Do G
(\)\.l\’,\\\\g)\w\ \) \ i

" -
SINGLE-PASS COMPTLATTON Lt] %_.,.\\:.: o

]f—\ (:/,\ #\;) ,.i";"ﬂﬁﬁz‘-"-"""t/ !

Mr, C, A, R. Hoare

M, HOARE:—Singlewpass compilation. There are many different
ways OE going about writing translators nowadays that it is
advisable at the outset to give a reasonable definition of
what is meant by a single~pass compilation. The first prin-
ciple of single-pass bompilation is Lthat as much work of
translation as possible is done in a single scan through the
source code, which produces as output an intermediate code
which is as close as possible to that which the machine obeys;
and the second principle which is observed in designing
single-pass compilers is to get as much information out of
store as quickly as possible during the first scan, and not
to fill the store with too much information, certainiy not
more thaﬁ is absolutely necessary.

Now the circumstances in which single-pass compilation
isrthe best way of going abouﬁ things can be clearly defined.
It is a fairly simple way of designing a compiler, which is.
to be implemented by a few pecople, and to a fairly short time
scale. So Qhere early implementation is a criterion, single-
pass compilation should be considered. "Secondly, it is
particularly useful in dealing with a computer which has a
reasonable- amount of immediate access core‘storage, but no
magnetic backing storage; and the only input/output medium
is paper tape, say, or possibly punched cardé. To give a

rough estimate, if there is sufficient core storage fFor

between 8,000 and 16,000 single-address instructions, and a
paper tape only configuration, then single-pass compilation
is highly advisable, because it minimises the amount of paper
tape output which is required. Thirdly, on a configuration
with sufficien? main core store or backing store to hold the
intermediate oétput, single-pass compilation can give
extremely high speedé,'probably higher than any other pos-
sible method. High speed of translation, together with
compactness of the compiler, is particularly valuable in a
multiaccess environment.

In order to achieve single-pass compilation, the language
must possess certain propertiés. In fact, it should be a
- language in which the compiler knows most of what it needs
to know at the time when it needs to know it. It would not
be Pecémmonded for a language which allowed the programmer
to put all his declarations at the end of the programme, or

to omit them altogether. For such a language, it would

definitely be recommended to use a "one-—-and-a-half-pass system",

which involves a preliminary scan of the source programme in
order to collect all the information on identifiers that is
required, and in which the main part of the compilation is
performed in a second scan of the source programme. The one-
and-a-half-pass system has been used by Dijkstra in his
pioneering implementation of ALGOL 60 for the X,1. The
solution adopted by Elliott on the 803 and 503 was to make
minor restrictions to the Algol ianguage which made it pos-

sible to be sure that practically everything is declared

before it is used. For example, all procedures declared in
_the head of the block must follow all other declarations in
the head of that block, so that when an identifier occurs in
a procedure statement, the compiler knows whether that
identifier is in fact a local identifier of the block or
T

global to the[block. So single-pass complilation is feasible
only for a language which behaves itself according to certain
rules.

The organisation of the translator is defined by the
way in which the whole task being performed can be split up
into separate tasks which can be tackled independently; for
this is a very important feature of any major Computef
program. For a multi-pass translator, the job naturally
splits itself up into the implementation of the separate
passes; but for a single-pass translator, the split-up of
tasks is qguite orthogonal to that of the multi-pass trans-
lator. In fact, the translator is split into independent
"compiling Poutinesh,.each of which degls with one of the:
syntactic categories.of the language. In an ALGOL 60 trans-
lator there would be about sixty sﬁch rouvtines, each of which
is capable of compiling a‘papticu]ar class of texts, and each
named after the class of texts which it compiles: for
instance, "compile statement", "compile arithmetic expression'’,
tecompile Boolean expression', ntcompile for statement™. All

these procedures are written separately, but of course they

are permitted to enter each other .as subprocedures. In

practice, they use each other to compile the sub-components
of the syntactic construction which they are responsible for :
compiling ag a whole.

£ . . .

In greater detail, there are two fundamental utilities,
tadvance” and "issue" which look after the input of source
text and the output of object codes; in between these, there
exist procedures for compiling various syntactic units.
"Advance" is responsible for inputting and assembling the
next basic unit of the programmé. It has two buffers: one
is a single-character buffer which is internal to it; and
the second one is a single-word buffer, which is used to
transmit a unit of source program to the rest of the trans-
lator. The basic task of "advance" is to read through the
next few characters of the source programme and assemble
them together into a single "word" {for example, a basic
word, a combination of symbols likeh"polon equals!", an
identifier, or a number); and having assembled this information
together, it usually looks it up in a dictionary of basic
symbols and current identifiers. Thus, for each source
program word which is input, certain basic information is
made available - for instance, whether it is an identifier;
and if it is an identifier, what type it is, and what address
has been allocated to it. The various compiling procedures
will frequently enter.the advance routine to step the source
programme through the tape reader, to deliver the next unit

of compilation, and to place it in the single-word buffer,

At the other end of the operation, the actual issuing
of the intermediate code is done by a set of issuing routines,
which deal with object code instructions and addresses. The
issue_roﬁtines take the address part of the instruction which
they are issuning direct from the information supplied by

Madvance'. CLnsequently, the compiling routines never have

to worry what! the actual addresses associated with the
identifiers 7re. As well as issuing the actual instructions
of object code, the issue routines are also available to
issue inatructions to the progfamme loader. For example,
the instruction "issue nested jump'" tellg the loader to do

something, as well as causing an actual instruction to be

placed in the object programme.

Each of the compiling procedures has to conform to
certain conventions, For example, cach of thém expects to
be entered with the first word of the text it has to deal
with in the bufferi and each of them is des?gned to exit with
the syntactic category for which iﬁ is responsible. We take
as an example, the procedgre "compile statemenf", which is
given in figure 1, which has been taken direct from the
program documentation of the Elliott 803 and 503 ALGOL com-
pilers. It begins with the namec of the procedure (line 1)
which indicates that the procedure is designed to éompile
statements, and, just for the benefit of the person who is

putting this procedure into machine code, we mention that it

is recursive and that he had better push down the link. The
first test thal is made is, "Is the word in the buffer a
label?®, and that is tested by the First if clause, (line 6).
The wopd label here may be regarded as a Boolean proéedure

which looks at certain markers made available by "advance",

and delivers tﬂe value true or false in accordance with
whether those markers indicate that the word is .a label or
not. If il dg a label, then we check in the Elliot{ imple-
mentation whether the blocle level of thé label is the same
as the current block level. This test in Elliott ALGOL
prevents the programmer from jumping into the middle of a
block, which is not permitted in the language.

We now come to our "issue!" instruction, which caunses a
jump instruction to be placed in a jump table which is being
accumulated by the loader. For every label that is
declared, a location is allocated to hold an instruction
which is going to be a jump to the pla;e where that label
"has been prefixed to a statement, and "issue a label! issues
an instroction code to the loader to place a jump to this
part of the code in the position of the jump table which has
been allocated to the given label., Next, we need to check
that the next symbol on the source programme is a colon,
This is done by a routine of which we call "check", which
checks that the content of Cthe buffér is a colon. Finally,
we do another advance to read the next word again into the

buffer, and go back to the beginning, because we are still

-7 -

expecting alstétcment from the source text, Having gone back
to the begi#ning, of course, we can deal with repeated labels
on the same statement. If, however,'the first word of the

£ .
statement being compiled is not a label, then there are a
great many other things that it could be, For instance, it
could be a ﬁrocedure identifier. If il is a procedure
identifier, there aré still two alternatives: it is either a
type procedure identifier, occurring on the left-hand side
of an assignment statement; or it is an-ordinarybpvocedure
identifier, introducing a procedure statement. The
discrimination between those two cases is made by the con-
ditional statement beginning on line 16. Notice that when
we enter, for instance, compile assignment.statement, the
first word of the whole statement is still in the buffer,
and therefore it is still in the buffer after entry. This
satisfies the rule for communication between the compiling
routines.

The neit line (line 19) determines whether to compile,
an assignment by teéting if the buffer contains an identifier
for a variable. Lines 20 to 25 use the utility procedure
tesh, which sfands for "current symbol”'and takes a string
parameter. It yields the value true if the content of Lhe
buffer is equal to the parameter, false ofherwise. The
interpretation of these lines is obvious; however, it is
worth noting that their basic simplicity and efficiency is

due to the fortunate characteristic of ALGOL, that the

;

!
syntactic Ciasé of a portion of text is nearly always obvious
from its fifst symbol, This characteristic is not shared by
FORTRA%.

Lines 25 to 32 illustrate one of the few cases where
this is not so, and one of the ad hoc techniques which can be
used to get round thg difficulty. If the current symbol is
begin, we do not knéw whether this introduces a block or a
compound statement, So after ignoring one or more possible
comments, we examine the next symbolrto gee if it is a
declarator. If it is, we compile a bloclk; otherwiée, we
compile the compound tail., Finally, the case of the empty.
statement is dealt with simply by exiting from the procedure,
without having done anything.

To illustrate the mutual dependence of procedures, we

i

now consider the procedure "compile compound tailft, This
procedure is recursive, since it both enters and is entered
from "compile statement'", Note that the procedure has been
entercd with the first symbol of the compound tail in the
advance buffer. A "compound tail®" is defined as a sequence
of statements‘separated by semi-colons and tepﬁinating with
the symbol "end". So when we are trying to compile a com-
pound tail, we first of all compile its first statement. The
first word of the Compound tail is in fact in the buffer, and
this is also the first word of the first statement, and so
the entry satisfies the rules. Having compiled the statement,

the buffer will contain the first symbol which is not in fact

part of the statement, i.e., the semi-colon, which terminates

it, or possibly the end which terminates the entire compound
tail. If in fact it is a semi-colon, (line 6) then we advance

again to read the symbol after the semi-colon, If it is a
A
comment, ,» then again we have to ignore till the following semi-

colon and then go back again to read the symbol after
i

f . . .
the seml—color which terminates the comment, The test i

o)

repeated, in Fase several comments have been written in a row.
As soon as weé encounter a gsymbol which is not comment, we go
right back to the beginning again to compile the next state-
ment of the compound tail. If the symbol following a state-
ment of a Cémpound tail is nét a semi-colon, then it must be
an end, There is no other alternative for it, S0 ali we have
to do if the current symbol is not a semi-colon (line 12) is
to check that it is, in fact, an end. Finally, we have to
ignore the comment which Algol permits after the end, and

that is done by line 13.

The firét point of interest is that ftcompile compound
tail" contains a cail'of the ppbcedure."comﬁile gtatement!?,
which we have alrecady analysed, so fhat this is a simple
case of a procedure £o compile a syntactic unit (i.e. a state-
ment) calling a procedure'to compile a sub-unit ti.e. a
compound tail), which in its turn calls the origgnal procedure
again. This is a very characteristic feature of the
organisation of these compiling routines. In fact, the call-

ing structure of these recursive routines mirrors almost

exactly that of the syntactic definitions of the Algol Report.

The syntactic definition of a statement is made in terms
of an assigﬁment statement, procedure statement, for state-
ment, éonditional sltatement, block, and compéund sta£ement;
anl thesé are exactly the procedures which the procedure
teompile statement? calls. Similarly, the syntactic
definition for a compound tail shows that a compound tail is
defined in terms of statement; correspondingly, we have
tcompile statement" called from within "compile compound tail
For this reason, the compiling technique described here is
sometimes known as "syntax-directed"., It differs from other
syntax—directed compilers in two respects: firstly, it is con-
pletely single pass, and secondly the syntactic structure of
the language is‘actually embodied in the machine code instruc-
tions which analyse and translate the language, rather than in
a "syntax table", which is used interpretively to analyse the
lLanguage, Because everything is done'explicitly in machine
code, rather than by looking up in a table, very high speeds
of analysis and translation can be achieved. However, it is
not recommended to use recursion unnecessarily, when ginmple
iteration would suffice. Thus "compile compound taill uses
a conventional loop to deal with its component statements,
although the ALGOL definition uses direct recursion.

Another point to notice is that in compiling a‘syntactic
unif the procedure to compile it looks after every aspeclt of
the compilation, the syntactic analysis, the diagnostics,

checking, and the issuing of compiled code; and these aspects

of the job are not split up into separate passes as they would
be in-a multi-pass compiler,

Thé.account given abové has concentrated on the broad
outlineshof single-pass compilation, without dealing with any
of the minor'difficulties arising in practice as a result of
incomplete knowledge abt certain stages in compilation,. There
are a number of places, even in a well-structured language
like Algol, where it is just impossible to know exactly what
the object code is going to look like, or exactly where it is
going to go in the store, until the entire process of com-
pilation is completed. There are two well-known areas in
which this is obvious: the first is. forward jumps to labels;
and the second is the final position in store of the work space
of the programme, the constants, and the code itself. The
point here is that we Want to be able to separate in the store
of the computer at one time the areas allocated to the work
space of each of the blocks whiph we compile. We wish to
separate this, in its turn, from the‘cénstants which are-being
used, and this, also from the code which is being produced.
Since we do not know until we have finished compiling Lhe
programmwe how many constants there arve going to be, how many
words of work space there are going to be, or how long the
code is going to be, we cannot make a final allocation of
machine addresses to these things during compilation.

The solution to bolh these problems and other problems

of a similar naturc is usually very obvious. In each

individual case, there will be found some ad hoc technique
which is suitable; this will usually involve some elaboration
of the structure of the intermediate code, and the inclusion
in it oficertain types of information, which lead to some
-appropriate.acgiou when the intermediate code is being

I
loaded., For eXample} the problem of forward jumps can be
dealt with by a technique of allocating a separate table with
an entry for each label. A go to statement referencing the
label is compiled as a jump to the tagle entry itself; and
when the label is encountered by the translator, it issues

an instruction to the loader to place a jump to the current

program position in the corresponding table entry. Thus at

run time, each jump to a label is executed as two jumps, one
+o the table entry, and one to the destination. The over-
head of object time and space is quite small, but this

particular technique is not recommended for indigcriminate

In designing the expedients fo be adopted to solve the
minor difficulties, it is a great help if the intermediate
pass produced by the translator can be read in backwards by
the loader. This will ensure that any information which is
not known early enough at time of compilation, will be known
to the loader ahead of the requirement; so that the loader
can'always produce the final absolute machine code without
any backtracking or subsequent filling in. As an example of

the usefulness of backward loading, we take the problem of

jumping in conditional and for statements. These can be dealt
with by a technique known as '"nested jumpinguwhich does not
involve any of the run time overheads of a jump table, A
conditiénal construction in Algol takes the form: if
~then elsé «.... The condition is placed between an if
and a then, anﬁ obviously the compiler first constructs code
to evaluate the condition. Next, corresponding to the then,
it wishes to issue a conditional jump instruction which will
jump to the else if the condition is false, and will allow
control to pass sequentially if Che condition is lrue. But
of course the compiler does not know at this stage how much
code is going to be gonerated by the limb of the conditional
which follows the then. It thereforé issues a specific '
instruction called a "nested jump', which tells the loader
to fiil in the destination of the jump from information that
will be given later. If there is no glse, the end of the
coﬁditional is indicated by the end of the statement, and we
issue an instruction éalléd "answer nested jump" which

tells the loader that "This is the place where you were
supposed to jump to when I last told you that you werc going
to jump somewhere!. The loader then will take note of those
instructions and behave in the manner instructed. Now the
fact that the intermediate code which has been produced by
the translator is read backwards iﬁto the store of the com-
puter, means that the loader will have got the answer to the

nested jump before the question has even been asked, so that

at all times it knows the degtination of a jump at the tinme

when the jump is loaded into store,

Tﬁg reason why it dis called =~ "nested jump? is as follows:
the textAin beﬁween the then and the else may itself contain
conditional-coéstructions, and therefore it is quite possible,
if there is another then in betwecen, and that there will be
issued yet another nested jump instruction and another answer.
Consequently, there are two nested jumps, and two answers.
However, they are properly nested, because the innermost
nested jump has gol to be linked up with the innermost answer,
and the outermost one has got to be linked up with the outer-
nost answer,-in the séme way as nests of brackets are linked
up in arithmetic expressions. This means that the loader has
goﬁ to_maintain a stack of these addresses given by the
answers; whenever it reads a nested -answer it puts the address
of the most recently input instruction into the stack, and

increments the stack pointer. Whenever it reaches the nested

jump to which this was the answer, it takes the address con-
cerned out of the stack, puts it into the required conditional

jump instruction, and decrements the stack pointer.

The question now arises: "How does the loader know how long to

make this stack?", 1In fact, there are several other stacks
which the loader has got to maintain, for example, a constants
stack, and a stack for the wérk space of each independent
block or procedure. Since the intermediate code is read in

backwards, this presents no problenm. The compiler can keep

account of the'maximum that is ever reached by any of these
stacks, for example, the maximum depth of nesting that is ever
reached by the stack of nested jumps; and at the end of
compilaﬁion it can output a number indicating the maximum
depth of nestiég which has ever been encountered in the given
i
programme , Siéce the intermediale code is read in backwards,
the loader will read this information first of all, and can
therefore allocate exactly the right amount of space to hold
each of the stacks,

In a case like this, it would have bheen perfeclly accept-
able to avoid the complexiﬁy of counting the maximum depth of
nesting, by setting an arbitrary limit of say 04 on how many
thens are permitted before reaching an else. Fn fact it is
possible to construct an Algol compiler without making such
arbitréry restrictions, In the Elliott 603 ALGOL compiler
{there is virtually no table that can be exhausted beflore the
stére.is full anyway. At compile time a double-stack system
'is maintained, and praétically everything is put in one of
the stacks; when the two stack pointers meet, then there is

no space being wasted anywhere in the store of the computer.

On the 803 it is very uncommon to run out of space at compile time.

There is an "error™ number which indicates inadequacy of space,
is interpreted as "Programme is too long or complicated to

be translated". This is the error message that appears when
the store is completely full of nested information,

dictioneries, and so on. 11U was quite difficult to construct

and

a test case to see that this error was properly detected.

in the end, it was done pressing the run-out bution of a

Creed teleprinter on the opénwbracket symbol, thereby making

a tape éontain%ng_a long sequence of open brackets, This

was presentgd ?o the translater to see how far it would read.

In the first aétempt, there were not enough brackets, At the
second attempt, the-"crpor" was correctly detected after about

four hundred consecutive open brackets. As far as I know,

this error number has never been given in normal use of the

compiler,

Questions

0. It does not seem necessary to maintain a jump-table in
order to solve the forward jump problem., It isg gufficient
to blace in each compiled jump instruction the address of
the previous jﬁmp to the same destination. The loader can
‘then chain through all jumps to a given label, and fill in
the addresses accordingly..

A, I Chink that is a technique which is equally suitable
for solving the forward label problem.

Q. Yes, and also the conditional jumps as well.

AL It will solve that one as well, but of course the
nesting mechanism is slightly simpler in this case, since
Tor each nested jump, there is énly one answer, You only
ever have to fill in one address, and therefore nesting

technique takes advantage of the circumstances of the case;

-~ 17 -

this is characteristic of all good ad hoc programming
techniqgues.

+ Would you say that the techniques required to gel over

“the individual difficulties would be very machine-dependent,

because it is probably going to involve directions to the

loader?
1f the loader is machine oriented, then you are right,

! .
. | . P
but in our case the loader was designed specifically to

load Algoi programmes .

Isn't one taking a grave risk in any system which is
deéigned Lo input thé'05ject programme backwards? It is.
probably all right on quité a lot of paper tape, or even
punches, but very likely to go wrong if you have a system
of only punched cards, and on many handlers it is not
posaible to read_the magnetic tapes backwa;ds. And, in
fact,.iﬁ.is quite posgible to avoid bapkwavd reading by
the loader.

0Of course, bhut backwara reading is quite a usefui
technique for the particular circumstances in which it was
employed, "As I mentioned al the beginning, the techniques
described are oriented towards certain kinds of con-
figurations, certain kinds of compiling problem, and

certain kinds of language, T would not advocate it on

every computer or for every language. For example, the

Gier Algol is a nine-pass system, and that is dictated by

the fact that they have got a good fast drum and only a

A,

- 18 -

]
i

. A
thousand words of core store; and for that machine this
obviously is the best way to organise the compiler.

You have got the routines here expressed in Algol

£

notation - it may be pure'Algol, I am not quite sure, Did

this come before or after the machine code routine was

produced?

Before,

Supplementary OQuestion

0.

So that it was written out like this beforehand as a
specification from which to code.

‘I would not neceésafily say in all cases, but certainly
for the recursive parts of it. The bitg like "advance" and

"igsue" I think were written in machine code Tirst., They

are a lot more scrappy, and much less elegant from the -

point of view of documentation than the compiling routines.

And was this found to be a successful way of cxpressing
the compiler?

Yes, It is relativeiy easy to find your way through
what is going on. For maintenance purposes, of course, you
need annotated programme shecets as well. But a syntax-
directed compiler organisation means that you only have to
know the syntax of Algol to be able to find out where any
particuiar fault js‘likelf to have occurred,

How do you define the difference between a halif pass

and a whole pass?

A half pass consists only of input, without output of
intermediate code. It is a pre-scan of the source code,
collecting up information, and the source code is input a

p
secorncl time‘to do the actual compilation,
But this is a whole pass. You actually have to reéd
i .

the whole téxt.

Yes. You have to read the whole text in, but you do

not have to output any of it, A real two-pass system

would involve two sets of intermediate code instead of

only one.,

i

proccedure compile statement;

comment this is a recursive procedure so link is pushed

down at begin and popped up at end;

begin
X: if label then

begin check (block level of label = current block level);

encd

else

else

else

else

else

else

else

else

ggggggﬁ cﬁeck label declared in inner-most block;
issue label;

advance;

check (1:1);

advance;

ge to X

if procedure identifier then

begin if type procedure then compile assignment statement
else compile procedure entry

end

if variable identifier then compile assignment statement

if cs (lgo to!') then compile go to statement

if cs ('read') then compile read statement

if cs {(!print!') then compile print statement

™m

-
—
~
r

(tfor!') then compile for statemeént

if es ('if!') then compile conditional statement

cs ('begin') then

ot
o

o W

~J

11
12
13
14

L5

16

17
18

19

20

22
23
24

25

A: begin ad;ance;

;f_és (tcomment!) then
_éggig ignore till (';1!)
‘go to A

end

else if declarator then compile block;
else compile compound tail

end block or compound staltement

end compile statement;

procedure compile compound tail;

comment, this is a recursive procedure so link is pushed
down at begin and popped up at end;
begin start: compile statement
if es (1:') then begin L: advance;

if ¢s (Ycomment!) then

begin ignore till (';1);

go to start

end;

ignore till 3 (';', telse', tend')

end:

20
27
28
29

30

31
32
35
36

Lo

4

11
12
13

14

