
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Monads for behaviour

Maciej Piróg1, Jeremy Gibbons2

Department of Computer Science
University of Oxford

Abstract

The monads used to model effectful computations traditionally concentrate on the ‘destination’—
the final results of the program. However, sometimes we are also interested in the ‘journey’—the
intermediate course of a computation—especially when reasoning about non-terminating interactive
systems. In this article we claim that a necessary property of a monad for it to be able to describe
the behaviour of a program is complete iterativity. We show how an ordinary monad can be
modified to disclose more about its internal computational behaviour, by applying an associated
transformer to a completely iterative monad. To illustrate this, we introduce two new constructions:
a coinductive cousin of Cenciarelli and Moggi’s generalised resumption transformer, and States—a
State-like monad that accumulates the intermediate states.

Keywords: completely iterative monads, effects, tracing, resumptions

1 Introduction

In this article we are concerned with semantics of programs like the following
Haskell fragment:

echo :: IO ()

echo = do { x <- getChar ; putChar x ; echo }

More precisely, we are interested in programs that (1) have side-effects, and
(2) depend on a (not necessarily terminating) recursion—or a corecursion, if
you will. In the example, echo performs observable actions and then calls
itself, ‘unfolding’ an infinite series of events.

Since Moggi’s work [24], monads have become the standard model for
computational effects. For example, a popular choice to model I/O operations

1 maciej.pirog@cs.ox.ac.uk
2 jeremy.gibbons@cs.ox.ac.uk

c©2013 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:maciej.pirog@cs.ox.ac.uk
mailto:jeremy.gibbons@cs.ox.ac.uk

Piróg, Gibbons

is to employ the State monad A 7→ (A × S)S, model the outside world as an
object S, and see the program semantics as a function transforming an initial
state into a final state [7,18]. Alternatively, we could consider side-effects as
communication with the environment, so no assumption about semantics of
effects needs to be made at this point: the program semantics is a free structure
generated by the ‘effectful’ constructs (getChar and putChar), which is then
interpreted by an external handler [16,29,32].

The situation becomes much more complicated in the context of (2). While
a pure corecursive function is often denoted by the unique homomorphism to
the final coalgebra that represents the type of the unfolded codata, a monad
that models the effects in question need not be the carrier of a final coalge-
bra. Instead, we turn our attention to monads that come equipped with their
own corecursive structure—completely iterative monads (‘cims’), introduced
by Elgot [12] and recently studied by Aczel et al. [1,22]. A monad M is a cim
if for certain morphisms e : X → M(A + X) there exists a unique morphism
e† : X → MA that is coherent with the monadic structure of M (for the full
definition, see Section 2). This rather axiomatic approach makes it possible to
separate the corecursion guarded by invocation of effects from any recursive
structure enjoyed by the base category, like order or metric enrichment. As
an example, in Section 4.1 we give a categorical interpretation of generalised
While programs that do not need to terminate.

A known example of a cim is the free cim Σ∞ generated by an endofunc-
tor Σ. It is given by Σ∞A = νX.A + ΣX. However, the mentioned State
and free monads are not in general completely iterative. For example, the
State monad does not build the final state incrementally, so in case of non-
terminating programs, such as echo, it is useless. The free structure, on the
other hand, sometimes needs to be infinite, so in general the free monad Σ∗

(for an endofunctor Σ representing the signature) is ‘too small’. Neverthe-
less, we should not discard the ‘usual’ monads too hastily. For example, if we
program a divergent computation in the State monad, the intermediate states
are physically ‘put’ and ‘gotten’ somewhere in the memory of the computer,
so the internal behaviour of the computation is, in a sense, accurate. The
point is to reify it as a mathematical model. An interesting fact is that the
IO monad in the Haskell Glasgow Compiler (GHC) is implemented using the
State monad [20], so whatever its mathematical model, the two presumably
have to be related.

Our idea is to use transformers associated with the ‘usual’ monads to trace
computations. For a cim T and an adjunction F a U that gives rise to a monad
M (that is, UF = M), we use the monad UTF to trace computations in M .
Clearly, UTF supports M -computations (via the canonical monad morphism
M → UTF), but it can also store some observations about the course of the
computation in the inner cim. The choice of the monad T and the adjunction

2

Piróg, Gibbons

reveals different aspects of computations in M . As our main technical result,
we prove that UTF is completely iterative.

As an example, we use the currying adjunction to derive what we call
the States monad, which behaves like State, but also gathers the intermediate
states in a stream. This way, the result of the computation is not a single, final
state, but rather a possibly infinite trace consisting of intermediate states.

We then introduce the Coinductive Generalised Resumption transformer
M(ΣM)∞, which is a coalgebraic cousin of Cenciarelli and Moggi’s Gener-
alised Resumption transformer M(ΣM)∗ [9]. It allows one to decompose a
monadic computation into a possibly infinite number of steps interleaved with
free structure. It is also a categorical model for datatypes built around re-
sumptions, such as Haskell iteratees [21] (for ΣA = A1+I) or pipes [15] (for
ΣA = AI + A × O), used to perform resource-aware lazy I/O. The fact that
we use the free cim is crucial, since programming patterns for iteratees and
pipes rely heavily on coalgebraic computations.

2 Completely iterative monads

2.1 Initial assumptions and notations

For the entire article, we assume that we are working in a base category B
with binary coproducts and all the necessary final coalgebras. We denote the
coproduct injections by inl and inr. We use a subscript for the composition of
a natural transformation with a functor; for example, for functors H and J ,
if ξ : F → G is natural, then ξH : FH → GH. If ξ is natural in two variables,
by ξH,J we mean a natural transformation ζ with components ζA = ξHA,JA.

We also recall the standard interpretation of coinductive datatypes as final
coalgebras. For an endofunctor F , an F -coalgebra is a pair 〈A, f : A→ FA〉.
We call A the carrier of the coalgebra. A morphism h : A → B is an F -
coalgebra homomorphism, denoted as h : 〈A, f〉 → 〈B, g〉, if g · h = Fh · f .
An F -coalgebra 〈νF, β〉 is final if for every F -coalgebra 〈A, f〉 there exists
precisely one homomorphism 〈A, f〉 → 〈νF, β〉, called an anamorphism and
denoted as [(f)].

2.2 Cims defined

An anamorphism allows to unfold a (possibly infinite) data structure, while
its uniqueness amounts to the principle of coinduction. A corecursive monadic
computation can also be described by a coalgebra e : X →M(A+X), called
an equation morphism. The object X represents (a set of) variables—the seeds
of the corecursion. The object A represents (a set of) parameters, which are
final values of the computation. However, the described computation is not
intended to be unfolded in the final M(A + -)-coalgebra. Instead, the results

3

Piróg, Gibbons

of subsequent steps are combined using the monad multiplication. Of course,
such (possibly infinite) multiplications need not exist for a monad. Their
existence (and uniqueness) is the defining property of completely iterative
monads.

We note that not every equation morphism describes a meaningful com-
putation. For example, a morphism that incessantly returns the seed with
the unit of the monad is intuitively a pure divergent computation, which does
not have an interpretation in the category Set. Thus, we assume the view
that some computations generate observable behaviour of the program, while
others are ‘silent’. We restrict equation morphisms to those that always gen-
erate observable actions. We call such morphisms guarded. It guarantees that
each step of the computation contributes a new bit of observable behaviour.
Hence, following the type theoretic nomenclature [10], we call such a compu-
tation productive.

To formalise this, we need the notion of ideals of a monad. Analogously
to ideals in a ring or a semigroup (subsets closed under the operations), they
mark a subset of effects encompassed by the monad, for example the subset
of observable actions. Informally, once an action from an ideal is performed,
it cannot be undone. More precisely, a computation in the ideal composed
with any other operation is again in the ideal. An example is non-failing
and non-idempotent nondeterminism; it can be idealised with nondetermin-
istic computations with at least n possible results: once n choices are made,
there will be at least n (possibly duplicate) final answers, no matter what is
the rest of the computation (assuming termination). We can formalise it as
follows. (All the definitions in this section are as given by Adámek, Milius,
and Velebil [2].)

Definition 2.1 Let 〈M, η, µ〉 be a monad. For an endofunctor M , a natural
transformation σ : M → M with monomorphic components is called a sub-
functor of M . We call σ an ideal of M if there exists a natural transformation
µ : MM →M such that the following diagram commutes.

MM M2

M M

σM

µµ

σ

We call a pair of a monad and its ideal an idealised monad. An idealised
monad M is called an ideal monad if M = Id + M with η = inlId,M and
σ = inrId,M .

Examples of ideal monads include: free monads, exceptions, interactive
output, and nonempty lists. Note that in a category with an initial object 0,

4

Piróg, Gibbons

every monad M is idealised with respect to the trivial ideal FX = 0, that is
a constant functor that always returns the initial object.

We also need morphisms that respect the internal structure of idealised
monads. If Σ is an endofunctor, then a natural transformation ξ : Σ → M
is ideal if its codomain contains only observable computations. Intuitively,
this means that an interpretation of a symbol from the signature should never
yield a silent computation. Formally:

Definition 2.2 Let 〈M,σM〉 and 〈N, σN〉 be idealised monads. A natural
transformation ξ : Σ→M is ideal if it factors through σM .

A monad is completely iterative with respect to an ideal, which contains
the observable, corecursive effects of the monad. Thus, we restrict codomains
of equation morphisms to ideals. This makes the corecursion guarded by
invocation of observable effects.

Definition 2.3 A morphism e : X → M(A + Y) is guarded if it factors
through the morphism [σA+Y , ηA+Y · inlA,Y], that is there exists a morphism j
such that the following diagram commutes.

X M(A+ Y)

M(A+ Y) + A

e

j
[σA+Y , ηA+Y · inlA,Y]

If X = Y , we call e a guarded equation morphism.

We use a guarded equation morphism e to unfold a computation e†, called a
solution. Intuitively, a solution is an infinite iteration of parameter-preserving
Kleisli-compositions of e. A monad is a cim if such a composition always exists
and is unique. Formally:

Definition 2.4 Let e : X →M(A+X) be a morphism. We call a morphism
e† : X →MA a solution of e if the following diagram commutes.

X MA

M(A+X) M2A

e†

M [ηA, e
†]

e µA

An idealised monad M is completely iterative if every guarded equation
morphism has a unique solution.

5

Piróg, Gibbons

2.3 The free cim

An example of a cim is a generalisation of the infinite term monad generated
by an endofunctor (intuitively, a signature) Σ. Its functorial part is given by
a family of final coalgebras Σ∞A = νX.A+ ΣX. Below we define the unit η∞

and a natural transformation emb : Σ→ Σ∞ that embeds Σ in Σ∞.

Id

Id + ΣΣ∞ ∼= Σ∞
η∞ = inlId,ΣΣ∞

Σ

Id + ΣΣ∞ ∼= Σ∞
emb = inrId,ΣΣ∞ · Ση∞

The multiplication µ∞ can be described with the following universal property:
it is a unique morphism u : Σ∞Σ∞ → Σ∞ that satisfies the following equation.

Σ∞Σ∞ ∼= Σ∞ + ΣΣ∞Σ∞ ∼= Id + ΣΣ∞ + ΣΣ∞Σ∞

Id + ΣΣ∞ ∼= Σ∞

u =

id + [id,Σu]

As discussed by Aczel et al. [1], Σ∞ is the free cim generated by Σ. In-
tuitively, this means that every interpretation of Σ in a cim M extends in
a unique way to an interpretation of the entire (possibly infinite) term Σ∞

in M . Formally, for an ideal natural transformation ξ : Σ → M , there exists
a unique monad morphism ι(ξ) : Σ∞ → M such that the following diagram
commutes.

Σ Σ∞

M

emb

ι(ξ)
ξ

The monad morphism ι(ξ) is given by [ηM , ξ†Σ∞]. Diagrammatically:

ΣΣ∞

MΣ∞ ∼= M(Id + ΣΣ∞)

ξΣ∞

ΣΣ∞

M Id = M

ξ†Σ∞

Σ∞ ∼= Id + ΣΣ∞

M

ι(ξ) = [ηM , ξ†Σ∞]

Another example of a cim is the Exception monad A 7→ A + E. Also,
every monad is completely iterative with respect to the trivial ideal FX = 0.
But, except for those and the free cim, there are hardly any examples of cims
commonly used in programming or semantics. This paper aims to fill this void
in a rather generic fashion.

6

Piróg, Gibbons

3 Cims, adjunctions, and tracing

Let M be a monad, and let 〈F,U, η, ε〉 : B → C be a factorization of M
as an adjunction, that is M = 〈UF, η, UεF 〉. Let 〈T, ηT , µT , σT 〉 be a cim
with solutions -†. It is standard that UTF is a monad with ηUTF = UηTF · η
and µUTF = UµT

F · UTεTF , and that lift = UηTF : UF → UTF is a monad
morphism. We prove that UTF inherits complete iterativity from T .

Theorem 3.1 The natural transformation UσT
F : UTF → UTF forms an

ideal. The monad UTF is completely iterative with respect to this ideal.

Proof. Right adjoints preserve monomorphisms, hence the components of the
natural transformation UσT

F are monic, and so it is a subfunctor. We define

µ to be UµT
F · UTεTF . It is easy to verify that it satisfies the condition for

ideals.

Let e : X → UTF (A + X) be a UσT
F -guarded equation morphism. By

b-c : C[FA,B] ∼= B[A,UB] : d-e we denote the natural isomorphism associated
with the adjunction. Recall that left adjoints preserve coproducts, that is
F (A + B) ∼= FA + FB. One can calculate that dee ∼= [σT

(FA+FX), η
T
(FA+FX) ·

inl(FA,FX)]·(εTF (A+X)+idFA)·Fj, which means that dee : FX → TF (A+X) ∼=
T (FA + FX) is a guarded equation morphism in T with a unique solution
dee† : FX → TFA.

We define the solution of e as bdee†c. The following diagram commutes:

UFX UTFA

UTF (A+X)
∼= UT (FA+ FX) UT 2FA

X

(UTF)2A

Udee†

UT [ηTFA, dee†]

Udee UµT
FA

ηX

UTεTFA

µUTF
A

UTF [ηUTF
A , Udee† · ηX]

e

bdee†c = Udee† · ηX

The inner square is the U -image of the solution diagram for dee†. The outer
triangles commute due to properties of adjunctions and the definition of µUTF .

7

Piróg, Gibbons

For uniqueness, let g : X → UTFA be a solution of e. Substitute dge for
dee† in the above diagram. The outer square commutes, because bdgec = g is
a solution, and the triangles commute, because of properties of adjunctions,
hence the inner square precomposed with ηX also commutes. For all mor-
phisms f, f ′ : FB → C, if Uf · ηB = Uf ′ · ηB then f = f ′. Therefore, dge is a
solution of dee, so dge = dee†, hence g = bdgec = bdee†c. 2

Intuitively, T collects observations about a computation in M . Thus, we
need a new operation that allows us to actually observe the current state
of the computation, for example the current state in the State monad (this
example is elaborated in the next section). It could be given as a natural
transformation olift : M → UTF with components that factor through UσT

F .
It will not in general be a monad morphism; on the contrary, performing two
actions and then observing the effect differs in general from observing the
effect of each action individually. More formally, let f ◦ g be a computation in
the Kleisli category of M , where ◦ is the Kleisli composition. We can decorate
it with observers in two different ways: olift · (f ◦ g) or (olift · f) ◦ (olift · g).
For example, when tracing a computation in State, we may want to observe
only ‘put’ operations, as long as we are certain that there are only finitely
many invocations of ‘get’ in between every two invocations of ‘put’. In the
rest of the paper we always define olift as Uobs for a natural transformation
obs : F → TF . For convenience, we also define a ‘save the current state of
computation’ operation save = olift · η : Id→ UTF .

Though we do not use this property directly in the rest of the article,
observations should not modify the computation. This could be captured by
the following cancellation property: for all morphisms f, f ′ : A → MB and
g, g′ : B →MC, if (lift · g) ◦ saveB ◦ (lift · f) = (lift · g′) ◦ saveB ◦ (lift · f ′) then
g ◦ f = g′ ◦ f ′.

4 The States monad

Our first example is a monad we call States. If the base category B is cartesian
closed, the State monad arises from the currying adjunction −× S a −S. We

choose (−×S)∞, for which we write
−→
S , to be the inner cim, and the result is

the monad A 7→ (
−→
S (A × S))S. Intuitively,

−→
S is a possibly infinite stream of

states of type S. The ‘base’ of the exponential is the trace of the computation:
a stream that, if finite, is terminated with an answer A and a current state S.
The latter is used only to compose two computations and is not stored in the
stream.

We define ‘put’ and ‘get’ operations as standard liftings of ‘put’ and ‘get’ for
State. The natural transformation obs duplicates the current state and puts it
in the stream as follows, where outlA,B : A×B → A and outrA,B : A×B → B

8

Piróg, Gibbons

are the left and right projections respectively.

A× S (A× S)× S −→
S (A× S)

〈〈outl, outr〉, outr〉 embA×S

For example, consider the following computation in States on Set for
S = N (using Haskell syntax):

let f = do {put 2; save; put 3; save; put 5}

g = do {x <- get; put (x+1); save; g}

in do {f; g}

For any initial state, f evaluates to the trace (2, 3, 〈?, 5〉), while the whole
computation evaluates to (2, 3, 6, 7, 8, 9, . . .).

4.1 Example: Control structures for While

Consider a generalised While language, as given by Rutten [30]:

P,Q ::= A | P ;Q | if b then P else Q | while b do P

For a monad M , the symbol A represents a set of actions (denoted as a), that
is morphisms of type 1 → M1. The symbol b represents elements of a set
B of Boolean expressions, that is a set of morphisms of type 1 → M(1 + 1).
We parametrise the semantics with a ‘guard’ operation γ : 1 → M1, which
allows the addition of behaviour on every choice point of a control structure.
The denotation of a program P is given by [[P]] : 1→M1, defined as follows,
where ◦ is Kleisli composition.

[[a]] = a

[[P ;Q]] = [[Q]] ◦ [[P]]

[[if b then P else Q]] = [[[P]], [[Q]]] ◦ b ◦ γ
[[while b do P]] = ([M inr1,1 · [[P]], M inl1,1 · ηM1] ◦ b ◦ γ)†

Actions denote themselves, and compositions of programs are just Kleisli com-
positions of morphisms. The denotation of if statements first performs the
guard γ, then b, and then the appropriate branch is chosen (we use the left
component of 1 + 1 to represent ‘true’). The denotation of while first builds
an equation morphism by composing the guard, the condition, and the choice
between returning the left component of the coproduct (a constant, which
means ‘stop the iteration’), or performing the body, and right-injecting the
result (which makes it a ‘continue the iteration’ variable). The denotation

9

Piróg, Gibbons

of the entire while expression is a solution to that morphism. The solution
might not exist, or might not be unique; hence, depending on the choice of
M , A, B, and γ, the denotation might not be well-defined. This semantics
specialises to a couple of known cases:

If we choose the regular State monad on Dcppo (the category of pointed
directed-complete partial orders and continuous functions) for M and its unit
on 1 for γ, the solution diagram simplifies to the familiar equation for denota-
tion of While [27, Chapter 4]. So, if we assume -† to be the least fixed point,
we yield the standard denotational semantics.

If we instantiate M with a cim, we can ensure that unique solu-
tions always exist by an appropriate γ-guarding of while loops. (Note
that it is not sufficient to ask for the A actions to be guarded, since
while true do while false do a diverges without invoking an action.) In
case of the States monad, this means that every iteration stores its initial
state in the stream, that is γ = save. Additionally, if we assume that ‘put’
operations are always guarded and ‘get’ are not, we obtain a semantics trace-
equivalent to Nakata and Uustalu’s trace operational semantics [26].

5 Coinductive generalised resumptions

Let 〈M, ηM , µM〉 be a monad, and Σ be an endofunctor on the base category B.
In this section we give a monadic structure to M(ΣM)∞ and examine its basic
properties. We proceed by first giving a monadic structure to the endofunctor

KA = νX.M(A+ ΣX),

which is isomorphic to M(ΣM)∞ through the coalgebraic version of the rolling
rule [5]:

Lemma 5.1 Let F , G be endofunctors. Then νFG ∼= FνGF .

For convenience, we define two auxiliary natural transformations. The
first one, flatA,B : M(MA + B) → M(A + B), flattens a computation that
may return a value or a new computation. The second one, unf : K2 →
M(Id + ΣK2), unfolds and flattens two levels of structure of K. Note that the
final coalgebra map αA : KA→M(A+ ΣKA) is natural in A.

10

Piróg, Gibbons

M(MA+B)

M(MA+MB)

M2(A+B)

M(A+B)

M(idMA + ηMB)

M [M inlA,B,M inrA,B]

µM
A+B

flatA,B = K2

M(K + ΣK2)

M(M(Id + ΣK) + ΣK2)

M(Id + ΣK + ΣK2)

αK

M(α + idΣK2)

flatId+ΣK,ΣK2

unf =

The unit ηK of the monad K is given below. The multiplication is defined
as the anamorphism µK

A = [(mA)] for the following natural transformation m.

Id

Id + ΣK

M(Id + ΣK) ∼= K

inlId,ΣK

ηMId+ΣK

ηK = K2

M(Id + ΣK + ΣK2)

M(Id + ΣK2)

unf

M(id + [ΣηKK , idΣK2])

m =

Theorem 5.2 The following hold:

(i) The tuple 〈K, ηK , µK〉 is a monad,

(ii) There exists a monad distributive law λ : (ΣM)∞M → M(ΣM)∞ given
by λ = µK ·M(ΣM)∞Mη∞ · ηM(ΣM)∞M ,

(iii) There exist two monad morphisms liftl : M →M(ΣM)∞ and liftr : Σ∞ →
M(ΣM)∞.

Proof. The statement (i) can be proved by the structural coinduction pro-
vided by the finality ofK. For example, to prove the associativity of the monad
multiplication, one can define a natural transformation w : K3 →M(Id+ΣK3)
in a way similar to the transformation m, and calculate that m · µK

K =
M(id + ΣµK

K) · w and m ·KµK = M(id + ΣKµK) · w, which means that both
µK
K and KµK are coalgebra homomorphisms µK

K , Kµ
K : 〈K3, w〉 → 〈K2,m〉.

By uniqueness, µK · µK
K = [(m)] · µK

K = [(w)] = [(m)] · KµK = µK · KµK . Dia-
grammatically:

11

Piróg, Gibbons

〈K3, w〉

〈K2,m〉〈K2,m〉

〈K,α〉

µK
K KµK

[(m)][(m)]

[(w)]

The distributive law λ can be obtained from Barr and Wells’ notion of
compatibility of monads [6, Chapter 9], which in this case amounts to the
following equalities (note that Barr and Wells’ book give five conditions for
compatibility, but the last two are redundant, and follow from the first three;
see [11] for discussion):

• ηK = ηM(ΣM)∞ · η∞ = Mη∞ · ηM

• Mµ∞ = µK ·M(ΣM)∞ηM(ΣM)∞

• µM
(ΣM)∞ = µK ·Mη∞M(ΣM)∞

They can also be proved by the coinduction. The distributive law induces two
canonical monad morphisms M → K and (ΣM)∞ → K. We compose the
latter with a monad morphism Σ∞ → (ΣM)∞ given by ι(emb · ΣηM). 2

Alternatively, the definition of µK can be given with the following universal
property:

Lemma 5.3 for any natural transformation u : K2 → K, we define the trans-
formation ũ to be the following composition.

K2

M(Id + ΣK + ΣK2)

M(Id + ΣK)

K

unf

M(id + [idΣK ,Σu])

α−1

Then, u = ũ if and only if u = µK.

Despite the existence of the cospan M → M(ΣM)∞ ← Σ∞, the monad
M(ΣM)∞ is in general not a coproduct of M and Σ∞ as monads. To see that,
it is sufficient to assume that the base category is Set, M is ideal, and to recall
the construction of coproducts of ideal monads by Ghani and Uustalu [14].
In such a setting the coproduct allows only a finite number of interleavings

12

Piróg, Gibbons

between M and Σ∞, so it is distinct from K.

5.1 Complete iterativity of K

Consider the category M -Fema of free Eilenberg-Moore M -algebras, that is,
algebras where the carrier is of the shape MA, and the action is defined as
µM
A . We identify an algebra 〈MA,µM

A 〉 with MA, which makes M -Fema a
subcategory of B. It is equivalent to the Kleisli category for M . There is a
standard free-underlying adjunction F a U : B →M -Fema.

As discussed by Mulry [25], liftings of an endofunctor T on B to M -Fema
are in one-to-one correspondence with distributive laws TM → MT . More-
over, a simple calculation shows that if T has a monadic structure and the
distributive law respects this structure, the corresponding lifting 〈T 〉 is also
a monad. The monad MT induced by the distributive law is equal to the
monad U〈T 〉F .

Now, consider the monad (ΣM)∞. The monad distributive law λ from The-
orem 5.2 gives rise to a lifting 〈(ΣM)∞〉, defined on objects as 〈(ΣM)∞〉MA =
M(ΣM)∞A ∼= KA. The following theorem states that the lifting is also a free
cim (note that MΣ is an endofunctor also over M -Fema):

Theorem 5.4 The monad 〈(ΣM)∞〉 is the free cim generated by MΣ in
M-Fema. Therefore, it is completely iterative.

Proof. For a homomorphism f : MX →M(A+ΣMX) in M -Fema, consider
the following diagram in the base category. It commutes, because KA is the
carrier of the final M(A+ Σ−)-coalgebra.

KA M(A+ ΣKA)

MX M(A+ ΣMX)

αA

f

[(f)] M(idA + Σ[(f)])

It is easy to check that αA, α−1
A and M(A + Σ[(f)]) are also homomorphisms

(modulo the isomorphism KA ∼= M((ΣM)∞)A), and [(f)] is a homomorphism
as a composition of homomorphisms via the computation law: [(f)] = α−1

A ·
M(A+ Σ[(f)]) · f . This means that this diagram commutes also in M -Fema.
One can define coproducts in M -Fema as MA⊕MB = M(A+B). Expanding
the definitions we obtain that the following diagram commutes in M -Fema,
where α∞A : (ΣM)∞A → A + ΣM(ΣM)∞A is the action of the final (A +
ΣM−)-coalgebra (the morphism Mα∞ is isomorphic to α via the rolling rule).
Moreover, [(f)] is unique with this property, since M -Fema is a subcategory
of B.

13

Piróg, Gibbons

〈(ΣM)∞〉MA
M(A+ Σ〈(ΣM)∞〉MA)

= MA⊕MΣ〈(ΣM)∞〉MA

MX M(A+ ΣMX) = MA⊕MΣMX

Mα∞A

f

[(f)] M(idA + Σ[(f)]) = idMA ⊕MΣ[(f)]

Note that in M -Fema, M(A + Σ−) = MA ⊕ MΣ− is a functor, hence
〈(ΣM)∞〉MA is the carrier of the final (MA ⊕ MΣ−)-coalgebra, and so,
according to [22, Corollary 6.3], 〈(ΣM)∞〉 is the functorial part of the free
cim in M -Fema generated by MΣ.

It is left to see that the monadic structures given by the lifting and given
by the free cim coincide. Here, we show it for multiplications. In case of
〈(ΣM)∞〉 the multiplication is given by Mµ∞. For an object MA, we unfold
the universal property of µ∞ (Section 2.3):

〈(ΣM)∞〉〈(ΣM)∞〉MA = M(ΣM)∞(ΣM)∞A

M(A+ ΣM(ΣM)∞A+ ΣM(ΣM)∞(ΣM)∞A)

M(A+ ΣM(ΣM)∞A)

M(ΣM)∞A = 〈(ΣM)∞〉MA

M(α∞ + id) ·Mα∞ = (Mα∞ ⊕M id) ·Mα∞

M(id + [id,ΣMµ∞]) = M id⊕M [id,ΣMµ∞]

M(α∞)−1

One can show that M [id,ΣMµ∞], where [-, -] is the coproduct mediator
in B, is equal to [[idM ,MΣMµ∞]], where [[-, -]] is the coproduct mediator in
M -Fema. Instantiating it in the above composition and some basic properties
of functors give us that Mµ∞ = (Mα∞)−1 · (id ⊕ [[id,MΣMµ∞]]) · (Mα∞ ⊕
id) · Mα∞, which means that Mµ∞ satisfies the universal property of the
multiplication of the free cim in M -Fema generated by MΣ. 2

The above characterisation and Theorem 3.1 yield that K ∼= U〈(ΣM)∞〉F
is completely iterative. The guardedness condition specialises as:

14

Piróg, Gibbons

X K(A+X)

MΣK(A+X) + A

e

j

[α−1
A+X ·M inrA+X,ΣK(A+X), η

K
A+X · inlA,X]

5.2 Example: Bisimulation

Let Σ = Id, so that K ∼= MM∞. Similarly to Cenciarelli and Moggi’s trans-
former MM∗ [9], a K-computation can be seen as an M -computation split
into a series of suspended steps. However, in case of MM∞, the structure
can be infinite, so it can also store a divergent computation. We can see the
result of each step as a rather robust observation about the current state of
the computation. So, even if the computation does not have a final value, we
can still reason about the course of the computation.

We define the natural transformation obs : M →MM∞ as:

M MM MM∞
MηM Memb

It builds an empty level, so that a composition with another value will not
affect the current structure. Intuitively, the outer M is the current state of the
computation, while M∞ is a kind of continuation. To acquire the second state,
we can contract the top two steps of execution using a natural transformation
force defined as follows, where flat′ is equal to flat, but with the monadic
argument as the second component of the coproduct rather than the first.

MM∞ ∼= M(Id +MM∞)

M(Id +M∞) ∼= M(Id + Id +MM∞)

M(Id +MM∞) ∼= MM∞

flat′Id,M∞

M([id, id] + idMM∞)

On Set, we can define a simple notion of bisimulation between programs
as a predicate ≈ ⊆ (MM∞A)2, such that for p, q ∈ MM∞A, it is the case
that p ≈ q precisely if M(idA+!M∞A)(p) = M(idA+!M∞A)(q) and force(p) ≈
force(q), where !A : A→ 1 is the unique morphism to the final object. In other
words, we compare the functorial structure of the outer M (the observable
result of the first step), and continue the process after performing the next

15

Piróg, Gibbons

step with the force natural transformation. This means that two programs are
bisimilar if for every n ∈ N, the respective prefixes of performing the first n
steps are equal.

6 Related and future work

Cims arise from completely iterative algebras. Both concepts have been ex-
tensively studied by Elgot [12] and by Aczel et al. [1,22]. Milius and Moss [23]
consider recursive program schemes in terms of solutions in Elgot algebras [3]
(that is, Eilenberg-Moore algebras for free cims).

Cenciarelli and Moggi [9] introduced the Generalised Resumption trans-
former M(ΣM)∗, which decomposes a monadic computation into a series of
steps (layers of free structure). Hyland, Plotkin, and Power [19] proved it to
be the coproduct M + Σ∗ in the category of monads. The monad M(ΣM)∞

captures also potentially infinite computations. In some categories—and so
programming languages like Haskell—the limit-colimit coincidence [31] identi-
fies M(ΣM)∗ and M(ΣM)∞, but the explicit use of the free cim is significant
in Set and in type theories with guarded (co)recursion. Interleaving data and
monadic actions is a powerful abstraction studied recently also by Filinski and
Støvring [13], Atkey et al. [4], and the present authors [28].

Since the free cim is a final coalgebra [22], we can see (MΣ)∞ in M -Fema
from Theorem 5.4 as an example of Hasuo, Jacobs, and Sokolova’s generic trace
semantics [17], which models state-based systems as F -coalgebras in a Kleisli
category (or, equivalently, a Fema). The coalgebra represents transitions
(for example, with ΣA = A × O for labelled transitions), and the monad
represents the underlying effect (like the Powerset monad for nondeterminism
or the Probability Distribution monad for probabilistic systems).

In this paper we concentrate on the monads and tracing, and we only sketch
potential applications in defining semantics and reasoning about programs.
The natural next step is to formalise a language like Moggi’s computational
λ-calculus [24] with recursion provided by a background cim. It is also an
interesting question whether the presented theory could be used to develop a
practical framework for reasoning about effectful programs in type theories,
like those implemented by the Coq or Agda proof systems. So far, Capretta [8]
represented general recursion by the free cim generated by the identity functor;
we conjecture fruitful applications of other cims too.

Acknowledgments

This work was supported by the UK EPSRC project Reusability and De-
pendent Types (EP/G034516/1). We would like to thank Ralf Hinze, Marek
Materzok, Nicolas Wu, and the anonymous reviewers for their comments.

16

Piróg, Gibbons

References

[1] Peter Aczel, Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Infinite trees and completely iterative
theories: a coalgebraic view. Theoretical Computer Science, 300(1-3):1–45, 2003.

[2] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. On rational monads and free iterative theories.
Electronic Notes in Theoretical Computer Science, 69:23–46, 2002.

[3] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Logical Methods in Computer
Science, 2(5), 2006.

[4] Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. Fibrational induction meets
effects. In Lars Birkedal, editor, Foundations of Software Science and Computational
Structures—15th International Conference, FoSSaCS 2012, volume 7213 of Lecture Notes in
Computer Science, pages 42–57. Springer, 2012.

[5] Roland Carl Backhouse, Marcel Bijsterveld, Rik van Geldrop, and Jaap van der Woude.
Categorical fixed point calculus. In David H. Pitt, David E. Rydeheard, and Peter Johnstone,
editors, Category Theory and Computer Science, volume 953 of Lecture Notes in Computer
Science, pages 159–179. Springer, 1995.

[6] Michael Barr and Charles F. Wells. Toposes, Triples, and Theories. Grundlehren der
mathematischen Wissenschaften. Springer-Verlag, 1985.

[7] Andrew Butterfield. Reasoning about I/O in functional programs. In Proceedings of the 4th
Central European Functional Programming School, CEFP’11, pages 93–141, Berlin, Heidelberg,
2012. Springer-Verlag.

[8] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer
Science, 1(2), 2005.

[9] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational
semantics. In Proceedings of the 5th Biennial Meeting on Category Theory and Computer
Science, CTCS 93, CWI Technical Report, Amsterdam, The Netherlands, 1993.

[10] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and Tobias Nipkow,
editors, TYPES, volume 806 of Lecture Notes in Computer Science, pages 62–78. Springer,
1993.

[11] Jeremy E. Dawson. Categories and monads in HOL-Omega. In preparation, http://users.
cecs.anu.edu.au/~jeremy/pubs/holw-cm/root.pdf.

[12] Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Logic Colloquium
’73, Proc., Bristol 1973, 175-230, 1975.

[13] Andrzej Filinski and Kristian Støvring. Inductive reasoning about effectful data types. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’07, pages 97–110, New York, NY, USA, 2007. ACM.

[14] Neil Ghani and Tarmo Uustalu. Coproducts of ideal monads. Theoretical Informatics and
Applications, 38(4):321–342, 2004.

[15] Gabriel Gonzalez. The pipes package, 2012. http://hackage.haskell.org/package/pipes.

[16] Peter Hancock and Anton Setzer. Guarded induction and weakly final coalgebras in dependent
type theory. In L. Crosilla and P. Schuster, editors, From Sets and Types to Topology and
Analysis. Towards Practicable Foundations for Constructive Mathematics, pages 115 – 134,
Oxford, 2005. Clarendon Press.

[17] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Logical
Methods in Computer Science, 3(4), 2007.

[18] Graham Hutton and Diana Fulger. Reasoning about effects: Seeing the wood through the
trees. In Proceedings of the Symposium on Trends in Functional Programming, Nijmegen, The
Netherlands, May 2008.

[19] Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.
Theoretical Computer Science, 357(1-3):70–99, 2006.

17

http://users.cecs.anu.edu.au/~jeremy/pubs/holw-cm/root.pdf
http://users.cecs.anu.edu.au/~jeremy/pubs/holw-cm/root.pdf
http://hackage.haskell.org/package/pipes

Piróg, Gibbons

[20] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
Mary S. Van Deusen and Bernard Lang, editors, Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, pages 71–84. ACM Press, 1993.

[21] Oleg Kiselyov. Iteratees. In Tom Schrijvers and Peter Thiemann, editors, FLOPS, volume
7294 of Lecture Notes in Computer Science, pages 166–181. Springer, 2012.

[22] Stefan Milius. Completely iterative algebras and completely iterative monads. Information
and Computation, 196:1–41, 2005.

[23] Stefan Milius and Lawrence S. Moss. The category-theoretic solution of recursive program
schemes. Theoretical Computer Science, 366(1-2):3–59, 2006.

[24] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–
92, 1991.

[25] Philip S. Mulry. Lifting theorems for Kleisli categories. In Stephen D. Brookes, Michael G.
Main, Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical
Foundations of Programming Semantics, 9th International Conference, New Orleans, LA, USA,
volume 802 of Lecture Notes in Computer Science, pages 304–319. Springer, 1993.

[26] Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for While.
In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs,
volume 5674 of Lecture Notes in Computer Science, pages 375–390. Springer, 2009.

[27] Hanne Riis Nielson and Flemming Nielson. Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., New York, NY, USA, 1992.

[28] Maciej Piróg and Jeremy Gibbons. Tracing monadic computations and representing effects. In
James Chapman and Paul Blain Levy, editors, Proceedings Fourth Workshop on Mathematically
Structured Functional Programming, Tallinn, Estonia, 25 March 2012, volume 76 of Electronic
Proceedings in Theoretical Computer Science, pages 90–111. Open Publishing Association,
2012.

[29] Gordon D. Plotkin. Adequacy for infinitary algebraic effects (abstract). In 3rd Conference on
Algebra and Coalgebra in Computer Science, CALCO 2009, Udine, Italy, pages 1–2, 2009.

[30] Jan J. M. M. Rutten. A note on coinduction and weak bisimilarity for While programs.
Theoretical Informatics and Applications, 33(4/5):393–400, 1999.

[31] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761–783, 1982.

[32] Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: A functional semantics of
the awkward squad. In Haskell ’07: Proceedings of the ACM SIGPLAN Workshop on Haskell,
pages 25–36, 2007.

18

	Introduction
	Completely iterative monads
	Initial assumptions and notations
	Cims defined
	The free cim

	Cims, adjunctions, and tracing
	The States monad
	Example: Control structures for While

	Coinductive generalised resumptions
	Complete iterativity of K
	Example: Bisimulation

	Related and future work
	References

