

Problems of Software Development

C.A.R. Hoare

Summary .

The main part of this papor Is a reprint of the summary
of a "teach-In" devoted to problems of software development.
Of continuing Interest is the diagnosis of the causes of
failure of large software projects, and a summary of the
seventeen criterla of the quality of software. The historical

backgfound is surveyed In an Introduction.

R Q%c&ﬁv&] g)[So i:tw-t« .‘
Z. Fa@fmmc

196 2

0 Introduction, &

In the early ninotcen~sixties a small but profitable
Computer Manufacturer declded to smbark on a comprehensive
operating system project for a new machlne, of the type now
known as "third generation software®., 1t Included an
automatic single-level store (SPAH), automatic buffering of
peripheral transfers (T$S8), a filing system, job control,
editing, a new assembly language and new compllers for FORTRAN
and ALGOL 60, more gencral than anything gone before. Thls
was known as the Mark |1l Software Project. Documents
describlng Y"concepts and facllities™ were sent to customers,
and deliveries were due to starf abcu? 18 months after }%ézd*
initiation, A team of about +wen$§ programmers started work.

Moanwhlile the attention of the Company tfurned to a new
machlne, cheaper, smaller and more fashionable than The other,
Software designs for the new machine were 1o be scaled-down
versions of the software of the previous machine, and work
started with a team of about five programmers. 1t was soon
declded Tthat sales of the old machinoe were falling off, anhd
that software development for i+ would cesase on completion of
the exlsting software commliinent, thereby roleasing programmers
for the new machine.

But somehow ‘the completion of this software dld not seam
Jo get any closer., Promised delivery dotes passed, and fthe

promlses were duly renewed %CPGH?A § numbers of Inexperienced
GL« (RN
E enfua iy some experlenced

programmers werc recrulted.

programmers (and even managers) were rocailed to the project,and

the specifications were drastically curtalled, and progress

charts were made glving targets week by week for each memoer

of every team. These showed that the delivery of the flrst

ttem of Mark 1! software (the ALGOL 60 complilier) could fake

place In about four montns. By dint of extremely arduous work

on night shift this target was met - the first actual software

dellvery the Company made during a period of fwo years,
Unfortunately, It was undeliverable. |ts speed of

compllation was only two characters per second, which perhaps

would be acceptable by present-day standards, but compared

unfavourably with a speed of near a thousand characters per second

;;%ﬁy oW
"

2

of the previous ALGOL compiler for the same machine.

The maln reason for this was insufficlent planning in the
use of the "single-lovel™ store concept, whlch was crippiing
even though the backing store was what was subsequently known-
as "extendod core", only fifteen times slower than the main
store. Over the next few wceks, an intensive Invostigation
of thls trouble was conducted and resulted In a factor-of-
four Improvement in performance. Further improvements were
posslb!e‘bu% would give diminlishing retnras, There was a

hardware 1Imit on the size of the main store of the machine,

which prevented the usual solution of free store handouts to all

customers.
With some anguish, the whole Mark Il software project

and Thirty man-years of programming offort was abandoned. A
moeting of customers was called To explain the situation. 17
Wwas ga1§Jng to find that many of them were not surprised,

@szr” was at thls point, on October 22, 1965, that a "teach-
in"“Was held of all senior programmers and section leaders to
attempt to understand the causes of the disaster and agree on

a remedy. The following sectlons arc an unedlted transcript

of notes which | made of the discussion - only the names of

the machines have been removed. A flnal section on tho
managemen+ structure of the software group has also been omitted.

& It is pleasant to report that the Company woent on To
\;«w*@‘

presentable software, both for Its old machine and for Its new
4@9gne, for example, tho February 1966 date for delivery of ALGOL

- on the new machine was met. However great care was taken to

eslgn and produce (more or less on schedule) ‘some quite

\)

&ﬁbévoid promising software with over-ambiiious specificalions
wor Impossible delivery dates, Unfortunately its competltors
tere not so cautlous (or perhaps scrupulous) In avoiding such
promises, and many customers were lost.

Eventually the Company was taken over by a larger one,

W i)

A\ }ﬁ;% “which was shortly takon over by an even larger one stiil. Its
IS \@ identity is thus so completely submerged that | cannot aeven
i%§hwgﬁ$mp&R give the usual acknowledgement. Nevertheless, my tThanks go
ﬁQW- to all who worked for me at The time and afterwards, since they

Y i‘J\”

have ugh1 ﬁg}(?he hard way) all | .know about the design

/"’\ﬂ EW

and management of large software projects,

0f course, since the events described above, many larger
software projects have culminated in even more spectacular
and better publlicised failure. The reason for publishling the
following nofes is in the hope that 11+ will help others to
avold simitar fallures In the future. [t is not only by reports
of success that the state of +he art can be furthered.

The reasons why the report of an event which occurred

some seven years ago has now baen edited Is partly for

historical inferest, but mainly because | think most of The
problems It dascribes are still occurring today. The only
comment which | would now add Is that the seventeen objectives
of software are far more irreconclilable than | imaglned at the
time, and that any software deslign can only be based on a

clear apprecuakfon of the relative weight to bhe glven fo each

of Them, If wolild “be as well fhHat These welghts were lald down
mby“MHﬁﬁgémea% In accorcance with the commerclial Interests of

the Company. [myse}f would prefer fo give welghts in accoﬁdénce
wlth the prac+lca!.1n+eresfd of the software usUr,thich are
often very differen+f‘xl belleve that the r1gh+ ‘order of priortty
for the user to be roughiy '
Clear Definition of Purpose.f

Stmpilcity of Use. -
Operating Easa, -

Clear, Accurate and Prccise User Documents.

Rugg@dness.
Reliability.

Early Availabllity.
Brovity. .

= e ©° o = o

Efficiency. \\\
Suitabli!lty to Conflguraticn.
Wide range of application. \\

OO OV B NS —

“ & & 3

But of course the other oritariz must not be wholly ignorsed.

c’?Q) w@/ &i 4/ g;wgi,wng g€ L&ﬁf{ﬁﬁ% WA ugwg, 437)

(awi @;eﬁ AL }é{ /I c,i mc,LWG Mw& Lej\,r
bf/} 'S ,&insaw LA/NK - L}{/&@ M@%ﬁmw&%

. The Purpose of Software
To increase sales of The Company's computers by providing

a suitable degree of software support; and to glve maximum

satisfaction to customers with resources available.
Software support comprises those programs, compilers,
sub~routines, etc., which simplify and expedite the task of
applying a computer In a relatively wide area of problem
solving.
2. Recent Major Customer Grievances
In recent times the software situatlon at +he Company

has given much cause for dissatisfaction among customers.

Thelr major legltimate grievances are:
2.1+ Cancellation of Projects.

Several projects have been canceliled at a very late stage
even after their descriptions have appeared In the Technical
Manual. The specifications of other projects have been
significantiy reduced.

Gn our new machine, TSS has boen virtually shelved,
and the specification of SPAN will probably be simpliflad

before implementation on backing store.

2.2. Fallure to meet Deadllines,

For our MKk.I! software on our current machine, deadlines
set in March and agaln in June 1965 were passed without
notice; and on our new machine, the November dead]lline for
ALGOL has had to be postponed to February 1966,

Z.3. Excessive slze of Software.
In the speciflication and planning of software insufficlient
thought was given to predicting the size of the subroutines
and of the programs which used them; and in the event the
size has proved not to be justified by the usefulness of
the facilitles provided,
On our new machlne, early predictions of the slze of +the
ALGOL compiler and systems programs were over-optimistic,
but lack of effort has protected us from the worse excesses

of the sariier machine,

2.4, Excesslvely slow programs.
In the design of software insufficient thought was given

to predicting the speed of the programs; and in the event

I

the ALGOL and probably also the FORTRAN compilers have been
found to be quite unacceptably slow.
On our new machine, the absence of fwo~level storage

has protected us from the worst errors of the previous machine,

2.5, Failure to take aécounf of Customer Feedback,

Earlier attention paid to the gquite minor requests of
our customers might have pald as great dividends of goodwil]
as even the success of our most ambitlous plans,

2.6, Poor Information flow to Education Dept. Sales
and Customers,

As a result of hasty Improvisation undertaken at the
fast minute to get the programs delivered, the documentation
of the programs actually delivered is sadly lacklng; and
tThe education department has had no chance to keap up 7o
date and train customers programmers In fhe use of the

programs aciually avallable.

3., Investigation of Causes

The causes of +the failure summarised In the previous

section may be classified roughly as:

I+ Failing within the software group due mainfy to
inexperience In planning and prediction. -

2., Failings within the software group due mainly to
organisational and communication problems.

3. Grievances, which relate to circumstances wholly or
partly out of the control of the softwarsc group.

3.1, Failure In proediction.

The failure to predict successfully the consequences
of the Company's ptans and policies might be sald to be The
maln cause of the trouble, since if we had foreseen the
trouble, we would certainly never have embarked upon the
plans,

3.01,1, Overambition., _

The goals which we have attempted have obviously proved
to be far beyond our grasp. Even if it were theoretically
possible To implement so great a volume of Interlinked programs,
it was obviously not a practical possibility in the prevailing
circumstances. On our new machine, the attempt to achieve

3
compatibility with commerclal software developed outside
the group, has bhasicatly failed because it was more difficult
tfo achieve than was expected,

3.1.,2. Estlimation, and consideration of grogram size,
and speed,

Early and correct estimetes of the slze and speed of
compilers and other programs would have led to The use of
moro successful technliques of implémentation - or abancon-
ment of +the project.

The fact that !+ was extremely difficult to make Thesse
estlmates in advance might have hbeen a warnlng not To adopt
such complex technlques, or at least to keep a closer watah

on these factors during the course of Implementution.
3.1.3, Estimation of effort requlired,

The amount of effort required fto get a preogram fo a
state of dolivery has been consistently underestimated. For
simple appllications programs, a iypical productivity flgure
for a programmer engaged on flowcharting coding, and testling
Is 100 single~address instructions a week. For complex
inferlinked programs, compilers, and for software in general,
a figure of 40 instructions/wk is guoted and borns out by
our experlenca, For systems programs floating polnt routines,
input/output routines, and other programs which occupy cors
store space during the running of customers' programs, the
utmost care In coding ts required; and 20 instructlons/waek
would be a good flgure, if It can be afforded,

All these figures are based on:

I« feasible original specificatiocons

Z» minimal changes to specification

3., The best planning,coding, and Testing tachnlques

There Is no known way of ostimating how long 11 will
take to deliver a program which has been partially developead
without satisfying these criteria.
5.1.4, Fallure to Plan Coordination and Intoractlicon

cf Programs.

Where the caocrdination and dependency of programs has
teen accepted as desirable or necassary, the greatest possibic
care must be exerclsed in planning and clearly deflining The

simplest possible interface between the programs. On both

sltdes of the Interface the programmer sﬁould try to
understand the major requirements of the other side, and

a continuous watch should be kept on the slituation by

both sides. Even whon tho greatest care has been exorclsed,
somg treuble is to be expected and allowed for in the

final linkup.

5.1.5. No Early Warning of Fallure.

Even the best based predictions will sometimes prave
incorrect, so that it Is wise to draw up a list of the
assumptlions on which each prediction has been based, and o
check regularly whether the assumptions are still Justifled
or not. Since many predictions are based on a breakdown of
a task Into Its compenent parts, a contlnuous check of
actual agalnst estimated achlevement on each of +he parts is

the best indlcation of Iikely success or fallurs.

3.2. Communlication and Orgenisational Problems.

The problems of orgsnisation and communication In
software design and Implemantation are extremely severe,
owing to the great mass of specialised and Interacting detalls
which must be controlled and coordinsted within soms c!éar
general framework,

The severity of the problem means that especial care
must be ftaken by all membors of the department that Information
s distrituted and gathered in the right places at the right
Time.
3.2.1. Proper Procedurss for Program Changes,

it is In the matter of changes to program speclficatlion
That fallure t¢ consult '.and communicate result in the greatest
difficulfleos. Each programmer must maintalin a continuous
awareness of the activitlies and needs of other programmers
whoe aro relyling on him, as well as the progress of those on
whom he Is rolying. Draft changes to specification must be
clrceulated 1o interested partlss, and authorisod by the

group leader before they are Implemented.

3.2.2. Ccherency of Serics of bocumcnts,

Whan a serles of documents Is issued relating to the
sams project or subject, the documents should be numbered,
and each successive document should Indicate in what way it

is retated to 11s predecessors; for exemple, whother it

i

supplemants 11, adapts i+, or supercedes I+,

Fallure to do this can lead To grave confusion.

3.2.3. Llaison with Education and Sales,

In addition to the problems ¢f communication wifthin the
programming group, there are equally severe problems of passing
up-to~date Information to ths Education Dept. for teaching
to our customers, and to Sales Department so that Sales Pollcy

may be based on a realistic apprecliation of the situation.

3.2.4, Hanagement Lialson.
A clear picture of all the alims, activities, and diffi-

culties of the dopartment must be presentoed to management,

so that longer ferm and even shorter term decisions may be

based on a correct appreclation of The sltuation rather than
upon guesswork.
3.2.5, Cusiomer Lialson.

Ultimately, the most Important form of fialson is that
with the customer, who must be given a falr and accurate
Indicatlion of the nature and purpose of the programs whlich
he is to expect, and when he Is to expect them. Comments and
feodback from customers must be given the greatest weight,
but must not lead to any rash promises.

3.2,6. Clear and Stable Definition of Responsibilities.

In the recent past, The clear division of responsibliliiles
among the members of a programming team has often been lacklng:
and programmers have been uncertalin about tThe extent of Their
responsibilities for the programs they are doveloping,
Furthermore, programmers have been moved from one project o
another wrather more freely than is consistent with the

esTablishment of proper long-term responsibilities,
Fundamentally, the task of sach software programmor |
(internal or externall

5 to

detiver programs which other programmers

are willing and glad to use.

m

5.3, GRIEVANCES,
3.3,1. Lack of Machine Time,
The lack of sultablie machine Time during software

sincoe soft-

!

development is |ikely to be & parmanent featuro,

ware usually has fo be developed simultancously with tho

6

hardware which it uses. The original deslign and planning

of the software should fTake this fact Into account.

3.%,2. Struggle for Machine Tlmne.

Small amounts of machine tTime would be more acceptable
if I+s availabhltity is consldered to be beyond question. In
fact, it has been a constant struggle to maintain any
allocation inviolate from oencroachment; It is This struggle
which militates against efficient planning of the use of The

tlme availéb!e.

3.3.3. Unpredictability of Machine Time,

When machine time is made available (especially from
the productlon floor) this Is usually only at short notlice.
This makes planning Impossible, and encourages precipifate
and unprofitable use of eveﬁ)ThaT +ime which becomes avallable,
This Is particularly trus when a programmer attempts to make
up for a iong perlod without machine time by a long session at
the console, : ’
3.3.4., Lack of Suitabile Periphsrals.

The non-availabllity of suiteble peripheral equipment 1s
often even more difficult to overcomse than that of central
processor time, whlch is sometimes offered in exchange.
Again, this fact should Le taken into account in the planning

of software for peripherals.

3.3.5, Unrellabllity of hardware,

Even when machine time is avallable, the unreliabllity of
processor and peripheral equipment often causes mors frustration
and waste of time than its completo absence. This Is aiso due
to the need to test progrsms on early profolype or production
models, and the unavoidable inexpecience of commissioning a nd
main*enaﬁce personnel,

{n gencral, a reguler guaranteed allocation of reliable
machine time, even quite small, is far better then the constant

struggle to make up for loss of machine ftime by other means,.

F 3.3.6., Disperslion of Staff.
' Problems of communication, which are already sufficliently

troublesoma In software development, are further aggravated

I
!

§ by the dispersion of staff throughout the bullding.

t

B

3.3.7, Lack or Absence of Tape Preparation Egulpment,

On our new machline the absence of propor paper tapo
preparation equipment has and will continue to prevent Inter-
change of progrems and date between curselves and our customers,

I+ necessitates maintenance of twe versions of every program.

5.3.8., Lack of Firm Hardware Delivery Dates,
Delivery dates for hardware on which software development
depends are extremcly difficult to obtain, and when obtainod

are often werthiess.,

3.3.9. Lack of Technical ¥Writing Effort.

For some time it was hoped That deficlencies in originai
pregram specliflicatlions could be made up by the skill of a
technical writing department. When this hope proved to be

unjustifled, there was a natural ground for complaint.

In fact the original hope was misquided; +the design of
a program and the design of Its speciflcation must be under-
takoen in paraiiel by the semo person, and they must Interact
on each other. A lack of clarity in the specificatlion Is one
of the surest signs of a deficloncy In the program I+ describes,
and the two faults must be removed slimultaneously before the
project ls embarked upon. This means that the program deslgner,
usuatly the sectlon leader, must be responsitle for the

description as well,

3.3.10, tack of Software Knowledge Outside Programming Group.
The tack of knowledge and interest In software which

I's prevaient outside the programming group Is not entirsly a

grievance, since it can be remedied by more caro faken by the

programming group in presenting the necessary Information In a

simple and, palatable form,

3.3.1t, Interference fromLApove.

On our new machlne?&gé?é?ons impinging on software
deslgn (e.g. character codes, paper tape preparation equipment,
etc.) werse taken by management possibly without a full realis-
atton of +he more Intricate Implications of the matter. Again
this circumstance can be partlally remcdied by better information

flow from the programmers,

3.3.12, Over-optimism fo Customers.

There has beon some lack of caution on the part of
salesmen and programmers In maklng dromises or near promises
to customers about the merits and aveilability of software.

I'n fact, the programmer should always promise Just a tittle
tess than he knows to be achievable, and quite a bit less

than hoe hopes will ultimately be attained. The salesman
should assist the programmer in aveiding excessive commlitments,

rather than -encourage more ambitious promises,

4, The Crifterla for Quallty of Softwarea,
in the recent struggle to deliver any software at all,
the first casualty has been conslderation of the quality of
the software delivered., .The quality of software is measured by

a number of totally incompatible criteria, which must be care-
fully balanced In the design and Implementation of every program,
and In the incorporation of improvements in programs already
delivered,

4.1+ Clear Definitlon of Purpose.

The aim of every ltem of softwars must be most clearly
defined; and recommsndations on the circuﬁsfances of its
successful use must de fully explained. Vagueness in This
matter is intolerabla; and of course, every feature of the

program delivered must He oriented towards the declared purpose.

4.2, Simplicity of Use.
The software must be very simple to understand and use In
the majority of cases, and the extra complexity of Its use In

less normal circumstances must be kept To a minimum,

4,3. Ruggeadness,

As well as being very simple to use, 2 software program must
be very difficult to misuse; It must be kind to programming
errors, giving clear indicatlion of fthelr occurrance, and never

becoming unpredictable in its affects,

4.4, Early Avallabillty,

Software must be made avallable ftogether with the first
delivery of the hardwarsc to which it is rclevant. ¥ software
s not avaitanle at this time, the customer Is forced to
dovelop his own ad hoc techriiques, and may never be weancd
to use the more elegant metheds of soffware which has arrived

too tats,

4.5, Reliability,.

The original program dellvered must be as free from
errors as possible, and If errors are discovered they must
be capable of correctlicn with the greatest rapidity. This
is dependent on simpliclity of programming techniques and
first-class program documentation.

4.6, Extensibllity and tmprovability in Light
of exparience,

Since tack of hardware and lack of experlence makes
[T imposslble to da!liver perfoct software In & Mark | version,
the software programs should be capable of further developmsnt
and improvement, Thls agaln demands simpliicity of approach
and good documentation.

4,7. Adaptabllity and Easy Extension to Differant
Configurations.

The purpose of sofftware 1s to satisfy as many custonmsrs
as possible, Including those with 2 wlde range of configurations.
Furthermore, a customer who expands his hardware after purchase
will wish 1o aveoid changing his programs or his programmling
techniques and concepts,

4.8, Sultatitity to Each Individual Configuration of the
Range.

In addition to adaptability over a range of conflguratlions,
the software actually avallable for cach membar of the range
should bwe well suited to the capabilitics and needs of that

particular conflguration,

4.9, Brevity.

software programs should be as short as possible,
particularly those which have to co-exist in the stors with
the programs which use them. Furthermore, the use of the
software should not involve extra length in the program which
makes use of it,
4,10, Efficiency (Speed),.

The speed of software preograms should La sufflclent oto

Justify their use in most circumstances,

4,11, Operating Lasc. '

The most critical factor In the effielency of an
fnstatlation is offten the smoothness of the cperating system.
Software should be designed to make the job of the aperator as

slmple as possible,

2,12, Adaptibllity to Wide Range of Applications,
Since the purpose of soffware is to find wide
applicabitity, It Is necessary to conslder the widest possible

areas of applicatlon in its design and Implementation.

4,13, Coherence and Consistency with other programs,

As far as possible, software programs shouid be
compatible with each other, and capable of balng used either
separately or In conjunction with each other. Furthermore,
any overlap between the programs avallable should only be
accepted if the need Justifles I+,

414, Minlmum Cost to Develop,
The cest of softfware development in manpower and
machine time Is a vitai factor in the planning of a sulte

of software programs.

4.15. Conformity to National and Infernational Standards.

When nattlonal or Internatianal standards for character
codes, tape formats or tanguages have been set up, or seem
I'kely to be set up, these should be observed +oc +he

maximum oxtent.

4.16. Early and Valid Salses Documentation.

Sales documantation describing the most important
tfeatures of the software under development shouid be availablae
early In the life of the project; and They shculd remain
valid when the product is finally delivered.

4.17, Clear Accurate and Preclise User's Documents.

In addition to sales documents, the user's documents
should contain clear instructions on a program's proper
method of use, and an accurate description of its properties,

The documant should be available earlty in the Ilfe
of the project, and should be kept scrupulousty up to date,

