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Summary

This paper follows Joseph Goguen’s suggestion that two-categories provide a good framework
within which to construct models of parallelism. The horizontal and vertical compositions of
the two-category are applied to the individual observations of the behaviour of processes, which
are composed in series (for sequential execution) or in parallel (for concurrent execution). As in
Burghard von Karger’s {?] Sequential Calculus, a process is modelled by the set of observations
that it could possibly give rise to; and the two compositions are defined pointwise. Their algebraic
properties turn out to be shared by a fair range of models of parallelism.

1 Parallel composition of observations.

It is well known that categorical composition provides a good model of sequential compo-
sition of (observations of ) sequential programs. It is equally applicable to parallel composition of
concurrent processes: here are four very simple examples.

1. The behaviour of some process may be recorded as a sequence ? of interactions with its
environment. The behaviour of the environment is similarly recorded as a sequence s of
interactions with the process. A record of the parallel interaction of a process composed
with its environment must be simultaneously a record of both their behaviours, i.e., { must
equal 8. This is the tightest possible coupling between two concurrent processes!

The lock-step model of parallelism is represented by the discrete category, where all the
arrows are identities, and they compose only with themselves, This composition is denoted
&, after the Kronecker delta. Its properties are expressed categorically:

sl =zal==w

e = .
Like many parallel combinators, § is commutative as well as associative, When lifted to
sets, this operation turns to simple intersection, which is exactly the way that parallelism
is introduced in the trace model of CSP:

{zéylaeXAyeY} = XnY.

'For £ : A— B, © 1 refers to the unit of A (the source of z), and z | to the unit of B (the target of z).




2. Another familiar kind of parallelism is the coupling of two processes evolving simultaneously
but disjointly, in complete isolation from each other. Their joint behaviour is well described
as a pair (z,y), where z describes the behaviour of one of them, and y the behaviour of the
other.

This pairing operator is everywhere defindd, so we need a special object, the terminal object
1, which is the source and target of every arrow

Of course, pairing is not associative; but there is a canonical isomorphism between different
bracketings of pairs:

((ma ¥ z) ~ (m5 (7, 2))-

That is good enough for the purposes of categorical modelling.

3. Most interesting models of concurrent execution lie between the extremes of lockstep con-
currency and complete disjointness. There are certain events (like synchronised commu-
nications) in which the two processes engage simultaneously together, and certain other
events or occurrences in which they engage separately and independently. For example, let
us confine attention to just a single event of interest, and let p be a set of times at which
one process engages in an occurrence of that event, and let ¢ be the set of times at which
another process engages in the same event. Then {pU¢) is the set of event times observable
of the process resulting from their parallel composition.

The times in the intersection (pN¢) represent events in which both processes have engaged
simultaneously; whereas times in their exclusive union (pVg) represent events in which
only one of them has engaged; their joint events have been treated as internal events, and
so concealed. This models the CCS definition of parallelism, which is only slightly more
complicated.

In general, a powerset M is a commutative monoid (M,U,{ }), with composition U and
unit { }. It is turned into a category by the definitions p T = p| = { }.

4. Consider a process that engages in only two kinds of event, say inputs and outputs, where
we ignore the value of the message communicated. Its behaviour is represented by the pair
of sets (p, ¢), where p gives the times of the input events and ¢ gives the times of the output
events. Two such processes can be chained (3») by connecting the outputs of the first to
the inputs of the second, so that each message is input and output at the same time; but
each occurrence of such an internal communication is concealed. This behaviour is defined
in the same way as for the relational model of sequential composition:

»al= (9 =1(ep)
(»,0)>(g,7) = (7).

This gives the same effect as chaining in CSP. In a more realistic model the sets p and g will
contain pairs (¢, m), where ¢ is the time at which message value m was communicated. In
further generality, a greater number of channels can be modelled by a tuple of such sets.
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Two-categories: sequential and parallel composition.

If we wish to model both sequential and parallel combinators, we will need two separate

compositions: the sequential composition, denoted by semicolon, is often called horizontal (with
horizontal source and target arrows); and the parallel composition, denoted by |, is called ver-
tical (with vertical source and target arrows). The category is called a two-category if the two
compositions distribute through each other in the sense of the exchange law:

(z; y)|I(a; ) = (z|la); (y||b) whenever both sides are defined.

The proviso is equivalent to
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The other defining condition is that every horizontal unit must also be a vertical unit, i.e.
— - = —
zl= =2, ¢ |= z,etc

1.

The simplest example is provided by the Kronecker §; its introduction as a vertical compo-
sition into any category makes it into a two-category

T1=7% = (2])
(z;9)6(a;b) = (zda); (ysb) whenever z = ¢ and y = b.

. . — — . .
The horizontal units have the form « or z; all of them are vertical units, because every
arrow is a vertical unit.

. The standard definition of composition in the product category is nothing but a statement

of the exchange law:

(z,a); (,8) = ((z;9),(a;})).

Pairing has to be classified as the horizontal composition, because the only horizontal unit
is the terminal unit, which is certainly a unit for the other composition

N> =1=1=¢et.

. Let T' be the partial order category of time intervals. Its arrows are pairs (z,y) such that

z <y, and

(,9); (1,2) = (z,2).

Let M be the monoid of time-sets under union. Consider the category 7'x M. The standard
composition of the product category gives:

(8,p)” = (E,{})
(5:2)” = (5,{})
(s,p);(t,q) = (3;t:PUQ)-
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In (s,p), Sand s represent the start time and finish time of the process, and p represents
the intermediate times at which it interacts with its environment. So it is reasonable to
stipulate that p C s; and then the definition given above is an exact description of an
observation of the sequential composition of two processes, contributing the behaviours
(s,p) and (t,q) respectively to their joint observer.

When two processes are run in parallel, they begin and end at the same time; and each
event that occurs is contributed by one or both the partners. That leads to a definition of
the vertical composition:

(p) 1= (s{}) = (s,2)1
(s,2)I(s,¢) = (s,pU g).

This example is just the standard definition for the two-categorical product T' x M, where
T and M are two-categories, and T is regarded as the two-category (T, ;,8) and M as the
two-category (M,U, V). Obviously, any commutative composition like union forms a two-
category with itself.

4. Consider the categorical chaining operation (3>) defined in 1. 4 on the product of the monoid
M with itself. But M is itself a category with composition U, which lifts in the standard
way to the product M x M. This is now a two-category with U as horizontal composition
and 3> as vertical

(myn)” = ({ L{}D = (mn)"
(myn)T= (mym) (myn)l = (n,n)
(@)U (r,s) = ({(pUr),(qUs))
(ma) > (q,7) = (p,7).

The exchange law is proved:

[(pu(r,s)] > [(p,d)u(r,s)

[(pUr),(qgUs)] > [(PUr)u(qdus]

(pUr), (¢ Us) ifg=p As=1
- (Pﬁ Q) > ('p’a q!)] U [(T) 3) > (T", 3,)]'

({ }.,{ }) is the only horizontal unit, whereas vertical units have the form (p,p) for any
set p . It is to satisfy this unit law that M must be a monoid (with only one unit), The
exchange law would be satisfied if M were any category,

This example is interesting in that both the operators involved can be interpreted as differ-
ent forms of parallelism, one implemented by interleaving and the other by synchronisation.
A sequential composition can be introduced by the construction of the previous section.

3 Lifting to sets: additional realism and complexity.

The simple examples given so far fail to recognise some of the complicated ways in which
real parallel systems can go wrong, for example by deadlock, or divergence. Furthermore, we
have not modelled the important external choice operator (+ in CCS or || in CSP).




Realistic modelling of these errors will require more complicated observations, for example

inclusion of a deadlocked observation (say O, with 0=0 = 0). This could be the target of all
observations that end in deadlock, whereas 4/ could be the target of those that terminate properly.
Let +/ be the source of all observations except O; this ensures that all properly terminated
processes can be extended by sequential composition, but deadlocked ones cannot, because (O; x)
is undefined for all # other than O,

In general, one also needs to consider the interplay between individual observations and the set of
observations that model all the possible behaviours of a process, perhaps a non-deterministic one.
Consider, for example, a process that may immediately deadlock or may immediately terminate.
It has two observations {z,y} where :

Ez‘:!;:\/:?a.nda?:O.
Consider its sequential composition with {y}, the deterministically terminating process SKIP

{z v} {y} = {y}!

(in CSP, this “law” would be expressed (STOP M SKIP); SKIP = SKIP).

The theory says that the deadlock (z) disappears: in practice it does not. It is the theory that
must be adjusted by ensuring that every set representing a process will respect prior deadlock.
An easy way of doing this is to stipulate that every set contains the object O itself. Now we have

{073:33’}; {O:y} = {O,:c,y}

and the possibility of deadlock is preserved.

It would be interesting gradually to extend the complexity of the simplest models, say in
the direction of timed CSP, or Abramski’s interaction categories. Would anyone like to help in
doing this?

Meanwhile, thanks to Gavin Lowe for help and encouragement.




