o,

ot y : . . Do
(/\/\/{"ﬁmmg Y RV o t}a,wéwe e él'iejia,ys,fg <,
ot g %
fod ST
Linking Z and CSP '

70
ST A RSN Sl
C.A.R. Hoare

The objective of this course is to construct a link between Z used as a specification
language and CSP used as a design language for reactive computer systems. A
communicating process can be specified in Z as a schema declaring the relevant
observations (traces, refusals, divergences), and describing their intended properties.
A sequential process, for example in occam, is one that includes initial as well as final
values for these variables. Complex specifications can be built up using the operators
of the schema calculus, - conjunction, disconjunction and sequential composition. |

Moving to the design phase, the process of stepwise decomposition replaces
unimplementable operators (like conjunction, and negation) by the combinators of an
implementable programming language, in our case CSP. Disjunction and sequential
composition are retained; they need to be supplemented by new schema operators for
recursion, parallel composition, external choice, etc.

At each step of the design, correctness is established by proof of a logical implication
between the schemas. Eventually, the whole design is expressed solely in the notations
of the programming language. The interpretation of this program in the schema
calculus will be the strongest specification of all observations that can be made of its
execution. Thus the schemas essentially provide denotational semantics for the

language.

The major risk in stepwise design is the postulation of an interface or a component that
turns out to be unimplementable. The extreme example is the dreaded miracle - an
unsatisfiable schema, equivalent to the predicate false, which will always be provable
correct. * Exclusion of a miracle is achieved by a collection of healthiness conditions,
which are proved to be satisfied by every program in the language. Examples are
prefix closure of traces in CSP, or totality of relations in the refinement calculus.
Healthiness conditions are simply expressed as algebraic laws, and can be added to the
schema calculus to help prove the properties of programs and designs. Although they

are individually simple their combination both introduces and explains the inavoidable

complexity of the senjantics of a programming languages like occam.

The course starts with the simple trace. model of CSP, and used the concept of a buffer

as an example. Non-determinism is modelled by disjunction and concurrency is -

oversimplified as conjunction. The only healthiness conditions is prefix closure. The
model can be enriched by adding alphabets. This permits the definition of prefixing,
and the implementation of simple recursine processes together with their proofs of
correctness.



A more realistic model of CSP introduces refusals to specify the responsiveness of a
process to external signals. This permits external choice to be distinguished from non-
determinism. To define sequential composition, we need an additional variable to
distinguish waiting states from termination, and to distinguish deadlock from SKIP.

The final lecture shows the link between the simple specifications of Z, and the pre-
condition/post-condition pairs used by VDM and other refinement calculi. Following
the examples of CSP, we introduce a variable ok to distinguish non-divergent from
divergent states. Simple healthiness conditions ensure divergence is the worst thing
that can happen and that it cannot be recovered by sequential composition.

These lectures have used the schema calculus of Z to define the essential features of
the reactive programming paradigm. Pérhaps further advantage can be taken of the
modularity and extensibility of Z schemes to define additional features and even
different paradigms in a unifying framework.




