, t(C)), we end up with the best
coalition structure in all the subspaces that are reachable from ΠA

I1
. This is illustrated in Fig-

ure 7(B).
When searching multiple subspaces simultaneously, it is important to modify the branch-and-

bound technique used by IP. To this end, recall that when searching a single subspace, ΠA
I , IP

encounters a new combination of disjoint coalitions every time it takes one step deeper in the
search tree. For every such combination, {C1, . . . , Cd}, IP computes an upper bound on the value
of every coalition structure CS ∈ ΠA

I : {C1, . . . , Cd} ⊆ CS . Now if this upper bound happens to
be smaller than V (CS∗∗)—the value of the best solution found so far—then the combination is
deemed unpromising. However, when searching multiple subspaces, e.g., ΠA

I1
, . . . ,ΠA

I5
, the upper

bound must be computed taking into consideration all of those subspaces. In our example, the
upper bound must be on the value of every CS ∈

(
ΠA
I ∪ · · · ∪ΠA

I5

)
: {C1, . . . , Cd} ⊆ CS . Appendix

L provides more details on how to split multiple integers, and compares this with the case where
only a single integer is partitioned.

Finally, it is important to note that IP generally ignores the order of the coalitions within a
coalition structure. For instance, given 10 agents, {{a1, a2}, {a3, a4, a5, a6}, {a7, a8, a9, a10}} and
{{a1, a2}, {a7, a8, a9, a10}, {a3, a4, a5, a6}} are considered the same, and so only one of the them is
generated. However, in the case where multiple subspaces are being searching simultaneously, the
order matters. For instance, let us consider the example from Figure 7(A). Here, since a coalition
of size 4 will be replaced with its optimal partition, IP will have to evaluate every {C1, C2, C3} ∈
ΠA
{2,4,4} as follows: v(C1) + v(C2) + fM∗∗(C3). As can be seen, v({a1, a2}) + v({a3, a4, a5, a6}) +

fM∗∗({a7, a8, a9, a10}) is different than v({a1, a2})+v({a7, a8, a9, a10})+fM∗∗({a3, a4, a5, a6}), and
so both must be calculated.

5.5. Summary and Complexity of ODP-IP

Below is a summary of the main modifications that we have made to ODP and IP to enable them
to help each other when running in parallel as in ODP-IP:

• Enable ODP to search subspaces of the integer partition graph: To do this, first
ODP must use fM∗∗∗ instead of fM∗ . Second, for s = 2, . . . ,

⌊
2×n

3

⌋
, the algorithm must:

(1) evaluate mC′,C′′ ∈ M∗∗ : |C ′| + |C ′′| = s, (2) evaluate mC′,C′′ ∈ M∗∗ : {|C ′|, |C ′′|} =
{s, n − s}, (3) update t(A), and (4) make the best movements from {A} using the function
getBestPartition(A, t(A)). The pseudo code can be found in Algorithm 4;

• Speed up IP’s depth-first search: To do this, whenever a coalition, Cd, is added to a
set of disjoint coalitions, C1, . . . , Cd−1, check whether {Cd} and {C1, . . . , Cd} are the best
partitions of Cd and C1 ∪ · · · ∪ Cd, respectively, that have been encountered by IP and/or
ODP so far. If not, skip every coalition structure containing C1, . . . , Cd.

25



Figure 7: How IP can search multiple subspaces simultaneously given that ODP has already computed fM∗∗ (C) :
|C| ∈ {2, 3, 4}. In Figure 7(A), several subspaces are searched simultaneously, and that is by splitting exactly one
coalition. In Figure 7(B), more subspaces are searched simultaneously, and that is by splitting multiple coalitions.

26



• Enable IP to search multiple subspaces simultaneously: When searching a subspace,
ΠA
I , identify the integer partitions that are reachable from I using the movements that have

been evaluated by ODP thus far. Now, let I∗ ⊆ I be the integers in I that will be split to
reach other integer partitions. Then, for every coalition structure, CS ∈ ΠA

I , evaluate every
C ∈ CS as fM∗∗(C) if the size of C corresponds to an integer in I∗, otherwise evaluate it as
v(C). Finally, modify IP’s branch-and-bound technique such that the upper bounds reflect
the subspaces whose integer partitions are reachable from I by splitting the integers in I∗.
The details of this modification are in Appendix L.

We conclude this section with the following theorem.

Theorem 12. Given n agents, ODP-IP runs in O(3n) time.

Proof. See Appendix K.

Having presented ODP-IP, the following section evaluates both of our algorithms, namely ODP
and ODP-IP.

6. Performance Evaluation

This section is divided into two subsections: the first evaluates ODP, while the second evaluates
ODP-IP.

6.1. Evaluating ODP

We know that DP evaluates 1/2(3n − 1) movements (see Appendix K), while ODP evaluates
1
2

(
3n−1 − 1

)
movements (see Appendix H). In other words, ODP evalautes 33% of the movements

compared to ODP. Furthermore, we know that the size-based version of ODP (i.e., the version that
is compatible with IP) performs a number of movements that is bounded by the aforementioned
two numbers. Figure 8 compares those numbers, with n running from 5 to 40. As can be seen, as
the number of agents increases, the percentage of movements that are evaluated by the size-based
version of ODP drops (compared to that of DP), and converges at around 37%. This is very close
to the optimal reduction in movements, which is 33%.

6.2. Evaluating ODP-IP

ODP-IP was developed to try and obtain the best features of ODP and IP, namely: (1) being
anytime, (2) running in O(3n) time, and (3) being on average as fast as (if not faster than) the
fastest of the two algorithms, ODP and IP. While our analysis in Section 5.1 showed that ODP-IP
indeed has features (1) and (2), the following experiments are meant to verify whether ODP-IP
has feature (3). The algorithms were implemented in Java, and tested on a PC equipped with an
Intelr CoreTM i7 processor (3.40GHz) and 12GB of RAM.

Observe that the number of operations performed by ODP is not influenced by the characteristic
function at hand (i.e., it depends solely on the number of agents involved). On the other hand, the
number of operations performed by IP (and consequently by ODP-IP) depends on the effectiveness
of IP’s branch-and-bound technique, which in turn depends on the characteristic function at hand.
With this in mind, we compare the termination times of all three algorithms (ODP, IP, and ODP-
IP) given different value distributions, namely:

1. Uniform, as studied by Larson and Sandholm (2000): ∀C ∈ CA, v(C) ∼ U(a, b) where a = 0
and b = |C|.

27



6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

10

20

30

40

50

60

70

80

90

100

Number of agents

%

Number of movements with respect to DP (in %)

DP

size-based version of ODP

ODP

Figure 8: Percentage of movements made by the size-based version of ODP vs. DP converges ae around 37% which
is very close to he optimal reduction of 33%.

2. Normal, as studied by Rahwan et al. (2007): ∀C ∈ CA, v(C) ∼ N(µ, σ2) where µ = 10× |C|
and σ = 0.1.

3. NDCS (Normally Distributed Coalition Structures), proposed by Rahwan et al. (2009):
∀C ∈ CA, v(C) ∼ N(µ, σ2), where µ = |C| and σ =

√
|C|. The rationale behind developing

NDCS came from the authors’ observation that, with the above Uniform and Normal distri-
butions, a coalition structure is less likely to be optimal if it contains more coalitions. In order
to develop a test-bed that is free from such bias, the authors proposed NDCS and proved
it to be the only coalition-value distribution that results in normally-distributed coalition
structure-values. As a result, when using NDCS, all coalition structures are equally likely to
be optimal.

4. Modified Uniform, as proposed by Service and Adams (2010): Every coalition’s value is
first drawn from U(0, 10 × |C|), and then increased by a random number r ∼ U(0, 50) with
20% probability.

5. Modified Normal, proposed by Rahwan et al. (2012) as a natural counterpart to the
Modified Uniform distribution. In particular, each coalition’s value if first drawn from N(10×
|C| , 0.01), and then increased by a random number r ∼ U(0, 50) with 20% probability.

6. Exponential: ∀C ∈ CA, v(C) ∼ |C| × Exp(λ), where λ = 1.

7. Beta: ∀C ∈ CA, v(C) ∼ |C| ×Beta(α, β), where α = β = 0.5.

8. Gamma: ∀C ∈ CA, v(C) ∼ |C| ×Gamma(k, θ), where k = θ = 2.

9. Agent-based Uniform, as proposed by Rahwan et al. (2012): Each agent ai is assigned
a random “power”, pi ∼ U(0, 10), reflecting its average performance over all coalitions.
Furthermore, for any coalition C 3 ai, the actual power of ai in C is: pCi ∼ U(0, 2pi).

28



15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Uniform

Uniform

T
im

e
(s

ec
o
n

d
s,

lo
g

sc
a
le

)

ODP

IP

ODP-IP*

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Normal

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

NDCS

T
im

e
(s

ec
o
n

d
s,

lo
g

sc
a
le

)

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Agent-based Uniform

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Agent-based Normal

T
im

e
(s

ec
o
n

d
s,

lo
g

sc
a
le

)

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Modified Uniform

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Modified Normal

T
im

e
(s

ec
o
n

d
s,

lo
g

sc
a
le

)

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Exponential

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Beta

Number of agents

T
im

e
(s

ec
o
n

d
s,

lo
g

sc
a
le

)

15 16 17 18 19 20 21 22 23 24 25

100

101

102

103

104

Gamma

Number of agents

Figure 9: Time performance of ODP-IP vs. ODP and IP.

29



0 20 40 60 80 100
0

20

40

60

80

100

Uniform
S

o
lu

ti
o
n

q
u

a
li
ty

(x
1
0
0
)

B
o
u

n
d

q
u

a
li
ty

(x
1
0
0
)

ODP-IP* solution quality

ODP-IP* bound quality 1
β

0 20 40 60 80 100
0

20

40

60

80

100

Normal

0 20 40 60 80 100
0

20

40

60

80

100

NDCS

S
o
lu

ti
o
n

q
u

a
li
ty

(x
1
0
0
)

B
o
u

n
d

q
u

a
li
ty

(x
1
0
0
)

0 20 40 60 80 100
0

20

40

60

80

100

Agent-based Uniform

0 20 40 60 80 100
0

20

40

60

80

100

Agent-based Normal

S
o
lu

ti
o
n

q
u

a
li
ty

(x
1
0
0
)

B
o
u

n
d

q
u

a
li
ty

(x
1
0
0
)

0 20 40 60 80 100
0

20

40

60

80

100

Modified Uniform

0 20 40 60 80 100
0

20

40

60

80

100

Modified Normal

S
o
lu

ti
o
n

q
u

a
li
ty

(x
1
0
0
)

B
o
u

n
d

q
u

a
li
ty

(x
1
0
0
)

0 20 40 60 80 100
0

20

40

60

80

100

Exponential

0 20 40 60 80 100
0

20

40

60

80

100

Beta

Time to completion (in %)

S
o
lu

ti
o
n

q
u

a
li
ty

(x
1
0
0
)

B
o
u

n
d

q
u

a
li
ty

(x
1
0
0
)

0 20 40 60 80 100
0

20

40

60

80

100

Gamma

Time to completion (in %)

Figure 10: Solution quality and bound quality of ODP-IP.

30



Then, a coalition’s value is computed as the sum of the powers of its member. That is,
∀C ∈ CA, v(C) =

∑
ai∈C p

C
i .

10. Agent-based Normal, proposed in this article. As the name suggests, it is similar to
the above distribution except that every agent’s average and actual powers are drawn from
normal, rather than uniform distributions. Formally, ∀ai ∈ A, pi ∼ N(10, 0.01) and ∀ai, C ⊆
A : ai ∈ C, pCi ∼ N(pi, 0.01) and ∀C ∈ CA, v(C) =

∑
ai∈C p

C
i .

11. Size-independent Distributions, proposed in this article. These are similar to distri-
butions 1 to 8, excepted that every |C| is replaced with 1. This removes the dependency
relation between the coalition value and the coalition size. We will add “Size-independent”
to the distribution name when referring to the version that is free from such dependency, e.g.,
the above Uniform distribution means: v(C) ∼ U(0, |C|), whereas the Size-independent
Uniform distribution means: v(C) ∼ U(0, 1).

For each of the above distributions, we plotted the termination times of ODP, IP, and ODP-IP
given different numbers of agents (see Figures 9). Here, time is measured in seconds, and plotted
on a log scale. As can be seen, for all the aforementioned distributions, ODP-IP is faster than the
fastest of the two other algorithms (by one or two orders of magnitude for some distributions).
This is because the modifications introduced to IP and ODP (in sections 5.2, 5.3 and 5.4) allow
the two algorithm to help one another, leading to a positive synergy when they join forces as in
ODP-IP. Observe that those modifications (to IP and ODP) involve the use of branch-and-bound
techniques, effectiveness of which depends heavily on the characteristic function at hand. As
such, the resulting synergistic effect varies from one value distribution to another. This of course
does not only influence the termination time (as we have seen in the aforementioned figures), but
also influences how the solution quality, and established bounds, improve during the run time of
ODP-IP (as we will see in the following figures).

Next, we evaluate the anytime property of ODP-IP. The results in Figures 10 are shown for
25 agents In particular, the x-axis in the figures corresponds to the percentage of time that has
elapsed, with 0% being the time at which the algorithm starts, and 100% being the time at which
it terminates. For every percentage of time, t%, we report the following:

• Solution quality: This is computed as the ratio between the value of the “current” best
solution (found at t% of the runtime) and the value of the optimal solution (found at 100%).

Formally, the solution-quality plot represents: (V (CS∗∗)×100
V (CS∗) )%.

• Bound quality: This is computed as the ratio between the value of the “current” best solution
and the maximum upper bound of all “remaining” subspaces (i.e., those that were not yet
searched nor pruned).

With a few exceptions, the results show that if ODP-IP was interrupted before running to
completion, it may still return a solution with relatively high quality and good guarantees (i.e.,
bound quality). Specifically, in terms of the guarantees that the algorithm places on its solution,
we find that:

• With Agent-based Uniform and Modified Normal distributions, it takes a substantial per-
centage of the runtime until the guarantees reach 80%.

• With NDCS, Modified Uniform, Exponential, and Gamma distributions, the guarantees ex-
ceed 80% (or 90% in the NDCS case) after 10% of the runtime.

• With Normal, Agent-based Normal, Uniform, and Beta distributions, the guarantees exceed
99% after about 3% of the runtime.

In terms of solution quality, our results show that:

31



• With the Modified Normal distribution, it takes a substantial percentage of the runtime for
solution quality to reach 80%.

• With the Modified Uniform distribution, solution quality reaches 90% after 10% of the run-
time.

• With all other distributions, solution quality reaches 95% (if not 100%) after 3% of the
runtime.

This concludes the empirical evaluation of both our algorithms, ODP and ODP-IP.

7. Related Work

The term “complete set partitioning problem” was introduced by Lin (1975) as a special class of set
partitioning problems. The application that motivated this study was the structuring of corporate
tax in the United States. In particular, several states, such as Ohio, allowed any corporation to
file its annual unemployment compensation payment either on a subsidiary basis or by grouping
subsidiaries into disjoint aggregations. The total unemployment compensation tax payment de-
pended on particular aggregations chosen by the parent corporation. To provide an exact solution
to this optimization problem, Lin and Salkin (1979; 1983) developed an integer programming al-

gorithm with branch search enumeration (Garfinkel and Nemhauser, 1969) that runs in O(2n
2/2).

This algorithm was later on shown by Yeh (1986) to be substantially slower than DP. The same
algorithm was later on re-discovered in the combinatorial-auctions literature, to solve the winner
determination problem in cases where every possible bundle of goods has a (possibly zero-valued)
bid placed on it (Rothkopf et al., 1995). Sandholm (2002) provided further analysis of the com-
plexity of this algorithm, showing that its run time is polynomial in the size of the input (i.e.,
polynomial in the number of possible subsets of goods). However, this analysis did not expose the
redundant operations in DP as we did in this article. As such, by developing ODP, we make a
contribution to the literature on winner determination.

The advancements in multi-agent technologies in the late 90’s renewed the interest in the
complete set partitioning problem. In this literature, the problem was called the “coalition structure
generation problem”, and was studied in the context of dividing agents into coalitions so as to
maximize social welfare. In this context, a number of exact, anytime algorithms were proposed,
with the focus being on establishing a bound on the quality of their “interim” solutions (i.e., the
solutions that the algorithms return during execution, not after completion). These algorithms
can be divided into two categories, based on the techniques they use:

• the first class of algorithms focuses on (1) proposing a criteria based on which the search
space is divided into disjoint and exhaustive subspaces, and (2) identifying a sequence in which
these subspaces should be searched, such that the worst case bound on solution quality is
guaranteed to improve after each subspace. We will denote by S1, . . . , Sk the chosen sequence
of subspaces, and by βi the bound established after searching S1 ∪ · · · ∪ Si. This bound is
based solely on comparing the coalition structures that have already been searched against
those that are yet to be searched (i.e., those in Si+1 ∪ · · · ∪ Sk), without paying attention to
the actual coalition values at hand. This makes such algorithms applicable in settings where
only coalition structure values can be observed, not coalition values. This also makes the
bounds independent of the coalition-value distribution, meaning that such algorithms can
guarantee their bounds, regardless of the distribution.

Any algorithm in this class can be extended (possibly in different directions) by specifying
the technique(s) used to search the subspaces. Such technique(s) can capitalize on the extra

32



information accrued during the actual search, e.g., to avoid examining all solutions in a
subspace, or to establish bounds other than, and hopefully better than, βi : i = 1, . . . , k. The
advantage of such an extension is that it can place guarantees on its bounds; they cannot be
worst than βi : i = 1, . . . , k.

The first algorithm in this class was proposed in the seminal article by Sandholm et al.
(1999), where the proposed sequence was: S1 = ΠA

1 ∪ΠA
2 and Si = ΠA

n−i+2 : i = 2, . . . , n− 1.
Two particularly interesting bounds were β1 = n and β2 = dn/2e; the authors proved that
S1 and S2 are the smallest subsets of solutions that one can search to establish the tight
bounds n and dn/2e, respectively (unless, of course, one uses extra information obtained from
the characteristic function at hand). An alternative algorithm was later on proposed by
Dang and Jennings (2004), which proposed a different sequence, along with a different set of
bounds, compared to Sandholm et al. This algorithm was able to establish certain bounds
by going through a fewer number of solutions. Another algorithm was proposed by Rahwan
et al. (2011), where every Si is represented as the union of integer partition-based subspaces.
As such, one can readily extend this algorithm by using IP (or ODP-IP) to search every Si.

All the algorithms discussed so far in this class are proposed for characteristic function
games, where there are no “externalities” (i.e., influences between co-existing coalitions).
Rahwan et al. (2009) proposed the first algorithm for partition function games (PFGs),
i.e., games with externalities. In particular, they focused on two sub-classes: (1) PFG+,
where externalities are non-negative, and (2) PFG−, where externalities are non-positive.
Arguably, many realistic partition function games fall under one of those two sub-classes.7

The algorithm was later on extended by Banerjee and Kraemer (2010) to settings where
agents are grouped into categories, or “types”. Here, the authors assume that if two coalitions
C1 and C2 merge, then the externality imposed by such merging on a third coalition C3 is
non-negative if the types of the agents in C1 ∪C2 do not overlap with those of the agents in
C3. Otherwise, the externality is non-positive. Let us denote this class of games as PFGtype.
The authors argued that this class is intuitive, and maps to a number of applications.

• The second class of anytime, exact algorithms focuses on finding, and recognizing, an optimal
coalition structure as quickly as possible. The main techniques used here are (1) branch-and-
bound, where the aim is to identify, and thus avoid evaluating, unpromising combinations of
coalitions, and (2) dynamic-programming, where the aim is to avoid evaluating any combi-
nation of coalitions more than once.

Arguably, the first algorithm in this class is IP, due to Rahwan et al. (2007, 2009), which uses
branch-and-bound techniques as described earlier in Section 3.1. A distributed version of IP
was later on proposed by Michalak et al. (2010) as the first distributed, exact algorithm for
coalition structure generation. The algorithm incorporates a pre-processing stage whereby
“filter rules” are applied to identify coalitions that have no potential of belonging to an
optimal solution. This stage is implemented in a distributed fashion; the coalition space is
divided into n disjoint subsets that are each assigned to a different agent. Each agent applies
the filter rules to its share, and sends the results to the others. The algorithm then proceeds
to search one integer partition-based subspace at a time, just like IP. This search, however,
is carried out in a distributed fashion; each subspace is divided into n disjoint pieces that are
each searched by a different agent. Although the agents’ shares contain virtually the same
number of solutions, the search effort may differ from one agent to another, depending on
the effectiveness of the branch-and-bound technique. Therefore, a load-balancing technique

7Observe that each of these two sub-classes is a generalization of characteristic function games.

33



is introduced to handle any such potential differences.

Since the initial publication of ODP in (Rahwan and Jennings, 2008b), an anytime version of
the size-based version of ODP was proposed by Service and Adams (2011). In this version,
an initial stage is added whereby, for each coalition, C, the algorithm identifies and stores
the subset of C that has the highest value. Using this extra information, the authors showed
how, every time the algorithm finishes evaluating the splits of all coalitions of a certain size,
s, a coalition structure can be constructed of which the value is guaranteed to be within
a bound r from the optimal one, where r = max{i : i ∈ Z, s ≤

⌊
n
i

⌋
}. The termination

time of this modified ODP is almost identical to that of the original ODP (except for the
time required to run the added initial stage). This implies that the modified ODP algorithm
is significantly slower than ODP-IP for all coalition-value distributions mentioned earlier
in Section 6.2 (see the difference in termination between ODP-IP and ODP in Figure 9).
Moreover, the guarantees provided by Service and Adams’s modified ODP do not exceed
50% until termination, while the guarantees provided by ODP-IP often exceeds 80% (or even
99%) within only 10% (or even 3%) of the termination time (see Figure 10). Finally, Service
and Adams’s modified ODP requires twice as much memory compared to ODP-IP (to store
the best subset of every coalition).

So far in this class, we focused on algorithms for characteristic function games. Next, we
shift our attention to partition function games. In such settings, due to externalities, any
coalition may have different values depending on the coalition structure it is embedded in. It
is not difficult to show that in the most general case, where externalities are arbitrary, it is
impossible to place any bound on solution quality without examining every single coalition
structure. However, for two common classes of partition function games, namely PFG+ and
PFG−, Rahwan et al. (2009, 2012) proved that it is possible to compute upper and lower
bounds on the values of any set of disjoint coalitions in linear time. These bounds can then
be used to identify unpromising search directions using techniques similar to those used in IP.
Similarly, Banerjee and Kraemer (2010) proposed an extension of IP to handle externalities
in PFGtype settings.

Another extension of ODP, though not anytime as Service and Adams’s, is due to Voice et al.
(2012), which focuses on a special class of coalitional games inspired by Myerson (1976). In these
games, the space of feasible coalitions is restricted by a graph, G, where nodes represent agents,
and edges represent possibilities of collaboration; a coalition C is only feasible if all the agents in
C induce a connected subgraph of G. A “feasible” coalition structure is then simply one where
all coalition are feasible. Recall that we have shown in Theorem 4 that, for any arbitrary set of
movements between coalition structures, if DP only evaluates those movements it will find the best
coalition structure reachable using those movements. Voice et al. focused on the set of movements
between feasible coalition structures (i.e., restricted by G). This provides significantly speedups in
computation when the graph is sparse.

In this article we focused on the classical representation of characteristic function games, where
the value of any coalition, C ⊆ A, is returned by a characteristic function, v : 2A → R. However,
there are other works that study alternative representations designed to efficiently capture situa-
tions where the characteristic function has some structure. For instance, Ueda et al. (2010) studied
coalition structure generation under the DCOP (Distributed Constraint Optimization Problem)
representation (where every agent has a set of actions to choose from), while Bachrach et al. (2008,
2010) studied it under the skill-game representation (where every agent has a set of skills required
to perform tasks). Ohta et al. (2009) studied coalition structure generation under the Marginal
Contribution-net representation of Ieong and Shoham (2005), where synergies between agents are
described by a (possibly small) collection of weighted logical formulas. Furthermore, Ueda et al.

34



(2011) and Aziz and de Keijzer (2011) studied the problem under the agent-type representation
(where agents are grouped into categories, or“types”). A common denominator of all those works
is that the proposed algorithms to the coalition structure generation problem capitalize heavily
on features of the alternative representation under consideration. Thus, our general algorithm—
ODP-IP—is unlikely to outperform those algorithms in problem instances where the alternative
representation happens to compactly and efficiently represent the game. In such settings, ODP-IP
can serve as a common benchmark to evaluate the potential speedups achieved by focusing on
certain representations.

While this article focuses on exact coalition structure generation algorithms, we mention a
number of metaheuristic algorithms, which do not guarantee that an optimal solution is ever found,
nor do they provide any guarantees on the quality of their solutions. However, such algorithms
can usually be applied when the number of agents is large. These include a greedy algorithm by
Shehory and Kraus (1998), and genetic algorithm by Sen and Dutta (2000), a simulated-annealing
algorithm by Keinänen (2009), and an algorithm by Mauro et al. (2010) that combines a greedy
technique with another local-search technique.

8. Conclusions and Future Work

In recent years, the coalition structure generation problem has attracted increasing attention within
the multi-agent systems community. It involves identifying an optimal way of partitioning the
set of agents into exhaustive and disjoint subsets (or coalitions). In this article, we studied this
combinatorial optimization problem in characteristic function games. In such settings, the problem
becomes identical to the complete set partitioning problem, and to a special case of the winner
determination problem.

The two state-of-the-art exact algorithms for this problem were DP by Yeh (1986) and IP by
Rahwan et al. 2009, which are based on two distinct techniques used in combinatorial optimization
algorithms, namely dynamic programming, and tree search, respectively. Each of these two algo-
rithms has its advantages and drawbacks compared to the other. In particular, DP’s worst-case
performance is better than that of IP, since the former algorithm runs in O(3n), while the latter
in O(nn) time (given n agents). On the other hand, testing the two algorithms against a variety
of value-distributions shows that IP is most often significantly faster than DP. It also has the
advantage of being anytime, unlike DP.

In an attempt to exploit the strengths of both approaches and, at the same time, avoid their
main limitations, we modified, and improved upon, both DP and IP; this modification enabled us
to combine the two into a single, hybrid algorithm called ODP-IP. Although the constituent parts
of ODP-IP are based on different design paradigms, the integer-partition graph representation
proposed in this article exposes the possibility of merging the two.

Our goal in this article was to try and develop an algorithm that exploits the strengths of
both approaches and, at the same time, avoids their main limitations. Although DP and IP are
based on different design paradigms, we developed a new search-space representation (namely the
integer-partition graph) that exposes the possibility of having them combined into a single, hybrid
algorithm. Building upon this, we modified, and improved upon, both DP and IP, and combined
the modified versions into a new algorithm called ODP-IP. Our analysis and empirical evaluation
showed that ODP-IP possesses the strengths, and avoids the weaknesses, of both DP and IP:
it is anytime, runs in O(3n) time, and is faster than both algorithms for a wide variety (10 in
total) of value-distributions considered in this article (with speedups reaching one or two orders of
magnitude, given 25 agents).

While the focus in this article was on games where there are no influences (or externalities)
between co-existing coalitions, we aim in the future to extend the underlying techniques of ODP-IP

35



to games with externalities, and identifying subclasses where such an extension can be efficient (in
the spirit of Rahwan et al. 2012).

9. Acknowledgements

The research in this article was undertaken as part of the ORCHID Project, which is funded by
EPSRC (Engineering and Physical Sciences Research Council), grant: EP/I011587/1. This article
is a significantly revised and extended version of the following papers: (Rahwan and Jennings,
2008b), (Rahwan and Jennings, 2008a), and (Rahwan et al., 2012). More specifically:

• While the basic idea of ODP was presented in the short paper: (Rahwan and Jennings,
2008b), it did not include Theorems 4.1 and 4.1, which are essential for proving the correctness
of ODP. Furthermore, (Rahwan and Jennings, 2008b) did not include the optimal version
of DP, where all redundant operations are removed. Theorems 4.1 and 4.1, as well as the
optimal version of DP, are presented for the first time in this current article.

• While the basic idea of combining ODP and IP was presented in: (Rahwan and Jennings,
2008a), the combination therein involved running ODP and IP in a sequential fashion. In
more detail, ODP first computes the best partitions of all coalitions up to a certain size,
m ≤ b2n/3c. After that, ODP stops running, and IP starts running to build on ODP’s
results. The problem was that the optimal value of m was very different from one coalition-
value distribution to another, and there was no way to know a priori how to optimally set
the parameter, m. Furthermore, the worst-case complexity was greater than O(3n). Finally,
there were cases where the hybrid performance was slower IP and/or ODP.

In the current article, ODP and IP run in parallel, thus eliminating the need for any param-
eters. Furthermore, our new combination of algorithms runs in O(3n). Finally, we propose
a new method to speed up IP’s depth-first search (see Section 5.3), and carefully select the
subspaces that must be simultaneously searched (see Appendix L). As a result, our hybrid
performance is always faster than its constituent parts.

• While the idea of running ODP and IP in parallel has appeared in: (Rahwan et al., 2012),
it did not include the technique in which several subspaces are searched simultaneously.
Furthermore, the evaluation section was limited in that it did not show how the bound and
solution quality improve over the run time of the algorithm.

References

Andrews, G. E. and Eriksson, K. 2004. Integer Partitions. Cambridge University Press,
Cambridge, UK.

Aziz, H. and de Keijzer, B. 2011. Complexity of coalition structure generation. In AAMAS
’11: Tenth International Joint Conference on Autonomous Agents and Multi-Agent Systems.
191–198.

Bachrach, Y., Meir, R., Jung, K., and Kohli, P. 2010. Coalitional structure generation in
skill games. In Twenty Fourth AAAI Conference on Artificial Intelligence (AAAI). 703–708.

Bachrach, Y. and Rosenschein, J. S. 2008. Coalitional skill games. In AAMAS’08: Seventh
International Conference on Autonomous Agents and Multi-Agent Systems. 1023–1030.

Banerjee, B. and Kraemer, L. 2010. Coalition structure generation in multi-agent systems
with mixed externalities. In AAMAS ’10: Ninth International Joint Conference on Autonomous
Agents and Multi-Agent Systems. 175–182.



Bell, E. T. 1934. Exponential numbers. American Mathematical Monthly 41, 411–419.

Bellman, R. 1957. Dynamic Programming. Princeton University Pr, New Jersey, USA.

Bitar, E., Baeyens, E., Khargonekar, P., Poolla, K., and Varaiya, P. 2012. Optimal
sharing of quantity risk for a coalition of wind power producers facing nodal prices. In Proceedings
31st IEEE American Control Conference.

Chalkiadakis, G., Elkind, E., Markakis, E., Polukarov, M., and Jennings, N. R.
2010. Cooperative games with overlapping coalitions. Journal of Artificial Intelligence Research
(JAIR) 39, 179–216.

Dang, V. D. and Jennings, N. R. 2004. Generating coalition structures with finite bound
from the optimal guarantees. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 564–571.

de Bruijn, N. G. 1981. Asymptotic Methods in Analysis. Dover.

Garfinkel, R. and Nemhauser, G. 1969. The set partitioning problem: Set covering problem
with equality constraints. Operations Research 17, 5, 848–856.

Han, Z. and Poor, H. V. 2009. Coalition games with cooperative transmission: a cure for the
curse of boundary nodes in selfish packet-forwarding wireless networks. IEEE Transactions on
Communications 57, 1, 203–213.

Ieong, S. and Shoham, Y. 2005. Marginal Contribution Nets: a Compact Representation
Scheme for Coalitional Games. In ACM EC ’05: 6th ACM Conference on Electronic Commerce.
193–202.

Keinänen, H. 2009. Simulated annealing for multi-agent coalition formation. In Proceedings of
the Third KES International Symposium on Agent and Multi-Agent Systems: Technologies and
Applications. KES-AMSTA ’09. Springer-Verlag, Berlin, Heidelberg, 30–39.

Khan, Z., Lehtomaki, J., and DaSilva, M. L.-A. L. A. 2010. On selfish and altruistic
coalition formation in cognitive radio networks. In Fifth International Conference on Cognitive
Radio Oriented Wireless Networks and Communications (CROWNCOM-10). Cannes, France.

Larson, K. and Sandholm, T. 2000. Anytime coalition structure generation: an average case
study. Journal of Experimental and Theoretical Artificial Intelligence 12, 1, 23–42.

Lehmann, D., Müller, R., and Sandholm, T. 2006. The winner determination problem. In
Combinatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg, Eds. 297–317.

Li, C., Sycara, K., and Scheller-Wolf, A. 2010. Combinatorial coalition formation for
multi-item group-buying with heterogeneous customers. Decis. Support Syst. 49, 1, 1–13.

Lin, C. 1975. Corporate tax structures and a special class of set partitioning problems. Ph.D.
thesis, Department of Operations Research, Case Western Reserve University.

Lin, C. and Salkin, H. 1979. Aggregation of subsidiary firms for minimal unemployment com-
pensation payments via integer programming. Management Science 25, 4, 405–408.

Lin, C. and Salkin, H. 1983. An efficient algorithm for the complete set partitioning problem.
Discrete Applied Mathematics 6, 149–156.

Lucas, W. and Thrall, R. 1963. n-person games in partition function form. Naval Research
Logistic Quarterly , 281–298.

Mauro, N. D., Basile, T. M. A., Ferilli, S., and Esposito, F. 2010. Coalition structure
generation with grasp. In Proceedings of the 14th international conference on Artificial intelli-
gence: methodology, systems, and applications. AIMSA’10. Springer-Verlag, Berlin, Heidelberg,
111–120.

37



Michalak, T., Sroka, J., Rahwan, T., Wooldridge, M., McBurney, P., and Jennings,
N. R. 2010. A Distributed Algorithm for Anytime Coalition Structure Generation. In AAMAS
’10: Proceedings of the Ninth International Joint Conference on Autonomous Agents and Multi-
Agent Systems. 1007–1014.

Myerson, R. B. 1976. Graphs and cooperation in games. Discussion Papers 246, Northwestern
University, Center for Mathematical Studies in Economics and Management Science. Sept.

Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., and Yokoo, M. 2009.
Coalition structure generation utilizing compact characteristic function representations. In
CP’09: 15th International Conference on Principles and Practice of Constraint Programming.
623–638.

Rahwan, T. and Jennings, N. R. 2007. An algorithm for distributing coalitional value calcula-
tions among cooperative agents. Artificial Intelligence 171, 8–9, 535–567.

Rahwan, T. and Jennings, N. R. 2008a. Coalition structure generation: Dynamic program-
ming meets anytime optimisation. In AAAI’08: Twenty Third AAAI Conference on Artificial
Intelligence. 156–161.

Rahwan, T. and Jennings, N. R. 2008b. An improved dynamic programming algorithm for
coalition structure generation. In AAMAS’08: Seventh International Conference on Autonomous
Agents and Multi-Agent Systems. 1417–1420.

Rahwan, T., Michalak, T., and Jennings, N. R. 2012. A hybrid algorithm for coalition
structure generation. In Twenty Sixth Conference on Artificial Intelligence (AAAI-12). Toronto,
Canada.

Rahwan, T., Michalak, T., Jennings, N. R., Wooldridge, M., and McBurney, P. 2009.
Coalition structure generation in multi-agent systems with positive and negative externalities.
In IJCAI’09: Twenty First International Joint Conference on Artificial Intelligence. 257–263.

Rahwan, T., Michalak, T., Wooldridge, M., and Jennings, N. R. 2012. Anytime coaliton
structure generation in multi-agent systems with positive or negative externalities. Artificial
Intelligence 186, 95–122.

Rahwan, T., Michalak, T. P., and Jennings, N. R. 2011. Minimum search to establish worst-
case guarantees in coalition structure generation. In IJCAI’11: Twenty Second International
Joint Conference on Artificial Intelligence. 338–343.

Rahwan, T., Ramchurn, S. D., Dang, V. D., and Jennings, N. R. 2007. Near-optimal
anytime coalition structure generation. In IJCAI’07: Twentieth International Joint Conference
on Artificial Intelligence. 2365–2371.

Rahwan, T., Ramchurn, S. D., Giovannucci, A., Dang, V. D., and Jennings, N. R. 2007.
Anytime optimal coalition structure generation. In AAAI’07: Twenty Second Conference on
Artificial Intelligence. 1184–1190.

Rahwan, T., Ramchurn, S. D., Giovannucci, A., and Jennings, N. R. 2009. An anytime
algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research
(JAIR) 34, 521–567.

Roman, S. 1984. The Umbral Calculus. Academic Press.

Rothkopf, M. H., Pekec, A., and Harstad, R. M. 1995. Computationally manageable
combinatorial auctions. Management Science 44, 8, 1131–1147.

Sandholm, T. 2002. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence 135, 132, 1 – 54.

Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tohmé, F. 1999. Coalition
structure generation with worst case guarantees. Artificial Intelligence 111, 1–2, 209–238.

38



Sen, S. and Dutta, P. 2000. Searching for optimal coalition structures. In ICMAS’00: Sixth
International Conference on Multi-Agent Systems. 286–292.

Service, T. C. and Adams, J. A. 2010. Approximate coalition structure generation. In AAAI.

Service, T. C. and Adams, J. A. 2011. Constant factor approximation algorithms for coalition
structure generation. Autonomous Agents and Multi-Agent Systems 23, 1, 1–17.

Shehory, O. and Kraus, S. 1998. Methods for task allocation via agent coalition formation.
Artificial Intelligence 101, 1–2, 165–200.

Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M. C., Hirayama, K., and Matsui, T. 2010.
Coalition structure generation based on distributed constraint optimization. In Twenty Fourth
AAAI Conference on Artificial Intelligence (AAAI). 197–203.

Ueda, S., Kitaki, M., Iwasaki, A., and Yokoo, M. 2011. Concise characteristic function repre-
sentations in coalitional games based on agent types. In IJCAI’11: Twenty Second International
Joint Conference on Artificial Intelligence. 393–399.

Voice, T., Ramchurn, S. D., and Jennings, N. R. 2012. On coalition formation with sparse
synergies. In AAMAS.

Woeginger, G. J. 2003. Combinatorial optimization - eureka, you shrink! Springer-Verlag New
York, Inc., New York, NY, USA, Chapter Exact algorithms for NP-hard problems: a survey,
185–207.

Yeh, D. Y. 1986. A dynamic programming approach to the complete set partitioning problem.
BIT Numerical Mathematics 26, 4, 467–474.

39



Appendix A. Summary of Notation

A the set of agents

ai an agent in A

n the number of agents in A

CA set of all coalitions over A

CAs set of all coalitions over A that are of size s each
C a coalition
CS a coalition structure

CS∗ an optimal coalition structure

CS∗∗
the best coalition structure found at any point in time (i.e., the current best solution
found so far)

β the established bound on the quality of CS∗∗, where: V (CS∗)
V (CS∗∗) ≤ β

In the set of all integer partitions of n

I an integer partition, i.e., a multiset of integers

ΠA
the set of all coalition structures over A

ΠA
s the set of all coalition structures over A that are of size s

ΠA
I

the set of all coalition structures over A in which the coalition sizes match the parts in
integer partition I

ΠC the set of all partitions of C

ΠC
s the set of all partitions of C that are of size s

ΠC
I

the set of all partitions of C in which the coalition sizes match the parts in integer
partition I

Π the set of all possible partitions, i.e., Π = ∪C⊆AΠC

π a partition, i.e., a disjoint set of coalitions where every agent appears at most once

V (CS) the value of the coalition structure CS

V (π) the value of the partition π

v(C) the value of the coalition C
Maxs the maximum value of all coalitions of size s
Avgs the average value of all coalitions of size s

UB∗ upper bound on the value of CS∗

UBI upper bound on the value of the best CS in ΠA
I

LB∗ lower bound on the value of CS∗

LBI lower bound on the value of the best CS in ΠA
I

M the set of all possible movements in the coalition structure graph

M a subset of M
M∗ the subset of M that is evaluated by ODP

M∗∗ the subset of M that is evaluated by the size-based version of ODP

Ms′,s′′ the subset of M in which every movement corresponds to splitting a coalition of size
(s′ + s′′) into two coalitions of sizes s′ and s′′

mC′,C′′ the movement that corresponds to splitting C = C1 ∪ C2 into C1 and C2

RπM the set of all partitions that are reachable from π via M

f(C) the value of an optimal partition of C

fM (C) the value of the partition with the highest value in R
{C}
M

40



Appendix B. Proof of Theorem 3

Theorem 3 Given an arbitrary partition, {C1, . . . , Ck} ∈ Π, and an arbitrary subset of move-
ments, M ⊆M, the following holds:

R
{C1,...,Ck}
M = R

{C1}
M × . . . × R

{Ck}
M

Proof. From Definition 4, it is easy to check that the following holds for any three disjoint
partitions, πa, πb, πc ∈ Π:

πa
M
 πb ⇒ πc ∪ πa

M
 πb ∪ πc (B.1)

(
πa

M
 πb

)
∧
(
πb

M
 πc

)
⇒ πa

M
 πc (B.2)

Now, to prove Theorem 3, it is sufficient to prove that the following holds for any arbitrary partition
π ∈ Π:

π ∈ R{C1}
M × . . . × R

{Ck}
M ⇒ π ∈ R{C1,...,Ck}

M (B.3)

π ∈ R{C1,...,Ck}
M ⇒ π ∈ R{C1}

M × . . . × R
{Ck}
M (B.4)

We will start by proving that (B.3) holds. To this end, if π ∈ R{C1}
M × . . . × R

{Ck}
M , then surely

there exists k partitions, π1 ∈ R{C1}
M , . . . , πk ∈ R{Ck}

M , such that:

π = π1 ∪ · · · ∪ πk (B.5)

Moreover, since πi ∈ R{Ci}
M for all i ∈ {1, . . . , k}, then by definition we have:

{C1}
M
 π1

{C2}
M
 π2

{C3}
M
 π3

...

{Ck}
M
 πk

Based on this, as well as (B.1), we find that:(
{C2} ∪ · · · ∪ {Ck}

)
∪ {C1}

M
 π1 ∪

(
{C2} ∪ · · · ∪ {Ck}

)(
π1 ∪ {C3} ∪ · · · ∪ {Ck}

)
∪ {C2}

M
 π2 ∪

(
π1 ∪ {C3} ∪ · · · ∪ {Ck}

)(
π1 ∪ π2 ∪ {C4} ∪ · · · ∪ {Ck}

)
∪ {C3}

M
 π3 ∪

(
π1 ∪ π2 ∪ {C4} ∪ · · · ∪ {Ck}

)
...(

π1 ∪ · · · ∪ πk−1

)
∪ {Ck}

M
 πk ∪

(
π1 ∪ · · · ∪ πk−1

)
This can be written differently as follows:

41



{C1} ∪ · · · ∪ {Ck}
M
 π1 ∪ {C2} ∪ · · · ∪ {Ck}

π1 ∪ {C2} ∪ · · · ∪ {Ck}
M
 π1 ∪ π2 ∪ {C3} ∪ · · · ∪ {Ck}

π1 ∪ π2 ∪ {C3} ∪ · · · ∪ {Ck}
M
 π1 ∪ π2 ∪ π3 ∪ {C4} ∪ · · · ∪ {Ck}
...

π1 ∪ · · · ∪ πk−1 ∪ {Ck}
M
 π1 ∪ · · · ∪ πk

From this, as well as (B.2), we find that:

{C1} ∪ · · · ∪ {Ck}
M
 π1 ∪ · · · ∪ πk

This can be written differently based on (B.5) as follows:

{C1, . . . , Ck}
M
 π

In other words, π ∈ R{C1,...,Ck}
M . This concludes our proof of (B.3). It remains to prove that (B.4)

holds. To this end, observe that if π ∈ R{C1,...,Ck}
M , then this means that π can be broken into k

disjoint partitions, π1, . . . , πk, such that π1∪· · ·∪πk = π, and ∪πi = Ci for all i ∈ {1, . . . , k}. This
is simply because π is, by definition, the result of splitting (some of) the coalitions in {C1, . . . , Ck}
into smaller coalitions. Now, to complete the proof, it is sufficient to show that:

∀i ∈ {1, . . . , n}, πi ∈ R{Ci}
M

The proof follows directly from the fact that π1 ∪ · · · ∪ πk is reachable from {C1, . . . , Ck} via M ,
which means that for every i ∈ {1, . . . , n} we must have one of two possibilities: either πi = {Ci},
or there exist movements in M by which the agents in Ci can be (repeatedly) split into smaller
coalitions until they become partitioned as in πi. �

Appendix C. Proof of Theorem 4

Theorem 4 For any coalition C ⊆ A, and for any subset of movements, M ⊆ M, the following
holds:

fM (C) =

{
v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈R{C}M

(
fM (C ′) + fM (C ′′)

)}
otherwise.

(6)

Proof. If |C| = 1, then no movement can be made from {C} (because C cannot be split into two

coalitions). This means that R
{C}
M = {{C}} which, in turn, means that fM (C) = v(C). It remains

to prove that equation (6) holds for the case where |C| > 1.
Since {C} contains exactly one coalition (which is C), then every partition reachable from {C}

via a single movement in M contains exactly two coalition and vice versa; every partition in R
{C}
M

that contains exactly two coalitions must be reachable from {C} via a single movement in M . This
implies that: {

π′ ∈ Π : {C} M−→ π′
}

=
{
{C ′, C ′′} ∈ R{C}M

}
(C.1)

42



Thus, we have:

R
{C}
M = {{C}} ∪

⋃
π′∈Π:{C}

M−→π′

Rπ
′

M (based on (5))

= {{C}} ∪
⋃

{C′,C′′}∈R{C}M

R
{C′,C′′}
M (based on (C.1))

= {{C}} ∪
⋃

{C′,C′′}∈R{C}M

(
R
{C′}
M ×R{C

′′}
M

)
(based on Theorem 3)

Based on this, we have:

fM (C) = max
π∈R{C}M

V (π)

= max

{
v(C) , max{C′,C′′}∈R{C}M

(
max

π∈
(
R
{C′}
M ×R{C

′′}
M

) V (π)
)}

= max
{
v(C) , max{C′,C′′}∈R{C}M

(
max

π∈R{C
′}

M

V (π) + max
π∈R{C

′}
M

V (π)
)}

= max
{
v(C) , max{C′,C′′}∈R{C}M

(
fM (C ′) + fM (C ′′)

)}
�

Appendix D. Proof of Theorem 5

Theorem 5 For any two coalitions C ′, C ′′ ∈ CA, let us write C ′ < C ′′ if and only if C ′ precedes
C ′′ lexicographically. Now, if we define M∗ ⊆M as:

M∗ =
{
mC′,C′′ ∈M :

(
C ′ ∪ C ′′ = A

)
∧
(
C ′ < C ′′ < A \ (C ′ ∪ C ′′)

)}
(7)

Then, the following holds:

R
{A}
M∗ = ΠA (8)

Proof. To prove (8), it suffices to prove that every coalition structure CS = {C1, . . . , Ck} : k ≥ 2
is reachable from some other coalition structure CS ′ : |CS ′| = k − 1 via some movement in M∗.
To this end, without loss of generality, assume that C1 < · · · < Ck. Then, to prove (8), it suffices
to show that CS is reachable from the coalition structure (CS\{C1, C2})∪ {C1 ∪C2} via M∗, i.e.,
it suffices to show that mC1,C2 ∈M∗.

First, let us consider the case where k = 2. In this case, we have CS = {C1, C2}, and so
C1 ∪ C2 = A. This means that mC1,C2 ∈M∗ (see equation (7)).

Now, let us consider the case where k > 2. Here, since C1 < · · · < Ck, then the assumed
lexicographic order implies that: C1 < C2 < (C3 ∪ · · · ∪ Ck), which can be written as C1 < C2 <
A \ (C ∪ C ′). This means that mC1,C2 ∈M∗ (again see equation (7)). �

Appendix E. Proof of Theorem 6

Theorem 6 For any coalition C ∈ CA, if {a1, a2} 6⊆ C, then ODP does not evaluate any of the
possible ways of splitting C.

43



Proof. For any coalition C ∈ CA : {a1, a2} 6⊆ C, we will prove that:

∀mC′,C′′ ∈M : C ′ ∪ C ′′ = C,mC′,C′′ /∈M∗

We will deal with each of the following complementary cases separately:

• Case 1: a1 /∈ C. This means that a1 ∈ A\(C ′∪C ′′). Therefore, we have: A\(C ′∪C ′′) < C ′

and C ′ ∪ C ′′ 6= A. As such, mC′,C′′ /∈M∗ according to (7).

• Case 2: a1 ∈ C and a2 /∈ C. Here, surely one of the two coalitions in {C ′, C ′′} does not
contain a1 nor a2. Let this coalition be C ′′. Now since a2 ∈ A \ (C ′ ∪ C ′′), then we have:
A \ (C ′ ∪ C ′′) < C ′′ and C ′ ∪ C ′′ 6= A. This implies that mC′,C′′ /∈M∗ according to (7).

�

Appendix F. Proof of Theorem 7

Theorem 7 It is not possible to evaluate fewer splits compared to ODP, and still be guaranteed to
find an optimal coalition structure.

Proof. We will prove that, for every CS = {C1, . . . , Ck} : k ≥ 2, the ODP algorithm evalu-
ates exactly one movement that leads to CS (from another coalition structure containing |CS | − 1
coalitions). Without loss of generality, we will assume that C1 < · · · < Ck. In our proof, we will
distinguish between the following two cases:

• Case 1: k = 2. In this case, there is exactly one possible movement that leads to CS , which
is mC1,C2 . Since C1 ∪ C2 = A, then mC1,C2 ∈M∗ according to (7).

• Case 2: k > 2. Here, since C1 < C2 < A \ (C1 ∪ C2), then mC1,C2 ∈ M∗ according to (7).
It remains to show that no other movement in M∗ leads to CS . To this end, a movement
mCi,Cj ∈ M leads to CS if and only if Ci, Cj ∈ CS . Next, for any such movement, we will
show that if {i, j} 6= {1, 2}, then mCi,Cj /∈M∗. Here,

– if 1 /∈ {i, j}, then C1 ⊆ A\(Ci∪Cj) and so: A\(Ci∪Cj) < Ci. Therefore, mCi,Cj /∈M∗.
– if 1 ∈ {i, j} and 2 /∈ {i, j}, then either C2 < Ci (in which case A \ (Ci ∪ Cj) < Ci) or
C2 < Cj (in which case A \ (Ci ∪ Cj) < Cj). In either case, mCi,Cj /∈M∗.

We have shown that, for each CS = {C1, . . . , Ck} : k ≥ 2, ODP evaluates exactly one of the
movements that lead to CS , namely mC1,C2 . Furthermore, we know that ODP does not evaluate
a movement more than once. Therefore, avoiding the evaluation of even a single movement in M∗

leaves at least one coalition structure with no movements leading to it. �

Appendix G. Proof of Theorem 8

Theorem 8 The number of movements in M∗ is equal to the number of coalition structures in
ΠA

2 ∪ΠA
3 —levels 2 and 3 of the coalition structure graph. That is:∣∣M∗∣∣ =

∣∣ΠA
2

∣∣+
∣∣ΠA

3

∣∣
Proof. For any coalition structure CS = {C1, . . . , Ck} : k > 1, we will assume without loss

44



of generality that C1 < · · · < Ck. Earlier in our proof of Theorem 7, we showed that there is ex-
actly one movement in M∗ that leads to CS ; this movement is mC1,C2 . Now, to prove Theorem 8,
it is sufficient to observe the following:

• Every mC,C′ ∈ M∗ : C ∪ C ′ = A leads to exactly one coalition structure, namely {C,C ′},
which is in ΠA

2 . Similarly, every {C1, C2} ∈ ΠA
2 is reachable via exactly one movement

in M∗, namely mC1,C2 . As such, there is a one-to-one correspondence between ΠA
2 and

{mC,C′ ∈M∗ : C ∪ C ′ = A}. Therefore,∣∣{mC,C′ ∈M∗ : C ∪ C ′ = A}
∣∣ =

∣∣ΠA
2

∣∣
• Every mC,C′ ∈ M∗ : (C ∪ C ′) ⊂ A leads to exactly one coalition structure in ΠA

3 , namely
{C,C ′, A \ (C ∪ C ′)} (this is because no other coalition structure in ΠA

3 contains both C
and C ′). Similarly, every {C1, C2, C3} ∈ ΠA

3 is reachable via exactly one movement in
M∗, namely mC1,C2 . This means there is a one-to-one correspondence between ΠA

3 and
{mC,C′ ∈M∗ : (C ∪ C ′) ⊂ A}, and so:∣∣{mC,C′ ∈M∗ : (C ∪ C ′) ⊂ A}

∣∣ =
∣∣ΠA

3

∣∣ (G.1)

�

Appendix H. Proof of Theorem 9

Theorem 9 Given n agents, ODP runs in O(3n) time.

Proof. Clearly, the main operations in ODP are those that involve the evaluation of different
movements. Now based on Theorem 8, the number of such operations is equal to |ΠA

2 |+ |ΠA
3 |. To

compute this number, recall that the number of ways to partition n elements into k parts—widely
known as the Stirling number of the Second Kind (Roman, 1984), and denoted as S(n, k)—is com-
puted as follows:

S(n, k) =
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)n

Thus, the number of movements that are evaluated by ODP is: S(n, 2) + S(n, 3), which equals:

1

2

(
3n−1 − 1

)
�

Appendix I. Proof of Theorem 10

Theorem 10 For any two positive integers, s′, s′′ ∈ Z+, let us define Ms′,s′′ ⊆M as the set that
consists of every movement in which a coalition of size (s′+ s′′) is split into two coalitions of sizes
s′ and s′′. More formally, Ms′,s′′ = {mC′,C′′ ∈ M : |C ′| = s′, |C ′′| = s′′}. Furthermore, let us
define M∗∗ ⊆M as follows:

M∗∗ =

 ⋃
s′,s′′∈Z+:max{s′,s′′}≤n−s′−s′′

Ms′,s′′

 ∪
 ⋃
s′,s′′∈Z+:s′+s′′=n

Ms′,s′′

 (9)

45



Then, the following holds:

R
{A}
M∗∗ = ΠA (10)

Proof. To prove (10), it is sufficient to prove that every coalition structure CS : |CS | ≥ 2 is
reachable via M∗∗ from some other coalition structure CS ′ : |CS ′| = |CS | − 1. To this end, let us
assume, without loss of generality, that CS = {C1, . . . , Ck}, where k ≥ 2 and |C1| ≤ · · · ≤ |Ck|.
Then, to prove (10), it is sufficient to show that CS is reachable from the coalition structure
(CS\{C1, C2}) ∪ {C1 ∪ C2} via M∗∗. We will do this by showing that mC1,C2 ∈M∗∗.

First, let us consider the case where k = 2. In this case, we have CS = {C1, C2}, and so
|C1| + |C2| = n. This means that mC1,C2 is added to M∗∗ by the term

⋃
s′,s′′∈Z+:s′+s′′=nM

s′,s′′

(see equation (9)).
Now, let us consider the case where k > 2. Here, since |C1| ≤ |C2|, then max{|C1|, |C2|} = |C2|.

Furthermore, since C1 and C2 are the smallest two coalitions in CS , the number of agents in C2

must be smaller than, or equal to, the number of agents in C3 ∪ · · · ∪ Ck. In other words, |C2| ≤
n−|C1|−|C2|. This means mC1,C2 is added to M∗∗ by the term

⋃
s′,s′′∈Z+:max{s′,s′′}≤n−s′−s′′M

s′,s′′

(again see equation (9)). �

Appendix J. Proof of Theorem 11

Theorem 11 The size-based version of ODP (i.e., the one that evaluates M∗∗) does not evaluate
any of the possible ways of splitting a coalition of size s ∈ {

⌊
2×n

3

⌋
+ 1, . . . , n− 1}.

Proof. For every s ∈ {
⌊

2×n
3

⌋
+ 1, . . . , n− 1}, we need to prove that the following holds:

∀s′, s′′ ∈ Z+ : (s′ + s′′) = s, (Ms′,s′′ ∩M∗∗) = ∅ (J.1)

Since s′+s′′ 6= n, then based on (9)—the equation that defines M∗∗—we can prove (J.1) by proving
that:

max{s′, s′′} > n− s′ − s′′ (J.2)

Since s′ + s′′ = s and max{s′, s′′} ≥ ds/2e, then to prove (J.2) it is sufficient to prove that:

ds/2e > n− s

To prove that this inequality holds for all possible values of s, it is sufficient to prove that it holds
for the smallest possible value of s, which is

⌊
2×n

3

⌋
+ 1. Thus, all we need is to prove that:⌈(⌊

2×n
3

⌋
+ 1
)

2

⌉
> n−

(⌊
2× n

3

⌋
+ 1

)
(J.3)

This can be proved by mathematical induction. First we will prove that, if (J.3) holds for n, then
it is also holds for (n+ 3). In other words, assuming that (J.3) holds for n, we will prove that:

(⌊
2×(n+3)

3

⌋
+ 1
)

2

 > (n+ 3)−
(⌊

2× (n+ 3)

3

⌋
+ 1

)
This can be done as follows:

46



⌈
(b 2×(n+3)

3 c+1)
2

⌉
=

⌈
(b 2×n

3 +2c+1)
2

⌉

=

⌈
(b 2×n

3 c+2+1)
2

⌉

=

⌈
(b 2×n

3 c+1)
2

⌉
+ 1

> n− (
⌊

2×n
3

⌋
+ 1) + 1 (because we assume that (J.3) holds for n)

= n−
⌊

2×n
3

⌋
= (n+ 3)− (

⌊
2×n

3 + 2
⌋

+ 1)

= (n+ 3)−
( ⌊ 2×(n+3)

3

⌋
+ 1
)

We have shown that if (J.3) holds for n, then it also holds for n + 3. It remains to show is that
(J.3) holds for n = 3, n = 4, and n = 5:

• For n = 3,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n− (

⌊
2×n

3

⌋
+ 1) = 0

• For n = 4,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n− (

⌊
2×n

3

⌋
+ 1) = 1

• For n = 5,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n− (

⌊
2×n

3

⌋
+ 1) = 1

�

Appendix K. Proof of Theorem 12

Theorem 12 Given n agents, ODP-IP runs in O(3n) time.

Proof. First, let us compute the number of movements that are evaluated by DP. Since DP
evaluates all the possible ways of splitting every C ⊆ A in two, the total number of evaluations is:

n∑
s=1

(
n

s

)
2s−1

Furthermore, it is known that:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k (K.1)

By setting a = 2 and b = 1 in equation (K.1), we find that:

1

2
(3n − 1) =

n∑
s=1

(
n

s

)
2s−1

Thus, the number of movements that are evaluated by DP is 1/2(3n−1). Furthermore, we know that
the number of movements evaluated by the optimal version of ODP is 1

2

(
3n−1 − 1

)
(see Appendix

47



H). Finally, since the number of movements that are evaluated by the size-based version of ODP
is more than that of ODP, and less than that of DP, this number is in:[

1

2

(
3n−1 − 1

)
,

1

2
(3n − 1)

]
Thus, the size-based version of ODP runs in O(3n). This algorithm runs in parallel with IP in
ODP-IP. Based on this, ODP-IP is guaranteed to terminate in O(3n) time. �

Appendix L. Analyzing the Different Methods of Searching Multiple Subspaces Si-
multaneously

This appendix provides further details on how IP can simultaneously search multiple subspaces
using the information provided by ODP. To this end, assume that ODP has already finished evaluat-
ing mC,C′ ∈M∗∗ : (|C|+ |C ′|) ∈ {2, . . . , s∗}. Then, for any given subspace, ΠA

I : I = {i1, . . . , i|I|},
we modify IP such that, instead of searching for a coalition structure in arg maxCS∈ΠA

I
V (CS ), it

performs the following steps:

1. Identify X ∗—the set of integer partitions whose subspaces have not yet been
searched, and are reachable from ΠA

I using only the movements that have been evalu-
ated by ODP so far. For instance, given I = {2, 4, 4} and s∗ = 4, the set X ∗ consists of all
the integer partitions that are reachable through the dotted edges in Figure 7(B).

2. Identify I∗—the set of integer(s) in I that will be split in order to reach (some of)
the subspaces in X ∗. As mentioned earlier in Section 5.4, one can choose to either split a
single integer in I, or split as many integers as possible. We will consider both cases. Now
if exactly one integer will be split, then put in I∗ the integer of which the splitting allows
for reaching the largest number of integer partitions in X ∗. On the other hand, if multiple
integers will be split, then put in I∗ the integers of which the splitting allows for reaching
all the integer partitions in X ∗. The subset of X ∗ that is reachable by splitting the
integer(s) in I∗ will be denoted by Y∗. For instance, given I = {2, 4, 4} and s∗ = 4,
if exactly one integer will be split, then we have I∗ = {4}, and Y∗ consists of the integer
partitions that are reachable through the dashed edges in Figure 7(A). Otherwise, if multiple
integers will be split, then we have I∗ = {2, 4, 4}, and Y∗ consists of the integer partitions
that are reachable through the dotted edges in Figure 7(B).

3. Change the order of the integers in I and in every I ′ ∈ Y∗. To this end, let i∗j denote

the jth element in I∗. Furthermore, for every i∗j ∈ I∗, and every I ′ ∈ Y∗, let S(I ′, i∗j ) be the
subset of I ′ that results from splitting i∗j . Now, order the integers in I by putting the ones
in I \ I∗ first, then putting i∗1, then i∗2, and so on until i∗|I∗|. Similarly, for every I ′ ∈ Y∗,
change the order in I ′ by putting the ones in I ′ \ I∗ first, then those in S(I ′, i∗1), then those
in S(I ′, i∗2), and so on until S(I ′, i∗|I∗|).

4. Search ΠA
I , where every {C1, . . . , C|I|} ∈ ΠA

I is evaluated as follows:

|I\I∗|∑
j=1

v(Cj) +

|I|∑
j=|I\I∗|+1

fM∗∗(Cj) (L.1)

48



During this search, at every depth, d, use the following, modified, branch-and-bound
inequality:

min(d,|I\I∗|)∑
j=1

v(Cj) +

d∑
j=min(d,|I\I∗|)+1

fM∗∗(Cj) + UBdI < V (CS∗∗) (L.2)

where UBdI is an upper bound computed as follows:

UBdI = max

 |I|∑
j=d+1

Maxi∗j , max
I′∈Y∗

|I|∑
j=d+1

∑
s∈S(I′,i∗j )

Maxs


The result of this search is a coalition structure {C∗1 , . . . , C∗|I|} ∈ ΠA

I that maximizes (L.1).

5. Replace every C∗j : j > |I \ I∗| with getBestPartition(C∗j , t(C
∗
j )). The result is a

coalition structure in: arg maxCS∈({ΠA
I }∪Y∗)

V (CS ).

At first glance, it may seem that partitioning multiple integers is better than partitioning only one,
because more subspaces can be searched simultaneously. Surprisingly, however, we will show why
it can actually be faster to partition only one integer. As mentioned earlier, when IP searches a
subspace, ΠA

I , several other subspaces can be searched simultaneously as long as: (1) those sub-
spaces have not yet been searched, and (2) the integer partitions that represent those subspaces
are reachable from I using the movements that ODP has evaluated thus far. Recall that I∗ ⊆ I
denotes the integers that will be split in order to reach other subspaces, and Y∗ denotes the set
of integer partitions representing those subspaces. Based on this, the more integers we put in I∗,
the more subspaces we have in Y∗ (an example is illustrated in Figure 7). However, we will show
why it is actually faster to always put only one integer in I∗, even if it meant fewer subspaces will
be in Y∗ (i.e., few subspaces will be searched simultaneously with ΠA

I ). To this end, recall that
the branch-and-bound technique usually involves checking whether the inequality in (1) holds. For
convenience, we re-write the inequality below:

d∑
j=1

v(Cj) +

|I|∑
j=d+1

Maxij < V (CS∗∗) (1)

However, when searching multiple subspaces simultaneously, we use the inequality in (L.2) instead
of the one in (1). Note that (L.2) will hold fewer times compared to (1), because the left-hand side
in the former inequality is greater than that in the latter one. This increase (in the left-hand side)
is in fact the price that must be paid in order to avoid searching every ΠA

I′ : I ′ ∈ Y∗ separately
later on. The problem, however, is that this price is often greater than what is necessary. To see
why this is the case, let us analyse the two modifications that are behind this increase:

• The first modification is when |I \ I∗| < d. In this case, every Cj : j ∈ {|I \ I∗|, . . . , d} is
evaluated as fM∗(Cj) instead of v(Cj).

• The second modification is in the upper bound on the values of the coalitions that will be
added to C1, . . . , Cd. In particular, since every ΠA

I′ : I ′ ∈ Y∗ is being searched simultaneously
with ΠA

I , the upper bound in (L.2) becomes UBdI , instead of the one used in (1), which is∑|I|
j=d+1Maxij .

49



A key point here is that Y∗ does not contain all the integer partitions that are reachable from I; it
only contains those representing subspaces that have not yet been searched. This important point
is reflected in the second modification, but not in the first one. More specifically, in the second
modification, a new upper bound is used that only takes into account ΠA

I as well as ΠA
I′ : I ′ ∈ Y∗.

However, in the first modification, every Cj : j ∈ {|I \ I∗|, . . . , d} is evaluated as fM∗(Cj)—the
value of the best partition of Cj in all the subspaces that are reachable from ΠA

I , including those
that have already been searched. In other words, this modification ignores the fact that certain
subspaces have already been searched.

Now, let us analyse the case where I∗ contains exactly one integer. To this end, observe that the
branch-and-bound technique is generally used only when d < |I|−1. This is because, if d = |I|−1,
then there is no need to determine whether {C1, . . . , Cd} is promising. Instead, one can straight
away construct the only coalition structure contain C1, . . . , Cd, and that is by putting all remaining
agents in a coalition of their own. Based on this observation, whenever the branch-and-bound tech-
nique is used, we always have d < |I| − 1. This implies that, when I∗ contains exactly one integer,
we always have: min(d, |I\I∗|) = d. Consequently, the inequality in (L.2) can be written as follows:

d∑
j=1

v(Cj) + UBdI < V (CS∗∗)

This way, we get rid of the first modification, and only keep the second one, which takes into
consideration only the subspaces that have not yet been searched, and are reachable from ΠA

I .

50


