\-.

7

o CAWAAA {z»wt;z \'}' = N

§ \f"-’l;vi.i}”/l,lizl/lf’ b} L\v(;'\;’\ . Lﬁ ANTERD } é»‘\\{ O;fg\f\’&( g
J wou 7
i

Hoare's formalisation of Jones'
caleulue for programming

C B Jones Identifies a program with a pair of predicates (P(x),R{x,x" }),
where

X Is a list of all non-local variables of the program;
xv

is a list of ticked variables, standing for the final values
of the variables In x;

P{x) 1s the precondition, describing the Initial values of the
variables x, which ensure that the program will terminate;

R(x,x'/) will be true of the initial and final values

If x does not satisfy P(x), the program will not terminate, and the

truth or falsity of R(x,x¥) is irrelevant; for the sake of uniqueness,
we sﬂtipqr_l_g_{:__e that in such cases It is always true:

b‘x,x‘/([:F(x) v R(x,x")) (A)
We then stipulate that the domain of R is total:

¥ 30 R, ) V. Py > A Rp?) (®)
Finally, the set of possible final values x¥ is finite for each x Y el /
satisfying P(x): e !

¥x (P(x) = ({x"]R(x,x")} is gnite)). (c)

Now we can define our language. For each definition, tge need to prove
that the right hand side satisfies conditions o5 ﬁ’)’and (3),
(provided that all programs mentioned on the left hand side do 50) .
(1) abort 2 (false, true)

(2) skip

-2

vi
(true, x¥= x) B

= v o= v -
(De, x:}/ Xy Aee A XY Q'A"'\n xn)

1

(3) X1t

where De, is a predicate which is true of x just when the values of x
make ¢, defined,

(4}  (P,R) v {Q,S) 2 (PAQ, RVS) non-deterministic union

(5) (P,R) <b>(Q,S) 2 (Dba P <b> Q, R <b> §) conditional

JA)..,.ﬂ\Q N P <ar (Q @

(p )R) ([3‘ P R) 2.




Page 2

(6) (P(x), RO,x));5(Qx), S(x,x")}
(PO)A(YX R(x,%) = Q6)), 3% R(x,%) A $(%,%x))
(7) wX. F(X) = (3n P» ¥n. Rn) recurs ion
where (Po, Ro) = aéaort
(Posr> Roat) = F (Prs R
(8) (P,R) sat (Q,5) & (Q= P)A(QrR = S)

Some of these laws are a bit complicated. Let us try to simplify
them by a coding trick.

Let st be a fresh variable, not among x, {and never gﬁlf&ci@ﬂ?mentioned
in the program).

let st‘/ be its dashed variant.
Let y be the l'ist st, Xyr vees X o
Ltet y¥ be the 11st stY, x(‘)’; veny XY ‘
Let P(x) and R(x,x) satisfy conditions (A), (8), (c).
We now ldentify a program
(P(x), R(x,x"))
with the single predicate
6(y,y") #{(sta POx)f= SAR(x, 1)), (stoat R
Similarly, we define
Hiy,y") #((st AQ) = stAS(x,%))
Given a G of the above form, we can extract the original P and R as follows:
# P =~(G[false/stY, true/st]l) ) where [k/x] means
R R_= GLtrue/st¥, true/st] substitute k for x
Now we can transform the earlier definitions as follows®
(1) abort ® true ‘ ‘“"”"-‘I”““‘F“ég ot (te)
(2) skip & (st = (stAx"= X))

(3) xi:ﬂ-é (br = skip ®/x,J)




Page 3

(4) GvH 2 GvH

(5) G<b>H 2 (Db=g <b> H) -

6) ¢y (vy) ® 37 6y, M)A YY)

(7)) w.F(X) 2 wn F" (true)

(8) GsatH © ¢ G=H,

If my calculations (of some time ago) are correct, the two formulations
of the eight laws are fsomorphic. For practical use, the predicate palrs

may be more convenient. But for proof of algebraic propertles, the . .
_single- predicate formulation_seems simpler. Also, the single predlcate

generalises more easily to communicating processes.

o P At /
({g ’gﬂﬁ Vf}/éw()/‘ LA .gul ()4).,;\—‘\0-9673{ .' /eZu/\ iy ] _




